Sample records for weak zone model

  1. The Mechanism and Dynamics of N-S Rifting in Southern Tibet: Insight From 3-D Thermomechanical Modeling

    NASA Astrophysics Data System (ADS)

    Pang, Yajin; Zhang, Huai; Gerya, Taras V.; Liao, Jie; Cheng, Huihong; Shi, Yaolin

    2018-01-01

    N-S trending rifts are widely distributed in southern Tibet, suggesting that this region is under E-W extension, behind the N-S collision between the Eurasia and India plates. Geophysical anomalies and Miocene magma extrusions indicate the presence of dispersed weak zones in the middle to lower crust in southern Tibet. These weak zones are partially located underneath the N-S rifting systems. In order to study the formation of rifts in collision zones, we have developed a high-resolution 3-D thermomechanical model of continental lithosphere with bidirectional compressional-extensional deformation, and spatially localized weak and low-density zones in the middle to lower crust. Our numerical experiments systematically reproduce the development of N-S trending rifts. Model results reveal that the weak middle to lower crust triggers the development of normal faults in the upper crust and surface uplift, whereas regions without such weak layer or with small-scale weak zones are characterized by strike-slip faulting. Geodynamic properties (density, depth, and geometry) of the weak middle to lower crust and Moho temperature notably influence the rifting pattern. In addition, rifting formation is critically controlled by large E-W extension, with the ratio of extensional to compressional strain rate larger than 1.5 in the model with continuous weak middle crust. Our simulated rifting patterns correlate well with the observations in southern Tibet; we conclude that a combination of the bidirectional compression-extension and the presence of locally weak middle to lower crust triggered the development of the rifting systems in southern Tibet.

  2. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.

  3. Weak ductile shear zone beneath the western North Anatolian Fault Zone: inferences from earthquake cycle model constrained by geodetic observations

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.; Wright, T. J.; Houseman, G. A.

    2013-12-01

    After large earthquakes, rapid postseismic transient motions are commonly observed. Later in the loading cycle, strain is typically focused in narrow regions around the fault. In simple two-layer models of the loading cycle for strike-slip faults, rapid post-seismic transients require low viscosities beneath the elastic layer, but localized strain later in the cycle implies high viscosities in the crust. To explain this apparent paradox, complex transient rheologies have been invoked. Here we test an alternative hypothesis in which spatial variations in material properties of the crust can explain the geodetic observations. We use a 3D viscoelastic finite element code to examine two simple models of periodic fault slip: a stratified model in which crustal viscosity decreases exponentially with depth below an upper elastic layer, and a block model in which a low viscosity domain centered beneath the fault is embedded in a higher viscosity background representing normal crust. We test these models using GPS data acquired before and after the 1999 Izmit/Duzce earthquakes on the North Anatolian Fault Zone (Turkey). The model with depth-dependent viscosity can show both high postseismic velocities, and preseismic localization of the deformation, if the viscosity contrast from top to bottom of layer exceeds a factor of about 104. However, with no lateral variations in viscosity, this model cannot explain the proximity to the fault of maximum postseismic velocities. In contrast, the model which includes a localized weak zone beneath the faulted elastic lid can explain all the observations, if the weak zone extends down to mid-crustal levels and outward to 10 or 20 km from the fault. The non-dimensional ratio of relaxation time to earthquake repeat time, τ/Δt, is the critical parameter in controlling the observed deformation. In the weak-zone model, τ/Δt should be in the range 0.005 to 0.01 in the weak domain, and larger than ~ 1.0 elsewhere. This implies a viscosity in the weak zone of ~ 1018×0.3 Pa s, and larger than ~ 1020 Pa s outside this region. Models with sharp boundaries to the weak zone fit the data better than those with a smooth increase of viscosity away from the fault. Thus abrupt changes in material properties, such as those that might result from grain-size reduction, may be required in addition to any effect from shear heating. Unlike some previous models, we do not require non-linear stress-dependent viscosities. Our models imply that geodetic strain rates decay to a quasi-steady state within about 10% of the inter-earthquake period (years or decades) and that interseismic geodetic observations can therefore be used to infer the long-term geological slip rate, provided there has not been a recent earthquake. Rheologies inferred from postseismic studies alone likely reflect the rheology of the weak zone beneath the fault, and should not be used to infer the strength profile of normal lithosphere.

  4. Control on frontal thrust progression by the mechanically weak Gondwana horizon in the Darjeeling-Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Das, Animesh

    2018-03-01

    This study integrates field evidence with laboratory experiments to show the mechanical effects of a lithologically contrasting stratigraphic sequence on the development of frontal thrusts: Main Boundary Thrust (MBT) and Daling Thrust (DT) in the Darjeeling-Sikkim Himalaya (DSH). We carried out field investigations mainly along two river sections in the DSH: Tista-Kalijhora and Mahanadi, covering an orogen-parallel stretch of 20 km. Our field observations suggest that the coal-shale dominated Gondwana sequence (sandwiched between the Daling Group in the north and Siwaliks in the south) has acted as a mechanically weak horizon to localize the MBT and DT. We simulated a similar mechanical setting in scaled model experiments to validate our field interpretation. In experiments, such a weak horizon at a shallow depth perturbs the sequential thrust progression, and causes a thrust to localize in the vicinity of the weak zone, splaying from the basal detachment. We correlate this weak-zone-controlled thrust with the DT, which accommodates a large shortening prior to activation of the weak zone as a new detachment with ongoing horizontal shortening. The entire shortening in the model is then transferred to this shallow detachment to produce a new sequence of thrust splays. Extrapolating this model result to the natural prototype, we show that the mechanically weak Gondwana Sequence has caused localization of the DT and MBT in the mountain front of DSH.

  5. Dynamic topography in subduction zones: insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    The topography in subduction zones can exhibit very complex patterns due to the variety of forces operating this setting. If we can deduce the theoretical isostatic value from density structure of the lithosphere, the effect of flexural bending and the dynamic component of topography are difficult to quantify. In this work, we attempt to measure and analyze the topography of the overriding plate during subduction compared to a pure shortening setting. We use analog models where the lithospheres are modeled by thin-sheet layers of silicone putty lying on low-viscosity syrup (asthenosphere). The model is shorten by a piston pushing an oceanic plate while a continental plate including a weak zone to localize the deformation is fixed. In one type of experiments, the oceanic plate bends and subducts underneath the continental one; in a second type the two plates are in contact without any trench, and thus simply shorten. The topography evolution is monitored with a laser-scanner. In the shortening model, the elevation increases progressively, especially in the weak zone, and is consistent with expected isostatic values. In the subduction model, the topography is characterized, from the piston to the back-wall, by a low elevation of the dense oceanic plate, a flexural bulge, the trench forming a deep depression, the highly elevated weak zone, and the continental upper plate of intermediate elevation. The topography of the upper plate is consistent with isostatic values for very early stages, but exhibits lower elevations than expected for later stages. For a same amount of shortening of the continental plate, the thickening is the same and the plate should have the same elevation in both types of models. However, comparing the topography at 20, 29 and 39% of shortening, we found that the weak zone is 0.4 to 0.6 mm lower when there is an active subduction. Theses values correspond to 2.6 to 4 km in nature. Although theses values are high, there are of the same order as dynamic topography and could represent the dynamic effect of the slab sinking into the asthenosphere and lowering the elevation of the upper plate.

  6. Global Assessment of Volcanic Debris Hazards from Space

    NASA Technical Reports Server (NTRS)

    Watters, Robert J.

    2003-01-01

    Hazard (slope stability) assessment for different sectors of volcano edifices was successfully obtained from volcanoes in North and South America. The assessment entailed Hyperion images to locate portions of the volcano that were hydrothermally altered to clay rich rocks with zones that were also rich in alunite and other minerals. The identified altered rock zones were field checked and sampled. The rock strength of these zones was calculated from the field and laboratory measurements. Volcano modeling utilizing the distinct element method and limit equilibrium technique, with the calculated strength data was used to assess stability and deformation of the edifice. Modeling results give indications of possible failure volumes, velocities and direction. The models show the crucial role hydrothermally weak rock plays in reducing the strength o the volcano edifice and the rapid identification of weak rock through remote sensing techniques. Volcanoes were assessed in the Cascade Range (USA), Mexico, and Chile (ongoing).

  7. Analogue modelling of microcontinent formation: a case study from the Danakil Block, southern Red Sea

    NASA Astrophysics Data System (ADS)

    Molnar, Nicolas; Cruden, Alexander; Betts, Peter

    2017-04-01

    The kinematic evolution of the Danakil Block is well constrained but the processes responsible for the formation of an isolated continental segment around 13 Ma ago with an independent pole of rotation are still matter of debate. We performed three-dimensional analogue experiments of rotational continental extension containing a pre-existing linear weakness zones in the lithospheric mantle to investigate the formation of the Red Sea, including the Danakil Block. We imposed a rotational extensional boundary condition that simulates the progressive anticlockwise rotation of the Arabian Plate with respect to the Nubia Plate over the last 13-15 Ma and we simulated the presence of a narrow thermal anomaly related to the northward channelling of Afar plume by varying the viscosity of the model lithospheric mantle. The results from experiments containing a linear zone of weakness oriented at low angles with respect to the rift axis show that early stages of deformation are characterised by the development of two rift sub-parallel compartments that delimit an intra-rift block in the vicinity of the weak lithosphere boundary zone, which are analogous to the two rift branches that confine the Danakil Block in the southern Red Sea. The imposed rotational boundary condition creates a displacement gradient along the intra-rift block and prevents the nucleation of the early rift compartments to the north of the block, enhancing the formation of an independently rotating intra-rift segment. Comparison with geodetic data supports our modelling results, which are also in agreement with the "crank-arm" model of Sichler (1980. La biellette Danakile: un modèle pour l'évolution géodynamique de l'Afar. Bull. la Société Géologique Fr. 22, 925-933). Additional analogue models of i) orthogonal extension with an identical lithospheric mantle weakness and, ii) rotational extension with a homogeneous lithosphere (i.e., no lithospheric mantle weakness) show no evidence of developing rotating intra-rift segments and therefore suggest that if these processes had acted diachronously, the Danakil Block would not have formed. Based on the modelling results, we hypothesize that the Danakil Block formed as a result of the interaction between northward rift propagation and a north-northeast-trending mantle weakness zone, associated with anticlockwise rotation of the Arabian Plate and simultaneous northward channelling of the Afar plume.

  8. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    USGS Publications Warehouse

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  9. Constraints on the stress state of the San Andreas fault with analysis based on core and cuttings from SAFOD drilling phases I and II

    USGS Publications Warehouse

    Lockner, David A.; Tembe, Cheryl; Wong, Teng-fong

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (m < 0.2) or strength consistent with standard laboratory tests (m > 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature- and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (m0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress.

  10. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology.

    PubMed

    Keenan, Timothy E; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P Benjamin

    2016-11-22

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.

  11. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology

    PubMed Central

    Keenan, Timothy E.; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P. Benjamin

    2016-01-01

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence. PMID:27821756

  12. Reconciling laboratory and observational models of mantle rheology in geodynamic modelling

    NASA Astrophysics Data System (ADS)

    King, Scott D.

    2016-10-01

    Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high-stress regions of the lower mantle, may be in the dislocation creep (power-law) regime. Due to our limited knowledge of mantle grain size, the best hope to resolve the question of whether a region is in diffusion creep (Newtonian rheology) or dislocation or grain-boundary creep (power-law rheology), may be the presence of absence of seismic anisotropy, because there is no mechanism to rotate crystals in diffusion creep which would be necessary to develop anisotropy from lattice preferred orientation. While non-intuitive, the presence or absence of a weak region in the upper mantle has a profound effect on lower mantle flow. With an asthenosphere, the lower mantle organizes into a long-wavelength plan form with one or two (degree 1 or degree 2) large downwellings and updrafts, which may contain a cluster of plumes. The boundary between the long-wavelength lower mantle flow and upper region flow may be deeper, likely 800-1200 km, than the usually assumed base of the transition zone. There are competing hypotheses as to whether this change in flow pattern is caused by a change in rheology, composition, or phase.

  13. Hydrogeological impacts of a railway tunnel in fractured Precambrian gneiss rocks (south-eastern Norway)

    NASA Astrophysics Data System (ADS)

    Kværner, Jens; Snilsberg, Petter

    2013-11-01

    Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.

  14. Quasi-quantitative analysis of the lithospheric rheology across an incipient continental rift based on 3-D magnetotelluric imaging of Linfen Basin within the North China Craton

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Jin, S.; Wei, W.; Ye, G.; Dong, H.; Zhang, L.

    2017-12-01

    The Shanxi Rift being located within the interior of the North China Craton and far from any plate boundaries has undergone dramatic deformation and seismicity during the Cenozoic. In this study, we build 3-D lithospheric resistivity model by MT array data, across the Linfen Basin which is the most active segment of this intraplate rift. Accordingly, combined with previous rock physics experimental results, we estimate the fluid contents of lower crustal granulites and upper mantle peridotites and thereby the rough distribution of lithospheric rheological strength. On the two sides of Linfen Basin, lithosphere beneath the Precambrian terranes are of high strength. By contrast, a high-conductivity nearly upright lithosphere weak zone occurs beneath the eastern margin of the Linfen Basin and appears to be connected to the high-conductivity and therefore weak lower crust just beneath the basin, probably indicating a structure of asthenospheric upwelling causing the lower crustal decoupling through lateral drag forces. The distribution of lithospheric weak zones, brittle faults, ductile shear zones and detachment structures determined from our resistivity model is in good agreement with the 8-My stage model of a previous numerical geodynamic simulation for continental rift evolution by reconstruction of the South Atlantic plate. Accordingly, we suggest that the lithospheric weak zone could be a preexisting Precambrian shear zone and has reactivated as an asthenospheric upwelling conduit under the far-field effects of Indo- Asian collision or Pacific Plate subduction since the late Mesozoic. This process could have caused the upper crustal extension and rifting through the stress regulation by the plastic lower crust, which could be the mechanism of rift formation. In summary, we suggest the Linfen segment of the Shanxi Rift, is a simple shear mode rift in the incipient stage of rift evolution, rather than a mature pure shear mode one as determined by precious seismic imaging.

  15. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect.

    PubMed

    Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang

    2016-01-01

    Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body.

  16. Dynamics of continental rift propagation: the end-member modes

    NASA Astrophysics Data System (ADS)

    Van Wijk, J. W.; Blackman, D. K.

    2005-01-01

    An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.

  17. What major faults look like, and why this matters for lithospheric dynamics

    NASA Astrophysics Data System (ADS)

    Fagereng, Ake

    2016-04-01

    Earthquakes involve seconds to minutes of frictional sliding on a discontinuity, likely of sub-cm thickness, within a damage zone. Earthquakes are separated by an interseismic period of hundreds to thousands of years, during which a number of healing and weakening processes occur within the fault zone. The next earthquake occurs as shear stress exceeds frictional resistance, on the same or a different discontinuity as the previous event, embedded within the fault damage zone. After incremental damage and healing in multiple earthquake cycles, the fault zone rock assemblage evolves to a structure and composition distinctly different from the host rock(s). This presentation presents field geology evidence from a range of settings, to discuss the interplay between the earthquake cycle, long-term deformation, and lithospheric rheology. Classic fault zone models are based on continental transforms, which generally form discrete faults in the upper crust, and wide, anastomosing shear zones in the lower crust. In oceanic crust, transforms are considered frictionally weak, and appear to exploit dyke margins and joint surfaces, but also locally cross-cut these structures in anastomosing networks. In the oceanic lower crust and upper mantle, serpentinisation significantly alters fault structure. In old continental crust, previous deformation events leave a heterogeneous geology affecting active faulting. For example, the amagmatic, southern East African Rift has long been thought to exploit weak Proterozoic 'mobile belts'. However, detailed look at the Bilila-Mtakataka border fault in Malawi indicates that this fault locally exploits weak foliation in existing deformed zones, but also locally forms a new set of anastomosing fault surfaces cross-cutting existing weak foliation. In exhumed lower crust, the Antarctic Maud Belt provides an example of multiple phases of plastic deformation, where the second event is only visible in localised shear zones, likely inherited from the first event. The subduction thrust interface provides an example of fault evolution in underthrust sediments as they deform and dewater. At shallow levels, distributed shear leads to development of scaly cleavage, which in places provides weak, clay surfaces on which earthquakes can propagate to the sea floor. With further deformation, a melange is progressively developed, with increasingly dismembered, sheared lenses of higher viscosity sedimentary rock and slivers of oceanic crust, in a low viscosity, cleaved matrix. The range of examples presented here illustrate how long-term deformation results in weak structures that likely control future deformation. Yet, the rheology of these structures is modulated by strength fluctuations during the earthquake cycle, illustrated by common evidence of episodic fault healing. The take home message from these field studies of fault zones is therefore the heterogeneity of the Earth's crust, the importance of long-term weak zones as a first order control on crustal deformation, and short-term strength fluctuations within these zones as a consequence of, and reason for, the earthquake cycle.

  18. New insight into the relationships between stress, strain and mass change at Mt. Etna during the period between the 1993-94 and 2001 eruptions

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Aloisi, Marco; Vinciguerra, Sergio; Puglisi, Giuseppe

    2014-05-01

    During the time interval between the 1991-93 and 2001 main flank eruptions of Mt. Etna, volcanic activity was confined to the summit vents. Ground deformation and tomography studies suggest that this activity was fed by a magma body located beneath the north-west flank of the volcano, at a depth of around 7 km b.s.l.. Conversely, gravity studies indicate that the most important mass redistributions during the same period took place within an elongated volume centered below the southeastern sector of the volcano, at depths of 2-4 km b.s.l.. The phases of gravity decrease during the 1994-2001 period coincide with phases of higher strain release rate. The coupling between gravity and seismic data could reflect changes in the rate of micro-fracturing along the NNW-SSE weakness zone that cuts the SE slope of the volcano. This interpretation allows to explain why the main pressure and mass sources active at Etna during the 1994-2001 period do not coincide. The extensional dynamics of the southeastern flank of Etna may represent a second-order effect, triggered by the pressure source below the western flank and accommodated along the NNW-SSE weakness zone. In order to gain quantitative insight into the relationship between stress, strain and mass changes at Etna during the 1994-2001 period, we use a finite element modeling approach. Relying on recent studies involving stress- and temperature-induced degradation of the mechanical properties of rocks, we hypothesize that the inferred NNW-SSE weakness zone is characterized by an anomalously low Young's modulus (E). Results of our analysis are summarized in the following two points. (i) The presence of the weakness zone creates a distortion of the displacements field induced by the deeper pressure source, locally resulting in a weak extensional regime. This finding supports the hypothesis of a cause-effect relation between deeper pressurization beneath the western flank and shallower extension across the fracture zone beneath the SE flank of the volcano. However, the bulk extension across the weakness zone which is only due to pressurization of the magma reservoir is not sufficient to induce the observed gravity changes through changes in the rate of microfracturing. We suggest that propagation of pressurized gas, enhanced by the extensional regime across the NNW-SSE weakness zone, may have exerted tensile stresses across it, in turn increasing the bulk extension. (ii) For a given tensile stress across the fracture zone, the bulk extension increases proportionally as the value of E in the weakness zone decreases, while the ground deformation remains almost the same. This provides an explanation to understand how, during the studied period, the inferred changes in the bulk rate of microfracturing along the NNW-SSE weakness zone could have occurred with an associated small ground deformation. Indeed, we found that, as the value of E in correspondence of the fracture zone decreases, the ratio between deep extension and maximum ground displacement increases and, for values of E equal or less than about 10 GPa, deep extension of 1-2 m can develop with deformation of the surface close to the detection limit of GPS measurements. Our results highlight the importance of performing gravity studies at at volcanoes where there exists a causal link between medium fracturing and volcanic activity.

  19. Layer detection and snowpack stratigraphy characterisation from digital penetrometer signals

    NASA Astrophysics Data System (ADS)

    Floyer, James Antony

    Forecasting for slab avalanches benefits from precise measurements of snow stratigraphy. Snow penetrometers offer the possibility of providing detailed information about snowpack structure; however, their use has yet to be adopted by avalanche forecasting operations in Canada. A manually driven, variable rate force-resistance penetrometer is tested for its ability to measure snowpack information suitable for avalanche forecasting and for spatial variability studies on snowpack properties. Subsequent to modifications, weak layers of 5 mm thick are reliably detected from the penetrometer signals. Rate effects are investigated and found to be insignificant for push velocities between 0.5 to 100 cm s-1 for dry snow. An analysis of snow deformation below the penetrometer tip is presented using particle image velocimetry and two zones associated with particle deflection are identified. The compacted zone is a region of densified snow that is pushed ahead of the penetrometer tip; the deformation zone is a broader zone surrounding the compacted zone, where deformation is in compression and in shear. Initial formation of the compacted zone is responsible for pronounced force spikes in the penetrometer signal. A layer tracing algorithm for tracing weak layers, crusts and interfaces across transects or grids of penetrometer profiles is presented. This algorithm uses Wiener spiking deconvolution to detect a portion of the signal manually identified as a layer in one profile across to an adjacent profile. Layer tracing is found to be most effective for tracing crusts and prominent weak layers, although weak layers close to crusts were not well traced. A framework for extending this method for detecting weak layers with no prior knowledge of weak layer existence is also presented. A study relating the fracture character of layers identified in compression tests is presented. A multivariate model is presented that distinguishes between sudden and other fracture characters 80% of the time. Transects of penetrometer profiles are presented over several alpine terrain features commonly associated with spatial variability of snowpack properties. Physical processes relating to the variability of certain snowpack properties revealed in the transects is discussed. The importance of characteristic signatures for training avalanche practitioners to recognise potentially unstable terrain is also discussed.

  20. Interactions between propagating rifts and pre-existing linear rheological heterogeneities: insights from 3D analogue experiments of rotational extension

    NASA Astrophysics Data System (ADS)

    Molnar, Nicolas; Cruden, Alexander

    2017-04-01

    Propagating rifts are a natural consequence of lithospheric plates that diverge with respect to each other about a pole of rotation. This process of "unzipping" is common in the geological record, but how rifts interact with pre-existing structures (i.e., with a non-homogeneous lithosphere) as they propagate is poorly understood. Here we report on a series of lithospheric-scale three-dimensional analogue experiments of rotational extension with in-built, variably oriented linear weak zones in the lithospheric mantle, designed to investigate the role that inherited structural or thermal weaknesses play in the localisation of strain and rifting. Surface strain and dynamic topography in the analogue models are quantified by high-resolution particle imaging velocimetry and digital photogrammetry, which allows us to characterise the spatio-temporal evolution of deformation as a function of the orientation of the linear heterogeneities in great detail. The results show that the presence of a linear zone of weakness oriented at low angles with respect to the rift axis (i.e., favourably oriented) produces strain localisation in narrow domains, which enhances the "unzipping" process prior to continental break up. Strong strain partitioning is observed when the linear heterogeneity is oriented at high angles with respect to the rift axis (i.e., unfavourably oriented). In these experiments, early sub-parallel V-shaped basins propagate towards the pole of rotation until they are abandoned and strain is transferred entirely to structures developed in the vicinity of the strongly oblique weak lithosphere zone boundary. The modelling also provides insights on how propagating rift branches that penetrate the weak linear zone boundary are aborted when strain is relayed onto structures that develop in rheologically weaker areas. The experimental results are summarised in terms of their evolution, patterns of strain localisation, and dynamic topography as a function of the lithospheric heterogeneity obliquity angle, and compared to ancient and modern examples in nature.

  1. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate

    NASA Astrophysics Data System (ADS)

    Hawley, William B.; Allen, Richard M.; Richards, Mark A.

    2016-09-01

    The boundary between Earth’s strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.

  2. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan plateau: New insights from analogue experiments

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Yin, An; Yan, Danping; Ren, Hongyu; Mu, Hongxu; Zhu, Lutao; Qiu, Liang

    2018-06-01

    Pre-existing weakness due to repeated tectonic, metamorphic, and magmatic events is a fundamental feature of the continental lithosphere on Earth. Because of this, continental deformation results from a combined effect of boundary conditions imposed by plate tectonic processes and heterogeneous and anisotropic mechanical strength inherited from protracted continental evolution. In this study, we assess how this interaction may have controlled the Cenozoic evolution of the eastern Tibetan plateau during the India-Asia collision. Specifically, we use analogue models to evaluate how the pre-Cenozoic structures may have controlled the location, orientation, and kinematics of the northwest-striking Xianshuihe and northeast-striking Longmen Shan fault zones, the two most dominant Cenozoic structures in eastern Tibet. Our best model indicates that the correct location, trend, and kinematics of the two fault systems can only be generated and maintained if the following conditions are met: (1) the northern part of the Songpan-Ganzi terrane in eastern Tibet has a strong basement whereas its southern part has a weak basement, (2) the northern strong basement consists of two pieces bounded by a crustal-scale weak zone that is expressed by the Triassic development of a northwest-trending antiform exposing middle and lower crustal rocks, and (3) the region was under persistent northeast-southwest compression since ∼35 Ma. Our model makes correct prediction on the sequence of deformation in eastern Tibet; the Longmen Shan right-slip transpressional zone was initiated first as an instantaneous response to the northeast-southwest compression, which is followed by the formation of the Xianshuihe fault about a half way after the exertion of northeast-southwest shortening in the model. The success of our model highlights the importance of pre-existing weakness, a key factor that has been largely neglected in the current geodynamic models of continental deformation.

  3. On modeling weak sinks in MODPATH

    USGS Publications Warehouse

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.

    2012-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  4. A Theoretical Analysis of the Influence of Electroosmosis on the Effective Ionic Mobility in Capillary Zone Electrophoresis

    ERIC Educational Resources Information Center

    Hijnen, Hens

    2009-01-01

    A theoretical description of the influence of electroosmosis on the effective mobility of simple ions in capillary zone electrophoresis is presented. The mathematical equations derived from the space-charge model contain the pK[subscript a] value and the density of the weak acid surface groups as parameters characterizing the capillary. It is…

  5. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate.

    PubMed

    Hawley, William B; Allen, Richard M; Richards, Mark A

    2016-09-23

    The boundary between Earth's strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics. Copyright © 2016, American Association for the Advancement of Science.

  6. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  7. A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements

    USGS Publications Warehouse

    Chery, J.; Zoback, M.D.; Hickman, S.

    2004-01-01

    Stress measurements made in the SAFOD pilot hole provide an opportunity to study the relation between crustal stress outside the fault zone and the stress state within it using an integrated mechanical model of a transform fault loaded in transpression. The results of this modeling indicate that only a fault model in which the effective friction is very low (<0.1) through the seismogenic thickness of the crust is capable of matching stress measurements made in both the far field and in the SAFOD pilot hole. The stress rotation measured with depth in the SAFOD pilot hole (???28??) appears to be a typical feature of a weak fault embedded in a strong crust and a weak upper mantle with laterally variable heat flow, although our best model predicts less rotation (15??) than observed. Stress magnitudes predicted by our model within the fault zone indicate low shear stress on planes parallel to the fault but a very anomalous mean stress, approximately twice the lithostatic stress. Copyright 2004 by the American Geophysical Union.

  8. Major effect of inherited rheology weakening in the crust and mantle on continental intraplate strain and seismicity rates

    NASA Astrophysics Data System (ADS)

    Gueydan, Frédéric; Mazzotti, Stephane

    2017-04-01

    Stable Continental Regions (SCR, i.e., intraplate) are commonly viewed as non-deforming and very high resistance lithosphere domains, except in localized regions of higher strain and seismicity rates that often related to fossilized tectonic zones acting as weaker domains (e.g., Rhine Graben, New Madrid). Two main categories of models have been proposed to explain strain concentration in SCR: Local stress concentration (fault intersection, erosion pulse, …) and local lithosphere weakness (high geotherm, mantle anisotropy, …). In order to test the respective role of these various parameters of the stress - rheology - strain relationship, we propose a simple 1D model to quantify first-order continental strain rate variations using laboratory and field-based rheology laws for the crust and mantle. In particular, we include new strain-weakening rheologies in order to simulate tectonic heritage. Within the framework of near-failure equilibrium between tectonic forces and strain rates, we show that inherited rheology weakening plays a fundamental role in allowing for and explaining strain and seismicity concentration in intraplate weak zones. A comparison with empirical strain rate estimations in SCR and intraplate weak zones shows that inherited weakening rheologies can increase local strain rates by as much as three orders of magnitude, about one to two orders higher than that permitted by other processes such as stress concentration, thermal anomaly, etc.

  9. Extrapolating surface structures to depth in transpressional systems: the role of rheology and convergence angle deduced from analogue experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.

    2014-12-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  10. Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2003-10-01

    A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can creep and compact. The fault core is surrounded by, and mostly sealed from, a high permeability damaged zone. The model fault properties correspond explicitly to those of the coseismic fault core. Porosity and pore pressure evolve to account for the viscous compaction of the fault core, while stresses evolve in response to the applied tectonic loading and to shear creep of the fault itself. A small diffusive leakage is allowed in and out of the fault zone. Coseismically, porosity is created to account for frictional dilatancy. We show in the case of a 3-D fault model with no in-plane flow and constant fluid compressibility, pore pressures do not drop to hydrostatic levels after a seismic rupture, leading to an overpressured weak fault. Since pore pressure plays a key role in the fault behaviour, we investigate coseismic hydraulic property changes. In the full 3-D model, pore pressures vary instantaneously by the poroelastic effect during the propagation of the rupture. Once the stress state stabilizes, pore pressures are incrementally redistributed in the failed patch. We show that the significant effect of pressure-dependent fluid compressibility in the no in-plane flow case becomes a secondary effect when the other spatial dimensions are considered because in-plane flow with a near-lithostatically pressured neighbourhood equilibrates at a pressure much higher than hydrostatic levels, forming persistent high-pressure fluid compartments. If the observed faults are not all overpressured and weak, other mechanisms, not included in this model, must be at work in nature, which need to be investigated. Significant leakage perpendicular to the fault strike (in the case of a young fault), or cracks hydraulically linking the fault core to the damaged zone (for a mature fault) are probable mechanisms for keeping the faults strong and might play a significant role in modulating fault pore pressures. Therefore, fault-normal hydraulic properties of fault zones should be a future focus of field and numerical experiments.

  11. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  12. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, Jian

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.

  13. Extrapolating subsurface geometry by surface expressions in transpressional strike slip fault, deduced from analogue experiments with settings of rheology and convergence angle

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz

    2015-04-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.

  14. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    NASA Astrophysics Data System (ADS)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (<100) and a layer thickness of 30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.

  15. A critical evaluation of crustal dehydration as the cause of an overpressured and weak San Andreas Fault

    USGS Publications Warehouse

    Fulton, P.M.; Saffer, D.M.; Bekins, B.A.

    2009-01-01

    Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.

  16. Subduction initiation and Obduction: insights from analog models

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2013-12-01

    Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ~5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Measurements of displacements and internal deformation allow for a very precise and reproducible tracking of deformation. Experiments consistently demonstrate that subduction initiation chiefly depends on how the overall shortening (or convergence) is partitionned between the weakness zone (W) and the preexisting subduction zone (S). Part of the deformation is transfered to W as soon as the increased coupling across S results in 5-10% of the convergence being transfered to the upper plate. Whether obduction develops further depends on the effective strength of W. Results (1) constrain the range of physical conditions required for subduction initiation and obduction to develop/nucleate and (2) underline the key role of acceleration for triggering obduction, rather than ridge subduction or slab resistance to penetration at the 660 km discontinuity. [Agard P., Jolivet L., Vrielynck B., Burov E. & Monié P., 2007. Plate acceleration : the obduction trigger? Earth and Planetary Science Letters, 258, 428-441.

  17. The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics

    NASA Astrophysics Data System (ADS)

    Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.

    2017-12-01

    Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (<100) and a layer thickness of ˜30 km, it increases the plate velocity but not the overall shape of the slab. However, for larger viscosity contrasts (>1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.

  18. Noise-induced shifts in the population model with a weak Allee effect

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2018-02-01

    We consider the Truscott-Brindley system of interacting phyto- and zooplankton populations with a weak Allee effect. We add a random noise to the parameter of the prey carrying capacity, and study how the noise affects the dynamic behavior of this nonlinear prey-predator model. Phenomena of the stochastic excitement and noise-induced shifts in zones of the Andronov-Hopf bifurcation and Canard explosion are analyzed on the base of the direct numerical simulation and stochastic sensitivity functions technique. A relationship of these phenomena with transitions between order and chaos is discussed.

  19. 3D receiver function Kirchhoff depth migration image of Cascadia subduction slab weak zone

    NASA Astrophysics Data System (ADS)

    Cheng, C.; Allen, R. M.; Bodin, T.; Tauzin, B.

    2016-12-01

    We have developed a highly computational efficient algorithm of applying 3D Kirchhoff depth migration to telesismic receiver function data. Combine primary PS arrival with later multiple arrivals we are able to reveal a better knowledge about the earth discontinuity structure (transmission and reflection). This method is highly useful compare with traditional CCP method when dipping structure is met during the imaging process, such as subduction slab. We apply our method to the reginal Cascadia subduction zone receiver function data and get a high resolution 3D migration image, for both primary and multiples. The image showed us a clear slab weak zone (slab hole) in the upper plate boundary under Northern California and the whole Oregon. Compare with previous 2D receiver function image from 2D array(CAFE and CASC93), the position of the weak zone shows interesting conherency. This weak zone is also conherent with local seismicity missing and heat rising, which lead us to think about and compare with the ocean plate stucture and the hydralic fluid process during the formation and migration of the subduction slab.

  20. Float-zone crystal growth of CdGeAs 2 in microgravity: numerical simulation and experiment

    NASA Astrophysics Data System (ADS)

    Saghir, M. Z.; Labrie, D.; Ginovker, A.; Paton, B. E.; George, A. E.; Olson, K.; Simpson, A. M.

    2000-01-01

    Two CdGeAs 2 samples have been successfully grown under microgravity on SPACEHAB-SH04 during the STS-77 Space Shuttle Endeavour mission. One polycrystalline and one single crystal CdGeAs 2 feed rods with 9 mm diameter were processed by the float-zone method. An eutectic salt of LiCl and KCl was used as an encapsulant to suppress Cd and As evaporation from the melt. Numerical modeling of the float zone shows that salt encapsulation plays an important role in reducing Marangoni convection. The interface between the salt and CdGeAs 2 was shown not to deform in the float zone due to the weak capillary pressure.

  1. Obduction: Why, how and where. Clues from analog models

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2014-05-01

    Obduction is an odd geodynamic process characterized by the emplacement of dense oceanic “ophiolites” atop light continental plates in convergent settings. We herein present analog models specifically designed to explore the conditions (i.e., sharp increase of plate velocities - herein coined as ‘acceleration’, slab interaction with the 660 km discontinuity, ridge subduction) under which obduction may develop as a result of subduction initiation. The experimental setup comprises an upper mantle modeled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing a piston with plate tectonics like velocities (1-10 cm/yr) onto a model comprising a continental margin, a weakness zone with variable resistance and dip (W), an oceanic plate (with or without a spreading ridge), a preexisting subduction zone (S) dipping away from the piston and an upper active continental margin, below which the oceanic plate is being subducted at the start of the model (as for the Neotethyan natural example). Several configurations were tested over thirty-five parametric models, with special emphasis on comparing different types of weakness zone and the degree of mechanical coupling across them. Measurements of displacements and internal deformation allow for a precise and reproducible tracking of deformation. Models consistently demonstrate that once conditions to initiate subduction are reached, obduction may develop further depending on the effective strength of W. Results (1) constrain the range of physical conditions required for obduction to develop/nucleate and (2) underline the key role of such perturbations for triggering obduction, particularly plate ‘acceleration’. They provide an explanation to the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ∼50-10 Myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. They also demonstrate that the emplacement of dense, oceanic material on continental lithosphere is not a mysterious process requiring extraordinary boundary conditions but results from large-scale, normal (oceanic then continental) subduction processes.

  2. Extrapolating surface structures to depth in transpressional systems: the role of rheology and convergence angle deduced from analogue experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz; Cloetingh, Sierd; Willingshofer, Ernst; Sokoutis, Dimitrios

    2014-05-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011 and references therein). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry. References Leever, K. A., Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., 2011. The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics, 30(2), TC2013. Molnar, P., Dayem, K.E., 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere, 6, 444-467.

  3. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filamentmore » density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.« less

  4. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.

  5. What controls deformation in a bent three-dimensional orogen? An example from the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Kaislaniemi, L.; Whipp, D. M., Jr.

    2017-12-01

    The width of orogens is thought to be affected by both erosional intensity and strength of the rocks. Along-strike variation of the orogen width can be expected to reflect shifts in these factors. An example of such variation can be found around the Bolivian orocline, which is a change in the orientation of the central Andes, in central Bolivia, from N-S south of 18°S to roughly NW-SE in the north. This bend coincides with 50% reduction in the width of the orogen east of the Altiplano, an approximately eight-fold increase in the annual precipitation, and the presence of a basement arch that reduces the thickness of relatively weak Paleozoic sediments upon which the orogen detaches. This has led to uncertainty about whether the growth of the orogen is controlled primarily by climate (erosion) or tectonics (strength of the basal detachment). We study deformation in a segmented orogen using 3D geodynamic models to understand how along-strike variations in rainfall and basal detachment strength affect orogen deformation and growth of the frontal part of the Andean fold-and-thrust belt (FTB). We calculate the visco-plastic deformation in the retro-wedge of an Andean-style orogen using the finite element software DOUAR (Braun et al. 2008) coupled to the surface process model FastScape (Braun & Willett 2013). The model design includes the basement, the Altiplano, and the FTB east of the plateau. A weak basal detachment zone is prescribed. Strain softening allows development of new faults and free evolution of the detachment zone. The effects of varying rock strength and varying precipitation are considered to determine the primary control(s) on the geometry and evolution of curved orogens. Results show that both increased precipitation and stronger detachment zone can explain differences in the width of the FTB, as reflected in the topography. These factors, however, lead to different structural evolution of the orogen: Weak basal detachment zone promotes growth of the FTB towards the foreland, whereas strong basal detachment keeps the deformation nearer to the plateau. Increased precipitation causes strong localization of the frontal thrust and no internal deformation in the foreland or near the plateau. Strike-slip faults are produced by variation in detachment zone strength, but not by shifts in precipitation rates.

  6. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G.

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis tomore » the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.« less

  7. GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua

    NASA Astrophysics Data System (ADS)

    Correa-Mora, F.; DeMets, C.; Alvarado, D.; Turner, H. L.; Mattioli, G.; Hernandez, D.; Pullinger, C.; Rodriguez, M.; Tenorio, C.

    2009-12-01

    We invert GPS velocities from 32 sites in El Salvador, Honduras and Nicaragua to estimate the rate of long-term forearc motion and distributions of interseismic coupling across the Middle America subduction zone offshore from these countries and faults in the Salvadoran and Nicaraguan volcanic arcs. A 3-D finite element model is used to approximate the geometries of the subduction interface and strike-slip faults in the volcanic arc and determine the elastic response to coupling across these faults. The GPS velocities are best fit by a model in which the forearc moves 14-16 mmyr-1 and has coupling of 85-100 per cent across faults in the volcanic arc, in agreement with the high level of historic and recent earthquake activity in the volcanic arc. Our velocity inversion indicates that coupling across the potentially seismogenic areas of the subduction interface is remarkably weak, averaging no more than 3 per cent of the plate convergence rate and with only two poorly resolved patches where coupling might be higher along the 550-km-long segment we modelled. Our geodetic evidence for weak subduction coupling disagrees with a seismically derived coupling estimate of 60 +/- 10 per cent from a published analysis of earthquake damage back to 1690, but agrees with three other seismologic studies that infer weak subduction coupling from 20th century earthquakes. Most large historical earthquakes offshore from El Salvador and western Nicaragua may therefore have been intraslab normal faulting events similar to the Mw 7.3 1982 and Mw 7.7 2001 earthquakes offshore from El Salvador. Alternatively, the degree of coupling might vary with time. The evidence for weak coupling indirectly supports a recently published hypothesis that much of the Middle American forearc is escaping to the west or northwest away from the Cocos Ridge collision zone in Costa Rica. Such a hypothesis is particularly attractive for El Salvador, where there is little or no convergence obliquity to drive the observed trench-parallel forearc motion.

  8. Using the concentration-volume (C-V) fractal model in the delineation of gold mineralized zones within the Tepeoba porphyry Cu-Mo-Au, Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Abdelnasser, Amr; Karaman, Muhittin; Budakoglu, Murat

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au mineralization that located at the Biga peninsula (W Turkey) developed around the Eybek pluton concentrated at its southern contact. This mineralization that hosted in the hornfels rocks of Karakaya Complex is associated with three main alteration zones; potassic, phyllic and propylitic alterations along the fault controlled margins of the Eybek pluton and quartz stockwork veining as well as brecciation zones. As well as two mineralized zones were occurred in the mine area; hypogene and oxidation/supergene zone. The hypogene zone has differentiated alteration types; high potassic and low phyllic alteration, while the oxidation/supergene zone has high phyllic and propylitic alterations. This work deals with the delineation of gold mineralized zone within this porphyry deposit using the concentration-volume (C-V) fractal model. Five zones of gold were calculated using its power-law C-V relationship that revealed that the main phase of gold mineralization stated at 5.3083 ppm Au concentration. In addition, the C-V log-log plot shows that the highly and moderately Au mineralization zone developed in western part of deposit correlated with oxidation zone related to propylitic alteration. On the other hand, its weakly mineralization zone has a widespread in the hypogene zone related to potassic alteration. This refers to the enrichment of gold and depletion of copper at the oxidation/supergene zone is due to the oxidation/supergene alteration processes that enrich the deposits by the meteoric water. Keywords: Concentration-volume (C-V) fractal model; gold mineralized zone; Tepeoba porphyry Cu-Mo-Au; Balikesir; NW Turkey.

  9. Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Grützner, Christoph; Howell, Andy; Jackson, James; Penney, Camilla; Wimpenny, Sam

    2018-03-01

    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment.

  10. The pattern of deep structure and recent tectonics of the Greater Caucasus in the Ossetian sector from the complex geophysical data

    NASA Astrophysics Data System (ADS)

    Gorbatikov, A. V.; Rogozhin, E. A.; Stepanova, M. Yu.; Kharazova, Yu. V.; Andreeva, N. V.; Perederin, F. V.; Zaalishvili, V. B.; Mel'kov, D. A.; Dzeranov, B. V.; Dzeboev, B. A.; Gabaraev, A. F.

    2015-01-01

    Microseismic sounding along the profile in the Ossetian sector of the Greater Caucasus revealed two domains with characteristic properties and morphology deep beneath the mountain system. One subvertical domain is marked with low velocities and the other, also subvertical, has high velocities. The high-velocity zone is largely located beneath the northern limb and axial part of the Greater Caucasus mega-anticlinorium, whereas the low velocity zone projects on the southern limb. Almost throughout the entire structure of the block part of the northern limb of mega-anticlinorium, the top of the high-velocity zone beneath it is consistently horizontal at a depth of ˜10 km. This pattern is violated by the apparent steep rise of the top of the high-velocity zone to the surface in the southern direction, which starts approximately from the main thrust. Beneath the southern limb, the top boundary can also be guessed at a depth of ˜10 km, although less reliably. The roots of the low-velocity zone stretch to a depth of ˜50-60 km and narrow with the depth. The weak regional seismicity quite distinctly maps onto the high-velocity zone. In the depth interval of 10 to 25 km, weak seismicity abruptly drops northwards at the transition to the low-velocity zone. The independent magnetotelluric data show that electric resistivity of the low-velocity zone significantly exceeds the resistivity of the hosting rocks. The model of a medium filled with isolated fractures with mineralized fluid is suggested for the low-velocity zone. According to a series of features, the low-velocity zone tends to float up; in particular, there is a high lateral correlation between the most elevated part of the mountain relief, morphology, and age of the rocks, on one hand, and the position of the low-velocity zone, on the other hand.

  11. Angola seismicity

    NASA Astrophysics Data System (ADS)

    Neto, Francisco António Pereira; França, George Sand; Condori, Cristobal; Sant'Anna Marotta, Giuliano; Chimpliganond, Cristiano Naibert

    2018-05-01

    This work describes the development of the Angolan earthquake catalog and seismicity distribution in the Southwestern African Plate, in Angola. This region is one of the least seismically active, even for stable continental regions (SCRs) in the world. The maximum known earthquake had a magnitude of 6.0 Ms, while events with magnitudes of 4.5 have return period of about 10 years. Events with magnitude 5 and above occur with return period of about 20 years. Five seismic zones can be confirmed in Angola, within and along craton edges and in the sedimentary basins including offshore. Overall, the exposed cratonic regions tend to have more earthquakes compared to other regions such as sedimentary basins. Earthquakes tend to occur in Archaic rocks, especially inside preexisting weakness zones and in tectonic-magmatic reactivation zones of Mesozoic and Meso-Cenozoic, associated with the installation of a wide variety of intrusive rocks, strongly marked by intense tectonism. This fact can be explained by the models of preexisting weakness zones and stress concentration near intersecting structures. The Angolan passive margin is also a new region where seismic activity occurs. Although clear differences are found between different areas along the passive margin, in the middle near Porto Amboim city, seismic activity is more frequent compared with northwestern and southwestern regions.

  12. TARANTULA 2011 in JWL++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Haylett, D; Vitello, P

    2011-10-27

    Using square zoning, the 2011 version of the kinetic package Tarantula matches cylinder data, cylinder dead zones, and cylinder failure with the same settings for the first time. The key is the use of maximum pressure rather than instantaneous pressure. Runs are at 40, 200 and 360 z/cm using JWL++ as the host model. The model also does run-to-detonation, thin-pulse initiation with a P-t curve and air gap crossing, all in cylindrical geometry. Two sizes of MSAD/LX-10/LX-17 snowballs work somewhat with these settings, but are too weak, so that divergent detonation is a challenge for the future. Butterfly meshes aremore » considered but do not appear to solve the issue.« less

  13. Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula.

    PubMed

    Vieli, Andreas; Payne, Antony J; Du, Zhijun; Shepherd, Andrew

    2006-07-15

    In this study, the flow and rheology of pre-collapse Larsen B ice shelf are investigated by using a combination of flow modelling and data assimilation. Observed shelf velocities from satellite interferometry are used to constrain an ice shelf model by using a data assimilation technique based on the control method. In particular, the ice rheology field and the velocities at the inland shelf boundary are simultaneously optimized to get a modelled flow and stress field that is consistent with the observed flow. The application to the Larsen B ice shelf shows that a strong weakening of the ice in the shear zones, mostly along the margins, is necessary to fit the observed shelf flow. This pattern of bands with weak ice is a very robust feature of the inversion, whereas the ice rheology within the main shelf body is found to be not well constrained. This suggests that these weak zones play a major role in the control of the flow of the Larsen B ice shelf and may be the key to understanding the observed pre-collapse thinning and acceleration of Larsen B. Regarding the sensitivity of the stress field to rheology, the consistency of the model with the observed flow seems crucial for any further analysis such as the application of fracture mechanics or perturbation model experiments.

  14. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer potassic zone that contains less abundant, but still significant, magnetite. The inner potassic zone represents relatively intense development of qtz-mt-Kfsp veins, whereas the outer potassic zone corresponds to bio-Kfsp-qtz-mt alteration. A shell of magnetite-destructive phyllic alteration with very low susceptibility envelops the potassic zones. The phyllic zone is surrounded by a zone of intense propylitic alteration, which is partially magnetite-destructive, which passes out into weak propylitic alteration and then into unaltered, moderately magnetic volcanics. For such a system, emplaced into magnetic intermediate-mafic igneous host rocks and exposed after removal by erosion of ~ 1 km of overburden, a strong central RTP high is surrounded by a relatively weak annular low over the phyllic zone, gradually returning to background levels over the propylitic zone (an "archery target" signature). For a completely buried system, however, the signature is basically an alteration low due to the large volume of magnetite-destructive alteration surrounding the deeply buried magnetic core.

  15. Quantitative phase retrieval with arbitrary pupil and illumination

    DOE PAGES

    Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; ...

    2015-10-02

    We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.

  16. Bermuda earthquake of March 24, 1978: A significant oceanic intraplate event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, G.S.; Helmberger, D.V.

    1981-08-10

    The Bremuda earthquake (Mapprox.6) occured near the westerly extension of the Kane Fracture Zone roughly 370 km southwest of the island of Bermuda. It is one of the largest oceanic intraplate earthquakes to occur off the eastern coast of North America. Because of its size and location, it has provided an excellent set of WWSSN body waves. They can be used to infer its depth and faulting parameters by waveform modeling techniques. The results indicate a north-northwest striking thrust mechanism (strike = N20 /sup 0/W, dip = 42 /sup 0/NE, rake = 90/sup 0/) with the hypocenter located at amore » depth of 11 km, which for an oceanic crust places it predominantly in the mantle. The event had a seismic moment of 3.4 x 10/sup 25/ dyne cm, and its time history was modeled with a symmetric trapezoidal time function 3 s in duration. The north-northwest strike of the event is in good agreement with the bathymetry of the area, the epicenter being close to the southwestern edge of the Bermuda Rise. The strike of the event is also close to that of the inferred extensions of the present ridge fracture zones in the region. The strike of the event is also close to that of the inferred extensions of the present ridge fracture zones in the region. The presence of fracture zones is indicative of local weak zones in the lithosphere. The Bermuda earthquake most likely is associated with one of these zones of weakness and is the result of the application of present day stress imposed on the region by the North American plate in the direction of its absolute motion. This is an important event in terms of understanding and estimating seismic hazard on the eastern seaboard of North America.« less

  17. The damage is done: Low fault friction recorded in the damage zone of the shallow Japan Trench décollement

    NASA Astrophysics Data System (ADS)

    Keren, Tucker T.; Kirkpatrick, James D.

    2016-05-01

    Fault damage zones record the integrated deformation caused by repeated slip on faults and reflect the conditions that control slip behavior. To investigate the Japan Trench décollement, we characterized the damage zone close to the fault from drill core recovered during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project (JFAST)). Core-scale and microscale structures include phyllosilicate bands, shear fractures, and joints. They are most abundant near the décollement and decrease in density sharply above and below the fault. Power law fits describing the change in structure density with distance from the fault result in decay exponents (n) of 1.57 in the footwall and 0.73 in the hanging wall. Microstructure decay exponents are 1.09 in the footwall and 0.50 in the hanging wall. Observed damage zone thickness is on the order of a few tens of meters. Core-scale structures dip between ~10° and ~70° and are mutually crosscutting. Compared to similar offset faults, the décollement has large decay exponents and a relatively narrow damage zone. Motivated by independent constraints demonstrating that the plate boundary is weak, we tested if the observed damage zone characteristics could be consistent with low-friction fault. Quasi-static models of off-fault stresses and deformation due to slip on a wavy, frictional fault under conditions similar to the JFAST site predict that low-friction fault produces narrow damage zones with no preferred orientations of structures. These results are consistent with long-term frictional weakness on the décollement at the JFAST site.

  18. Analysis of inner and outer zone: OGO-1 and OGO-2 electron spectrometer and ion chamber data

    NASA Technical Reports Server (NTRS)

    Pfitzer, K. A.

    1972-01-01

    The dynamic processes governing the acceleration and loss of electrons in the radiation zones are investigated. The radial diffusion coefficient was determined for a McIlwain parameter between 1.6 and 2.2 for electrons having a first adiabatic invariant of 12 MeV/gauss. The coefficient is larger than earlier values and suggests that there exists a lower limit to the fluxes in the inner zone. The agreement between observed and calculated magnetic fields and particle fluxes is improved by using solar wind pressure as input to the magnetic field models. Changes in the plasma pressure can cause apparent local time asymmetries in particle flux. A comparison of the magnetic field models with observed location of the trapping boundary also indicates the need for including distributed currents within the magnetosphere. The high latitude trapping boundary is only weakly dependent on A sub p, and the trapping boundary data are improved by including in the models a stand-off distance which varies with the plasma pressure.

  19. Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics

    NASA Astrophysics Data System (ADS)

    Karaş, Mustafa; Tank, Sabri Bülent; Özaydın, Sinan

    2017-08-01

    This study attempts to reveal the fault zone characteristics of the locked Ganos Fault based on electrical resistivity studies including audio-frequency (AMT: 10,400-1 Hz) and wide-band (MT: 360-0.000538 Hz) magnetotellurics near the epicenter of the last major event, that is, the 1912 Mürefte Earthquake ( M w 7.4). The AMT data were collected at twelve stations, closely spaced from north to south, to resolve the shallow resistivity structure to 1 km depth. Subsequently, 13 wide-band MT stations were arranged to form a grid enclosing the AMT profile to decipher the deeper structure. Three-dimensional inverse modeling indicates highly conductive anomalies representing fault zone conductors along the Ganos Fault. Subsidiary faults around the Ganos Fault, which are conductive structures with individual mechanically weak features, merge into a greater damage zone, creating a wide fluid-bearing environment. This damage zone is located on the southern side of the fault and defines an asymmetry around the main fault strand, which demonstrates distributed conduit behavior of fluid flow. Ophiolitic basement occurs as low-conductivity block beneath younger formations at a depth of 2 km, where the mechanically weak to strong transition occurs. Resistive structures on both sides of the fault beneath this transition suggest that the lack of seismicity might be related to the absence of fluid pathways in the seismogenic zone.[Figure not available: see fulltext.

  20. Evidence for self-refraction in a convergence zone: NPE (Nonlinear progressive wave equation) model results

    NASA Technical Reports Server (NTRS)

    Mcdonald, B. Edward; Plante, Daniel R.

    1989-01-01

    The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.

  1. Constraints on the Amount of deeply subducted Water from numerical Models in comparison with natural Samples

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, M.; Halama, R.

    2014-12-01

    The subduction of hydrated slab mantle to beyond-arc depths is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. During subduction of hydrated oceanic lithosphere, dehydration reactions in the downgoing plate lead to a partitioning of water between upper and lower plate. Water retained in the slab is recycled into the mantle where it controls its rheology and thus plate tectonic velocities. Hence, quantification of the water partitioning in subduction zones is crucial for the understanding of mass transfer between the Earth's surface and the mantle. Combined thermomechanical and thermodynamic models yield quantitative constraints on the water cycle in subduction zones, but unless model results can be linked to natural observations, the reliability of such models remains speculative. We present combined thermomechanical, thermodynamic and geochemical models of active and paleo-subduction zones, whose results can be tested with independent geochemical features in natural rocks. In active subduction zones, evidence for the validity of our model comes from the agreement between modeled and observed across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. In the Kamchatkan subduction zone, for example, the model successfully predicts complex geochemical patterns and the spatial distribution of arc volcanoes. In paleo-subduction zones (e.g. Western Gneiss Region and Western Alps), constraints on the water budget and dehydration behavior of the subducting slab come from trace element zoning patterns in ultra-high pressure (UHP) garnets. Distinct enrichments of Cr, Ni and REE in the UHP zones of the garnets can be reconciled by our models that predict intense rehydration and trace element re-enrichment of the eclogites at UHP conditions by fluids released from the underlying slab mantle. Models of present-day subduction zones indicate the presence of 2.5-6 wt.% of water within the uppermost 15 km of the subducted slab mantle. Depending on hydration depth, between 25 and 90% of this water is recycled into the deeper mantle. The Lower Devonian example from the Western Gneiss Region indicates that subduction of water into the Earth's deeper mantle is an active process at least since the middle Paleozoic.

  2. The role of the margins in ice stream dynamics

    NASA Technical Reports Server (NTRS)

    Echelmeyer, Keith; Harrison, William

    1993-01-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E equals 5) outward of the shear margin, or the bed is frozen there. And last, the high shear stress and strain rate found at the margin are likely to cause significant viscous heating (q) in the marginal ice. The increase in temperature is proportional to qX/u, where X is the width of the shear zone and u is the transverse velocity component bringing cold ice in from the ice sheet outside the shear zone. Near upstream B, this heating is likely to cause an increase in temperature of 4 to 10 K. Plans are to measure this temperature increase in a series of bore holes near the margin during the 1992-93 field season, as well as to provide a more detailed description of the velocity field there.

  3. The role of the margins in ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Echelmeyer, Keith; Harrison, William

    1993-07-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E equals 5) outward of the shear margin, or the bed is frozen there. And last, the high shear stress and strain rate found at the margin are likely to cause significant viscous heating (q) in the marginal ice. The increase in temperature is proportional to qX/u, where X is the width of the shear zone and u is the transverse velocity component bringing cold ice in from the ice sheet outside the shear zone. Near upstream B, this heating is likely to cause an increase in temperature of 4 to 10 K. Plans are to measure this temperature increase in a series of bore holes near the margin during the 1992-93 field season, as well as to provide a more detailed description of the velocity field there.

  4. A standardised graphic method for describing data privacy frameworks in primary care research using a flexible zone model.

    PubMed

    Kuchinke, Wolfgang; Ohmann, Christian; Verheij, Robert A; van Veen, Evert-Ben; Arvanitis, Theodoros N; Taweel, Adel; Delaney, Brendan C

    2014-12-01

    To develop a model describing core concepts and principles of data flow, data privacy and confidentiality, in a simple and flexible way, using concise process descriptions and a diagrammatic notation applied to research workflow processes. The model should help to generate robust data privacy frameworks for research done with patient data. Based on an exploration of EU legal requirements for data protection and privacy, data access policies, and existing privacy frameworks of research projects, basic concepts and common processes were extracted, described and incorporated into a model with a formal graphical representation and a standardised notation. The Unified Modelling Language (UML) notation was enriched by workflow and own symbols to enable the representation of extended data flow requirements, data privacy and data security requirements, privacy enhancing techniques (PET) and to allow privacy threat analysis for research scenarios. Our model is built upon the concept of three privacy zones (Care Zone, Non-care Zone and Research Zone) containing databases, data transformation operators, such as data linkers and privacy filters. Using these model components, a risk gradient for moving data from a zone of high risk for patient identification to a zone of low risk can be described. The model was applied to the analysis of data flows in several general clinical research use cases and two research scenarios from the TRANSFoRm project (e.g., finding patients for clinical research and linkage of databases). The model was validated by representing research done with the NIVEL Primary Care Database in the Netherlands. The model allows analysis of data privacy and confidentiality issues for research with patient data in a structured way and provides a framework to specify a privacy compliant data flow, to communicate privacy requirements and to identify weak points for an adequate implementation of data privacy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Bridge pier foundation evaluation using cross-hole seismic tomographic imaging

    NASA Astrophysics Data System (ADS)

    Butchibabu, B.; Sandeep, N.; Sivaram, Y. V.; Jha, P. C.; Khan, P. K.

    2017-09-01

    An ambitious project connecting Jammu and Srinagar through a railway link in tectonically active and geologically complex Himalayan Mountain terrain is under progress. Under this project, the world's highest (359 m) railway arch-bridge is under construction across the River Chenab in the northern territory of India. This mega engineering structure has a two-fold ribbed arch design, comprising of steel girders. During the excavation for one of the concrete pillars on the right abutment, wide open joints and weak/shear zones were noticed. The width of these joints varies from 30 to 50 cm, trending along N170° with a dip of 65°. The foundation area of this pillar is 13 m × 24 m and on the cut slopes of the right bank of Chenab River. These exposed joints and weak zones were treated with consolidation grouting to strengthen the foundation area. To delineate the extent of these joints and weak zones below the foundation level, seismic tomography was carried out in five boreholes drilled for this purpose to cover the 300 sq-m area. The results of cross-hole seismic tomography reveals the presence of three low velocity (≤ 2600 m/s) anomalous zones below the foundation area. This also ascertained the efficacy of grouting in consolidating the joints and weak zones. Later, rock-mass quality (Q) was determined based on the relationship between the P-wave velocity and the Q-value (Barton, 2002) to infer the support system for the slope stabilization below the foundation. 3-D visualization of the seismic velocity demarcates the extent of weak or untreated zones. This methodology facilitates to update the design parameters according to Q-values during the construction stage and estimate the required level of reinforcement and support system. Similar methodology can be applicable in other areas under same site conditions.

  6. GPS measurements and finite element modeling of the earthquake cycle along the Middle America subduction zone

    NASA Astrophysics Data System (ADS)

    Correa Mora, Francisco

    We model surface deformation recorded by GPS stations along the Pacific coasts of Mexico and Central America to estimate the magnitude of and variations in frictional locking (coupling) along the subduction interface, toward a better understanding of seismic hazard in these earthquake-prone regions. The first chapter describes my primary analysis technique, namely 3-dimensional finite element modeling to simulate subduction and bounded-variable inversions that optimize the fit to the GPS velocity field. This chapter focuses on and describes interseismic coupling of the Oaxaca segment of the Mexican subduction zone and introduces an analysis of transient slip events that occur in this region. Our results indicate that coupling is strong within the rupture zone of the 1978 Ms=7.8 Oaxaca earthquake, making this region a potential source of a future large earthquake. However, we also find evidence for significant variations in coupling on the subduction interface over distances of only tens of kilometers, decreasing toward the outer edges of the 1978 rupture zone. In the second chapter, we study in more detail some of the slow slip events that have been recorded over a broad area of southern Mexico, with emphasis on their space-time behavior. Our modeling indicates that transient deformation beneath southern Mexico is focused in two distinct slip patches mostly located downdip from seismogenic areas beneath Guerrero and Oaxaca. Contrary to conclusions reached in one previous study, we find no evidence for a spatial or temporal correlation between transient slip that occurs in these two widely separated source regions. Finally, chapter three extends the modeling techniques to new GPS data in Central America, where subduction coupling is weak or zero and the upper plate deformation is much more complex than in Mexico. Cocos-Caribbean plate convergence beneath El Salvador and Nicaragua is accompanied by subduction and trench-parallel motion of the forearc. Our GPS velocity field is best fit by a model with strongly locked faults in the volcanic arc and a weakly coupled subduction interface. In this region, seismic hazards associated with subduction are therefore low, but are high for crustal faults, in agreement with records of historic seismicity.

  7. Analog modelling of obduction processes

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2012-04-01

    Obduction corresponds to one of plate tectonics oddities, whereby dense, oceanic rocks (ophiolites) are presumably 'thrust' on top of light, continental ones, as for the short-lived, almost synchronous Peri-Arabic obduction (which took place along thousands of km from Turkey to Oman in c. 5-10 Ma). Analog modelling experiments were performed to study the mechanisms of obduction initiation and test various triggering hypotheses (i.e., plate acceleration, slab hitting the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises (1) an upper mantle, modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and (2) high-viscosity silicone plates (Rhodrosil Gomme with PDMS iron fillers to reproduce densities of continental or oceanic plates), located at the centre of the tank above the syrup to simulate the subducting and the overriding plates - and avoid friction on the sides of the tank. Convergence is simulated by pushing on a piston at one end of the model with velocities comparable to those of plate tectonics (i.e., in the range 1-10 cm/yr). The reference set-up includes, from one end to the other (~60 cm): (i) the piston, (ii) a continental margin containing a transition zone to the adjacent oceanic plate, (iii) a weakness zone with variable resistance and dip (W), (iv) an oceanic plate - with or without a spreading ridge, (v) a subduction zone (S) dipping away from the piston and (vi) an upper, active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as is known to have been the case in Oman). Several configurations were tested and over thirty different parametric tests were performed. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Displacements, together with along-strike and across-strike internal deformation in all plates were systematically measured, allowing for a very precise and reproducible tracking of deformation. Experiments demonstrate that obduction chiefly depends on how the overall shortening (or convergence) is partitionned between the weakness zone (W) and the preexisting subduction zone (S). Conditions favorable to obduction are shown to correspond to a specific range of coupling across (S) and resistance across (W). Our results thereby (1) constrain the range of physical conditions required for obduction to develop/nucleate and (2) underline the key role of acceleration for triggering obduction (rather than ridge subduction or slab resistance to penetration at the 660 km discontinuity). They also demonstrate that the emplacement of dense, oceanic material on continental lithosphere is not a mysterious process but results from some large scale, normal subduction process that do not require exotic boundary conditions. Agard P., Jolivet L., Vrielynck B., Burov E. & Monié P., 2007. Plate acceleration : the obduction trigger? Earth and Planetary Science Letters, 258, 428-441.

  8. Subduction Initiation under Unfavorable Conditions and New Fault Formation

    NASA Astrophysics Data System (ADS)

    Mao, X.; Gurnis, M.; May, D.

    2017-12-01

    How subduction initiates with unfavorable dipping lithospheric heterogeneities is an important and rarely studied topic. We build a geodynamic model starting with a vertical weak zone for the Puysegur incipient subduction zone (PISZ). A true free surface is tracked in pTatin3D, based on the Arbitrary Lagrangian Eulerian (ALE) finite element method, and is used to follow the dynamic mantle-surface interaction and topographic evolution. A simplified surface process, based on linear topography diffusion, is implemented. Density and free water content for different phase assemblages are gained by referring to precalculated 4D (temperature, pressure, rock type and total water content) phase maps using Perplex. Darcy's law is used to migrate free water, and a linear water weakening is applied to the mantle material. A new visco-elastic formulation called Elastic Viscous Stress Splitting (EVSS) method is also included. Our predictions fit the morphology of the Puysegur Trench and Ridge and the deformation history on the overriding plate. We show a new thrust fault forms and evolves into a smooth subduction interface, and the preexisting weak zone becomes a vertical fault inboard of the thrust fault during subduction initiation, which explains the two-fault system at PISZ. Our model suggests that the PISZ may not yet be self-sustaining. We propose that the Snares Trough is caused by plate coupling differences between shallower and deeper parts, the tectonic sliver between two faults experiences strong rotation, and low density materials accumulate beneath the Snares trough. Extended models show that with favorable dipping heterogeneities, no new fault forms, and subduction initiates with smaller resisting forces.

  9. Observations and a model of undertow over the inner continental shelf

    USGS Publications Warehouse

    Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent

    2008-01-01

    Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.

  10. Tectonic analysis of folds in the Colorado plateau of Arizona

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1975-01-01

    Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.

  11. Geology of a Stable Intraplate Region: The Cape Verde/Canary Basin,

    DTIC Science & Technology

    1982-03-01

    reflection records indicate a possible Eocene age up- lifting. Extensive island volcanism and sill and dike emplacement occurred during Miocene. Many abyssal...hills and small scale faults are related to this Miocene tectonic phase. Island volcanism has a con- tinuing influence on the sedimentary sections. The...Plate is capable of generating zones of weak- nesses. These weakness zones could be expected to localize island volcanism , create north/south-trending

  12. Thick-skinned tectonics within the intracontinental easternmost Atlas foreland-and-thrust belt (Tunisia): Meso-Cenozoic kinematics and implications for regional geodynamics

    NASA Astrophysics Data System (ADS)

    Belkhiria, W.; Boussiga, H.; Inoubli, M. H.

    2017-05-01

    The transition zone between western and central Mediterranean domains presents a key area to investigate kinematic interactions within the adjacent orogen systems such as the easternmost Atlas foreland-and-thrust belt. Gravity and seismic data revealed a highly structured basement, characterizing a series of structural highs and lows delimited by high-angle N-S, E-W, and NW-SE extensional faults. This basement architecture is inherited from successive extensional events related to the openings of the Triassic-Early Cretaceous Tethys oceans (i.e., Alpine Tethys, Ligurian Tethys, and Mesogea). Throughout this period, this mosaic of continental blocks significantly controlled the thickness and facies distributions. Early stages of diapirism took place along these basement faults and allowed maximum subsidence in minibasins revealed by the development of growth strata. In response to the Late Cretaceous-Eocene shortenings, these extensional faults have been reactivated as trasnpressional shear zones, giving rise to narrow pop-up structures. In addition, gravity modeling indicates crustal thinning and deep-rooted faults affecting the crust south of the Zaghouan Thrust and along E-W transfer zones. From the late Miocene, a drastic change in the stress regime is attributed to the effect of the adjacent Sicily channel on the study area. This promotes crustal thinning, basin subsidence, and channeling up of mantle-derived helium along lithospheric-scale weak zones. Our results give rise to new insights into the reactivation of inherited weakness zones of southern Tethys margin in response to the complex interaction between African and Eurasian plates accommodated by subduction, rollback, collision, and slab segmentation.

  13. Stress drop inferred from dynamic rupture simulations consistent with Moment-Rupture area empirical scaling models: Effects of week shallow zone

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Miyake, H.; Irikura, K.; Wu, H., Sr.

    2016-12-01

    Empirical scaling models of seismic moment and rupture area provide constraints to parameterize source parameters, such as stress drop, for numerical simulations of ground motion. There are several scaling models published in the literature. The effect of the finite width seismogenic zone and the free-surface have been attributed to cause the breaking of the well know self-similar scaling (e.g. Dalguer et al, 2008) given origin to the so called L and W models for large faults. These models imply the existence of three-stage scaling relationship between seismic moment and rupture area (e.g. Irikura and Miyake, 2011). In this paper we extend the work done by Dalguer et al 2008, in which these authors calibrated fault models that match the observations showing that the average stress drop is independent of earthquake size for buried earthquakes, but scale dependent for surface-rupturing earthquakes. Here we have developed additional sets of dynamic rupture models for vertical strike slip faults to evaluate the effect of the weak shallow layer (WSL) zone for the calibration of stress drop. Rupture in the WSL zone is expected to operate with enhanced energy absorption mechanism. The set of dynamic models consists of fault models with width 20km and fault length L=20km, 40km, 60km, 80km, 100km, 120km, 200km, 300km and 400km and average stress drop values of 2.0MPa, 2.5MPa, 3.0MPa, 3.5MPa, 5.0MPa and 7.5MPa. For models that break the free-surface, the WSL zone is modeled assuming a 2km width with stress drop 0.0MPa or -2.0 MPa. Our results show that depending on the characterization of the WSL zone, the average stress drop at the seismogenic zone that fit the empirical models changes. If WSL zone is not considered, that is, stress drop at SL zone is the same as the seismogenic zone, average stress drop is about 20% smaller than models with WSL zone. By introducing more energy absorption at the SL zone, that could be the case of large mature faults, the average stress drop in the seismogenic zone increases. Suggesting that large earthquakes need higher stress drop to break the fault than buried and moderate earthquakes. Therefore, the value of the average stress drop for large events that break the free-source depend on the definition of the WSL. Suggesting that the WSL plays an important role on the prediction of final slip and fault displacement.

  14. Mojave Compliant Zone Structure and Properties: Constraints from InSAR and Mechanical Models

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.; Finzi, Y.

    2007-12-01

    Long-lived zones with significantly lower elastic strength than their surroundings are associated with active Mojave faults (e.g., Li et al., 1999; Fialko et al., 2002, 2004). In an earthquake these weak features concentrate strain, causing them to show up as anomalous, short length-scale features in SAR interferograms (Fialko et al., 2002). Fault-zone trapped wave studies indicate that the 1999 Hector Mine earthquake caused a small reduction in P- and S-wave velocities in a compliant zone along the Landers earthquake rupture (Vidale and Li, 2003). This suggests that coseismic strain concentration, and the resulting damage, in the compliant zone caused a further reduction in its elastic strength. Even a small coseismic strength drop should make a compliant zone (CZ) deform, in response to the total (not just the coseismic) stress. The strain should be in the sense which is compatible with the orientations and values of the region's principal stresses. However, as indicated by Fialko and co-workers (2002, 2004), the sense of coseismic strain of Mojave compliant zones was consistent with coseismic stress change, not the regional (background) stress. Here we use finite-element models to investigate how InSAR measurements of Mojave compliant zone coseismic strain places limits on their dimensions and on upper crustal stresses. We find that unless the CZ is shallow, narrow, and has a high Poisson's ratio (e.g., 0.4), CZ contraction under lithostatic stress overshadows deformation due to deviatoric background stress or coseismic stress change. We present ranges of CZ dimensions which are compatible with the observed surface deformation and address how these dimensions compare with new results from damage-controlled fault evolution models.

  15. Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution.

    PubMed

    Iván, Kristóf; Simon, Péter L; Wittmann, Mária; Noszticzius, Zoltán

    2005-10-22

    Until now acid-base diodes and transistors applied strong mineral acids and bases exclusively. In this work properties of electrolyte diodes with weak electrolytes are studied and compared with those of diodes with strong ones to show the advantages of weak acids and bases in these applications. The theoretical model is a one dimensional piece of gel containing fixed ionizable groups and connecting reservoirs of an acid and a base. The electric current flowing through the gel is measured as a function of the applied voltage. The steady-state current-voltage characteristic (CVC) of such a gel looks like that of a diode under these conditions. Results of our theoretical, numerical, and experimental investigations are reported in two parts. In this first, theoretical part governing equations necessary to calculate the steady-state CVC of a reverse-biased electrolyte diode are presented together with an approximate analytical solution of this reaction-diffusion-ionic migration problem. The applied approximations are quasielectroneutrality and quasiequilibrium. It is shown that the gel can be divided into an alkaline and an acidic zone separated by a middle weakly acidic region. As a further approximation it is assumed that the ionization of the fixed acidic groups is complete in the alkaline zone and that it is completely suppressed in the acidic one. The general solution given here describes the CVC and the potential and ionic concentration profiles of diodes applying either strong or weak electrolytes. It is proven that previous formulas valid for a strong acid-strong base diode can be regarded as a special case of the more general formulas presented here.

  16. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2015-12-01

    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  17. Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies

    USGS Publications Warehouse

    Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.

    2004-01-01

    Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.

  18. A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models

    NASA Astrophysics Data System (ADS)

    Cazes, F.; Coret, M.; Combescure, A.

    2013-06-01

    This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.

  19. Creep, compaction and the weak rheology of major faults

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1992-01-01

    Field and laboratory observations suggest that the porosity within fault zones varies over earthquake cycles so that fluid pressure is in long-term equilibrium with hydrostatic fluid pressure in the country rock. Between earthquakes, ductile creep compacts the fault zone, increasing fluid pressure, and finally allowing frictional failure at relatively low shear stress. Earthquake faulting restores porosity and decreases fluid pressure to below hydrostatic. This mechanism may explain why major faults, such as the San Andreas system, are weak.

  20. Assessing the performance of formulations for nonlinear feedback of surface gravity waves on ocean currents over coastal waters

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles

    2017-08-01

    This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.

  1. Seismo-thermo-mechanical modeling of mature and immature transform faults

    NASA Astrophysics Data System (ADS)

    Preuss, Simon; Gerya, Taras; van Dinther, Ylona

    2016-04-01

    Transform faults (TF) are subdivided into continental and oceanic ones due to their markedly different tectonic position, structure, surface expression, dynamics and seismicity. Both continental and oceanic TFs are zones of rheological weakness, which is a pre-requisite for their existence and long-term stability. Compared to subduction zones, TFs are typically characterized by smaller earthquake magnitudes as both their potential seismogenic width and length are reduced. However, a few very large magnitude (Mw>8) strike-slip events were documented, which are presumably related to the generation of new transform boundaries and/or sudden reactivation of pre-existing fossil structures. In particular, the 11 April 2012 Sumatra Mw 8.6 earthquake is challenging the general concept that such high magnitude events only occur at megathrusts. Hence, the processes of TF nucleation, propagation and their direct relation to the seismic cycle and long-term deformation at both oceanic and continental transforms needs to be investigated jointly to overcome the restricted direct observations in time and space. To gain fundamental understanding of involved physical processes the numerical seismo-thermo-mechanical (STM) modeling approach, validated in a subduction zone setting (Van Dinther et al. 2013), will be adapted for TFs. A simple 2D plane view model geometry using visco-elasto-plastic material behavior will be adopted. We will study and compare seismicity patterns and evolution in two end member TF setups, each with strain-dependent and rate-dependent brittle-plastic weakening processes: (1) A single weak and mature transform fault separating two strong plates (e.g., in between oceanic ridges) and (2) A nucleating or evolving (continental) TF system with disconnected predefined faults within a plate subjected to simple shear deformation (e.g., San Andreas Fault system). The modeling of TFs provides a first tool to establish the STM model approach for transform faults in a more general case.

  2. Evolution of fault zones in carbonates with mechanical stratigraphy - Insights from scale models using layered cohesive powder

    NASA Astrophysics Data System (ADS)

    van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon

    2010-09-01

    We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.

  3. Spectral element modelling of fault-plane reflections arising from fluid pressure distributions

    USGS Publications Warehouse

    Haney, M.; Snieder, R.; Ampuero, J.-P.; Hofmann, R.

    2007-01-01

    The presence of fault-plane reflections in seismic images, besides indicating the locations of faults, offers a possible source of information on the properties of these poorly understood zones. To better understand the physical mechanism giving rise to fault-plane reflections in compacting sedimentary basins, we numerically model the full elastic wavefield via the spectral element method (SEM) for several different fault models. Using well log data from the South Eugene Island field, offshore Louisiana, we derive empirical relationships between the elastic parameters (e.g. P-wave velocity and density) and the effective-stress along both normal compaction and unloading paths. These empirical relationships guide the numerical modelling and allow the investigation of how differences in fluid pressure modify the elastic wavefield. We choose to simulate the elastic wave equation via SEM since irregular model geometries can be accommodated and slip boundary conditions at an interface, such as a fault or fracture, are implemented naturally. The method we employ for including a slip interface retains the desirable qualities of SEM in that it is explicit in time and, therefore, does not require the inversion of a large matrix. We performa complete numerical study by forward modelling seismic shot gathers over a faulted earth model using SEM followed by seismic processing of the simulated data. With this procedure, we construct post-stack time-migrated images of the kind that are routinely interpreted in the seismic exploration industry. We dip filter the seismic images to highlight the fault-plane reflections prior to making amplitude maps along the fault plane. With these amplitude maps, we compare the reflectivity from the different fault models to diagnose which physical mechanism contributes most to observed fault reflectivity. To lend physical meaning to the properties of a locally weak fault zone characterized as a slip interface, we propose an equivalent-layer model under the assumption of weak scattering. This allows us to use the empirical relationships between density, velocity and effective stress from the South Eugene Island field to relate a slip interface to an amount of excess pore-pressure in a fault zone. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  4. The role of recharge zones, discharge zones, springs and tile drainage systems in peneplains of Central European highlands with regard to water quality generation processes

    NASA Astrophysics Data System (ADS)

    Doležal, František; Kvítek, Tomáš

    The hydrogeology, runoff generation and water quality generation in old peneplains of Central Europe built by acid crystalline rocks (such as the Bohemo-Moravian Highland) are described and interpreted in terms of a three-zone concept. The recharge zones are located on flat tops of hills and their soils are mostly permeable. It is mainly through them that the shallow groundwater-bearing formations are loaded with nitrate. The groundwater exfiltrates on the lower parts of slopes (in the so-called transient zone) and in narrow valleys (in the discharge zone), creating dispersed springs and waterlogged areas. In addition, the rapid and shallow flow of perched groundwater down the slope, which takes place during wet periods in the recharge zone and, mainly, in the transient zone, leaches the nitrate from the soil directly to the stream, without necessarily being in contact with the permanent groundwater table of the recharge and the transient zones. Discharge and water quality measurements in the Kopaninský tok experimental catchment (6.7 km 2) were analysed, using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND). Three runoff components were distinguished (direct runoff, interflow and baseflow). There is a weak but significant positive correlation between the stream nitrate concentration on the one hand and either the interflow or the baseflow on the other hand. There is also a weak but significant negative correlation between the stream nitrate concentration on the one hand and either the ratio of direct runoff to total stream flow or the logarithm of this ratio on the other hand, provided that the cases of zero direct runoff are disregarded. A simple mixing model was used to estimate the characteristic nitrate concentrations of individual runoff components. The interflow has the highest characteristic nitrate concentration and is probably the main stream water polluter with nitrate. The baseflow is identified as the likely second main polluter. The differences in water quality between a drainage outlet and a forest spring indicate the importance of a proper nitrogen management in the recharge zones. It is also concluded that the tile drainage and tillage of formerly waterlogged sites, mainly located in transient zones, reduce the opportunity for denitrification of both baseflow and interflow. The ploughed lands in the recharge zones represent an established basis for local agriculture and cannot be easily set aside. Many such lands have been declared as vulnerable to nitrate pollution in order to protect waters against impacts of risky agricultural practices. It is proposed that some waterlogged and drained sites in the transient and discharge zones are set aside rather than the flat ploughed lands on the hill tops. To increase the denitrification, tile drainage runoff from the transient and the discharge zones should be retarded.

  5. The role of thermodynamics in mantle convection: is mantle-layering intermittent?

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Cagney, N.; Lithgow-Bertelloni, C. R.

    2016-12-01

    We examine the thermal evolution of the Earth using a 1D model in which mixing length theory is used to characterise the role of thermal convection. Unlike previous work, our model accounts for the complex role of thermodynamics and phase changes through the use of HeFESTo (Stixrude & Lithgow-Bertelloni, Geophys. J. Int. 184, 2011), a comprehensive thermodynamic model that enables self-consistent computation of phase equilibria, physical properties (e.g. density, thermal expansivity etc.) and mantle isentropes. Our model also accounts for the freezing of the inner core, radiogenic heating and Arrhenius rheology, and is validated by comparing our results to observations, including the present-day size of the inner core and the heat flux at the surface.If phase changes and the various thermodynamic effects on mantle properties are neglected, the results are weakly dependent on the initial conditions, as has been observed in several previous studies. However, when these effects are accounted for, the initial temperature profile has a strong influence on the thermal evolution of the mantle, because small changes in the temperature and phase-assemblage can lead to large changes in the local physical properties and the adiabatic gradient.The inclusion of thermodynamic effects leads to some new and interesting insights. We demonstrate that the Clapeyron slope and the thermal gradient at the transition zone both vary significantly with time; this causes the mantle to switch between a layered state, in which convection across the transition zone is weak or negligible, and an un-layered state, in which there is no resistance to mass transfer between the upper and lower mantles.Various plume models describe plumes either rising directly from the CMB to the lithosphere, or stalling at the transition zone before spawning new plumes in the upper mantle. The observance of switching behaviour indicates that both models may be applicable depending on the state of the mantle: plumes may rise directly from the CMB when the mantle is un-layered, but stall at the transition zone when it is strongly layered. This has significant implications for the geochemical interpretation of ancient and present-day OIB and LIPs. This switching also has a very strong effect on the Rayleigh number, which in turn controls the mixing time of the mantle.

  6. 3D geodynamic models for the development of opposing continental subduction zones: The Hindu Kush-Pamir example

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An

    2017-12-01

    The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved Western Alpine arc and the two opposing subducted slabs beneath the Alps and the Dinarides.

  7. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  8. Nucleation in Synoptically Forced Cirrostratus

    NASA Technical Reports Server (NTRS)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  9. Multitemperature compaction model of a magma melt in the asthenosphere: A numerical approach

    NASA Astrophysics Data System (ADS)

    Pak, V. V.

    2007-09-01

    A numerical compaction model of a fluid in a viscous skeleton is developed with regard for a phase transition. The temperatures of phases are different. The solution is found by the method of asymptotic expansion relative to the incompressible variant, which removes a number of computational problems related to the weak compressibility of the skeleton. For each approximation, the problem is solved by the finite element method. The process of 2-D compaction of a magmatic melt in the asthenosphere under a fault zone is examined for one-and two-temperature cases. The magmatic flow concentrates in this region due to a lower pore pressure. Higher temperature magma entering from lower levels causes a local heating of the skeleton and intense melting of its fusible component. In the two-temperature model, a magma concentration anomaly develops under the fault zone. The fundamental limitations substantially complicating the corresponding calculations within the framework of a one-temperature model are pointed out and the necessity of applying a multitemperature variant is substantiated.

  10. Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.

    PubMed

    McCaffrey, R; Goldfinger, C

    1995-02-10

    The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.

  11. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.

    2017-12-01

    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  12. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  13. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    NASA Astrophysics Data System (ADS)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  14. Experimental generation and computational modeling of intracellular pH gradients in cardiac myocytes.

    PubMed

    Swietach, Pawel; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D

    2005-04-01

    It is often assumed that pH(i) is spatially uniform within cells. A double-barreled microperfusion system was used to apply solutions of weak acid (acetic acid, CO(2)) or base (ammonia) to localized regions of an isolated ventricular myocyte (guinea pig). A stable, longitudinal pH(i) gradient (up to 1 pH(i) unit) was observed (using confocal imaging of SNARF-1 fluorescence). Changing the fractional exposure of the cell to weak acid/base altered the gradient, as did changing the concentration and type of weak acid/base applied. A diffusion-reaction computational model accurately simulated this behavior of pH(i). The model assumes that H(i)(+) movement occurs via diffusive shuttling on mobile buffers, with little free H(+) diffusion. The average diffusion constant for mobile buffer was estimated as 33 x 10(-7) cm(2)/s, consistent with an apparent H(i)(+) diffusion coefficient, D(H)(app), of 14.4 x 10(-7) cm(2)/s (at pH(i) 7.07), a value two orders of magnitude lower than for H(+) ions in water but similar to that estimated recently from local acid injection via a cell-attached glass micropipette. We conclude that, because H(i)(+) mobility is so low, an extracellular concentration gradient of permeant weak acid readily induces pH(i) nonuniformity. Similar concentration gradients for weak acid (e.g., CO(2)) occur across border zones during regional myocardial ischemia, raising the possibility of steep pH(i) gradients within the heart under some pathophysiological conditions.

  15. Evolution of passive continental margins and initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1982-05-01

    Although the initiation of subduction is a key element in plate tectonic schemes for evolution of lithospheric plates, the underlying mechanisms are not well understood. Plate rupture is an important aspect of the process of creating a new subduction zone, as stresses of the order of kilobars are required to fracture oceanic lithosphere1. Therefore initiation of subduction could take place preferentially at pre-existing weakness zones or in regions where the lithosphere is prestressed. As such, transform faults2,3 and passive margins4,5 where the lithosphere is downflexed under the influence of sediment loading have been suggested. From a model study of passive margin evolution we found that ageing of passive margins alone does not make them more suitable sites for initiation of subduction. However, extensive sediment loading on young lithosphere might be an effective mechanism for closure of small ocean basins.

  16. Investigating the magnitude of lower crustal flow and impact on surface deformation patterns in Tibet using 3-D geodynamic models

    NASA Astrophysics Data System (ADS)

    Bischoff, S. H.; Flesch, L. M.

    2016-12-01

    Differential flow in the lower crust of Tibet has been invoked to explain features in the region, including uniform plateau elevation, crustal thickness/topographic gradients, and uplift without observed shortening. Here, we use 3-D finite element modeling to test impacts of assumed lower crustal viscosities on deformation patterns in the India-Eurasia collision zone. We simulate instantaneous lithospheric deformation with Stokes flow using COMSOL Multiphysics (www.comsol.com). Our model geometry ranges eastward from the Pamir to Sichuan, northward from the southern tip of India to the Tien Shan, and vertically downward from the Earth's surface to 100 km below sea level. We divide model geometry into four domains: Indian lithosphere, Eurasian upper crust, lower crust, and upper mantle. Seismic and magnetotelluric study results guide inclusion of subducted Indian and Burma slabs along with our targeted weak lower crust. Within the larger Eurasian lower crust domain, weak lower crust is restricted to a zone bounded clockwise by the Himalayan Frontal Thrust, Karakorum, Altyn-Tagh, Kunlun, Longmen Shan, and onset of lower elevations along the plateau's southeastern margin. From top to bottom, vertical bounds of the zone are constrained by a constant 20 km below sea level and the shallower of either the top of the Indian slab or Moho. Strength is approximated via 3-D maps of effective viscosity constrained by the vertically-averaged lithospheric estimates of Flesch et al. [2001]. We forward model lower crust effective viscosities on the order of 1018 to 1022 Pa•s and inspect resulting horizontal and vertical deformation patterns. Results suggest that effective viscosities of less than 1020 Pa•s are required for both appreciable differential mass flux through lower crustal flow as well as decoupled lower crustal flow from the upper crust or mantle. Movement of the lower crust is partitioned within weaker fault zones. Effective viscosities of 1020 Pa•s or less produce pronounced patterns of surface subsidence in Qiangtang and uplift in eastern Lhasa and Longmen Shan inconsistent with observations. Solutions show lower crust strength impacts surface stress style with weaker strengths leading to regions of dominant extension separated by compression in the east central Tibetan Plateau.

  17. Numerical simulation of steady state three-dimensional groundwater flow near lakes

    USGS Publications Warehouse

    Winter, Thomas C.

    1978-01-01

    Numerical simulation of three-dimensional groundwater flow near lakes shows that the continuity of the boundary encompassing the local groundwater flow system associated with a lake is the key to understanding the interaction of a lake with the groundwater system. The continuity of the boundary can be determined by the presence of a stagnation zone coinciding with the side of the lake nearest the downgradient side of the groundwater system. For most settings modeled in this study the stagnation zone underlies the lakeshore, and it generally follows its curvature. The length of the stagnation zone is controlled by the geometry of the lake's drainage basin divide on the side of the lake nearest the downgradient side of the groundwater system. In the case of lakes that lose water to the groundwater system, three-dimensional modeling also allows for estimating the area of lake bed through which outseepage takes place. Analysis of the effects of size and lateral and vertical distribution of aquifers within the groundwater system on the outseepage from lakes shows that the position of the center point of the aquifer relative to the littoral zone on the side of the lake nearest the downgradient side of the groundwater system is a critical factor. If the center point is downslope from this part of the littoral zone, the local flow system boundary tends to be weak or outseepage occurs. If the center point is upslope from this littoral zone, the stagnation zone tends to be stronger (to have a higher head in relation to lake level), and outseepage is unlikely to occur.

  18. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  19. Sensitivity of a Cloud-Resolving Model to the Bulk and Explicit Bin Microphysical Schemes. Part 1; Validations with a PRE-STORM Case

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Wen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne; Johnson, Daniel E.

    2004-01-01

    A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-11, 1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. The leading convective zone, the trailing stratiform region, the horizontal wind flow patterns, pressure perturbation associated with the storm dynamics, and the cool pool in front of the system all agree well with the observations. Both the observations and the bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that, the bulk and bin simulations have distinct differences, most notably in the stratiform region. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region are remnants of the previous stronger convections at the leading edge of the system. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Preliminary examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in convective zone simulated in the bulk model. Further quantitative analysis and sensitivity tests for this case using both the bulk and bin models will be presented in a companion paper.

  20. Information Content of the Near-Field I: Two-Dimensional Samples

    NASA Technical Reports Server (NTRS)

    Frazin, Richard A.; Fischer, David G.; Carney, P. Scott

    2004-01-01

    Limits on the effective resolution of many optical near-field experiments are investigated. The results are applicable to variants of total-internal-reflection microscopy (TIRM), photon-scanning-tunneling microscopy (PSTM), and near-field-scanning-optical microscopy (NSOM) in which the sample is weakly scattering and the direction of illumination may be controlled. Analytical expressions for the variance of the estimate of the complex susceptibility of an unknown two-dimensional object as a function of spatial frequency are obtained for Gaussian and Poisson noise models, and a model-independent measure is examined. The results are used to explore the transition from near-zone to far-zone detection. It is demonstrated that the information content of the measurements made at a distance of even one wavelength away from the sample is already not much different from the information content of the far field. Copyright 2004 Optical Society of America

  1. Simulation of the mulltizones clastic reservoir: A case study of Upper Qishn Clastic Member, Masila Basin-Yemen

    NASA Astrophysics Data System (ADS)

    Khamis, Mohamed; Marta, Ebrahim Bin; Al Natifi, Ali; Fattah, Khaled Abdel; Lashin, Aref

    2017-06-01

    The Upper Qishn Clastic Member is one of the main oil-bearing reservoirs that are located at Masila Basin-Yemen. It produces oil from many zones with different reservoir properties. The aim of this study is to simulate and model the Qishn sandstone reservoir to provide more understanding of its properties. The available, core plugs, petrophysical, PVT, pressure and production datasets, as well as the seismic structural and geologic information, are all integrated and used in the simulation process. Eclipse simulator was used as a powerful tool for reservoir modeling. A simplified approach based on a pseudo steady-state productivity index and a material balance relationship between the aquifer pressure and the cumulative influx, is applied. The petrophysical properties of the Qishn sandstone reservoir are mainly investigated based on the well logging and core plug analyses. Three reservoir zones of good hydrocarbon potentiality are indicated and named from above to below as S1A, S1C and S2. Among of these zones, the S1A zone attains the best petrophysical and reservoir quality properties. It has an average hydrocarbon saturation of more than 65%, high effective porosity up to 20% and good permeability record (66 mD). The reservoir structure is represented by faulted anticline at the middle of the study with a down going decrease in geometry from S1A zone to S2 zone. It is limited by NE-SW and E-W bounding faults, with a weak aquifer connection from the east. The analysis of pressure and PVT data has revealed that the reservoir fluid type is dead oil with very low gas liquid ratio (GLR). The simulation results indicate heterogeneous reservoir associated with weak aquifer, supported by high initial water saturation and high water cut. Initial oil in place is estimated to be around 628 MM BBL, however, the oil recovery during the period of production is very low (<10%) because of the high water cut due to the fractures associated with many faults. Hence, secondary and tertiary methods are needed to enhance the oil recovery. Water flooding is recommended as the first step of oil recovery enhancement by changing some of high water cut wells to injectors.

  2. Constraining friction, dilatancy and effective stress with earthquake rates in the deep crust

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Thomas, A.; Burgmann, R.; Shelly, D. R.

    2015-12-01

    Similar to their behavior on the deep extent of some subduction zones, families of recurring low-frequency earthquakes (LFE) within zones of non-volcanic tremor on the San Andreas fault in central California show strong sensitivity to stresses induced by the tides. Taking all of the LFE families collectively, LFEs occur at all levels of the daily tidal stress, and are in phase with the very small, ~200 Pa, shear stress amplitudes while being uncorrelated with the ~2 kPa tidal normal stresses. Following previous work we assume LFE sources are small, persistent regions that repeatedly fail during shear within a much larger scale, otherwise aseismically creeping fault zone and that the correlation of LFE occurrence reflects modulation of the fault creep rate by the tidal stresses. We examine the predictions of laboratory-observed rate-dependent dilatancy associated with frictional slip. The effect of dilatancy hardening is to damp the slip rate, so high dilatancy under undrained pore pressure reduces modulation of slip rate by the tides. The undrained end-member model produces: 1) no sensitivity to the tidal normal stress, as first suggested in this context by Hawthorne and Rubin [2010], and 2) fault creep rate in phase with the tidal shear stress. Room temperature laboratory-observed values of the dilatancy and friction coefficients for talc, an extremely weak and weakly dilatant material, under-predict the observed San Andreas modulation at least by an order of magnitude owing to too much dilatancy. This may reflect a temperature dependence of the dilatancy and friction coefficients, both of which are expected to be zero at the brittle-ductile transition. The observed tidal modulation constrains the product of the friction and dilatancy coefficients to be at most 5 x 10-7 in the LFE source region, an order of magnitude smaller than observed at room temperature for talc. Alternatively, considering the predictions of a purely rate-dependent talc friction would constrain the ambient effective normal stress to be no more than 40 kPa. In summary, for friction models that have both rate-dependent strength and dilatancy, the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid pressures.

  3. "Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange

    NASA Astrophysics Data System (ADS)

    Webber, Sam; Ellis, Susan; Fagereng, Åke

    2018-04-01

    What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.

  4. Low-Temperature Fault Creep: Strong vs. Weak, Steady vs. Episodic

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.

    2017-12-01

    Unless we understand how faults creep, we do not fully understand how they produce earthquakes. However, most of the physics and geology of low-temperature creep is not known. There are two end-member types of low-temperature creep: weak creep of smooth faults and strong creep of rough faults, with a spectrum of intermediate modes in between. Most conceptual and numerical models deal with weak creep, assuming a very smooth fault with a gouge typically weakened by hydrous minerals (Harris, 2017). Less understood is strong creep. For subduction zones, strong creep appears to be common and is often associated with the subduction of large geometrical irregularities such as seamounts and aseismic ridges (Wang and Bilek, 2014). These irregularities generate fracture systems as they push against the resistance of brittle rocks. The resultant heterogeneous stress and structural environment makes it very difficult to lock the fault. The geodetically observed creep under such conditions is accomplished by the complex deformation of a 3D damage zone. Strong-creeping faults dissipate more heat than faults that produce great earthquakes (Gao and Wang, 2014). Although an integrated frictional strength of the fault is still a useful concept, the creeping mechanism is very different from frictional slip of a velocity-strengthening smooth fault. Cataclasis and pressure-solution creep in the fracture systems must be important processes in strong creep. Strong creep is necessarily non-steady and produces small and medium earthquakes. Strong creep of a megathrust can also promote the occurrence of a very special type of weak creep - episodic slow slip around the mantle wedge corner accompanied with tremor (ETS). An example is Hikurangi, where strong creep causes the frictional-viscous transition along the plate interface to occur much shallower than the mantle wedge corner, a necessary condition for ETS (Gao and Wang, 2017). Gao and Wang (2014), Strength of stick-slip and creeping subduction megathrusts from heat flow observations, Science. Gao and Wang (2017), Rheological separation of the megathrust seismogenic zone and Episodic Tremor and Slip, Nature. Harris (2017), Large earthquakes and creeping faults, Rev. Geophys. Wang and Bilek (2014), Fault creep caused by subduction of rough seafloor relief, Tectonophysics.

  5. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.

  6. Importance of Vertical Coupling in Agricultural Models on Assimilation of Satellite-derived Soil Moisture

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Crow, W. T.; Teng, W. L.; Doraiswamy, P.

    2010-12-01

    Crop yield in crop production models is simulated as a function of weather, ground conditions and management practices and it is driven by the amount of nutrients, heat and water availability in the root-zone. It has been demonstrated that assimilation of satellite-derived soil moisture data has the potential to improve the model root-zone soil water (RZSW) information. However, the satellite estimates represent the moisture conditions of the top 3 cm to 5 cm of the soil profile depending on system configuration and surface conditions (i.e. soil wetness, density of the canopy cover, etc). The propagation of this superficial information throughout the profile will depend on the model physics. In an Ensemble Kalman Filter (EnKF) data assimilation system, as the one examined here, the update of each soil layer is done through the Kalman Gain, K. K is a weighing factor that determines how much correction will be performed on the forecasts. Furthermore, K depends on the strength of the correlation between the surface and the root-zone soil moisture; the stronger this correlation is, the more observations will impact the analysis. This means that even if the satellite-derived product has higher sensitivity and accuracy as compared to the model estimates, the improvement of the RZSW will be negligible if the surface-root zone coupling is weak, where the later is determined by the model subsurface physics. This research examines: (1) the strength of the vertical coupling in the Environmental Policy Integrated Climate (EPIC) model over corn and soybeans covered fields in Iowa, US, (2) the potential to improve EPIC RZSW information through assimilation of satellite soil moisture data derived from the Advanced Microwave Scanning Radiometer (AMSR-E) and (3) the impact of the vertical coupling on the EnKF performance.

  7. The characteristics and controlling factor of the multi-stage eogenetic karst in the Longwangmiao Foramtion in Lower Cambrian, western Central Yangtze Block, SW China

    NASA Astrophysics Data System (ADS)

    Lu, C.

    2017-12-01

    This study utilized field outcrops, thin sections, geochemical data, and GR logging curves to investigate the development model of paleokarst within the Longwangmiao Formation in the Lower Cambrian, western Central Yangtze Block, SW China. The Longwangmiao Formation, which belongs to a third-order sequence, consists of four forth-order sequences and is located in the uppermost part of the Lower Cambrian. The vertical variations of the δ13C and δ18O values indicate the existence of multi-stage eogenetic karst events. The eogenetic karst event in the uppermost part of the Longwangmiao Formation is recognized by the dripstones developed within paleocaves, vertical paleoweathering crust with four zones (bedrock, a weak weathering zone, an intense weathering zone and a solution collapsed zone), two generations of calcsparite cement showing bright luminescence and a zonation from nonluminescent to bright to nonluminescent, two types breccias (matrix-rich clast-supported chaotic breccia and matrix-supported chaotic breccia) and rundkarren. The episodic variations of stratiform dissolution vugs and breccias in vertical, and facies-controlled dissolution and filling features indicated the development of multi-stages eogenetic karst. The development of the paleokarst model is controlled by multi-level sea-level changes. The long eccentricity cycle dictates the fluctuations of the forth-order sea-level, generating multi-stage eogenetic karst events. The paleokarst model is an important step towards better understanding the link between the probably orbitally forced sea-level oscillations and eogenetic karst in the Lower Cambrian. According to this paleokarst model, hydrocarbon exploration should focus on both the karst highlands and the karst transitional zone.

  8. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, lowmore » cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.« less

  9. Kinematic evolution of the Maacama Fault Zone, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Schroeder, Rick D.

    The Maacama Fault Zone (MFZ) is a major component of the Pacific-North American transform boundary in northern California, and its distribution of deformation and kinematic evolution defines that of a young continental transform boundary. The USGS Quaternary database (2010) currently defines the MFZ as a relatively narrow fault zone; however, a cluster analysis of microearthquakes beneath the MFZ defines a wider fault zone, composed of multiple seismogenically active faults. The surface projection of best-fit tabular zones through foci clusters correlates with previously interpreted faults that were assumed inactive. New investigations further delineate faults within the MFZ based on geomorphic features and shallow resistivity surveys, and these faults are interpreted to be part of several active pull-apart fault systems. The location of faults and changes in their geometry in relation to geomorphic features, indicate >8 km of cumulative dextral displacement across the eastern portion of the MFZ at Little Lake Valley, which includes other smaller offsets on fault strands in the valley. Some faults within the MFZ have geometries consistent with reactivated subduction-related reverse faults, and project near outcrops of pre-existing faults, filled with mechanically weak minerals. The mechanical behavior of fault zones is influenced by the spatial distribution and abundance of mechanically weak lithologies and mineralogies within the heterogeneous Franciscan melange that the MFZ displaces. This heterogeneity is characterized near Little Lake Valley (LLV) using remotely sensed data, field mapping, and wellbore data, and is composed of 2--5 km diameter disk-shaped coherent blocks that can be competent and resist deformation. Coherent blocks and the melange that surrounds them are the source for altered minerals that fill portions of fault zones. Mechanically weak minerals in pre-existing fault zones, identified by X-ray diffraction and electron microprobe analyses, are interpreted as a major reason for complex configurations of clusters of microearthquakes and zones of aseismic creep along the MFZ. Analysis of the kinematics of the MFZ and the distribution of its deformation is important because it improves the understanding of young stages of transform system evolution, which has implications that affect issues ranging from seismic hazard to petroleum and minerals exploration around the world.

  10. A study of amplitude information-frequency characteristics for underwater active electrolocation system.

    PubMed

    Peng, Jiegang

    2015-11-04

    Weakly electric fish sense their surroundings in complete darkness by their active electrolocation system. For biologists, the active electrolocation system has been investigated for near 60 years. And for engineers, bio-inspired active electrolocation sensor has been investigated for about 20 years. But how the amplitude information response will be affected by frequencies of detecting electric fields in the active electrolocation system was rarely investigated. In this paper, an electrolocation experiment system has been built. The amplitude information-frequency characteristics (AIFC) of the electrolocation system for sinusoidal electric fields of varying frequencies have been investigated. We find that AIFC of the electrolocation system have relevance to the material properties and geometric features of the probed object and conductivity of surrounding water. Detect frequency dead zone (DFDZ) and frequency inflection point (FIP) of AIFC for the electrolocation system were found. The analysis model of the electrolocation system has been investigated for many years, but DFDZ and FIP of AIFC can be difficult to explain by those models. In order to explain those AIFC phenomena for the electrolocation system, a simple relaxation model based on Cole-Cole model which is not only a mathematical explanation but it is a physical one for the electrolocation system was advanced. We also advance a hypothesis for physical mechanism of weakly electrical fish electrolocation system. It may have reference value for physical mechanism of weakly electrical fish active electrolocation system.

  11. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  12. Geophysical-geological studies of possible extensions of the New Madrid Fault Zone. Annual report, 1982. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, W.J.; Braile, L.W.; Keller, G.R.

    1983-05-01

    An integrated geophysical/geologic program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid Seismic Zone and its extensions, to refine our knowledge of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault Zone, especially its possible connection to the Anna, Ohio seismogenic region. Drillhole basement lithologies are being investigated to aid in tectonic analysis and geophysical interpretation, particularly in the Anna, Ohio area. Gravity and magnetic modeling combined with limited seismic reflection studies in southwest Indiana are interpreted as confirming speculation that anmore » arm of the New Madrid Rift Complex extends northeasterly into Indiana. The geologic and geophysical evidence confirm that the basement lithology in the Anna, Ohio area is highly variable reflecting a complex geologic history. The data indicate that as many as three major Late Precambrian tectonic features intersect within the basement of the Anna area suggesting that the seismicity may be related to basement zones of weakness.« less

  13. Predicted variation of stress orientation with depth near an active fault: application to the Cajon Pass Scientific Drillhole, southern California

    USGS Publications Warehouse

    Wesson, R.L.

    1988-01-01

    Preliminary measurements of the stress orientation at a depth of 2 km interpreted to indicate that the regional orientation of the maximum compression is normal to the fault, and taken as evidence for a very weak fault. The orientation expected from plate tectonic arguments is about 66?? NE from the strike of the fault. Geodetic data indicate that the orientation of maximum compressive strain rate is about 43?? NE from the strike of the fault, and show nearly pure right-lateral shear acting parallel to the fault. These apparent conflicts in the inferred orientation of the axis of maximum compression may be explained in part by a model in which the fault zone is locked over a depth interval in the range of 2-5 to 15 km, but is very weak above and below that interval. This solution does require, however, a few mm/yr of creep at the surface on the San Andreas or nearby sub-parallel faults (such as the San Jacinto), which has not yet been observed, or a shallow zone near the faults of distributed deformation. -from Author

  14. The Processes Producing the Actively Uplifting Mackenzie Mountains in the Yukon and Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Rasmussen, B.; Aster, R. C.; Schutt, D.

    2016-12-01

    The actively uplifting and seismically active Mackenzie Mountains in the Yukon and Northwest Territories of Canada exist nearly 800 km from the Pacific plate subduction zone. As such, it is clear that traditional subduction zone orogenic mechanics are not at play. This mountain range may present a model for uplift of other ranges distant from plate boundaries, such as the Rockies or Ancestral Rockies. Due to its remote location, this region's lithospheric structure is poorly constrained. However, two hypotheses have been developed recently. The first proposes that stress from the Yakutat Indentor as it subducts under North America at the Gulf of Alaska is transferred deep inland through the upper crust, and that the lower crust and mantle lithosphere are very weak. As this weak lithosphere meets the strong Canadian Craton, lateral translation turns into uplift, forming the Mackenzies (Mazzotti and Hyndman, 2002, Geology, v. 30, no.6). Alternatively, it may be that mantle flow from the north is deflected eastward by the Yakutat slab, producing large scale mantle flow and stress which propagates through the crust to uplift the Mackzenzie Mountains without an abnormally weak lithosphere (Finzel, 2015, Geophys. Res. Lett., 42, 4350-4358). Both cases imply distinct isotropic and anisotropic structure that will be constrained through Rayleigh wave tomography. Notably, we will take advantage of the recent deployment of several Earthscope Transportable Array stations nearby, and some preliminary data from the ongoing Mackenzie Mountains Earthscope Project.

  15. Why did Arabia separate from Africa? Insights from 3-D laboratory experiments

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Faccenna, C.; Funiciello, F.; Daniel, J. M.; Jolivet, L.

    2003-11-01

    We have performed 3-D scaled lithospheric experiments to investigate the role of the gravitational force exerted by a subducting slab on the deformation of the subducting plate itself. Experiments have been constructed using a dense silicone putty plate, to simulate a thin viscous lithosphere, floating in the middle of a large box filled with glucose syrup, simulating the upper mantle. We examine three different plate configurations: (i) subduction of a uniform oceanic plate, (ii) subduction of an oceanic-continental plate system and, (iii) subduction of a more complex oceanic-continental system simulating the asymmetric Africa-Eurasia system. Each model has been performed with and without the presence of a circular weak zone inside the subducting plate to test the near-surface weakening effect of a plume activity. Our results show that a subducting plate can deform in its interior only if the force distribution varies laterally along the subduction zone, i.e. by the asymmetrical entrance of continental material along the trench. In particular, extensional deformation of the plate occurs when a portion of the subduction zone is locked by the collisional process. The results of this study can be used to analyze the formation of the Arabian plate. We found that intraplate stresses, similar to those that generated the Africa-Arabia break-up, can be related to the Neogene evolution of the northern convergent margin of the African plate, where a lateral change from collision (Mediterranean and Bitlis) to active subduction (Makran) has been described. Second, intraplate stress and strain localization are favored by the presence of a weakness zone, such as the one generated by the Afar plume, producing a pattern of extensional deformation belts resembling the Red Sea-Gulf of Aden rift system.

  16. Root (Botany)

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Plant roots can contribute significantly to the stability of steep slopes. They can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In deep soil, anchoring to bedrock becomes negligible, and lateral reinforcement predominates

  17. Water solubility in aluminous orthopyroxene and the origin of Earth's asthenosphere.

    PubMed

    Mierdel, Katrin; Keppler, Hans; Smyth, Joseph R; Langenhorst, Falko

    2007-01-19

    Plate tectonics is based on the concept of rigid lithosphere plates sliding on a mechanically weak asthenosphere. Many models assume that the weakness of the asthenosphere is related to the presence of small amounts of hydrous melts. However, the mechanism that may cause melting in the asthenosphere is not well understood. We show that the asthenosphere coincides with a zone where the water solubility in mantle minerals has a pronounced minimum. The minimum is due to a sharp decrease of water solubility in aluminous orthopyroxene with depth, whereas the water solubility in olivine continuously increases with pressure. Melting in the asthenosphere may therefore be related not to volatile enrichment but to a minimum in water solubility, which causes excess water to form a hydrous silicate melt.

  18. Regeneration of native California oaks in the forest zone [Abstract

    Treesearch

    P.M. McDonald

    1999-01-01

    The two native California oaks in the forest zone of California are California black oak (Quercus kelloggii Newb.) and tanoak (Lithocarpus densiflorus [Hook. and Arn.] Rehd.). Both are ancient species with many adaptations to withstand California's Mediterranean climate, but some weaknesses as well. Both sprout vigorously...

  19. ENSO-driven energy budget perturbations in observations and CMIP models

    DOE PAGES

    Mayer, Michael; Fasullo, John T.; Trenberth, Kevin E.; ...

    2016-03-19

    Various observation-based datasets are employed to robustly quantify changes in ocean heat content (OHC), anomalous ocean–atmosphere energy exchanges and atmospheric energy transports during El Niño-Southern Oscillation (ENSO). These results are used as a benchmark to evaluate the energy pathways during ENSO as simulated by coupled climate model runs from the CMIP3 and CMIP5 archives. The models are able to qualitatively reproduce observed patterns of ENSO-related energy budget variability to some degree, but key aspects are seriously biased. Area-averaged tropical Pacific OHC variability associated with ENSO is greatly underestimated by all models because of strongly biased responses of net radiation atmore » top-of-the-atmosphere to ENSO. The latter are related to biases of mean convective activity in the models and project on surface energy fluxes in the eastern Pacific Intertropical Convergence Zone region. Moreover, models underestimate horizontal and vertical OHC redistribution in association with the generally too weak Bjerknes feedback, leading to a modeled ENSO affecting a too shallow layer of the Pacific. Vertical links between SST and OHC variability are too weak even in models driven with observed winds, indicating shortcomings of the ocean models. Furthermore, modeled teleconnections as measured by tropical Atlantic OHC variability are too weak and the tropical zonal mean ENSO signal is strongly underestimated or even completely missing in most of the considered models. In conclusion, results suggest that attempts to infer insight about climate sensitivity from ENSO-related variability are likely to be hampered by biases in ENSO in CMIP simulations that do not bear a clear link to future changes.« less

  20. Three-dimensional frictional plastic strain partitioning during oblique rifting

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  1. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  2. Controls on the Climates of Tidally Locked Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cowan, N. B.; Abbot, D. S.

    2013-12-01

    Earth-size planets in the habitable zone of M-dwarf stars may be very common. Due to strong tidal forces, these planets in circulate orbits are expected to be tidally locked, with one hemisphere experiencing perpetual day and the other permanent night. Previous studies on the climates of tidally locked planets were primarily based on complex 3D general circulation models (GCMs). The central question to be answered in this work is: what is the minimum necessary physics needed to understand the climates simulated by GCMs? A two-column model, primarily based on the weak temperature gradient (WTG) approximation (Sobel et al. 2001) and the fixed anvil temperature (FAT) hypothesis (Hartmann and Larson 2002) for the tropical climate of Earth, is developed for understanding the climates of tidally locked planets. This highly idealized model well reproduces fundamental features of the climates obtained in complicated GCMs (Yang et al. 2013), including planetary albedo, longwave cloud forcing, outgoing longwave radiation (OLR), and atmospheric energy transport. This suggests that the WTG approximation and the FAT hypothesis may be good approximations for tidally locked habitable planets, which provides strong constraints on the large-scale circulations, diabatic processes, and cloud behaviour on these planets. Both the simple model and the GCMs predict that (i) convection and planetary albedo on the dayside increase as stellar flux is increased; (ii) longwave cloud radiative forcing increases as stellar flux is increased, due to the cloud top temperature remains nearly constant as the climate changes (FAT hypothesis); (iii) for planets at the inner regions of the habitable zone, the dayside--nightside OLR contrast becomes very weak or even reverses, due to the strong longwave absorption by water vapor and clouds on the dayside; (iv) the dayside--to--nightside atmospheric energy transport (AET) increases as stellar flux is increased, and decreases as oceanic energy transport (OET) is included, although the compensation between AET and OET is incomplete. To summarize, we are able to construct a realistic low-order model for the climate of tidally locked terrestrial planets, including the cloud behavior, using only the two constraints. This bodes well for the interpretation of complex GCMs and future observations of such planets using, for example, the James Webb Space Telescope. Cited papers: [1]. Sobel, A. H., J. Nilsson and L. M. Polvani: The weak temperature gradient approximation and balanced tropical moisture waves, J. Atmos. Sci., 58, 3650-65, 2001. [2]. Hartmann, D. L. and K. Larson, An important constraint on tropical cloud-climate feedback, Geophys. Res. Lett., 29, 1951-54, 2002. [3]. Yang, J., N. B. Cowan and D. S. Abbot: Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets, ApJ. Lett., 771, L45, 2013.

  3. Insights Into the Causes of Arc Rifting From 2-D Dynamic Models of Subduction

    NASA Astrophysics Data System (ADS)

    Billen, Magali I.

    2017-11-01

    Back-arc spreading centers initiate as fore-arc or arc rifting events when extensional forces localize within lithosphere weakened by hydrous fluids or melting. Two models have been proposed for triggering fore-arc/arc rifting: rollback of the subducting plate causing trench retreat or motion of the overriding plate away from the subduction zone. This paper demonstrates that there is a third mechanism caused by an in situ instability that occurs when the thin high-viscosity boundary, which separates the weak fore arc from the hot buoyant mantle wedge, is removed. Buoyant upwelling mantle causes arc rifting, drives the overriding plate away from the subducting plate, and there is sufficient heating of the subducting plate crust and overriding plate lithosphere to form adakite or boninite volcanism. For spontaneous fore-arc/arc rifting to occur a broad region of weak material must be present and one of the plates must be free to respond to the upwelling forces.

  4. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.

    Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetlandmore » hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones« less

  5. An inverse approach to constraining strain and vorticity using rigid clast shape preferred orientation data

    NASA Astrophysics Data System (ADS)

    Davis, Joshua R.; Giorgis, Scott

    2014-11-01

    We describe a three-part approach for modeling shape preferred orientation (SPO) data of spheroidal clasts. The first part consists of criteria to determine whether a given SPO and clast shape are compatible. The second part is an algorithm for randomly generating spheroid populations that match a prescribed SPO and clast shape. In the third part, numerical optimization software is used to infer deformation from spheroid populations, by finding the deformation that returns a set of post-deformation spheroids to a minimally anisotropic initial configuration. Two numerical experiments explore the strengths and weaknesses of this approach, while giving information about the sensitivity of the model to noise in data. In monoclinic transpression of oblate rigid spheroids, the model is found to constrain the shortening component but not the simple shear component. This modeling approach is applied to previously published SPO data from the western Idaho shear zone, a monoclinic transpressional zone that deformed a feldspar megacrystic gneiss. Results suggest at most 5 km of shortening, as well as pre-deformation SPO fabric. The shortening estimate is corroborated by a second model that assumes no pre-deformation fabric.

  6. New Madrid Seismotectonic Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buschbach, T.C.

    1986-06-01

    The New Madrid Seismotectonic Program was a large-scale multidisciplinary effort that was designed to define the structural setting and tectonic history of the New Madrid area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. The tectonic model proposed to explain the New Madrid seismicity is the ''zone of weakness'' model, which suggests that an ancient rift complex formed a zone of weakness in the earth's crust along which regional stresses are relieved. The Reelfoot Rift portion of the proposed rift complex is currently seismically active, and it must be considered capable and likely to bemore » exposed to large-magnitude earthquakes in the future. Earthquakes that occur in the Wabash Valley area are less abundant and generally have deeper hypocenters than earthquakes in the New Madrid area. The area of the Southern Indiana Arm must be considered to have seismic risk, although a lesser extent than the Reelfoot Rift. The east-west trending Rough Creek Graben is practically aseismic, probably in large part due to its orientation in the current stress field. The northwest-trending St. Louis Arm of the proposed rift complex includes a pattern of seismicity that extends from southern Illinois along the Mississippi River. This arm must be considered to have seismic risk, but because of the lack of development of a graben associated with the arm and the orientation of the arm in the current stress field, the risk appears to be less than in the Reelfoot Rift portion of the rift complex.« less

  7. Numerical Modeling on Co-seismic Influence of Wenchuan 8.0 Earthquake in Sichuan-Yunnan Area, China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, H.; Lu, Y.; Li, Y.; Ye, J.

    2009-12-01

    In this paper, a three dimensional finite element model for active faults which are handled by contact friction elements in Sichuan-Yunnan area is built. Applying the boundary conditions determined through GPS data, a numerical simulations on spatial patterns of stress-strain changes induced by Wenchuan Ms8.0 earthquake are performed. Some primary results are: a) the co-seismic displacements in Longmen shan fault zone by the initial cracking event benefit not only the NE-direction expanding of subsequent fracture process but also the focal mechanism conversions from thrust to right lateral strike for the most of following sub-cracking events. b) tectonic movements induced by the Wenchuan earthquake are stronger in the upper wall of Longmen shan fault belt than in the lower wall and are influenced remarkably by the northeast boundary faults of the rhombic block. c) the extrema of stress changes induced by the main shock are 106Pa and its spatial size is about 400km long and 100km wide. The total stress level is reduced in the most regions in Longmen shan fault zone, whereas stress change is rather weak in its southwest segment and possibly result in fewer aftershocks in there. d) effects induced by the Wenchuan earthquake to the major active faults are obviously different from each other. e) triggering effect of the Wenchuan earthquake to the following Huili 6.1 earthquake is very weak.

  8. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.

  9. Cenozoic volcanism in the Bohemian Massif in the context of P- and S-velocity high-resolution teleseismic tomography of the upper mantle

    NASA Astrophysics Data System (ADS)

    Plomerová, Jaroslava; Munzarová, Helena; Vecsey, Luděk.; Kissling, Eduard; Achauer, Ulrich; Babuška, Vladislav

    2016-08-01

    New high-resolution tomographic models of P- and S-wave isotropic-velocity perturbations for the Bohemian upper mantle are estimated from carefully preprocessed travel-time residuals of teleseismic P, PKP and S waves recorded during the BOHEMA passive seismic experiment. The new data resolve anomalies with scale lengths 30-50 km. The models address whether a small mantle plume in the western Bohemian Massif is responsible for this geodynamically active region in central Europe, as expressed in recurrent earthquake swarms. Velocity-perturbations of the P- and S-wave models show similar features, though their resolutions are different. No model resolves a narrow subvertical low-velocity anomaly, which would validate the "baby-plume" concept. The new tomographic inferences complement previous studies of the upper mantle beneath the Bohemian Massif, in a broader context of the European Cenozoic Rift System (ECRIS) and of other Variscan Massifs in Europe. The low-velocity perturbations beneath the Eger Rift, observed in about 200km-broad zone, agree with shear-velocity models from full-waveform inversion, which also did not identify a mantle plume beneath the ECRIS. Boundaries between mantle domains of three tectonic units that comprise the region, determined from studies of seismic anisotropy, represent weak zones in the otherwise rigid continental mantle lithosphere. In the past, such zones could have channeled upwelling of hot mantle material, which on its way could have modified the mantle domain boundaries and locally thinned the lithosphere.

  10. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Li, S.; Freymueller, J. T.

    2017-12-01

    The Alaska Peninsula, including the Shumagin and Semidi segments in the Alaska-Aleutian subduction zone, is one of the best places in the world to study along-strike variations in the seismogenic zone. Understanding the cause of along-strike variations on the plate interface and seismic potential is significant for better understanding of the dynamic mechanical properties of faults and the rheology of the lower crust and lithospheric mantle in subduction zones. GPS measurements can be used to study these properties and estimate the slip deficit distribution on the plate interface. We re-surveyed pre-existing (1992-2001) campaign GPS sites in 2016 and estimated a new dense and highly precise GPS velocity field for the Alaska Peninsula. We find evidence for only minimal time variations in the slip distribution in the region. We used the TDEFNODE software package to invert for the slip deficit distribution from the new velocities. There are long-wavelength systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution on the subduction plate interface. Possible explanations for the systematic misfit are still under investigation since the plate geometry, GIA effect and reference frame errors do not explain the misfits. In this study, we use only the horizontal velocities. We divided the overall Alaska Peninsula area into three sub-areas, which have strong differences in the pattern of the observed deformation, and explored optimal models for each sub-area. The width of the locked region decreases step-wise from NE to SW along strike. Then we compared each of these models to all of the data to identify the locations of the along-strike boundaries that mark the transition from strongly to weakly coupled segments of the margin. We identified three sharp boundaries separating segments with different fault slip deficit rate distributions. Significant change in fault coupling from strong to weak are spatially correlated with the change in pre-existing plate fabric caused by cessation of the Kula-Pacific spreading and reorientation of the northern section of Farallon-Pacific spreading, which also correlate with changes in the degree of outer rise normal faulting and hydration of the downgoing plate.

  11. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches

    NASA Astrophysics Data System (ADS)

    Hunter, J.; Watts, A. B.

    2016-10-01

    We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, Te, of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that Te can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modelling based on a uniform Te elastic plate suggests that Te increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10 °C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that Te landward of the outer rise is generally 40-65 per cent less than the Te seaward of the outer rise. Both landward and seaward Te increases with age of the lithosphere and are given by the depth to the 342-349 °C and 671-714 °C oceanic isotherm, respectively. A dependence of Te on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed Te to the predicted Te based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze, Evans & Goetze, Raterron et al. and Mei et al. all provide quite a good fit to the observed Te at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally too strong to fit the observations. The discrepancy in rheology within Pacific plate may be caused by differences in the timescale of loading and therefore the amount of viscoelastic stress relaxation that has occurred. Other possibilities include thermal rejuvenation and magma-assisted flexure at the Hawaiian Islands.

  12. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct < 160 m wide interval of widely oriented gouge-filled fractures constitutes an inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is consistent with fault zone flower structure models.

  13. Mineral resources prospecting by synthetic application of TM/ETM+, Quickbird and Hyperion data in the Hatu area, West Junggar, Xinjiang, China

    PubMed Central

    Liu, Lei; Zhou, Jun; Jiang, Dong; Zhuang, Dafang; Mansaray, Lamin R.; Hu, Zhijun; Ji, Zhengbao

    2016-01-01

    The Hatu area, West Junggar, Xinjiang, China, is situated at a potential gold-copper mineralization zone in association with quartz veins and small granitic intrusions. In order to identify the alteration zones and mineralization occurrences in this area, the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), Quickbird, Hyperion data and laboratory measured spectra were combined in identifying structures, alteration zones, quartz veins and small intrusions. The hue-saturation-intensity (HSI) color model transformation was applied to transform principal component analysis (PCA) combinations from R (Red), G (Green) and B (Blue) to HSI space to enhance faults. To wipe out the interference of the noise, a method, integrating Crosta technique and anomaly-overlaying selection, was proposed and implemented. Both Jet Propulsion Laboratory Spectral Library spectra and laboratory-measured spectra, combining with matched filtering method, were used to process Hyperion data. In addition, high-resolution Quickbird data were used for unraveling the quartz veins and small intrusions along the alteration zones. The Baobei fault and a SW-NE-oriented alteration zone were identified for the first time. This study eventually led to the discovery of four weak gold-copper mineralized locations through ground inspection and brought new geological knowledge of the region’s metallogeny. PMID:26911195

  14. The role of vegetation in the stability of forested slopes

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Summary - Vegetation helps stabilize forested slopes by providing root strength and by modifying the saturated soil water regime. Plant roots can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In Mediterranean-type climates, having warm...

  15. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    NASA Astrophysics Data System (ADS)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-08-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.

  16. The analysis of the Tectonics - SSS - Seismicity System in the 3D-model of the Rasvumchorr Mine - Central Open Pit Natural and Technical System (Khibiny)

    NASA Astrophysics Data System (ADS)

    Zhirov, Dmitry; Klimov, Sergey; Zhirova, Anzhela; Panteleev, Alexey; Rybin, Vadim

    2017-04-01

    Main hazardous factors during the operation of deposits represent tectonics (structural dislocation), strain and stress state (SSS), and seismicity. The cause and effect relationships in the Fault Tectonics - SSS - Seismicity system were analyzed using a 3D geological and structural Rasvumchorr Mine - Central Open Pit model. This natural and technical system (NTS) has resulted from the development of the world-class apatite-nepheline deposits the Apatite Circus and Rasvumchorr Plateau. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements and rock pressure, seismicity, fault tectonics and etc. The analysis of the 3D model has clearly demonstrated the localization of three main seismic emanation zones in the areas of maximum anthropogenic variation of the initial rock state, and namely: ore pass zone under the Southern edge of the Central open pit, collapse and joining zone of the Rasvumchorr Mine and NW edge of the open pit, and zone under the Apatite Circus plate - collapse console. And, on the contrary, in the area of a large dump under the underground mine, a perennial seismic minimum zone was identified. The relation of the seismicity and fault tectonics was revealed only in three local sectors near come certain echelon fissures of the Main Fault(MF). No confinement of increased seismicity areas to the MF and other numerous echelon fissures is observed. The same picture occurs towards manifestations of rock pressure. Only an insignificant part of echelon fissures (including low rank of hierarchy) controls hazardous manifestations of rock pressure (dumps, strong deformations of the mine contour, etc.). It is shown that the anthropogenic factor (explosive, geometry and arrangement of mined spaces and collapse console), as well as the time factor significantly change orientation and structure (contrast and heterogeneity) of the stress fields. Time series of natural geophysical field fluctuations were additionally analyzed in order to find relationships with the seismicity. A sustainable regular relationship between the seismicity and solar and lunar tides has been observed; though, medium (classes 3 to 6) and high (class 7 and above) energy values of the events reveal various symmetry towards the Lunar cycle phases. The relationship of seismicity with other geophysical fields, e.g., geomagnetic disturbances, is defined as weak to very weak. The anthropogenic (man-induced) factor mostly influences the seismicity in the NTS rock masses. A law for shifting of maximum seismicity zones following the advance of the mining front has been found. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements, and rock pressure, seismicity, fault tectonics, and other manifestations. The study is made within R&D topic No. 0231-2015-0013. The collection, processing, and analysis of data for natural stress fields became possible due to the support from RSF grant 14-17-00751.

  17. How can fluid overpressures be developed and maintained in crustal fault zones ?

    NASA Astrophysics Data System (ADS)

    LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.

    2013-12-01

    The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50% of the elastic properties between host rock and core zone. Data also show a higher dependence of the permeability on the effective pressure for the host rock compared with the damage zone and core zone. This heterogeneity of properties is related to the development of different microstructures such as microcracks, S-C structures and microbreccia across the fault zone achieved during the tectonic history of the fault. From these physical property values and the fault zone architecture, we then analyzed the effects of sudden mechanical loading approximating to static normal-stress transfer following an earthquake on a neighbouring fault, on the development of fluid overpressures. A series of 1-D hydromechanical numerical models was used to show that sudden normal stress increase is a viable mechanism for fluid overpressuring in the studied fault-zone. The models also showed that fluid overpressures can be temporarily maintained in the studied fault zone and that the maintenance of fluid overpressures is controlled by the structure and fluid-flow properties of the fault zone.

  18. The Electrical Resistivity Structure of the Eastern Anatolian Collision Zone, Northeastern Anatolia

    NASA Astrophysics Data System (ADS)

    Cengiz, Özlem; Tuǧrul Başokur, Ahmet; Tolak Çiftçi, Elif

    2016-04-01

    The Northeastern Anatolia is located at the intensely deformed Eastern Anatolian Collision Zone (EACZ), and its tectonic framework is characterized by the collision of the Arabian plate with Eurasian. Although extensive attention is given to understand the crustal and upper mantle processes at this convergent boundary, there is still an ongoing debate over the geodynamic processes of the region. In this study, we were specifically interested in the geoelectric properties and thus geodynamics of the crust beneath the EACZ. Magnetotelluric (MT) measurements were made on two profiles across the north of the EACZ in 1998 as part of a national project undertaken by the Turkish Petroleum Corporation (TPAO). MT data in the frequency range of 300-0.001 Hz were collected from 168 stations located along 78 km north to south and 47 km west to east profiles where direct convergence occurs between Arabian and Eurasian plates. Two and three-dimensional inversion algorithms were used to obtain resistivity models of the study area. According to these models, the upper crust consists of low resistivity sedimentary rocks (<30 Ωm) that are underlain by highly resistive (~500-1000 Ωm) crystalline basement rocks of the Eastern Anatolian Accretionary Complex and Pontides. While the upper and lower crustal resistivity at the northern part of the study area shows a layered structure, significant horizontal and vertical variations for the rest of the EACZ exists on resistivity models. The broad low resistivity zones (<50 Ωm) observed at mid and lower crustal levels throughout the EACZ. These fluid-rich regions along with high temperatures could indicate weak zones representing the locations of active deformation induced by continent-continent collision and correlate with volcanic centers in the region. The variation in the resistivity structure supports the southward subduction model with the resistive continental block and the deep conductive zones presumably corresponding to the oceanic crust.

  19. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    NASA Astrophysics Data System (ADS)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to high pore pressures that promote brittle failure in the lower crust, even in areas with no surface expression of magmatism.

  20. Joint inversion of lake-floor electrical resistivity tomography and boat-towed radio-magnetotelluric data illustrated on synthetic data and an application from the Äspö Hard Rock Laboratory site, Sweden

    NASA Astrophysics Data System (ADS)

    Wang, Shunguo; Kalscheuer, Thomas; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.; Dahlin, Torleif; Meqbel, Naser

    2018-04-01

    The electrical resistivity tomography (ERT) method provides moderately good constraints for both conductive and resistive structures, while the radio-magnetotelluric (RMT) method is well suited to constrain conductive structures. Additionally, RMT and ERT data may have different target coverage and are differently affected by various types of noise. Hence, joint inversion of RMT and ERT data sets may provide a better constrained model as compared to individual inversions. In this study, joint inversion of boat-towed RMT and lake-floor ERT data has for the first time been formulated and implemented. The implementation was tested on both synthetic and field data sets incorporating RMT transverse electrical mode and ERT data. Results from synthetic data demonstrate that the joint inversion yields models with better resolution compared with individual inversions. A case study from an area adjacent to the Äspö Hard Rock Laboratory (HRL) in southeastern Sweden was used to demonstrate the implementation of the method. A 790-m-long profile comprising lake-floor ERT and boat-towed RMT data combined with partial land data was used for this purpose. Joint inversions with and without weighting (applied to different data sets, vertical and horizontal model smoothness) as well as constrained joint inversions incorporating bathymetry data and water resistivity measurements were performed. The resulting models delineate subsurface structures such as a major northeasterly directed fracture system, which is observed in the HRL facility underground and confirmed by boreholes. A previously uncertain weakness zone, likely a fracture system in the northern part of the profile, is inferred in this study. The fractures are highly saturated with saline water, which make them good targets of resistivity-based geophysical methods. Nevertheless, conductive sediments overlain by the lake water add further difficulty to resolve these deep fracture zones. Therefore, the joint inversion of RMT and ERT data particularly helps to improve the resolution of the resistivity models in areas where the profile traverses shallow water and land sections. Our modification of the joint inversion of RMT and ERT data improves the study of geological units underneath shallow water bodies where underground infrastructures are planned. Thus, it allows better planning and mitigating the risks and costs associated with conductive weakness zones.

  1. Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion

    NASA Astrophysics Data System (ADS)

    Choquet, C.; Diédhiou, M. M.; Rosier, C.

    2015-10-01

    We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.

  2. Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings

    NASA Astrophysics Data System (ADS)

    Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.

    2018-04-01

    Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.

  3. Generalized energy detector for weak random signals via vibrational resonance

    NASA Astrophysics Data System (ADS)

    Ren, Yuhao; Pan, Yan; Duan, Fabing

    2018-03-01

    In this paper, the generalized energy (GE) detector is investigated for detecting weak random signals via vibrational resonance (VR). By artificially injecting the high-frequency sinusoidal interferences into an array of GE statistics formed for the detector, we show that the normalized asymptotic efficacy can be maximized when the interference intensity takes an appropriate non-zero value. It is demonstrated that the normalized asymptotic efficacy of the dead-zone-limiter detector, aided by the VR mechanism, outperforms that of the GE detector without the help of high-frequency interferences. Moreover, the maximum normalized asymptotic efficacy of dead-zone-limiter detectors can approach a quarter of the second-order Fisher information for a wide range of non-Gaussian noise types.

  4. Resolution and sensitivity of boat-towed RMT data to delineate fracture zones - Example of the Stockholm bypass multi-lane tunnel

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.

    2017-04-01

    The resolution and sensitivity of water-borne boat-towed multi-frequency radio-magnetotelluric (RMT) data for delineating zones of weaknesses in bedrock are examined in this study. 2D modeling of RMT data along 40 profiles in joint transverse electric (TE) and transverse magnetic (TM) as well as determinant mode was used for this purpose. The RMT data were acquired over two water passages from the Lake Mälaren near the city of Stockholm where one of the largest underground infrastructure projects, a multi-lane tunnel, in Europe is currently being developed. Comparison with available borehole coring, refraction seismic and bathymetric data was used to scrutinize the RMT resistivity models. A low-resistivity zone observed in the middle of all the profiles is suggested to be from fracture/fault zones striking in the same direction as the water passages. Drilling observations confirm the presence of brittle structures in the bedrock, which manifest themselves as zones of low-resistivity and low-velocity in the RMT and refraction seismic data, respectively. Nevertheless, RMT is an inductive electromagnetic method hence the presence of conductive lake sediments may shield detecting the underlying fractured bedrock. The loss of resolution at depth implies that the structures within the bedrock under the lake sediments cannot reliably be delineated. To support this, a synthetic data analysis was carried out providing useful information on how to improve and plan the lake measurements for future studies. Synthetic modeling results for example suggested that frequencies as low as 3 kHz would be required to reliably resolve the bedrock and fracture zone within it in the study area. The modeling further illustrated the advantage of a fresh water layer that acts as a near-surface homogeneous medium eliminating the static shift effects. While boat-towed RMT data provided substantial information about the subsurface geology, the acquisition system should be upgraded to enable controlled-source data acquisition to increase the penetration depth and to overcome the shortcomings of using only radio-frequencies.

  5. Intuitive model for the scintillations of a partially coherent beam

    DOE PAGES

    Efimov, Anatoly

    2014-12-23

    We developed an intuitive model for the scintillation index of a partially coherent beam in which essentially the only critical parameter is the properly defined Fresnel number equal to the ratio of the “working” aperture area to the area of the Fresnel zone. The model transpired from and is supported by numerical simulations using Rytov method for weak fluctuations regime and Tatarskii turbulence spectrum with inner scale. The ratio of the scintillation index of a partially coherent beam to that of a plane wave displays a characteristic minimum, the magnitude of which and its distance from the transmitter are easilymore » explained using the intuitive model. Furthermore, a theoretical asymptotic is found for the scintillation index of a source with decreasing coherence at this minimum.« less

  6. Initiation and blocking of the action potential in an axon in weak ultrasonic or microwave fields

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Pekker, M.

    2014-05-01

    In this paper, we analyze the effect of the redistribution of the transmembrane ion channels in an axon caused by longitudinal acoustic vibrations of the membrane. These oscillations can be excited by an external source of ultrasound and weak microwave radiation interacting with the charges sitting on the surface of the lipid membrane. It is shown, using the Hodgkin-Huxley model of the axon, that the density redistribution of transmembrane sodium channels may reduce the threshold of the action potential, up to its spontaneous initiation. At the significant redistribution of sodium channels in the membrane, the rarefaction zones of the transmembrane channel density are formed, blocking the propagation of the action potential. Blocking the action potential propagation along the axon is shown to cause anesthesia in the example case of a squid axon. Various approaches to experimental observation of the effects considered in this paper are discussed.

  7. Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany

    NASA Astrophysics Data System (ADS)

    Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.

    2012-04-01

    3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and faults in the resulting grid of parallel balanced sections are then interpolated into a gOcad model containing stratigraphic boundaries and faults as triangulated surfaces. The interpolation is also controlled by borehole data located off the sections and the surface traces of stratigraphic boundaries. We have written customized scripts to largely automatize this step, with particular attention to a seamless fit between stratigraphic surfaces and fault planes which share the same nodes and segments along their contacts. Additional attention was paid to the creation of a uniform triangulated grid with maximized angles. This ensures that uniform triangulated volumes can be created for further use in numerical flow modelling. An as yet unsolved problem is the implementation of the fault zones and their hydraulic properties in a large-scale model of the entire basin. Short-wavelength folds and subsidiary faults control which aquifers and seals are juxtaposed across the fault zones. It is impossible to include these structures in the regional model, but neglecting them would result in incorrect assessments of hydraulic links or barriers. We presently plan to test and calibrate the hydraulic properties of the fault zones in smaller, high-resolution models and then to implement geometrically simple "equivalent" fault zones with appropriate, variable transmissivities between specific aquifers.

  8. Ensemble formulation of surface fluxes and improvement in evapotranspiration and cloud parameterizations in a GCM. [General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    The influence of some modifications to the parameters of the current general circulation model (GCM) is investigated. The aim of the modifications was to eliminate strong occasional bursts of oscillations in planetary boundary layer (PBL) fluxes. Smoothly varying bulk aerodynamic friction and heat transport coefficients were found by ensemble averaging of the PBL fluxes in the current GCM. A comparison was performed of the simulations of the modified model and the unmodified model. The comparison showed that the surface fluxes and cloudiness in the modified model simulations were much more accurate. The planetary albedo in the model was also realistic. Weaknesses persisted in the models positioning of the Inter-tropical convergence zone (ICTZ) and in the temperature estimates for polar regions. A second simulation of the model following reparametrization of the cloud data showed improved results and these are described in detail.

  9. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations

    NASA Technical Reports Server (NTRS)

    King, Scott D.; Hager, Bradford H.

    1990-01-01

    The relationship between oceanic trench viscosity and oceanic plate velocity is studied using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non-Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain rates for the slab when compared with estimates of seismic strain rate. Non-Newtonian rheology eliminates the need for imposed weak zones and provides a self-consistent fluid dynamical mechanism for subduction in numerical convection models.

  10. The Bootheel lineament, the 1811-1812 New Madrid earthquake sequence, and modern seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweig, E.S.; Ellis, M.A.

    1992-01-01

    Pedologic, geomorphic, and geochronologic data suggest that liquefaction occurred along the Bootheel lineament of Missouri and Arkansas during the 1811-1812 New Madrid earthquake sequence. The authors propose that the lineament may be the surface trace of a relatively young fault zone consisting of multiple strike-slip flower structures. These structures have been interpreted over a zone at least 5 km wide exhibiting deformed strata at least as young as a regional Eocene/Quaternary unconformity. In physical models, flower structures form in less rigid material in response to low finite displacement across a discrete strike-slip shear zone in a rigid basement. By analogy,more » the Bootheel lineament may represent the most recent attempt of a strike-slip fault zone of relatively low displacement to propagate through a weak cover. In addition, the Bootheel lineament extends between two well-established, seismically active strike-slip fault zones that current form a restraining step. Restraining steps along strike-slip fault zones are inherently unstable, and thus the Bootheel lineament may be acting to smooth the trace of the New Madrid seismic zone as displacement increases. The current seismic inactivity along the Bootheel lineament may be explained by sequential accommodation of complex strain in which the stress field is highly variable within the source volume. In other words, the current stress field may not represent that which operated during the 1811-1812 sequence. Alternatively, an earthquake on a fault associated with the bootheel lineament may have released sufficient strain energy to temporarily shut down activity.« less

  11. Mantle transition zone structure beneath the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.

    2010-12-01

    The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.

  12. Effects of Oblique Extension and Inherited Structure Geometry on Transfer Zone Development in Continental Rifts: A 4D Analogue Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2015-04-01

    INTRODUCTION Inherited structures in the crust form weak zones along which deformation will focus during rifting. Along-strike connection of rift segments may occur along transfer zones, as observed in East Africa. Previous studies have focused on numerical and analog modeling of transfer zones (e.g. Acocella et al., 1999, Allken et al., 2012). We elaborate upon those by investigating the effects of 1) oblique extension and 2) the geometry of linked and non-linked inherited structures on the development of transfer zones. A further improvement is the use of X-ray Computer Tomography (CT) for detailed internal analysis. METHODS The experimental set-up (see Schreurs & Colleta, 1998) contains two sidewalls with a base of compressed foam and plexiglass bars stacked in between. Decompressing this base results in distributed deformation of the overlying model materials. Deforming the model laterally with a mobile base plate produces the strike-slip components for oblique extension. Divergence velocities are in the order of 5 mm/h, translating to ca. 5 mm/Ma in nature, and 1 cm represents 10 km. A 2 cm thick layer of viscous silicone represents the ductile lower crust and a 2 cm quartz sand layer the brittle upper crust. Inherited structures are created with thin lines of silicon laid down on top of the basal silicone layer. Several models were run in a CT-scanner to reveal the 3D evolution of internal structures with time, hence 4D. RESULTS Localization of deformation along the pre-defined structures works well. The models show that the structural style changes with extension obliquity, from wide rift structures to narrower rifts with internal oblique-slip and finally strike-slip structures. Furthermore, rift offset is an important parameter influencing the occurrence of linkage: increasing rift offset decreases linkage as previously observed by Allken et al. (2012). However, increasing divergence obliquity promotes transfer zone formation, as does the presence of rift-connecting inherited zones, whose strike is at an angle of >15° with respect to the divergence direction. CT-analysis indicates that faulting initiated shortly after the start of the experiments, while structures become only clearly visible at the surface only after 1:30h (4% extension). Rift boundary fault angles tend to decrease from an initial 70° to ca. 55° after 4:00h (10% extension). Further CT-analysis will reveal the 3D evolution of the transform zones in more detail. REFERENCES Acocella, V., Faccenna, C., Funiciello, R., Rossetti, F., 1999. Sand-box modelling of basement-controlled transfer zones in extensional domains. Terra Nova, Vol. 11, No. 4, pp 149-156 Allken, V., Huismans, R. S., Thieulot, C., 2012. Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study, Geochem. Geophys. Geosyst. Vol. 13, Q05010 Schreurs, G., Colletta, B. (1998) Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R. E., Strachan R. A., Dewey, J. F., (eds.) 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications. No. 135, pp 59-79

  13. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.

    PubMed

    Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  14. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  15. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  16. Clay Mineralogy, Authigenic Smectite Concentration, and Fault Weakening of the San Gregorio Fault; Moss Beach, California

    NASA Astrophysics Data System (ADS)

    Mazzoni, S.; Moore, J.; Bish, D. L.

    2002-12-01

    The apparently weak nature of the San Andreas fault system poses a fundamental geophysical question. The San Gregorio fault at Moss Beach, CA is an active splay of the right-lateral San Andreas fault zone and has a total offset of about 150 km. At Moss Beach, the San Gregorio fault offsets Pliocene sedimentary rocks and consists of a clay-rich gouge zone, eastern sandstone block, and western mudstone block. In the presence of fluids, smectite clays can swell and become very weak to shearing. We studied a profile of samples across the fault zone and wall rocks to determine if there is a concentration of smectite in the gouge zone and propose a possible formation mechanism. Samples were analyzed using standard quantitative X-ray diffraction methods and software recently developed at Los Alamos National Lab. XRD results show a high smectite/illite (weak clay/strong clay) ratio in the gouge (S/I ratio=2-4), lower in the mudstone (S/I ratio=2), and very low in the sandstone (S/I ratio=1). The variability of smectite/illite ratio in the gouge zone may be evidence of preferential alteration where developed shear planes undergo progressive smectite enrichment. The amount of illite layers in illite/smectites is 5-30%, indicating little illitization; therefore, these fault rocks have not undergone significant diagenesis above 100 degrees C and illite present must be largely detrital. Bulk mineralogy shows significant anti-correlation of smectite with feldspar, especially in the gouge, suggesting authigenic smectite generation from feldspar. Under scanning-electron microscope inspection, smectites have fibrous, grain coating growth fabrics, also suggesting smectite authigenesis. If in situ production of smectite via chemical alteration is possible in active faults, it could have significant implications for self-generated weakening of faults above the smectite-to-illite transition (<150 degrees C, or 5-7km).

  17. Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone

    NASA Astrophysics Data System (ADS)

    Lingala, Nishanth; Sri Namachchivaya, N.; Pavlyukevich, Ilya

    2017-04-01

    For nonlinear oscillators, frequency of oscillations depends on the oscillation amplitude. When a nonlinear oscillator is periodically driven, the phase space consists of many resonance zones where the oscillator frequency and the driving frequency are commensurable. It is well known that, a small subset of initial conditions can lead to capture in one of the resonance zones. In this paper we study the effect of weak noise on the escape from a resonance zone. Using averaging techniques we obtain the mean exit time from a resonance zone and study the dependence of the exit rate on the parameters of the oscillator. Paper dedicated to Professor Peter W Sauer of University of Illinois on the occasion of his 70th birthday.

  18. Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.

    2016-12-01

    Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.

  19. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution

    NASA Astrophysics Data System (ADS)

    Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda

    2017-10-01

    We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the far-field effects of the India-Eurasian Collision.

  20. Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH)

    NASA Astrophysics Data System (ADS)

    Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe

    2017-01-01

    The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing, boudinage and rotation of mica grains, pressure solution of carbonate fossils and pore collapse during ductile flow of the clay matrix. This study provides a microphysical basis to relate microstructures to macroscopic observations of strength and permeability of the Main Fault, and extrapolating fault properties in long-term deformation.

  1. Inherited weaknesses control deformation in the flat slab region of Central Argentina

    NASA Astrophysics Data System (ADS)

    Stevens, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.

    2015-12-01

    The Sierras Pampeanas region of west-central Argentina has long been considered a geologic type-area for flat-slab induced thick-skinned deformation. Frictional coupling between the horizontal subducting plate and South American lithosphere from ~12 Ma to the present provides an obvious causal mechanism for the basement block uplifts that characterize this region. New low temperature thermochronometry data show basement rocks from the central Sierras Pampeanas (~ longitude 66 ̊ W) including Sierras Cadena de Paiman, Velasco and Mazan retain a cooling history of Paleozoic - Mesozoic tectonics events. Results from this study indicate that less than 2 km of basement has been exhumed since at least the Mesozoic. These trends recorded by both apatite fission track (AFT) and apatite helium (AHe) thermochronometry suggest that recent Mio-Pliocene thick-skinned deformation associated with flat-slab subduction follow inherited zones of weakness from Paleozoic terrane sutures and shear zones and Mesozoic rifting. If a Cenozoic foreland basin exisited in this region, its thickness was minimal and was controlled by paleotopography. Pre-Cenozoic cooling ages in these ranges that now reach as high as 4 km imply significant exhumation of basement rocks before the advent of flat slab subduction in the mid-late Miocene. It also suggests that thick-skinned deformation associated with flat slab subduction may at least be facilitated by inherited crustal-scale weaknesses. At the most, pre-existing zones of weakness may be required in regions of thick-skinned deformation. Although flat-slab subduction plays an important role in the exhumation of the Sierras Pampeanas, it is likely not the sole mechanism responsible for thick-skinned deformation in this region. This insight sheds light on the interpretation of modern and ancient regions of thick-skinned deformation in Cordilleran systems.

  2. Substorms: The Attempt at Magnetospheric Dynamic Equilibrium between Magnetically-Driven Frontside Reconnection and Particle-Driven Reconnection in a Multiple-Current-Sheet Magnetotail

    NASA Astrophysics Data System (ADS)

    Sofko, G. J.; Hussey, G. C.; McWilliams, K. A.; Reimer, A. S.

    2016-12-01

    We propose a multi-current-sheet model for magnetic substorms. Those storms are normally driven by frontside magnetically-driven reconnection (MDRx), in which the diffusion zone current JD and the electric field E have a "load" relationship JD*E >0, indicating transfer if magnetic energy to the particles in the "reconnection jets". As a result of lobe field line transport over the north and south poles, polar cap particles are subject to parallel energization as they flow upward out of the ionosphere. These particles convectively drift toward the equator and subsequently mirror near the Neutral Sheet (NSh) region, forming an extended westward NSh current sheet which is unstable and "tears up" into multiple current sheets. Each current sheet has very different behaviour at its ends: (a) strong magnetic pressure and weak particle pressure at its tailward end; (b) strong particle pressure and weak magnetic field at its earthward end. Therefore, in each Separation Zone (SZ) between current sheets, a strong eastward magnetic curl develops. The associated eastward SZ current, caused by diamagnetic electron drift, is squeezed by the repulsion of the westward currents tailward and earthward. That current becomes intense enough to act as a diffusion zone for "generator-type" or Particle-driven reconnection (PDRx) for which JD*E<0, indicating that the particles return energy to the magnetic field. The PDRx produces a Dipolarization Front (DF) on the earthward side of the SZ and a Plasmoid (PMD) on the tailward side. Such DF-PMD pairs form successively in time and radial downtail SZ distance. In this way, the magnetosphere attempts to achieve a dynamic equilibrium between magnetic and particle energy.

  3. A mass-balance code for the quantitative interpretation of fluid column profiles in ground-water studies

    NASA Astrophysics Data System (ADS)

    Paillet, Frederick

    2012-08-01

    A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.

  4. Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-10-01

    Pre-existing structures within crystalline basement may exert a significant influence over the evolution of rifts. However, the exact manner in which these structures reactivate and thus their degree of influence over the overlying rift is poorly understood. Using borehole-constrained 2D and 3D seismic reflection data from offshore southern Norway we identify and constrain the three-dimensional geometry of a series of enigmatic intrabasement reflections. Through 1D waveform modelling and 3D mapping of these reflection packages, we correlate them to the onshore Caledonian thrust belt and Devonian shear zones. Based on the seismic-stratigraphic architecture of the post-basement succession, we identify several phases of reactivation of the intrabasement structures associated with multiple tectonic events. Reactivation preferentially occurs along relatively thick (c. 1 km), relatively steeply dipping (c. 30°) structures, with three main styles of interactions observed between them and overlying faults: i) faults exploiting intrabasement weaknesses represented by intra-shear zone mylonites; ii) faults that initiate within the hangingwall of the shear zones, inheriting their orientation and merging with said structure at depth; or iii) faults that initiate independently from and cross-cut intrabasement structures. We demonstrate that large-scale discrete shear zones act as a long-lived structural template for fault initiation during multiple phases of rifting.

  5. Early Earth slab stagnation

    NASA Astrophysics Data System (ADS)

    Agrusta, R.; Van Hunen, J.

    2016-12-01

    At present day, the Earth's mantle exhibits a combination of stagnant and penetrating slabs within the transition zone, indicating a intermittent convection mode between layered and whole-mantle convection. Isoviscous thermal convection calculations show that in a hotter Earth, the natural mode of convection was dominated by double-layered convection, which may imply that slabs were more prone to stagnate in the transition zone. Today, slab penetration is to a large extent controlled by trench mobility for a plausible range of lower mantle viscosity and Clapeyron slope of the mantle phase transitions. Trench mobility is, in turn, governed by slab strength and density and upper plate forcing. In this study, we systematically investigate the slab-transition zone internation in the Early Earth, using 2D self-consistent numerical subduction models. Early Earth's higher mantle temperature facilitates decoupling between the plates and the underlying asthenosphere, and may result in slab sinking almost without trench retreat. Such behaviour together with a low resistance of a weak lower mantle may allow slabs to penetrate. The ability of slab to sink into the lower mantle throughout Earth's history may have important implications for Earth's evolution: it would provide efficient mass and heat flux through the transition zone therefore provide an efficient way to cool and mix the Earth's mantle.

  6. Plate coupling across the northern Manila subduction zone deduced from mantle lithosphere buoyancy

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun

    2017-12-01

    The Manila subduction zone is located at the plate boundary where the Philippine Sea plate (PSP) moves northwestward toward the Eurasian plate (EU) with a high convergence rate. However, historically, no large earthquakes greater than Mw7 have been observed across the northern Manila subduction zone. The poorly understood plate interaction between these two plates in this region creates significant issues for evaluating the seismic hazard. Therefore, the variation of mantle lithospheric buoyancy is calculated to evaluate the plate coupling status across the northern Manila subduction zone, based on recently published forward gravity modeling constrained by the results of the P-wave seismic crustal structure of the TAIGER (Taiwan Integrated Geodynamic Research) project. The results indicate weak plate coupling between the PSP and EU, which could be related to the release of the overriding PSP from the descending EU's dragging force, which was deduced from the higher elevation of the Luzon arc and the fore-arc basin northward toward the Taiwan orogen. Moreover, serpentinized peridotite is present above the plate boundary and is distributed more widely and thickly closer to offshore southern Taiwan orogen. We suggest that low plate coupling may facilitate the uplifting of serpentinized mantle material up to the plate boundary.

  7. Timing of Multiple Stages of Granitic Magmatisms: Constraints on Shearing along the Ailao Shan-Red River Shear Zone

    NASA Astrophysics Data System (ADS)

    Chen, W.; Liu, J.; Fan, W.; Feng, J.; DAO, H.; Yan, J.

    2017-12-01

    The Ailao Shan-Red River (ASRR) shear zone is a large scale shear zone resulted from collision between India and Euro-Asia Plates in Cenozoic. Magmatisms related to the shear zone evolution took place before, during or after shearing process that contributes to pre-, syn- and post- granitic emplacement. Combined structure, fabric and geochronology analyses of granitic rocks within sheared Proterozoic country rocks along the ASRR shear zone offer important clues on timing of shearing activity and constraining on transformation of types of the shearing. Zircon U-Pb dating results indicate that the granitic intrusions within the ASRR shear zone are broadly grouped into two stages: Permo-Triassic (256.0±6.0 Ma, 244.0±7.6 Ma and 234.0±9.3 Ma) and Cenozoic (27.1±1.5 Ma, 26.34±0.62 Ma and 25.10±0.61 Ma). The Permo-Triassic intrusions show evidences for intensive mylonitization. The older Cenozoic granitic rocks were also strongly sheared, but the younger Cenozoic granites were weakly sheared and they cut across early intrusions (e.g. the Permo-Triassic and older Cenozoic intrusions). Petrographic microscope observations suggest that the Permo-Triassic granitic intrusions show prominent superimposition of high temperature mylonization by low temperature mylonization. Quartz c-axis fabrics of the granites demonstrate that there are multiple maxima due to the superimposition. The older Cenozoic granitic intrusion of 27.1±1.5 Ma shows weak mylonization and possess four symmetrical point maxima in their quartz c-axis fabrics. The EBSD data indicate that the intrusion experienced pure shearing. Intrusions of 26.34±0.62 Ma and 25.10±0.61 Ma show evidences for very weak mylonization. The quartz c-axis patterns of the rocks dominantly resulted from low temperature deformation by simple shearing. It is concluded, in summary, that: (1) Permo-Triassic granitic intrusions experienced superimposed shearing of high and low temperatures; (2) Evidences for both early pure shearing and late simple shearing are well-preserved in the sheared Cenozoic granitic intrusions. The transformation of the two types of strain changed at ca. 27Ma; (3) Cessation of ductile shearing along the ASRR shear zone is perhaps from 26 to 25Ma.

  8. Imaging P and S attenuation in the Sacramento-San Joaquin Delta region, northern California

    USGS Publications Warehouse

    Eberhart-Phillips, Donna; Thurber, Clifford; Fletcher, Jon Peter B.

    2014-01-01

    We obtain 3-D Qp and Qs models for the Delta region of the Sacramento and San Joaquin Rivers, a large fluvial-agricultural portion of the Great Valley located between the Sierra Nevada batholith and the San Francisco Bay - Coast Ranges region of active faulting. Path attenuation t* values have been obtained for P and S data from 124 distributed earthquakes, with a longer variable window for S based on the energy integral. We use frequency dependence of 0.5 consistent with other studies, and weakly favored by the t* S data. A regional initial model was obtained by solving for Q as a function of velocity. In the final model, the Great Valley basin has low Q with very low Q (<50) for the shallowest portion of the Delta. There is an underlying strong Q contrast to the ophiolite basement which is thickest with highest Q under the Sacramento basin, and a change in structure is apparent across the Suisun Bay as a transition to thinner ophiolite. Moderately low Q is found in the upper crust west of the Delta region along the faults in the eastern North Bay Area, while, moderately high Q is found south of the Delta, implying potentially stronger ground motion for earthquake sources to the south. Very low Q values in the shallow crust along parts of the major fault zones may relate to sediment and abundant microfractures. In the lower crust below the San Andreas and Calaveras-Hayward-Rodgers Creek fault zones, the observed low Q is consistent with grain-size reduction in ductile shear zones and is lowest under the San Andreas which has large cumulative strain. Similarly moderately low Q in the ductile lower crust of the Bay Area block between the major fault zones implies a broad distributed shear zone.

  9. Fernandina caldera collapse morphology in geometric and dynamic comparison to sandbox models, subsidence sinks over nuclear-explosion cavities, and some other calderas

    NASA Astrophysics Data System (ADS)

    Howard, K. A.

    2009-12-01

    The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.

  10. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    NASA Astrophysics Data System (ADS)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  11. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    USGS Publications Warehouse

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  12. Sensitivity tests on the rates of the excited states of positron decays during the rapid proton capture process of the one-zone X-ray burst model

    NASA Astrophysics Data System (ADS)

    Lau, Rita

    2018-02-01

    In this paper, we investigate the sensitivities of positron decays on a one-zone model of type-I X-ray bursts. Most existing studies have multiplied or divided entire beta decay rates (electron captures and beta decay rates) by 10. Instead of using the standard Fuller & Fowler (FFNU) rates, we used the most recently developed weak library rates [1], which include rates from Langanke et al.'s table (the LMP table) (2000) [2], Langanke et al.'s table (the LMSH table) (2003) [3], and Oda et al.'s table (1994) [4] (all shell model rates). We then compared these table rates with the old FFNU rates [5] to study differences within the final abundances. Both positron decays and electron capture rates were included in the tables. We also used pn-QRPA rates [6,7] to study the differences within the final abundances. Many of the positron rates from the nuclei's ground states and initial excited energy states along the rapid proton capture (rp) process have been measured in existing studies. However, because temperature affects the rates of excited states, these studies should have also acknowledged the half-lives of the nuclei's excited states. Thus, instead of multiplying or dividing entire rates by 10, we studied how the half-lives of sensitive nuclei in excited states affected the abundances by dividing the half-lives of the ground states by 10, which allowed us to set the half-lives of the excited states. Interestingly, we found that the peak of the final abundance shifted when we modified the rates from the excited states of the 105Sn positron decay rates. Furthermore, the abundance of 80Zr also changed due to usage of pn-QRPA rates instead of weak library rates (the shell model rates).

  13. Fault model of the M7.1 intraslab earthquake on April 7 following the 2011 Great Tohoku earthquake (M9.0) estimated by the dense GPS network data

    NASA Astrophysics Data System (ADS)

    Miura, S.; Ohta, Y.; Ohzono, M.; Kita, S.; Iinuma, T.; Demachi, T.; Tachibana, K.; Nakayama, T.; Hirahara, S.; Suzuki, S.; Sato, T.; Uchida, N.; Hasegawa, A.; Umino, N.

    2011-12-01

    We propose a source fault model of the large intraslab earthquake with M7.1 deduced from a dense GPS network. The coseismic displacements obtained by GPS data analysis clearly show the spatial pattern specific to intraslab earthquakes not only in the horizontal components but also the vertical ones. A rectangular fault with uniform slip was estimated by a non-linear inversion approach. The results indicate that the simple rectangular fault model can explain the overall features of the observations. The amount of moment released is equivalent to Mw 7.17. The hypocenter depth of the main shock estimated by the Japan Meteorological Agency is slightly deeper than the neutral plane between down-dip compression (DC) and down-dip extension (DE) stress zones of the double-planed seismic zone. This suggests that the depth of the neutral plane was deepened by the huge slip of the 2011 M9.0 Tohoku earthquake, and the rupture of the thrust M7.1 earthquake was initiated at that depth, although more investigations are required to confirm this idea. The estimated fault plane has an angle of ~60 degrees from the surface of subducting Pacific plate. It is consistent with the hypothesis that intraslab earthquakes are thought to be reactivation of the preexisting hydrated weak zones made in bending process of oceanic plates around outer-rise regions.

  14. Crustal and Mantle Structure beneath the Okavango and Malawi Rifts and Its Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Liu, K. H.; Yu, Y.; Reed, C. A.; Mickus, K. L.; Moidaki, M.

    2017-12-01

    To investigate crustal and mantle structure beneath the young and incipient sections of the East African Rift System and provide constraints on rifting models, a total of 50 broadband seismic stations were placed along three profiles across the Okavango and Malawi rifts, with a total length of about 2500 km. Results to date suggest minor crustal thinning and nearly normal seismic velocities in the upper mantle beneath both rifts. The thickness of the mantle transition zone is comparable to the global average, suggesting the lack of thermal upwelling from the lower mantle beneath the rifts. In addition, shear-wave splitting analysis found no anomalies in either the fast polarization orientation or the splitting time associated with the rifts, and thus has ruled out the existence of small-scale mantle convection or plume-related mantle flow beneath the rifts. While the Okavango rift has long been recognized to be located in a Precambrian orogenic zone between the Kalahari and Congo cratons, our results suggest that the Malawi Rift is also developing along the western edge of a lithospheric block with relatively greater thickness relative to the surrounding area. Those seismological and gravity modeling results are consistent with a passive rifting model, in which rifts develop along pre-existing zones of lithospheric weakness, where rapid variations of lithospheric thickness is observed. Lateral variations of dragging stress applied to the bottom of the lithosphere are the most likely cause for the initiation and development of both rifts.

  15. Large old trees influence patterns of delta13C and delta15N in forests.

    PubMed

    Weber, Pascale; Bol, Roland; Dixon, Liz; Bardgett, Richard D

    2008-06-01

    Large old trees are the dominant primary producers of native pine forest, but their influence on spatial patterns of soil properties and potential feedback to tree regeneration in their neighbourhood is poorly understood. We measured stable isotopes of carbon (delta(13)C) and nitrogen (delta(15)N) in soil and litter taken from three zones of influence (inner, middle and outer zone) around the trunk of freestanding old Scots pine (Pinus sylvestris L.) trees, to determine the trees' influence on below-ground properties. We also measured delta(15)N and delta(13)C in wood cores extracted from the old trees and from regenerating trees growing within their three zones of influence. We found a significant and positive gradient in soil delta(15)N from the inner zone, nearest to the tree centre, to the outer zone beyond the tree crown. This was probably caused by the higher input of (15)N-depleted litter below the tree crown. In contrast, the soil delta(13)C did not change along the gradient of tree influence. Distance-related trends, although weak, were visible in the wood delta(15)N and delta(13)C of regenerating trees. Moreover, the wood delta(15)N of small trees showed a weak negative relationship with soil N content in the relevant zone of influence. Our results indicate that large old trees control below-ground conditions in their immediate surroundings, and that stable isotopes might act as markers for the spatial and temporal extent of these below-ground effects. John Wiley & Sons, Ltd

  16. Transient versus long-term strength of the "dry" lower continental crust (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil; Hawemann, Friedrich; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo

    2017-04-01

    One-dimensional yield strength envelope or "Christmas tree" models for the strength of the continental lithosphere assume homogeneous deformation at constant strain-rate and generally predict that felsic lower crust should be viscous and relatively weak. Over the longer term, distributed flow of this supposedly weak lower crust should tend to flatten any irregularities in the Moho. However, these model predictions are in direct contradiction to observations from the well-exposed lower-crustal Fregon Subdomain in the Musgrave Ranges, Central Australia. This unit underwent dehydrating granulite facies metamorphism during the ca. 1200 Ma Musgravian Orogeny. During the subsequent Petermann Orogeny (ca. 550 Ma), these effectively "dry" rocks were very heterogeneously deformed under sub-eclogitic, lower-crustal conditions (ca. 650°C, 1.2 GPa). Shear zones localized over a wide range of thickness and length scales, from mm to km. Widespread and repeated fracturing and pseudotachylyte generation also occurred during the same deformation event, providing weak and approximately planar precursors on which viscous shear zones subsequently localized. On the lithospheric scale, the present day Moho still preserves an offset on the order of 20 km that was caused by the Petermann Orogeny. Brittle fracturing of dry rocks and related pseudotachylyte formation at pressures of ca. 1.2 GPa imply high differential stresses on the order of 1 GPa, if the Mohr-Coulomb yield criterion is still approximately correct at such high confining pressure. High stresses, at least transiently, are also implied by the observed local fracturing of granulite-facies garnets in the vicinity of pseudotachylytes. However, the stress associated with slower crystal-plastic flow appears to be much less, on the order of 10's of MPa, as indicated by the dynamically recrystallized grain size of quartz. Several other observations also indicate that the long-term viscous strength could not have been maintained at GPa levels: (1) viscous reactivation of fractures that are highly misoriented, with planes at a large angle to the shortening direction; (2) the lack of any discernible pressure difference between doleritic dykes oriented at varying angles to the shortening direction (i.e. no tectonic overpressure or underpressure effects); and (3) the lack of evident long-term shear heating on major shear zones. The implication is that the high differential stress must have occurred as transient pulses, causing repeated seismic fracturing of lower crustal rocks that on the longer term were deforming by crystal-plastic viscous creep at much lower differential stress.

  17. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  18. Random medium model for cusping of plane waves.

    PubMed

    Li, Jia; Korotkova, Olga

    2017-09-01

    We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.

  19. Assessment of a model of forest dynamics under contrasting climate and disturbance regimes in the Pacific Northwest [FORCLIM

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2005-01-01

    An individual-based model of forest dynamics (FORCLIM) was tested for its ability to simulate forest composition and structure in the Pacific Northwest region of North America. Simulation results across gradients of climate and disturbance were compared to forest survey data from several vegetation zones in western Oregon. Modelled patterns of tree species composition, total basal area and stand height across climate gradients matched those in the forest survey data. However, the density of small stems (<50 cm DBH) was underestimated by the model. Thus actual size-class structure and other density-based parameters of stand structure were not simulated with high accuracy. The addition of partial-stand disturbances at moderate frequencies (<0.01 yr-1) often improved agreement between simulated and actual results. Strengths and weaknesses of the FORCLIM model in simulating forest dynamics and structure in the Pacific Northwest are discussed.

  20. The role of viscous magma mush spreading in volcanic flank motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Plattner, C.; Amelung, F.; Baker, S.; Govers, R.; Poland, M.

    2013-01-01

    Multiple mechanisms have been suggested to explain seaward motion of the south flank of Kīlauea Volcano, Hawai‘i. The consistency of flank motion during both waxing and waning magmatic activity at Kīlauea suggests that a continuously acting force, like gravity body force, plays a substantial role. Using finite element models, we test whether gravity is the principal driver of long-term motion of Kīlauea's flank. We compare our model results to geodetic data from Global Positioning System and interferometric synthetic aperture radar during a time period with few magmatic and tectonic events (2000-2003), when deformation of Kīlauea was dominated by summit subsidence and seaward motion of the south flank. We find that gravity-only models can reproduce the horizontal surface velocities if we incorporate a regional décollement fault and a deep, low-viscosity magma mush zone. To obtain quasi steady state horizontal surface velocities that explain the long-term seaward motion of the flank, we find that an additional weak zone is needed, which is an extensional rift zone above the magma mush. The spreading rate in our model is mainly controlled by the magma mush viscosity, while its density plays a less significant role. We find that a viscosity of 2.5 × 1017–2.5 × 1019 Pa s for the magma mush provides an acceptable fit to the observed horizontal surface deformation. Using high magma mush viscosities, such as 2.5 × 1019 Pa s, the deformation rates remain more steady state over longer time scales. These models explain a significant amount of the observed subsidence at Kīlauea's summit. Some of the remaining subsidence is probably a result of magma withdrawal from subsurface reservoirs

  1. Effect of Metamorphic Foliation on Regolith Thickness, Catalina Critical Zone Observatory, Arizona

    NASA Astrophysics Data System (ADS)

    Leone, J. D.; Holbrook, W. S.; Chorover, J.; Carr, B.

    2016-12-01

    Terrestrial life is sustained by nutrients and water held in soil and weathered rock, which are components of the Earth's critical zone, referred to as regolith. The thickness of regolith in the near-surface is thought to be influenced by factors such as climate, topographic stress, erosion and lithology. Our study has two aims: to determine the effect of metamorphic foliation on regolith thickness and to test an environmental model, Effective Energy Mass Transfer (EEMT), within a zero-order basin (ZOB) in the Santa Catalina Mountains. Seismic refraction and electrical resistivity data show a stark contrast in physical properties, and inferred regolith thickness, on north- versus south-facing slopes: north-facing slopes are characterized by higher seismic velocities and higher resistivities, consistent with thin regolith, while south-facing slopes show lower resistivities and velocities, indicative of deeper and more extensive weathering. This contrast is exactly the opposite of that expected from most climatic models, including the EEMT model, which predicts deeper regolith on north-facing slopes. Instead, regolith thickness appears to be controlled by metamorphic foliation: we observed a general, positive correlation between interpreted regolith thickness and foliation dip within heavily foliated lithologies and no correlation in weakly foliated lithologies. We hypothesize that hydraulic conductivity controls weathering here: where foliation is parallel to the surface topography, regolith is thin, but where foliation pierces the surface topography at a substantial angle, regolith is thick. The effect of foliation is much larger than that expected from environmental models: regolith thickness varies by a factor of 4 (2.5 m vs. 10 m). These results suggest that metamorphic foliation, and perhaps by extension sedimentary layering, plays a key role in determining regolith thickness and must be accounted for in models of critical zone development.

  2. Behavior of ectopic surface: effects of β-adrenergic stimulation and uncoupling

    PubMed Central

    Arutunyan, Ara; Pumir, Alain; Krinsky, Valentin; Swift, Luther; Sarvazyan, Narine

    2011-01-01

    By using both experimental and theoretical means, we have addressed the progression of ectopic activity from individual cardiac cells to a multicellular two-dimensional network. Experimental conditions that favor ectopic activity have been created by local perfusion of a small area of cardiomyocyte network (I-zone) with an isoproterenol-heptanol containing solution. The application of this solution initially slowed down and then fully blocked wave propagation inside the I-zone. After a brief lag period, ectopically active cells appeared in the I-zone, followed by evolution of the ectopic clusters into slowly propagating waves. The changing pattern of colliding and expanding ectopic waves confined to the I-zone persisted for as long as the isoproterenol-heptanol environment was present. On restoration of the control environment, the ectopic waves from the I-zone broke out into the surrounding network causing arrhythmias. The observed sequence of events was also modeled by FitzHugh-Nagumo equations and included a cell’s arrangement of two adjacent square regions of 20 × 20 cells. The control zone consisted of well-connected, excitable cells, and the I-zone was made of weakly coupled cells (heptanol effect), which became spontaneously active as time evolved (isoproterenol effect). The dynamic events in the system have been studied numerically with the use of a finite difference method. Together, our experimental and computational data have revealed that the combination of low coupling, increased excitability, and spatial heterogeneity can lead to the development of ectopic waves confined to the injured network. This transient condition appears to serve as an essential step for the ectopic activity to “mature” before escaping into the surrounding control network. PMID:12893638

  3. Behavior of ectopic surface: effects of beta-adrenergic stimulation and uncoupling.

    PubMed

    Arutunyan, Ara; Pumir, Alain; Krinsky, Valentin; Swift, Luther; Sarvazyan, Narine

    2003-12-01

    By using both experimental and theoretical means, we have addressed the progression of ectopic activity from individual cardiac cells to a multicellular two-dimensional network. Experimental conditions that favor ectopic activity have been created by local perfusion of a small area of cardiomyocyte network (I-zone) with an isoproterenol-heptanol containing solution. The application of this solution initially slowed down and then fully blocked wave propagation inside the I-zone. After a brief lag period, ectopically active cells appeared in the I-zone, followed by evolution of the ectopic clusters into slowly propagating waves. The changing pattern of colliding and expanding ectopic waves confined to the I-zone persisted for as long as the isoproterenol-heptanol environment was present. On restoration of the control environment, the ectopic waves from the I-zone broke out into the surrounding network causing arrhythmias. The observed sequence of events was also modeled by FitzHugh-Nagumo equations and included a cell's arrangement of two adjacent square regions of 20 x 20 cells. The control zone consisted of well-connected, excitable cells, and the I-zone was made of weakly coupled cells (heptanol effect), which became spontaneously active as time evolved (isoproterenol effect). The dynamic events in the system have been studied numerically with the use of a finite difference method. Together, our experimental and computational data have revealed that the combination of low coupling, increased excitability, and spatial heterogeneity can lead to the development of ectopic waves confined to the injured network. This transient condition appears to serve as an essential step for the ectopic activity to "mature" before escaping into the surrounding control network.

  4. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer.

    PubMed

    Kuppardt, Anke; Kleinsteuber, Sabine; Vogt, Carsten; Lüders, Tillmann; Harms, Hauke; Chatzinotas, Antonis

    2014-08-01

    Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

  5. Geodynamical Evolution of the En echelon Basins in the Hexi Corridor: Implications From 3-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Shi, Y.; Zhang, H.; Cheng, H.

    2017-12-01

    The Hexi Corridor, located between the Alax block and the Caledon fold belt in the North Qilian Mountains, is the forefront area of northward thrust of the Tibet Plateau. Most notably, this active tectonic region consists of a series of faults and western-northwest trending Cenozoic basins. Therefore, it's a pivotal part in terms of recording tectonic pattern of the Tibet Plateau and also demonstrating the northward growth of Tibetan Plateau. In order to explain the mechanism of formation and evolution of the paired basins in the Hexi Corridor and based on the visco-elasticity-plasticity constitutive relation, we construct a 3-D finite element numerical model, including the Altun Tagh fault zone, the northern Qilian Shan-Hexi corridor faults system and the Haiyuan fault zone in northeast of the Tibet Plateau.The boundary conditions are constrained by GPS observations and fault slip rate provided by field geology, with steady rate of deformation of north-south compression and lateral shear along the approximately east-west strike fault zones.In our numerical model, different blocks are given different mechanical features and major fault zones are assumed mechanical weak zones. The long-term (5Ma) accumulation of lithospheric stress, displacement and fault dislocation of the Hexi Corridor and its adjacent regions are calculated in different models for comparison. Meanwhile, we analyze analyzed how the crustal heterogeneity affecting the tectonic deformations in this region. Comparisons between the numerical results and the geological observations indicate that under compression-shear boundary conditions, heterogeneous blocks of various scales may lead to the development of en echelon faults and basins in the Hexi corridor. And the ectonic deformation of Alax and the North Qilian Mountains are almost simultaneous, which may be earlier than the initiation of en echelon basins in the Hexi Corridor and the faults between the en echelon basins. Calculated horizontal and vertical deformation rate are in agreement with geological data. The calculation of deformation process is helpful for understanding the geological evolution history of the northeastwards growth of the Tibetan Plateau.

  6. Solute Transport Dynamics in a Large Hyporheic Corridor System

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.; Chen, X.; Murray, C. J.; Shuai, P.; Rizzo, C.; Song, X.; Dai, H.

    2016-12-01

    A hyporheic corridor is an extended zone of groundwater surface water-interaction that occurs within permeable aquifer sediments in hydrologic continuity with a river. These systems are dynamic and tightly coupled to river stage variations that may occur over variable time scales. Here we describe the behavior of a persistent uranium (U) contaminant plume that exists within the hyporheic corridor of a large, managed river system - the Columbia River. Temporally dense monitoring data were collected for a two year period from wells located within the plume at varying distances up to 400 m from the river shore. Groundwater U originates from desorption of residual U in the lower vadose zone during periods of high river stage and associated elevated water table. U is weakly adsorbed to aquifer sediments because of coarse texture, and along with specific conductance, serves as a tracer of vadose zone source terms, solute transport pathways, and groundwater-surface water mixing. Complex U concentration and specific conductance trends were observed for all wells that varied with distance from the river shoreline and the river hydrograph, although trends for each well were generally repeatable for each year during the monitoring period. Statistical clustering analysis was used to identify four groups of wells that exhibited common trends in dissolved U and specific conductance. A flow and reactive transport code, PFLOTRAN, was implemented within a hydrogeologic model of the groundwater-surface water interaction zone to provide insights on hydrologic processes controlling monitoring trends and cluster behavior. The hydrogeologic model was informed by extensive subsurface characterization, with the spatially variable topography of a basal aquitard being one of several key parameters. Numerical tracer experiments using PFLOTRAN revealed the presence of temporally complex flow trajectories, spatially variable domains of groundwater - river water mixing, and locations of enhanced groundwater - river exchange that helped to explain monitoring trends. Observations and modeling results are integrated into a conceptual model of this highly complex and dynamic system with applicability to hyporheic corridor systems elsewhere.

  7. Numerical modelling of collapsing volcanic edifices

    NASA Astrophysics Data System (ADS)

    Costa, Ana; Marques, Fernando; Kaus, Boris

    2017-04-01

    The flanks of Oceanic Volcanic Edifice's (OVEs) can occasionally become unstable. If that occurs, they can deform in two different modes: either slowly along localization failure zones (slumps) or catastrophically as debris avalanches. Yet the physics of this process is incompletely understood, and the role of factors such as the OVE's strength (viscosity, cohesion, friction angle), dimensions, geometry, and existence of weak layers remain to be addressed. Here we perform numerical simulations to study the interplay between viscous and plastic deformation on the gravitational collapse of an OVE (diffuse deformation vs. localization of failure along discrete structures). We focus on the contribution of the edifice's strength parameters for the mode of deformation, as well as on the type of basement. Tests were performed for a large OVE (7.5 km high, 200 km long) and either purely viscous (overall volcano edifice viscosities between 1019-1023 Pa.s), or viscoplastic rheology (within a range of cohesion and friction angle values). Results show that (a) for a strong basement (no slip basal boundary condition), the deformation pattern suggests wide/diffuse "listric" deformation within the volcanic edifice, without the development of discrete plastic failure zones; (b) for a weak basement (free slip basal boundary condition), rapid collapse of the edifice through the propagation of plastic failure structures within the edifice occurs. Tests for a smaller OVE (4.5 km by 30 km) show that failure localization along large-scale listric structures occurs more readily for different combinations of cohesion and friction angles. In these tests, high cohesion values combined with small friction angles lead to focusing of deformation along a narrower band. Tests with a weak layer underlying part of the volcanic edifice base show deformation focused along discrete structures mainly dipping towards the distal sector of the volcano. These tests for a small OVE constitute a promising basis for the study of a currently active slump in the SE flank of Pico Island (Azores, Portugal). We will also address the effect of lithospheric flexure, and discuss initial 3D modelling results.

  8. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina peninsular and the South China is occurring. Moreover, a low-velocity layer on the top of the lower-crust was also modeled, and its intersection with the fractured zone formed a weak zone where stresses concentrated, and led to those abovementioned earthquakes along the LFZ.

  9. Generation of plate tectonics with two-phase grain-damage and pinning: Source-sink model and toroidal flow

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2013-03-01

    The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear-localization is employed in two-dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-size dependent diffusion creep rheology; moreover, grain growth and weak-zone healing are greatly impeded by Zener pinning thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology, and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other planets.

  10. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the deformation systems. 2) folded (folded-thrust) deformation systems combine deformation zones with relic lenses of Paleozoid substratum, and predominantly conform systems of the main faults. Despite a high degree of regional deformation the sedimentary-stratified and intrusive-contact relations of geological bodies are stored within the deformation systems, and this differs in the main the collision systems from zones of dynamic metamorphism. 3) regional zones of dynamic metamorphism of Kuznetsk-Altai region are the concentration belts of multiple mechanic deformations and contrast dynamometamorphism of complexes. The formational basis of dynamic metamorphism zones is tectonites of the collision stage. Zones of dynamic metamorphism attract special attention in the structural model of Kuznetsk-Altai region. They not only form the typical tectonic framework of collision sutures, but also contain the main part of ore deposits of this region. Pulse mode of structure formation of Kuznetsk-Altai region is detected. Major collision events in Kuznetsk-Altai region were in the late-Carboniferous-Triassic time (307-310, 295-285, 260-250 and 240-220 Ma). This study was supported by a grant of the Russian Foundation for Basic Research (project nos. 14-05-00117).

  11. Geologic constraints on the setting and dynamics of subduction initiation

    NASA Astrophysics Data System (ADS)

    Encarnacion, John; Keenan, Timothy

    2017-04-01

    Understanding where and how subduction zones have and can initiate is important because, besides being a critical step in the plate tectonic system, it can provide insight into the complex interactions of crust and mantle rheology, forces acting on the plates, strain, metamorphic reactions, and erosional and depositional processes at the surface. Insight into the possibilities of where and how subduction zones start has been provided by numerical and analog modeling. All sites for subduction initiation are potential weak zones in the lithosphere and include the continent-ocean boundary, oceanic arc-oceanic crust boundary, oceanic transform faults and fracture zones, oceanic detachment faults, and active or recently extinct oceanic ridges/spreading centers. Within the constraints of modeling, it has also been shown that the forces involved in the initiation of subduction can be largely horizontal (induced by a collision, say, or through 'ridge push') or vertical (driven by density contrasts). The latter scenario is often referred to as "spontaneous" subduction initiation, whereas the former situation may be called "forced"or "induced" subduction initiation. It is prudent, however, not to assume that "what can happen, did happen." So, the challenge for geologists is to infer from the rock record, through structural mapping, thermochronology, thermobarometry, geochemistry, paleomagnetics, and sedimentological studies, how any given subduction zone began. Even with a complete data set, it is not always possible to fully constrain the specific geologic setting or dynamics involved in the initiation of a given subduction zone. One can, however, often rule out certain scenarios, increasing the probability of others. Part of the geologic record of subduction initiation preserved at some subduction zones are so-called "metamorphic soles," which include high-temperature (T) and high-pressure (P) metamorphosed oceanic crust that was underthrust to asthenospheric mantle depths, metamorphosed, and then preserved in the hanging wall of the eventual subduction zone. These metamorphic soles may preserve important information bearing on the timing of subduction initiation, the evolving P and T conditions during subduction initiation, and, importantly, the protolith age of the initially subducted crust. The latter parameter—the age of the initially subducted oceanic crust at the time of subduction initiation—is an important constraint that has been lacking in many previous geologic studies of subduction initiation. Recent work on metamorphic soles has provided new information on subduction initiation, including the possibility of rapidly converting oceanic divergent boundaries into subduction zones.

  12. The interplay of fold mechanisms and basement weaknesses at the transition between Laramide basement-involved arches, north-central Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Neely, Thomas G.; Erslev, Eric A.

    2009-09-01

    Horizontally-shortened, basement-involved foreland orogens commonly exhibit anastomosing networks of bifurcating basement highs (here called arches) whose structural culminations are linked by complex transition zones of diversely-oriented faults and folds. The 3D geometry and kinematics of the southern Beartooth arch transition zone of north-central Wyoming were studied to understand the fold mechanisms and control on basement-involved arches. Data from 1581 slickensided minor faults are consistent with a single regional shortening direction of 065°. Evidence for oblique-slip, vertical axis rotations and stress refraction at anomalously-oriented folds suggests formation over reactivated pre-existing weaknesses. Restorable cross-sections and 3D surfaces, constrained by surface, well, and seismic data, document blind, ENE-directed basement thrusting and associated thin-skinned backthrusting and folding along the Beartooth and Oregon Basin fault systems. Between these systems, the basement-cored Rattlesnake Mountain backthrust followed basement weaknesses and rotated a basement chip toward the basin before the ENE-directed Line Creek fault system broke through and connected the Beartooth and Oregon Basin fault systems. Slip was transferred at the terminations of the Rattlesnake Mountain fault block by pivoting to the north and tear faulting to the south. In summary, unidirectional Laramide compression and pre-existing basement weaknesses combined with fault-propagation and rotational fault-bend folding to create an irregular yet continuous basement arch transition.

  13. Numerical modeling of continental lithospheric weak zone over plume

    NASA Astrophysics Data System (ADS)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of the weakened area with a small decrease in porosity occurs due to the increase of inelastic stresses. The longitudinal scale of the structure remain unchanged. The evolution of intraplate magmatic systems associated with weakened zones is accompanied by the formation of intermediate intracrustal magma chambers. This work was financially supported by the project #24.1.2, the program of RAS #24.

  14. A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems

    NASA Astrophysics Data System (ADS)

    Ben Dhia, Hachmi; Du, Shuimiao

    2018-05-01

    The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.

  15. Evolution of a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Van Hoolst, Tim; Dehant, Veronique

    2014-05-01

    The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences the subduction of the oceanic crust in terms of subduction velocity and subduction angle over time. We develop scaling laws combining the subduction velocity and angle depending on the mantle environment (and thus time). These laws can then be applied to continental growth simulations with 1D parameterized models (Höning et al., in press) or 2D/3D subduction zone simulations at specific geological times (using the correct subduction zone setting). References: Quinquis, M. et al. (in preparation). A comparison of thermo-mechanical subduction models. In preparation for G3. Noack, L., Van Hoolst, T., Dehant, V., and Breuer, D. (2013). Relevance of continents for habitability and self-consistent formation of continents on early Earth. XIII International Workshop on Modelling of Mantle and Lithosphere Dynamics, Hønefoss, Norway, 31. Aug. - 5. Sept. 2013. Höning, D., Hansen-Goos, H., Airo, A., and Spohn, T. (in press). Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science.

  16. Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

    DOE PAGES

    Krishnan, Kapil; Brown, Andrew; Wayne, Leda; ...

    2014-11-25

    Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumesmore » using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.« less

  17. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    NASA Astrophysics Data System (ADS)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example) probably has small height and relative weak incision over later beginning of uplift.

  18. Strong Matrix & Weak Blocks: Evolutionary Inversion of Mélange Rheological Relationships During Subduction and Its Implications for Seismogenesis

    NASA Astrophysics Data System (ADS)

    Clarke, A. P.; Vannucchi, P.; Ougier-Simonin, A.; Morgan, J. P.

    2017-12-01

    Subduction zone interface layers are often conceived to be heterogeneous, polyrheological zones analogous to exhumed mélanges. Mélanges typically contain mechanically strong blocks within a weaker matrix. However, our geomechanical study of the Osa Mélange, SW Costa Rica shows that this mélange contains blocks of altered basalt which are now weaker in friction than their surrounding indurated volcanoclastic matrix. Triaxial deformation experiments were conducted on samples of both the altered basalt blocks and the indurated volcanoclastic matrix at confining pressures of 60 and 120 MPa. These revealed that the volcanoclastic matrix has a strength 7.5 times that of the altered basalt at 60 MPa and 4 times at 120 MPa, with the altered basalt experiencing multi-stage failure. The inverted strength relationship between weaker blocks and stronger matrix evolved during subduction and diagenesis of the melange unit by dewatering, compaction and diagenesis of the matrix and cataclastic brecciation and hydrothermal alteration of the basalt blocks. During the evolution of this material, the matrix progressively indurated until its plastic yield stress became greater than the brittle yield stress of the blocks. At this point, the typical rheological relationship found within melanges inverts and melange blocks can fail seismically as the weakest links along the subduction plate interface. The Osa Melange is currently in the forearc of the erosive Middle America Trench and is being incorporated into the subduction zone interface at the updip limit of seismogenesis. The presence of altered basalt blocks acting as weak inclusions within this rock unit weakens the mélange as a whole rock mass. Seismic fractures can nucleate at or within these weak inclusions and the size of the block may limit the size of initial microseismic rock failure. However, when fractures are able to bridge across the matrix between blocks, significantly larger rupture areas may be possible. While this mechanism is a promising candidate for the updip limit of the unusually shallow seismogenic zone beneath Osa, it remains to be seen whether analogous evolutionary strength-inversions control the updip limit of other subduction seismogenic zones.

  19. Local yield stress statistics in model amorphous solids

    NASA Astrophysics Data System (ADS)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  20. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway

    NASA Astrophysics Data System (ADS)

    Sandøy, Gro; Oppikofer, Thierry; Nilsen, Bjørn

    2017-07-01

    On 22 February 1756 the largest historically recorded rockslide in Norway took place at Tjelle in the Langfjord (Western Norway). The rockslide created three displacement waves of up to 50 m in height that caused 32 casualties and destroyed most houses and boats along the shores of the Langfjord. The trigger and contributing factors leading to the Tjellefonna rockslide are largely unknown and even seismic triggering has previously been suggested. This study provides a thorough back-analysis of the Tjellefonna rockslide using detailed geomorphological, engineering geological and tectonic field mapping in combination with topographic reconstructions, bathymetry analysis, volume estimations and numerical slope stability analysis. The back-scarp and eastern flank of the Tjellefonna scar form several tens of meter high rock walls, while the basal failure surface and other parts of the scar are covered by rock avalanche debris that extend from the back-scarp down to the bottom of the Langfjord. The rockslide occurred in granodioritic gneisses with variably developed metamorphic foliation that is folded and strike parallel to the fjord. Two prominent fault zones are present in close proximity to the Tjellefonna scar; one is steeply SE-dipping (Tjelle fault), while the other one is sub-horizontal to shallow SE-dipping (Ritlehamran fault). Both fault zones are linked to the Møre-Trøndelag Fault Complex, with one of its branches forming the Langfjord lineament and probably also the faults at Tjellefonna. Additionally, there are four persistent joint sets that together with the metamorphic foliation and the Tjelle fault define the back-scarp of the rockslide and give a fracturing of the rock mass corresponding to a Geological Strength Index (GSI) of 45-55. The GSI decreases significantly to 10-20 in the fault zones, which form distinct weakness zones in the rock slope. Volume estimates based on a reconstruction of the ante-rockslide topography range from 9.3 to 10.4 million m3, which is lower than previous volume estimates (12-15 million m3). Large portions of the failed rock mass remained on land and only approximately 3.9 million m3 entered the fjord. The observed discontinuities in the rock mass at Tjellefonna do not allow for a simple kinematic failure mechanism due to the lack of moderately SE-dipping structures. The basal failure surface was most likely not composed of a single structure, but of a complex interplay of fault zones, metamorphic foliation, joints and broken rock bridges. Numerical slope stability modelling highlights that weak fault zones are essential for the development of the failure surface over a long time. This progressive failure was likely aided by low- to medium-magnitude earthquakes that are frequent in the region. Numerical slope stability modelling and historical accounts suggest, however, that heavy, long-lasting rainfall was the triggering factor for the 1756 Tjellefonna rockslide rather than an earthquake.

  1. Viscoelastic flow in the lower crust after the 1992 landers, california, earthquake

    PubMed

    Deng; Gurnis; Kanamori; Hauksson

    1998-11-27

    Space geodesy showed that broad-scale postseismic deformation occurred after the 1992 Landers earthquake. Three-dimensional modeling shows that afterslip can only explain one horizontal component of the postseismic deformation, whereas viscoelastic flow can explain the horizontal and near-vertical displacements. The viscosity of a weak, about 10-km-thick layer, in the lower crust beneath the rupture zone that controls the rebound is about 10(18) pascal seconds. The viscoelastic behavior of the lower crust may help to explain the extensional structures observed in the Basin and Range province and it may be used for the analysis of earthquake hazard.

  2. Stress Rotation Across the Cascadia Megathrust Requires a Weak Subduction Plate Boundary at Seismogenic Depths

    NASA Astrophysics Data System (ADS)

    Li, D.; McGuire, J. J.; Liu, Y.; Hardebeck, J.

    2017-12-01

    Despite the great effort spent investigating subduction zones, there are very limited constraints on the stress state on the plate boundary fault at the depth of megathrust earthquakes. Here we utilize a focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. We present a high-resolution inversion for the principal stress orientations both above and below the thrust interface in the southern Cascadia Subduction zone. The distinctive stresses above and below the interface require a significant stress rotation within 10 km of the plate boundary. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our approach utilizes the continuous traction boundary conditions between layers as well as the observed principal stress orientations and the relative magnitude ratios in the crust and subducting mantle as constraints. Our results indicate that the shear stress on the plate boundary fault is likely no more than about 50 MPa at 20 km depth. Regardless of the assumed upper mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of 0 to 0.2 at seismogenic depths. The central question for the Cascadia subduction zone is why it remains seismically quiet despite the 300+ years of stress accumulation since the last megathrust earthquake. For example, we also document that no thrust earthquakes were recorded by the 2-year Cascadia Initiative expedition down to magnitude 2.0, despite the stress perturbation generated by a nearby Mw5.7 earthquake on Jan 28th, 2015, on the Mendocino Transform fault. To help answer that question, we provide a new and fundamental constraint on the absolute level of stress accumulation to date in the current seismic cycle. Our technique for evaluating the absolute level of stress in subduction zones can be applied at a number of regions around the globe as datasets improve.

  3. Pulverized granite at the brittle-ductile transition: An example from the Kellyland fault zone, eastern Maine, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sullivan, Walter A.; Peterman, Emily M.

    2017-08-01

    Granite from a 50-200-m-wide damage zone adjacent to the brittle-ductile Kellyland Fault Zone contains healed fracture networks that exhibit almost all of the characteristics of dynamically pulverized rocks. Fracture networks exhibit only weak preferred orientations, are mutually cross-cutting, separate jigsaw-like interlocking fragments, and are associated with recrystallized areas likely derived from pervasively comminuted material. Fracture networks in samples with primary igneous grain shapes further indicate pulverization. Minimum fracture densities in microcline are ∼100 mm/mm2. Larger fractures in microcline and quartz are sometimes marked by neoblasts, but most fractures are optically continuous with host grains and only visible in cathodoluminescence images. Fractures in plagioclase are crystallographically controlled and typically biotite filled. Petrologic observations and cross-cutting relationships between brittle structures and mylonitic rocks show that fracturing occurred at temperatures of 400 °C or more and pressures of 200 MPa. These constraints extend the known range of pulverization to much higher temperature and pressure conditions than previously thought possible. The mutually cross-cutting healed fractures also provide the first record of repeated damage in pulverized rocks. Furthermore, pulverization must have had a significant but transient effect on wall-rock porosity, and biotite-filled fracture networks in plagioclase form weak zones that could accommodate future strain localization.

  4. Molecular data and ecological niche modelling reveal the phylogeographic pattern of Cotinus coggygria (Anacardiaceae) in China's warm-temperate zone.

    PubMed

    Wang, W; Tian, C Y; Li, Y H; Li, Y

    2014-11-01

    The phylogeography of common and widespread species helps to elucidate the history of local flora and vegetation. In this study, we selected Cotinus coggygria, a species widely distributed in China's warm-temperate zone. One chloroplast DNA (cpDNA) region and ecological niche modelling were used to examine the phylogeographic pattern of C. coggygria. The cpDNA data revealed two phylogeographic groups (Southern and Northern) corresponding to the geographic regions. Divergence time analyses revealed that divergence of the two groups occurred at approximately 147,000 years before the present (BP), which coincided with the formation of the downstream area of the Yellow River, indicating that the Yellow River was a weak phylogeographic divide for C. coggygria. The molecular data and ecological niche modelling also indicated that C. coggyria did not experience population expansion after glaciations. This study thus supports the fact that Pleistocene glacial cycles only slightly affected C. coggygria, which survived in situ and occupied multiple localised glacial refugia during glaciations. This finding is contrary to the hypothesis of large-scale range habitat contraction and retreat into a few main refugia. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Effect of cold rolling on microstructure and mechanical property of extruded Mg–4Sm alloy during aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Rongguang, E-mail: lirongguang1980@126.com; Xin, Renlong; Chapuis, Adrien

    Microstructure and mechanical properties of the Mg–4Sm (wt.%) alloy, prepared via combined processes of extrusion, cold rolling and aging, have been investigated. The hot extruded alloy exhibits a weak rare earth magnesium alloy texture with < 11 − 21 >//ED, while the cold-rolled alloy shows a stronger basal texture with < 0001 >//ND. Many tensile twins and double twins are observed in grains after rolling. The cold-rolled alloy shows a weak age-hardening response compared with the extruded alloy, which is the result of more precipitation in the twin boundary during aging. The rolled alloy exhibits almost no precipitate free zonemore » during aging compared with the extruded alloy. The higher proof stress of the rolled alloy in peak-aged condition is attributed to the presence of twin boundaries, stronger basal texture, higher dislocation density, and the suppression of precipitate free zone compared with the extruded alloy. - Highlights: • No precipitate free zone appears in cold-rolled alloy after aging. • Segregation and precipitates are observed in twin boundaries and grain boundaries. • Cold-rolled alloy shows a weak age-hardening response.« less

  6. Seismic and aseismic slip on the ``uncoupled'' Tonga subduction megathrust

    NASA Astrophysics Data System (ADS)

    Beavan, R. J.; Wang, X.; Bevis, M. G.; Kautoke, R'

    2010-12-01

    The Tonga subduction zone has been a type example of a weakly coupled subduction interface since soon after the birth of plate tectonics. Yet in the September 2009 double earthquake, the northern Tonga subduction interface failed in a great Mw 8 earthquake that was probably dynamically triggered by a Mw 8 extensional intraplate earthquake in the outer trench slope region of the incoming Pacific Plate. There are some discrepancies between models of the September 2009 doublet derived from seismic data and those derived from geodetic and DART tsunami data, in particular about which fault plane failed in the intraplate earthquake. In this presentation we explore how well the geodetic and tsunami data can be fit using the alternative fault plane. We also present new GPS data that show the subduction interface is continuing to slip faster than its 1996-2005 “long-term” rate, and we speculate on what this means for the mechanisms by which interplate slip is accommodated at the Tonga subduction zone.

  7. New observations on mid-plate volcanism and the tectonic history of the Pacific plate, Tahiti to Easter microplate

    NASA Astrophysics Data System (ADS)

    Searle, R. C.; Francheteau, J.; Cornaglia, B.

    1995-04-01

    We describe the geology and tectonics of a continuous swathe of seafloor between Tahiti and the western edge of the Easter microplate imaged by GLORIA and Sea Beam on two separate cruise transits in 1987 and 1988. The data reveal that mid-plate volcanism is common in this region, even on deep seafloor hundreds of kilometres from major lines of seamounts and islands. This supports the idea of a thin weak lithosphere over the Pacific Superswell, and the idea that the tops of major mantle plumes may spread out over diameters of the order of 1000 km. The mid-plate volcanism occurs in two distinct forms. Over most of our traverse it appears as fields of relatively young and acoustically strongly backscattering lava flows, often accompanied by groups of numerous small, circular volcanoes. East of 122° W (about chron 5A), however, we observed a distinct form: major, sharp-crested, constructional volcanic ridges, many tens of kilometres long, individually trending ENE, but lying en-echelon along an E-W regional trend. These ridges appear morphologically identical to the 'cross-grain ridges' seen elsewhere in the Pacific. We attribute their formation to magma supplied from the regionally hot mantle leaking along tectonic lines of weakness. However, although these ridges are parallel to fracture zone trends seen farther west, they are morphologically very different from any known fracture zone. Moreover, individual ridges are somewhat oblique to the tectonic spreading fabric around them, and so do not seem to follow actual fracture zone traces. The whole line of en-echelon ridges lies along part of the predicted trace of Fracture Zone 2 of Okal and Cazenave [15], and is probably its morphological expression. However, nowhere did we see a convincing 'conventional' fracture zone trace in or following the predicted position or orientation. We suggest instead that magma from an independent source has used lines of weakness along minor fracture zones to produce these en-echelon features. The Austral Fracture Zone is the only major fracture zone crossed in our transit, and here is characterised by four fossil transform strands. Its marked position on the AAPG and GEBCO maps is found to be in error. Finally, we found that the expected change from NNW- to NNE-trending spreading fabric at chron 6C did not occur in a clear-cut way, as predicted by earlier tectonic histories of the Pacific. Instead, the post-chron 6C fabric oscillates in a confused way between NNE and NNW, suggesting to us that this area has been characterised by an unstable plate boundary, probably associated with a succession of propagating rifts or microplates from chron 6C to the present.

  8. Seismological evidence for an along-axis hydrothermal flow at the Lucky Strike hydrothermal vents site

    NASA Astrophysics Data System (ADS)

    Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2010-12-01

    Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do not observe any seismicity along the main bounding faults. These results suggest that the hydrothermal flow is mainly along the ridge axis in a narrow zone above the AMC, even when the AMC only 7 km long.

  9. Seismic Attenuation Structure and Intraplate Deformation

    NASA Astrophysics Data System (ADS)

    Bezada, M.; Kowalke, S.; Smale, J.

    2017-12-01

    It has been suggested that intraplate deformation and seismicity is localized at weak zones in the lithosphere and at rheological boundaries. Comparisons of intraplate deformation regions with mantle seismic velocity structure suggest a correlation, but are not universally accepted as compelling evidence. We present P-wave attenuation models built from records of teleseismic deep-focus earthquakes in three different regions that show significant correlation between attenuation structure and intraplate seismicity and deformation. In the eastern United States, the New Madrid, Wabash Valley, Eastern Tennessee, Central Virginia, and Carolina seismic zones all occur at or near the edges of high-Q (low attenuation) regions. In Spain, intraplate seismicity is absent from high-Q regions but relatively abundant in surrounding low-Q regions where intraplate orogeny is also observed. In Australia, where our model resolution is relatively poor owing to sparse and uneven station coverage, the Petermann and Alice Springs intraplate orogens occur near the edge of a high-Q feature roughly coinciding with the undeformed Amadeus basin. Our results suggest that lithospheric structure exerts important controls on the localization of intraplate deformation and seismicity and that seismic attenuation is a useful proxy for lithospheric strength.

  10. Deformation and Metasomatic Evolution at the Subduction Plate Interface As Viewed from Study of HP/UHP Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; Penniston-Dorland, S.

    2014-12-01

    We provide a view of lithologic makeup, deformation, and fluid-rock interaction along the deep forearc to subarc plate interface, based on insights gained from study of HP/UHP metamorphic rocks. Exposures of plate-boundary shear zones on which we base our perspective represent 30-80 km depths and are on Catalina Island and at Monviso, Syros, and New Caledonia. Each contains highly deformed zones with schistose matrix, commonly with a large ultramafic component, containing bodies of less deformed mafic, sedimentary, and ultramafic rocks. These "blocks" have varying geometries, are up to km-scale, and can preserve disparate P-T histories reflecting dynamics of incorporation and entrainment. Sheared matrices contain high-variance, hydrous mineral assemblages in some cases resembling metasomatic zones ("rinds") at block-matrix contacts, and rinds and matrices have homogenized isotopic compositions reflecting extensive fluid-rock interaction. Shearing and related physical juxtaposition of disparate metasomatic rocks can result in mixed or 'hybrid' chemical compositions. The chlorite-, talc-, and amphibole-rich schists developed by these processes can stabilize H2O to great depth and influence its cycling. Fluids (hydrous fluids, silicate melts) released within slabs necessarily interact with highly deformed, lithologically hybridized zones at the plate interface as they ascend to potentially enter mantle wedges. Fluids bearing chemical/isotopic signatures of hybrid rocks appear capable of producing arc magma compositions interpreted as reflecting multiple, chemically distinct fluids sources. Geophysical signatures of these rheologically weak zones are equivocal but many recognize the presence of zones of low seismic velocity at/near the top of slabs and attribute them to hydrated rocks. Whether rocks from this interface buoyantly ascend into mantle wedges, indicated in some theoretical models, remains largely untested by field and geophysical observations.

  11. Warm Anomaly Effects on California Current Phytoplankton

    NASA Astrophysics Data System (ADS)

    Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.

    2016-02-01

    Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.

  12. Correlation between deep fluids, tremor and creep along the central San Andreas fault

    USGS Publications Warehouse

    Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U.

    2011-01-01

    The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.

  13. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  14. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  15. Effects of A Weak Crustal Layer in a Transtensional Pull-Apart Basin: Results from a Scaled Physical Modeling Study

    NASA Astrophysics Data System (ADS)

    Dooley, T. P.; Monastero, F. C.; McClay, K. R.

    2007-12-01

    Results of scaled physical models of a releasing bend in the transtensional, dextral strike-slip Coso geothermal system located in the southwest Basin and Range, U.S.A., are instructive for understanding crustal thinning and heat flow in such settings. The basic geometry of the Coso system has been approximated to a 30? dextral releasing stepover. Twenty-four model runs were made representing successive structural iterations that attempted to replicate geologic structures found in the field. The presence of a shallow brittle-ductile transition in the field known from a well-documented seismic-aseismic boundary, was accommodated by inclusion of layers of silicone polymer in the models. A single polymer layer models a conservative brittle-ductile transition in the Coso area at a depth of 6 km. Dual polymer layers impose a local elevation of the brittle-ductile transition to a depth of 4 km. The best match to known geologic structures was achieved with a double layer of silicone polymers with an overlying layer of 100 µm silica sand, a 5° oblique divergent motion across the master strike-slip faults, and a thin-sheet basal rubber décollement. Variation in the relative displacement of the two base plates resulted in some switching in basin symmetry, but the primary structural features remained essentially the same. Although classic, basin-bounding sidewall fault structures found in all pull-apart basin analog models formed in our models, there were also atypical complex intra-basin horst structures that formed where the cross-basin fault zone is situated. These horsts are flanked by deep sedimentary basins that were the locus of maximum crustal thinning accomplished via high-angle extensional and oblique-extensional faults that become progressively more listric with depth as the brittle-ductile transition was approached. Crustal thinning was as much as 50% of the original model depth in dual polymer models. The weak layer at the base of the upper crust appears to focus brittle deformation and facilitate formation of listric normal faults. The implications of these modeling efforts are that: 1) Releasing stepovers that have associated weak upper crust will undergo a more rapid rate of crustal thinning due to the strain focusing effect of this ductile layer; 2) The origin of listric normal faults in these analog models is related to the presence of the weak, ductile layer; and, 3) Due to high dilatency related to major intra-basin extension these stepover structures can be the loci for high heat flow.

  16. Large-Scale Dynamics of the Solar Convection Zone: Puzzles, Challenges, and Insights from a Modeler's Perspective

    NASA Astrophysics Data System (ADS)

    Featherstone, Nicholas A.; Miesch, Mark S.

    2013-03-01

    Meridional circulations and rotational shear serve as a key ingredient in many models of the solar dynamo, likely playing an important role in the maintenance and timing of the solar cycle. These global-scale flows must themselves be driven by the large-scale overturning convection thought to pervade the outer layers of the Sun. As these deep interior motions are inaccessible to local helioseismic analyses in virtually all respects, global-scale numerical models have become a widely-used tool for probing their dynamics. Such models must confront a number of challenges, however, if they are to yield an accurate description of the convection zone. These difficulties stem in part from the Sun's location in parameter space being far removed from anything accessible to modern supercomputers, but also from questions concerning how to best capture the salient, but generally unresolvable, physics of the tachocline and near-photospheric layers. In recent years, global-scale models have made good contact with observations in spite of these challenges, presumably owing to their ability to accurately reflect the large-scale balances established throughout the convection zone. Due to their success in reproducing many aspects of the solar differential rotation and the solar cycle in particular, we might be encouraged to ask what insights numerical models can provide into phenomena that are much more difficult to observe directly. Of particular interest is the possibility that deep modeling efforts might provide some glimpses into the nature of the Sun's deep meridional circulation. I will describe the essential elements common amongst many global-scale models of the solar convection zone, with some discussion of the strengths and weaknesses associated with the assumptions inherent in a typical model setup. I will then present a class of solar convection models that demonstrate the existence of two distinct regimes of meridional circulation. These two regimes depend predominantly on the the vigor of the convective driving and possess, in one instance, a single monolithic cell of circulation in each hemisphere, and in the other instance, a single cell at high latitudes with multiple cells at low latitudes. The transition between these two regimes in the context of solar simulations serves to motivate the need for careful treatment of heat transport in the upper and lower convection zone. After discussing the nature of this transition, I will examine how thermal perturbations associated with the inclusion of a tachocline might alter this phenomenon. Finally, I will compare various strategies employed by different authors to address the nature of heat transport in the upper boundary layer, focusing on the implications of each approach for the resulting velocity amplitudes and the convective heat flux established throughout the bulk of the convection zone. Convective amplitudes associated with those regimes that produce a nearly solar-like differential rotation are in generally good agreement with those based on theoretical predictions, but are somewhat higher than those inferred through helioseismic analysis.

  17. Weakly nonlinear dynamics of near-CJ detonation waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, J.B.; Klein, R.

    1993-01-01

    The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature aremore » running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.« less

  18. Weakly nonlinear dynamics of near-CJ detonation waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, J.B.; Klein, R.

    1993-02-01

    The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature aremore » running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.« less

  19. Atmospheric feedbacks in North Africa from an irrigated, afforested Sahara

    NASA Astrophysics Data System (ADS)

    Kemena, Tronje Peer; Matthes, Katja; Martin, Thomas; Wahl, Sebastian; Oschlies, Andreas

    2017-09-01

    Afforestation of the Sahara has been proposed as a climate engineering method to sequester a substantial amount of carbon dioxide, potentially effective to mitigate climate change. Earlier studies predicted changes in the atmospheric circulation system. These atmospheric feedbacks raise questions about the self-sustainability of such an intervention, but have not been investigated in detail. Here, we investigate changes in precipitation and circulation in response to Saharan large-scale afforestation and irrigation with NCAR's CESM-WACCM Earth system model. Our model results show a Saharan temperature reduction by 6 K and weak precipitation enhancement by 267 mm/year over the Sahara. Only 26% of the evapotranspirated water re-precipitates over the Saharan Desert, considerably large amounts are advected southward to the Sahel zone and enhance the West African monsoon (WAM). Different processes cause circulation and precipitation changes over North Africa. The increase in atmospheric moisture leads to radiative cooling above the Sahara and increased high-level cloud coverage as well as atmospheric warming above the Sahel zone. Both lead to a circulation anomaly with descending air over the Sahara and ascending air over the Sahel zone. Together with changes in the meridional temperature gradient, this results in a southward shift of the inner-tropical front. The strengthening of the Tropical easterly jet and the northward displacement of the African easterly jet is associated with a northward displacement and strengthening of the WAM precipitation. Our results suggest complex atmospheric circulation feedbacks, which reduce the precipitation potential over an afforested Sahara and enhance WAM precipitation.

  20. Analysis of X-Ray Microradiographs of Al-Au Interface Quench Profile using Modeling of Solidification Including Double-Diffusion and Convection in the Melt

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William

    1999-01-01

    Experimental data on Al-0.8Au horizontal solidification of a 1 mm thick specimen in a BN crucible shows the effect of growth rate on the solidification interface shape. For translation rates below 0.5 micron/s the interface maintains a plain and flat shape. When the translation rate is 3 to 5 micron/s or more, the interface appearance changes to two planar zones, with the zone closer to the bottom having higher inclination. The interface shapes were measured by first quenching in place during growth. X-ray microscopy shows the interface shape within the quenched sample by viewing through the side of the specimen. In order to provide theoretical explanation of the phenomena, numerical modeling was undertaken using finite element code FIDAP. Double diffusion convection in Al-0.8Au melt and crystal-melt interface curvature during directional solidification was analyzed numerically. Actual thermophysical properties of Al-0.8Au including the binary Al-Au phase diagram were used. Although convection in the sample is weak, for the slower translation rate convection and diffusion is sufficient for the redistribution of initial compositional stratification caused by gravity. When translation rate is raised, neither convection nor diffusion can provide proper mixing so that solidification temperatures differ significantly near the bottom within the bulk of the sample. As a result, the solid-liquid interface appears to have two planar zones with different inclination.

  1. Atmospheric feedbacks in North Africa from an irrigated, afforested Sahara

    NASA Astrophysics Data System (ADS)

    Kemena, Tronje Peer; Matthes, Katja; Martin, Thomas; Wahl, Sebastian; Oschlies, Andreas

    2018-06-01

    Afforestation of the Sahara has been proposed as a climate engineering method to sequester a substantial amount of carbon dioxide, potentially effective to mitigate climate change. Earlier studies predicted changes in the atmospheric circulation system. These atmospheric feedbacks raise questions about the self-sustainability of such an intervention, but have not been investigated in detail. Here, we investigate changes in precipitation and circulation in response to Saharan large-scale afforestation and irrigation with NCAR's CESM-WACCM Earth system model. Our model results show a Saharan temperature reduction by 6 K and weak precipitation enhancement by 267 mm/year over the Sahara. Only 26% of the evapotranspirated water re-precipitates over the Saharan Desert, considerably large amounts are advected southward to the Sahel zone and enhance the West African monsoon (WAM). Different processes cause circulation and precipitation changes over North Africa. The increase in atmospheric moisture leads to radiative cooling above the Sahara and increased high-level cloud coverage as well as atmospheric warming above the Sahel zone. Both lead to a circulation anomaly with descending air over the Sahara and ascending air over the Sahel zone. Together with changes in the meridional temperature gradient, this results in a southward shift of the inner-tropical front. The strengthening of the Tropical easterly jet and the northward displacement of the African easterly jet is associated with a northward displacement and strengthening of the WAM precipitation. Our results suggest complex atmospheric circulation feedbacks, which reduce the precipitation potential over an afforested Sahara and enhance WAM precipitation.

  2. Oxygen isotopic determinations of sequentially erupted plagioclases in the 1974 magma of Fuego Volcano, Guatemala

    USGS Publications Warehouse

    Rose, W.I.; Friedman, I.; Woodruff, L.G.

    1980-01-01

    Plagioclases in the 1974 high-Al basalt from Fuego Volcano have ??O18 values of +6.0 to +8.5 per mil. Meteoric water cannot have played a significant role in Fuego's magma. Large, weakly zone clear phenocrysts had ??O18 values in the accepted mantle range, while patchyzoned and oscillatory-zoned plagioclases inferred to have formed later and shallower levels have slightly heavier oxygen isotopic ratios. ?? 1980 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  3. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  4. Broadband Seismic Studies at the Mallik Gas Hydrate Research Well

    NASA Astrophysics Data System (ADS)

    Sun, L. F.; Huang, J.; Lyons-Thomas, P.; Qian, W.; Milkereit, B.; Schmitt, D. R.

    2005-12-01

    The JAPEX/JNOC/GSC et al. Mallik 3L-38, 4L-38 and 5L-38 scientific wells were drilled in the MacKenzie Delta, NWT, Canada in early 2002 primarily for carrying out initial tests of the feasibility of producing methane gas from the large gas hydrate deposits there [1]. As part of this study, high resolution seismic profiles, a pseudo-3D single fold seismic volume and broadband (8~180Hz) multi-offset vertical seismic profiles (VSP) were acquired at the Mallik site. Here, we provide details on the acquisition program, present the results of the 2D field profile, and discuss the potential implications of these observations for the structure of the permafrost and gas hydrate zones. These zones have long been problematic in seismic imaging due to the lateral heterogeneities. Conventional seismic data processing usually assume a stratified, weak-contrast elastic earth model. However, in permafrost and gas hydrate zones this approximation often becomes invalid. This leads to seismic wave scattering caused by multi-scale perturbation of elastic properties. A 3D viscoelastic finite difference modeling algorithm was employed to simulate wave propagation in a medium with strong contrast. Parameters in this modeling analysis are based on the borehole geophysical log data. In addition, an uncorrelated Vibroseis VSP data set was studied to investigate frequency-dependent absorption and velocity dispersion. Our results indicate that scattering and velocity dispersion are important for a better understanding of attenuation mechanisms in heterogeneous permafrost and gas hydrate zones. [1] Dallimore, S.R., Collett, T.S., Uchida, T., and Weber, M., 2005, Overview of the science program for the Mallik 2002 Gas Hydrate Production Research Well Program; in Scientific Results from Mallik 2002 Gas Hydrate production Research Well Program, MacKenzie Delta, Northwest Territories, Canada, (ed.) S.R. Dallimore and T.S. Collett; Geological Survey of Canada, Bulletin 585, in press.

  5. Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the "gray zone"

    NASA Astrophysics Data System (ADS)

    Barthlott, C.; Hoose, C.

    2015-11-01

    This paper assesses the resolution dependance of clouds and precipitation over Germany by numerical simulations with the COnsortium for Small-scale MOdeling (COSMO) model. Six intensive observation periods of the HOPE (HD(CP)2 Observational Prototype Experiment) measurement campaign conducted in spring 2013 and 1 summer day of the same year are simulated. By means of a series of grid-refinement resolution tests (horizontal grid spacing 2.8, 1 km, 500, and 250 m), the applicability of the COSMO model to represent real weather events in the gray zone, i.e., the scale ranging between the mesoscale limit (no turbulence resolved) and the large-eddy simulation limit (energy-containing turbulence resolved), is tested. To the authors' knowledge, this paper presents the first non-idealized COSMO simulations in the peer-reviewed literature at the 250-500 m scale. It is found that the kinetic energy spectra derived from model output show the expected -5/3 slope, as well as a dependency on model resolution, and that the effective resolution lies between 6 and 7 times the nominal resolution. Although the representation of a number of processes is enhanced with resolution (e.g., boundary-layer thermals, low-level convergence zones, gravity waves), their influence on the temporal evolution of precipitation is rather weak. However, rain intensities vary with resolution, leading to differences in the total rain amount of up to +48 %. Furthermore, the location of rain is similar for the springtime cases with moderate and strong synoptic forcing, whereas significant differences are obtained for the summertime case with air mass convection. Domain-averaged liquid water paths and cloud condensate profiles are used to analyze the temporal and spatial variability of the simulated clouds. Finally, probability density functions of convection-related parameters are analyzed to investigate their dependance on model resolution and their impact on cloud formation and subsequent precipitation.

  6. Explaining landholders' decisions about riparian zone management: the role of behavioural, normative, and control beliefs.

    PubMed

    Fielding, Kelly S; Terry, Deborah J; Masser, Barbara M; Bordia, Prashant; Hogg, Michael A

    2005-10-01

    Water quality is a key concern in the current global environment, with the need to promote practices that help to protect water quality, such as riparian zone management, being paramount. The present study used the theory of planned behaviour as a framework for understanding how beliefs influence decisions about riparian zone management. Respondents completed a survey that assessed their behavioural, normative, and control beliefs in relation to intentions to manage riparian zones on their property. The results of the study showed that, overall, landholders with strong intentions to manage their riparian zones differed significantly in terms of their beliefs compared to landholders who had weak intentions to manage their riparian zones. Strong intentions to manage riparian zones were associated with a favourable cost-benefit analysis, greater perceptions of normative support for the practice and lower perceptions of the extent to which barriers would impede management of riparian zones. It was also evident that willingness to comply with the recommendations of salient referents, beliefs about the benefits of riparian zone management and perceptions of the extent to which barriers would impede riparian zone management were most important for determining intentions to manage riparian zones. Implications for policy and extension practice are discussed.

  7. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.

    PubMed

    Diffo Kaze, Arnaud; Maas, Stefan; Arnoux, Pierre-Jean; Wolf, Claude; Pape, Dietrich

    2017-12-07

    Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.

  8. Optimization of pick-up coils for weakly damped SQUID gradiometers

    NASA Astrophysics Data System (ADS)

    Yang, Kang; Wang, Jialei; Kong, Xiangyan; Yang, Ruihu; Chen, Hua

    2018-05-01

    Not Available Project supported by the Key Project of Shanghai Zhangjiang National Innovation Demonstration Zone of the Special Development Fund, China (Grant No. 2015-JD-C104-060) and the National Natural Science Foundation of China (Grant No. 61741122).

  9. Optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d < 1 nm) tubes. The energy of optical transitions between van Hove singularities in the electronic density of states computed from the "zone-folding" model (with gamma0 = 2.9 eV) agree well with the resonant conditions for Raman scattering. Small diameter tubes were found to exhibit additional sharp Raman bands in the frequency range 500-1200 cm-1 with an, as yet, undetermined origin. The Raman spectrum of a DWNT was found to be well described by a superposition of the Raman spectra expected for inner and outer tubes, i.e., no charge transfer occurs and the weak van der Waals (vdW) interaction between tubes does not have significant impact on the phonons. A ˜7 cm-1 downshift of the small diameter, inner-tube tangential mode frequency was observed, however, but attributed to a tube wall curvature effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  10. Seismic structure of the European crust and upper mantle based on adjoint tomography

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Bozdag, E.; Peter, D.; Tromp, J.

    2013-12-01

    We present a new crustal and upper mantle model for the European continent and the North Atlantic Ocean, named EU60. It is constructed based on adjoint tomography and involves 3D variations in elastic wavespeeds, anelastic attenuation, and radial/azimuthal anisotropy. Long-wavelength elastic wavespeed structure of EU60 agree with previous body- and surface-wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from smoothed starting model. Subducting slabs, slab detachment, ancient suture zones, continental rifts and back-arc basins are well resolved in EU60. For anelastic structure, we find an anti-correlation between shear wavespeeds and anelastic attenuation at shallow depths. At greater depths, this anti-correlation becomes relatively weak, in agreement with previous attenuation studies at global scales. Consistent with radial anisotropy in 1D reference models, the European continent is dominated by features with radially anisotropic parameter xi>1, indicating the presence of horizontal flow within the upper mantle. In addition, subduction zones, such as the Apennines and Hellenic arcs, are characterized as vertical flow with xi<1 at depths greater than 150~km. For azimuthal anisotropy, we find that the direction of fast anisotropic axis is well correlated with complicated tectonic evolution in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean and counter-clockwise rotation of the Anatolian Plate. The ``point spread function'' is used to assess image quality and analyze tradeoff between different model parameters.

  11. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    NASA Astrophysics Data System (ADS)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  12. Evaluation of “Autotune” calibration against manual calibration of building energy models

    DOE PAGES

    Chaudhary, Gaurav; New, Joshua; Sanyal, Jibonananda; ...

    2016-08-26

    Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts’ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less

  13. Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model

    NASA Astrophysics Data System (ADS)

    Min, Ge; Hou, Guiting

    2018-06-01

    The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.

  14. A hybrid Lagrangian Voronoi-SPH scheme

    NASA Astrophysics Data System (ADS)

    Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.

    2018-07-01

    A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

  15. A hybrid Lagrangian Voronoi-SPH scheme

    NASA Astrophysics Data System (ADS)

    Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.

    2017-11-01

    A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

  16. How geometrical constraints contribute to the weakness of mature faults

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1993-01-01

    Increasing evidence that the San Andreas fault has low shear strength1 has fuelled considerable discussion regarding the role of fluid pressure in controlling fault strength. Byerlee2,3 and Rice4 have shown how fluid pressure gradients within a fault zone can produce a fault with low strength while avoiding hydraulic fracture of the surrounding rock due to excessive fluid pressure. It may not be widely realised, however, that the same analysis2-4 shows that even in the absence of fluids, the presence of a relatively soft 'gouge' layer surrounded by harder country rock can also reduce the effective shear strength of the fault. As shown most recently by Byerlee and Savage5, as the shear stress across a fault increases, the stress state within the fault zone evolves to a limiting condition in which the maximum shear stress within the fault zone is parallel to the fault, which then slips with a lower apparent coefficient of friction than the same material unconstrained by the fault. Here we confirm the importance of fault geometry in determining the apparent weakness of fault zones, by showing that the apparent friction on a sawcut granite surface can be predicted from the friction measured in intact rock, given only the geometrical constraints introduced by the fault surfaces. This link between the sliding friction of faults and the internal friction of intact rock suggests a new approach to understanding the microphysical processes that underlie friction in brittle materials.

  17. Trace Element Composition of Phytoplankton Along the US GEOTRACES Pacific Zonal Transect: Comparing Single-Cell SXRF Quotas, Chemical Leaching, and Bulk Particle Digestion

    NASA Astrophysics Data System (ADS)

    Ohnemus, D.; Rauschenberg, S.; Twining, B. S.

    2014-12-01

    The elemental stoichiometries of phytoplankton are critical ecological and chemical parameters due to biological participation in, if not control over, the marine cycles of many GEOTRACES trace elements and isotopes (TEI). Elemental stoichiometries in euphotic zone protists can be used as end-members in biogeochemical models for bioactive elements (e.g. Fe, Si) and can provide insight into relationships found in the deep ocean and sediments (e.g. Cd:P, Zn:Si) due to broad and organism-specific geochemical links. Though sub-euphotic zone (e.g. hydrothermal, margin-sourced lateral) inputs and processes are also interesting aspects of these cycles, biological incorporation of TEIs in the euphotic zone is, fundamentally, where "the rubber meets the road." Using the 2013 Pacific GEOTRACES super stations and Peruvian coastal transect as ecological waypoints, we present and compare results from three methods for studying trace elemental composition of phytoplankton: single-cell synchrotron x-ray fluorescence (SXRF); weak chemical leaching (acetic acid/hydroxylamine); and total chemical digestion (HNO3/HCl/HF). This combination of techniques allows examination of taxon-specific trends in biotic stoichiometry across the Eastern Pacific and also provides traditional bulk chemical metrics for both biotic and bulk shallow particulate composition.

  18. Seismic constraints on the nature of lower crustal reflectors beneath the extending Southern Transition Zone of the Colorado Plateau, Arizona

    USGS Publications Warehouse

    Parsons, Thomas E.; Howie, John M.; Thompson, George A.

    1992-01-01

    We determine the reflection polarity and exploit variations in P and S wave reflectivity and P wave amplitude versus offset (AVO) to constrain the origin of lower crustal reflectivity observed on new three-component seismic data recorded across the structural transition of the Colorado Plateau. The near vertical incidence reflection data were collected by Stanford University in 1989 as part of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that traversed the Arizona Transition Zone of the Colorado Plateau. The results of independent waveform modeling methods are consistent with much of the lower crustal reflectivity resulting from thin, high-impedance layers. The reflection polarity of the cleanest lower crustal events is positive, which implies that these reflections result from high-velocity contrasts, and the waveform character indicates that the reflectors are probably layers less than or approximately equal to 200 m thick. The lower crustal events are generally less reflective to incident S waves than to P waves, which agrees with the predicted behavior of high-velocity mafic layering. Analysis of the P wave AVO character of lower crustal reflections demonstrates that the events maintain a constant amplitude with offset, which is most consistent with a mafic-layering model. One exception is a high-amplitude (10 dB above background) event near the base of lower crustal reflectivity which abruptly decreases in amplitude at increasing offsets. The event has a pronounced S wave response, which along with its negative AVO trend is a possible indication of the presence of fluids in the lower crust. The Arizona Transition Zone is an active but weakly extended province, which causes us to discard models of lower crustal layering resulting from shearing because of the high degree of strain required to create such layers. Instead, we favor horizontal basaltic intrusions as the primary origin of high-impedance reflectors based on (1) The fact that most xenoliths in eruptive basalts of the Transition Zone are of mafic igneous composition, (2) indications that a pulse of magmatic activity crossed the Transition Zone in the late Tertiary period, and (3) the high regional heat flow observed in the Transition Zone. The apparent presence of fluids near the base of the reflective zone may indicate a partially molten intrusion. We present a mechanism by which magma can be trapped and be induced to intrude horizontally at rheologic contrasts in extending crust.

  19. Influence of pre-existing basement faults on the structural evolution of the Zagros Simply Folded belt: 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Gerya, Taras

    2015-04-01

    The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.

  20. Modeling the Evolution of Localized Strain in Orogenic Wedges: From Short-term Deformation to Long-term Tectonic States

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Ito, G.; Brooks, B. A.; Olive, J. A. L.; Foster, J. H.; Howell, S. M.

    2015-12-01

    Some of the most destructive earthquakes on Earth are associated with active orogenic wedges. Despite a sound understanding of the basic mechanics that govern whole wedge structure over geologic time scales and a growing body of studies that have characterized the deformation associated with historic to recent earthquakes, first order questions remain about the linkage of the two sets of processes at the intermediate seismotectonic timescales. Numerical models have the power to test the effects of specific mechanical conditions on the evolution of observables at active orogenic wedges. Here we use a two-dimensional, continuum mechanics-based, finite difference method with a visco-elasto-plastic rheology coupled with surface processes to investigate the spatiotemporal distribution of deformation during wedge growth. The model simulates the contraction of a crustal layer overlying a weak base (décollement) against a rigid backstop and the spontaneous nucleation and evolution of fault zones due to cohesive, Mohr-Coulomb failure with strain weakening. Consistent with critical wedge theory, the average slope across the wedge is controlled by the relative frictional strengths of the wedge and décollement. Initial calculations predict changes in wedge deformation on short geologic timescales (103-105yrs) that involve episodes of widening as new, foreland-verging thrusts nucleate near the surface beyond the wedge toe and propagate down-dip to intersect the décollement. All the while, the wedge thickens via slip on older, internal fault zones. The aim of this study is to identify the parameters controlling the timescales of 1) episodic widening versus thickening and 2) nucleation and life-span of individual fault zones. These are initial steps needed to link earthquake observations to the long-term tectonic states inferred at various orogenic belts around the world.

  1. Crustal P-Wave Speed Structure Under Mount St. Helens From Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Moran, S. C.

    2006-12-01

    We used local earthquake data to model the P-wave speed structure of Mount St. Helens with the aim of improving our understanding of the active magmatic system. Our study used new data recorded by a dense array of 19 broadband seismographs that were deployed during the current eruption together with permanent network data recorded since the May 18, 1980 eruption. Most earthquakes around Mount St. Helens during the last 25 years were clustered in a narrow vertical column beneath the volcano from the surface to a depth of about 10 km. Earthquakes also occurred in a well-defined zone extending to the NNW from the volcano known as the St. Helens Seismic Zone (SHZ). During the current eruption, earthquakes have been confined to within 3 km of the surface beneath the crater floor. These earthquakes apparently radiate little shear-wave energy and the shear arrivals are usually contaminated by surface waves. Thus, we focused on developing an improved P- wave speed model. We used two data sources: (1) the short-period, vertical-component Pacific Northwest Seismograph Network and (2) new data recorded on a temporary array between June 2005 and February 2006. We first solved for a minimum one-dimensional model, incorporating the Moho depth found during an earlier wide-aperture refraction study. The three-dimensional model was solved simultaneously with hypocenter locations using the computer code SIMULPS14, extended for full three-dimensional ray shooting. We modified the code to force raypaths to remain below the ground surface. We began with large grid spacing and progressed to smaller grid spacing where the earthquakes and stations were denser. In this way we achieve a 40 km by 40 km regional model as well as a 10 km by 10 km fine-scale model directly beneath Mount St. Helens. The large-scale model is consistent with mapped geology and other geophysical data in the vicinity of Mount St. Helens. For example, there is a zone of relatively low velocities (-2% to -5% lower than background model) from 3 to at least 10 km depth extending NNW from the volcano parallel to the SHZ. The low-wave- speed zone coincides with a linear magnetic low, the western edge of a magnetotelluric conductive anomaly, and a localized gravity low. The coincidence of the volcano and these anomalies indicates this preexisting zone of weakness may control the location of Mount St. Helens, as has been suggested by previous investigators. Prominent high-wave-speed anomalies (+3% to +6% relative to background) on either side of this zone are due to plutons, which are also imaged with other geophysical data. Fine-scale modeling of the upper crust directly beneath Mount St. Helens reveals subtle structures not seen in the larger-scale model. The key structure is a cylindrical volume with speeds almost 10% slower than the background model extending from 6 to at least 10 km depth. The vertical, cylindrical volume of earthquakes, which reaches from the surface to more than 10 km depth, splits around this low-wave-speed volume creating an aseismic zone coincident with the low P-wave speeds. We interpret this volume as a melt-rich reservoir surrounded by hot rock.

  2. Flow field and oscillatory shear stress in a tuning-fork-shaped model of the average human carotid bifurcation.

    PubMed

    Ding, Z; Wang, K; Li, J; Cong, X

    2001-12-01

    The oscillatory shear index (OSI) was developed based on the hypothesis that intimal hyperplasia was correlated with oscillatory shear stresses. However, the validity of the OSI was in question since the correlation between intimal thickness and the OSI at the side walls of the sinus in the Y-shaped model of the average human carotid bifurcation (Y-AHCB) was weak. The objectives of this paper are to examine whether the reason for the weak correlation lies in the deviation in geometry of Y-AHCB from real human carotid bifurcation, and whether this correlation is clearly improved in the tuning-fork-shaped model of the average human carotid bifurcation (TF-AHCB). The geometry of the TF-AHCB model was based on observation and statistical analysis of specimens from 74 cadavers. The flow fields in both models were studied and compared by using flow visualization methods under steady flow conditions and by using laser Doppler anemometer (LDA) under pulsatile flow conditions. The TF-shaped geometry leads to a more complex flow field than the Y-shaped geometry. This added complexity includes strengthened helical movements in the sinus, new flow separation zone, and directional changes in the secondary flow patterns. The results show that the OSI-values at the side walls of the sinus in the TF-shaped model were more than two times as large as those in the Y-shaped model. This study confirmed the stronger correlation between the OSI and intimal thickness in the tuning-fork geometry of human carotid bifurcation, and the TF-AHCB model is a significant improvement over the traditional Y-shaped model.

  3. Deep resistivity sounding studies in detecting shear zones: A case study from the southern granulite terrain of India

    NASA Astrophysics Data System (ADS)

    Singh, S. B.; Stephen, Jimmy

    2006-10-01

    The resistivity signatures of the major crustal scale shear zones that dissect the southern granulite terrain (SGT) of South India into discrete geological fragments have been investigated. Resistivity structures deduced from deep resistivity sounding measurements acquired with a 10 km long Schlumberger spreads yield significant insights into the resistivity distribution within the E-W trending shear system comprising the Moyar-Bhavani-Salem-Attur shear zone (MBSASZ) and Palghat-Cauvery shear zone (PCSZ). Vertical and lateral extensions of low resistivity features indicate the possible existence of weak zones at different depths throughout the shear zones. The MBSASZ characterized by very low resistivity in its deeper parts (>2500 m), extends towards the south with slightly higher resistivities to encompass the PCSZ. A major resistivity transition between the northern and southern parts is evident in the two-dimensional resistivity images. The northern Archaean granulite terrain exhibits a higher resistivity than the southern Neoproterozoic granulite terrain. Though this resistivity transition is not clear at greater depths, the extension of low resistivity zones has been well manifested. It is speculated here that a network of crustal scale shear zones in the SGT may have influenced the strength of the lithosphere.

  4. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Fisk, William J.

    2009-07-08

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) ofmore » $$0.52/ft{sup 2} in climate zone 14, followed by $$0.32/ft{sup 2} in climate zone 16 and $$0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $$0.93/ft{sup 2} in climate zone 14, followed by $$0.55/ft{sup 2} in climate zone 16, $$0.46/ft{sup 2} in climate zone 12, $$0.30/ft{sup 2} in climate zone 3, $$0.16/ft{sup 2} in climate zone 3. At the high design occupancy of 20 people per 1000 ft{sup 2}, the DCV savings are even higher with a NPV $$1.37/ft{sup 2} in climate zone 14, followed by $$0.86/ft{sup 2} in climate zone 16, $$0.84/ft{sup 2} in climate zone 3, $$0.82/ft{sup 2} in climate zone 12, and $0.65/ft{sup 2} in climate zone 6. DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 28 cfm per occupant, except at high design occupancy of 20 people per 1000 ft{sup 2} in climate zones 14 and 16. Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case.« less

  5. Statistical mechanics of light elements at high pressure. V Three-dimensional Thomas-Fermi-Dirac theory. [relevant to Jovian planetary interiors

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.; Hubbard, W. B.

    1983-01-01

    A numerical technique for solving the Thomas-Fermi-Dirac (TED) equation in three dimensions, for an array of ions obeying periodic boundary conditions, is presented. The technique is then used to calculate deviations from ideal mixing for an alloy of hydrogen and helium at zero temperature and high presures. Results are compared with alternative models which apply perturbation theory to calculation of the electron distribution, based upon the assumption of weak response of the electron gas to the ions. The TFD theory, which permits strong electron response, always predicts smaller deviations from ideal mixing than would be predicted by perturbation theory. The results indicate that predicted phase separation curves for hydrogen-helium alloys under conditions prevailing in the metallic zones of Jupiter and Saturn are very model dependent.

  6. Inverse methods-based estimation of plate coupling in a plate motion model governed by mantle flow

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, V.; Stadler, G.; Gurnis, M.

    2013-12-01

    Plate motion is primarily controlled by buoyancy (slab pull) which occurs at convergent plate margins where oceanic plates undergo deformation near the seismogenic zone. Yielding within subducting plates, lateral variations in viscosity, and the strength of seismic coupling between plate margins likely have an important control on plate motion. Here, we wish to infer the inter-plate coupling for different subduction zones, and develop a method for inferring it as a PDE-constrained optimization problem, where the cost functional is the misfit in plate velocities and is constrained by the nonlinear Stokes equation. The inverse models have well resolved slabs, plates, and plate margins in addition to a power law rheology with yielding in the upper mantle. Additionally, a Newton method is used to solve the nonlinear Stokes equation with viscosity bounds. We infer plate boundary strength using an inexact Gauss-Newton method with line search for backtracking. Each inverse model is applied to two simple 2-D scenarios (each with three subduction zones), one with back-arc spreading and one without. For each case we examine the sensitivity of the inversion to the amount of surface velocity used: 1) full surface velocity data and 2) surface velocity data simplified using a single scalar average (2-D equivalent to an Euler pole) for each plate. We can recover plate boundary strength in each case, even in the presence of highly nonlinear flow with extreme variations in viscosity. Additionally, we ascribe an uncertainty in each plate's velocity and perform an uncertainty quantification (UQ) through the Hessian of the misfit in plate velocities. We find that as plate boundaries become strongly coupled, the uncertainty in the inferred plate boundary strength decreases. For very weak, uncoupled subduction zones, the uncertainty of inferred plate margin strength increases since there is little sensitivity between plate margin strength and plate velocity. This result is significant because it implies we can infer which plate boundaries are more coupled (seismically) for a realistic dynamic model of plates and mantle flow.

  7. Confinement of the solar tachocline by a cyclic dynamo magnetic field

    NASA Astrophysics Data System (ADS)

    Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul

    2017-05-01

    Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.

  8. Religiousness as a Predictor of Suicide: An Analysis of 162 European Regions.

    PubMed

    Stack, Steven; Laubepin, Frederique

    2018-01-25

    Research on religion as a protective factor has been marked by four recurrent limitations: (1) an overemphasis on the United States, a nation where religiosity is relatively high; (2) a neglect of highly secularized zones of the world, where religiousness may be too weak to affect suicide; (3) restriction of religiousness to religious affiliation, a construct which may miss capturing other dimensions of religiousness such as the importance of religion in one's life; and (4) an overwhelming use of the nation as a unit of analysis, which masks variation in religiousness within nations. The present article addresses these limitations by performing a cross-national test of the following hypothesis: The greater the strength of subjective religiousness, the lower the suicide rate, using small units of analysis for a secularized area of the world. All data refer to 162 regions within 22 European nations. Data were extracted from two large databases, EUROSTAT and the European Social Surveys (ESS Round 4), and merged using NUTS-2 (Nomenclature of Statistical Territorial Units) regions as the unit of analysis. Controls are incorporated for level of economic development, education, and measures of economic strain. The results of a multiple regression analysis demonstrated that controlling for the other constructs in the model, religiousness is associated with lower suicide rates, confirming the hypothesis. Even in secularized European nations, where there is a relatively weak moral community to reinforce religion, religiousness acts as a protective factor against suicide. Future work is needed to explore the relationship in other culture zones of the world. © 2018 The American Association of Suicidology.

  9. Weak Compliance Undermines the Success of No-Take Zones in a Large Government-Controlled Marine Protected Area

    PubMed Central

    Campbell, Stuart J.; Hoey, Andrew S.; Maynard, Jeffrey; Kartawijaya, Tasrif; Cinner, Joshua; Graham, Nicholas A. J.; Baird, Andrew H.

    2012-01-01

    The effectiveness of marine protected areas depends largely on whether people comply with the rules. We quantified temporal changes in benthic composition, reef fish biomass, and fishing effort among marine park zones (including no-take areas) to assess levels of compliance following the 2005 rezoning of the government-controlled Karimunjawa National Park (KNP), Indonesia. Four years after the rezoning awareness of fishing regulations was high amongst local fishers, ranging from 79.5±7.9 (SE) % for spatial restrictions to 97.7±1.2% for bans on the use of poisons. Despite this high awareness and strong compliance with gear restrictions, compliance with spatial restrictions was weak. In the four years following the rezoning reef fish biomass declined across all zones within KNP, with >50% reduction within the no-take Core and Protection Zones. These declines were primarily driven by decreases in the biomass of groups targeted by local fishers; planktivores, herbivores, piscivores, and invertivores. These declines in fish biomass were not driven by changes in habitat quality; coral cover increased in all zones, possibly as a result of a shift in fishing gears from those which can damage reefs (i.e., nets) to those which cause little direct damage (i.e., handlines and spears). Direct observations of fishing activities in 2009 revealed there was limited variation in fishing effort between zones in which fishing was allowed or prohibited. The apparent willingness of the KNP communities to comply with gear restrictions, but not spatial restrictions is difficult to explain and highlights the complexities of the social and economic dynamics that influence the ecological success of marine protected areas. Clearly the increased and high awareness of fishery restrictions following the rezoning is a positive step. The challenge now is to understand and foster the conditions that may facilitate compliance with spatial restrictions within KNP and marine parks worldwide. PMID:23226237

  10. Functioning of the Ocean Biological Pump in the Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Moore, J. K.

    2015-12-01

    Oxygen minimum zones occur at mid-depths in the water column in regions with weak ventilation and relatively high export of organic matter from surface waters. They are important ocean for ocean biogeochemistry, and potentially for climate, as sites of water column denitrification and nitrous oxide production. Denitrification is the dominant loss process for fixed nitrogen in the oceans, and can thus affect the ocean inventory of this key nutrient. Denitrification is less energetically efficient than oxic remineralization. Larger zooplankton, which feed on sinking particles, are not present in the lowest oxygen waters. Both of these factors suggest that the remineralization of sinking particles may be slower within the OMZs than in more oxygenated waters. There is limited field evidence and from some modeling studies that remineralization is slower (remineralization length scales are longer) within OMZ waters. In this talk, I will present results from the Community Earth System Model (CESM) ocean component attempting to test this hypothesis. Comparing model results with observed ocean biogeochemical tracer distributions (i.e., phosphate, oxygen), I will examine whether slower remineralization within low oxygen waters provides a better match between simulated and observed tracer distributions. Longer remineralization length scales under low oxygen conditions would provide a negative feedback under global warming scenarios. The biological pump would transfer organic materials to depth more efficiently as ocean oxygen concentrations decline and the OMZs expand.

  11. Closing of the Midcontinent-Rift - a far-field effect on Grenvillian compression

    USGS Publications Warehouse

    Cannon, W.F.

    1994-01-01

    The Midcontinent rift formed in the Laurentian supercontinent between 1109 and 1094 Ma. Soon after rifting, stresses changed from extensional to compressional, and the central graben of the rift was partly inverted by thrusting on original extensional faults. Thrusting culminated at about 1060 Ma but may have begun as early as 1080 Ma. On the southwest-trending arm of the rift, the crust was shortened about 30km; on the southeast-trending arm, strike-slip motion was dominant. The rift developed adjacent to the tectonically active Grenville province, and its rapid evolution from an extensional to a compressional feature at c1080 Ma was coincident with renewal of northwest-directed thrusting in the Grenville, probably caused by continent-continent collision. A zone of weak lithosphere created by rifting became the locus for deformation within the otherwise strong continental lithosphere. Stresses transmitted from the Grenville province utilized this weak zone to close and invert the rift. -Author

  12. The role of discrete intrabasement shear zones during multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-04-01

    Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with overlying rift-related faults: (i) Faults exploit planes of weakness internally within the shear zones; (ii) faults initiate within the hangingwall and subsequently merge along the intrabasement structure at depth; and (iii) faults initiate independently from and cross-cut intrabasement structure. We find that reactivation preferentially occurs along the thicker, steeper intrabasement structures, the Devonian Shear Zones, with individual faults exploiting internal mylonite layers. Using a detailed 3D interpretation of intrabasement structures, correlated with the onshore geology, we show that large-scale Devonian shear zones act as a long-lived structural template for fault initiation throughout multiple rift phases. Rift-related faults inherit the orientation and location of underlying intrabasement structures.

  13. Exploring the Carbon Simmering Phase: Reaction Rates, Mixing, and the Convective Urca Process

    NASA Astrophysics Data System (ADS)

    Schwab, Josiah; Martínez-Rodríguez, Héctor; Piro, Anthony L.; Badenes, Carles

    2017-12-01

    The neutron excess at the time of explosion provides a powerful discriminant among models of Type Ia supernovae. Recent calculations of the carbon simmering phase in single degenerate progenitors have disagreed about the final neutron excess. We find that the treatment of mixing in convection zones likely contributes to the difference. We demonstrate that in Modules for Experiments in Stellar Astrophysics models, heating from exothermic weak reactions plays a significant role in raising the temperature of the white dwarf. This emphasizes the important role that the convective Urca process plays during simmering. We briefly summarize the shortcomings of current models during this phase. Ultimately, we do not pinpoint the difference between the results reported in the literature, but show that the results are consistent with different net energetics of the convective Urca process. This problem serves as an important motivation for the development of models of the convective Urca process suitable for incorporation into stellar evolution codes.

  14. A model of convergent plate margins based on the recent tectonics of Shikoku, Japan

    NASA Technical Reports Server (NTRS)

    Bischke, R. E.

    1974-01-01

    A viscoelastic finite element plate tectonic model is applied to displacement data for the island of Shikoku, Japan. The flow properties and geometry of the upper portions of the earth are assumed known from geophysical evidence, and the loading characteristics are determined from the model. The nature of the forces acting on the Philippine Sea plate, particularly in the vicinity of the Nankai trough, is determined. Seismic displacement data related to the 1946 Nankaido earthquake are modeled in terms of a thick elastic plate overlying a fluidlike substratum. The sequence of preseismic and seismic displacements can be explained in terms of two independent processes operating on elastic lithospheric plates: a strain accumulation process caused by vertical downward forces acting on or within the lithosphere in the vicinity of the trench, and a strain release process caused by plate failure along a preexisting zone on weakness. This is a restatement of Reid's elastic rebound theory in terms of elastic lithospheric plates.

  15. Blast dynamics at Mount St Helens on 18 May 1980

    USGS Publications Warehouse

    Kieffer, S.W.

    1981-01-01

    At 8.32 a.m. on 18 May 1980, failure of the upper part of the north slope of Mount St Helens triggered a lateral eruption ('the blast') that devastated the conifer forests in a sector covering ???500 km2 north of the volcano. I present here a steady flow model for the blast dynamics and propose that through much of the devastated area the blast was a supersonic flow of a complex multiphase (solid, liquid, vapour) mixture. The shape of the blast zone; pressure, temperature, velocity (Mach number) and density distributions within the flow; positions of weak and strong internal shocks; and mass flux, energy flux, and total energy are calculated. The shape of blast zone was determined by the initial areal expansion from the reservoir, by internal expansion and compression waves (including shocks), and by the density of the expanding mixture. The pressure within the flow dropped rapidly away from the source of the blast until, at a distance of ???11 km, the flow became underpressured relative to the surrounding atmosphere. Weak shocks within the flow subparallel to the east and west margins coalesced at about this distance into a strong Mach disk shock, across which the flow velocities would have dropped from supersonic to subsonic as the pressure rose back towards ambient. The positions of the shocks may be reflected in differences in the patterns of felled trees. At the limits of the devastated area, the temperature had dropped only 20% from the reservoir temperature because the entrained solids thermally buffered the flow (the dynamic and thermodynamic effects of the admixture of the surrounding atmosphere and the uprooted forest and soils into the flow are not considered). The density of the flow decreased with distance until, at the limits of the blast zone, 20-25 km from the volcano, the density became comparable with that of the surrounding (dirty) atmosphere and the flow became buoyant and ramped up into the atmosphere. According to the model, the mass flux per unit area at the source was 0.6 ?? 104 g s-1 cm-2 and the energy flux per unit area was 2.5 MW cm-2. From the measured total ejected mass, 0.25 ?? 1015 g, the total energy released during the eruption was 1024 erg or 24 megatons. The model, triggering of the eruption and the transition from unsteady to steady flow, and applications to eyewitness observations and atmospheric effects are discussed in ref. 1. ?? 1981 Nature Publishing Group.

  16. Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.

    2010-12-01

    The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating M<3 earthquakes. Seismic inversion studies indicate that the ruptures occur on clusters of stationary patches making up 1% or less of the total fault surface area. The existence of these so-called asperity patches, although not critical in determining the fault strength, suggests interaction of different deformation mechanisms. What are the deformation mechanisms, and how do the mechanisms couple and factor into the current strength models for the SAF? The SAFOD provides core samples and geophysical data including cores from two shear zones where the main borehole casing is deforming. The studies so far show a weak fault zone with about 200m of low-permeability damage zone without anomalous temperature or high fluid pressure (Zoback et al. EOS 2010). To answer the above questions, we studied core samples and thin sections ranging in measured depths (MD) from 3059m to 3991m including gouge from borehole casing deformation zones. The methods of study included high resolution scanning and transmission electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill cuttings tested by others. We also considered weakening by diffusion-accommodated grain boundary sliding. There are two main trends in the microstructural data that provide a basis for explaining the creep rate and seismic activity: 1. Clay content of the gouge including serpentinite and talc increases toward the 1-3m wide borehole casing deformation zones, which are expected to be deforming at above the average creep rate 2. Evidence of pressure solution creep and fracture sealing is more abundant in the siltstone cataclasites than in the shale. Such rocks could act as rigid inclusions that are repeatedly loaded to seismic failure by creep of the surrounding clay gouge. Regular cycles of fracture and restrengthening by fracture sealing in and around the inclusions are thus expected. The inclusions may be viewed as asperity patches (or cluster of patches) that predominantly deform by pressure solution at below the average creep rate.

  17. Radar-derived asteroid shapes point to a 'zone of stability' for topography slopes and surface erosion rates

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Graves, K.; Bowling, T.

    2014-07-01

    Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates (left plot) and will tend to move down and to the left in shape/spin space as the body evolves (right plot), barring other influences such as YORP spin-up [6]. Moderate rotators (Group B: green points) have slopes that are influenced equally by gravity and spin, lie in or near the self-correcting MSS zone (right plot), and will generally experience the lowest erosion rates (left plot). These objects comprise 12 (43%) of the 28 bodies studied, perhaps indicating some prevalence for the MSS zone. On the other hand, a sample of 1300 asteroid shape and spin parameters (small grey points), derived from asteroid lightcurve data [7], do not show this same degree of correlation, perhaps indicating the relative weakness of erosion-driven shape modification as compared to other influences. We will continue to investigate this phenomenon as the number of detailed shape models from ground-based radar and other observations continues to increase.

  18. Internal fabrics in magmatic plutons emplaced in extended brittle crust - insight from analogue models with AMS (Anisotropy of Magnetic Susceptibility)

    NASA Astrophysics Data System (ADS)

    Mirzaei, Masoud; Zavada, Prokop; Machek, Matej; Roxerova, Zuzana

    2016-04-01

    Magma emplacement in extended brittle crust was simulated by injecting plaster of Paris (magma) into a large sandbox with central deformable rubber sheet. Analog magma is during the experiments injected through small circular inlet cut in the center of the elastic sheet. Injection force oscillation during the steadily evacuating analog magma was recorded during the experiments and regularly showed 3-4 increases followed by a quick drop. The recorded oscillation amplitude is largest for static injection without extension of the sandbox, which formed a columnar body with concentric and zonal internal fabric. Experiments including normal or oblique 20% extension resulted in along rift axis elongated oblate ellipsoidal pluton with rift parallel ridges in the top part of the pluton. Inspection of horizontal profiles show bone-shaped internal zoning patterns limited by conjugate sets of shear zones. Orientation of these internal shear zones is correlated with the sand-clock fault pattern developed in the overburden sand pack. Another set of shear zones parallel with the long axes of the plutons (rift axis) are associated with successive emplacement of distinct plaster pulses during the buildup of the entire body. The innermost lastly emplaced pulses of plaster display weak vertical magnetic fabrics with vertical lineations, while the outer shells of already emplaced plaster reveal stronger and margin parallel oblate magnetic fabrics with subhorizontal lineations. We interpret the vertical innermost fabrics as a result of active ascent of plaster from the injection inlet, while the fabrics in the outer zones likely reflect push due to inflation of the inner domain reflected in the reworking of the magnetic fabric.

  19. Seismic Measurement of the Locations of the Base of Convection Zone and Helium Ionization Zone for Stars in the Kepler Seismic LEGACY Sample

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep; Raodeo, Keyuri; Antia, H. M.; Mazumdar, Anwesh; Basu, Sarbani; Lund, Mikkel N.; Silva Aguirre, Víctor

    2017-03-01

    Acoustic glitches are regions inside a star where the sound speed or its derivatives change abruptly. These leave a small characteristic oscillatory signature in the stellar oscillation frequencies. With the precision achieved by Kepler seismic data, it is now possible to extract these small amplitude oscillatory signatures, and infer the locations of the glitches. We perform glitch analysis for all the 66 stars in the Kepler seismic LEGACY sample to derive the locations of the base of the envelope convection zone (CZ) and the helium ionization zone. The signature from helium ionization zone is found to be robust for all stars in the sample, whereas the CZ signature is found to be weak and problematic, particularly for relatively massive stars with large errorbars on the oscillation frequencies. We demonstrate that the helium glitch signature can be used to constrain the properties of the helium ionization layers and the helium abundance.

  20. Venus - Limited extension and volcanism along zones of lithospheric weakness

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1982-01-01

    Three global-scale zones of possible tectonic origin are described as occurring along broad, low rises within the Equatorial Highlands on Venus (lat 50 deg N to 50 deg S, long 60 deg to 310 deg). The two longest of these tectonic zones, the Aphrodite-Beta and Themis-Atla zones, extend for 21,000 and 14,000 km, respectively. Several lines of evidence indicate that Beta and Atla Regiones, located at the only two intersections of the three major tectonic zones, are dynamically supported volcanic terranes associated with currently active volcanism. Rift valleys south of Aphrodite Terra and between Beta and Phoebe Regiones are characterized by 75- to 100-km widths, raised rims, and extensions of only a few tens of kilometers, about the same magnitudes as in continental rifts on the earth. Horizontal extension on Venus was probably restricted by an early choking-off of plate motion by high crustal and upper-mantle temperatures, and the subsequent loss of water and an asthenosphere.

  1. A comparison of the South China Sea and Canada Basin: two small marginal ocean basins with hyper-extended margins and central zones of sea-floor spreading.

    NASA Astrophysics Data System (ADS)

    Li, L.

    2015-12-01

    Both the South China Sea and Canada Basin preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated the nature of strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the South China Sea but our results for the Beaufort Sea are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow is suggested for both basins. Extension in the COT may continue even after sea-floor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  2. Electrical conductivity of the crust in central Baja California, México, based on magnetotelluric observations

    NASA Astrophysics Data System (ADS)

    Romo, J. M.; Gómez-Treviño, E.; Flores-Luna, C.; García-Abdeslem, J.

    2017-12-01

    Crustal and sub-crustal structure of northwestern Mexico (peninsular California) resulted from major accretion episodes occurred during the long-lived subduction of the Farallon plate beneath the North American plate, since late Jurassic time. A magnetotelluric profile across central Baja California reveals several electrical conductivity anomalies probably associated to the crustal boundaries of distinct Mezosoic terranes juxtaposed in the current peninsular crust. It is known that electrical conductivity is significantly increased by the pervasive presence of conductive minerals generated during metamorphic processes in highly sheared zones. We interpret a striking sub-horizontal conductivity anomaly reveled in the model as explained by the presence of high-salinity fluids released after dehydration of the subducted Magdalena microplate (Farallon plate?). The presence of fluids at the base of the peninsular crust may produce a zone of weakness, which supports the idea that Baja California lithosphere has not been entirely coupled to the Pacific plate. In addition, crustal thickness is estimated in our model in about 35 km beneath the western Peninsular Ranges batholith (PRB) and 20 km beneath the eastern PRB. This crustal thickness is in good agreement with independent estimations of a thinner crust in the Gulf of California margin and a thicker crust along the axial PRB.

  3. Nonlinear anelastic modal theory for solar convection

    NASA Technical Reports Server (NTRS)

    Latour, J.; Toomre, J.; Zahn, J.-P.

    1983-01-01

    Solar envelope models are developed using single-mode anelastic equations as a description of turbulent convection which provide estimates for the variation with depth of the largest convective cellular flows, with horizontal sizes comparable to the total depth of the convection zone. These models can be used to describe compressible motions occurring over many density scale heights. Single-mode anelastic solutions are obtained for a solar envelope whose mean stratification is nearly adiabatic over most of its vertical extent because of the enthalpy flux explicitly carried by the big cell, while a subgrid scale representation of turbulent heat transport is incorporated into the treatment near the surface. It is shown that the single-mode equations allow two solutions for the same horizontal wavelength which are distinguished by the sense of the vertical velocity at the center of the three-dimensional cell. It is found that the upward directed flow experiences large pressure effects which can modify the density fluctuations so that the sense of the buoyancy force is changed, with buoyancy braking actually achieved near the top of the convection zone. It is suggested that such dynamical processes may explain why the amplitudes of flows related to the largest scales of convection are so weak in the solar atmosphere.

  4. Chemical and mineralogical heterogeneities of weathered igneous profiles: implications for landslide investigations

    NASA Astrophysics Data System (ADS)

    Duzgoren-Aydin, N. S.; Aydin, A.

    2006-05-01

    Landslides in tropical and sub-tropical regions are generally associated with weathered rock profiles which often possess chemical and mineralogical heterogeneities at material- and mineral-scales. Such heterogeneities reach a climax by the occurrences of oxyhydroxide- and clay-rich zones. Weakness and low permeability of these zones makes them ideal for the development of slip zones along which landslides take place. This paper describes the nature and distribution of chemical and mineralogical heterogeneities within weathered profiles developed from felsic igneous rocks in Hong Kong. It sets out the use of integrated geochemical and mineralogical studies to improve understanding of the development of critical heterogeneities and hence to predict their types and presence in a given weathered profile.

  5. Plate-rate laboratory friction experiments reveal potential slip instability on weak faults

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.

    2016-12-01

    In earthquake science, it is commonly assumed that earthquakes nucleate on strong patches or "asperities", and data from laboratory friction experiments indicate a tendency for unstable slip (exhibited as velocity-weakening frictional behavior) in strong geologic materials. However, an overwhelming amount of these experiments were conducted at driving velocities ranging from 0.1 µm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities on the order of cm/yr (nm/s), approximating plate tectonic rates which represent the natural driving condition on plate boundary faults. Recent laboratory work using samples recovered from the Tohoku region at the Japan Trench, within the high coseismic slip region of the 2011 M9 Tohoku earthquake, showed that the fault is extremely weak with a friction coefficient < 0.2. At sliding velocities of at least 0.1 µm/s mostly velocity-strengthening friction is observed, which is favorable for stable creep, consistent with earlier work. However, shearing at an imposed rate of 8.5 cm/yr produced both velocity-weakening friction and discrete slow slip events, which are likely instances of frictional instabilities or quasi-instabilities. Here, we expand on the Tohoku experiment by conducting cm/yr friction experiments on natural gouges obtained from a variety of other major fault zones obtained by scientific drilling; these include the San Andreas Fault, Costa Rica subduction zone, Nankai Trough (Japan), Barbados subduction zone, Alpine Fault (New Zealand), southern Cascadia, and Woodlark Basin (Papua New Guinea). We focus here on weak fault materials having a friction coefficient of < 0.5. At conventional laboratory driving rates of 0.1-30 µm/s, velocity strengthening is common. However, at cm/yr driving rates we commonly observe velocity-weakening friction and slow slip events, with most samples exhibit both behaviors. These results demonstrate when fault samples are sheared at plate tectonic rates in the laboratory, which best replicates natural forcing conditions, a tendency for unstable slip is revealed. Thus, weak faults should not be considered frictionally stable, but have the ability to participate in earthquake rupture or generate events themselves.

  6. Relating rheology to geometry in large-scale natural shear zones

    NASA Astrophysics Data System (ADS)

    Platt, John

    2016-04-01

    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and diffusion, or metamorphic reactions? (3) In two-phase / polyphase mixtures, does the strong phase generally form a load-bearing framework, favoring constant strain-rate (Voigt) bound behavior, or does the weak phase form through-going strain pathways, favoring constant stress (Reuss) bound behavior, or do the phases remain well mixed, favoring an intermediate behavior (e.g., Tullis et al model)? (4) How do we deal with the rheological effect of water? Is it simply an unconstrained variable in nature? Is the water fugacity model in flow laws adequate? (5) How can we better relate experimental results (often carried out at constant strain-rate, and not reaching microstructural steady state) to deformation in natural shear zones? Rheological observations on well-constrained natural shear zones are helping us answer some of these questions.

  7. Long-term climate patterns in Alaskan surface temperature and precipitation and their biological consequences

    USGS Publications Warehouse

    Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.

    2002-01-01

    Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nino Southern Oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2/spl deg/C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures).

  8. Dead Zone Accretion Flows in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  9. Geophysical models of Western Aphrodite-Niobe region: Venus

    NASA Technical Reports Server (NTRS)

    Marchenkov, K. I.; Saunders, R. S.; Banerdt, W. B.

    1993-01-01

    The new topography and gravitational field data for Venus expressed in spherical harmonics of degree and order up to 50 allow us to analyze the crust-mantle boundary relief and stress state of the Venusian lithosphere. In these models, we consider models in which convection is confined beneath a thick, buoyant lithosphere. We divide the convection regime into an upper mantle and lower mantle component. The lateral scales are smaller than on Earth. In these models, relative to Earth, convection is reflected in higher order terms of the gravitational field. On Venus geoid height and topography are highly correlated, although the topography appears to be largely compensated. We hypothesize that Venus topography for those wavelengths that correlate well with the geoid is partly compensated at the crust-mantle boundary, while for the others compensation may be distributed over the whole mantle. In turn the strong sensitivity of the stresses to parameters of the models of the external layers of Venus together with geological mapping allows us to begin investigations of the tectonics and geodynamics of the planet. For stress calculations we use a new technique of space- and time-dependent Green's response functions using Venus models with rheologically stratified lithosphere and mantle and a ductile lower crust. In the basic model of Venus the mean crust is 50-70 km thick, the density contrast across the crust-mantle boundary is in the range from 0.3 to 0.4 g/cm(exp -3). The thickness of a weak mantle zone may be from 350 to 1000 km. Strong sensitivity of calculated stress to various parameters of the layered model of Venus together with geological mapping and analysis of surface tectonic patterns allow us to investigate the tectonics and geodynamics of the planet. The results are presented in the form of maps of compression-extension and maximum shear stresses in the lithosphere and maps of crust-mantle boundary relief, which can be presented as a function of time. We have modeled the region of Western Aphrodite and the Niobe plains to get reasonable depths of compensation. Crust mantle boundary relief is calculated for Western Aphrodite-Niobe relative to a mean crustal thickness of 50 km. The calculations include the consequences of simple crust models and more complicated models with a weak, ductile lower crust, a strong upper mantle and a weak lower mantle layer.

  10. Transition from Subduction to Strike-Slip in the Southeast Caribbean: Effects on Lithospheric Structures and Overlying Basin Evolution

    NASA Astrophysics Data System (ADS)

    Alvarez, T.; Mann, P.; Wood, L. J.; Vargas, C. A.; Latchman, J. L.

    2013-12-01

    Topography, basin structures and geomorphology of the southeast Caribbean-northeast South American margin are controlled by a 200-km-long transition from westward-directed subduction of South American lithosphere beneath the Caribbean plate, to east-west strike-slip motion of the Caribbean and South American plates. Our study of structures and basins present in the transitional area integrates a tomographic study of the lithospheric structures associated with lateral variations in the subduction of the South American lithosphere and orientation of the slab beneath the Caribbean plate as well as the evolution of overlying sedimentary basins imaged with deep-penetration seismic data kindly provided by the oil industry and Trinidad & Tobago government agencies. We use an earthquake dataset containing more than 700 events recorded by the eastern Caribbean regional seismograph network to build travel-time and attenuation tomography models used to image the mantle to depths of 100 km beneath transition zone. Approximately 10,000 km of 2D seismic reflection lines which are recorded to depths > 12 seconds TWT are used to interpret basin scale structures including tectono-stratigraphic sequences and structures which deform and displace sedimentary sequences. We use the observed satellite gravity to generate a gravity model for key sections traversing the tectonic transitional zone and to determine depth to basement in basins with sedimentary fill > 12 km. Within the study area, the dip of subducted South American oceanic lithosphere imaged on tomographic images is variable from ~44 to ~24 degrees. There is a distinct low gravity, low velocity, high attenuation, northwest - southeast trending lineation located east of Trinidad which defines the location of a Mesozoic oceanic fracture zone which accommodated the opening of the Central Atlantic during the Jurassic to Middle Cretaceous. This feature is also coincident with the present-day continent-ocean boundary and acts as a lithospheric weakness during subduction. We propose that this fracture zone is a key transition point between the subduction of South American/Atlantic oceanic lithosphere; which descends into the mantle, to the northeast, and the under-thrusting of transitional to continental South American lithosphere which resists subduction to the southwest. Maps of South American basement and its overlying Cretaceous passive margin illustrates a northwesterly basement dip with a distinct change in angle of the northwest dip across the paleo-fracture zone consistent with our tomographic model. We propose that flexure of the subducting South American plate at this location exerts a critical control on the formation and evolution of the basins and the lateral distribution of Cretaceous through Pleistocene stratigraphic fill. East of the fracture zone, the overlying strata is deformed by active subduction and accretionary prism processes with a wider zone of shortening with lower overall topography, while to the west of the fracture zone there is active oblique collision with a narrower zone of shortening and greater uplift.

  11. The relationship between Anopheles gambiae density and rice cultivation in the savannah zone and forest zone of Côte d'Ivoire.

    PubMed

    Briët, Olivier J T; Dossou-Yovo, Joel; Akodo, Elena; van de Giesen, Nick; Teuscher, Thomas M

    2003-05-01

    In 13 villages in the savannah zone and 21 villages in the forest zone of Côte d'Ivoire, the biting density of the principal malaria vector, Anopheles gambiae, was studied as a function of rice cultivation in the inland valleys in a 2-km radius around each village. In the savannah villages, during the main season cropping period, surface water on rice-cultivated and to a lesser extent on uncultivated inland valleys seems to contribute strongly to the A. gambiae population density. For the off-season cropping period (which starts after the first light rains in the savannah zone), correlations were weaker. Breeding sites other than in inland valleys may play an important role in the savannah zone. In the forest zone, however, the A. gambiae population density was strongly correlated with the surface water availability (SWA) in the rice-cultivated inland valleys, whereas the correlation with the SWA in other (uncultivated) inland valleys was weak. The requirement of sunlit breeding sites for A. gambiae might explain this difference between zones. In the forest zone, only inland valleys cleared for rice cultivation meet this requirement, whereas all other inland valleys are covered with dense vegetation. In the savannah zone, however, most undergrowth is burnt during the dry season, which permits sunlight to reach puddles resulting from the first rains.

  12. Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2018-04-01

    A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.

  13. Effect of different filler wires on weld formation for fiber laser welding 6A02 Aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xu, F.; Chen, L.; Lu, W.; He, E. G.

    2017-12-01

    6A02 aluminum alloy was welded by fibre laser welding with two different filler wires (ER4043 and ER5356). The weld apperance, microstructure and mechanical properties were analysed. The results show the welding course with ER4043 is more stable than that with ER5356, and the welding spatters of the former are smaller than that of the latter. The microsturtrue of the weld zone, including columnar-grains near the fusion zone and mixed microstructures (columnar grains and equiaxed grains) in the weld center zone, is finer with ER5356 than that with ER4043. So the average microhardness value of the former is higher than the latter. A great number of low melting point eutectic phases disperse in grains boundary. Due to the eutectic phases distributing more in two zones (overheat zone near the fusion zone and the weld center zone) than other zones, the welded joints have these two low hardness and weak strength zones. The ultimate strength and the elongations after fracture of the welded joints with ER4043 are lower than that with ER5356 slihgtly. However, the former are improved obviously and higher than the latter after heat treatment. The tensile properties of all joints can reach to the base material level. And the tensile fractures always occur near the fusion zone.

  14. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.

    PubMed

    Adamson, David T; de Blanc, Phillip C; Farhat, Shahla K; Newell, Charles J

    2016-08-15

    Management of groundwater sites impacted by 1,4-dioxane can be challenging due to its migration potential and perceived recalcitrance. This study examined the extent to which 1,4-dioxane's persistence was subject to diffusion of mass into and out of lower-permeability zones relative to co-released chlorinated solvents. Two different release scenarios were evaluated within a two-layer aquifer system using an analytical modeling approach. The first scenario simulated a 1,4-dioxane and 1,1,1-TCA source zone where spent solvent was released. The period when 1,4-dioxane was actively loading the low-permeability layer within the source zone was estimated to be <3years due to its high effective solubility. While this was approximately an order-of-magnitude shorter than the loading period for 1,1,1-TCA, the mass of 1,4-dioxane stored within the low-permeability zone at the end of the simulation period (26kg) was larger than that predicted for 1,1,1-TCA (17kg). Even 80years after release, the aqueous 1,4-dioxane concentration was still several orders-of-magnitude higher than potentially-applicable criteria. Within the downgradient plume, diffusion contributed to higher concentrations and enhanced penetration of 1,4-dioxane into the low-permeability zones relative to 1,1,1-TCA. In the second scenario, elevated 1,4-dioxane concentrations were predicted at a site impacted by migration of a weak source from an upgradient site. Plume cutoff was beneficial because it could be implemented in time to prevent further loading of the low-permeability zone at the downgradient site. Overall, this study documented that 1,4-dioxane within transmissive portions of the source zone is quickly depleted due to characteristics that favor both diffusion-based storage and groundwater transport, leaving little mass to treat using conventional means. Furthermore, the results highlight the differences between 1,4-dioxane and chlorinated solvent source zones, suggesting that back diffusion of 1,4-dioxane mass may be serving as the dominant long-term "secondary source" at many contaminated sites that must be managed using alternative approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    NASA Astrophysics Data System (ADS)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or arc magmatism. During the Jurassic to Eocene rifting, this belt acted as the southern boundary of the Amu Darya Basin with normal faulting, which is also widespread in the South Caspian Sea and the Black Sea. Moreover, such an extended area became a relatively weak zone within the Eurasian Plate, and could be easily reworked. Because of the collision in the Zagros Belt, the intracontinental compression commenced as early as Late Eocene to Early Oligocene, which is interpreted as tectonic inversion along this weak zone. The western zone of the Kopeh Dagh Belt was also affected by southerly indentation/extrusion of the South Caspian block since middle Miocene, possibly resulting in the different deformation patterns between the western and eastern zones.

  16. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  17. Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps

    NASA Astrophysics Data System (ADS)

    Frost, Erik; Dolan, James; Ratschbacher, Lothar; Hacker, Bradley; Seward, Gareth

    2011-02-01

    Structural analysis of two key exposures reveals the architecture of the brittle-ductile transition (BDT) of the subvertical, strike-slip Salzachtal fault. At Lichtensteinklamm, the fault zone is dominantly brittle, with a ˜70 m wide, high-strain fault core highlighted by a 50 m thick, highly foliated gouge zone. In contrast, at Kitzlochklamm, deformation is dominantly ductile, albeit with relatively low strain indicated by weak lattice-preferred orientations (LPOs). The marked contrast in structural style indicates that these sites span the BDT. The close proximity of the outcrops, coupled with Raman spectroscopy indicating similar maximum temperatures of ˜400°C, suggests that the difference in exhumation depth is small, with a commensurately small difference in total downdip width of the BDT. The small strains indicated by weak LPOs at Kitzlochklamm, coupled with evidence for brittle slip at the main fault contact and along the sides of a 5 m wide fault-bounded sliver of Klammkalk exposed 30 m into the Grauwacken zone rocks, suggest the possibility that this exposure may record hybrid behavior at different times during the earthquake cycle, with ductile deformation occurring during slow interseismic slip and brittle deformation occurring during earthquakes, as dynamic coseismic stresses induced a strain rate-dependent shift to brittle fault behavior within the nominally ductile regime in the lower part of the BDT. A key aspect of both outcrops is evidence of a high degree of strain localization through the BDT, with high-strain fault cores no wider than a few tens of meters.

  18. Kinematic segmentation of accretive wedges based on scaled sandbox experiments and their application to nature

    NASA Astrophysics Data System (ADS)

    Lohrmann, J.; Kukowski, N.; Oncken, O.

    2003-04-01

    Recording the incremental displacement field of scaled analogue simulations provides detailed data on wedge kinematics and timing of internal deformation. This is a very efficient tool to develop kinematic concepts and test mechanical theories, e.g. the critical-taper theory. Such models could not be validated until now by the available geological and geophysical data, since there was no information about the incremental displacement field. Recent GPS measurements and seismological investigations at convergent margins provide well-constrained strain-rates and kinematics of short-termed processes. These data allow the kinematic models that are based on analogue simulations to be tested against field observations. We investigate convergent accretive sand wedges in scaled analogue simulations. We define three kinematic segments based on distinctive wedge taper, displacement field and timing of deformation (recorded at a slow sampling rate, which represents the geological scale). Only one of these segments is in a critical state of stress, whereas the other segments are either in a sub-critical or stable state of stress. Such a kinematic segmentation is not predicted for ideally homogeneous wedge-shaped bodies by the critical-taper theory, but can be explained by the formation of localised weak shear zones, which preferentially accommodate deformation. These weak zones are formed in granular analogue materials, and also in natural rocks, since these materials show a strain-softening phase prior to the achievement of stable mechanical conditions. Therefore we suggest that the kinematic segmentation of convergent sand wedges should also be observed in natural settings, such as accretionary wedges, foreland fold-and-thrust belts and even entire orogens. To validate this hypothesis we compare strain rates from GPS measurements and kinematics deduced from focal mechanisms with the respective data from sandbox experiments. We present a strategy to compare strain rates and kinematics recorded in nature with kinematic models based on sandbox experiments. In the sandbox experiments we use a fast sampling rate in accordance with GPS measurements. We investigate whether strain rates obtained from the GPS measurements can test mechanical concepts of long-termed geodynamic processes.

  19. Grain-damage hysteresis and plate tectonic states

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2016-04-01

    Shear localization in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. The theoretical model for grain-damage and pinning in two-phase polycrystalline rocks provides a frame-work for understanding lithospheric shear weakening and plate-generation, and is consistent with laboratory and field observations of mylonites. Grain size evolves through the competition between coarsening, which drives grain-growth, and damage, which drives grain reduction. The interface between crystalline phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary positive self-weakening feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. However, the suppression of interface damage at low interface curvature (wherein inter-grain mixing is inefficient and other energy sinks of deformational work are potentially more facile) causes a hysteresis effect, in which three possible equilibrium grain-sizes for a given stress coexist: (1) a stable, large-grain, weakly-deforming state, (2) a stable, small-grain, rapidly-deforming state analogous to ultramylonites, and (3) an unstable, intermediate grain-size state perhaps comparable to protomylonites. A comparison of the model to field data suggests that shear-localized zones of small-grain mylonites and ultra-mylonites exist at a lower stress than the co-existing large-grain porphyroclasts, rather than, as predicted by paleopiezometers or paleowattmeters, at a much higher stress; this interpretation of field data thus allows localization to relieve instead of accumulate stress. The model also predicts that a lithosphere that deforms at a given stress can acquire two stable deformation regimes indicative of plate-like flows, i.e., it permits the coexistence of both slowly deforming plate interiors, and rapidly deforming plate boundaries. Earth seems to exist squarely inside the hysteresis loop and thus can have coexisting deformation states, while Venus appears to straddle the end of the loop where only the weakly deforming branch exists.

  20. A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan Plateau revealed by regional tomography

    NASA Astrophysics Data System (ADS)

    Hua, Yujin; Zhang, Shuangxi; Li, Mengkui; Wu, Tengfei; Qin, Weibing; Wang, Fang; Zhang, Bo

    2018-05-01

    The southeastern margin of the Tibetan Plateau (SETP) presents the highest level of seismicity in mainland China. To understand the seismicity in this region, a new seismic experiment is carried out based on the tomographic inversion of P- and S-wave arrival times from the regional earthquakes recorded by 49 seismic stations in Yunnan Province of Southwest China. In this study, we reduce the extreme disproportionality of the data distribution using an events-combination method, and we use arrival times to construct the reference velocity model. Checkerboard tests and odd/even data tests are carried out to assess the reliability of the inversion results. The reliable P-wave velocity model reveals two low-velocity anomaly zones (LVAZs) bounded by major strike-slip faults. Almost all the large earthquakes in this region occurred in the two LVAZs and the trend of the two LVAZs is consistent with a GPS velocity field based on the Eurasia-fixed reference frame. We propose that the two LVAZs are material migration passageways in the SETP. In the vertical direction, the mechanically weak crustal materials are sliding southward with the rigid block, while the underlying mantle materials continue to be compressed by the collision. This vertical model is broadly consistent with the seismic anisotropy in the crust and lithospheric mantle from shear-wave splitting. The new regional geodynamic model gives a reasonable interpretation of the seismicity of the SETP, and we suggest that the material migration in the passageway zones plays an important role in the tectonic evolution of the SETP.

  1. The Geodetic Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep Processes

    NASA Astrophysics Data System (ADS)

    Govers, R.; Furlong, K. P.; van de Wiel, L.; Herman, M. W.; Broerse, T.

    2018-03-01

    Recent megathrust events in Tohoku (Japan), Maule (Chile), and Sumatra (Indonesia) were well recorded. Much has been learned about the dominant physical processes in megathrust zones: (partial) locking of the plate interface, detailed coseismic slip, relocking, afterslip, viscoelastic mantle relaxation, and interseismic loading. These and older observations show complex spatial and temporal patterns in crustal deformation and displacement, and significant differences among different margins. A key question is whether these differences reflect variations in the underlying processes, like differences in locking, or the margin geometry, or whether they are a consequence of the stage in the earthquake cycle of the margin. Quantitative models can connect these plate boundary processes to surficial and far-field observations. We use relatively simple, cyclic geodynamic models to isolate the first-order geodetic signature of the megathrust cycle. Coseismic and subsequent slip on the subduction interface is dynamically (and consistently) driven. A review of global preseismic, coseismic, and postseismic geodetic observations, and of their fit to the model predictions, indicates that similar physical processes are active at different margins. Most of the observed variability between the individual margins appears to be controlled by their different stages in the earthquake cycle. The modeling results also provide a possible explanation for observations of tensile faulting aftershocks and tensile cracking of the overriding plate, which are puzzling in the context of convergence/compression. From the inversion of our synthetic GNSS velocities we find that geodetic observations may incorrectly suggest weak locking of some margins, for example, the west Aleutian margin.

  2. Vertical deformation associated with normal fault systems evolved over coseismic, postseismic, and multiseismic periods

    USGS Publications Warehouse

    Thompson, George A.; Parsons, Thomas E.

    2016-01-01

    Vertical deformation of extensional provinces varies significantly and in seemingly contradictory ways. Sparse but robust geodetic, seismic, and geologic observations in the Basin and Range province of the western United States indicate that immediately after an earthquake, vertical change primarily occurs as subsidence of the normal fault hanging wall. A few decades later, a ±100 km wide zone is symmetrically uplifted. The preserved topography of long-term rifting shows bent and tilted footwall flanks rising high above deep basins. We develop finite element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. We replicate observations with a model that has a weak upper mantle overlain by a stronger lower crust and a breakable elastic upper crust. A 60° dipping normal fault cuts through the upper crust and extends through the lower crust to simulate an underlying shear zone. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift under the footwall; the breakable upper crust is a necessary model feature to replicate footwall bending over the observed width ( < 10 km), which is predicted to take place within 1-2 decades after each large earthquake. Thus the best-preserved topographic signature of rifting is expected to occur early in the postseismic period. The relatively stronger lower crust in our models is necessary to replicate broader postseismic uplift that is observed geodetically in subsequent decades.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garifullin, R. N., E-mail: rustem@matem.anrb.ru; Suleimanov, B. I., E-mail: bisul@mail.r

    An analysis is presented of the effect of weak dispersion on transitions from weak to strong discontinuities in inviscid fluid dynamics. In the neighborhoods of transition points, this effect is described by simultaneous solutions to the Korteweg-de Vries equation u{sub t}'+ uu{sub x}' + u{sub xxx}' = 0 and fifth-order nonautonomous ordinary differential equations. As x{sup 2} + t{sup 2} {yields}{infinity}, the asymptotic behavior of these simultaneous solutions in the zone of undamped oscillations is given by quasi-simple wave solutions to Whitham equations of the form r{sub i}(t, x) = tl{sub i} x/t{sup 2}.

  4. The P wavespeed structure below and around the Kaapvaal craton to depths of 800 km, from traveltimes and waveforms of local and regional earthquakes and mining-induced tremors

    NASA Astrophysics Data System (ADS)

    Simon, R. E.; Wright, C.; Kgaswane, E. M.; Kwadiba, M. T. O.

    2002-10-01

    An average P-wavespeed model from the surface to depths of 800 km was derived for southern Africa using traveltimes and waveforms from earthquakes recorded at stations of the Kaapvaal and South African National networks. In this first study of the transition zone for the central part of the African superswell, a damped least-squares inversion was used to minimize effects of origin time errors. Triplications were observed for both the 410 and 670 km discontinuities, with crossover points between first arrival branches at average distances of 19.61° and 23.92°, respectively. The Herglotz-Wiechert method combined with ray tracing was used to derive a preliminary model, followed by refinements using phase-weighted stacking and synthetic seismograms to yield the final model BPI1A. This model shows a prominent 410 km discontinuity, but a weakly-defined 670 km discontinuity, in agreement with the SATZ model for a region of southern Africa to the north of the region covered by the present study. The wavespeeds of BPI1A from the base of the crust to 270 km depth lie between those of the SATZ model and the IASP91 model, which have higher and lower wavespeeds respectively. Between depths of 270 km and the 410 km discontinuity, models BPI1A, IASP91 and SATZ have similar wavespeeds but the 410 km discontinuity for BPI1A is about 10 km deeper than in IASP91. Model GNEM for Eurasia has lower wavespeeds than the other three models above the 410 km discontinuity. Within the transition zone models BPI1A and SATZ converge as the depth increases, with wavespeeds that exceed those of IASP91 below 500 km depth. These models and model GNEM all have similar wavespeeds below 750 km depth. The seismic results indicate no regions of anomalous low wavespeeds within the uppermost 800 km of the mantle that could be associated with high temperatures and the uplift of the African superswell. However, higher seismic wavespeeds in the transition zone than elsewhere are suggested for the southern part of the region, which may result from iron depletion and therefore lower densities that might contribute to buoyant uplift of the overlying crust and upper mantle.

  5. Strain softening along the MCT zone from the Sikkim Himalaya: Relative roles of Quartz and Micas

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kathakali; Mitra, Gautam

    2011-06-01

    In the Darjeeling - Sikkim Himalaya, two distinct faults form the Main Central thrust (MCT), the structurally higher MCT1 and the lower MCT2; each has accommodated translation greater than 100 km. The lower MCT2 places Greater Himalayan amphibolite grade Paro-Lingtse gneiss over Lesser Himalayan greenschist grade Daling metapelites. The MCT2 is folded by the underlying Lesser Himalayan duplex and is exposed at different structural positions of the fold. At Pelling, the MCT2 zone is exposed as a ˜373 m thick NW dipping fault zone that exposes ˜19 m of hanging wall mylonitized Lingtse gneiss. The Lingtse protolith shows evidence of amphibolite grade plastic deformation features in quartz and feldspar. Within the hanging wall mylonite zone (HWMZ), quartz and feldspar have undergone grain-size reduction by different deformation mechanisms and feldspars are sericitized suggesting the presence of fluids during deformation. We estimate a temperature of ˜300 °C within the fault zone during fluid-assisted retrogression and deformation. Reaction softening of feldspars produced a large proportion of intrinsically weak matrix. This, in combination with development of a strong foliation defined by parallel mica grains, resulted in strain softening along the MCT2 zone, and concentrated the deformation along a thin zone or zones.

  6. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    NASA Technical Reports Server (NTRS)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  7. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercovici, D.

    1995-02-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less

  8. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398

  9. Investigations of the petrogeneration zones western Bering sea by airborne geophysical data

    NASA Astrophysics Data System (ADS)

    Litvinova, T.; Petrova, A.

    2012-04-01

    In 2011, work continued on the interpretation of geophysical data in western Bering Sea. Bering Sea oil-and-gas bearing province occupies a single sedimentary megabasin of the Bering Sea, the formation of which is caused by stage of the Alpine geodynamic development cycle of the Pacific mobile belt. At present, the geological-geophysical exploration maturity of the Bering Sea with respect to oil-gasbearing prognosis is at the level of regional study stage. In 2003, an additional study of oil-gas prospective zones of the Kamchatka Shelf of the Bering Sea was carried out. In the course of works, profile seismic studies and airborne gravity-magnetic survey at 1:200,000 scale were made at three territories: Ilpinsky, Olyutorsky I, and Olyutorsky II. Average survey elevation for the whole area is 300 meters. Geological modeling of sedimentary basin systems was made for this area. Geomagnetic sections it possible to compare the location of the magnetic and weakly magnetic structures with seismic and geological boundaries marker and conducting layers of geoelectric sections. This makes it possible to trace the features of placing magnetic differences in the geologic rock section, to identify their stratigraphic association, select the layers flyuidstubborn, adumbrate reservoir heterogeneity and establish the heterogeneity of internal structure oil-gasbearing zones. Age correlation, thickness estimation and formational characteristics of litho-stratigraphic complexes building up sections are carried out. Geomagnetic deep sections transecting main zones of prospective oil-gas accumulation to airborne magnetic data. Distribution of magnetization in the development interval of potentially productive sandy strata at depths from 1 to 5 km is obtained. The most prospective zones of possible oil-gas accumulation are distinguished in the Olyutorsky and Ilpinsky sedimentary basins. At height of 400 km this minimum keeps the form that speaks about stability of a condition of the permeable zones supervising oil-gas-bearing.

  10. Stress Coupling Relationship between Mantle Convection and Seismogenic Layer in Southeastern Tibetan Plateau and its Geodynamic Implications

    NASA Astrophysics Data System (ADS)

    Qiang, H.

    2015-12-01

    The lithospheric stress states and interlayer coupling interaction is of great significant in studying plate driven mechanism and seismogenic environment. The coupling relationship between mantle convection generated drag stress in the lithospheric base and seismogenic layer stress in the crust represents the lithospheric mechanical coupling intensity level. We calculate the lithospheric bottom mantle convection stress field of the southeastern Tibetan Plateau using 11~36 spherical harmonic coefficients of gravity model EGM2008. Meanwhile we collect and organize the focal mechanism of 1131 earthquakes that occurred from 2000 to now in Sichuan-Yunnan region. The current seismogenic layer stress and stress field before Lushan earthquake are calculated by the damping regional stress tensor inversion. We further analyze the correlation between the two kinds of stress fields, then discuss the relation between mechanics coupling situation and strong earthquakes in different regions. The results show that: (1) Most of Sichuan-Yunnan region is located in the coupling and decoupling intermediate zone. Coupling zones distribute on the basis of block, the eastern South China block has strong coupling, and the coupling phenomenon also exists in parts of the northern Tibet block, Balyanlkalla block in the northwest and southwest Yunnan block. The decoupling mainly occurs in Songpan-Ganzi block, connecting with the strong coupling South China block and Longmenshan fault zone is their boundary. (2) We have analyzed seismogenic mechanism, then proposed the border zone of strong and weak coupling relation between mantle convection stress and seismogenic layer stress exists high seismic risk. The current coupling situation shows that Longmenshan fault zone is still in the large varying gradient area of coupling intensity level, it has conditions to accumulate energy and develop earthquakes. Other dangerous areas are: Mingjiang, Xianshuihe, Anninghe, Zemuhe, the Red River, Nantinghe fault zone and their neighboring areas.

  11. Seismicity of the St. Lawrence paleorift faults overprinted by a meteorite impact crater: Implications for crustal strength based on new earthquake relocations in the Charlevoix Seismic Zone, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.

    2015-12-01

    The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.

  12. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  13. The structure of small, vapor-deposited particles. II - Experimental study of particles with hexagonal profile

    NASA Technical Reports Server (NTRS)

    Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.

    1979-01-01

    'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.

  14. Prediction of thickness distribution of thermoformed multilayer ABS/PMMA sheets

    NASA Astrophysics Data System (ADS)

    Jobey, Caroline; Allanic, Nadine; Mousseau, Pierre; Deterre, Rémi

    2016-10-01

    In thermoforming, one of the main difficulties is to avoid the presence of weak thickness in the most deformed zones. After the heating stage, a bubbling step, leading to a first rate of deformation, is often used. In this work, we assess how the initial bubbling deformation can be controlled in order to obtain a homogeneous final thickness of the product. Experiments are performed on a multilayer sheet product. An industrial mould, corresponding to a casing of a non-licensed car, was adapted on a lab thermoformer. After presenting experimental thermal profiles of the multilayer sheets measured during the heating stage, a first geometric model is investigated to predict the thickness distribution. Numerical results are compared with measurements.

  15. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  16. Gravitational body forces focus North American intraplate earthquakes

    USGS Publications Warehouse

    Levandowski, William Brower; Zellman, Mark; Briggs, Richard

    2017-01-01

    Earthquakes far from tectonic plate boundaries generally exploit ancient faults, but not all intraplate faults are equally active. The North American Great Plains exemplify such intraplate earthquake localization, with both natural and induced seismicity generally clustered in discrete zones. Here we use seismic velocity, gravity and topography to generate a 3D lithospheric density model of the region; subsequent finite-element modelling shows that seismicity focuses in regions of high-gravity-derived deviatoric stress. Furthermore, predicted principal stress directions generally align with those observed independently in earthquake moment tensors and borehole breakouts. Body forces therefore appear to control the state of stress and thus the location and style of intraplate earthquakes in the central United States with no influence from mantle convection or crustal weakness necessary. These results show that mapping where gravitational body forces encourage seismicity is crucial to understanding and appraising intraplate seismic hazard.

  17. Gravitational body forces focus North American intraplate earthquakes

    PubMed Central

    Levandowski, Will; Zellman, Mark; Briggs, Rich

    2017-01-01

    Earthquakes far from tectonic plate boundaries generally exploit ancient faults, but not all intraplate faults are equally active. The North American Great Plains exemplify such intraplate earthquake localization, with both natural and induced seismicity generally clustered in discrete zones. Here we use seismic velocity, gravity and topography to generate a 3D lithospheric density model of the region; subsequent finite-element modelling shows that seismicity focuses in regions of high-gravity-derived deviatoric stress. Furthermore, predicted principal stress directions generally align with those observed independently in earthquake moment tensors and borehole breakouts. Body forces therefore appear to control the state of stress and thus the location and style of intraplate earthquakes in the central United States with no influence from mantle convection or crustal weakness necessary. These results show that mapping where gravitational body forces encourage seismicity is crucial to understanding and appraising intraplate seismic hazard. PMID:28211459

  18. Large Earthquake Potential in the Southeast Caribbean

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Mora-Paez, H.; Bilham, R. G.; Lafemina, P.; Mattioli, G. S.; Molnar, P. H.; Audemard, F. A.; Perez, O. J.

    2015-12-01

    The axis of rotation describing relative motion of the Caribbean plate with respect to South America lies in Canada near Hudson's Bay, such that the Caribbean plate moves nearly due east relative to South America [DeMets et al. 2010]. The plate motion is absorbed largely by pure strike slip motion along the El Pilar Fault in northeastern Venezuela, but in northwestern Venezuela and northeastern Colombia, the relative motion is distributed over a wide zone that extends from offshore to the northeasterly trending Mérida Andes, with the resolved component of convergence between the Caribbean and South American plates estimated at ~10 mm/yr. Recent densification of GPS networks through COLOVEN and COCONet including access to private GPS data maintained by Colombia and Venezuela allowed the development of a new GPS velocity field. The velocity field, processed with JPL's GOA 6.2, JPL non-fiducial final orbit and clock products and VMF tropospheric products, includes over 120 continuous and campaign stations. This new velocity field along with enhanced seismic reflection profiles, and earthquake location analysis strongly suggest the existence of an active oblique subduction zone. We have also been able to use broadband data from Venezuela to search slow-slip events as an indicator of an active subduction zone. There are caveats to this hypothesis, however, including the absence of volcanism that is typically concurrent with active subduction zones and a weak historical record of great earthquakes. A single tsunami deposit dated at 1500 years before present has been identified on the southeast Yucatan peninsula. Our simulations indicate its probable origin is within our study area. We present a new GPS-derived velocity field, which has been used to improve a regional block model [based on Mora and LaFemina, 2009-2012] and discuss the earthquake and tsunami hazards implied by this model. Based on the new geodetic constraints and our updated block model, if part of the region slipped 2.5 m (500 yrs x 5 mm/yr) in a single 200 km x 200 km rupture, the moment-magnitude of the event would exceed Mw = 8.3. We hypothesize that an active subduction zone exists and supports great earthquake events with a strong possibility of destructive tsunamis, which makes this region the one with the largest seismic hazard in the circum-Caribbean.

  19. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    NASA Astrophysics Data System (ADS)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps, where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results highlight that both indentation and subduction of Adria are valid collisional mechanisms to provoke lateral extrusion-type deformation within the Eastern Alps lithosphere, i.e. the upper plate. Moreover, the insights suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps is best described by phases of oblique and subsequent orthogonal subduction which is in line with Miocene rotations of the Adriatic plate. Furthermore, oblique subduction of the Adriatic plate provides a viable mechanism to explain the rapid decrease in slab length beneath the Eastern Alps towards the Pannonian Basin, also implying that the Adriatic slab can behave and form independently with regards to the adjacent subduction of Adria beneath the Dinarides.

  20. Molybdenite in the Montezuma District of central Colorado

    USGS Publications Warehouse

    Neuerburg, George J.; Botinelly, Theodore; Watterson, John R.

    1974-01-01

    The Montezuma mining district, in the Colorado mineral belt, is defined by an assemblage of porphyry, ore, and altered rocks that originated in the venting of a Tertiary batholith through weak structures in Precambrian rocks. The ore consists of silver-lead-zinc veins clustered on the propylitic fringe of a geometrically complex system of altered rocks, which is centered on the intersection of the Oligocene Montezuma stock with the Montezuma shear zone of Precambrian ancestry. Alteration chemistry conforms to the standard porphyry-metal model but is developed around several small intrusives strung out along the shear zone and is expressed as a mottled pattern, rather than as the usual thick concentric zones centered on one large plug. The distribution of trace amounts of molybdenite is consistent with the postulate of molybdenite deposits in the district, but the mottled alteration pattern may signify small and scattered, possibly very deep, deposits. Disseminated molybdenite is essentially coextensive with altered rock and increases slightly in quantity toward the inner alteration zones. Two groups of molybdenite veins, associated with phyllic and potassic alteration, represent possible diffuse halos of molybdenite deposits. One group of veins resembles the Climax and Henderson deposits but was seen only in a small and isolated area of outcrops. The second group of molybdenite veins is in a bismuth-rich part of the Montezuma stock and underlies an area of bismuth veins; this group records the passage of contact metasomatic ore fluids. Another bismuth-rich area is in the southeast corner of the stock in a region of bismuth veins and may indicate a third group of molybdenite veins.

  1. Documenting Mica Microstructures in Mylonites of the Cossato-Mergozzo-Brissago Line, Northern Italy

    NASA Astrophysics Data System (ADS)

    Aslin, Joe; Mariani, Elisabetta; Wheeler, John

    2016-04-01

    The rheology of the Earth's crust is ultimately a function of the properties of its constituent minerals. Nowhere are the results of applied tectonic stresses within the Earth's crust more evident than along large scale fault zones and shear zones where strains become focussed producing localised deformation and displacement. These dynamic tectonic discontinuities are often dominated by fault rocks and mylonites that contain an abundance of phyllosilicates (such as micas) whose inherent weakness, relative to other silicate phases (Mariani et al. 2006), acts to concentrate deformation along these narrow regions. Experimental studies show that even in rocks where the concentration of weak phases, such as micas, is low, their effect on the strength and fabric of the rock is significant due to processes such as strain-induced interconnectivity (Holyoke & Tullis 2006). Once this interconnectivity has been established, very high strains can be accommodated within very narrow regions, termed shear bands or micro-shear zones. In this study, a combination of optical and scanning electron microscope (SEM) based techniques including electron backscatter diffraction (EBSD) have been used to observe and document features that are indicative of such processes within samples collected from the Cossato-Mergozzo-Brissago (CMB) shear zone in North Western Italy. This tectonic discontinuity is interpreted to be of Permian age and separates the metapelitic schists of the Kinzigite formation of the lower crustal Ivrea-Verbano zone from the mid-crustal schists and amphibolites of the Serie dei Laghi. Despite its present vertical attitude, the CMB line is believed to have formed as a gently inclined, mid-crustal shear zone during the early stages of post-Hercynian crustal stretching (Rutter et al. 2007). This has produced mylonites composed predominantly of quartz, feldspar and abundant phyllosilicates which serve as perfect natural examples on which to study the distribution of micas, their internal structure and the microstructures of other neighbouring phases in order to give insights into the mechanisms of deformation active within micas under conditions of large, predominantly simple shear strain. Future work will include detailed geological mapping of transects across the CMB line as well as the use of quantitative methods including EBSD to identify crystallographic preferred orientations of grains of mica, and other phases with higher strength, in order to better understand the deformation mechanisms of micas and the role they play in strain localisation and deformation within the crust. References Holyoke, C.W.I. & Tullis, J., 2006. Mechanisms of weak phase interconnection and the effects of phase strength contrast on fabric development. Journal of Structural Geology, 28(4), pp.621-640. Mariani, E., Brodie, K.H. & Rutter, E.H., 2006. Experimental deformation of muscovite shear zones at high temperatures under hydrothermal conditions and the strength of phyllosilicate-bearing faults in nature. Journal of Structural Geology, 28, pp.1569-1587. Rutter, E., Brodie, K., James, T. and Burlini, L., 2007. Large-scale folding in the upper part of the Ivrea-Verbano zone, NW Italy. Journal of Structural Geology, 29(1), pp.1-17.

  2. Heat flow in western Virginia and a model for the origin of thermal springs in the folded Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, L.D.; Costain, J.K.; Geiser, P.A.

    1979-11-10

    Five new heat flow values in the Blue Ridge (37/sup 0/02'N, 80/sup 0/12'W), Valley and Ridge (38/sup 0/00'N, 79/sup 0/50'W; 37/sup 0/54'N, 79/sup 0/54'W; 38/sup 0/14'N, 79/sup 0/49'W), and Alleghany Plateau (37/sup 0/12'N, 82/sup 0/06'W) provinces of Virginia are 36.3 +- 1.3mW/m/sup 2/, 317 +- 20mW/m/sup 2/, 48.2 +- 0.3mW/m/sup 2/, 49.5 +- 1.5mW/m/sup 2/, and 55.8 +- 1.7mW/m/sup 2/, respectively. The value of 36.3mW/m/sup 2/ in the Blue Ridge agrees with values predicted by the contour map of Sass et al. (1976) for this part of the eastern United States; the values of 49.5 and 48.3mW/m/sup 2/ in themore » Valley and Ridge province do not. The high value of 317 +- 20mW/m/sup 2/ at Hot Springs, Virginia, is the result of convection along a fault zone and is not regionally representative. The value of 48.3mW/m/sup 2/ determined at a site about 8 km southwest of Hot Springs, Virginia, is regionally representative of the heat flux. New data support a model of moderately deep circulation of meteoric water entering near-vertical sedimentary beds at relatively high topographic elevations and circulating downward via bedding plane permeability and fractures within Silurian quartzites and/or adjacent carbonate units. The moderately deep circulation is then intersected by vertical transverse linear fracture zones along which the water rises. All of the warm springs are located adjacent to topographic gaps which have developed along zones of weakness associated with the transverse fracture zones.« less

  3. [Spatial heterogeneity of soil salinization and its influencing factors in the typical region of the Mu Us Desert-Loess Plateau transitional zone, Northwest China].

    PubMed

    Zhao, Xuan; Hao, Qi Li; Sun, Ying Ying

    2017-06-18

    Studies on the spatial heterogeneity of saline soil in the Mu Us Desert-Loess Plateau transition zone are meaningful for understanding the mechanisms of land desertification. Taking the Mu Us Desert-Loess Plateau transition zone as the study subject, its spatial heterogeneity of pH, electrical conductivity (EC) and total salt content were analyzed by using on-site sampling followed with indoor analysis, classical statistical and geostatistical analysis. The results indicated that: 1) The average values of pH, EC and total salt content were 8.44, 5.13 mS·cm -1 and 21.66 g·kg -1 , respectively, and the coefficient of variation ranged from 6.9% to 73.3%. The pH was weakly variable, while EC and total salt content were moderately variable. 2) Results of semivariogram analysis showed that the most fitting model for spatial variability of all three indexes was spherical model. The C 0 /(C 0 +C) ratios of three indexes ranged from 8.6% to 14.3%, which suggested the spatial variability of all indexes had a strong spatial autocorrelation, and the structural factors played a more important role. The variation range decreased in order of pH

  4. Forcing, properties, structure, and antecedent synoptic climatology of the Snake River Plain Convergence Zone of eastern Idaho: Analyses of observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Andretta, Thomas A.

    The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward flow regimes in Idaho which form under low Froude number (stable blocked flow) in a post cold-frontal environment. The SPCZ is a weak baroclinic feature. The formation of the zone is independent of the vertical wind shear in the middle to upper troposphere. With a grid scale of 4 km, the WRF-ARW model adequately reproduces the post cold-frontal environment, windward and leeward convergence zones, relative vertical vorticity belts, and precipitation bands in several SPCZ cases. The vertical structure of the SPCZ reveals upright reflectivity towers with circulations that tilt slightly with height into the colder air aloft. Topographic sensitivity analyses of the SPCZ indicate that the terrain-driven circulations and resulting snow bands are more defined at the finer terrain scales. The ambient horizontal wind shear in the tributary valleys of the Central Mountains creates potential vorticity (PV) banners. The PV banner maintenance and strength are directly tied to the terrain resolution. An environment of convective instability sometimes occurs as a layer of air is lifted along the gentle elevation rise of the eastern Magic Valley and lower plain. An environment of inertial instability forms within the anticyclonic (negative) vorticity belts in the upper plain. Potential symmetric instability (PSI) may be released in a moist environment near the vorticity banners. The planetary boundary layer perturbed by the SPCZ inside the Snake River Plain is characterized by a deeper mixed layer with stronger vertical motions relative to a PBL in a sheltered valley outside the plain. Finally, a 10-year antecedent synoptic climatology of 78 SPCZ events reveals two pattern types: Type N (wet and warm) and Type S (dry and cold). The 40° N parallel divides these two synoptic patterns.

  5. Slip-parallel seismic lineations on the Northern Hayward Fault, California

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.; Cole, A.

    1999-01-01

    A high-resolution relative earthquake location procedure is used to image the fine-scale seismicity structure of the northern Hayward fault, California. The seismicity defines a narrow, near-vertical fault zone containing horizontal alignments of hypocenters extending along the fault zone. The lineations persist over the 15-year observation interval, implying the localization of conditions on the fault where brittle failure conditions are met. The horizontal orientation of the lineations parallels the slip direction of the fault, suggesting that they are the result of the smearing of frictionally weak material along the fault plane over thousands of years.

  6. Strength of the San Andreas Fault Zone: Insight From SAFOD Cuttings and Core

    NASA Astrophysics Data System (ADS)

    Tembe, S.; Lockner, D. A.; Solum, J. G.; Morrow, C. A.; Wong, T.; Moore, D. E.

    2005-12-01

    Cuttings acquired during drilling of the SAFOD scientific hole near Parkfield, California offer a continuous physical record of the lithology across the San Andreas fault (SAF) zone and provide the only complete set of samples available for laboratory testing. Guided by XRD clay mineral analysis and velocity and gamma logs, we selected washed cuttings from depths spanning the main hole from 1.85 to 3.0 km true vertical depth. Cuttings were chosen to represent primary lithologic units as well as significant shear zones, including candidates for the currently active SAF. To determine frictional properties triaxial sliding tests were conducted on cylindrical granite blocks containing sawcuts inclined at 30° and filled with 1 mm-thick sample gouge layers. Tests were run at constant effective normal stresses of 10 and 40 MPa and constant pore pressure of 1 MPa. Samples were sheared up to 10.4 mm at room temperature and velocities of 1, 0.1 and 0.01 μm/s. Stable sliding behavior and overall strain hardening were observed in all tests. The coefficient of friction typically showed a modest decrease with increasing effective normal stress and mostly velocity strengthening was observed. Preliminary results yield coefficients of friction, μ, which generally fell into two clusters spanning the range of 0.45 to 0.8. The higher values of friction (~0.7 - 0.8) corresponded to quartzofeldspathic samples derived from granodiorites and arkoses encountered in the drill hole. Lower values of friction (0.45 - 0.55) were observed at depth intervals interpreted as shear zones based on enriched clay content, reduced seismic velocities and increased gamma radiation. Arguments for a weak SAF suggest coseismic frictional strength of μ = 0.1 to 0.2 yet the actual fault zone materials studied here appear consistently stronger. At least two important limitations exist for inferring in-situ fault strength from cuttings. (1) Clays and weak minerals are preferentially lost during drilling and therefore undersampled in the cuttings and (2) cuttings are mixed as they travel up the borehole. To test the validity of this approach sliding tests were conducted on core samples obtained from a prominent fault zone at 2.56 km (10062 ft measured depth). Coefficient of friction was measured to be 0.42-0.5, notably weaker than that for cuttings tested at this depth (~0.6) but similar to values obtained for other shear zones. This difference between core and cuttings from the equivalent depth is likely due to mixing, resulting in the averaging of mechanical properties over a 1 to 10 foot interval. Nevertheless, we find good agreement in the strength of materials obtained from shallow shear zones, an indication that some weak mineral phases are preserved in the cuttings. While our findings indicate that meaningful mechanical data can be derived from the cuttings, it should be noted that these observations do not represent an exhaustive study of SAF frictional strength. We continue to explore the effectiveness of the present technique by a variety of methods. For example, estimates of lost clay fractions determined from XRD analysis of unwashed cuttings can be used in the application of approximate mixing laws to correct friction measurements. In addition, comparisons of strength of cuttings and corresponding sidewall cores will help refine our results. While the analysis of cuttings provides the best fault zone strength data to date, unresolved questions show the importance of collecting continuous core in Phase 3 drilling planned for 2007.

  7. Crust-mantle Coupling Seismogenic Mechanism in Sichuan-Yunnan Region

    NASA Astrophysics Data System (ADS)

    Qiang, H.; Pei, L. S.; Yuan, Z. W.; Dong, L. S.

    2016-12-01

    The intracrustal weak zone controls strength of interaction between crust and mantle, restricts coupling relationship between lithospheric layers, and also affects mode of interaction between blocks. This effect can be analyzed in terms of comparing deformation and stress in different depth. The paper is based on GPS time series data that provided by 81 base stations from 1999 to 2015 to compute velocity field. Combining previous SKS shear wave splitting data, we analyze deformation characteristics of horizontal direction. The lithospheric bottom mantle convection stress field of the Sichuan-Yunnan region is calculated using 11 36 spherical harmonic coefficients of gravity model EGM2008. Meanwhile the focal mechanism of 1131 earthquakes that occurred from 2000 to now in Sichuan-Yunnan region is collected and organized. Through the above systematic research, this article argues that uneven development of the stress is the key of strain energy accumulation. And vertical coupling relationship of different layers greatly influences interaction of blocks. There is stress delamination in blocks which exist the intracrustal weak zone, stress of edge area changes significantly in horizontal and vertical directions, and seismic risk of crust above the weak layer is higher. We choose 81 stations from research area ,download the coordinate time series and use the monadic linear regression analysis to obtain the stations' average speed as shown in figure 1(a).the continuous variation of the velocity vector diagram.When in the process of communication, SKS wave divided into polarization direction and anisotropy of the parallel to the axis of symmetry fast slow wave and vertical wave through anisotropic medium. Fast wave polarization direction is considered to be the mantle peridotite in the crystal lattice advantage under the local stress direction, reflect the deformation of the upper mantle; Time delay of torsion wave reflect the characterization of anisotropic layer thickness and strength. This paper collected Wang Chunyong etc. [1], Chang Lijun provided in [2], such as literature research of 130 stations in the area of SKS shear wave splitting parameters (as shown in figure 1 (b)). From picture 1(c), Northwest Yunnan block and Lhasa block GPS crustal deformation direction are consistent.

  8. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    USGS Publications Warehouse

    Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.

  9. Detailed mineral and chemical relations in two uranium-vanadium ores

    USGS Publications Warehouse

    Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.

    1956-01-01

    Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the Virgin No. 3 mine, Montrose County, Colo., extends from weakly mineralized sandstone on both sides through a strongly mineralized central zone. The weakly mineralized zone is a poorly sorted sandstone with common detrital clay partings; chlorite and mixed layer mica-montmorrillonite are abundant interstitial to the quartz grains. No distinct vanadium or uranium minerals are recognizable, although the clay minerals are vanadium bearing. Euherdral pyrite grains and selenian galena are present but rare. The strongly mineralized rock is separated from the weakly mineralized rock by a narrow transition zone which only apporiximates the bedding planes. It contains abundant vanadium-bearing clay minerals (predominantly chlorite) interstitial to the quartz grains, and apparently replacing them. Paramontroseite is common and is intergrown with the clay minerals. Pyrite and marcasite are present, chiefly in or near the abundant blebs and fragments of carbonaceous material. Selenian galena is rarely present, and generally in or near carbonaceous material. Coffinite is the only uranium mineral idenitified; it is extremely fine grained and was identified only in X-ray diffraction patterns of heavy separates. Distribution of trace elements is not clear; some are consistently high in the strongly mineralized rocks, and some are consistently low. The trace element composition of the unmineralized rock is not known. Chemical studies show a very abrupt rise in the total U, V, and Fe from the weakly mineralized to strongly mineralized rock. Reducing-capacity studies indicate that most of the vanadium is present as V(IV), but some is present as V(V); that iron is present as both Fe(II) and Fe(III), the latter believed to have been present in the primary clays of the unmineralized rock; and that come of the uranium is present as U(VI) in addition to the U(IV) in the coffinite. All evidence points to weak oxidation of an ore once having a somewhat lower valence state. The channel samples from both the Mineral Joe No. 1 mine and the Virgin No. 3 mine are believe to have been essentially identical in mineralogy prior to oxidation by weathering: vanadium was present as V(III) in montroseite and V(IV) in the vanadium clays; uranium was present largely as U(IV) in coffinite and/or uraninite. The Mineral Joe No. 1 mine channel sample is now more fully oxidized. Vanadium clays are unquestionably formed abundantly during the primary mineralization, and they persist with a minimum of alteration during much of the weathering. They suggest that the vanadium is carried as V(IV) in the ore-forming fluids; it seems likely too that the uranium is carried as a U(VI) ion.

  10. Tree-root control of shallow landslides

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots in tension can prevent failure by reducing soil compressive forces downslope. When root reinforcement is limited, a crack parallel to the slope forms near the top of the hillslope. Simulations with roots that fail across this crack always resulted in a landslide. Slopes that did not form a crack could either fail or remain stable, depending on root reinforcement. Tree spacing is important for the location of weak zones but tree location on the slope (with respect to where a crack opens) is as important. Finally, for the specific cases tested here, intermediate-sized roots (5 to 20 mm in diameter) appear to contribute most to root reinforcement. Our results show more complex behaviors than can be obtained with the traditional slope-uniform, apparent-cohesion approach. A full understanding of the mechanisms of shallow landslide triggering requires a complete re-evaluation of this traditional approach that cannot predict where and how forces are mobilized and distributed in roots and soils, and how these control shallow landslides shape, size, location, and timing.

  11. Mantle exhumation at magma-poor rifted margin: a competition between frictional shear zones and thermally weakened necking domains. Consequences on time of breakup at Galicia/Newfoundland margins.

    NASA Astrophysics Data System (ADS)

    Theunissen, T.; Huismans, R. S.

    2017-12-01

    Here we present a new analysis and interpretation of basement topography of the transitional domain from continental to oceanic crust along the conjugate margin sections SCREETCH-1 (Newfoundland) and WE-1/ISE-1 (Galicia Bank). The absence of significant syn-rift magmatism in this area allows using 2-D thermo-mechanical modelling to understand the formation of the distal margin and exhumed mantle. We show that plastic strain weakening of the exhumed mantle is required to explain observations on basement morphology, and detachment faulting. Our models predict that the evolution of detachment faulting within the transitional domain depends on the degree of frictional-plastic strain-weakening and varies from a single unique steady state asymmetric low angle detachment fault for large degree of strain weakening to multiple out-of-sequence forming detachments with or without dip reversal for lower amounts of strain-weakening. The model behaviour is a consequence of the competition between weak frictional-plastic shear zones and the thermally weakened necking domain in the footwall. The forward models reproduce elevations, wavelength of exhumed mantle ridges for a narrow range of rift velocitiesbetween 10 and 15 mm/yr and considering the increasing thermal conductivity of peridotites at shallow depth. This causes an efficient cooling of the footwall that has then enough strength to support high topography. The forward models also predict that the peridotite ridge is the breakaway of a second detachment fault that dates the crustal breakup and that rocks on top of the peridotite ridge have experimented a fast cooling (< 2 Ma). We use predictions from these forward models to discuss time of breakup and the position of the first steady state oceanic ridge at Galicia/Newfounlandconjugate margins.

  12. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation

    PubMed Central

    Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model for contraction in IFM that may be applicable to contraction in other types of muscle. PMID:22761792

  13. New insights on the subsidence of the Ganges-Brahmaputra Delta Plain by using 2D multichannel seismic data, gravity and flexural modeling, BanglaPIRE Project

    NASA Astrophysics Data System (ADS)

    Grall, C.; Pickering, J.; Steckler, M. S.; Spiess, V.; Seeber, L.; Paola, C.; Goodbred, S. L., Jr.; Palamenghi, L.; Schwenk, T.

    2015-12-01

    Deltas can subside very fast, yet many deltas remain emergent over geologic time. A large sediment input is often enough to compensate for subsidence and rising sea level to keep many deltas at sea level. This implies a balance between subsidence and sedimentation, both of which may, however, be controlled by independent factors such as sediment supply, tectonic loads and sea-level change. We here examine the subsidence of the Ganges-Brahmaputra Delta (GBD). Located in the NE boundary of the Indian-Eurasian collision zone, the GBD is surrounded by active uplifts (Indo-Burma Fold Belt and the Shillong Massif). The pattern of subsidence from these tectonic loads can strongly vary depending on both loads and lithospheric flexural rigidity, both of which can vary in space and time. Sediment cover changes both the lithostatic pressure and the thermal properties and thus the rigidity of the lithosphere. While sediments are deposited cold, they also insulate the lithosphere, acting as a thermal blanket to increase lower crustal temperatures. These effects are a function of sedimentation rates and may be more important where the lithosphere is thin. At the massive GBD the impact of sedimentation should be considered for properly constraining flexural subsidence. The flexural rigidity of the lithosphere is here modeled by using a yield-stress envelope based on a thermomechanic model that includes geothermal changes associated with sedimentation. Models are constrained by using two different data sets, multichannel seismic data correlated to borehole stratigraphy, and gravity data. This approach allows us to determine the Holocene regional distribution of subsidence from the Hinge Zone to the Bengal Fan and the mass-anomalies associated with the flexural loading. Different end-member scenarios are explored for reproducing the observed land tilting and gravity anomalies. For all scenarios considered, data can be reproduced only if we consider an extremely weak lithosphere and we will quantify the extent that this weakness is influenced by the extreme sediment thickness of the delta. While the distribution of the present-day subsidence suggests that sediment compaction plays a major role on the current subsidence over the delta, its role over a geological time frame is probably minor.

  14. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G., 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, Journal of Fluid Mechanics, 766, R1 doi:10.1017/jfm.2015.37 Kadri, U., 2016, Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones, Advances in Acoustics and Vibration. 2016. doi:10.1155/2016/8076108

  15. The Role of Crustal Strength in Controlling Magmatism and Melt Chemistry During Rifting and Breakup

    NASA Astrophysics Data System (ADS)

    Armitage, John J.; Petersen, Kenni D.; Pérez-Gussinyé, Marta

    2018-02-01

    The strength of the crust has a strong impact on the evolution of continental extension and breakup. Strong crust may promote focused narrow rifting, while wide rifting might be due to a weaker crustal architecture. The strength of the crust also influences deeper processes within the asthenosphere. To quantitatively test the implications of crustal strength on the evolution of continental rift zones, we developed a 2-D numerical model of lithosphere extension that can predict the rare Earth element (REE) chemistry of erupted lava. We find that a difference in crustal strength leads to a different rate of depletion in light elements relative to heavy elements. By comparing the model predictions to rock samples from the Basin and Range, USA, we can demonstrate that slow extension of a weak continental crust can explain the observed depletion in melt chemistry. The same comparison for the Main Ethiopian Rift suggests that magmatism within this narrow rift zone can be explained by the localization of strain caused by a strong lower crust. We demonstrate that the slow extension of a strong lower crust above a mantle of potential temperature of 1,350 °C can fit the observed REE trends and the upper mantle seismic velocity for the Main Ethiopian Rift. The thermo-mechanical model implies that melt composition could provide quantitative information on the style of breakup and the initial strength of the continental crust.

  16. The Intelligent Control System and Experiments for an Unmanned Wave Glider.

    PubMed

    Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan

    2016-01-01

    The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.

  17. The Intelligent Control System and Experiments for an Unmanned Wave Glider

    PubMed Central

    Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan

    2016-01-01

    The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956

  18. Lithospheric strucutre and relationship to seismicity beneath the Southeastern US using reciever functions

    NASA Astrophysics Data System (ADS)

    Cunningham, E.; Lekic, V.

    2017-12-01

    Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can suffer from low signal-to-noise levels. I compensate for this difficulty by using high quality deployments and stacking these data at common conversion points to increase lateral resolution.

  19. Thermal Impact of Gas Flares on the Biological Activity of Soils

    NASA Astrophysics Data System (ADS)

    Yevdokimov, I. V.; Yusupov, I. A.; Larionova, A. A.; Bykhovets, S. S.; Glagolev, M. V.; Shavnin, S. A.

    2017-12-01

    Global warming can lead to a significant transformation of the structure of terrestrial ecosystems and changes in the mode of functioning of their components. In this connection, studies of soil respiration, particularly of the biological activity of soils under forest exposed to warm impact of flaring flare are of scientific and practical interests. A long-term experimental plot was established in a lichen pine forest on the Albic Podzols (Arenic) (Khanty-Mansi Autonomous Area-Yugra). Sampling and measurements were carried out in the areas at the distances of 70, 90, and 130 m from the flare with the strong, moderate, and weak heating effects, respectively. In the zone of the maximum heating effect, the soil temperature was by 1.3°C higher, and the rate of CO2 emission from the surface in situ was greater by 18% compared to the zone with weak impact of the flare. Along with increasing CO2 emissions, organic matter accumulated due to increasing the stable pool. The parameters of the microbial biomass, basal respiration, and the input of labile organic matter pool increased with the distance from the flare.

  20. Corrosion Resistance of a Sand Particle-Modified Enamel Coating Applied to Smooth Steel Bars

    PubMed Central

    Tang, Fujian; Chen, Genda; Brow, Richard K.; Koenigstein, Michael L.

    2014-01-01

    The protective performance of a sand particle-modified enamel coating on reinforcing steel bars was evaluated in 3.5 wt% NaCl solution by electrochemical impedance spectroscopy (EIS). Seven percentages of sand particles by weight were investigated: 0%, 5%, 10%, 20%, 30%, 50% and 70%. The phase composition of the enamel coating and sand particles were determined with the X-ray diffraction (XRD) technique. The surface and cross-sectional morphologies of the sand particle-modified enamel coating were characterized using scanning electron microscopy (SEM). XRD tests revealed three phases of sand particles: SiO2, CaCO3 and MgCO3. SEM images demonstrated that the enamel coating wetted well with the sand particles. However, a weak enamel coating zone was formed around the sand particles due to concentrated air bubbles, leading to micro-cracks as hydrogen gas pressure builds up and exceeds the tensile strength of the weak zone. As a result, the addition of sand particles into the enamel coating reduced both the coating and corrosion resistances. PMID:28788203

  1. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    NASA Astrophysics Data System (ADS)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of eclogitization and determine if this can sufficiently decrease the integrated strength of the lithosphere to allow a measurable increase in strain rate.

  2. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  3. Thermal State, Slab Metamorphism, and Interface Seismicity in the Cascadia Subduction Zone Based On 3-D Modeling

    NASA Astrophysics Data System (ADS)

    Ji, Yingfeng; Yoshioka, Shoichi; Banay, Yuval A.

    2017-09-01

    Giant earthquakes have repeatedly ruptured the Cascadia subduction zone, and similar earthquakes will likely also occur there in the near future. We employ a 3-D time-dependent thermomechanical model that incorporates an up-to-date description of the slab geometry to study the Cascadia subduction thrust. Results show a distinct band of 3-D slab dehydration that extends from Vancouver Island to the Seattle Basin and farther southward to the Klamath Mountains in northern California, where episodic tremors cluster. This distribution appears to include a region of increased dehydration in northern Cascadia. The phenomenon of heterogeneous megathrust seismicity associated with oblique subduction suggests that the presence of fluid-rich interfaces generated by slab dehydration favors megathrust seismogenesis in the northern part of this zone. The thin, relatively weakly metamorphosed Explorer, Juan de Fuca, and Gorda Plates are associated with an anomalous lack of thrust earthquakes, and metamorphism that occurs at temperatures of 500-700°C near the Moho discontinuity may represent a key factor in explaining the presence of the associated episodic tremor and slip (ETS), which requires a young oceanic plate to subduct at a small dip angle, as is the case in Cascadia and southwestern Japan. The 3-D intraslab dehydration distribution suggests that the metamorphosed plate environment is more complex than had previously been believed, despite the existence of channeling vein networks. Slab amphibolization and eclogitization near the continental Moho depth is thus inferred to account for the resultant overpressurization at the interface, facilitating the generation of ETS and the occurrence of small to medium thrust earthquakes beneath Cascadia.

  4. Plasticity of the dense hydrous magnesium silicate phase A at subduction zones conditions

    DOE PAGES

    Gouriet, K.; Hilairet, N.; Amiguet, E.; ...

    2015-09-12

    The plasticity of the dense hydrous magnesium silicate (DHMS) phase A, a key hydrous mineral within cold subduction zones, was investigated by two complementary approaches: high-pressure deformation experiments and computational methods. The deformation experiments were carried out at 11 GPa, 400 and 580 °C, with in situ measurements of stress, strain and lattice preferred orientations (LPO). Based on viscoplastic self-consistent modeling (VPSC) of the observed LPO, the deformation mechanisms at 580 °C are consistent with glide on the (0 0 0 1) basal and prismatic planes. At 400 °C the deformation mechanisms involve glide on prismatic, (0 0 0 1)more » basal and pyramidal planes. Both give flow stresses of 2.5–3 GPa at strain rates of 2–4 × 10-5 s-1. We use the Peierls–Nabarro–Galerkin (PNG) approach, relying on first-principles calculations of generalized stacking fault (γ-surface), and model the core structure of potential dislocations in basal and prismatic planes. The computations show multiple dissociations of the and dislocations (⟨a⟩ and ⟨b⟩ dislocations) in the basal plane, which is compatible with the ubiquity of basal slip in the experiments. The γ-surface calculations also suggest and dislocations (⟨a+c⟩ or ⟨c-b⟩ directions) in prismatic and pyramidal planes, which is also consistent with the experimental data. Phase A has a higher flow strength than olivine. When forming at depths from the dehydration of weak and highly anisotropic hydrated ultramafic rocks, phase A may not maintain the mechanical softening antigorite can provide. The seismic properties calculated for moderately deformed aggregates suggest that S-wave seismic anisotropy of phase A-bearing rocks is lower than hydrous subduction zone lithologies such as serpentinites and blueschists.« less

  5. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestari, Titik, E-mail: t2klestari@gmail.com; Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vsmore » and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.« less

  6. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    PubMed

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  7. Continuous Spectrum of Crustal Structures and Spreading Processes from Volcanic Rifted Margins to Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2016-12-01

    Structures generated by seafloor spreading in oceanic crust (and ophiolites) and thick oceanic crust of Iceland show a continuous spectrum of features that formed by similar mechanisms but at different scales. A high magma budget near the Iceland hotspot generates thick (40-25 km) mafic crust in a plate boundary zone about 50 km wide. The upper crust ( 10 km thick) is constructed by the subaxial subsidence and thickening of lavas fed by dense dike swarms over a hot, weak lower crust to produce structures analogous to seaward-dipping reflectors of volcanic rifted margins. Segmented rift zones propagate away from the hotspot creating migrating transform fault zones, microplate-like crustal blocks and rift-parallel strike-slip faults. These structures are decoupled from the underlying lower crustal gabbroic rocks that thin by along-axis flow that reduces the overall crustal thickness and smooths-out local crustal thickness variations. Spreading on mid-ocean ridges with high magma budgets have much thinner crust (10-5 km) generated at a much narrower (few km) plate boundary zone. Subaxial subsidence accommodates the thickening of the upper crust of inward-dipping lavas and outward-dipping dikes about 1-2 km thick over a hot weak lower crust. Along-axis (high-temperature ductile and magmatic) flow of lower crustal material may help account for the relatively uniform seismic thickness of oceanic crust worldwide. Spreading along even slow-spreading mid-ocean ridges near hotspots (e.g., the Reykjanes Ridge) probably have similar features that are transitional between these extremes. In all of these settings, upper crustal and lower crustal structures are decoupled near the plate boundary but eventually welded together as the crust ages and cools. Similar processes are likely to occur along volcanic rifted margins as spreading begins.

  8. Slope monitoring by using 2-D resistivity method at Sungai Batu, Pulau Pinang, Malaysia

    NASA Astrophysics Data System (ADS)

    Azman, Muhamad Iqbal Mubarak Faharul; Yusof, Azim Hilmy Mohd; Ismail, Nur Azwin; Ismail, Noer El Hidayah

    2017-07-01

    Slope is a dynamic system of geo-environmental phenomena that related to the movement of the soil and rock masses. In Pulau Pinang, the occurrence of slope related phenomena such as landslide and rock fall has become a huge issue especially during rainy season as the government would have to invest more for the people safety. 2-D resistivity method is one of the geophysical methods that can be applied to overcome this issue thus prepare countermeasure actions. Monitoring is one of the common acquisition technique that has been used in solving such issue. This technique was applied to identify and monitor changes at the suspected area and thus, countermeasure steps can be taken accordingly and not blindfolded. Starting from August until November 2016, a 200 m survey line of 2-D resistivity survey had been conducted monthly at Sungai Batu, Pulau Pinang slope for monitoring purpose. Three resistivity ranges were able to detect within the subsurface. Resistivity value of 250 - 400 Ωm indicated the low resistivity value and interpreted as the weak zone located at distance of 90 - 120 m with depth of 10 m. Intermediate resistivity value was interpreted as weathered granite zone with resistivity value of 400 - 1500 Ωm was found at almost along survey line. High resistivity value was > 5000 Ωm and interpreted as granitic bedrock located at depth of > 20 m. Aside from weathered granite zone and weak zone, a fracture was found develop over time at distance of 130 - 140 m. The features found have the potential to be the cause for slope failure phenomena to occur. As a conclusion, monitoring slope using 2-D resistivity method is a success and indeed helpful in overcome landslide and rock fall issue as a pre-countermeasure action.

  9. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

  10. Young Marquesas volcanism finally located

    NASA Astrophysics Data System (ADS)

    Révillon, Sidonie; Guillou, Hervé; Maury, René C.; Chauvel, Catherine; Aslanian, Daniel; Pelleter, Ewan; Scao, Vincent; Loubrieu, Benoît; Patriat, Martin

    2017-12-01

    The Marquesas Island chain in Polynesia is quite unusual because the alignment of the islands on the Pacific oceanic plate (N40°W) does not follow the plate motion in the region (N65°W). The exact location of the active hotspot is unknown but has been predicted to underlie the Marquesas Fracture Zone Ridge. Nevertheless, no concrete evidence exists. Here, we document the occurrence on this ridge of fresh tephrites dated at 92 ka by the 40Arsbnd 39Ar method. The lavas dredged on a small seamount have trace element contents and Sr, Nd, Pb isotopic compositions typical of the southwest Marquesas Islands, the Fatu Hiva group. This discovery demonstrates that the Marquesas plume is still active and it puts new constraints on its present location. It also supports McNutt et al.'s (1989) interpretation of the Marquesas Fracture Zone Ridge as a very young volcanic construction underlain by a hotspot. We suggest that the present location of the Marquesas plume is under the ridge, at its intersection with the isotopic divide known along the Marquesas chain. We attribute the presence of young volcanic products 190 km southwest of this location to preferential magma flow along the Marquesas Fracture lithospheric weakness zone. We also suggest that the puzzling general direction of the archipelago is the consequence of a persistent low magma flux over the past 5 Ma that could only find its way to the surface through multiple weak zones in the Pacific plate. Table S2. Trace element compositions (ppm) of PLP-DR-01 samples. Table S3. Pb, Sr and Nd isotopic compositions of PLP-DR-01 samples. Table S4. Complete 40Arsbnd 39Ar data from incremental heating experiments for samples PLP-DR-01-04 and PLP-DR-01-06.

  11. New hydrologic model of fluid migration in deep porous media

    NASA Astrophysics Data System (ADS)

    Dmitrievsky, A.; Balanyuk, I.

    2009-04-01

    The authors present a new hydrological model of mantle processes that effect on formation of oil-and-gas bearing basins, fault tectonics and thermal convection. Any fluid migration is initially induced by lateral stresses in the crust and lithosphere which result from global geodynamic processes related to the mantle convection. The global processes are further transformed into regional movements in weakness zones. Model of porous media in deep fractured zones and idea of self-oscillation processes in mantle layers and fractured zones of the crust at different depths was used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in mantle layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, ocean rift and ocean subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. A certain class of fluid dynamic models describing consolidation of sedimentary basins, free oscillation processes slow and quick (at the final stage) fluid dynamic processes of the evolution of a sedimentary basin in subduction zones is considered for the first time. The last model of quick fluid dynamic processes reflects the process of formation of hydrocarbon deposits in the zones of collision of lithosphere plates. The results of numerical simulation and diagrams reflecting consecutive stages of the gas-fluid dynamic front propagation are assessed of the Pri-Caspian depression as the example. Calculations with this model will simultaneously be carried out for the sedimentary basins of Timan-Pechora region, Barents Sea, Volga-Ural area, etc. Hydrologic model of deep porous media and the idea of self-oscillation processes in fractured layers of the crust at different depths were used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in fractured layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, rift and subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. Specific manifestations of these mechanisms can vary in dependence on geological settings and geodynamic situations. In particular, periods of self-oscillations and depths of fractured layers can be various. Orientation of layers can be not only horizontal, but vertical as well, that is, self-oscillations can occur not only in deep porous media, but in faults and impaired fractured zones as well. Predominating vertical fluid migration can be accompanied by horizontal migration along crust waveguide. A set of fluid dynamic models is considered. Mathematical modeling of geodynamic and fluid dynamic processes in these zones seems very promising. Combined consideration of geodynamic and fluid dynamic aspects in a model of lithosphere plates collision enables to understand the influence of P-T conditions and shear deformations on the mechanism of hydrocarbon generation and to look after their migration and to explain these processes, but also to predict some features essential for the search and exploration of hydrocarbon fields in these regions and their classification. In terms of compaction models, multiphase filtration in a piezo-conduction mode and models of deep porous media major stages of fluid evolution under the conditions of developing passive margins and in the zones of collision of plates are described. In particular, compaction models of one of the stages of fluid mode evolution within a sedimentary basin and fluid migration from the convergence zones toward the upper layers are considered. In the final part of work, computation of fluid transfer of hydrocarbons in a pulse mode described by the equation of piezo-conductivity is presented for a mature oil-bearing sedimentary basin over individual sections for short periods of a few hundreds of years. These calculations were executed on the basis of a new mathematical method TEKON and computer programs for quantitative analysis of fluid migration and formation of hydrocarbon deposits with account taken for actual geometrical and lithological properties of the layers. On the basis of the specified numerical calculations the scales, form, and routes of fluid movement were disclosed, as well as the formation of zones of anomalously high rock pressure and non-traditional hydrocarbon deposits.

  12. Coherent Backscattering by Polydisperse Discrete Random Media: Exact T-Matrix Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2011-01-01

    The numerically exact superposition T-matrix method is used to compute, for the first time to our knowledge, electromagnetic scattering by finite spherical volumes composed of polydisperse mixtures of spherical particles with different size parameters or different refractive indices. The backscattering patterns calculated in the far-field zone of the polydisperse multiparticle volumes reveal unequivocally the classical manifestations of the effect of weak localization of electromagnetic waves in discrete random media, thereby corroborating the universal interference nature of coherent backscattering. The polarization opposition effect is shown to be the least robust manifestation of weak localization fading away with increasing particle size parameter.

  13. A comparison of seismicity in world's subduction zones: Implication by the difference of b-values

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2013-12-01

    Since the pioneering study of Uyeda and Kanamori (1979), it has been thought that world's subduction zones can be classified into two types: Chile and Mariana types. Ruff and Kanamori (1980) suggested that the maximum earthquake size within each subduction zone correlates with convergence rate and age of subducting lithosphere. Subduction zones with younger lithosphere and larger convergence rates are associated with great earthquakes (Chile), while subduction zones with older lithosphere and smaller convergence rates have low seismicity (Mariana). However, these correlations are obscured after the 2004 Sumatra earthquake and the 2009 Tohoku earthquake. Furthermore, McCaffrey (2008) pointed out that the history of observation is much shorter than the recurrence times of very large earthquakes, suggesting a possibility that any subduction zone may produce earthquakes larger than magnitude 9. In the present study, we compare world's subduction zones in terms of b-values in the Gutenberg-Richer relation. We divided world's subduction zones into 146 regions, each of which is bordered by a trench section of about 500 km and extends for 200 km from the trench section in the direction of relative plate motion. In each region, earthquakes equal to or larger than M4.5 occurring during 1988-2009 were extracted from ISC catalog. We find a positive correlation between b-values and ages of subducting lithosphere, which is one of the two important variables discussed in Ruff and Kanamori (1980). Subduction zones with younger lithosphere are associated with high b-values and vice versa, while we cannot find a correlation between b-values and convergence rates. We used the ages determined by Müller et al. (2008) and convergence rate calculated using PB2002 (Bird, 2003) for convergence rate. We also found a negative correlation between b-values and the estimates of seismic coupling, which is defined as the ratio of the observed seismic moment release rate to the rate calculated from plate tectonic velocities (Scholz and Campos, 2012). Lithosphere age also has a weak negative correlation with the degree of seismic coupling. Based on differences in b-values for the types of faulting, Schorlemmer et al. (2005) suggested that b-value depends inversely on differential stress. This idea, taken together with correlations in the present study, suggests a model where the buoyancy of subducting slabs which depends on the lithosphere age determines stress state and the b-value in each sunbduction zone. The stress state also controls the seismic coupling. This model is basically consistent with the idea of Ruff and Kanamori (1980). Subduction zones with younger and lighter lithosphere are in a compressive stress state and associate with high coupling and small b-values (Chile), while those with older and heavier lithosphere are in a tensional stress state and correlate with low coupling and large b-values (Mariana). Subduction zones such as Nicaragua and El Salvador where b-values are much higher than the expectation from the above correlations may be explained by considering the fact that local tectonics affects the seismic coupling (LaFemina et al., 2009; Scholz and Campos, 2012).

  14. Observation of Polar Mesosphere Summer Echoes using the northernmost MST radar at Eureka (80°N)

    NASA Astrophysics Data System (ADS)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-09-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northernmost geographically located MST radar at Eureka (80°N, 86°W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and 33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69°N, 16°E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  15. Observation of Polar Mesosphere Summer Echoes using the Northernmost MST Radar at Eureka (80 deg N)

    NASA Technical Reports Server (NTRS)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-01-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northern most geographically located MST radar at Eureka (80 deg N, 86 deg W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69 deg N, 16 deg E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  16. Strain Localization and Weakening Processes in Viscously Deforming Rocks: Numerical Modeling Based on Laboratory Torsion Experiments

    NASA Astrophysics Data System (ADS)

    Doehmann, M.; Brune, S.; Nardini, L.; Rybacki, E.; Dresen, G.

    2017-12-01

    Strain localization is an ubiquitous process in earth materials observed over a broad range of scales in space and time. Localized deformation and the formation of shear zones and faults typically involves material softening by various processes, like shear heating and grain size reduction. Numerical modeling enables us to study the complex physical and chemical weakening processes by separating the effect of individual parameters and boundary conditions. Using simple piece-wise linear functions for the parametrization of weakening processes allows studying a system at a chosen (lower) level of complexity (e.g. Cyprych et al., 2016). In this study, we utilize a finite element model to test two weakening laws that reduce the strength of the material depending on either the I) amount of accumulated strain or II) deformational work. Our 2D Cartesian models are benchmarked to single inclusion torsion experiments performed at elevated temperatures of 900 °C and pressures of up to 400 MPa (Rybacki et al., 2014). The experiments were performed on Carrara marble samples containing a weak Solnhofen limestone inclusion at a maximum strain rate of 2.0*10-4 s-1. Our models are designed to reproduce shear deformation of a hollow cylinder equivalent to the laboratory setup, such that material leaving one side of the model in shear direction enters again on the opposite side using periodic boundary conditions. Similar to the laboratory tests, we applied constant strain rate and constant stress boundary conditions.We use our model to investigate the time-dependent distribution of stress and strain and the effect of different parameters. For instance, inclusion rotation is shown to be strongly dependent on the viscosity ratio between matrix and inclusion and stronger ductile weakening increases the localization rate while decreasing shear zone width. The most suitable weakening law for representation of ductile rock is determined by combining the results of parameter tests with the comparison of our numerical models to the torsion experiments. In the future, this law will be applied first to investigate shear zone formation and then study localization in larger scale rift models.Cyprych, D. et al. (2016). Geochem Geophys, 17(9), 3608-3628. Rybacki, E. (2014). Tectonophysics, 634, 182-197.

  17. Deep Landslides in flysch formations

    NASA Astrophysics Data System (ADS)

    Marinos, Vassilis

    2017-04-01

    Flysch, linked with the tectonic development of an area, has suffered from compressional forces being highly deformed by thrust faults and folds, containing thus often tectonically pre-sheared zones of various size. These geological characteristics may produce weak to very weak rock masses which may present instability and landslides in both mountain and local slope scale. The paper mainly discusses the "mountain" scale phenomena. The size of these masses can reach hundreds of meters in both depth and width on the valley sides. A brief presentation of the flysch formation is presented. A typology is presented with 11 types of flysch, depending on the persistence and participation or not of the strong members (as sandstones) against the weak ones (as siltstones, shales) and the degree and scale of tectonic disturbance. These rock mass types are connected with the landslide mechanism. In all cases the tectonic conditions of a broader area are responsible and the establishment of the tectonic-paleogeographic model is necessary before the conceptual study and design of any major infrastructure work and the choice of its alignment or location. Given the size of such instability areas remedial measures are in most cases not feasible and the realignment or relocation from the initial plans are often the only solution. Cases from highways and pipelines in Greek and Albanian territory are presented. A large number of information from lab tests, geotechnical classifications and back analyses collected from a wide variety of flysch formations is presented and discussed.

  18. Ultraviolet and X-ray irradiance and flares from low-mass exoplanet host stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Loyd, R. O. Parke; Brown, Alex

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential ``biomarker'' gases. We report first results from the MUSCLES Treasury Survey, a study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d <~ 20 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30-7000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on weakly active planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their weak optical activity indices (e.g., Ca II H and K equivalent widths). We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on ``optically inactive'' M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.

  19. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  20. Comparison of magmatic and amagmatic rift zone kinematics using full moment tensor inversions of regional earthquakes

    NASA Astrophysics Data System (ADS)

    Jaye Oliva, Sarah; Ebinger, Cynthia; Shillington, Donna; Albaric, Julie; Deschamps, Anne; Keir, Derek; Drooff, Connor

    2017-04-01

    Temporary seismic networks deployed in the magmatic Eastern rift and the mostly amagmatic Western rift in East Africa present the opportunity to compare the depth distribution of strain, and fault kinematics in light of rift age and the presence or absence of surface magmatism. The largest events in local earthquake catalogs (ML > 3.5) are modeled using the Dreger and Ford full moment tensor algorithm (Dreger, 2003; Minson & Dreger, 2008) to better constrain source depth and to investigate non-double-couple components. A bandpass filter of 0.02 to 0.10 Hz is applied to the waveforms prior to inversion. Synthetics are based on 1D velocity models derived during seismic analysis and constrained by reflection and tomographic data where available. Results show significant compensated linear vector dipole (CLVD) and isotropic components for earthquakes in magmatic rift zones, whereas double-couple mechanisms predominate in weakly magmatic rift sectors. We interpret the isotropic components as evidence for fluid-involved faulting in the Eastern rift where volatile emissions are large, and dike intrusions well documented. Lower crustal earthquakes are found in both amagmatic and magmatic sectors. These results are discussed in the context of the growing database of complementary geophysical, geochemical, and geological studies in these regions as we seek to understand the role of magmatism and faulting in accommodating strain during early continental rifting.

  1. Military-related posttraumatic stress disorder and intimate relationship behaviors: a developing dyadic relationship model.

    PubMed

    Gerlock, April A; Grimesey, Jackie; Sayre, George

    2014-07-01

    The protracted conflict in Iraq and Afghanistan and an all-volunteer military has resulted in multiple war zone deployments for many service members. While quick redeployment turnaround has left little time for readjustment for either the service member or family, dealing with the long-term sequelae of combat exposure often leaves families and intimate partners ill-prepared for years after deployments. Using a modified grounded theory approach, digitally recorded couple interviews of 23 couples were purposefully selected from a larger sample of 441 couples to better understand the impact of war zone deployment on the couple. The veteran sample was recruited from a randomly selected cohort of men in treatment for posttraumatic stress disorder (PTSD). Overall, it was found when veterans experiencing deployment-related PTSD reenter or start new intimate relationships they may bring with them a unique cluster of interrelated issues which include PTSD symptoms, physical impairment, high rates of alcohol and/or drug abuse, and psychological and physical aggression. These factors contributed to a dynamic of exacerbating conflict. How these couples approached relationship qualities of mutuality, balanced locus of control and weakness tolerance across six axes of caregiving, disability, responsibility, trauma, communication, and community impacted the couple's capacity to communicate and resolve conflict. This dyadic relationship model is used to help inform implications for clinical practice. © 2013 American Association for Marriage and Family Therapy.

  2. Stability and modal analysis of shock/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2017-02-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  3. Active-source 3-D tomography near Nias and Batu Islands, offshore central Sumatra

    NASA Astrophysics Data System (ADS)

    Karplus, M.; Henstock, T.; McNeill, L. C.; Vermeesch, P. M.; Hall, T. R.; Harmon, N.; Barton, P. J.

    2013-12-01

    Wide-angle reflection and refraction tomography constrain 3-D lithospheric P-wave velocity structure beneath the central Sumatra subduction zone from Nias Island to Siberut, offshore Indonesia at the southern boundary of the 2005 megathrust earthquake rupture. This area includes the earthquake segment boundary near the Batu Islands where the Investigator Fracture Zone is subducted beneath the Eurasian plate. We report along- and across-strike variations in structure of the downgoing slab and overriding plate. Seismic wide-angle data were collected during cruise SO198-1 in May-June 2008. Air gun shots were recorded by 47 temporary ocean bottom seismometers (OBS) deployed in a roughly 200 km by 190 km area, 10 three-component long-term OBS (with differential pressure gauge), and 52 land stations. First arrival refraction modeling using ray tracing and least squares inversion has yielded a lithospheric P-wave velocity model, best-resolved in the top 25 km. We observe velocities of ~4.5-6 km/s within the accretionary prism, which varies by several km in its depth extent. The forearc basin is underlain by high velocities of ~7-8 km/s as shallow as 8 km depth. This high velocity region is likely older forearc oceanic crust, as seen in Cascadia and near Simeulue, offshore Sumatra. The top of the subducting slab ranges in depth from ~10 km near the trench to ~20 km beneath the prism. The top of the slab dips approximately 4-4.5° towards the NE between the trench and the prism. Earthquake hypocenters show the slab dip steepens significantly NE of the forearc basin. We compare our velocity models with models derived from other regions to the north and south along-strike in the Sumatra Subduction Zone, including the 2004-2005 segment boundary at Simeulue. Multi-channel seismic reflection data show that fault structures and reflectivity change considerably along- and across-strike in the central Sumatra subduction zone. Furthermore, regional earthquake locations indicate rupture segmentation along the plate boundary. The Nias segment in the north ruptured in the 2005 M8.7 earthquake. The weakly-coupled Batu segment experiences sporadic clusters of events near the break in the forearc slope. The offshore forearc west of Siberut is characterized by almost aseismic behavior, reflecting the locked state of the plate interface, which hasn't ruptured since the 1797 M8.6-8.8 earthquake. The subducting Investigator Fracture Zone is believed to act as a barrier for propagation of slip during large ruptures. We compare our velocity model with reflection data and rupture segments to characterize differences in the lower plate, upper plate, and plate boundary properties.

  4. Lithologically controlled strength variation and the Himalayan megathrust geometry: an analogue modeling approach

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhajit; Das, Animesh; Bose, Santanu; Mandal, Nibir

    2017-04-01

    A moment magnitude (Mw) 7.8 earthquake associated with a Mw 7.3 aftershock hit the Gorkha region near Kathmandu, Nepal on April 25, 2015. The rupture propagated eastward for about 140 km and caused thousands of deaths. The focal mechanism of the Gorkha earthquake shows thrust sense over the mid-crustal steeply dipping ramp on the basal décollement known as the Main Himalayan Thrust (MHT). The MHT is the largest and fastest slipping continental megathrust over which the southward tapering Himalayan thrust wedge similar to the accretionary wedges is moving. The MHT ramps up to the surface beneath the Siwalik group of rocks as the Main Frontal Thrust (MFT). Below the MFT the basal décollement is flat until it reaches the mid-crustal ramp ( 20°) below the Himalayan klippen and then again it becomes flat. This geometry of the décollement is consistent with the balanced cross sections, microseismic data, magnetotelluric images, INDEPTH seismic reflection profile, present day stress distribution and fits well with the prominent topographic break (physiographic transition) in the Lesser Himalaya. Lithologically stratified sedimentary sequences in the upper crust are mechanically heterogeneous. It has been long known that the mechanical properties of the stratigraphic succession influence the resultant structural architecture of the fold and thrust belts. The rheologically weak stratigraphic horizon generally contains the basal décollement due to its relatively low frictional strength. Hence, any vertical or lateral change in frictional property may control the effective strength and the positions of the décollement in space. In the present study, we used non-cohesive sand and mica dust layers as analogue materials for simulating the strong and weak layers respectively in the sandbox apparatus. Experimental results with relatively high basal friction (μ=0.46) show that such a weak horizon at a shallow depth perturbs the sequential thrust progression, and forces a thrust to localize in the close vicinity of the weak zone, splaying from the basal décollement. Eventually, the weak horizon starts to deform by accumulating shear strain along it, leading to a new detachment at a shallow depth. At this stage, entire shallow part of the sandpack lying over the weak layer is deformed by closely-spaced imbricate thrusts. Extrapolating the model results to the natural prototype, we propose that the unmetamorphosed coal-shale-sand stone-black shale horizons below the Siwaliks as a key mechanical attribute to the basal décollement shift and the consequent flat-ramp-flat geometry of the MHT.

  5. A model for the selective amplification of spatially coherent waves in a centrifugal compressor on the verge of rotating stall

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A simple model for the stability zones of a low speed centrifugal compressor is developed, with the goal of understanding the driving mechanism for the changes in stalling behavior predicted for, and observed in, the Purdue Low Speed Centrifugal Research Compressor Facility. To this end, earlier analyses of rotating stall suppression in centrifugal compressors are presented in a reduced form that preserves the essential parameters of the model that affect the stalling behavior of the compressor. The model is then used to illuminate the relationship between compressor geometry, expected mode shape, and regions of amplification for weak waves which are indicative of the susceptibility of the system to rotating stall. The results demonstrate that increasing the stagger angle of the diffuser vanes, and consequently the diffusion path length, results in the compressor moving towards a condition where higher-order spatial modes are excited during stall initiation. Similarly, flow acceleration in the diffuser section caused by an increase in the number of diffuser vanes also results in the excitation of higher modes.

  6. Development and assessment of an efficient vadose zone module solving the 1D Richards' equation and including root extraction by plants

    NASA Astrophysics Data System (ADS)

    Varado, N.; Braud, I.; Ross, P. J.

    2006-05-01

    From the non iterative numerical method proposed by [Ross, P.J., 2003. Modeling soil water and solute transport—fast, simplified numerical solutions. Agronomy Journal 95, 1352-1361] for solving the 1D Richards' equation, an unsaturated zone module for large scale hydrological model is developed by the inclusion of a root extraction module and a formulation of interception. Two root water uptake modules, first proposed by [Lai, C.-T. and Katul, G., 2000. The dynamic role of rott-water uptake in coupling potential to actual transpiration. Adv. Water Res. 23: 427-439; Li, K.Y., De Jong, R. and Boisvert, J.B., 2001. An exponential root-water-uptake model with water stress compensation. J. Hydrol. 252: 189-204], were included as the sink term in the Richards' equation. They express root extraction as a linear function of potential transpiration and take into account water stress and compensation mechanism allowing water to be extracted in wetter layers. The vadose zone module is tested in a systematic way with synthetic data sets covering a wide range of soil characteristics, climate forcing, and vegetation cover. A detailed SVAT model providing an accurate solution of the coupled heat and water transfer in the soil and the surface energy balance is used as a reference. The accuracy of the numerical solution using only the SVAT soil module, and the loss of accuracy when using a potential evapotranspiration instead of solving the energy budget are both investigated. The vadose zone module is very accurate with errors of less than a few percent for cumulative transpiration. Soil evaporation is less accurately simulated as it leads to a systematic underestimation of soil evaporation amounts. The [Lai, C.-T. and Katul, G., 2000. The dynamic role of rott-water uptake in coupling potential to actual transpiration. Adv. Water Res. 23: 427-439] module is not adapted for sandy soils, due to a weakness in the compensation term formulation. When using a potential evapotranspiration instead of the surface energy balance, we evidenced a difference in partitioning the energy between the soil and the vegetation. A Beer-Lambert law is not able to take into account the complex interactions at the soil-vegetation-atmopshere interface. However, under field conditions, the accuracy of the vadose zone module is satisfactory provided that a correct crop coefficient could be defined. As a conclusion the numerical method proposed by [Ross, P.J., 2003. Modeling soil water and solute transport—fast, simplified numerical solutions. Agronomy Journal 95, 1352-1361] coupled with the [Li, K.Y., De Jong, R. and Boisvert, J.B., 2001. An exponential root-water-uptake model with water stress compensation. J. Hydrol. 252: 189-204] root extraction module provides an efficient and accurate solution for inclusion as a physically-based infiltration-evapotranspiration module into larger scale watershed models.

  7. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  8. Reaction-induced rheological weakening enables oceanic plate subduction.

    PubMed

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  9. HSDP II Drill Core: Preliminary Rock Strength Results and Implications to Flank Stability, Mauna Kea Volcano

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2004-12-01

    Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.

  10. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    PubMed

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  11. The 2012 August 27 Mw7.3 El Salvador earthquake: expression of weak coupling on the Middle America subduction zone

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor; LaFemina, Peter C.; DeMets, Charles; Hernandez, Douglas Antonio; Mattioli, Glen S.; Rogers, Robert; Rodriguez, Manuel; Marroquin, Griselda; Tenorio, Virginia

    2015-09-01

    Subduction zones exhibit variable degrees of interseismic coupling as resolved by inversions of geodetic data and analyses of seismic energy release. The degree to which a plate boundary fault is coupled can have profound effects on its seismogenic behaviour. Here we use GPS measurements to estimate co- and post-seismic deformation from the 2012 August 27, Mw7.3 megathrust earthquake offshore El Salvador, which was a tsunami earthquake. Inversions of estimated coseismic displacements are in agreement with published seismically derived source models, which indicate shallow (<20 km depth) rupture of the plate interface. Measured post-seismic deformation in the first year following the earthquake exceeds the coseismic deformation. Our analysis indicates that the post-seismic deformation is dominated by afterslip, as opposed to viscous relaxation, and we estimate a post-seismic moment release one to eight times greater than the coseismic moment during the first 500 d, depending on the relative location of coseismic versus post-seismic slip on the plate interface. We suggest that the excessive post-seismic motion is characteristic for the El Salvador-Nicaragua segment of the Central American margin and may be a characteristic of margins hosting tsunami earthquakes.

  12. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.

  13. Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya

    2018-04-01

    On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.

  14. Integration of COCORP deep reflection and magnetic anomaly analysis in the southeastern United States: Implications for origin of the Brunswick and East Coast magnetic anomalies: Alternative interpretation and reply

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Klitgord, Kim D.; Tréhu, Anne M.; McBride, John H.; Nelson, K. D.

    1990-01-01

    Integration of magnetic anomaly analysis with COCORP deep reflection data from the southeastern United States provides three new constraints on the interpretation of the Brunswick and East Coast magnetic anomalies, as well as on the reflection data. These are as follows. (1) The source of the Brunswick anomaly lies within the deep crust. This anomaly is not caused by a Mesozoic rift basin, as proposed by some workers. (2) A simple, seaward-dipping, high- susceptibility slab model can explain both the Brunswick and East Coast magnetic anomalies. The along-strike change in character of the two anomalies results largely from a change in azimuth of the source body. (3) Beneath the southeastern United States, this source body dips south, lies immediately on the south flank of the prominent southward-dipping reflective zone revealed on COCORP surveys, and was previously associated with the Alleghanian suture between North America and Africa. These results imply that a dipping, highly magnetized zone in the upper plate of the Alleghanian suture is responsible for both the Brunswick and East Coast magnetic anomalies. The high- susceptibility material responsible for these anomalies might be mafic lower continental or oceanic crust thrust upward during Alleghanian continental collision, or mafic igneous material intruded into the upper plate of the suture zone during subsequent Mesozoic rifting, or both. The latter hypothesis implies that the Alleghanian suture acted, as a zone of weakness (a repository ?) which was reactivated to control the site of ultimate Atlantic rifting and possibly initial sea-floor spreading.

  15. Experimental constraints and theoretical bases for microstructural damage in plate boundary shear zones

    NASA Astrophysics Data System (ADS)

    Skemer, P. A.; Cross, A. J.; Bercovici, D.

    2016-12-01

    (Ultra)mylonites from plate boundary shear zones are characterized by severe grain-size reduction and well-mixed mineral phases. The evolution from relatively undeformed tectonite protoliths to highly deformed (ultra)mylonites via the formation of new grain and phase boundaries is described as microstructural `damage.' Microstructural damage is important for two reasons: grain-size reduction is thought to result in significant rheological weakening, while phase mixing inhibits mechanical recovery and preserves the zone of weakness to be reactivated repeatedly throughout the tectonic cycle. Grain-size reduction by dynamic recrystallization has been studied extensively in both geologic and engineered materials, yet the progressive mixing of mineral phases during high pressure/temperature shear - the other essential element of damage or mylonitization - is not well understood. In this contribution we present new experimental results and theory related to two distinct phase mixing processes. First, we describe high strain torsion experiments on calcite and anhydrite mixtures and a simple geometric mixing model related to the stretching and thinning of monophase domains. Second, we describe a grain-switching mechanism that is driven by the surface-tension driven migration of newly formed interphase triple junctions. Unlike dynamic recrystallization, which occurs at relatively small strains, both phase mixing mechanisms described here appear to require extremely large strains, a prediction that is consistent with geologic observations. These data suggest that ductile shear zones experience long, transient intervals of microstructural evolution during which rheology is not at steady state. Microstructural damage may be interpreted as the product of several interconnected physical processes, which are collectively essential to the preservation of long-lived, Earth-like plate tectonics.

  16. The Ms = 8 tensional earthquake of 9 December 1950 of northern Chile and its relation to the seismic potential of the region

    NASA Astrophysics Data System (ADS)

    Kausel, Edgar; Campos, Jaime

    1992-08-01

    The only known great ( Ms = 8) intermediate depth earthquake localized downdip of the main thrust zone of the Chilean subduction zone occurred landward of Antofagasta on 9 December 1950. In this paper we determine the source parameters and rupture process of this shock by modeling long-period body waves. The source mechanism corresponds to a downdip tensional intraplate event rupturing along a nearly vertical plane with a seismic moment of M0 = 1 × 10 28 dyn cm, of strike 350°, dip 88°, slip 270°, Mw = 7.9 and a stress drop of about 100 bar. The source time function consists of two subevents, the second being responsible for 70% of the total moment release. The unusually large magnitude ( Ms = 8) of this intermediate depth event suggests a rupture through the entire lithosphere. The spatial and temporal stress regime in this region is discussed. The simplest interpretation suggests that a large thrust earthquake should follow the 1950 tensional shock. Considering that the historical record of the region does not show large earthquakes, a 'slow' earthquake can be postulated as an alternative mechanism to unload the thrust zone. A weakly coupled subduction zone—within an otherwise strongly coupled region as evidenced by great earthquakes to the north and south—or the existence of creep are not consistent with the occurrence of a large tensional earthquake in the subducting lithosphere downdip of the thrust zone. The study of focal mechanisms of the outer rise earthquakes would add more information which would help us to infer the present state of stress in the thrust region.

  17. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  18. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.

  19. Analyzing the Implications of Climate Data on Plant Hardiness Zones for Green Infrastructure Planning: Case Study of Knoxville, Tennessee and Surrounding Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Linda M.; Omitaomu, Olufemi A.; Parish, Esther S.

    Downscaled climate data for Knoxville, Tennessee and the surrounding region were used to investigate future changing Plant Hardiness Zones due to climate change. The methodology used is the same as the US Department of Agriculture (USDA), well-known for their creation of the standard Plant Hardiness Zone map used by gardeners and planners. USDA data were calculated from observed daily data for 1976–2005. The modeled climate data for the past is daily data from 1980-2005 and the future data is projected for 2025–2050. The average of all the modeled annual extreme minimums for each time period of interest was calculated. Eachmore » 1 km raster cell was placed into zone categories based on temperature, using the same criteria and categories of the USDA. The individual models vary between suggesting little change to the Plant Hardiness Zones to suggesting Knoxville moves into the next two Hardiness Zones. But overall, the models suggest moving into the next warmer Zone. USDA currently has the Knoxville area categorized as Zone 7a. None of the Zones calculated from the climate data models placed Knoxville in Zone 7a for the similar time period. The models placed Knoxville in a cooler Hardiness Zone and projected the area to increase to Zone 7. The modeled temperature data appears to be slightly cooler than the actual temperature data and this may explain the zone discrepancy. However, overall Knoxville is projected to increase to the next warmer Zone. As the modeled data has Knoxville, overall, moving from Zone 6 to Zone 7, it can be inferred that Knoxville, Tennessee may increase from their current Zone 7 to Zone 8.« less

  20. Constraints on Friction, Dilatancy, Diffusivity, and Effective Stress From Low-Frequency Earthquake Rates on the Deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David

    2018-01-01

    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.

  1. A weakly-constrained data assimilation approach to address rainfall-runoff model structural inadequacy in streamflow prediction

    NASA Astrophysics Data System (ADS)

    Lee, Haksu; Seo, Dong-Jun; Noh, Seong Jin

    2016-11-01

    This paper presents a simple yet effective weakly-constrained (WC) data assimilation (DA) approach for hydrologic models which accounts for model structural inadequacies associated with rainfall-runoff transformation processes. Compared to the strongly-constrained (SC) DA, WC DA adjusts the control variables less while producing similarly or more accurate analysis. Hence the adjusted model states are dynamically more consistent with those of the base model. The inadequacy of a rainfall-runoff model was modeled as an additive error to runoff components prior to routing and penalized in the objective function. Two example modeling applications, distributed and lumped, were carried out to investigate the effects of the WC DA approach on DA results. For distributed modeling, the distributed Sacramento Soil Moisture Accounting (SAC-SMA) model was applied to the TIFM7 Basin in Missouri, USA. For lumped modeling, the lumped SAC-SMA model was applied to nineteen basins in Texas. In both cases, the variational DA (VAR) technique was used to assimilate discharge data at the basin outlet. For distributed SAC-SMA, spatially homogeneous error modeling yielded updated states that are spatially much more similar to the a priori states, as quantified by Earth Mover's Distance (EMD), than spatially heterogeneous error modeling by up to ∼10 times. DA experiments using both lumped and distributed SAC-SMA modeling indicated that assimilating outlet flow using the WC approach generally produce smaller mean absolute difference as well as higher correlation between the a priori and the updated states than the SC approach, while producing similar or smaller root mean square error of streamflow analysis and prediction. Large differences were found in both lumped and distributed modeling cases between the updated and the a priori lower zone tension and primary free water contents for both WC and SC approaches, indicating possible model structural deficiency in describing low flows or evapotranspiration processes for the catchments studied. Also presented are the findings from this study and key issues relevant to WC DA approaches using hydrologic models.

  2. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Distributed fault displacements -

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Tonagi, M.

    2016-12-01

    Distributed fault displacements in Probabilistic Fault Displace- ment Analysis (PFDHA) have an important rule in evaluation of important facilities such as Nuclear Installations. In Japan, the Nu- clear Installations should be constructed where there is no possibility that the displacement by the earthquake on the active faults occurs. Youngs et al. (2003) defined the distributed fault as displacement on other faults or shears, or fractures in the vicinity of the principal rup- ture in response to the principal faulting. Other researchers treated the data of distribution fault around principal fault and modeled according to their definitions (e.g. Petersen et al., 2011; Takao et al., 2013 ). We organized Japanese fault displacements data and constructed the slip-distance relationship depending on fault types. In the case of reverse fault, slip-distance relationship on the foot-wall indicated difference trend compared with that on hanging-wall. The process zone or damaged zone have been studied as weak structure around principal faults. The density or number is rapidly decrease away from the principal faults. We contrasted the trend of these zones with that of distributed slip-distance distributions. The subsurface FEM simulation have been carried out to inves- tigate the distribution of stress around principal faults. The results indicated similar trend compared with the distribution of field obser- vations. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.

  3. Input clustering in the normal and learned circuits of adult barn owls.

    PubMed

    McBride, Thomas J; DeBello, William M

    2015-05-01

    Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95-99% of contacts resided within clusters (<10-20 μm from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60-250 d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Precipitation-generated oscillations in open cellular cloud fields.

    PubMed

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  5. Axon collaterals projection from nucleus reticularis tegmenti pontis onto the cerebellar paramedian lobule in the rabbit: a fluorescent double labelling study.

    PubMed

    Mierzejewska-Krzyzowska, B

    1999-01-01

    Double labelling method with retrograde transport of fluorescent tracers (Fast Blue; FB and Diamidino Yellow; DY) was employed in the rabbit to investigate whether neurones of the nucleus reticularis tegmenti pontis (NRTP) give off axon collaterals to the cerebellar paramedian lobule (PML) of both sides. Following injections to various regions of the homotopic or heterotopic sublobules of the left (FB) and right (DY) PML cortex, distribution of double labelled neurones within NRTP was analyzed. NRTP of the rabbit consists of a medial principal part (the nucleus papillioformis: PLF) and smaller lateral part (the processus tegmentosus lateralis: PTL). Within PLF three subdivisions are to be distinguished: the dorsomedial part -- zone A, the main part -- zone B and the ventrolateral part -- zone C. The present study in the rabbit indicated collateral projections from neurones in some NRTP regions to the both PML. The cells of origin of these projections were located prominently through the rostrocaudal extent of zone B. Projections from zone A were sparse and those from zone C were absent. Moreover, a weak projection arose mainly from the caudal aspect of PTL. It is concluded that the rostral (e and f) and middle (c and d) sublobules are the main targets for the NRTP-PML branching projections.

  6. Breakdown of middle lamella pectin by (●) OH during rapid abscission in Azolla.

    PubMed

    Yamada, Yoshiya; Koibuchi, Mizuki; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2015-08-01

    Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by (●) OH is involved. Experimentally generated (●) OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that (●) OH rapidly and selectively dissolved a well-developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with (●) OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of (●) OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that (●) OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well-developed middle lamella, a unique structure, which is sensitive to the attack of (●) OH, might be needed. © 2015 John Wiley & Sons Ltd.

  7. New Mexico structural zone - An analogue of the Colorado mineral belt

    USGS Publications Warehouse

    Sims, P.K.; Stein, H.J.; Finn, C.A.

    2002-01-01

    Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia-Manzano Mountains)-where basement rocks were exposed in Precambrian-cored uplifts-indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous-Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous-Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico. The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks. ?? 2002 Published by Elsevier Science B.V.

  8. Sonic logging for detecting the excavation disturbed and fracture zones

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chang, Y. F.; Liu, J. W.; Tseng, C. W.

    2017-12-01

    This study presents a new sonic logging method to detect the excavation disturbed zone (EDZ) and fracture zones in a tunnel. The EDZ is a weak rock zone where its properties and conditions have been changed by excavation, which results such as fracturing, stress redistribution and desaturation in this zone. Thus, the EDZ is considered as a physically less stable and could form a continuous and high-permeable pathway for groundwater flow. Since EDZ and fracture zone have the potential of affecting the safety of the underground openings and repository performance, many studies were conducted to characterize the EDZ and fracture zone by different methods, such as the rock mass displacements and strain measurements, seismic refraction survey, seismic tomography and hydraulic test, etc. In this study, we designed a new sonic logging method to explore the EDZ and fracture zone in a tunnel at eastern Taiwan. A high power and high frequency sonic system was set up which includes a two hydrophones pitch-catch technique with a common-offset immersed in water-filled uncased wells and producing a 20 KHz sound to scan the well rock. Four dominant sonic events were observed in the measurements, they are refracted P- and S-wave along the well rock, direct water wave and the reverberation in the well water. Thus the measured P- and S-wave velocities, the signal-to-noise ratio of the refraction and the amplitudes of reverberation along the well rock were used as indexes to determine the EDZ and fracture zone. Comparing these indexes with core samples shows that significant changes in the indexes are consistent with the EDZ and fracture zone. Thus, the EDZ and fracture zone can be detected by this new sonic method conclusively.

  9. Block structure and geodynamics of the continental lithosphere on plate boundaries

    NASA Astrophysics Data System (ADS)

    Gatinsky, Yu. G.; Prokhorova, T. V.; Romanyuk, T. V.; Vladova, G. L.

    2009-04-01

    Division of the Earth lithosphere on large plates must be considered only as the first and most general approximation in its structure hierarchy. Some transit zones or difuuse boundaries after other authors take place in lithosphere plate boundaries. The tectonic tension of plate interaction is transferred and relaxed within these zones, which consist of blocks limited by seismoactive faults. Vectors of block horizontal displacements often don't coincide with vectors of main plates and change together with changing block rigidity. As a rule the intensity the seismic energy at plate and transit zone boundaries decreases linearly with distancing from these boundaries and correlates with decreasing of velocities of block horizontal displacements. But sometimes the maximum of the energy manifestation takes place in inner parts of transit zones. Some relatively tight interblock zones established in central and east Asia are the most seismically active. They limited such blocks as Pamir, Tien Shan, Bayanhar, Shan, Japanese-Korean, as well as the north boundary of the Indian Plate. A seismic energy intensity of these zones can be compared with the energy of Pacific subduction zones. It is worthy to note that the majority catastrophic earthquakes took place in Central Asia just within interblock zones. A level of block displacement is situated mainly in the bottom or inside the Earth crust, more rare in the lithosphere mantle. Blocks with the most thick lithosphere roots (SE China, Amurian) are the most rigid and weakly deformed.

  10. Analysis of weak interactions and Eotvos experiments

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1978-01-01

    The intermediate-vector-boson model is preferred over the current-current model as a basis for calculating effects due to weak self-energy. Attention is given to a possible violation of the equivalence principle by weak-interaction effects, and it is noted that effects due to weak self-energy are at least an order of magnitude greater than those due to the weak binding energy for typical nuclei. It is assumed that the weak and electromagnetic energies are independent.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep; Lund, Mikkel N.; Aguirre, Víctor Silva

    Acoustic glitches are regions inside a star where the sound speed or its derivatives change abruptly. These leave a small characteristic oscillatory signature in the stellar oscillation frequencies. With the precision achieved by Kepler seismic data, it is now possible to extract these small amplitude oscillatory signatures, and infer the locations of the glitches. We perform glitch analysis for all the 66 stars in the Kepler seismic LEGACY sample to derive the locations of the base of the envelope convection zone (CZ) and the helium ionization zone. The signature from helium ionization zone is found to be robust for allmore » stars in the sample, whereas the CZ signature is found to be weak and problematic, particularly for relatively massive stars with large errorbars on the oscillation frequencies. We demonstrate that the helium glitch signature can be used to constrain the properties of the helium ionization layers and the helium abundance.« less

  12. Band gaps in periodically magnetized homogeneous anisotropic media

    NASA Astrophysics Data System (ADS)

    Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.

    2010-11-01

    In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.

  13. Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.

    2004-01-01

    Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.

  14. Fault creep and strain partitioning in Trinidad-Tobago: Geodetic measurements, models, and origin of creep

    NASA Astrophysics Data System (ADS)

    La Femina, P.; Weber, J. C.; Geirsson, H.; Latchman, J. L.; Robertson, R. E. A.; Higgins, M.; Miller, K.; Churches, C.; Shaw, K.

    2017-12-01

    We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then by modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic (interseimic = between major earthquakes) fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and over-pressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure, as an alternative or in addition to weak mineral phases in the fault zone, may thus cause the CRF fault creep and the lack of seismicity that we observe.

  15. Root strength changes after logging in southeast Alaska

    Treesearch

    R. R. Ziemer; D. N. Swanston

    1977-01-01

    Abstract - A crucial factor in the stability of steep forested slopes is the role of plant roots in maintaining the shear strength of soil mantles. Roots add strength to the soil by vertically anchoring through the soil mass into failures in the bedrock and by laterally tying the slope together across zones of weakness or instability. Once the covering vegetation is...

  16. Earthquakes initiation and thermal shear instability in the Hindu Kush intermediate depth nest

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Prieto, German; Rivera, Efrain; Ruiz, Sergio

    2016-02-01

    Intermediate depth earthquakes often occur along subducting lithosphere, but despite their ubiquity the physical mechanism responsible for promoting brittle or brittle-like failure is not well constrained. Large concentrations of intermediate depth earthquakes have been found to be related to slab break-off, slab drip, and slab tears. The intermediate depth Hindu Kush nest is one of the most seismically active regions in the world and shows the correlation of a weak region associated with ongoing slab detachment process. Here we study relocated seismicity in the nest to constraint the geometry of the shear zone at the top of the detached slab. The analysis of the rupture process of the Mw 7.5 Afghanistan 2015 earthquake and other several well-recorded events over the past 25 years shows an initially slow, highly dissipative rupture, followed by a dramatic dynamic frictional stress reduction and corresponding large energy radiation. These properties are typical of thermal driven rupture processes. We infer that thermal shear instabilities are a leading mechanism for the generation of intermediated-depth earthquakes especially in presence of weak zone subjected to large strain accumulation, due to ongoing detachment process.

  17. Macrophage migration inhibitory factor in lung tissue of idiopathic pulmonary fibrosis patients.

    PubMed

    Olivieri, Carmela; Bargagli, Elena; Inghilleri, Simona; Campo, Ilaria; Cintorino, Marcella; Rottoli, Paola

    2016-06-01

    Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disorder characterized by a pattern of Usual Interstitial Pneumonia where the presence of fibroblastic foci is the hallmark of the disease. In the present study, we analyzed the migration inhibitory factor (MIF) expression in lung tissue of IPF patients compared with healthy controls and organizing pneumonia (OP) patients focusing into MIF potential role in fibroblastic foci development. The immunohistochemical analysis was performed in 10 IPF patients (7 male), 3 OP patients (2 male), and 3 healthy controls (all male) using the streptavidin-biotin method (Dako). In IPF samples, MIF resulted overexpressed in the areas of active fibrosis and, in particular, in the alveolar epithelium, bronchiolar epithelium, and in the peripheral zones of fibroblastic foci. Bronchiolar epithelium from organizing pneumonia patients resulted only weakly positive for MIF while no evidence of MIF expression was reported for alveolar epithelium. In the control subject group, MIF was unexpressed except for a weak presence in the bronchiolar epithelium. In conclusion, MIF is a pleiotropic cytokine involved in the pathogenesis of IPF being mainly expressed in the areas of remodeling and active fibrosis, in bronchiolar and alveolar epithelium, and in the peripheral zone of fibroblastic foci.

  18. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    USGS Publications Warehouse

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a segment of the Roberts Mountain thrust front, which bridges the southern ends of the trends. This pattern appears to delineate two well-defined, sub-parallel, northwest?southeast-trending crustal-scale structural zones. These features, here termed the ?Carlin? and ?Cortez? structural zones, are believed to control the regional-scale distribution of the sedimentary rock-hosted occurrences. Mineralizing processes were focused along these structural zones and significant ore deposits exist where they intersect other tectonic zones, favorable host rock-types, and (or) where appropriate physio-chemical conditions were present. The origin and age of the Carlin and Cortez structural zones are not well constrained, however, they are considered to be transcurrent features representing a long-lived, deep-crustal or mantle-rooted zone of weakness. Areas of elevated volcanic rock-hosted mineral potential are principally distributed along two broad and diffuse belts that trend (1) northwest-southeast across southwestern Nevada, parallel to the Sierra Nevada, and (2) northeast-southwest across northern Nevada, extending diagonally from the Sierra Nevada to southern Idaho. The first belt corresponds to the Walker Lane shear zone, a wide region of complex strike-slip faulting. The second, here termed the ?Humboldt shear(?) zone?, may represent a structural zone of transcurrent movement. Together, the Walker Lane and Humboldt shear(?) zones are believed to control the regional-scale distribution of volcanic rock-hosted occurrences. Volcanic rock-hosted mineralization was closely tied to the southward and westward migration of Tertiary magmatism across the region (which may have been mantle plume-driven). Both magmatic and mineralizing processes were localized and concentrated along these structural zones. The Humboldt shear(?) zone may have also affected the distribution of sedimentary rock-hosted mineralization along the Battle Mountain?Eureka (C

  19. Hummocky moraine: sedimentary record of stagnant Laurentide Ice Sheet lobes resting on soft beds

    NASA Astrophysics Data System (ADS)

    Eyles, N.; Boyce, J. I.; Barendregt, R. W.

    1999-02-01

    Over large areas of the western interior plains of North America, hummocky moraine (HM) formed at the margins of Laurentide Ice Sheet (LIS) lobes that flowed upslope against topographic highs. Current depositional models argue that HM was deposited supraglacially from stagnant debris-rich ice (`disintegration moraine'). Across southern Alberta, Canada, map and outcrop data show that HM is composed of fine-grained till as much as 25 m thick containing rafts of soft, glaciotectonized bedrock and sediment. Chaotic, non-oriented HM commonly passes downslope into weakly-oriented hummocks (`washboard moraine') that are transitional to drumlins in topographic lows; the same subsurface stratigraphy and till facies is present throughout. These landforms, and others such as doughnut-like `rim ridges', flat-topped `moraine plateaux' and linear disintegration ridges, are identified as belonging to subglacially-deposited soft-bed terrain. This terrain is the record of ice lobes moving over deformation till derived from weakly-lithified, bentonite-rich shale. Drumlins record continued active ice flow in topographic lows during deglaciation whereas HM was produced below the outer stagnant margins of ice lobes by gravitational loading (`pressing') of remnant dead ice blocks into wet, plastic till. Intervening zones of washboard moraine mark the former boundary of active and stagnant ice and show `hybrid' drumlins whose streamlined form has been altered by subglacial pressing (` humdrums') below dead ice. The presence of hummocky moraine over a very large area of interior North America provides additional support for glaciological models of a soft-bedded Laurentide Ice Sheet.

  20. Contamination of the asteroid belt by primordial trans-Neptunian objects.

    PubMed

    Levison, Harold F; Bottke, William F; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis

    2009-07-16

    The main asteroid belt, which inhabits a relatively narrow annulus approximately 2.1-3.3 au from the Sun, contains a surprising diversity of objects ranging from primitive ice-rock mixtures to igneous rocks. The standard model used to explain this assumes that most asteroids formed in situ from a primordial disk that experienced radical chemical changes within this zone. Here we show that the violent dynamical evolution of the giant-planet orbits required by the so-called Nice model leads to the insertion of primitive trans-Neptunian objects into the outer belt. This result implies that the observed diversity of the asteroid belt is not a direct reflection of the intrinsic compositional variation of the proto-planetary disk. The dark captured bodies, composed of organic-rich materials, would have been more susceptible to collisional evolution than typical main-belt asteroids. Their weak nature makes them a prodigious source of micrometeorites-sufficient to explain why most are primitive in composition and are isotopically different from most macroscopic meteorites.

  1. Experimental monitoring and numerical study of pesticide (carbofuran) transfer in an agricultural soil at a field site

    NASA Astrophysics Data System (ADS)

    Hmimou, Abderrahim; Maslouhi, Abdellatif; Tamoh, Karim; Candela, Lucila

    2014-09-01

    We studied the transport of a pesticide at field scale, namely carbofuran molecule, which is known for its high mobility, especially in sandy soils with high hydraulic conductivity and low organic matter. To add to our knowledge of the future of this high-mobility molecule in this type of soils, we developed a mechanistic numerical model allowing the simulation of hydric and solute transfers (bromide and carbofuran) in the soil. We carried out this study in an agricultural plot in the region of Mnasra in Morocco. Confrontation of the measured and simulated values allowed the calibration of the parameters of hydric transfer and carbofuran. The developed model accurately reproduces the measured values. Despite a weak irrigation and precipitation regime, carbofuran was practically leached beyond the root zone. Prospective simulations show that under a more important irrigation regime, carbofuran reaches a 100-cm depth, whereas it does not exceed 60 cm under a deficit regime.

  2. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-08-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and alunimum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3–0.8 displacements per atom (dpa) at temperatures of 335–355°C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a/2< 111 > or a< 100 > Burgers vectors. Weak composition dependencies were observedmore » and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Here, the results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.« less

  3. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.

    2017-11-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.

  4. Imaging high-pressure rock exhumation along the arc-continent suture in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Brown, Dennis; Feng, Kuan-Fu; Wu, Yih-Min; Huang, Hsin-Hua

    2015-04-01

    Imaging high-pressure rock exhumation in active tectonic settings is considered to be one of the important observations that could potentially help to move forward the understanding of how this process works. Petrophysical analyses carried out along a high velocity zone imaged by seismic travel time tomography along the suture zone between the actively colliding Luzon Arc and the southeastern margin of Eurasia in Taiwan suggests that high-pressure rocks are being exhumed from at least a depth of 50 km below the arc-continent suture to the shallow subsurface where they coincide with an outcropping tectonic mélange called the Yuli Belt. The Yuli Belt comprises mainly greenschist facies quartz-mica schist, with lesser metabasite, metamorphosed mantle fragments and, importantly, minor blueschist. Modeling of published data bases of measured seismic velocities for a large suite of rocks suggests that all of the Yuli belt lithologies fit well with the measured Vp, Vs, and Vp/Vs at ambient pressures and temperatures (a 20 oC/km geotherm is used) from 10 to about 20 km depth. With the exception of hornblendite, mantle rocks need 30% to 40 % serpentinization to approximate the in situ range of Vp and and Vs at these depths. From about 20 km to 30 km, most continental crust and volcanic arc lithologies move out of the range of velocities measured by the tomography model at these depths. Blueschist (including the calculated Vp and Vs for the Yuli Belt samples), pyroxenite, and harzburgite, lherzolite, and dunite with around 20% to 30% serpentinization now enter into the range of velocities for these depths. From 40 km to 50 km depth, the mantle rocks pyroxenite, and weakly to unserpentinized harzburgite, lherzolite, and dunite, together with mafic eclogite velocities best fit the range of Vp, Vs and Vp/Vs at these depths. Seismicity along the arc-continent suture, the upper bounding fault of the high velocity zone examined here, indicate that it is a moderately oblique-slip thrust. The western boundary is a near vertical, sharp velocity gradient that, in the upper 10 to 15 km appears to link with a sinistral strike-slip fault. The high velocity zone itself is very seismically active down to a depth of 50 km. Focal mechanisms determined from within the high velocity zone are mostly strike-slip, oblique-slip, and extensional, with rare thrust mechanisms.

  5. Correlation analysis of air pollutant index levels and dengue cases across five different zones in Selangor, Malaysia.

    PubMed

    Thiruchelvam, Loshini; Dass, Sarat C; Zaki, Rafdzah; Yahya, Abqariyah; Asirvadam, Vijanth S

    2018-05-07

    This study investigated the potential relationship between dengue cases and air quality - as measured by the Air Pollution Index (API) for five zones in the state of Selangor, Malaysia. Dengue case patterns can be learned using prediction models based on feedback (lagged terms). However, the question whether air quality affects dengue cases is still not thoroughly investigated based on such feedback models. This work developed dengue prediction models using the autoregressive integrated moving average (ARIMA) and ARIMA with an exogeneous variable (ARIMAX) time series methodologies with API as the exogeneous variable. The Box Jenkins approach based on maximum likelihood was used for analysis as it gives effective model estimates and prediction. Three stages of model comparison were carried out for each zone: first with ARIMA models without API, then ARIMAX models with API data from the API station for that zone and finally, ARIMAX models with API data from the zone and spatially neighbouring zones. Bayesian Information Criterion (BIC) gives goodness-of-fit versus parsimony comparisons between all elicited models. Our study found that ARIMA models, with the lowest BIC value, outperformed the rest in all five zones. The BIC values for the zone of Kuala Selangor were -800.66, -796.22, and -790.5229, respectively, for ARIMA only, ARIMAX with single API component and ARIMAX with API components from its zone and spatially neighbouring zones. Therefore, we concluded that API levels, either temporally for each zone or spatio- temporally based on neighbouring zones, do not have a significant effect on dengue cases.

  6. Constitutive relationships and physical basis of fault strength due to flash heating

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Goldsby, D.L.

    2008-01-01

    We develop a model of fault strength loss resulting from phase change at asperity contacts due to flash heating that considers a distribution of contact sizes and nonsteady state evolution of fault strength with displacement. Laboratory faulting experiments conducted at high sliding velocities, which show dramatic strength reduction below the threshold for bulk melting, are well fit by the model. The predicted slip speed for the onset of weakening is in the range of 0.05 to 2 m/s, qualitatively consistent with the limited published observations. For this model, earthquake stress drops and effective shear fracture energy should be linearly pressure-dependent, whereas the onset speed may be pressure-independent or weakly pressure-dependent. On the basis of the theory, flash weakening is expected to produce large dynamic stress drops, small effective shear fracture energy, and undershoot. Estimates of the threshold slip speed, stress drop, and fracture energy are uncertain due to poor knowledge of the average ontact dimension, shear zone thickness and gouge particle size at seismogenic depths. Copyright 2008 by the American Geophysical Union.

  7. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes.

  8. Assessment of the dynamics of urbanized areas by remote sensing

    NASA Astrophysics Data System (ADS)

    Yeprintsev, S. A.; Klevtsova, M. A.; Lepeshkina, L. A.; Shekoyan, S. V.; Voronin, A. A.

    2018-01-01

    This research looks at the results of a study of spatial ecological zoning of urban territories using the NDVI-analysis of actual multi-channel satellite images from Landsat-7 and Landsat-8 in the Voronezh region for the period 2001 to 2016. The results obtained in the course of interpretation of space images and processing of statistical information compiled in the GIS environment “Ecology of cities Voronezh region” on the basis of which carried out a comprehensive ecological zoning of the studied urbanized areas. The obtained data on the spatial classification of urban and suburban areas, the peculiarities of the dynamics of weakly and strongly anthropogenically territories, hydrological features and vegetation.

  9. Microstructural and rheological evolution of calcite mylonites during shear zone thinning: Constraints from the Mount Irene shear zone, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Negrini, Marianne; Smith, Steven A. F.; Scott, James M.; Tarling, Matthew S.

    2018-01-01

    Layers of calc-mylonite in the Mount Irene shear zone, Fiordland, New Zealand, show substantial variations in thickness due to deflection of the shear zone boundaries around wall rock asperities. In relatively thick parts (c. 2.6 m) of the shear zone, calcite porphyroclasts are internally strained, contain abundant subgrain boundaries and have a strong shape preferred orientation (SPO) and crystallographic preferred orientation (CPO), suggesting that deformation occurred mainly by dislocation creep involving subgrain-rotation recrystallization. In relatively thin parts (c. 1.5 m) of the shear zone, aggregates of fine-grained recrystallized calcite surrounding flattened porphyroclasts have a weak SPO and CPO, and contain polygonal calcite grains with low degrees of internal misorientation. The recrystallized aggregates also contain microstructures (e.g. grain quadruple junctions, randomized misorientation axes) similar to those reported for neighbor-switching processes during grain-boundary sliding. Comparison of subgrain sizes in the porphyroclasts to published grain-size differential-stress relationships indicates that stresses and strain rates were substantially higher in relatively thin parts of the shear zone. The primary microstructural response to higher stresses and strain rates was an increase in the amount of recrystallization to produce aggregates that deformed by grain-boundary sliding. However, even after the development of interconnected networks of recrystallized grains, dislocation creep by subgrain-rotation recrystallization continued to occur within porphyroclasts. This behavior suggests that the bulk rheology of shear zones undergoing thinning and thickening can be controlled by concomitant grain-size insensitive and grain-size sensitive mechanisms. Overall, our observations show that shear zone thickness variations at constant P-T can result in highly variable stresses and strain rates, which in turn modifies microstructure, deformation mechanism and shear zone rheology.

  10. Recent Progress in Understanding the Sun's Magnetic Dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David. H.

    2004-01-01

    100 years ago we thought that the Sun and stars shone as a result of slow gravitational contraction over a few tens of millions of years - putting astronomers at odds with geologists who claimed that the Earth was much, much older. That mystery was solved in the 1920s and 30s with the discovery of nuclear energy (proving that the geologists had it right all along). Other scientific mysteries concerning the Sun have come and gone but three major mysteries remain: 1) How does the Sun produce sunspots with an 11-year cycle? 2) What produces the huge explosions that result in solar flares, prominence eruptions, and coronal mass ejections? and 3) Why is the Sun's outer atmosphere, the corona, so darned hot? Recent progress in solar astronomy reveals a single key to understanding all three of these mysteries.The 11-year time scale for the sunspot cycle indicates the presence of a magnetic dynamo within the Sun. For decades this dynamo was though to operate within the Sun's convection zone - the outmost 30% of the Sun where convective currents transport heat and advect magnetic lines of force. The two leading theories for the dynamo had very different models for the dynamics of the convection zone. Actual measurements of the dynamics using the techniques of helioseismology showed that both of these models had to be wrong some 20 years ago. A thin layer of strongly sheared flow at the base of the convection zone (now called the tachocline) was then taken to be the seat of the dynamo. Over the last 10 years it has become apparent that a weak meridional circulation within the convection zone also plays a key role in the dynamo. This meridional circulation has plasma rising up from the tachocline in the equatorial regions, spreading out toward the poles at a top speed of about 10-20 m/s at the surface, sinking back down to the tachocline in the polar regions, and then flowing back toward the equator at a top speed of about 1-2 m/s in the tachocline itself. Recent dynamo models that include this meridional flow now appear to have some power for predicting the size of future sunspot cycles.

  11. State Enterprise Zone Programs: Have They Worked?

    ERIC Educational Resources Information Center

    Peters, Alan H.; Fisher, Peter S.

    The effectiveness of state enterprise zone programs was examined by using a hypothetical-firm model called the Tax and Incentives Model-Enterprise Zones (TAIM-ez) model to analyze the value of enterprise zone incentives to businesses across the United States and especially in the 13 states that had substantial enterprise zone programs by 1990. The…

  12. Regression models for estimating concentrations of atrazine plus deethylatrazine in shallow groundwater in agricultural areas of the United States

    USGS Publications Warehouse

    Stackelberg, Paul E.; Barbash, Jack E.; Gilliom, Robert J.; Stone, Wesley W.; Wolock, David M.

    2012-01-01

    Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro-N-(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L-1. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities among areas for future groundwater monitoring.

  13. What can friction tell us about shallow megathrust slip behavior?

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.; Hirose, T.

    2012-12-01

    In subduction zones, the updip propagation of great earthquake ruptures on plate boundary megathrusts is currently one of the most important questions in earth science, primarily because rupture that approaches the surface causes seafloor displacement, resulting in enormous tsunamis. Moreover, the extent of updip rupture propagation is a key factor in defining the magnitude of the earthquake itself. Within the depth limits of the seismogenic zone, velocity-weakening frictional behavior is essential for the nucleation of large-magnitude earthquake rupture. Results of friction experiments at low slip velocities (~10-6-10-4 m/s) have suggested that velocity-weakening tends to occur in frictionally strong materials (typically non-clay), which may act as asperities on fault surfaces. However, the role of frictional strength and velocity dependence in controlling the extent of rupture propagation beyond the updip limit of the seismogenic zone is still unclear. Low to high-velocity friction experiments have provided insights into fault strength evolution over slip velocities spanning ~10 orders of magnitude, from plate convergence rates to coseismic slip rates. Results using primarily non-clay materials typically exhibit high friction at low velocities that progressively weakens at higher velocities (velocity-weakening), becoming nearly frictionless at coseismic slip rates [Di Toro et al., 2011]. However, the shallow near-trench regions of subduction zones are typically rich in clay minerals which are weak (friction coefficient ≤ ~0.4) and velocity-strengthening at slip rates < 10-3 m/s. A compilation of friction experiments using samples from the Nankai Trough region offshore Japan obtained by scientific ocean drilling shows that this material exhibits such behavior at low to intermediate slip velocities. However, after reaching peak values at ~10-2 m/s, these materials also exhibit a precipitous drop in friction toward near-zero values at coseismic slip rates. This suggests that all geologic materials, regardless of composition, are extremely weak when coseismic slip rates are enforced. Therefore, the likelihood of near-trench rupture propagation in subduction zones depends critically on whether slip can reach velocities ≥ ~10-2 m/s, where dynamic weakening becomes dominant. This depends on whether the propagating earthquake rupture can overcome the overall strength of the fault gouge and/or velocity-strengthening behavior at low to intermediate slip rates. We discuss here the possibility of near-trench earthquake rupture at Nankai and other subduction zones on the basis of laboratory friction measurements.

  14. Fe-Ti-oxide textures and microstructures in shear zones from oceanic gabbros at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Morales, Luiz F. G.; Rybacki, Erik

    2016-04-01

    Ocean drilling expeditions at several oceanic core complexes formed at slow- and ultra-slow-spreading ridges have recovered cores containing numerous zones of oxide-rich gabbros containing ilmenite and magnetite. In these cores, high modal concentrations of Fe-Ti-oxides are systematically associated with high-temperature plastic deformation features in silicates. We present observations of Fe-Ti-oxide mineral structures and textural characteristics from a series of oxide-rich shear zones from Atlantis Bank (ODP Site 735B) on the Southwest Indian Ridge aimed at determining how oxide mineral abundances relate to strain localization. Fe-Ti-oxide minerals in undeformed oxide gabbros and in highly deformed samples from natural shear zones generally have morphologies characteristic of crystallized melt, including highly cuspate grains and low dihedral angles. Anisotropy of magnetic susceptibility in oxide-rich shear zones is very strong, with fabrics mainly characterized by strong magnetic foliations parallel to the macroscopic foliation. Crystallographic preferred orientations (CPO) in magnetite are generally weak, with occasionally well-defined textures. Ilmenite typically displays well-developed CPOs, however, the melt-like ilmenite grain shapes indicate that at least part of the crystallographic texture results from oriented ilmenite growth during post-deformation crystallization. The oxides are hypothesized to have initially been present as isolated pockets of trapped melt (intercumulus liquid) in a load-bearing silicate framework. Progressive plastic deformation of silicate phases at high-temperature mainly produced two features: (i) elongated melt pockets, which crystallized to form strings of opaque minerals and (ii), interconnected networks of melt regions. The latter lead to intense strain localization of the rock, which appears as oxide-rich mylonites in the samples. In some samples, abundant low-angle grain boundaries in both magnetite and ilmenite suggest that deformation may have continued after crystallization of the late melt, imposing a weak strain on the oxides. Recent experimental deformation results indicate that magnetite and ilmenite should be weaker than most mafic silicates under anhydrous conditions. However, melt-like oxide morphologies observed in Atlantis Bank shear zones indicate that the redistribution of Fe-Ti-oxide melts may have more influence on the strength and strain localization behavior of oceanic gabbros than their solid-state rheology.

  15. Anatomy of the dead sea transform from lithospheric to microscopic scale

    USGS Publications Warehouse

    Weber, M.; Abu-Ayyash, K.; Abueladas, A.; Agnon, A.; Alasonati-Tasarova, Z.; Al-Zubi, H.; Babeyko, A.; Bartov, Y.; Bauer, K.; Becken, M.; Bedrosian, P.A.; Ben-Avraham, Z.; Bock, G.; Bohnhoff, M.; Bribach, J.; Dulski, P.; Ebbing, J.; El-Kelani, R.; Forster, A.; Forster, H.-J.; Frieslander, U.; Garfunkel, Z.; Goetze, H.J.; Haak, V.; Haberland, C.; Hassouneh, M.; Helwig, S.; Hofstetter, A.; Hoffmann-Rotrie, A.; Jackel, K.H.; Janssen, C.; Jaser, D.; Kesten, D.; Khatib, M.; Kind, R.; Koch, O.; Koulakov, I.; Laske, Gabi; Maercklin, N.; Masarweh, R.; Masri, A.; Matar, A.; Mechie, J.; Meqbel, N.; Plessen, B.; Moller, P.; Mohsen, A.; Oberhansli, R.; Oreshin, S.; Petrunin, A.; Qabbani, I.; Rabba, I.; Ritter, O.; Romer, R.L.; Rumpker, G.; Rybakov, M.; Ryberg, T.; Saul, J.; Scherbaum, F.; Schmidt, S.; Schulze, A.; Sobolev, S.V.; Stiller, M.; Stromeyer, D.; Tarawneh, K.; Trela, C.; Weckmann, U.; Wetzel, U.; Wylegalla, K.

    2009-01-01

    Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of leftlateral transform motion between the African and Arabian plates since early Miocene (???20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/ Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the ??m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere. Copyright 2009 by the American Geophysical Union.

  16. Low strength of deep San Andreas fault gouge from SAFOD core

    USGS Publications Warehouse

    Lockner, David A.; Morrow, Carolyn A.; Moore, Diane E.; Hickman, Stephen H.

    2011-01-01

    The San Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault2, 3. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms1. The combination of these measurements of fault core strength with borehole observations1, 4, 5 yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust.

  17. Low strength of deep San Andreas fault gouge from SAFOD core

    USGS Publications Warehouse

    Lockner, D.A.; Morrow, C.; Moore, D.; Hickman, S.

    2011-01-01

    The San Andreas fault accommodates 28-"34-???mm-???yr ????'1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7-???km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  18. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaohui; Jacobsen, Stefan; He Jianying

    2009-08-15

    The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less

  19. Synchronization of Long Ocean Waves by Coastal Relief on the Southeast Shelf of Sakhalin Island

    NASA Astrophysics Data System (ADS)

    Kovalev, Dmitry P.; Kovalev, Peter D.

    2017-12-01

    The phenomenon of synchronization (trapping) of coming waves by the resonant water area in a coastal zone of the sea found from the observed data is considered in the paper. Edge waves with the period of about 10.7 minutes are visually observed in sea level fluctuations near the village of Okhotskoye and the cape Ostri on the southeast coast of Sakhalin Island. These waves are synchronized with the resonance water area. It becomes apparent from the unlimited increase of a phase between the bottom stations installed at distance of about 7.5km. In relation to the phenomenon found, the problem of weak and periodic impact on regular self-oscillatory system — Van der Paul’s oscillator — is considered. Good compliance between theoretical model and data of experiments is obtained.

  20. Evaluation of road failure vulnerability section through integrated geophysical and geotechnical studies

    NASA Astrophysics Data System (ADS)

    Adiat, K. A. N.; Akinlalu, A. A.; Adegoroye, A. A.

    2017-06-01

    In order to investigate the competence of the proposed road for pavement stability, geotechnical and geophysical investigations involving Land Magnetic, Very Low Frequency Electromagnetic (VLF-EM) and Electrical Resistivity methods were carried out along Akure-Ipinsa road Southwestern Nigeria. The magnetic profile was qualitatively and quantitatively interpreted to produce geomagnetic section that provides information on the basement topography and structural disposition beneath the proposed road. Similarly, the VLF-EM profile was equally interpreted to provide information on the possible occurrence of linear features beneath the study area. These linear features pose a potential risk to the proposed road as they are capable of undermining the stability of the pavement structure. The geoelectric parameters obtained from the quantitative interpretation of the VES data were used to generate geoelectric section. The geoelectric section generated shows that the study area was underlain by four geoelectric layers namely the topsoil, the weathered layer, the partly weathered/fractured basement and the fresh basement. The major part of the topsoil, which constitutes the subgrade, is characterized by relatively low resistivity values (<100 Ωm) suggestive of weak zones that are capable of undermining the stability of the proposed road. This therefore suggests that the layer is composed of incompetent materials that are unsuitable for engineering structures. Furthermore, fractured basement was also delineated beneath some portion of the proposed road. Since fracture is a weak zone, its presence can facilitate failure of the proposed road especially when it is occurring at shallow depth. The geotechnical results reveal that most of the investigated soil samples are clayey in nature. Integration of the results demonstrates that there is a good correlation between geophysical results and the geotechnical results. Furthermore, a vulnerability section that divided the road segments into three zones based on the degree of vulnerability was produced. These zones were high, moderate and low vulnerability zones. It is estimated that about 60% of the road segments constitutes moderate degree of vulnerability while 30% and 10% of the segments respectively constitute high and low degree of vulnerability.

  1. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now inactive strands of the San Andreas system can explain the breadth of the heat flux anomaly across central California.

  2. Staging of the Acoustic Response at Laboratory Modelling of Tidal Influence upon Seismicity

    NASA Astrophysics Data System (ADS)

    Saltykov, Vadim; Patonin, Andrey; Kugaenko, Yulia

    2010-05-01

    INTRODUCTION The seismic radiation is varied through the wide range of seismic energy from seismic emission (high-frequency seismic noise, HFSN) to earthquakes. Some features of external influence response on the different scales allow to consider the medium as a single whole seismoactive object. Earth tide is a bright example of external excited field. Tidal topic has long history in seismology. Results obtained by different scientists are contradictory and ambiguous often. We denoted instability of tidal effect manifestation as possible reason of this situation. In view of the aforesaid it is significant, that tidal effects in weak seismicity and HFSN prove more strongly in the stage of large earthquake preparation [Rykunov et al., 1998, Saltykov et al., 2004, 2007]. It is presumed that the metastable medium has more high tidal sensitivity. For example, sources of prepared earthquakes and extensive near-surface zones of micro-fissuring and dilatancy, which appear during source formation and stretch far enough. [Alekseev et all., 2001, Goldin, 2004, 2005]. Common features of observed effects allow to suggest existence of tidal modulation mechanism, which is similar (may be single) for different seismic scales. Modelling of these processes can improve our understanding of tidal effect nature. LABORATORY EXPERIMENT Results of rock sample destruction experiments under controlling are presented. Acoustic emission (AE) pulses act as analogue of seismic events. Tides are simulated by weak long-period variations added to quasi-stationary subcritical loading. The results of tidal modeling confirmed AE intensity synchronization with external periodic influence with large (5-10%) variations of loading are known [Lockner, Beeler, 1999, Ponomarev et al., 2007]. But real (in nature) tidal strain&stress variations are much less and equal to splits of percent. Therefore, investigation of weak modulation influence upon deformed rock is one of main proposed purposes. Used software-programmable electro-hydraulic system INOVA [Patonin, 2006], can provide various procedures of experiment, among them programmable modulatory action. Axial deformation with stable strain rate and additional action of meander with specified period and amplitude was chosen as mode of operation. The relation between background and periodic strains reaches three orders, which corresponds to real relation between maximal tectonic and tidal strains. RESULTS For detection of periodic loading modulation of AE we used procedure based on Rayleigh criteria of uniformity and considered uniformity of AE impulses distribution on time interval, multiple to period of loading. Moreover, the predominant phase of periodical loading, corresponding to maximal AE activity, was calculated in sliding time window. In all experiments we observed instability of modulation effects. So the following stages were distinguished: - synchronization of AE and periodic loading at the initial part of test; - absence of synchronization at the elastic stage; - resumption of synchronization during plastic deformation. Stability of phase corresponding to maximal AE activity was discovered within the initial part and plastic deformation stage. Absolute values of phase for initial loading and during plastic deformation are different. CONCLUSION Now we regard revealed staging of AE response to weak periodical loading as our main result of these experiments. Different stages of AE response are connected with different state of rock samples during loading and destruction. Observed effects of synchronization can be considered as analogue of tidal modulation of HFSN and appearance of "tidal" seismicity in source zone of prepared large earthquake. This investigation was supported by RFBR, grant 08-05-00692.

  3. Heterogeneity in Subducting Slab Influences Fluid Properties, Plate Coupling and Volcanism: Hikurangi Subduction Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.

    2017-12-01

    Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in slip rate, the plate interface is only moderately fluid-rich, because the underlying plateau had already had an episode of Gondwana dehydration. Here the dehydrated plateau has subducted deeper, to 140-km depth, there is no volcanism, and the mantle wedge lacks low Q.

  4. Mantle amphibole control on arc and within-plate chemical signatures: Quaternary lavas from Kurdistan Province, Iran

    NASA Astrophysics Data System (ADS)

    Kheirkhah, M.; Allen, M. B.; Neill, I.; Emami, M. H.; McLeod, C.

    2012-04-01

    New analyses of Quaternary lavas from Kurdistan Province in west Iran shed light on the nature of collision zone magmatism. The rocks are from the Turkish-Iranian plateau within the Arabia-Eurasia collision. Compositions are typically basanite, hawaiite and alkali basalt. Sr-Nd isotope values are close to BSE, which is similar to Quaternary alkali basalts of NW Iran, but distinct from a depleted source melting under Mount Ararat. The chemical signatures suggests variable melting of two distinct sources. One inferred source produced melts with La/Nb from~3.5 to~1.2, which we model as the result of depletion of amphibole during ≤1% melting in the garnet stability field. We infer phlogopite in the source of potassic lavas from Takab. Lithosphere delamination or slab break-off mechanisms for triggering melting are problematic, as the lithosphere is~150-200km thick. It is possible that the negative dT/dP section of the amphibole peridotite solidus was crossed as a result of lithospheric thickening in the collision zone. This explanation is conditional upon the mantle source being weakly hydrated and so only containing a small proportion of amphibole, which can be exhausted during small degrees of partial melting. Our model maybe viable for other magmatic areas within orogenic plateaux, e.g. northern Tibet. Depletion of mantle amphibole may also help explain larger scale transitions from arc to within-plate chemistry in orogens, such as the Palaeogene Arabia-Eurasia system.

  5. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China

    NASA Astrophysics Data System (ADS)

    Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie

    2001-12-01

    Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (<10 Ωm) core zone, c . 2km wide, and a resistive (>50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.

  6. Impact of Satellite Remote Sensing Data on Simulations of ...

    EPA Pesticide Factsheets

    We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the

  7. Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France.

    PubMed

    Drouhot, Séverine; Raoul, Francis; Crini, Nadia; Tougard, Christelle; Prudent, Anne-Sophie; Druart, Coline; Rieffel, Dominique; Lambert, Jean-Claude; Tête, Nicolas; Giraudoux, Patrick; Scheifler, Renaud

    2014-02-01

    Partial remediation actions at a former gold mine in Southern France led to a mosaic of contaminated and rehabilitated zones. In this study, the distribution of arsenic and its potential adverse effects on small mammals were investigated. The effectiveness of remediation for reducing the transfer of this element into wildlife was also discussed. Arsenic levels were measured in the soil and in the stomach contents, livers, kidneys, and lungs of four small mammal species (the wood mouse (Apodemus sylvaticus), the Algerian mouse (Mus spretus), the common vole (Microtus arvalis), and the greater white-toothed shrew (Crocidura russula)). The animals were caught at the former extraction site, in zones with three different levels of remediation treatments, and at a control site. Arsenic concentrations in the soil were highly spatially heterogeneous (ranging from 29 to 18,900 μg g(-1)). Despite the decrease in arsenic concentrations in the remediated soils, both wood mice and Algerian mice experienced higher oral exposure to arsenic in remediated zones than in the control area. The accumulated arsenic in their organs showed higher intra-zonal variability than the arsenic distribution in the soil, suggesting that, in addition to remediation processes, other variables can help explain arsenic transfer to wildlife, such as the habitat and diet preferences of the animals or their mobility. A weak but significant correlation between arsenic concentration and body condition was observed, and weak relationships between the liver/kidney/lung mass and arsenic levels were also detected, suggesting possible histological alterations. © 2013.

  8. Anomalous heat flow belt along the continental margin of Brazil

    NASA Astrophysics Data System (ADS)

    Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.

    2018-01-01

    A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.

  9. Distance from a fishing community explains fish abundance in a no-take zone with weak compliance.

    PubMed

    Advani, Sahir; Rix, Laura N; Aherne, Danielle M; Alwany, Magdy A; Bailey, David M

    2015-01-01

    There are numerous examples of no-take marine reserves effectively conserving fish stocks within their boundaries. However, no-take reserves can be rendered ineffective and turned into 'paper parks' through poor compliance and weak enforcement of reserve regulations. Long-term monitoring is thus essential to assess the effectiveness of marine reserves in meeting conservation and management objectives. This study documents the present state of the 15-year old no-take zone (NTZ) of South El Ghargana within the Nabq Managed Resource Protected Area, South Sinai, Egyptian Red Sea. Previous studies credited willing compliance by the local fishing community for the increased abundances of targeted fish within the designated NTZ boundaries compared to adjacent fished or take-zones. We compared benthic habitat and fish abundance within the NTZ and the adjacent take sites open to fishing, but found no significant effect of the reserve. Instead, the strongest evidence was for a simple negative relationship between fishing pressure and distance from the closest fishing village. The abundance of targeted piscivorous fish increased significantly with increasing distance from the village, while herbivorous fish showed the opposite trend. This gradient was supported by a corresponding negative correlation between the amount of discarded fishing gear observed on the reef and increasing distance from the village. Discarded fishing gear within the NTZ suggested decreased compliance with the no-take regulations. Our findings indicate that due to non-compliance the no-take reserve is no longer functioning effectively, despite its apparent initial successes and instead a gradient of fishing pressure exists with distance from the nearest fishing community.

  10. Work zone safety analysis and modeling: a state-of-the-art review.

    PubMed

    Yang, Hong; Ozbay, Kaan; Ozturk, Ozgur; Xie, Kun

    2015-01-01

    Work zone safety is one of the top priorities for transportation agencies. In recent years, a considerable volume of research has sought to determine work zone crash characteristics and causal factors. Unlike other non-work zone-related safety studies (on both crash frequency and severity), there has not yet been a comprehensive review and assessment of methodological approaches for work zone safety. To address this deficit, this article aims to provide a comprehensive review of the existing extensive research efforts focused on work zone crash-related analysis and modeling, in the hopes of providing researchers and practitioners with a complete overview. Relevant literature published in the last 5 decades was retrieved from the National Work Zone Crash Information Clearinghouse and the Transport Research International Documentation database and other public digital libraries and search engines. Both peer-reviewed publications and research reports were obtained. Each study was carefully reviewed, and those that focused on either work zone crash data analysis or work zone safety modeling were identified. The most relevant studies are specifically examined and discussed in the article. The identified studies were carefully synthesized to understand the state of knowledge on work zone safety. Agreement and inconsistency regarding the characteristics of the work zone crashes discussed in the descriptive studies were summarized. Progress and issues about the current practices on work zone crash frequency and severity modeling are also explored and discussed. The challenges facing work zone safety research are then presented. The synthesis of the literature suggests that the presence of a work zone is likely to increase the crash rate. Crashes are not uniformly distributed within work zones and rear-end crashes are the most prevalent type of crashes in work zones. There was no across-the-board agreement among numerous papers reviewed on the relationship between work zone crashes and other factors such as time, weather, victim severity, traffic control devices, and facility types. Moreover, both work zone crash frequency and severity models still rely on relatively simple modeling techniques and approaches. In addition, work zone data limitations have caused a number of challenges in analyzing and modeling work zone safety. Additional efforts on data collection, developing a systematic data analysis framework, and using more advanced modeling approaches are suggested as future research tasks.

  11. Probing the end of reionization with the near zones of z ≳ 6 QSOs

    NASA Astrophysics Data System (ADS)

    Keating, Laura C.; Haehnelt, Martin G.; Cantalupo, Sebastiano; Puchwein, Ewald

    2015-11-01

    QSO near zones are an important probe of the ionization state of the intergalactic medium (IGM) at z ˜ 6-7, at the end of reionization. We present here high-resolution cosmological 3D radiative transfer simulations of QSO environments for a wide range of host halo masses, 1010-12.5 M⊙. Our simulated near zones reproduce both the overall decrease of observed near-zone sizes at 6 < z < 7 and their scatter. The observable near-zone properties in our simulations depend only very weakly on the mass of the host halo. The size of the H II region expanding into the IGM is generally limited by (super-)Lyman Limit systems loosely associated with (low-mass) dark matter haloes. This leads to a strong dependence of near-zone size on direction and drives the large observed scatter. In the simulation centred on our most massive host halo, many sightlines show strong red damping wings even for initial volume averaged neutral hydrogen fractions as low as ˜10-3. For QSO lifetimes long enough to allow growth of the central supermassive black hole while optically bright, we can reproduce the observed near zone of ULAS J1120+0641 only with an IGM that is initially neutral. Our results suggest that larger samples of z > 7 QSOs will provide important constraints on the evolution of the neutral hydrogen fraction and thus on how late reionization ends.

  12. Managing Strategic Change: An Executive Overview

    DTIC Science & Technology

    2003-06-01

    strategic plan and policies based on the results of the environmental scan in comparison with the strengths and weaknesses of the organization...DISCLAIMER The views expressed in this report are those of the author and do not necessarily reflect official policy or position of...management echelon and has a time horizon consistent with the scanning abilities of the organization and set at the risk level (comfort zone) that

  13. Spatial Memory: Behavioral Determinants of Persistence in the Watermaze Delayed Matching-to-Place Task

    ERIC Educational Resources Information Center

    da Silva, Bruno M.; Bast, Tobias; Morris, Richard G. M.

    2014-01-01

    The watermaze delayed matching-to-place (DMP) task was modified to include probe trials, to quantify search preference for the correct place. Using a zone analysis of search preference, a gradual decay of one-trial memory in rats was observed over 24 h with weak memory consistently detected at a retention interval of 6 h, but unreliably at 24 h.…

  14. X-ray microscopy with high-resolution zone plates: recent developments

    NASA Astrophysics Data System (ADS)

    Schneider, Gerd; Wilhein, Thomas; Niemann, Bastian; Guttman, P.; Schliebe, T.; Lehr, J.; Aschoff, H.; Thieme, Juergen; Rudolph, Dietbert M.; Schmahl, Guenther A.

    1995-09-01

    In order to expand the applications of x-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross- linked polymer chain electron beam resist allows us to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for x-ray microscopy was developed and implemented on the Gottingen x-ray microscope at BESSY. The effects of x ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free x-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T less than or equal to 130 K unfixed biological specimen can be exposed to a radiation dose of 109 - 1010 Gy without any observable structural changes. A multiple-angle viewing stage allows us to take stereoscopic images with the x-ray microscope, giving a 3D-impression of the object. As an example for the applications of x-ray microscopy in biology, erythrocytes infected by malaria parasite have been examined. Studies of the aggregation of hematite by sodium sulfate gives an example for the application of x-ray microscopy in the field of colloid research.

  15. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  16. Structural characteristics of the décollement zone and underthrust sediments in the Nankai accretionary prism: Geologic architectures in the Site C0023, IODP Expedition 370

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Okutsu, N.; Yamada, Y.; Bowden, S.; Tonai, S.; Yang, K.; Tsang, M. Y.; Hirose, T.; Kamiya, N.

    2017-12-01

    Expedition 370 penetrated the accretionary prism, plate boundary décollement zone, and underthrust sediment and touched the basement basalt on the Philippine Sea Plate. The drilling site (C0023) is located 4 km NE from the legacy sites, Sites 808 and 1174. Compared to the legacy sites, the décollement zone is characterized by weak and intermittent negative reflectors in the seismic profile. Onboard physical properties, e.g. porosity and P-wave velocity data, indeed show the smaller gaps at the top of the décollement zone. The nature of the deformation along the décollement zone represented 40 m thick phacoidal deformation zone composed of fragmented mudstone with slickenlines on the surfaces in the Sites 808 and 1174. Compare with this, décollement zone in Site C0023 represented the weaker and non-localized deformation zone comprised of alternating zone of 1 m thick phacoidal deformation zones and a few 10 m of intact intervals in the Site C0023. Many normal faults striking parallel to the trench were identified just below the décollement zone, which is indicative of non-localized deformations along the décollement zone. Many of these faults were accompanied with calcite and sulphate mineral veins (anhydrite and barite), indicative of high-temperature fluid migration just above the ridge-spreading center. Based on the paleomagnetic restoration of structure to the geologic coordinate, attitudes of the bedding and fault planes in the Site C0023 are controlled by two factors: 1) subduction/accretion producing the trench-parallel bedding strikes and trench-perpendicular principal stress and 2) ridge spreading that produces ridge-parallel bedding and vein strikes. The former developed in the accretionary prism and the upper part of the underthrust sediment (<900 mbsf), whereas the latter occurs in the lower part (>900 mbsf). These tectonic variations might affect fluid migration pathways.

  17. Avalanche weak layer shear fracture parameters from the cohesive crack model

    NASA Astrophysics Data System (ADS)

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0.08 N/m (non-linear) to 0.18 N/m (LEFM) for median slab density around 200 kg/m3. Schulson and Duval (2009) estimated the fracture energy of solid ice (mode I) to be about 0.22-1 N/m which yields rough theoretical limits of about 0.05- 0.2 N/m for density 200 kg/m3 when the ice volume fraction is accounted for. Mode I results from lab tests (Sigrist, 2006) gave 0.1 N/m (200 kg/m3). The median effective mode II shear fracture toughness was calculated between 0.31 to 0.35 kPa(m)1/2 for the avalanche data. All the fracture energy results are much lower than previously calculated from propagation saw tests (PST) results for a weak layer collapse model (1.3 N/m) (Schweizer et al., 2011). The differences are related to model assumptions and estimates of the effective slab modulus. The calculations in this paper apply to quasi-static deformation and mode II weak layer fracture whereas the weak layer collapse model is more appropriate for dynamic conditions which follow fracture initiation (McClung and Borstad, 2012). References: Bažant, Z.P. et al. (2003) Size effect law and fracture mechanics of the triggering of dry snow slab avalanches, J. Geophys. Res. 108(B2): 2119, doi:10.1029/2002JB))1884.2003. McClung, D.M. and C.P. Borstad (2012) Deformation and energy of dry snow slabs prior to fracture propagation, J. Glaciol. 58(209), 2012 doi:10.3189/2012JoG11J009. Schulson, E.M and P. Duval (2009) Creep and fracture of ice, Cambridge University Press, 401 pp. Schweizer, J. et al. (2011) Measurements of weak layer fracture energy, Cold Reg. Sci. and Tech. 69: 139-144. Sigrist, C. (2006) Measurement of fracture mechanical properties of snow and application to dry snow slab avalanche release, Ph.D thesis: 16736, ETH, Zuerich: 139 pp.

  18. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  19. Reaction-induced rheological weakening enables oceanic plate subduction

    PubMed Central

    Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-01-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the ‘cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets. PMID:27562366

  20. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates

    PubMed Central

    Ikari, Matt J.; Kopf, Achim J.

    2017-01-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected. PMID:29202027

  1. Experimental research on the structural instability mechanism and the effect of multi-echelon support of deep roadways in a kilometre-deep well

    PubMed Central

    Peng, Rui; Zhao, Guangming; Li, Yingming; Zhu, Jianming

    2018-01-01

    We study the structural instability mechanism and effect of a multi-echelon support in very-deep roadways. We conduct a scale model test for analysing the structural failure mechanism and the effect of multi-echelon support of roadways under high horizontal stress. Mechanical bearing structures are classified according to their secondary stress distribution and the strength degradation of the surrounding rock after roadway excavation. A new method is proposed by partitioning the mechanical bearing structure of the surrounding rock into weak, key and main coupling bearing stratums. In the surrounding rock, the main bearing stratum is the plastic reshaping and flowing area. The weak bearing stratum is the peeling layer or the caving part. And the key bearing stratum is the shearing and yielding area. The structural fracture mechanism of roadways is considered in analysing the bearing structure instability of the surrounding rock, and multi-echelon support that considers the structural characteristics of roadway bearings is proposed. Results of the experimental study indicate that horizontal pressure seriously influences the stability of the surrounding rock, as indicated by extension of the weak bearing area and the transfer of the main and key bearing zones. The falling roof, rib spalling, and floor heave indicate the decline of the bearing capacity of surrounding rock, thereby causing roadway structural instability. Multi-echelon support is proposed according to the mechanical bearing structure of the surrounding rock without support. The redesigned support can reduce the scope of the weak bearing area and limit the transfer of the main and key bearing areas. Consequently, kilometre-deep roadway disasters, such as wedge roof caving, floor heave, and rib spalling, can be avoided to a certain degree, and plastic flow in the surrounding rock is relieved. The adverse effect of horizontal stress on the vault, spandrel and arch foot decreases. The stability of the soft rock surrounding the roadways is maintained. PMID:29447180

  2. Predicting km-scale shear zone formation

    NASA Astrophysics Data System (ADS)

    Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey

    2015-04-01

    Because km-scale shear zones play a first-order role in lithospheric kinematics, accurate conceptual and numerical models of orogenic development require predicting when and where they form. Although a strain-based algorithm in the upper crust for weakening due to faulting appears to succeed (e.g., Koons et al., 2010, doi:10.1029/2009TC002463), a comparable general rule for the viscous crust remains unestablished. Here we consider two aspects of the geological argument for a similar algorithm in the viscous regime, namely (1) whether predicting km-scale shear zone development based on a single parameter (such as strain or shear heating) is reasonable; and (2) whether lithologic variability inherent in most orogenic systems precludes a simple predictive rule. A review of tectonically significant shear zones worldwide and more detailed investigations in the Central Gneiss belt of the Ontario segment of the Grenville Province reveals that most km-scale shear zones occur at lithological boundaries and involve mass transfer, but have fairly little else in common. As examples, the relatively flat-lying Twelve Mile Bay shear zone in the western Central Gneiss belt bounds the Parry Sound domain and is likely the product of both localized anatexis and later retrograde hydration with attendant metamorphism. Moderately dipping shear zones in granitoids of the Grenville Front Tectonic Zone apparently resulted from cooperation among several complementary microstructural processes, such as grain size reduction, enhanced diffusion, and a small degree of metamorphic reaction. Localization into shear zones requires the operation of some spatially restricted processes such as stress concentration, metamorphism/fluid access, textural evolution, and thermal perturbation. All of these could be due in part to strain, but not necessarily linearly related to strain. Stress concentrations, such as those that form at rheological boundaries, may be sufficient to nucleate high strain gradients but are insufficient to maintain them because the stress perturbations will dissipate with deformation. Metamorphism can unquestionably cause sufficient rheological change, but only in certain rock types: for example, granitoids have much less capacity for metamorphically induced rheologic change than do mafic rocks. The magnitude of phase geometry variation observed in natural systems suggests that morphological change (e.g., interconnection of weak phases) likely has little direct affect on strength changes, although other textural factors related to diffusion paths and crystallographic orientation could play a significant role. Thermal perturbation, mainly in the form of shear heating, remains potentially powerful but inconclusive. Taken together, these observations indicate that a simple algorithm predicting shear zone formation will not succeed in many geologically relevant instances. One significant reason may be that the inherent lithologic variation at the km scale, such as observed in the Central Gneiss belt, prevents the development of self-organized strain patterns that would form in more rheologically uniform systems.

  3. Numerical Simulations of Slow Stick Slip Events with PFC, a DEM Based Code

    NASA Astrophysics Data System (ADS)

    Ye, S. H.; Young, R. P.

    2017-12-01

    Nonvolcanic tremors around subduction zone have become a fascinating subject in seismology in recent years. Previous studies have shown that the nonvolcanic tremor beneath western Shikoku is composed of low frequency seismic waves overlapping each other. This finding provides direct link between tremor and slow earthquakes. Slow stick slip events are considered to be laboratory scaled slow earthquakes. Slow stick slip events are traditionally studied with direct shear or double direct shear experiment setup, in which the sliding velocity can be controlled to model a range of fast and slow stick slips. In this study, a PFC* model based on double direct shear is presented, with a central block clamped by two side blocks. The gauge layers between the central and side blocks are modelled as discrete fracture networks with smooth joint bonds between pairs of discrete elements. In addition, a second model is presented in this study. This model consists of a cylindrical sample subjected to triaxial stress. Similar to the previous model, a weak gauge layer at a 45 degrees is added into the sample, on which shear slipping is allowed. Several different simulations are conducted on this sample. While the confining stress is maintained at the same level in different simulations, the axial loading rate (displacement rate) varies. By varying the displacement rate, a range of slipping behaviour, from stick slip to slow stick slip are observed based on the stress-strain relationship. Currently, the stick slip and slow stick slip events are strictly observed based on the stress-strain relationship. In the future, we hope to monitor the displacement and velocity of the balls surrounding the gauge layer as a function of time, so as to generate a synthetic seismogram. This will allow us to extract seismic waveforms and potentially simulate the tremor-like waves found around subduction zones. *Particle flow code, a discrete element method based numerical simulation code developed by Itasca Inc.

  4. Mapping Forest Fire Susceptibility in Temperate Mountain Areas with Expert Knowledge. A Case Study from Iezer Mountains, Romanian Carpathians

    NASA Astrophysics Data System (ADS)

    Mihai, Bogdan; Savulescu, Ionut

    2014-05-01

    Forest fires in Romanian Carpathians became a frequent phenomenon during the last decade, although local climate and other environmental features did not create typical conditions. From 2004, forest fires affect in Romania more than 100 hectares/year of different forest types (deciduous and coniferous). Their magnitude and frequency are not known, since a historical forest fire inventory does not exist (only press papers and local witness for some selected events). Forest fires features the summer dry periods but there are dry autumns and early winter periods with events of different magnitudes. The application we propose is based on an empirical modeling of forest fire susceptibility in a typical mountain area from the Southern Carpathians, the Iezer Mountains (2462 m). The study area features almost all the altitudinal vegetation zones of the European temperate mountains, from the beech zone, to the coniferous zone, the subalpine and the alpine zones (Mihai et al., 2007). The analysis combines GIS and remote sensing models (Chuvieco et al., 2012), starting from the ideas that forest fires are featured by the ignition zones and then by the fire propagation zones. The first data layer (ignition zones) is the result of the crossing between the ignition factors: lightning - points of multitemporal occurence and anthropogenic activities (grazing, tourism and traffic) and the ignition zones (forest fuel zonation - forest stands, soil cover and topoclimatic factor zonation). This data is modelled from different sources: the MODIS imagery fire product (Hantson et al., 2012), detailed topographic maps, multitemporal orthophotos at 0.5 m resolution, Landsat multispectral imagery, forestry cadastre maps, detailed soil maps, meteorological data (the WorldClim digital database) as well as the field survey (mapping using GPS and local observation). The second data layer (fire propagation zones) is the result of the crossing between the forest fuel zonation, obtained with the help of forestry data, the wind regime data and the topographic features of the mountain area (elevation, slope declivity, slope aspect). The analysis also consider the insolation degree of mountain slopes, that creates favourable conditions for fire propagation between different canopies. These data layers are integrated within a simple GIS analysis in order to intersect the ignition zones with the fire propagation zones in order to obtain the potential areas to be affected by fire. The digital map show three levels of forest fire susceptibility, differenced on the basis of expert knowledge. The map can be validated from the statistical point of view with the polygons of the forest fire affected areas mapped from Landsat TM, ETM+ and OLI satellite imagery. The mapping results could be integrated within the forest management strategies and especially within the forest cadastre and development maps (updated every ten years). The result can confirm that the data gap in terms of forest fire events can be filled with expert knowledge. References Chuvieco, E, Aguado, I., Jurdao, S., Pettinari, M., Yebra, M., Salas, J., Hantson, S., de la Riva, J., Ibarra, P., Rodrigues, M., Echeverria, M., Azqueta, D., Roman, M., Bastarrika, A., Martinez, S., Recondo, C., Zapico, E., Martinez-Vega F.J. (2012) Integrating geospatial information into fire risk assessment, International Journal of Wildland Fire, 2,2, 69-86. Hantson, S., Padilla, M., Corti., D, Chuvieco, E. (2013) Strenghts and weaknesses of MODIS hotspots to characterize Global fire occurence, Remote Sensing of Environment, 131, 1, 152-159. Mihai, B., Savulescu, I.,Sandric, I. (2007) Change detection analysis (1986/2002) for the alpine, subalpine and forest landscape in Iezer Mountains (Southern Carpathians, Romania), Mountain Research and Development, 27, 250-258.

  5. An Integrated Geomechanical Investigation, Multi-Parameter Monitoring and Analyses of Babadağ-Gündoğdu Creep-like Landslide

    NASA Astrophysics Data System (ADS)

    Kumsar, Halil; Aydan, Ömer; Tano, Hisataka; Çelik, Sefer Beran; Ulusay, Reşat

    2016-06-01

    A creep-like landslide in the Gündoğdu district of Babadağ town in Denizli (Turkey), where about 2000 people lived within the damaged houses, has been moving with a velocity of 4-14 cm/year since 1940s. Field observations and monitoring together with geomechanical laboratory tests were carried out to investigate the causative factors of the landslide. These studies were conducted as a part of an international research project performed by Turkish and Japanese scientists since 2000. Long-term monitoring stations established involved measurements of meteorological parameters, displacements, acoustic emission counts, variations in groundwater table, borehole strain measurement, in situ permeability and infiltration characteristics of the slope forming materials, and vibrations induced by weaving machines during their operation. Geomechanical properties of the sandstone and marl, which form the unstable slope, were determined from laboratory tests. In addition to the use of conventional 2-D equilibrium method of analyses, a new approach for modelling the long-term creep-like behaviour of the landslide body, based on discrete finite element method, was also proposed and used to analyse the landslide. It was found that the sliding mass has been involving several zones of weakness (interface) between the sandstone and marl layers through in situ monitoring. The monitoring data of pipe strain, groundwater level fluctuation and rainfall, and AE data showed that slope movement accelerated during and after rainy seasons. It was obtained that the proposed numerical method based on discrete finite element method (DFEM), which considers the softening and hardening of stiffness of the weakness zone as a function of rainfall and, is capable of simulating creep-like behaviour of the landslide. Disaster and Emergency Management Authority of Turkey also considered the results of this research and the landslide area was designated as a Natural Disaster Area and the people living in the unstable part of the town were re-settled at a new area.

  6. The mechanical implications of deep fluids in the rupture process of giant landslides

    NASA Astrophysics Data System (ADS)

    Cappa, Frédéric; Guglielmi, Yves; Viseur, Sophie; Garambois, Stéphane

    2015-04-01

    Fluids are known to be a triggering and driving factor for landslides. Hydromechanical coupling has been proposed as possible explanation for landslide dynamics, including both slow, aseismic slip, as well as fast, seismic rupture. The widely accepted understanding is that rainfall, snowmelt and the seasonality of the groundwater recharge increases fluid pressures, which in turn reduces effective stress, and thus alters the strength of rocks and rupture surfaces, promoting sliding. So far, most interpretations focused on the effects of rainfall infiltration into landslides, and did not investigate in detail the role of groundwater table variations below the landslides on the rupture processes. However, such considerations are important, since observations of well-documented giant landslides showed that the moving volume extends hundreds of meters above the slope aquifer. Furthermore, although motions correlate well with seasonal infiltrations, no significant pore pressure increase has ever been measured within the landslide body, particularly in high-permeability rocky landslides. Indeed, motions occur in the near surface of the unsaturated slope, which is in general highly permeable (which allows high infiltration rates), perched, highly discontinuous, size-limited, and experiences low magnitude pore pressure build-up that is not high enough to significantly vary the effective stresses in the slope. Triggering of local instabilities by such perched low-pressurized zones may be possible only at the critical stress level of the rock, but do not explain the slow increase in the permanent background seasonal accelerations and decelerations that affect the entire landslide. Thus, clarifying the role of fluids, especially the effects of groundwater table variations within the deep aquifer on the unsaturated slope slow rupture is important for improved understanding of weak forcing mechanisms on landslides and risk assessment. The study of strain partitioning in two giant rocky landslides in France (La Clapière and Séchilienne, estimated volume of about 60 million cubic meters) provides a unique insight into the sensitivity of landslide motions to the changes in deep fluid pressures and surface frictional properties. Here we show with hydromechanical modeling that a significant part of the observed landslide motions and associated seismicity may be caused by poroelastic strain below the landslide, induced by groundwater table variations. In the unstable volume near the surface, calculated strain and rupture may be controlled by stress transfer and friction weakening above the phreatic zone and reproduce well high-motion zone characteristics measured by geodesy and seismology. The key model parameters are friction weakening and the position of groundwater level, which is sufficiently constrained by field data and seismic imaging to support the physical validity of the model. These results are of importance for the understanding of surface strain evolution under weak forcing and they demonstrated that the seasonal variation of deep fluids below the landslide is a major increasing factor of instability.

  7. Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.

    1994-01-01

    Ground-water capture zone boundaries for individual pumped wells in a confined aquffer were delineated by using groundwater models. Both analytical and numerical (semi-analytical) models that more accurately represent the $round-water-flow system were used. All models delineated 2-dimensional boundaries (capture zones) that represent the areal extent of groundwater contribution to a pumped well. The resultant capture zones were evaluated on the basis of the ability of each model to realistically rapresent the part of the ground-water-flow system that contributed water to the pumped wells. Analytical models used were based on a fixed radius approach, and induded; an arbitrary radius model, a calculated fixed radius model based on the volumetric-flow equation with a time-of-travel criterion, and a calculated fixed radius model derived from modification of the Theis model with a drawdown criterion. Numerical models used induded the 2-dimensional, finite-difference models RESSQC and MWCAP. The arbitrary radius and Theis analytical models delineated capture zone boundaries that compared least favorably with capture zones delineated using the volumetric-flow analytical model and both numerical models. The numerical models produced more hydrologically reasonable capture zones (that were oriented parallel to the regional flow direction) than the volumetric-flow equation. The RESSQC numerical model computed more hydrologically realistic capture zones than the MWCAP numerical model by accounting for changes in the shape of capture zones caused by multiple-well interference. The capture zone boundaries generated by using both analytical and numerical models indicated that the curnmtly used 100-foot radius of protection around a wellhead in South Carolina is an underestimate of the extent of ground-water capture for pumped wetis in this particular wellfield in the Upper Floridan aquifer. The arbitrary fixed radius of 100 feet was shown to underestimate the upgradient contribution of ground-water flow to a pumped well.

  8. Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species.

    PubMed

    Lindtke, Dorothea; Gompert, Zachariah; Lexer, Christian; Buerkle, C Alex

    2014-09-01

    In the context of potential interspecific gene flow, the integrity of species will be maintained by reproductive barriers that reduce genetic exchange, including traits associated with prezygotic isolation or poor performance of hybrids. Hybrid zones can be used to study the importance of different reproductive barriers, particularly when both parental species and hybrids occur in close spatial proximity. We investigated the importance of barriers to gene flow that act early vs. late in the life cycle of European Populus by quantifying the prevalence of homospecific and hybrid matings within a mosaic hybrid zone. We obtained genotypic data for 11 976 loci from progeny and their maternal parents and constructed a Bayesian model to estimate individual admixture proportions and hybrid classes for sampled trees and for the unsampled pollen parent. Matings that included one or two hybrid parents were common, resulting in admixture proportions of progeny that spanned the whole range of potential ancestries between the two parental species. This result contrasts strongly with the distribution of admixture proportions in adult trees, where intermediate hybrids and each of the parental species are separated into three discrete ancestry clusters. The existence of the full range of hybrids in seedlings is consistent with weak reproductive isolation early in the life cycle of Populus. Instead, a considerable amount of selection must take place between the seedling stage and maturity to remove many hybrid seedlings. Our results highlight that high hybridization rates and appreciable hybrid fitness do not necessarily conflict with the maintenance of species integrity. © 2014 John Wiley & Sons Ltd.

  9. Links Between Clay Dehydration and Plate Boundary Earthquakes Along the Costa Rica Subduction Megathrust

    NASA Astrophysics Data System (ADS)

    Lauer, R. M.; Saffer, D. M.; Harris, R. N.

    2016-12-01

    The transformation of smectite to illite is one leading hypothesis to explain the upper transition from stable aseismic slip to seismogenesis along subduction megathrusts, through its influence on both fluid pressure and fault zone frictional properties. Here, we document a well-defined spatial correlation between plate boundary seismicity and smectite transformation at the Costa Rican subduction zone, consistent with the idea that clay transformation and associated silica deposition condition the fault for locking and stick-slip behavior. Previous efforts to explore this relationship have been impeded by a lack of studies that precisely locate seismicity at margins where the thermal structure is well-constrained. We take advantage of new results from Costa Rica that together provide a clear view of both seismicity and thermal conditions on the Middle-America megathrust. These results allow a thorough evaluation of the links between smectite dehydration and fault-slip behavior. We simulate smectite transformation using a kinetic model to assess reaction progress and quantify fluid production at the plate boundary, along 16-transects that span a 500-km length along strike. We find that large (Mw≥7.0) earthquakes are located down-dip of peak fluid production and in regions where the reaction is >50% complete. The earthquake ruptures, however, extend up-dip into the zone of peak reaction. We suggest that silica cementation that accompanies the reaction promotes lithification, embrittlement, and slip-weakening behavior that together enable the initiation of unstable slip, which can then propagate updip into fluid-rich and weak regions of the megathrust that coincide with the peak dehydration window.

  10. To reactivate or not to reactivate: nature and varied behavior of structural inheritance in the Proterozoic basement of the Eastern Colorado mineral belt over 1.7 billion years of earth history

    USGS Publications Warehouse

    Caine, Jonathan S.; Ridley, John; Wessel, Zachary R.

    2010-01-01

    The eastern central Front Range of the Rocky Mountains in Colorado has long been a region of geologic interest because of Laramide-age hydrothermal polymetallic vein-related ores. The region is characterized by a well-exposed array of geologic structures associated with ductile and brittle deformation, which record crustal strain over 1.7 billion years of continental growth and evolution. The mineralized areas lie along a broad linear zone termed the Colorado Mineral Belt. This lineament has commonly been interpreted as following a fundamental boundary, such as a suture zone, in the North American Proterozoic crust that acted as a persistent zone of weakness localizing the emplacement of magmas and associated hydrothermal fluid flow. However, the details on the controls of the location, orientation, kinematics, density, permeability, and relative strength of various geological structures and their specific relationships to mineral deposit formation are not related to Proterozoic ancestry in a simple manner. The objectives of this field trip are to show key localities typical of the various types of structures present, show recently compiled and new data, offer alternative conceptual models, and foster dialogue. Topics to be discussed include: (1) structural history of the eastern Front Range; (2) characteristics, kinematics, orientations, and age of ductile and brittle structures and how they may or may not relate to one another and mineral deposit permeability; and (3) characteristics, localization, and evolution of the metal and non–metal-bearing hydrothermal systems in the eastern Colorado Mineral Belt.

  11. P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography

    USGS Publications Warehouse

    Moran, S.C.; Lees, J.M.; Malone, S.D.

    1999-01-01

    We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ???10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics. Copyright 1999 by the American Geophysical Union.

  12. Elastic thickness estimates at northeast passive margin of North America and its implications

    NASA Astrophysics Data System (ADS)

    Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  13. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  14. Integrated petrographic - rock mechanic borecore study from the metamorphic basement of the Pannonian Basin, Hungary

    NASA Astrophysics Data System (ADS)

    Molnár, László; Vásárhelyi, Balázs; Tóth, Tivadar M.; Schubert, Félix

    2015-01-01

    The integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ˜15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.

  15. Spatial variations in deformation mechanisms along the Main Central thrust zone: Implications for the evolution of the MCT in the Darjeeling -Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kathakali; Mitra, Gautam

    2014-12-01

    In the Darjeeling-Sikkim Himalaya, we recognize two distinct MCT sheets: the structurally higher MCT1 and the lower MCT2. Microstructural studies from three different segments along the transport direction of the MCT2 fault zone suggest that the fault has undergone strain softening by different mechanisms. The geometry of the tapered crystalline orogenic wedge resulted in variation of overburden along the MCT2. Strain softening by different deformation mechanisms accommodated translation of ⩾100 km along a thin MCT2 fault zone. As the mylonitic trailing part of the MCT2 in Pelling had the greatest overburden, deformation took place by dislocation creep in quartz and by microfracturing in feldspar. Reaction softening of feldspar produced an intrinsically weak matrix that primarily controlled the deformation, resulting in a strain softening fault zone. At Soreng MCT2 zone, under intermediate crustal conditions, finer-grained recrystallized quartz and micaceous matrix deformed by grain-size sensitive diffusion creep mechanisms resulting in strain softening. The fault rocks at Sivitar had the least overburden and record a prominent mineralogical change from the protolith; strain softening occurred by pressure solution slip, possibly by a combination of grain-size reduction by cataclasis and an increase in fluid activity.

  16. Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls

    NASA Astrophysics Data System (ADS)

    Sivaneshan, P.; Harishankar, S.

    2017-07-01

    The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.

  17. Stochastic Ground Water Flow Simulation with a Fracture Zone Continuum Model

    USGS Publications Warehouse

    Langevin, C.D.

    2003-01-01

    A method is presented for incorporating the hydraulic effects of vertical fracture zones into two-dimensional cell-based continuum models of ground water flow and particle tracking. High hydraulic conductivity features are used in the model to represent fracture zones. For fracture zones that are not coincident with model rows or columns, an adjustment is required for the hydraulic conductivity value entered into the model cells to compensate for the longer flowpath through the model grid. A similar adjustment is also required for simulated travel times through model cells. A travel time error of less than 8% can occur for particles moving through fractures with certain orientations. The fracture zone continuum model uses stochastically generated fracture zone networks and Monte Carlo analysis to quantify uncertainties with simulated advective travel times. An approach is also presented for converting an equivalent continuum model into a fracture zone continuum model by establishing the contribution of matrix block transmissivity to the bulk transmissivity of the aquifer. The methods are used for a case study in west-central Florida to quantify advective travel times from a potential wetland rehydration site to a municipal supply wellfield. Uncertainties in advective travel times are assumed to result from the presence of vertical fracture zones, commonly observed on aerial photographs as photolineaments.

  18. Definition of zones with different levels of productivity within an agricultural field using fuzzy modeling

    USDA-ARS?s Scientific Manuscript database

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...

  19. Conflict and tuberculosis in Sudan: a 10-year review of the National Tuberculosis Programme, 2004-2014.

    PubMed

    Hassanain, Sara A; Edwards, Jeffrey K; Venables, Emilie; Ali, Engy; Adam, Khadiga; Hussien, Hafiz; Elsony, Asma

    2018-01-01

    Sudan is a fragile developing country, with a low expenditure on health. It has been subjected to ongoing conflicts ever since 1956, with the Darfur crisis peaking in 2004. The conflict, in combination with the weak infrastructure, can lead to poor access to healthcare. Hence, this can cause an increased risk of infection, greater morbidity and mortality from tuberculosis (TB), especially amongst the poor, displaced and refugee populations. This study will be the first to describe TB case notifications, characteristics and outcomes over a ten-year period in Darfur in comparison with the non-conflict Eastern zones within Sudan. A cross-sectional review of the National Tuberculosis Programme (NTP) data from 2004 to 2014 comparing the Darfur conflict zone with the non-conflict eastern zone. New case notifications were 52% lower in the conflict zone (21,131) compared to the non-conflict zone (43,826). Smear-positive pulmonary TB (PTB) in the conflict zone constituted 63% of all notified cases, compared to the non-conflict zone of 32% ( p  < 0.001). Extrapulmonary TB (EPTB) predominated the TB notified cases in the non-conflict zone, comprising 35% of the new cases versus 9% in the conflict zone ( p  < 0.001). The loss to follow up (LTFU) was high in both zones (7% conflict vs 10% non-conflict, p  < 0.001) with a higher rate among re-treatment cases (12%) in the conflict zone. Average treatment success rates of smear-positive pulmonary TB (PTB), over ten years, were low (65-66%) in both zones. TB mortality among re-treatment cases was higher in the conflict zone (8%) compared to the non-conflict zone (6%) ( p  < 0.001). A low TB case notification was found in the conflict zone from 2004 to 2014. High loss to follow up and falling treatment success rates were found in both conflict and non-conflict zones, which represents a significant public health risk. Further analysis of the TB response and surveillance system in both zones is needed to confirm the factors associated with the poor outcomes. Using context-sensitive measures and simplified pathways with an emphasis on displaced persons may increase access and case notification in conflict zones, which can help avoid a loss to follow up in both zones.

  20. Incompletely Mixed Surface Transient Storage Zones at River Restoration Structures: Modeling Implications

    NASA Astrophysics Data System (ADS)

    Endreny, T. A.; Robinson, J.

    2012-12-01

    River restoration structures, also known as river steering deflectors, are designed to reduce bank shear stress by generating wake zones between the bank and the constricted conveyance region. There is interest in characterizing the surface transient storage (STS) and associated biogeochemical processing in the STS zones around these structures to quantify the ecosystem benefits of river restoration. This research explored how the hydraulics around river restoration structures prohibits application of transient storage models designed for homogenous, completely mixed STS zones. We used slug and constant rate injections of a conservative tracer in a 3rd order river in Onondaga County, NY over the course of five experiments at varying flow regimes. Recovered breakthrough curves spanned a transect including the main channel and wake zone at a j-hook restoration structure. We noted divergent patterns of peak solute concentration and times within the wake zone regardless of transect location within the structure. Analysis reveals an inhomogeneous STS zone which is frequently still loading tracer after the main channel has peaked. The breakthrough curve loading patterns at the restoration structure violated the assumptions of simplified "random walk" 2 zone transient storage models which seek to identify representative STS zones and zone locations. Use of structure-scale Weiner filter based multi-rate mass transfer models to characterize STS zones residence times are similarly dependent on a representative zone location. Each 2 zone model assumes 1 zone is a completely mixed STS zone and the other a completely mixed main channel. Our research reveals limits to simple application of the recently developed 2 zone models, and raises important questions about the measurement scale necessary to identify critical STS properties at restoration sites. An explanation for the incompletely mixed STS zone may be the distinct hydraulics at restoration sites, including a constrained high velocity conveyance region closely abutting a wake zone that receives periodic disruption from the upstream structure shearing vortices.igure 1. River restoration j-hook with blue dye revealing main channel and edge of wake zone with multiple surface transient storage zones.

  1. Generalized mathematical model of red muds’ thickener of alumina production

    NASA Astrophysics Data System (ADS)

    Fedorova, E. R.; Vinogradova, A. A.

    2018-03-01

    The article describes the principle of a generalized mathematical model of the red mud’s thickener construction. The model of the red muds’ thickener of alumina production consists of sub-models of flocculation zones containing solid fraction feed slurry, free-fall and cramped sedimentation zones or effective sedimentation zones, bleaching zones. The generalized mathematical model of thickener allows predicting the content of solid fraction in the condensed product and in the upper discharge. The sub-model of solid phase aggregation allows one to count up average size of floccules, which is created during the flocculation process in feedwell. The sub-model of the free-fall and cramped sedimentation zone allows one to count up the concentration profile taking into account the variable cross-sectional area of the thickener. The sub-model of the bleaching zone is constructed on the basis of the theory of the precipitation of Kinc, supplemented by correction factors.

  2. Low-temperature growth and photoluminescence property of ZnS nanoribbons.

    PubMed

    Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen

    2005-10-06

    At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.

  3. Mise en évidence d'un nouveau front de chevauchement dans l'Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère

    NASA Astrophysics Data System (ADS)

    Khomsi, Sami; Bédir, Mourad; Ben Jemia, M. Ghazi; Zouari, Hédi

    2004-11-01

    Structural interpretations of newly acquired seismic lines in northeastern Tunisia allow us to highlight a new thrust front for the Atlasic range of Tunisia, in contrast to the previously Zaghouan fault thrust Dorsale zone. This new thrust front takes place on weakness tectonic zones, materialized by inherited faults anchored on the pre-Triassic basement. This front seems to be a paleogeographic trend controlling structural style and basin fill with a synsedimentary activity. The front is expressed by reverse faults, thrust faults, back thrusting, and decollement structures. To cite this article: S. Khomsi et al., C. R. Geoscience 336 (2004).

  4. Review of aquifer test results for the Lansdale area, Montgomery County, Pennsylvania, 1980-95

    USGS Publications Warehouse

    Goode, Daniel J.; Senior, Lisa A.

    1998-01-01

    Aquifer and aquifer-isolation test results in and around North Penn Area 6 Superfund site, Lansdale, Montgomery County, Pennsylvania are reviewed to provide estimated aquifer properties for use in a numerical model of ground-water flow. This review is in support of remedial action investigations by U.S. Environmental Protection Agency (USEPA), Region III, Philadelphia. Data are from files of the U.S. Geological Survey, USEPA, and water companies, and from unpublished consultant reports for USEPA and corporations in the Lansdale area. Tested wells are in fractured sedimentary rocks of the Brunswick Formation, which are Triassic-aged, dipping shales and sandstones. Review procedures include, in some cases, new analyses of drawdown during pumping and recovery using analytical models of flow to wells. Estimated aquifer transmissivities (T) range from zero to about 1,300 m2/d (meters squared per day), with most tests indicating T between 10 and 100 m2/d. Aquifer-isolation testing results indicate that most flow enters wells at a few discrete zones, probably fractures or bedding plane openings. The vertical connection between the zones in a single borehole with multiple producing zones often is negligible. This suggests that the formation is vertically anisotropic; the hydraulic conductivity is much larger in the horizontal direction than in the vertical direction. Some evidence of well-field-scale horizontal anisotropy exists, with maximum transmissivity aligned with the regional northeast strike of bedding, but this evidence is weak because of the small number of observation wells, particularly wells screened in isolated depth intervals. Analysis of recovery data after constant-pumping-rate aquifer tests and of drawdown during step tests suggests that a significant fraction, perhaps as much as 85 percent, of the drawdown in some production wells is due to well loss or skin effects in or very near the pumped well and is not caused by resistance to flow in the surrounding formations.

  5. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1)

    PubMed Central

    Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A.; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M.

    2015-01-01

    The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature. PMID:25904995

  6. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1).

    PubMed

    Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M

    2015-01-01

    The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of "all β proteins" (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another "all β protein" structure in complex with an irreversible bound protein as well as a reversible protein-protein interface (our "Rosetta Stone" effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature.

  7. Sediment-stabilizing and Destabilizing Ecoengineering Species from River to Estuary: the Case of the Scheldt System

    NASA Astrophysics Data System (ADS)

    Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.

    2017-12-01

    Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.

  8. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE PAGES

    Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; ...

    2012-03-26

    We use distorted wave electron scattering calculations to extract the weak charge form factor F W(more » $$\\bar{q}$$), the weak charge radius R W, and the point neutron radius R n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $$\\bar{q}$$ = 0.475 fm -1. We find F W($$\\bar{q}$$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from F W($$\\bar{q}$$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R W from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R n = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from R W. Here there is only a very small error (strange) from possible strange quark contributions. We find R n to be slightly smaller than R W because of the nucleon's size. As a result, we find a neutron skin thickness of R n-R p = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where R p is the point proton radius.« less

  9. Dynamics of Compressible Convection and Thermochemical Mantle Convection

    NASA Astrophysics Data System (ADS)

    Liu, Xi

    The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.

  10. Distribution of Magma and Hydrothermal Fluids Beneath the Laguna del Maule Volcanic Field, Central Chile Using Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Unsworth, M. J.; Cordell, D. R.; Diaz, D.; Reyes, V.

    2016-12-01

    Geodetic data has shown that the surface around the Laguna del Maule volcanic field in central Chile has been moving upwards at rates in excess of 19 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body beneath the lake. InSAR deformation modeling and gravity inversion suggest that the depth to the magma body is between 3 km b.s.l. and 0 km (at sea level). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model. The presence of a large surface conductor (<0.5 Ωm; 2.3 km a.s.l.) spatially coincident with the lake bed has the potential to attenuate signal and decrease resolution beneath the area of inflation. Additional broadband MT data were collected in 2016 and this new data suggest there is a mid-depth, weakly conductive feature (5 Ωm; 1 km b.s.l.) coincident with the area of maximum inflation which is resolvable despite the low-resistivity surface layer. There are many conductive features which lie on the perimeter of the zone of inflation including a large low-resistivity zone (<5 Ωm) at 5 km depth (3 km b.s.l.) north-west of the lake and a large low-resistivity zone (<10 Ωm) at 5 km depth (3 km b.s.l) north of the lake. The complex, three-dimensional model structure is supported by phase tensor analysis showing poorly-defined strike and high beta skew values (>3) at periods >2 s. The conductive features identified could be interpreted as either hydrothermal systems or magma and further analysis will contribute to better understanding this dynamic system.

  11. Behavioral variability of choices versus structural inconsistency of preferences.

    PubMed

    Regenwetter, Michel; Davis-Stober, Clintin P

    2012-04-01

    Theories of rational choice often make the structural consistency assumption that every decision maker's binary strict preference among choice alternatives forms a strict weak order. Likewise, the very concept of a utility function over lotteries in normative, prescriptive, and descriptive theory is mathematically equivalent to strict weak order preferences over those lotteries, while intransitive heuristic models violate such weak orders. Using new quantitative interdisciplinary methodologies, we dissociate the variability of choices from the structural inconsistency of preferences. We show that laboratory choice behavior among stimuli of a classical "intransitivity" paradigm is, in fact, consistent with variable strict weak order preferences. We find that decision makers act in accordance with a restrictive mathematical model that, for the behavioral sciences, is extraordinarily parsimonious. Our findings suggest that the best place to invest future behavioral decision research is not in the development of new intransitive decision models but rather in the specification of parsimonious models consistent with strict weak order(s), as well as heuristics and other process models that explain why preferences appear to be weakly ordered.

  12. In Situ Observation of Failure Mechanisms Controlled by Rock Masses with Weak Interlayer Zones in Large Underground Cavern Excavations Under High Geostress

    NASA Astrophysics Data System (ADS)

    Duan, Shu-Qian; Feng, Xia-Ting; Jiang, Quan; Liu, Guo-Feng; Pei, Shu-Feng; Fan, Yi-Lin

    2017-09-01

    A weak interlayer zone (WIZ) is a poor rock mass system with loose structure, weak mechanical properties, variable thickness, random distribution, strong extension, and high risk due to the shear motion of rock masses under the action of tectonism, bringing many stability problems and geological hazards, especially representing a potential threat to the overall stability of rock masses with WIZs in large underground cavern excavations. Focusing on the deformation and failure problems encountered in the process of excavation unloading, this research proposes comprehensive in situ observation schemes for rock masses with WIZs in large underground cavern on the basis of the collection of geological, construction, monitoring, and testing data. The schemes have been fully applied in two valuable project cases of an underground cavern group under construction in the southwest of China, including the plastic squeezing-out tensile failure and the structural stress-induced collapse of rock masses with WIZs. In this way, the development of rock mass failure, affected by the step-by-step excavations along the cavern's axis and the subsequent excavation downward, could be observed thoroughly. Furthermore, this paper reveals the preliminary analyses of failure mechanism of rock masses with WIZs from several aspects, including rock mass structure, strength, high stress, ground water effects, and microfracture mechanisms. Finally, the failure particularities of rock masses with WIZs and rethink on prevention and control of failures are discussed. The research results could provide important guiding reference value for stability analysis, as well as for rethinking the excavation and support optimization of rock masses with WIZs in similar large underground cavern under high geostress.

  13. Underwater Sound: Deep-Ocean Propagation: Variations of temperature and pressure have great influence on the propagation of sound in the ocean.

    PubMed

    Frosch, R A

    1964-11-13

    The absorption of sound in sea water varies markedly with frequency, being much greater at high than at low frequencies. It is sufficiently small at frequencies below several kilocycles per second, however, to permit propagation to thousands of miles. Oceanographic factors produce variations in sound velocity with depth, and these variations have a strong influence on long-range propagation. The deep ocean is characterized by a strong channel, generally at a depth of 500 to 1500 meters. In addition to guided propagation in this channel, the velocity structure gives rise to strongly peaked propagation from surface sources to surface receivers 48 to 56 kilometers away, with strong shadow zones of weak intensity in between. The near-surface shadow zone, in the latter case, may be filled in by bottom reflections or near-surface guided propagation due to a surface isothermal layer. The near-surface shadow zones can be avoided with certainty only through locating sources and receivers deep in the ocean.

  14. Structure of the tsunamigenic plate boundary and low-frequency earthquakes in the southern Ryukyu Trench

    PubMed Central

    Arai, Ryuta; Takahashi, Tsutomu; Kodaira, Shuichi; Kaiho, Yuka; Nakanishi, Ayako; Fujie, Gou; Nakamura, Yasuyuki; Yamamoto, Yojiro; Ishihara, Yasushi; Miura, Seiichi; Kaneda, Yoshiyuki

    2016-01-01

    It has been recognized that even weakly coupled subduction zones may cause large interplate earthquakes leading to destructive tsunamis. The Ryukyu Trench is one of the best fields to study this phenomenon, since various slow earthquakes and tsunamis have occurred; yet the fault structure and seismic activity there are poorly constrained. Here we present seismological evidence from marine observation for megathrust faults and low-frequency earthquakes (LFEs). On the basis of passive observation we find LFEs occur at 15–18 km depths along the plate interface and their distribution seems to bridge the gap between the shallow tsunamigenic zone and the deep slow slip region. This suggests that the southern Ryukyu Trench is dominated by slow earthquakes at any depths and lacks a typical locked zone. The plate interface is overlaid by a low-velocity wedge and is accompanied by polarity reversals of seismic reflections, indicating fluids exist at various depths along the plate interface. PMID:27447546

  15. Occupational hazards and illnesses of Filipino women workers in export processing zones.

    PubMed

    Lu, Jinky Leilanie

    2008-01-01

    This was a baseline study on occupational exposure and health problems among women workers in export processing zones. Physical, chemical, and ergonomic hazards were evaluated and measured through workplace ambient monitoring, survey questionnaires, and interviews with 500 respondents in 24 companies (most were female at 88.8%). The top 5 hazards were ergonomic hazards (72.2%), heat (66.6%), overwork (66.6%), poor ventilation (54.8%), and chemical exposure (50.8%). The most common illnesses were gastrointestinal problems (57.4%), backache (56%), headache (53.2%), and fatigue/weakness (53.2%). Logistic regression showed an association between certain work-related factors and occupational illnesses, and psychosocial problems. Highly significant associations were hearing loss with years spent in the company (p=.005) and gender (p=.006), headache and dizziness with poor ventilation (p=.000), backache with prolonged work (p=.003). These results will have implications for policy and program formulation for women workers' concerns and issues in export zones.

  16. Variations in City Exposure and Sensitivity to Tsunami Hazards in Oregon

    USGS Publications Warehouse

    Wood, Nathan

    2007-01-01

    Evidence of past events and modeling of potential future events suggest that tsunamis are significant threats to Oregon coastal communities. Although a potential tsunami-inundation zone from a Cascadia Subduction Zone earthquake has been delineated, what is in this area and how communities have chosen to develop within it have not been documented. A vulnerability assessment using geographic-information-system tools was conducted to describe tsunami-prone landscapes on the Oregon coast and to document city variations in developed land, human populations, economic assets, and critical facilities relative to the tsunami-inundation zone. Results indicate that the Oregon tsunami-inundation zone contains approximately 22,201 residents (four percent of the total population in the seven coastal counties), 14,857 employees (six percent of the total labor force), and 53,714 day-use visitors on average every day to coastal Oregon State Parks within the tsunami-inundation zone. The tsunami-inundation zone also contains 1,829 businesses that generate approximately $1.9 billion in annual sales volume (seven and five percent of study-area totals, respectively) and tax parcels with a combined total value of $8.2 billion (12 percent of the study-area total). Although occupancy values are not known for each facility, the tsunami-inundation zone also contains numerous dependent-population facilities (for example, adult-residential-care facilities, child-day-care facilities, and schools), public venues (for example, religious organizations and libraries), and critical facilities (for example, police stations). Racial diversity of residents in the tsunami-inundation zone is low, with 96 percent identifying themselves as White, either alone or in combination with one or more race. Twenty-two percent of the residents in the tsunami-inundation zone are over 65 years in age, 36 percent of the residents live on unincorporated county lands, and 37 percent of the households are renter occupied. The employee population in the tsunami-inundation zone is largely in accommodation and food services, retail trade, manufacturing, and arts and entertainment sectors. Results indicate that vulnerability, described here by exposure (the amount of assets in tsunami-prone areas) and sensitivity (the relative percentage of assets in tsunami-prone areas) varies considerably among 26 incorporated cities in Oregon. City exposure and sensitivity to tsunami hazards is highest in the northern portion of the coast. The City of Seaside in Clatsop County has the highest exposure, the highest sensitivity, and the highest combined relative exposure and sensitivity to tsunamis. Results also indicate that the amount of city assets in tsunami-prone areas is weakly related to the amount of a community's land in this zone; the percentage of a city's assets, however, is strongly related to the percentage of its land that is in the tsunami-prone areas. This report will further the dialogue on societal risk to tsunami hazards in Oregon and help identify future preparedness, mitigation, response, and recovery planning needs within coastal cities and economic sectors of the state of Oregon.

  17. The formation of graben morphology in the Dead Sea Fault, and its implications

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, Zvi; Katsman, Regina

    2015-09-01

    The Dead Sea Fault (DSF) is a 1000 km long continental transform. It forms a narrow and elongated valley with uplifted shoulders showing an east-west asymmetry, which is not common in other continental transforms. This topography may have strongly affected the course of human history. Several papers addressed the geomorphology of the DSF, but there is still no consensus with respect to the dominant mechanism of its formation. Our thermomechanical modeling demonstrates that existence of a transform prior to the rifting predefined high strain softening on the faults in the strong upper crust and created a precursor weak zone localizing deformations in the subsequent transtensional period. Together with a slow rate of extension over the Arabian plate, they controlled a narrow asymmetric morphology of the fault. This rift pattern was enhanced by a fast deposition of evaporites from the Sedom Lagoon, which occupied the rift depression for a short time period.

  18. Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Dong, C. F.; Ma, Y. J.; Curry, S. M.; Li, Yan; Lee, C. O.; Hara, T.; Lillis, R.; Halekas, J.; Connerney, J. E.; Espley, J.; Brain, D. A.; Dong, Y.; Jakosky, B. M.; Thiemann, E.; Eparvier, F.; Leblanc, F.; Withers, P.; Russell, C. T.

    2017-10-01

    Much can be learned from terrestrial planets that appear to have had the potential to be habitable, but failed to realize that potential. Mars shows evidence of a once hospitable surface environment. The reasons for its current state, and in particular its thin atmosphere and dry surface, are of great interest for what they can tell us about habitable zone planet outcomes. A main goal of the MAVEN mission is to observe Mars' atmosphere responses to solar and space weather influences, and in particular atmosphere escape related to space weather `storms' caused by interplanetary coronal mass ejections (ICMEs). Numerical experiments with a data-validated MHD model suggest how the effects of an observed moderately strong ICME compare to what happens during a more extreme event. The results suggest the kinds of solar and space weather conditions that can have evolutionary importance at a planet like Mars.

  19. Computational fluid dynamics of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    It is pointed out that transonic flow is one of the fields where computational fluid dynamics turns out to be most effective. Codes for the design and analysis of supercritical airfoils and wings have become standard tools of the aircraft industry. The present investigation is concerned with mathematical models and theorems which account for some of the progress that has been made. The most successful aerodynamics codes are those for the analysis of flow at off-design conditions where weak shock waves appear. A major breakthrough was achieved by Murman and Cole (1971), who conceived of a retarded difference scheme which incorporates artificial viscosity to capture shocks in the supersonic zone. This concept has been used to develop codes for the analysis of transonic flow past a swept wing. Attention is given to the trailing edge and the boundary layer, entropy inequalities and wave drag, shockless airfoils, and the inverse swept wing code.

  20. Possible terrestrial analogs of Valhalla and other ripple-ring basins

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1981-01-01

    The most remarkable feature on Callisto is Valhalla, a 3000 km wide structure comprised of dozens of concentric ridges and scarps surrounding a central smooth zone. Conventionally, Valhalla is interpreted as a multi-ring impact basin (similar to those on the terrestrial planets) whose morphology has been strongly effected by a thin and weak icy lithosphere in which it formed. Alternatively, Valhalla may have been formed by some non-impact related processes. In particular, ice cauldrons formed in Iceland by subsidence of glacier ice into voids created by geothermal melting are grossly similar to Valhalla in that both formed in ice and have multiple rings. Theoretical support for a similar subsidence mode of origin for Valhalla is provided by models of the thermal evolution of ice-silicate planets that result in diapiric sinking of lithospheric material into a water mantle (e.g., Paramentier and Head, 1979).

  1. Coordinated Multiwavelength Observations of PKS 0528+134 in Quiescence

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Palma, N.

    2011-01-01

    We report results of an intensive multiwavelength campaign on the prominent high-redshift (z = 2.06) gamma-ray bright blazar PKS 0528+134 in September - October 2009. The campaign was centered on four 30 ksec pointings with XMM-Newton, supplemented with ground-based optical (MDM, Perkins) and radio (UMRAO, Medicina, Metsaehovi, Noto, SMA) observations as well as long-term X-ray monitoring with RXTE and gamma-ray monitoring by Fermi. We find significant variability on 1 day time scales in the optical regime, accompanied by a weak redder-when-brighter trend. X-ray variability is found on longer ( 1 week) time scales, while the Fermi light curve shows no evidence for variability, neither in flux nor spectral index. We constructed four simultaneous spectral energy distributions, which can all be fit satisfactorily with a one-zone leptonic jet model. This work was supported by NASA through XMM-Newton Guest Observer Grant NNX09AV45G.

  2. Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.

    PubMed

    Kumar, Sandeep; Parks, David; Kamrin, Ken

    2016-07-26

    The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2.

  3. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less

  4. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen

    2018-02-20

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less

  5. Aqua-planet simulations of the formation of the South Atlantic convergence zone

    NASA Technical Reports Server (NTRS)

    Nieto Ferreira, Rosana; Chao, Winston C.

    2013-01-01

    The impact of Amazon Basin convection and cold fronts on the formation and maintenance of the South Atlantic convergence zone (SACZ) is studied using aqua-planet simulations with a general circulation model. In the model, a circular patch of warm sea-surface temperature (SST) is used to mimic the effect of the Amazon Basin on South American monsoon convection. The aqua-planet simulations were designed to study the effect of the strength and latitude of Amazon Basin convection on the formation of the SACZ. The simulations indicate that the strength of the SACZ increases as the Amazon convection intensifies and is moved away from the equator. Of the two controls studied here, the latitude of the Amazon convection exerts the strongest effect on the strength of the SACZ. An analysis of the synoptic-scale variability in the simulations shows the importance of frontal systems in the formation of the aqua-planet SACZ. Composite time series of frontal systems that occurred in the simulations show that a robust SACZ occurs when fronts penetrate into the subtropics and become stationary there as they cross eastward of the longitude of the Amazon Basin. Moisture convergence associated with these frontal systems produces rainfall not along the model SACZ region and along a large portion of the northern model Amazon Basin. Simulations in which the warm SST patch was too weak or too close to the equator did not produce frontal systems that extended into the tropics and became stationary, and did not form a SACZ. In the model, the SACZ forms as Amazon Basin convection strengthens and migrates far enough southward to allow frontal systems to penetrate into the tropics and stall over South America. This result is in agreement with observations that the SACZ tends to form after the onset of the monsoon season in the Amazon Basin.

  6. Examination of snowmelt over Western Himalayas using remote sensing data

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2016-07-01

    Snowmelt variability in the Western Himalayas has been examined using remotely sensed snow water equivalent (SWE) and snow-covered area (SCA) datasets. It is seen that climatological snowfall and snowmelt amount varies in the Himalayan region from west to east and from month to month. Maximum snowmelt occurs at the elevation zone between 4500 and 5000 m. As the spring and summer approach and snowmelt begins, a large amount of snow melts in May. Strength and weaknesses of temperature-based snowmelt models have been analyzed for this region by computing the snowmelt factor or the degree-day factor (DDF). It is seen that average DDF in the Himalayas is more in April and less in July. During spring and summer months, melting rate is higher in the areas that have height above 2500 m. The region that lies between 4500 and 5000 m elevation zones contributes toward more snowmelt with higher melting rate. Snowmelt models have been developed to estimate interannual variations of monthly snowmelt amount using the DDF, observed SWE, and surface air temperature from reanalysis datasets. In order to further improve the estimate snowmelt, regression between observed and modeled snowmelt has been carried out and revised DDF values have been computed. It is found that both the models do not capture the interannual variability of snowmelt in April. The skill of the model is moderate in May and June, but the skill is relatively better in July. In order to explain this skill, interannual variability (IAV) of surface air temperature has been examined. Compared to July, in April, the IAV of temperature is large indicating that a climatological value of DDF is not sufficient to explain the snowmelt rate in April. Snow area and snow amount depletion curves over Himalayas indicate that in a small area at high altitude, snow is still observed with large SWE whereas over most of the region, all the snow has melted.

  7. Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model

    PubMed Central

    Xia, Yin; Liu, Dianfeng; Liu, Yaolin; He, Jianhua; Hong, Xiaofeng

    2014-01-01

    Alternative land use zoning scenarios provide guidance for sustainable land use controls. This study focused on an ecologically vulnerable catchment on the Loess Plateau in China, proposed a novel land use zoning model, and generated alternative zoning solutions to satisfy the various requirements of land use stakeholders and managers. This model combined multiple zoning objectives, i.e., maximum zoning suitability, maximum planning compatibility and maximum spatial compactness, with land use constraints by using goal programming technique, and employed a modified simulated annealing algorithm to search for the optimal zoning solutions. The land use zoning knowledge was incorporated into the initialisation operator and neighbourhood selection strategy of the simulated annealing algorithm to improve its efficiency. The case study indicates that the model is both effective and robust. Five optimal zoning scenarios of the study area were helpful for satisfying the requirements of land use controls in loess hilly regions, e.g., land use intensification, agricultural protection and environmental conservation. PMID:25170679

  8. Processing on weak electric signals by the autoregressive model

    NASA Astrophysics Data System (ADS)

    Ding, Jinli; Zhao, Jiayin; Wang, Lanzhou; Li, Qiao

    2008-10-01

    A model of the autoregressive model of weak electric signals in two plants was set up for the first time. The result of the AR model to forecast 10 values of the weak electric signals is well. It will construct a standard set of the AR model coefficient of the plant electric signal and the environmental factor, and can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on agricultural productions.

  9. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.

    PubMed

    Lin, Pei-Ying Patty; Gaherty, James B; Jin, Ge; Collins, John A; Lizarralde, Daniel; Evans, Rob L; Hirth, Greg

    2016-07-28

    Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth's interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wave speed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.

  10. Bio-engineering traits of Pinus radiata D.Don

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Marden, Michael; Marrosu, Roberto; Schwarz, Massimiliano; Phillips, Chris John; Cohen, Denis; Niedda, Marcello

    2017-04-01

    Pinus radiata is widely cultivated in New Zealand. Due to steep slopes and intense rainfall, the silviculture of Pinus radiata forests is important to control erosion and slope stability. Bio-engineering traits such as root distribution and root tensile strength are fundamental to understand the effectiveness of Pinus radiata. This information is needed to use the state of the art root reinforcement model (the Root Bundle Model) and the physically-based slope stability model SOSlope. Yet, little is known about root distribution and tensile strength for this specie. We measured soil moisture and carried out 30 field tensile tests on roots of Pinus radiata. We also measured root distribution data from 5 plants, digging arc of circles 0.6 radian around the trees in four opposite directions. We fully excavated the root system of two trees. Using the Root Bundle Model, results of our measurements allow estimation of root reinforcement. With the slope stability model SOSlope, information on the intensity and frequency of harvesting and on the development of weak zones that can be supported by a stand of Pinus radiata in relation to slope stability can be calculated. An added value is that the collected data allow us to make inferences between number and sizes of roots, and growth direction.

  11. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization – sensitive optical coherence tomography

    PubMed Central

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2011-01-01

    Objectives It is difficult to completely remineralize carious lesions because diffusion into the interior of the lesion is inhibited as new mineral is deposited in the outermost layers. In previous remineralization studies employing polarization sensitive optical coherence tomography (PS-OCT), two models of remineralization were employed and in both models there was preferential deposition of mineral in the outer most layer. In this study we attempted to remineralize the entire lesion using an acidic remineralization model and demonstrate that this remineralization can be monitored using PS-OCT. Methods Artificial lesions approximately 100–150 µm in-depth were exposed to an acidic remineralization regimen and the integrated reflectivity from the lesions was measured before and after remineralization using PS-OCT. Results Automated integration routines worked well for assessing the integrated reflectivity for the lesion areas after remineralization. Although there was a high degree of remineralization, there was still incomplete remineralization of the body of the lesion. Conclusion This study demonstrated that PS-OCT can be used to non-destructively measure changes in lesion structure and severity upon exposure to an acidic remineralization model. This study also demonstrated that automated algorithms can be used to assess the lesion severity even with the presence of a weakly reflective surface zone. PMID:22204914

  12. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  13. Microstructural evidence for dissolution precipitation creep in high pressure metamorphic serpentinites from subduction zones

    NASA Astrophysics Data System (ADS)

    Wassmann, S.; Trepmann, C.; Krohe, A.; Stoeckhert, B.

    2009-12-01

    Serpentinite is generally believed to constitute weak material in subduction zones and to play an essential role for the development of a subduction channel. Information on deformation mechanisms and appropriate rheological models to describe these large scale flow processes is obtained from natural serpentinites exhumed from ancient subduction zones. In this study, we investigate the microstructural record of serpentinites exposed in the Zermatt-Saas-Zone, Western Alps. The metamorphic mineral assemblage comprises antigorite, forsterite, diopside, tremolite, chlorite, oxide phases, and in places titanclinohumite. Original mantle minerals are only locally preserved as relics. The conditions of Alpine metamorphism can be estimated from associated eclogites; the pressures are mostly between 1.5 and 2.5 GPa at temperatures of c. 500-600°C. The serpentinites show a complex structure with several generations of folds and foliations. An early foliation is defined by the combined shape and crystallographic preferred orientation (SPO and CPO) of antigorite and metamorphic diopside. These patterns are undistinguishable from the SPO and CPO of the same minerals in strain shadows, where the CPO must be developed by oriented growth from an aqueous solution. Therefore we suspect that the SPO and CPO in the polyphase matrix layers also result from oriented growth. Also, there is no microstructural evidence for any crystal plastic deformation of diopside. In places, antigorite flakes with SPO and CPO are overgrown by single crystals or aggregates of metamorphic forsterite, locally titanoclinohumite, and tremolite. The aggregates of forsterite exhibit a foam structure without CPO. All microfabrics indicate that dissolution precipitation creep was predominant in the investigated serpentinites, and most finite strain was accumulated by this mechanism. We see no evidence for a significant contribution of dislocation creep, both based on microstructure and on the CPO patterns. This does not preclude dislocation creep and a power law rheology to hold for higher stress levels, as expected for short episodes of postseismic creep. For the long term flow of serpentinites in subduction zones, however, Newtonian behaviour and a low viscosity are indicated.

  14. Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal.

    PubMed

    Chen, Qingcai; Li, Zebing; Hua, Xiaoyu

    2018-05-01

    The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO 2 - -N and NO 3 - -N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.

  15. The study of active tectonic based on hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.

    2017-12-01

    As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.

  16. Thermal Modeling of Bridgman Crystal Growth

    NASA Technical Reports Server (NTRS)

    Cothran, E.

    1983-01-01

    Heat Flow modeled for moving or stationary rod shaped sample inside directional-solidification furnace. Program effectively models one-dimensional heat flow in translating or motionless rod-shaped sample inside of directionalsolidification furnace in which adiabatic zone separates hot zone and cold zone. Applicable to systems for which Biot numbers in hot and cold zones are less than unity.

  17. Mechanisms governing brittle fault mechanics - a multi-scale study from the Permian Khao-Kwang fold-and-thrust belt, Thailand

    NASA Astrophysics Data System (ADS)

    von Hagke, Christoph; Morley, Chris; Kanitpanyacharoen, Waruntorn

    2017-04-01

    Despite our qualitative understanding of factors contributing to thrust and detachment weakness such as mineralogy, pore fluid pressure, or efficiency of structure localization, it is difficult to assess the contribution of the individual factors. Here we present multi-scale analysis of a mixed clay / carbonate high displacement (kms of heave) thrust zone, where it is possible to study structures formed within a similar temperature and pressure regime, and thus only varying due to lithological contrasts. We mapped the well-exposed thrust zone in a large quarry at outcrop scale in five separate sections present along a strike-distance of 1 km. The thrust zone shows considerable variations in structural style, as well as localization within different clay and limestone horizons. Zones of low and high strain have been identified. We investigate these changes in macroscopic deformation style using Virtual Polarizing Microscopy, and the combined methods of Broad Ion Beam milling and Scanning Electron Microscopy in addition with XRD analysis. We characterize structural and mineralogical variations in the thrust zone at all scales, from outcrop down to nano-meters. Results show strain localization is heterogeneous, with strong variations along strike. Within the clay package, strain localizes along zones rich in organic matter. Microstructures are complex, and show multiple deformation events, including crack-seal processes and reworking of vein material. Pressure solution is dominant. XRD analysis shows mineralogical differences between zones of high and low strain within the shale-dominated package. However, highest strain does not only occur in the clay units, but partly is accommodated in the surrounding limestone.

  18. Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum

    PubMed Central

    Olivera-Pasilio, Valentina; Peterson, Daniel A.; Castelló, María E.

    2014-01-01

    Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24 h) and long (30 day) chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers), sparse slow cycling (potentially stem) cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones. PMID:25249943

  19. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    PubMed Central

    Liu, Liming; Liu, Fei; Zhu, Meili

    2014-01-01

    Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA) welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated. PMID:28788508

  20. Models and observations of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.

  1. Inhalation exposure to cleaning products: application of a two-zone model.

    PubMed

    Earnest, C Matt; Corsi, Richard L

    2013-01-01

    In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.

  2. Complex fold and thrust belt structural styles: Examples from the Greater Juha area of the Papuan Fold and Thrust Belt, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Mahoney, Luke; Hill, Kevin; McLaren, Sandra; Hanani, Amanda

    2017-07-01

    The remote and inhospitable Papuan Fold Belt in Papua New Guinea is one of the youngest yet least well-documented fold and thrust belts on Earth. Within the frontal Greater Juha area we have carried out >100 km of geological traverses and associated analyses that have added significantly to the contemporary geological and geophysical dataset. Our structural analysis provides evidence of major inversion, detachment and triangle zone faults within the uplifted Eastern Muller Ranges. We have used the dataset to develop a quasi-3D model for the Greater Juha area, with associated cross-sections revealing that the exposed Cenozoic Darai Limestone is well-constrained with very low shortening of 12.6-21.4% yet structures are elevated up to 7 km above regional. We suggest the inversion of pre-existing rift architecture is the primary influence on the evolution of the area and that structures link to the surface via triangle zones and detachment faults within the incompetent Mesozoic passive-margin sedimentary sequence underlying competent Darai Limestone. Arc-normal oriented structures, dominantly oblique dextral, up-to-the-southeast, are pervasive across a range of scales and are here interpreted to relate at depth to weakened pre-existing basement cross-structures. It is proposed that Palaeozoic basement fabric controlled the structural framework of the basin during Early Mesozoic rifting forming regional-scale accommodation zones and related local-scale transfer structures that are now expressed as regional-scale arc-normal lineaments and local-scale arc-normal structures, respectively. Transfer structures, including complexly breached relay ramps, utilise northeast-southwest striking weaknesses associated with the basement fabric, as a mechanism for accommodating displacement along major northwest-southeast striking normal faults. These structures have subsequently been inverted to form arc-normal oriented zones of tear faulting that accommodate laterally variable displacement along inversion faults and connected thrust structures.

  3. Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method

    NASA Astrophysics Data System (ADS)

    Bog, Tino; Zander, Nils; Kollmannsberger, Stefan; Rank, Ernst

    2018-04-01

    The finite cell method (FCM) is a fictitious domain approach that greatly simplifies simulations involving complex structures. Recently, the FCM has been applied to contact problems. The current study continues in this field by extending the concept of weakly enforced boundary conditions to inequality constraints for frictionless contact. Furthermore, it formalizes an approach that automatically recovers high-order contact surfaces of (implicitly defined) embedded geometries by means of an extended Marching Cubes algorithm. To further improve the accuracy of the discretization, irregularities at the boundary of contact zones are treated with multi-level hp-refinements. Numerical results and a systematic study of h-, p- and hp-refinements show that the FCM can efficiently provide accurate results for problems involving contact.

  4. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  5. Seismic structure of the European upper mantle based on adjoint tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Hejun; Bozdağ, Ebru; Tromp, Jeroen

    2015-04-01

    We use adjoint tomography to iteratively determine seismic models of the crust and upper mantle beneath the European continent and the North Atlantic Ocean. Three-component seismograms from 190 earthquakes recorded by 745 seismographic stations are employed in the inversion. Crustal model EPcrust combined with mantle model S362ANI comprise the 3-D starting model, EU00. Before the structural inversion, earthquake source parameters, for example, centroid moment tensors and locations, are reinverted based on global 3-D Green's functions and Fréchet derivatives. This study consists of three stages. In stage one, frequency-dependent phase differences between observed and simulated seismograms are used to constrain radially anisotropic wave speed variations. In stage two, frequency-dependent phase and amplitude measurements are combined to simultaneously constrain elastic wave speeds and anelastic attenuation. In these two stages, long-period surface waves and short-period body waves are combined to simultaneously constrain shallow and deep structures. In stage three, frequency-dependent phase and amplitude anomalies of three-component surface waves are used to simultaneously constrain radial and azimuthal anisotropy. After this three-stage inversion, we obtain a new seismic model of the European curst and upper mantle, named EU60. Improvements in misfits and histograms in both phase and amplitude help us to validate this three-stage inversion strategy. Long-wavelength elastic wave speed variations in model EU60 compare favourably with previous body- and surface wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from the smooth starting model. Subducting slabs, slab detachments, ancient suture zones, continental rifts and backarc basins are well resolved in model EU60. We find an anticorrelation between shear wave speed and anelastic attenuation at depths < 100 km. At greater depths, this anticorrelation becomes relatively weak, in agreement with previous global attenuation studies. Furthermore, enhanced attenuation is observed within the mantle transition zone beneath the North Atlantic Ocean. Consistent with typical radial anisotropy in 1-D reference models, the European continent is dominated by features with a radially anisotropic parameter ξ > 1, indicating predominantly horizontal flow within the upper mantle. In addition, subduction zones, such as the Apennines and Hellenic arcs, are characterized by vertical flow with ξ < 1 at depths greater than 150 km. We find that the direction of the fast anisotropic axis is closely tied to the tectonic evolution of the region. Averaged radial peak-to-peak anisotropic strength profiles identify distinct brittle-ductile deformation in lithospheric strength beneath oceans and continents. Finally, we use the `point-spread function' to assess image quality and analyse trade-offs between different model parameters.

  6. Effect of Tool Offset and Tool Rotational Speed on Enhancing Mechanical Property of Al/Mg Dissimilar FSW Joints

    NASA Astrophysics Data System (ADS)

    Liang, Zhiyuan; Chen, Ke; Wang, Xiaona; Yao, Junshan; Yang, Qi; Zhang, Lanting; Shan, Aidang

    2013-08-01

    Friction stir welding (FSW) is a promising solid-state joining technique for producing effective welds between Al alloy and Mg alloy. However, previously reported Al/Mg dissimilar FSW joints generally have limited strength or barely any ductility with relatively high strength, which was blamed on the brittle intermetallics formed during welding. In this study, effective joints with comparably high strength (163 MPa) and large elongation (~6 pct) were obtained. Three crucial/weak zones were identified in the welds: (1) Al/Mg bottom interface (BI) zone that resulted from the insufficient materials' intermixing and interdiffusion; (2) banded structure (BS) zone which contains intermetallic particles possibly formed by constitutional liquation; and (3) softened Al alloy to the retreating side (SAA-RS) zone due to the dissolution and coarsening of the strengthening precipitates. Three fracture modes observed in the tensile specimens perpendicular to the weld seam were found closely related to these zones. Their microstructure evolution with the change of tool rotational speed and tool offset was characterized and the consequent effect on the fracture mode alteration was studied. It turned out that enhancing the strengths of all these zones, but keeping the strength of the SAA lowest, is an effective way for enhancing ductility while keeping comparatively high strength in Al/Mg FSW joints. Also, suggestions for further improving the mechanical property of the Al/Mg dissimilar FSW joints were made accordingly for practical applications.

  7. Marine Geophysical Characterization of the Chain Fracture Zone in the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Harmon, N.; Rychert, C.; Agius, M. R.; Tharimena, S.; Kendall, J. M.

    2017-12-01

    The Chain Fracture zone is part of a larger system of fracture zones along the Mid Atlantic Ridge that is thought to be one of the original zones of weakness during the break up of Pangea. It is over 300 km long and produces earthquakes as large as Mw 6.9 on segments of the active fault zone. Here we present the results of two marine geophysical mapping campaigns over the active part of the Chain Fracture zone as part of the PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment. We collected swath bathymetry, backscatter imagery, gravity and total field magnetic anomaly. We mapped the fault scarps within the transform fault system using the 50 m resolution swath and backscatter imagery. In addition, a 30-40 mGal residual Mantle Bouguer Anomaly determined from gravity analysis suggests the crust is by up to 1.4-2.0 km beneath the Chain relative to the adjacent ridge segments. However, in the eastern 75 km of the active transform we find evidence for thicker crust. The active fault system cuts through the region of thicker crust and there is a cluster of MW > 6 earthquakes in this region. There is a cluster of similar sized earthquakes on the western end where thinner crust is inferred. This suggests that variations in melt production and crustal thickness at the mid ocean ridge systems may have only a minor effect on the seismicity and longevity of the transform fault system.

  8. The influence of joint parameters on normal fault evolution and geometry: a parameter study using analogue modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.

    2017-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.

  9. Morphostructural evidence for Recent/active extension in Central Tanzania beyond the southern termination of the Kenya Rift.

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; Rolet, J.; Gernigon, L.; Ebinger, C.; Gloaguen, R.

    2003-04-01

    The southern tip zone of the Kenya Rift on the eastern branch of the East African System is usually thought to occur in the so-called North Tanzanian Divergence. In this region, the narrow (50 km-wide) axial graben of southern Kenya splays southwards, via a major EW-trending volcanic lineament, into a 200 km-wide broad rifted zone with three separate arms of normal faulting and tilted fault blocks (Eyasi, Manyara and Pangani arms from W to E). Remote sensing analysis from Central Tanzania demonstrates that rift morphology exists over an area lying 400 km beyond the southern termination of the Kenya Rift. The most prominent rift structures are observed in the Kilombero region and consist of a 100 km-wide range of uplifted basement blocks fringed to the west by an E-facing half-graben inferred to reach depths of 6-8 km from aeromagnetic dataset. Physiographic features (fault scarps), and river drainage anomalies suggest that the present-day rift pattern in the Kilombero extensional province principally results from Recent/Neogene deformation. That assumption is also supported by the seismogenic character of a number of faults. The Kilombero half-graben is superimposed upon an earlier rift system, Karoo in age, which is totally overprinted and is only evidenced from its sedimentary infill. On the other hand, the nature and thickness of the inferred Neogene synrift section is still unknown. The Kilombero rifted zone is assumed to connect northwards into the central rift arm (Manyara) of the South Kenya Rift via a seismically active transverse fault zone that follows ductile fabrics within the Mozambican crystalline basement. The proposed rift model implies that incipient rifting propagates hroughout the cold and strong crust/lithosphere of Central Tanzania along Proterozoic (N140=B0E) basement weakness zones and earlier Karoo (NS)rift structures. A second belt of Recent-active linked fault/basins also extends further East from the Pangani rift arm to the offshore Zanzibar-Kerimbas graben system. The structural connection of the Kilombero rifted zone with the Lake Malawi rift further south is also envisaged and should imply the link of the eastern and western branchs of the East African Rift System south of the Tanzanian craton.

  10. Validating the Performance of the FHWA Work Zone Model Version 1.0: A Case Study Along I-91 in Springfield, Massachusetts

    DOT National Transportation Integrated Search

    2017-08-01

    Central to the effective design of work zones is being able to understand how drivers behave as they approach and enter a work zone area. States use simulation tools in modeling freeway work zones to predict work zone impacts and to select optimal de...

  11. Fluid-induced Blueschist Preservation on Syros, Cyclades, Southern Greece

    NASA Astrophysics Data System (ADS)

    Kleine, B. I.; Huet, B.; Skelton, A. D. L.

    2012-04-01

    Local examples of preservation of high-pressure, low-temperature (HP-LT) mineral assemblages within retrograde metamorphosed greenschist are recorded from the Cyclades, Greece. Several models have been proposed to explain the preservation of HP-LT rocks in these areas. On Sifnos, a capping effect of impermeable marble units below the preserved blueschists caused diversion of the upward, cross-layer infiltration of retrograde fluids [1]. On Tinos, blueschist preservation occurred due to retrograde fluid flow channelization along lithological contacts with high flux rates [2]. HP-LT minerals were preserved in regions adjacent to these contacts where fluid fluxes were smaller. We propose a different mechanism of blueschist preservation based on observations from a costal section near Fabrika on Syros. At this locality a high strain zone cuts through a retrograde greenschist. Along the fault a dark blue halo occurs within the greenschist. Whole rock analyses along a profile from the fault into the greenschist show that only the areas directly adjacent to the deformation zone show chemical evidence of metasomatism, whereas the areas further away are chemically similar to greenschist. Point counting of 1000 evenly spaced points in thin sections of the profile shows a clear blueschist to greenschist transition with a blueschist mineral assemblage (glaucophane+phengite+calcite) nearer to the metasomatic zone and a typical greenschist mineral assemblage (epidote+chlorite+albite) farther away. We propose the following model to explain preservation of HP-LT mineral assemblage in this locality. During retrograde metamorphism a water-rich fluid infiltrated the blueschist rock from below. This occurred close to the brittle-ductile transition. This fluid caused a reaction front to propagate into the overlying blueschist at which its mineral assemblage glaucophane+phengite+calcite was replaced by the greenschist mineral assemblage epidote+albite+chlorite. Upwards-flowing fluid passing through the reaction front is buffered to higher X(CO2) by the reaction glaucophane+phengite+calcite+H2O=albite+chlorite+epidote+quartz+CO2. This fluid travels faster along paths of structural weakness (e.g. shear zones, faults). If this fluid reaches colder regions more rapidly such that the fluid chemistry is unable to "keep up" with the position of the reaction equilibria as the temperature falls, X(CO2) will be effectively shifted back into the blueschist stability field and blueschist will be preserved, specifically within high flux regions, such as shear zones and faults. [1] Matthews & Schliestedt (1984), Contributions to Mineralogy and Petrology, 88, 150-163. [2] Breeding et al. (2003), Geochemistry Geophysics Geosystems, 4, 1-11.

  12. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model.

    PubMed

    Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian

    2018-04-13

    Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice

    2016-05-01

    A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.

  14. Geophysical Characterization of a Rare Earth Element Enriched Carbonatite Terrane at Mountain Pass, California Eastern Mojave Desert

    NASA Astrophysics Data System (ADS)

    Denton, Kevin M.

    Mountain Pass, California, located in the eastern Mojave Desert, hosts one of the world's richest rare earth element (REE) deposits. The REE-rich rocks occur in a 2.5 km- wide, north-northwest trending zone of Mesoproterozoic (1.4-1.42 Ga) stocks and dikes, which intrude a larger Paleoproterozoic (1.7 Ga) schist-gneiss terrane that extends 10 km southward from Clark Mountain to the Mescal Range. Several REE-enriched bodies make up the Mountain Pass intrusive suite including shonkinite, syenite, and granite comprising an ultrapotassic intrusive suite and the Sulphide Queen carbonatite body. Two-dimensional modeling of gravity, magnetic, and electrical resistivity data reveals that the Mountain Pass intrusive suite is associated with a local gravity high that is superimposed on a 4-km wide gravity terrace. Rock property data indicate that the Mountain Pass intrusive suite is unusually nonmagnetic at the surface (2.0 x 10-3 SI, n = 67). However, aeromagnetic data indicate that these rocks occur along the eastern edge of a prominent north-northwest trending aeromagnetic high of unknown origin. The source of this unknown magnetic anomaly is 2-3 km below the surface and coincides with a body of rock having high electrical conductivity. Electrical resistivity models indicate that this unknown magnetic anomaly is several orders of magnitude more conductive (103 O•m) than the surrounding rock. Combined geophysical data suggest that the carbonatite and its associated ultrapotassic intrusive suite were preferentially emplaced along a northwest zone of weakness and/or a fault.

  15. 2-D Resistivity Assessment of Subsurface Characterization and its Engineering and Environmental Implications at SiLC

    NASA Astrophysics Data System (ADS)

    Nordiana, M. M.; Azwin, I. N.; Saad, Rosli; Jia, Teoh Ying; Anderson, A. B.; Tonnizam, Edy; Taqiuddin Zakaria, Muhamad

    2017-04-01

    The role of geophysics in Environmental Earth Sciences and Engineering is considered. In the developing era, geophysics has mainly contributed in investigation of new constructions such as tunnels, road, dams and high-rise buildings. This study was carried out to assess the foundation depths around a construction site in the Southern Industrial & Logistics Clusters (SiLC), Nusajaya, Johor using 2-D resistivity method. The 2-D resistivity method was carried out with a view to characterize different subsurface geological and to provide the engineering and environmental geophysical characterization of the study area. Measurements of eight 2-D resistivity profile using Pole-dipole array with 2 m minimum electrode spacing was taken with the use of ABEM Terrameter SAS4000 and ES10-64C selector. The results are presented as inversion model resistivity with the outline of the survey line. The inversion model resistivity from L1-L8 obtained is characterized by resistivity range of 1-8000 ohm-m. This range indicates the occurrence of silt, clay, sandy clay and sand whose ranges are; 10-100 ohm-m, 1-100 ohm-m, 100-800 ohm-m and 100-3000 ohm-m respectively. However, there was a boulder with range of >5000 ohm-m and saturated zone (1-20 ohm-m) which may indicate the weak zones of the study area. The 2-D resistivity method is not intended to replace borings, except in specific cases where information gathered would be sufficient to address the intended engineering and environmental purpose.

  16. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

  17. Viscoelastic lower crust and mantle relaxation following the 14-16 April 2016 Kumamoto, Japan, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.; Kobayashi, Tomokazu; Yarai, Hiroshi; Shibazaki, Bunichiro; Matsumoto, Takumi

    2017-09-01

    The 2016 Kumamoto, Japan, earthquake sequence, culminating in the Mw=7.0 16 April 2016 main shock, occurred within an active tectonic belt of central Kyushu. GPS data from GEONET reveal transient crustal motions from several millimeters per year up to ˜3 cm/yr during the first 8.5 months following the sequence. The spatial pattern of horizontal postseismic motions is shaped by both shallow afterslip and viscoelastic relaxation of the lower crust and upper mantle. We construct a suite of 2-D regional viscoelastic structures in order to derive an optimal joint afterslip and viscoelastic relaxation model using forward modeling of the viscoelastic relaxation. We find that afterslip dominates the postseismic relaxation in the near field (within 30 km of the main shock epicenter), while viscoelastic relaxation dominates at greater distance. The viscoelastic modeling strongly favors a very weak lower crust below a ˜65 km wide zone coinciding with the Beppu-Shimabara graben and the locus of central Kyushu volcanism. Inferred uppermost mantle viscosity is relatively low beneath southern Kyushu, consistent with independent inferences of a hydrated mantle wedge within the Nankai trough fore -arc.

  18. Glass Microbeads in Analog Models of Thrust Wedges.

    PubMed

    D'Angelo, Taynara; Gomes, Caroline J S

    2017-01-01

    Glass microbeads are frequently used in analog physical modeling to simulate weak detachment zones but have been neglected in models of thrust wedges. Microbeads differ from quartz sand in grain shape and in low angle of internal friction. In this study, we compared the structural characteristics of microbeads and sand wedges. To obtain a better picture of their mechanical behavior, we determined the physical and frictional properties of microbeads using polarizing and scanning electron microscopy and ring-shear tests, respectively. We built shortening experiments with different basal frictions and measured the thickness, slope and length of the wedges and also the fault spacings. All the microbeads experiments revealed wedge geometries that were consistent with previous studies that have been performed with sand. However, the deformation features in the microbeads shortened over low to intermediate basal frictions were slightly different. Microbeads produced different fault geometries than sand as well as a different grain flow. In addition, they produced slip on minor faults, which was associated with distributed deformation and gave the microbeads wedges the appearance of disharmonic folds. We concluded that the glass microbeads may be used to simulate relatively competent rocks, like carbonates, which may be characterized by small-scale deformation features.

  19. Viscoelastic lower crust and mantle relaxation following the 14–16 April 2016 Kumamoto, Japan, earthquake sequence

    USGS Publications Warehouse

    Pollitz, Fred; Kobayashi, Tomokazu; Yarai, Hiroshi; Shibazaki, Bunichiro; Matsumoto, Takumi

    2017-01-01

    The 2016 Kumamoto, Japan, earthquake sequence, culminating in the Mw=7.0 16 April 2016 main shock, occurred within an active tectonic belt of central Kyushu. GPS data from GEONET reveal transient crustal motions from several millimeters per year up to ∼3 cm/yr during the first 8.5 months following the sequence. The spatial pattern of horizontal postseismic motions is shaped by both shallow afterslip and viscoelastic relaxation of the lower crust and upper mantle. We construct a suite of 2-D regional viscoelastic structures in order to derive an optimal joint afterslip and viscoelastic relaxation model using forward modeling of the viscoelastic relaxation. We find that afterslip dominates the postseismic relaxation in the near field (within 30 km of the main shock epicenter), while viscoelastic relaxation dominates at greater distance. The viscoelastic modeling strongly favors a very weak lower crust below a ∼65 km wide zone coinciding with the Beppu-Shimabara graben and the locus of central Kyushu volcanism. Inferred uppermost mantle viscosity is relatively low beneath southern Kyushu, consistent with independent inferences of a hydrated mantle wedge within the Nankai trough fore -arc.

  20. One-dimensional flow model of the river-hyporheic zone system

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.

    2016-12-01

    The hyporheic zone is a shallow layer beneath natural streams that is characterized by intense exchange of water, nutrients, pollutants and thermal energy. Understanding these exchange processes is crucial for successful modelling of the river hydrodynamics and morphodynamics at various scales from the river corridor up to the river network scale (Cardenas, 2015). Existing simulation models of hyporheic exchange processes are either idealized models of the tracer movement through the river-hyporheic zone system (e.g. TSM, Bencala and Walters, 1983) or detailed models of turbulent flow in a stream, coupled with a conventional 2D Darcian groundwater model (e.g. Cardenas and Wilson, 2007). This paper presents an alternative approach which involves a simple 1-D simulation model of the hyporheic zone system based on the classical SWE equations coupled with the newly developed porous media analogue. This allows incorporating the effects of flow unsteadiness and non-Darcian parameterization od the drag term in the hyporheic zone model. The conceptual model of the stream-hyporheic zone system consists of a 1D model of the open channel flow in the river, coupled with a 1D model of the flow in the hyporheic zone via volume flux due to the difference in the water level in the river and the hyporheic zone. The interaction with the underlying groundwater aquifer is neglected, but coupling the present model with any conventional groundwater model is straightforward. The paper presents the derivation of the 1D flow equations for flow in the hyporheic zone, the details of the numerical scheme used for solving them and the model validation by comparison with published experimental data. References Bencala, K. E., and R. A. Walters (1983) "Simulation of solute transport in a mountain pool-and-riffle stream- a transient storage model", Water Resources Reseach 19(3): 718-724. Cardenas, M. B. (2015) "Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus", Water Resources Research 51: 3601-3616 Cardenas, M. B., and J. L. Wilson (2007) "Dunes, turbulent eddies, and interfacial exchange with permeable sediments", Water Resour. Res. 43:W08412

Top