Sample records for weakly coordinating solvents

  1. The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes.

    PubMed

    Kuzmina, O; Hassan, N H; Patel, L; Ashworth, C; Bakis, E; White, A J P; Hunt, P A; Welton, T

    2017-09-28

    Solvatochromic transition metal (TM)-complexes with weakly associating counter-anions are often used to evaluate traditional neutral solvent and anion coordination ability. However, when employed in ionic liquids (IL) many of the common assumptions made are no longer reliable. This study investigates the coordinating ability of weakly coordinating IL anions in traditional solvents and within IL solvents employing a range of solvatochromic copper complexes. Complexes of the form [Cu(acac)(tmen)][X] (acac = acetylacetonate, tmen = tetramethylethylenediamine) where [X] - = [ClO 4 ] - , Cl - , [NO 3 ] - , [SCN] - , [OTf] - , [NTf 2 ] - and [PF 6 ] - have been synthesised and characterised both experimentally and computationally. ILs based on these anions and imidazolium and pyrrolidinium cations, some of which are functionalised with hydroxyl and nitrile groups, have been examined. IL-anion coordination has been investigated and compared to typical weakly coordinating anions. We have found there is potential for competition at the Cu-centre and cases of anions traditionally assigned as weakly associating that demonstrate a stronger than expected level of coordinating ability within ILs. [Cu(acac)(tmen)][PF 6 ] is shown to contain the least coordinating anion and is established as the most sensitive probe studied here. Using this probe, the donor numbers (DNs) of ILs have been determined. Relative donor ability is further confirmed based on the UV-Vis of a neutral complex, [Cu(sacsac) 2 ] (sacsac = dithioacetylacetone), and DNs evaluated via 23 Na NMR spectroscopy. We demonstrate that ILs can span a wide donor range, similar in breadth to conventional solvents.

  2. Silver(I) complexes of the weakly coordinating solvents SO(2) and CH(2)Cl(2): crystal structures, bonding, and energetics of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)].

    PubMed

    Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing

    2009-06-22

    Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand-binding energies of [Ag(L)(n)](+) (L=SO(2), CH(2)Cl(2); n=1, 2) and solid-state enthalpies obtained from Born-Fajans-Haber cycles by using the volume-based thermodynamics (VBT) approach. Bonding analysis (VB, NBO, MO) of [Ag(L)(n)](+) suggests that these complexes are almost completely stabilized by electrostatic interaction, that is, monopole-dipole interaction, with almost no covalent contribution by electron donation from the ligand orbitals into the vacant 5s orbital of Ag(+). All experimental findings and theoretical considerations demonstrate that SO(2) is less covalently bound to Ag(+) than CH(2)Cl(2) and support the thesis that SO(2) is a polar but non-coordinating solvent towards Ag(+).

  3. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state

    PubMed Central

    Krakowiak, Joanna; Lundberg, Daniel

    2012-01-01

    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen donor solvents water, dimethylsulfoxide (dmso) and N,N′-dimethylpropyleneurea (dmpu) has been studied in solution by EXAFS and large angle X-ray scattering (LAXS) and in solid state by single crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and dimethylsulfoxide solvated oxovanadium(IV) ions vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O=V-Operp bond angle is ca. 98°. In the dmpu solvated oxovanadium(IV) ion, the space demanding properties of the dmpu molecule leaving no solvent molecule in the trans position to the oxo group which reduces the coordination number to 5. The O=V-O bond angle is consequently much larger, 106°, and the mean V=O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and dimethylsulfoxide solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in cis position with mean V=O bond distances of 1.6 Å and a O=V=O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen donor ligands. PMID:22950803

  4. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(I) and cobalt(II) metal centres†

    PubMed Central

    Lawrence, Mark A. W.; Celestine, Michael J.; Artis, Edward T.; Joseph, Lorne S.; Esquivel, Deisy L.; Ledbetter, Abram J.; Cropek, Donald M.; Jarrett, William L.; Bayse, Craig A.; Brewer, Matthew I.; Holder, Alvin A.

    2018-01-01

    [Co(dmgBF2)2(H2O)2] 1 (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO 2 (where py = pyridine) in acetone. The formulation of complex 2 was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex 1. A spectrophotometric titration involving complex 1 and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(II) centre diminished the peak current at the Epc value of the CoI/0 redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical 59Co NMR spectroscopic data for the formation of Co(I) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(I) metal centre is more favourable than coordination to a cobalt(II) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes 1 and 2 in various solvents demonstrated the dramatic effects of the axial ligand and the solvent on the turnover number of the respective catalyst. PMID:27244471

  5. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amrita; Kar, Samiran; Guchhait, Nikhil

    2006-01-01

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate ( t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters ( α). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe 2) and acceptor (-CH = CHCOOMe) sites shows stabilization of S 1 state and destabilization S 2 and S 0 states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S 1 state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90° twisted configuration. The S 1 energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.

  6. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2more » are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.« less

  7. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  8. True and masked three-coordinate T-shaped platinum(II) intermediates.

    PubMed

    Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí

    2013-01-01

    Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.

  9. Two-Coordinate Magnesium(I) Dimers Stabilized by Super Bulky Amido Ligands.

    PubMed

    Boutland, Aaron J; Dange, Deepak; Stasch, Andreas; Maron, Laurent; Jones, Cameron

    2016-08-01

    A variety of very bulky amido magnesium iodide complexes, LMgI(solvent)0/1 and [LMg(μ-I)(solvent)0/1 ]2 (L=-N(Ar)(SiR3 ); Ar=C6 H2 {C(H)Ph2 }2 R'-2,6,4; R=Me, Pr(i) , Ph, or OBu(t) ; R'=Pr(i) or Me) have been prepared by three synthetic routes. Structurally characterized examples of these materials include the first unsolvated amido magnesium halide complexes, such as [LMg(μ-I)]2 (R=Me, R'=Pr(i) ). Reductions of several such complexes with KC8 in the absence of coordinating solvents have afforded the first two-coordinate magnesium(I) dimers, LMg-MgL (R=Me, Pr(i) or Ph; R'=Pr(i) , or Me), in low to good yields. Reductions of two of the precursor complexes in the presence of THF have given the related THF adduct complexes, L(THF)Mg-Mg(THF)L (R=Me; R'=Pr(i) ) and LMg-Mg(THF)L (R=Pr(i) ; R'=Me) in trace yields. The X-ray crystal structures of all magnesium(I) complexes were obtained. DFT calculations on the unsolvated examples reveal their Mg-Mg bonds to be covalent and of high s-character, while Ph⋅⋅⋅Mg bonding interactions in the compounds were found to be weak at best. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2'-bipyridine)(CN) 4] 2-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjær, Kasper S.; Kunnus, Kristjan; Harlang, Tobias C. B.

    The excited state dynamics of solvated [Fe(bpy)(CN) 4] 2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN) 4] 2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile. Here, in the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN) 4] 2-more » in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet ( 3MC) character, unlike other reported six-coordinate Fe(II)-centered coordination compounds, which form MC quintet ( 5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN) 4] 2- allows us to infer the influence of the solvent on the electronic structure of the complex. Lastly, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.« less

  11. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2'-bipyridine)(CN) 4] 2-

    DOE PAGES

    Kjær, Kasper S.; Kunnus, Kristjan; Harlang, Tobias C. B.; ...

    2018-01-19

    The excited state dynamics of solvated [Fe(bpy)(CN) 4] 2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN) 4] 2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile. Here, in the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN) 4] 2-more » in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet ( 3MC) character, unlike other reported six-coordinate Fe(II)-centered coordination compounds, which form MC quintet ( 5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN) 4] 2- allows us to infer the influence of the solvent on the electronic structure of the complex. Lastly, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.« less

  12. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  13. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  14. Exploring Solvent Shape and Function Using - and Isomer-Selective Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Mark

    2010-06-01

    We illustrate the new types of information than can be obtained through isomer-selective ``hole-burning'' spectroscopy carried out in the vibrational manifolds of Ar-tagged cluster ions. Three examples of increasing complexity will be presented where the changes in a solute ion are correlated with different morphologies of a surrounding solvent cage. In the first, we discuss the weak coupling limit where different hydration morphologies lead to small distortions of a covalent ion. We then introduce the more interesting case of the hydrated electron, where different shapes of the water network lead to dramatic changes in the extent of delocalization in the diffuse excess electron cloud. We then turn to the most complex case involving hydration of the nitrosonium ion, where different arrangements of the same number of water molecules span the range in behavior from simple solvation to actively causing a chemical reaction. The latter results are particularly interesting as they provide a microscopic, molecular-level picture of the ``solvent coordinate'' commonly used to describe solvent mediated processes.

  15. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  16. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  17. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS.

    PubMed

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei; Zhou, Yufan; Wang, Jungang; Cao, Ruiguo; Xu, Wu; Wang, Chongmin; Baer, Donald R; Borodin, Oleg; Xu, Kang; Wang, Yanting; Wang, Xue-Lin; Xu, Zhijie; Wang, Fuyi; Zhu, Zihua

    2018-03-06

    Ion-solvent interactions in nonaqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF 6 ) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC) and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li + by EC. Besides, from the negative spectra, we also found that PF 6 - forms association with EC, which has been neglected by previous studies due to the relatively weak interaction. In both LiFSI in DME electrolytes, however, no evidence shows that FSI - is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF 6 in EC-DMC electrolyte, suggesting that a significant amount of Li + ions stay in the vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in nonaqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.

  18. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei

    2018-02-06

    Ion-solvent interactions in non-aqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF6) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC), and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li+ by EC. Besides, from the negative spectra, we also found that PF6- forms association with EC,more » which has been neglected by previous studies due to the relatively weak interaction. While in both LiFSI in DME electrolytes, no evidence shows that FSI- is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF6 in EC-DMC electrolyte, suggesting that a significant amount of Li+ ions stay in vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics (MD) simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in non-aqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.« less

  19. Investigation of Ion–Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei

    Ion-solvent interactions in non-aqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF6) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC), and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li+ by EC. Besides, from the negative spectra, we also found that PF6- forms association with EC,more » which has been neglected by previous studies due to the relatively weak interaction. While in both LiFSI in DME electrolytes, no evidence shows that FSI- is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF6 in EC-DMC electrolyte, suggesting that a significant amount of Li+ ions stay in vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics (MD) simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in non-aqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.« less

  20. Crystal structure of [Eu(CyMe4-BTBP)2κ2O,O'-(NO3)](NO3)2·n-C8H17OH and its structure in 1-octanol solution.

    PubMed

    Lundberg, Daniel; Persson, Ingmar; Ekberg, Christian

    2013-03-21

    The structure of the [Eu(CyMe(4)-BTBP)(2)(NO(3))(n)]((3-n)+) complex in 1-octanol solution and solid state has been determined by EXAFS and X-ray crystallography. The crystal structure shows that 1-octanol binds only to the europium(III)-coordinated BTBP molecules through weak van der Waals forces, making it the first indication of the role of the extraction solvent.

  1. Simple modification of basic dyes with bulky &symmetric WCAs for improving their solubilities in organic solvents without color change.

    PubMed

    Kim, Jeong Yun; Hwang, Tae Gyu; Woo, Sung Wun; Lee, Jae Moon; Namgoong, Jin Woong; Yuk, Sim Bum; Chung, Sei-Won; Kim, Jae Pil

    2017-04-06

    A simple and easy solubility enhancement of basic dyes was performed with bulky and symmetric weakly coordinating anions (WCAs). The WCAs decreased the ionic character of the dyes by broadening the partial charge distribution and causing a screening effect on the ionic bonding. This new modification with WCAs has advantages in that it has no influence on the optical properties of the dyes. The solubilities of unmodified and modified dyes were tested in several organic solvents. X-ray powder diffraction patterns of the dyes were measured. Color films were prepared with the dyes and their color loci were analyzed to evaluate the optical properties. By the modification with WCAs, commercial basic dyes showed sufficient solubilities for be applied to various applications while preserving their superior optical properties.

  2. Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane.

    PubMed

    Chaban, Vitaly

    2015-07-01

    Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).

  3. Weak Coordination as a Powerful Means for Developing Broadly Useful C–H Functionalization Reactions

    PubMed Central

    Engle, Keary M.; Mei, Tian-Sheng; Wasa, Masayuki

    2011-01-01

    Conspectus Reactions that convert carbon–hydrogen (C–H) bonds into carbon–carbon (C–C) or carbon–heteroatom (C–Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C–H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C–H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal–catalyzed C–H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as “first functionalization.” Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C–H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid over-functionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C–H functionalization involves substrates containing one or more pre-existing functional groups, termed “further functionalization.” One advantage of this approach is that the existing functional group (or groups) can be used to chelate the metal catalyst and position it for selective C–H cleavage. Precoordination can overcome the paraffin nature of C–H bonds by increasing the effective concentration of the substrate so that it needn't be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs—the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C–H cleavage through weak coordinations. We discuss our motivation for studying Pd-catalyzed C–H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from higher reactivity of the less stable cyclopalladated intermediates held in place by weak coordinations. PMID:22166158

  4. Nucleophilic Substitution in Solution: Activation Strain Analysis of Weak and Strong Solvent Effects

    PubMed Central

    Hamlin, Trevor A.; van Beek, Bas; Wolters, Lando P.

    2018-01-01

    Abstract We have quantum chemically studied the effect of various polar and apolar solvents on the shape of the potential energy surface (PES) of a diverse collection of archetypal nucleophilic substitution reactions at carbon, silicon, phosphorus, and arsenic by using density functional theory at the OLYP/TZ2P level. In the gas phase, all our model SN2 reactions have single‐well PESs, except for the nucleophilic substitution reaction at carbon (SN2@C), which has a double‐well energy profile. The presence of the solvent can have a significant effect on the shape of the PES and, thus, on the nature of the SN2 process. Solvation energies, charges on the nucleophile or leaving group, and structural features are compared for the various SN2 reactions in a spectrum of solvents. We demonstrate how solvation can change the shape of the PES, depending not only on the polarity of the solvent, but also on how the charge is distributed over the interacting molecular moieties during different stages of the reaction. In the case of a nucleophilic substitution at three‐coordinate phosphorus, the reaction can be made to proceed through a single‐well [no transition state (TS)], bimodal barrier (two TSs), and then through a unimodal transition state (one TS) simply by increasing the polarity of the solvent. PMID:29457865

  5. Widely different luminescence lifetimes of the [Delta]RRR, [Lambda]SSS and the [Delta]RRS, [Lambda]SSR diastereomers of fac-tris[(8-quinolyl)phenylmethylsily] iridium(III): Exciplex formation with solvents by distinct [sigma]-donor and [pi]-acceptor binding mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djurovich, P.I.; Cook, W.; Joshi, R.

    1994-01-13

    Luminescence lifetimes ([tau][sub m]) of the [sigma]-bond-to-ligand charge-transfer (SBLCT) excited states of two diastereomers of fac-tris[(8-quinolyl)phenylmethylsilyl]iridium(III) differ by about a factor of 2 and are strongly solvent dependent. The [tau][sub m] values of the more symmetric [Delta]RRR, [Lambda]SSS diastereomer (A) are generally longer than those of the less symmetric [Delta]RRS, [Lambda]SSR diastereomer (B); [tau][sub m]'s of both diastereomers are substantially shortened relative to their values in aliphatic hydrocarbons by exciplex formation with a variety of weakly coordinating solvents including aromatic hydrocarbons, olefins, ethers, ketones, alcohols, and nitriles. Quenching constants (k[sub q]) due to exciplex formation are found to be muchmore » larger for B than they are for A in the [sigma]-donor solvents (cyclic ethers, ketones, alcohols, and nitriles); however, k[sub q] values of B are slightly smaller than those of A in [pi]-acceptor solvents (aromatic hydrocarbons, olefins). The results suggest that [sigma]-donor solvents form exciplexes by binding at the metal center, whereas [pi]-acceptor solvents bind at a quinolyl radical anion ligand site. A and B may prove useful as luminescent environmental probes which can distinguish between [sigma]-donor and [pi]-acceptor binding sites. 19 refs., 1 fig., 1 tab.« less

  6. Crystal structure of tetra-kis-[μ2-2-(di-methyl-amino)-ethano-lato-κ(3) N,O:O]di-μ3-hydroxido-di-thio-cyanato-κ(2) N-dichromium(III)dilead(II) di-thio-cyanate aceto-nitrile monosolvate.

    PubMed

    Rusanova, Julia A; Semenaka, Valentyna V; Omelchenko, Irina V

    2016-04-01

    The tetra-nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The Cr(III) ion is coordinated in a distorted octa-hedron, which involves two N atoms of one bidentate ligand and one thio-cyanate anion, two μ2-O atoms of 2-(di-methyl-amino)-ethano-late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the Pb(II) ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter-actions involving the coordinating and non-coordinating thio-cyanate anions are observed. In the crystal, the complex cations are linked through the thio-cyanate anions via the Pb⋯S inter-actions and O-H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto-nitrile mol-ecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9-18] procedure in PLATON. The solvent is included in the reported mol-ecular formula, weight and density.

  7. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    PubMed

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  8. Carbonate formation within a nickel dimer: synthesis of a coordinatively unsaturated bis(mu-hydroxo) dinickel complex and its reactivity toward carbon dioxide.

    PubMed

    Wikstrom, Jeffrey P; Filatov, Alexander S; Mikhalyova, Elena A; Shatruk, Michael; Foxman, Bruce M; Rybak-Akimova, Elena V

    2010-03-14

    The tridentate aminopyridine ligand bearing a bulky tert-butyl substituent at the amine nitrogen, tert-butyl-dipicolylamine (tBuDPA), occupies three coordination sites in six-coordinate complexes of nickel(ii), leaving the remaining three sites available for additional ligand binding and activation. New crystallographically characterized complexes include two mononuclear species with 1:1 metal:ligand complexation: a trihydrate solvate (1.3H(2)O) and a monohydrate biacetonitrile solvate (1.H(2)O.2CH(3)CN). Complexation in the presence of sodium hydroxide results in a bis(mu-hydroxo) complex (2), the bridging hydroxide anions of which are labile and become displaced by methoxide anions in methanol solvent, affording bis-methoxo-bridged (4). Nickel(II) centers in 2 are five-coordinate and antiferromagnetically coupled (with J = -31.4(5) cm(-1), H = -2JS(1)S(2), in agreement with Ni-O-Ni angle of 103.7 degrees). Bridging hydroxide or alkoxide anions in coordinatively unsaturated dinuclear nickel(II) complexes with tBuDPA react as active nucleophiles. 2 readily performs carbon dioxide fixation, resulting in the formation of a bis(mu-carbonato) tetrameric complex (3), which features a novel binding geometry in the form of an inverted butterfly-type nickel-carbonate core. Temperature-dependent magnetic measurements of tetranuclear carbonato-bridged revealed relatively weak antiferromagnetic coupling (J(1) = -3.1(2) cm(-1)) between the two nickel centers in the core of the cluster, as well as weak antiferromagnetic pairwise interactions (J(2) = J(3) = -4.54(5) cm(-1)) between central and terminal nickel ions.

  9. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.

    PubMed

    Ong, Mitchell T; Verners, Osvalds; Draeger, Erik W; van Duin, Adri C T; Lordi, Vincenzo; Pask, John E

    2015-01-29

    Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.

  10. Crystal structure of tetra­kis­[μ2-2-(di­methyl­amino)­ethano­lato-κ3 N,O:O]di-μ3-hydroxido-di­thio­cyanato-κ2 N-dichromium(III)dilead(II) di­thio­cyanate aceto­nitrile monosolvate

    PubMed Central

    Rusanova, Julia A.; Semenaka, Valentyna V.; Omelchenko, Irina V.

    2016-01-01

    The tetra­nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octa­hedron, which involves two N atoms of one bidentate ligand and one thio­cyanate anion, two μ2-O atoms of 2-(di­methyl­amino)­ethano­late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter­actions involving the coordinating and non-coordinating thio­cyanate anions are observed. In the crystal, the complex cations are linked through the thio­cyanate anions via the Pb⋯S inter­actions and O—H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto­nitrile mol­ecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported mol­ecular formula, weight and density. PMID:27375871

  11. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  12. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.

    PubMed

    Engle, Keary M; Mei, Tian-Sheng; Wasa, Masayuki; Yu, Jin-Quan

    2012-06-19

    Reactions that convert carbon-hydrogen (C-H) bonds into carbon-carbon (C-C) or carbon-heteroatom (C-Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C-H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C-H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal-catalyzed C-H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as "first functionalization". Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C-H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid overfunctionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C-H functionalization involves substrates containing one or more pre-existing functional groups, termed "further functionalization". One advantage of this approach is that the existing functional group (or groups) can be used to chelate the metal catalyst and position it for selective C-H cleavage. Precoordination can overcome the paraffin nature of C-H bonds by increasing the effective concentration of the substrate so that it need not be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs; the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C-H cleavage through weak coordination. We discuss our motivation for studying Pd-catalyzed C-H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from the high reactivity of the cyclopalladated intermediates, which are held together through weak interactions.

  13. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics

    DOE PAGES

    Ong, Mitchell T.; Verners, Osvalds; Draeger, Erik W.; ...

    2014-12-19

    We report that lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF more » $$\\bar{6}$$ anion. Li + prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li + solvation. Corresponding analysis for the PF $$\\bar{6}$$ anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. In conclusion, these results can be used to aid in the design of new electrolytes to improve Li-ion battery performance.« less

  14. Structure and Bonding in Uranyl(VI) Peroxide and Crown Ether Complexes; Comparison of Quantum Chemical and Experimental Data.

    PubMed

    Vallet, Valérie; Grenthe, Ingmar

    2017-12-18

    The structure, chemical bonding, and thermodynamics of alkali ions in M[12-crown-4] + , M[15-crown-5] + , and M[18-crown-6] + , M[UO 2 (O 2 )(OH 2 ) 2 ] + 4,5 , and M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n (n = 4, 5) complexes have been explored by using quantum chemical (QC) calculations at the ab initio level. The chemical bonding has been studied in the gas phase in order to eliminate solvent effects. QTAIM analysis demonstrates features that are very similar in all complexes and typical for electrostatic M-O bonds, but with the M-O bonds in the uranyl peroxide systems about 20 kJ mol -1 stronger than in the corresponding crown ether complexes. The regular decrease in bond strength with increasing M-O bond distance is consistent with predominantly electrostatic contributions. Energy decomposition of the reaction energies in the gas phase and solvent demonstrates that the predominant component of the total attractive (ΔE elec + ΔE orb ) energy contribution is the electrostatic component. There are no steric constraints for coordination of large cations to small rings, because the M + ions are located outside the ring plane, [O n ], formed by the oxygen donors in the ligands; coordination of ions smaller than the ligand cavity results in longer than normal M-O distances or in a change in the number of bonds, both resulting in weaker complexes. The Gibbs energies, enthalpies, and entropies of reaction calculated using the conductor-like screening model, COSMO, to account for solvent effects deviate significantly from experimental values in water, while those in acetonitrile are in much better agreement. Factors that might affect the selectivity are discussed, but our conclusion is that present QC methods are not accurate enough to describe the rather small differences in selectivity, which only amount to 5-10 kJ mol -1 . We can, however, conclude on the basis of QC and experimental data that M[crown ether] + complexes in the strongly coordinating water solvent are of outer-sphere type, [M(OH 2 ) n + ][crown ether], while those in weakly coordinating acetonitrile are of inner-sphere type, [M-crown ether] + . The observation that the M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n complexes are more stable in solution than those of M[crown ether] + is an effect of the different charges of the rings.

  15. Characterisation of organometallic and coordination compounds by solvent-free matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2008-01-01

    Insoluble or low solubility organometallic and coordination compounds have been characterised by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, with solvent-free sample preparation being the key step toward successful analysis.

  16. Capping the calix: How toluene completes cesium(i) coordination with calix[4]pyrrole

    DOE PAGES

    Ellis, Ross J.; Reinhart, Benjamin; Williams, Neil J.; ...

    2017-05-04

    The role of solvent in molecular recognition systems is under-researched and often ignored, especially when the solvent is considered “non-interacting”. This study concerns the role of toluene solvent in cesium(I) recognition by calix[4]pyrrole. We show that π-donor interactions bind toluene molecules onto the open face of the cation-receptor complex, thus “capping the calix.” As a result, by characterizing this unusual aromatically-saturated complex, we show how “non-interacting” aromatic solvents can directly coordinate receptor-bound cations and thus influence recognition.

  17. Capping the calix: How toluene completes cesium(i) coordination with calix[4]pyrrole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Ross J.; Reinhart, Benjamin; Williams, Neil J.

    The role of solvent in molecular recognition systems is under-researched and often ignored, especially when the solvent is considered “non-interacting”. This study concerns the role of toluene solvent in cesium(I) recognition by calix[4]pyrrole. We show that π-donor interactions bind toluene molecules onto the open face of the cation-receptor complex, thus “capping the calix.” As a result, by characterizing this unusual aromatically-saturated complex, we show how “non-interacting” aromatic solvents can directly coordinate receptor-bound cations and thus influence recognition.

  18. Synthesis and molecular structure of [Cu(NH3)4][Ni(CN)4]: A missing piece in the [Cu(NH3)n][Ni(CN)4] story

    NASA Astrophysics Data System (ADS)

    Solanki, Dina; Hogarth, Graeme

    2015-11-01

    Reaction of CuCl2·2H2O and K2[Ni(CN)4]·2H2O in aqueous ammonia gave blue rod-like crystals of [Cu(NH3)4][Ni(CN)4]. An X-ray crystallographic reveals that square-planar anions and cations are weakly associated through coordination of a cis pair of cyanide ligands to copper, with one short and one long contact and thus the copper centre is best described as a square-based pyramid. Crystals lose ammonia readily upon removal from the solvent and this has been probed by TGA and DSC measurements. For comparison we have also re-determined the structure of the related ethylenediamine (en) complex [Cu(en)2][Ni(CN)4] at 150 K. This consists of a 1D chain in which a trans pair of cyanide ligands bind to copper such that the latter has an overall tetragonally distorted octahedral coordination geometry.

  19. Main-chain metallopolymers at the static-dynamic boundary based on nickelocene

    NASA Astrophysics Data System (ADS)

    Musgrave, Rebecca A.; Russell, Andrew D.; Hayward, Dominic W.; Whittell, George R.; Lawrence, Paul G.; Gates, Paul J.; Green, Jennifer C.; Manners, Ian

    2017-08-01

    Interactions between metal ions and ligands in metal-containing polymers involve two bonding extremes: persistent covalent bonding, in which the polymers are essentially static in nature, or labile coordination bonding, which leads to dynamic supramolecular materials. Main-chain polymetallocenes based on ferrocene and cobaltocene fall into the former category because of the presence of strong metal-cyclopentadienyl bonds. Herein, we describe a main-chain polynickelocene—formed by ring-opening polymerization of a moderately strained [3]nickelocenophane monomer—that can be switched between static and dynamic states because of the relatively weak nickel-cyclopentadienyl ligand interactions. This is illustrated by the observation that, at a low concentration or at an elevated temperature in a coordinating or polar solvent, depolymerization of the polynickelocene occurs. A study of this dynamic polymer-monomer equilibrium by 1H NMR spectroscopy allowed the determination of the associated thermodynamic parameters. Microrheology data, however, indicated that under similar conditions the polynickelocene is considered to be static on the shorter rheological timescale.

  20. A two-dimensional silver(I) coordination polymer constructed from 4-aminophenylarsonate and triphenylphosphane: poly[[(μ₃-4-aminophenylarsonato-κ³N:O:O)(triphenylphosphane-κP)silver(I)] monohydrate].

    PubMed

    Xiao, Zu-Ping; Wen, Meng; Wang, Chun-Ya; Huang, Xi-He

    2015-04-01

    The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4-aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The Ag(I) centre is four-coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two Ag(I)-centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O-O edge. 4-Aminophenylarsonate (Hapa(-)) adopts a μ3-κ(3)N:O:O-tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (101̄) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R2(2)(8) hydrogen-bonded dimer involving two arsonate groups from two Hapa(-) ligands related by a centre of inversion. Additionally, there are hydrogen-bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa(-) ligands, and weak π-π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two-dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.

  1. Micron-sized columnar grains of CH3NH3PbI3 grown by solvent-vapor assisted low-temperature (75 °C) solid-state reaction: The role of non-coordinating solvent-vapor

    NASA Astrophysics Data System (ADS)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2018-04-01

    The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (<100 °C). Here, we comprehensively investigated the effects of non-coordinating solvent vapor on the properties of perovskite film, and obtained micron-sized columnar grains (with an average grain size of 1.4 μm) of CH3NH3PbI3 even at a low temperature of 75 °C when annealed with benzyl alcohol vapor. The perovskite solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.

  2. [Cu(I)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent.

    PubMed

    Jin, Kun; Huang, Xiaoying; Pan, Long; Li, Jing; Appel, Aaron; Wherland, Scot; Pang, Long

    2002-12-07

    Use of an ionic liquid [bmim][BF4] (bmim = 1-butyl-3-methylimidazolium) as solvent has resulted in the first extended coordination structure, the two-dimensional network [Cu(bpp)]BF4 [bpp = 1,3-bis(4-pyridyl)propane], produced via a solvothermal route.

  3. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin

    2016-08-15

    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less

  4. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.

    PubMed

    Rakowski DuBois, M; DuBois, Daniel L

    2009-12-21

    The conversion of solar energy to fuels in both natural and artificial photosynthesis requires components for both light-harvesting and catalysis. The light-harvesting component generates the electrochemical potentials required to drive fuel-generating reactions that would otherwise be thermodynamically uphill. This Account focuses on work from our laboratories on developing molecular electrocatalysts for CO(2) reduction and for hydrogen production. A true analog of natural photosynthesis will require the ability to capture CO(2) from the atmosphere and reduce it to a useful fuel. Work in our laboratories has focused on both aspects of this problem. Organic compounds such as quinones and inorganic metal complexes can serve as redox-active CO(2) carriers for concentrating CO(2). We have developed catalysts for CO(2) reduction to form CO based on a [Pd(triphosphine)(solvent)](2+) platform. Catalytic activity requires the presence of a weakly coordinating solvent molecule that can dissociate during the catalytic cycle and provide a vacant coordination site for binding water and assisting C-O bond cleavage. Structures of [NiFe] CO dehydrogenase enzymes and the results of studies on complexes containing two [Pd(triphosphine)(solvent)](2+) units suggest that participation of a second metal in CO(2) binding may also be required for achieving very active catalysts. We also describe molecular electrocatalysts for H(2) production and oxidation based on [Ni(diphosphine)(2)](2+) complexes. Similar to palladium CO(2) reduction catalysts, these species require the optimization of both first and second coordination spheres. In this case, we use structural features of the first coordination sphere to optimize the hydride acceptor ability of nickel needed to achieve heterolytic cleavage of H(2). We use the second coordination sphere to incorporate pendant bases that assist in a number of important functions including H(2) binding, H(2) cleavage, and the transfer of protons between nickel and solution. These pendant bases, or proton relays, are likely to be important in the design of catalysts for a wide range of fuel production and fuel utilization reactions involving multiple electron and proton transfer steps. The generation of fuels from abundant substrates such as CO(2) and water remains a daunting research challenge, requiring significant advances in new inexpensive materials for light harvesting and the development of fast, stable, and efficient electrocatalysts. Although we describe progress in the development of redox-active carriers capable of concentrating CO(2) and molecular electrocatalysts for CO(2) reduction, hydrogen production, and hydrogen oxidation, much more remains to be done.

  5. Solvent-coordinate free-energy landscape view of water-mediated ion-pair dissociation

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru

    2017-12-01

    Water-mediated ion-pair dissociation is studied by molecular dynamics simulations of NaCl in water. Multidimensional free-energy analysis clarifies the relation between two essential solvent coordinates: the water coordination number and water-bridge formation. These two are related in a complex way. Both are necessary to describe ion-pair dissociation. The mechanism constructed with both solvent variables clearly shows the individual roles. The water coordination number is critical for starting ion-pair dissociation. Water-bridge formation is also important because it increases the likelihood of ion-pair dissociation by reducing the dissociation free-energy barrier. Additional Ca-Cl and NH4-Cl calculations show that these conclusions are unaffected by changes in the ion charge and shape. The present results will contribute to future explorations of many other molecular events such as surface water exchange and protein-ligand dissociation because the same mechanism is involved in such events.

  6. Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling.

    PubMed

    Rivier, Lucie; Peljo, Pekka; Vannay, Laurent A C; Gschwend, Grégoire C; Méndez, Manuel A; Corminboeuf, Clémence; Scanlon, Micheál D; Girault, Hubert H

    2017-02-20

    The photoinduced hydrogen evolution reaction (HER) by decamethylruthenocene, Cp 2 *Ru II (Cp*=C 5 Me 5 ), is reported. The use of a metallocene to photoproduce hydrogen is presented as an alternative strategy to reduce protons without involving an additional photosensitizer. The mechanism was investigated by (spectro)electrochemical and spectroscopic (UV/Vis and 1 H NMR) measurements. The photoactivated hydride involved was characterized spectroscopically and the resulting [Cp 2 *Ru III ] + species was electrochemically regenerated in situ on a fluorinated tin oxide electrode surface. A promising internal quantum yield of 25 % was obtained. Optimal experimental conditions- especially the use of weakly coordinating solvent and counterions-are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Approximate description of Stokes shifts in ICT fluorescence emission

    NASA Astrophysics Data System (ADS)

    Saielli, Giacomo; Braun, David; Polimeno, Antonino; Nordio, Pier Luigi

    1996-07-01

    The time-resolved emission spectrum of a dual fluorescent prototype system like DMABN is associated with an intramolecular adiabatic charge-transfer reaction and the simultaneous relaxation of the polarization coordinate describing the dynamic behaviour of the polar solvent. The dynamic Stokes shift of the frequency maximum of the long-wavelength emission band related to the charge-transfer (CT) state towards the red region is interpreted as a consequence of a kinetic pathway which deviates from steepest descent to the CT state, the rate-determining step being the solvent relaxation. The present stochastic treatment is based on the assumption that internal and solvent coordinates could be described separately, neglecting coupling elements in the case of slow solvent relaxation.

  8. Kamlet-Taft solvent parameters, NMR spectroscopic analysis and thermoelectrochemistry of lithium-glyme solvate ionic liquids and their dilute solutions.

    PubMed

    Black, Jeffrey J; Dolan, Andrew; Harper, Jason B; Aldous, Leigh

    2018-06-06

    Solvate ionic liquids are a relatively new class of liquids produced by combining a coordinating solvent with a salt. They have a variety of uses and their suitability for such depends upon the ratio of salt to coordinating solvent. This work investigates the Kamlet-Taft solvent parameters of, NMR chemical shifts of nuclei in, and thermoelectrochemistry of a selected set of solvate ionic liquids produced from glymes (methyl terminated oligomers of ethylene glycol) and lithium bis(trifluoromethylsulfonyl)imide at two different compositions. The aim is to improve the understanding of the interactions occurring in these ionic liquids to help select suitable solvate ionic liquids for future applications.

  9. Theoretical investigation of the weak interaction between graphene and alcohol solvents

    NASA Astrophysics Data System (ADS)

    Wang, Haining; Chen, Sian; Lu, Shanfu; Xiang, Yan

    2017-05-01

    The dispersion of graphene in five different alcohol solvents was investigated by evaluating the binding energy between graphene and alcohol molecules using DFT-D method. The calculation showed the most stable binding energy appeared at the distance of ∼3.5 Å between graphene and alcohol molecules and increased linearly as changing the alcohol from methanol to 1-pentanol. The weak interaction was further graphically illustrated using the reduced density gradient method. The theoretical study revealed alcohols with more carbon atoms could be a good starting point for screening suitable solvents for graphene dispersion.

  10. Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents

    NASA Astrophysics Data System (ADS)

    Wang, Yuru; Wang, Tianren; Chen, Xi; Xu, Yang; Li, Huanrong

    2018-04-01

    Herein, we prepared a Mn(II)-coordinated carbon dots (CDs) with fluorescence and MRI (magnetic resonance imaging) bimodal properties by a one-pot solvothermal method and separated via silica column chromatography. The quantum yield of the CDs increased greatly from 2.27% to 6.75% with increase of Mn(II) doping, meanwhile the CDs exhibited a higher MR activity (7.28 mM-1s-1) than that of commercial Gd-DTPA (4.63 mM-1s-1). In addition, white light emitting CDs were obtained by mixing the different types of CDs. Notably, these CDs exhibited different fluorescence emissions in different organic solvents and could be used to discriminate organic solvents based on the polarity and protonation of the solvents.

  11. Weakly-bridged dimeric diorganotin(IV) compounds derived from pyruvic acid hydrazone Schiff base ligands: Synthesis, characterization and crystal structures

    NASA Astrophysics Data System (ADS)

    Hong, Min; Yin, Han-Dong; Cui, Ji-Chun

    2011-03-01

    We report the synthesis of four diorganotin(IV) compounds of Schiff base pyruvic acid hydrazone derivatives formulated as [R 2SnLY] 2, where L 1 is 2-SC 4H 3CON 2C(CH 3)CO 2 with Y = CH 3CH 2CH 2CH 2OH, R = n-Bu ( 1); L 2 is C 6H 5CON 2C(CH 3)CO 2 with Y = CH 3CH 2OH, R = p-F-Bz ( 2); L 3 is 2-HOC 6H 4CON 2C(CH 3)CO 2 with Y dbnd H 2O, R = p-CN -Bz ( 3); and L 4 is 4-NO 2-C 6H 4CON 2C(CH 3)CO 2 with Y dbnd CH 3CH 2OH, R = Bz ( 4). The structures of all compounds have been established by a combination of single-crystal X-ray diffraction analysis, 1H and 119Sn NMR spectroscopy, IR spectroscopy, and elemental analysis. Studies reveal that four ligands present the same coordination mode with tin center, which all present tridentate ONO donor Schiff bases and coordinate to the tin center in an enolic form. In compounds 1- 4, each tin atom is seven-coordinated and exhibits a distorted pentagonal bipyramid with a planar SnO 4N unit and two apical alkyl carbon atoms, thus forming a weakly-bridged dimeric molecule. Additionally, the distance of Sn⋯O bridge in each compound is obviously affected by the choice of different alkyl groups and coordination solvent molecules, which fluctuates in the range of 2.571(5)-2.839(4) Å. Furthermore, the supramolecular structure analysis show that there are two types of supramolecular infrastructures, 1D chain or 2D network, which are formed by intermolecular O-H···N or C-H⋯X (X = O, N or F) hydrogen bonds.

  12. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Mazzini, Virginia; Liu, Guangming; Craig, Vincent S. J.

    2018-06-01

    We present an experimental investigation of specific-ion effects in non-aqueous solvents, with the aim of elucidating the role of the solvent in perturbing the fundamental ion-specific trend. The focus is on the anions: CH3COO->F->Cl->Br->I->ClO4 ->SCN- in the solvents water, methanol, formamide, dimethyl sulfoxide (DMSO), and propylene carbonate (PC). Two types of experiments are presented. The first experiment employs the technique of size exclusion chromatography to evaluate the elution times of electrolytes in the different solvents. We observe that the fundamental (Hofmeister) series is observed in water and methanol, whilst the series is reversed in DMSO and PC. No clear series is observed for formamide. The second experiment uses the quartz crystal microbalance technique to follow the ion-induced swelling and collapse of a polyelectrolyte brush. Here the fundamental series is observed in the protic solvents water, methanol, and formamide, and the series is once again reversed in DMSO and PC. These behaviours are not attributed to the protic/aprotic nature of the solvents, but rather to the polarisability of the solvents and are due to the competition between the interaction of ions with the solvent and the surface. A rule of thumb is proposed for ion specificity in non-aqueous solvents. In weakly polarisable solvents, the trends in specific-ion effects will follow those in water, whereas in strongly polarisable solvents the reverse trend will be observed. Solvents of intermediate polarisability will give weak specific-ion effects.

  13. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents.

    PubMed

    Mazzini, Virginia; Liu, Guangming; Craig, Vincent S J

    2018-06-14

    We present an experimental investigation of specific-ion effects in non-aqueous solvents, with the aim of elucidating the role of the solvent in perturbing the fundamental ion-specific trend. The focus is on the anions: CH 3 COO - >F - >Cl - >Br - >I - >ClO 4 - >SCN - in the solvents water, methanol, formamide, dimethyl sulfoxide (DMSO), and propylene carbonate (PC). Two types of experiments are presented. The first experiment employs the technique of size exclusion chromatography to evaluate the elution times of electrolytes in the different solvents. We observe that the fundamental (Hofmeister) series is observed in water and methanol, whilst the series is reversed in DMSO and PC. No clear series is observed for formamide. The second experiment uses the quartz crystal microbalance technique to follow the ion-induced swelling and collapse of a polyelectrolyte brush. Here the fundamental series is observed in the protic solvents water, methanol, and formamide, and the series is once again reversed in DMSO and PC. These behaviours are not attributed to the protic/aprotic nature of the solvents, but rather to the polarisability of the solvents and are due to the competition between the interaction of ions with the solvent and the surface. A rule of thumb is proposed for ion specificity in non-aqueous solvents. In weakly polarisable solvents, the trends in specific-ion effects will follow those in water, whereas in strongly polarisable solvents the reverse trend will be observed. Solvents of intermediate polarisability will give weak specific-ion effects.

  14. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    PubMed Central

    Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Normi, Yahaya M.; Mohd Shariff, Fairolniza

    2017-01-01

    The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which could lead to weaknesses in the catalytic H-bond network and most likely a drop in catalytic activity. The conformational variation of the lid domain caused by the solvent molecules influenced its gradual opening. Formation of additional hydrogen bonds and hydrophobic interactions indicates that the contribution of the cooperative network of interactions could retain the stability of the protein in some solvent systems. Time-correlated atomic motions were used to characterize the correlations between the motions of the atoms from atomic coordinates. The resulting cross-correlation map revealed that the organic solvent mixtures performed functional, concerted, correlated motions in regions of residues of the lid domain to other residues. These observations suggest that varying lengths of polar organic solvents play a significant role in introducing dynamic conformational diversity in proteins in a decreasing order of polarity. PMID:28533982

  15. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations.

    PubMed

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W; Garland, Marc V

    2013-12-28

    The partial molar volumes, V(i), of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. V(i) is determined with the direct method, while the composition of V(i) is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated V(i) deviate only 3.4 cm(3) mol(-1) (7.1%) from experimental literature values. Experimental V(i) variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of V(i) variations. In all solutions, larger V(i) are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus V(i). Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the V(i) trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute movement. This wake behind the moving solute is more pronounced in case of mobile H2 and in solvents with weaker internal interactions. However, deviations from a spherical solvent cage shape do not influence solute-solvent radial distribution functions after averaging over all solvent cage orientations and hence do not change V(i). Overall, the applied methodology reproduces V(i) and its variations reliably and the used V(i) decompositions identify the underlying reasons behind observed V(i) variations.

  16. Variation and decomposition of the partial molar volume of small gas molecules in different organic solvents derived from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Klähn, Marco; Martin, Alistair; Cheong, Daniel W.; Garland, Marc V.

    2013-12-01

    The partial molar volumes, bar V_i, of the gas solutes H2, CO, and CO2, solvated in acetone, methanol, heptane, and diethylether are determined computationally in the limit of infinite dilution and standard conditions. Solutions are described with molecular dynamics simulations in combination with the OPLS-aa force field for solvents and customized force field for solutes. bar V_i is determined with the direct method, while the composition of bar V_i is studied with Kirkwood-Buff integrals (KBIs). Subsequently, the amount of unoccupied space and size of pre-formed cavities in pure solvents is determined. Additionally, the shape of individual solvent cages is analyzed. Calculated bar V_i deviate only 3.4 cm3 mol-1 (7.1%) from experimental literature values. Experimental bar V_i variations across solutions are reproduced qualitatively and also quantitatively in most cases. The KBI analysis identifies differences in solute induced solvent reorganization in the immediate vicinity of H2 (<0.7 nm) and solvent reorganization up to the third solvation shell of CO and CO2 (<1.6 nm) as the origin of bar V_i variations. In all solutions, larger bar V_i are found in solvents that exhibit weak internal interactions, low cohesive energy density and large compressibility. Weak internal interactions facilitate solvent displacement by thermal solute movement, which enhances the size of solvent cages and thus bar V_i. Additionally, attractive electrostatic interactions of CO2 and the solvents, which do not depend on internal solvent interactions only, partially reversed the bar V_i trends observed in H2 and CO solutions where electrostatic interactions with the solvents are absent. More empty space and larger pre-formed cavities are found in solvents with weak internal interactions, however, no evidence is found that solutes in any considered solvent are accommodated in pre-formed cavities. Individual solvent cages are found to be elongated in the negative direction of solute movement. This wake behind the moving solute is more pronounced in case of mobile H2 and in solvents with weaker internal interactions. However, deviations from a spherical solvent cage shape do not influence solute-solvent radial distribution functions after averaging over all solvent cage orientations and hence do not change bar V_i. Overall, the applied methodology reproduces bar V_i and its variations reliably and the used bar V_i decompositions identify the underlying reasons behind observed bar V_i variations.

  17. Crystal structure of catena-poly[[[tetra-aqua-zinc(II)]-μ-1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] dinitrate monohydrate].

    PubMed

    Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng

    2015-05-01

    In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O} n , the Zn(II) cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol-ecules in a distorted N2O4 octa-hedral geometry; among the four coordinate water mol-ecules, two are located on the same twofold rotation axis. The 1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the Zn(II) cations, forming polymeric chains propagating along [201]. In the crystal, O-H⋯O and weak C-H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol-ecules into a three-dimensional supra-molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions.

  18. Lanthanide-organic complexes based on polyoxometalates: Solvent effect on the luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Qun; Liu Shuxia, E-mail: liusx@nenu.edu.cn; Liang Dadong

    2012-06-15

    A series of lanthanide-organic complexes based on polyoxometalates (POMs) [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}][W{sub 6}O{sub 19}] (Ln=La(1), Ce(2), Sm(3), Eu(4), Gd(5); DNBA=3,5-dinitrobenzoate; DMF=N,N-dimethylformamide) has been synthesized. These complexes consist of [W{sub 6}O{sub 19}]{sup 2-} and dimeric [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}]{sup 2+} cations. The luminescence properties of 4 are measured in solid state and different solutions, respectively. Notably, the emission intensity increases gradually with the increase of solvent permittivity, and this solvent effect can be directly observed by electrospray mass spectrometry (ESI-MS). The analyses of ESI-MS show that the eight coordinated solvent DMF units of dimeric cation are active. They can movemore » away from dimeric cations and exchange with solvent molecules. Although the POM anions escape from 3D supramolecular network, the dimeric state structure of [Ln{sub 2}(DNBA){sub 4}]{sup 2+} remains unchanged in solution. The conservation of red luminescence is attributed to the maintenance of the aggregated state structures of dimeric cations. - Graphical abstract: 3D POMs-based lanthanide-organic complexes performed the solvent effect on the luminescence property. The origin of such solvent effect can be understood and explained on the basis of the existence of coordinated active sites by the studies of ESI-MS. Highlights: Black-Right-Pointing-Pointer The solvent effect on the luminescence property of POMs-based lanthanide-organic complexes. Black-Right-Pointing-Pointer ESI-MS analyses illuminate the correlation between the structure and luminescence property. Black-Right-Pointing-Pointer The dimeric cations have eight active sites of solvent coordination. Black-Right-Pointing-Pointer The aggregated state structure of dimer cation remains unchanged in solution. Black-Right-Pointing-Pointer Luminescence associating with ESI-MS is a new method for investigating the interaction of complex and solvent.« less

  19. Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.

    PubMed

    Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M

    2017-12-26

    Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.

  20. Crystal structure of an unknown tetra­hydro­furan solvate of tetra­kis­(μ 3-cyanato-κ3 N:N:N)tetra­kis­[(triphenyl­phosphane-κP)­silver(I)

    PubMed Central

    Frenzel, Peter; Schaarschmidt, Dieter; Jakob, Alexander; Lang, Heinrich

    2015-01-01

    In the title compound, [{[(C6H5)3P]Ag}4{NCO}4], a distorted Ag4N4-heterocubane core is set up by four AgI ions being coordinated by the N atoms of the cyanato anions in a μ 3-bridging mode. In addition, a tri­phenyl­phosphine ligand is datively bonded to each of the AgI ions. Intra­molecular Ag⋯Ag distances as short as 3.133 (9) Å suggest the presence of argentophilic (d 10⋯d 10) inter­actions. Five moderate-to-weak C—H⋯O hydrogen-bonding inter­actions are observed in the crystal structure, spanning a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as being part of disordered tetra­hydro­furan solvent mol­ecules. The given chemical formula and other crystal data do not take into account these solvent mol­ecules. PMID:26594421

  1. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE PAGES

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; ...

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO 3) 4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/R g, where R g is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis frommore » SANS data when R g is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  2. Testing the nature of reaction coordinate describing interaction of H2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent

    NASA Astrophysics Data System (ADS)

    Heshmat, Mojgan; Privalov, Timofei

    2017-09-01

    Using Born-Oppenheimer molecular dynamics (BOMD), we explore the nature of interactions between H2 and the activated carbonyl carbon, C(carbonyl), of the acetone-B(C6F5)3 adduct surrounded by an explicit solvent (1,4-dioxane). BOMD simulations at finite (non-zero) temperature with an explicit solvent produced long-lasting instances of significant vibrational perturbation of the H—H bond and H2-polarization at C(carbonyl). As far as the characteristics of H2 are concerned, the dynamical transient state approximates the transition-state of the heterolytic H2-cleavage. The culprit is the concerted interactions of H2 with C(carbonyl) and a number of Lewis basic solvent molecules—i.e., the concerted C(carbonyl)⋯H2⋯solvent interactions. On one hand, the results presented herein complement the mechanistic insight gained from our recent transition-state calculations, reported separately from this article. But on the other hand, we now indicate that an idea of the sufficiency of just one simple reaction coordinate in solution-phase reactions can be too simplistic and misleading. This article goes in the footsteps of the rapidly strengthening approach of investigating molecular interactions in large molecular systems via "computational experimentation" employing, primarily, ab initio molecular dynamics describing reactants-interaction without constraints of the preordained reaction coordinate and/or foreknowledge of the sampling order parameters.

  3. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  4. The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin.

    PubMed

    Galano-Frutos, Juan J; Morón, M Carmen; Sancho, Javier

    2015-11-21

    Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion. The role of solvent molecules in the mechanism of chloride unbinding has been studied in detail. We see no temporary increase in chloride coordination along the release process. Instead, the coordination of new water molecules takes place in most cases after the chloride/protein atom release event has begun. Moreover, the distribution function of water entrance events into the first chloride solvation shell peaks after chloride protein atom dissociation events. All these observations together seem to indicate that water molecules simply fill the vacancies left by the previously coordinating protein residues. We thus propose a step-by-step dissociation pathway in which protein/chloride interactions gradually break down before new water molecules progressively fill the vacant positions left by protein atoms. As observed for other systems, water molecules associated with bound chloride or with protein atoms have longer residence times than those bound to the free anion. The implications of the exchange mechanism proposed for the binding of the FMN (Flavin Mononucleotide) protein cofactor are discussed.

  5. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  6. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    NASA Astrophysics Data System (ADS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-05-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1-3 contain four types of 21 helical chains. While the Nd(III) ions are bridged through μ2-HIDC2- and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  7. Coordination polymer gels with important environmental and biological applications.

    PubMed

    Jung, Jong Hwa; Lee, Ji Ha; Silverman, Julian R; John, George

    2013-02-07

    Coordination Polymer Gels (CPGs) constitute a subset of solid-like metal ion and bridging organic ligand structures (similar to metal-organic frameworks) that form multi-dimensional networks through a trapped solvent as a result of non-covalent interactions. While physical properties of these gels are similar to conventional high molecular weight organic polymer gels, coordination polymer gel systems are often fully reversible and can be assembled and disassembled in the presence of additional energy (heat, sonication, shaking) to give a solution of solvated gelators. Compared to gels resulting from purely organic self-assembled low molecular weight gelators, metal ions incorporated into the fibrilar networks spanning the bulk solvent can impart CPGs with added functionalities. The solid/liquid nature of the gels allows for species to migrate through the gel system and interact with metals, ligands, and the solvent. Chemosensing, catalysis, fluorescence, and drug-delivery applications are some of the many potential uses for these dynamic systems, taking advantage of the metal ion's coordination, the organic polydentate ligand's orientation and functionality, or a combination of these properties. By fine tuning these systems through metal ion and ligand selection and by directing self-assembly with external stimuli the rational synthesis of practical systems can be envisaged.

  8. Competing supramolecular interactions give a new twist to terpyridyl chemistry: anion- and solvent-induced formation of spiral arrays in silver(I) complexes of a simple terpyridine.

    PubMed

    Hannon, Michael J; Painting, Claire L; Plummer, Edward A; Childs, Laura J; Alcock, Nathaniel W

    2002-05-17

    Multiple competing molecular interactions (metal-ligand, pi-stacking and hydrogen-bonding) in the silver(I) complexes of 4'-thiomethyl-2,2':6',2"-terpyridine give rise to a range of different molecular architectures, in which the metal-ligand coordination requirements are satisfied in quite different ways. Polynuclear supramolecular spirals, aggregated mononuclear and aggregated dinuclear units are all structurally characterised. The metallo-supramolecular architecture obtained displays a remarkable dependence both on the choice of non-coordinated anion and the type of solvent used (coordinating or non-coordinating). The anion dependence is particularly surprising, since the anions are not integrated into the centre of the supramolecular structure. The solution behaviour is also solvent and anion dependent, with aggregation of planar mononuclear cations observed in acetonitrile, but oligonuclear spiral species implicated in nitromethane. The extraordinarily variable geometries of these systems suggest that they provide a novel example of the "frustration" principle, in which opposing tendencies cannot simultaneously be satisfied and identify an alternative approach to the design of metallo-supramolecular systems whose structure is responsive to external agents.

  9. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    PubMed

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  10. Synthesis, crystal structure, and magnetic properties of a two-fold interpenetrated diamondoid open framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Cheng, Fu-Yin; Chiang, Ming-Hsi, E-mail: mhchiang@chem.sinica.edu.tw

    2016-10-15

    Self-assembly of an enlarged angular pyridinecarboxylate ligand and cobalt(II) acetate under mild conditions afforded a three-dimensional open-framework coordination polymer, [Co{sub 2}(μ-H{sub 2}O)(pyca-43){sub 4}]{sub n} (1, Hpyca-43=(E)−3-((pyridin-4-yl)methyleneamino)benzoic acid). The molecular structure of 1 has rationalized to be a porous two-fold interpenetrated diamondoid-like network, with dinuclear Co{sub 2}(μ-H{sub 2}O)(O{sub 2}C){sub 4}N{sub 4} clusters as tetrahedral secondary building units (SBUs), possessing highly solvent accessible volume of approximately 53.0%. Least-squares fit of the magnetic susceptibility data (20–300 K) of 1 yields Curie constant C=6.15 cm{sup 3} mol{sup –1} K and Weiss constant θ=–11.6 K. Every Co{sub 2} subunit within the network is magnetically insulatedmore » to other dimers. The magnetic exchange parameter between Co(II) centers is estimated to −0.72 cm{sup –1}, suggesting a weak antiferromagnetic interaction. The g{sub av} value of 4.65 from fitting to the Lines model indicates that the decrease of the χ{sub M}T value upon cooling is dominated by depopulation of the excited Kramer's states to the effective ground singlet. In addition, the thermal stability and adsorption properties of 1 are also reported. - Graphical abstract: This work has synthesized and structurally characterized a porous two-fold interpenetrated diamondoid-like network, which possesses highly solvent accessible volume of approximately 53.0% and shows a weak antiferromagnetic interaction between the Co(II) centers.« less

  11. Crystal structure of catena-poly[[[tetra­aqua­zinc(II)]-μ-1,4-bis­[4-(1H-imidazol-1-yl)benzo­yl]piperazine] dinitrate monohydrate

    PubMed Central

    Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng

    2015-01-01

    In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O}n, the ZnII cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol­ecules in a distorted N2O4 octa­hedral geometry; among the four coordinate water mol­ecules, two are located on the same twofold rotation axis. The 1,4-bis­[4-(1H-imidazol-1-yl)benzo­yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the ZnII cations, forming polymeric chains propagating along [201]. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol­ecules into a three-dimensional supra­molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions. PMID:25995894

  12. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism.

    PubMed

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan

    2014-08-12

    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior.

  13. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan

    2014-08-01

    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior.

  14. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism

    PubMed Central

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan

    2014-01-01

    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior. PMID:25113225

  15. Pentavalent neptunyl ([OΞNpΞO] +) cation–cation interactions in aqueous/polar organic mixed-solvent media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burn, Adam G.; Martin, Leigh R.; Nash, Kenneth L.

    Bonding interactions between polyvalent cations and oxo-anions are well known and characterized by predictably favorable Gibbs energies in solution-phase coordination chemistry. In contrast, interactions between ions of like charge are generally expected to be repulsive and strongly influenced by cation solvation. An exception to this instinctive rule is found in the existence of complexes resulting from interactions of pentavalent actinyl cations ([O≡An≡O] +) with selected polyvalent cations. Such cation–cation complexes have been known to exist since the 1960s, when they were first reported by Sullivan and co-workers. The weak actinyl cation–cation complex, resulting from a bonding interaction between a pentavalentmore » linear dioxo actinyl cation donor and hexavalent actinyl or trivalent/tetravalent metal cation acceptor, has been most commonly seen in media in which water activities are reduced, principally highly-salted aqueous media. Such interactions of pentavalent actinides are of relevance in ongoing research that focuses on advanced nuclear fuel processing systems based on the upper oxidation states of americium. This investigation focuses on exploring the thermodynamic stability of complexes between selected highly-charged metal cations (Al 3+, Sc 3+, Cr 3+, Fe 3+, In 3+ and UO 2+ 2) and the pentavalent neptunyl cation (NpO + 2, whose coordination chemistry is similar to that of AmO + 2 while exhibiting significantly greater oxidation state stability) in aqueous–polar organic mixed-solvents. As a result, the Gibbs energies for the cation–cation complexation reactions are correlated with general features of electrostatic bonding models; the NpO + 2 • Cr 3+ complex exhibits unexpectedly strong interactions that may indicate significant covalency in the cation–cation bonding interaction.« less

  16. Pentavalent neptunyl ([OΞNpΞO] +) cation–cation interactions in aqueous/polar organic mixed-solvent media

    DOE PAGES

    Burn, Adam G.; Martin, Leigh R.; Nash, Kenneth L.

    2017-06-17

    Bonding interactions between polyvalent cations and oxo-anions are well known and characterized by predictably favorable Gibbs energies in solution-phase coordination chemistry. In contrast, interactions between ions of like charge are generally expected to be repulsive and strongly influenced by cation solvation. An exception to this instinctive rule is found in the existence of complexes resulting from interactions of pentavalent actinyl cations ([O≡An≡O] +) with selected polyvalent cations. Such cation–cation complexes have been known to exist since the 1960s, when they were first reported by Sullivan and co-workers. The weak actinyl cation–cation complex, resulting from a bonding interaction between a pentavalentmore » linear dioxo actinyl cation donor and hexavalent actinyl or trivalent/tetravalent metal cation acceptor, has been most commonly seen in media in which water activities are reduced, principally highly-salted aqueous media. Such interactions of pentavalent actinides are of relevance in ongoing research that focuses on advanced nuclear fuel processing systems based on the upper oxidation states of americium. This investigation focuses on exploring the thermodynamic stability of complexes between selected highly-charged metal cations (Al 3+, Sc 3+, Cr 3+, Fe 3+, In 3+ and UO 2+ 2) and the pentavalent neptunyl cation (NpO + 2, whose coordination chemistry is similar to that of AmO + 2 while exhibiting significantly greater oxidation state stability) in aqueous–polar organic mixed-solvents. As a result, the Gibbs energies for the cation–cation complexation reactions are correlated with general features of electrostatic bonding models; the NpO + 2 • Cr 3+ complex exhibits unexpectedly strong interactions that may indicate significant covalency in the cation–cation bonding interaction.« less

  17. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    DOEpatents

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  18. Cornflower (Centaurea cyanus L.) honey quality parameters: chromatographic fingerprints, chemical biomarkers, antioxidant capacity and others.

    PubMed

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Marijanović, Zvonimir; Congiu, Francesca

    2014-01-01

    The samples of cornflower (Centaurea cyanus L.) honey from Poland were subjected to ultrasonic solvent extraction applying the mixture of pentane and diethyl ether 1:2v/v (solvent A) as well as dichloromethane (solvent B). The major compounds of the extracts (analysed by GC-MS/GC-FID) were C13 and C9 norisoprenoids. Among them, (E)-3-oxo-retro-α-ionol (2.4-23.9% (solvent A); 3.9-14.4% (solvent B)) and (Z)-3-oxo-retro-α-ionol (3.7-29.9% (solvent A); 8.4-20.4% (solvent B)) were found to be useful as chemical biomarkers of this honey. Other abundant compounds were: methyl syringate (0.0-31.4% (solvent A); 0.0-25.4% (solvent B)) and 3-hydroxy-4-phenylbutan-2-one (1.6-15.8% (solvent A); 5.1-15.1% (solvent B)). HPLC-DAD analysis of the samples revealed lumichrome (4.7-10.0mg/kg), riboflavin (1.9-2.7mg/kg) and phenyllactic acid (112.1-250.5mg/kg) as typical compounds for this honey type. Antioxidant and antiradical properties as well as total phenolic content of the samples were found to be rather moderate by FRAP (ferric reducing antioxidant power), DPPH (1,1-diphenyl-2-picrylhydrazyl radical) and Folin-Ciocalteu assays, respectively. Additionally, CIE L(∗)a(∗)b(∗)C(∗)h chromatic coordinates were evaluated. Colour attributes of cornflower honey were characterised by elevated values of L(∗) and particularly high values of b(∗) and h coordinates, which correspond to medium bright honey with intense yellow colour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The organo-Lewis acids are novel triarylboranes which are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.

  20. Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The organo-Lewis acids are novel triarylboranes which are are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.

  1. {2,2′-[Ethane-1,2-diylbis(nitrilo­methan­yl­yl­idene)]diphenolato}(iso­propano­lato)aluminium di­chloro­methane hemisolvate

    PubMed Central

    Zaitsev, Kirill V.; Kuchuk, Ekaterina A.; Karlov, Sergey S.; Zaitseva, Galina S.; Churakov, Andrei V.

    2013-01-01

    In the title compound, [Al(C16H14N2O2)(C3H7O)]·0.5CH2Cl2, the salen complex is monomeric and the dichlormethane solvent mol­ecule lies on a crystallographic twofold axis. The central Al atom is fivefold coordinated and possesses a square-based pyramidal environment. The Al—OAlk(iprop­yl) bond [1.7404 (14) Å] is much shorter than the Al—OAr(salen) bond lengths [1.7974 (15) and 1.8094 (14) Å]. The iso­propyl­oxo group forms an intra­molecular C—H⋯N hydrogen bond. In the crystal, the complex mol­ecules are linked by weak C—H⋯O inter­actions. PMID:24454153

  2. Syntheses, crystal structures, and water adsorption behaviors of jungle-gym-type porous coordination polymers containing nitro moieties

    NASA Astrophysics Data System (ADS)

    Uemura, Kazuhiro; Onishi, Fumiaki; Yamasaki, Yukari; Kita, Hidetoshi

    2009-10-01

    NO 2 containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO 2) and 2,5-dinitroterephthalate (bdc-(NO 2) 2), afford porous coordination polymers, {[Zn 2(bdc-NO 2) 2(dabco)]· solvents} n ( 2⊃ solvents) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]· solvents} n ( 3⊃ solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn 2 units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2⊃ solvents and 3⊃ solvents, a rectangle pore surrounded by eight Zn 2 corners contains two and four NO 2 moieties, respectively. Thermal gravimetry (TG) and X-ray powder diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me 2CO. Adsorption measurements reveal that dried 2 and 3 adsorb H 2O molecules to be {[Zn 2(bdc-NO 2) 2(dabco)]·4H 2O} n ( 2⊃4H 2O) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]·6H 2O} n ( 3⊃6H 2O), showing the pore hydrophilicity enhancement caused by NO 2 group introduction.

  3. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    NASA Astrophysics Data System (ADS)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  5. 1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio

    NASA Astrophysics Data System (ADS)

    Notash, Behrouz

    2018-03-01

    Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.

  6. Stability of coordination compounds of Ni2+ and Co2+ ions with succinic acid anion in water-ethanol solvents

    NASA Astrophysics Data System (ADS)

    Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.

    2017-04-01

    Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).

  7. Microscopic relaxations in a protein sustained down to 160K in a non-glass forming organic solvent.

    PubMed

    Mamontov, E; O'Neill, H

    2017-01-01

    We have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamical transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics. We hypothesize that, if the long debated idea regarding the direct link between the microscopic relaxations and the biological activity in proteins is correct, then not only the microscopic relaxations, but also the activity, could be sustained in proteins all the way down to the freezing temperature of a non-glass forming solvent with a weak temperature dependence of its viscosity. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Work ability score of solvent-exposed workers.

    PubMed

    Furu, Heidi; Sainio, Markku; Hyvärinen, Hanna-Kaisa; Kaukiainen, Ari

    2018-03-28

    Occupational chronic solvent encephalopathy (CSE), characterized by neurocognitive dysfunction, often leads to early retirement. However, only the more severe cases are diagnosed with CSE, and little is known about the work ability of solvent-exposed workers in general. The aim was to study memory and concentration symptoms, work ability and the effect of both solvent-related and non-occupational factors on work ability, in an actively working solvent-exposed population. A questionnaire on exposure and health was sent to 3640 workers in four solvent-exposed fields, i.e. painters and floor-layers, boat builders, printers, and metal workers. The total number of responses was 1730. We determined the work ability score (WAS), a single question item of the Work Ability Index, and studied solvent exposure, demographic factors, Euroquest memory and concentration symptoms, chronic diseases, and employment status using univariate and multivariate analyses. The findings were compared to those of a corresponding national blue-collar reference population (n = 221), and a small cohort of workers with CSE (n = 18). The proportion of workers with memory and concentration symptoms was significantly associated with solvent exposure. The WAS of solvent-exposed workers was lower than that of the national blue-collar reference group, and the difference was significant in the oldest age group (those aged over 60). Solvent-exposed worker's WAS were higher than those of workers diagnosed with CSE. The WAS were lowest among painters and floor-layers, followed by metal workers and printers, and highest among boat builders. The strongest explanatory factors for poor work ability were the number of chronic diseases, age and employment status. Solvent exposure was a weak independent risk factor for reduced WAS, comparable to a level of high alcohol consumption. Even if memory and concentration symptoms were associated with higher solvent exposure, the effect of solvents on self-experienced work ability was relatively weak. This in line with the improved occupational hygiene and reduced solvent exposure levels in industrialized countries, thus the effect may be stronger in high-level exposure environments. As a single question, WAS is easily included, applicable, and recommendable in occupational screening questionnaires.

  9. Using the Lewis Acid Me3 Si-F-Al(ORF )3 To Prepare Phosphino-Phosphonium Cations with the Least-Coordinating Anion [(RF O)3 Al-F-Al(ORF )3 ].

    PubMed

    Possart, Josephine; Martens, Arthur; Schleep, Mario; Ripp, Alexander; Scherer, Harald; Kratzert, Daniel; Krossing, Ingo

    2017-09-07

    By reaction of two equivalents of Me 3 Si-F-Al(OR F ) 3 1 with an equimolar amount of PPh 2 Cl, the salt [Ph 2 P-PPh 2 Cl] + [(R F O) 3 Al-F-Al(OR F ) 3 ] - 2 is prepared smoothly in 91 % yield (NMR, XRD). The synthesis of [Ph 2 P-PPh 3 ] + [(R F O) 3 Al-F-Al(OR F ) 3 ] - 3 is best achieved by a two-step reaction: first, two equivalents of 1 react with one PPh 3 to give [Me 3 Si-PPh 3 ] + [(R F O) 3 Al-F-Al(OR F ) 3 ] - 4 (NMR, XRD), which, upon reaction with PPh 2 Cl, yields pure 3 and Me 3 SiCl (NMR, XRD). Typically, a stoichiometry of two equivalents of 1 with respect to one equivalent of the chloride donor should be used. Otherwise, the residual strong Lewis acidity of the [(R F O) 3 Al-F-Al(OR F ) 3 ] - anion in the presence of the [F-Al(OR F ) 3 ] - anion-that forms with less than two equivalents of 1-leads to further chloride exchange reactions that complicate work-up. This route presents the easiest way to introduce the least-coordinating [(R F O) 3 Al-F-Al(OR F ) 3 ] - anion into a system. We expect a wide use of this route in all areas, in which chloride-bond heterolysis in combination with very weakly coordinating anions is desirable. Additionally, we performed calculations on the bond dissociation mechanisms of [R 2 P-PMe 3 ] + and the isoelectronic Me 2 P-SiMe 3 and Me 2 Si-PMe 3 in dependence of the solvent permittivity. These calculations show, especially for the neutral reference compounds, a heavy influence of the solvent on the dissociation mechanism, which is why we suggest investigating these properties in solution instead of gas phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation and characterization of high performance NBR/cobalt (II) chloride coordination composites

    NASA Astrophysics Data System (ADS)

    Shang, Peng; Shao, Chengli; Li, Qiqing; Wu, Chifei

    2018-02-01

    Acrylonitrile-butadiene rubber (NBR) composites filled with Cobalt (II) Chloride (CoCl2) particles were prepared by a solvent dispersion method. Acetone was selected as solvent for NBR and CoCl2. To directly enhance the interaction between NBR and CoCl2, a coordination reaction was generated by hot pressing at 200 °C. Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and x-ray photoelectron spectroscopy (XPS) were employed to investigate the coordination reaction. Results showed that the coordination reaction occurred between the nitrile groups (-CN) of NBR and cobalt ions (Co2+) of CoCl2. Compared with the properties of pure NBR, the tensile strength of NBR/CoCl2 composites filled with 10 parts per hundreds of rubber (phr) CoCl2 increased 2200%. Scanning electron microscopy (SEM) indicated that the CoCl2 particles were dispersed in the NBR matrix homogeneously. The indistinguishable interface between CoCl2 particles and NBR matrix indicated good compatibility. Additionally, thermogravimetric analysis (TGA) showed that coordination reaction improved heat resistance of NBR matrix.

  11. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1.

    PubMed

    Jeong, Nak Cheon; Samanta, Bappaditya; Lee, Chang Yeon; Farha, Omar K; Hupp, Joseph T

    2012-01-11

    HKUST-1, a metal-organic framework (MOF) material containing Cu(II)-paddlewheel-type nodes and 1,3,5-benzenetricarboxylate struts, features accessible Cu(II) sites to which solvent or other desired molecules can be intentionally coordinated. As part of a broader investigation of ionic conductivity in MOFs, we unexpectedly observed substantial proton conductivity with the "as synthesized" version of this material following sorption of methanol. Although HKUST-1 is neutral, coordinated water molecules are rendered sufficiently acidic by Cu(II) to contribute protons to pore-filling methanol molecules and thereby enhance the alternating-current conductivity. At ambient temperature, the chemical identities of the node-coordinated and pore-filling molecules can be independently varied, thus enabling the proton conductivity to be reversibly modulated. The proton conductivity of HKUST-1 was observed to increase by ~75-fold, for example, when node-coordinated acetonitrile molecules were replaced by water molecules. In contrast, the conductivity became almost immeasurably small when methanol was replaced by hexane as the pore-filling solvent. © 2011 American Chemical Society

  12. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  13. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  14. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  15. The lanthanide contraction beyond coordination chemistry

    DOE PAGES

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.; ...

    2016-04-06

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  16. The lanthanide contraction beyond coordination chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K.

    Lanthanide chemistry is dominated by the ‘lanthanide contraction’, which is conceptualized traditionally through coordination chemistry. Here we break this mold, presenting evidence that the lanthanide contraction manifests outside of the coordination sphere, influencing weak interactions between groups of molecules that drive mesoscale-assembly and emergent behavior in an amphiphile solution. Furthermore, changes in these weak interactions correlate with differences in lanthanide ion transport properties, suggesting new forces to leverage rare earth separation and refining. Our results show that the lanthanide contraction paradigm extends beyond the coordination sphere, influencing structure and properties usually associated with soft matter science.

  17. Weak coordination among petiole, leaf, vein, and gas-exchange traits across 41 Australian angiosperm species and its possible implications

    USDA-ARS?s Scientific Manuscript database

    Background and Aims Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life-forms. However, recent reports suggest that this relationship may become weak or break down completely within the angiosperms. Methods To examine this possi...

  18. Two-fold interpenetrating btc based cobaltous coordination polymer: A promising catalyst for solvent free oxidation of 1-hexene

    NASA Astrophysics Data System (ADS)

    Bora, Sanchay J.; Paul, Rima; Nandi, Mithun; Bhattacharyya, Pradip K.

    2017-12-01

    This work describes the synthesis of a new 2-D coordination polymer (CP), [Co3(btc)2(dmp)8]n (btc = 1,3,5-benzenetricarboxylate and dmp = 3,5-dimethylpyrazole) and its catalytic activity towards the oxidation reaction of 1-hexene to form oxygenated compounds under solvent free condition. Structural analysis reveals that Co(II) cations in this polymeric compound are linked by btc3- anions with alternate tetrahedral/octahedral coordination forming a two-fold interpenetrated 3-connected hcb underlying net. Electronic spectrum of the cobaltous polymer has been calculated using TDDFT/B3LYP method for making the appropriate assignments of electronic transitions. Catalytic results show good conversions of the starting material to oxygenated products with high selectivities for 1,2-epoxyhexane and 1-hexanal.

  19. Solvent Dependent Disorder in M 2(BzOip) 2(H 2O)·Solvate (M = Co or Zn)

    DOE PAGES

    McCormick, Laura; Morris, Samuel A.; Teat, Simon J.; ...

    2017-12-24

    Coordination polymers derived from 5-benzyloxy isophthalic acid (H 2BzOip) are rare, with only three reported that do not contain additional bridging ligands, of which two M 2(BzOip) 2(H 2O) (M = Co and Zn) are isomorphous. It was hoped that by varying the solvent system in a reaction between H 2BzOip and M(OAc) 2 (M = Co and Zn), from water to a water/alcohol mixture, coordination polymers of different topology could be formed. Instead, two polymorphs of the existing M 2(BzOip) 2(H 2O) (M = Co and Zn) were isolated from aqueous methanol and aqueous ethanol, in which a smallmore » number of guest solvent molecules are present in the crystals. These guest water molecules disrupt the hexaphenyl embrace motif, leading to varying degrees of disorder of the benzyl groups.« less

  20. Solvent Dependent Disorder in M 2(BzOip) 2(H 2O)·Solvate (M = Co or Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Laura; Morris, Samuel A.; Teat, Simon J.

    Coordination polymers derived from 5-benzyloxy isophthalic acid (H 2BzOip) are rare, with only three reported that do not contain additional bridging ligands, of which two M 2(BzOip) 2(H 2O) (M = Co and Zn) are isomorphous. It was hoped that by varying the solvent system in a reaction between H 2BzOip and M(OAc) 2 (M = Co and Zn), from water to a water/alcohol mixture, coordination polymers of different topology could be formed. Instead, two polymorphs of the existing M 2(BzOip) 2(H 2O) (M = Co and Zn) were isolated from aqueous methanol and aqueous ethanol, in which a smallmore » number of guest solvent molecules are present in the crystals. These guest water molecules disrupt the hexaphenyl embrace motif, leading to varying degrees of disorder of the benzyl groups.« less

  1. On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Galib, Mirza; Schenter, Gregory K.; Mundy, Christopher J.

    2018-01-01

    The phenomena of solvent exchange control the process of solvating ions, protons, and charged molecules. Building upon our extension of Marcus' philosophy of electron transfer, we provide a new perspective of ultrafast solvent exchange mechanism around ions measurable by two-dimensional infrared (2DIR) spectroscopy. In this theory, solvent rearrangement drives an ion-bound water to an activated state of higher coordination number, triggering ion-water separation that leads to the solvent-bound state of the water molecule. This ion-bound to solvent-bound transition rate for a BF4--water system is computed using ab initio molecular dynamics and Marcus theory, and is found to be in excellent agreement with the 2DIR measurement.

  2. Stereochemistry and solvent role in protein folding: nuclear magnetic resonance and molecular dynamics studies of poly-L and alternating-L,D homopolypeptides in dimethyl sulfoxide.

    PubMed

    Srivastava, Kinshuk Raj; Kumar, Anil; Goyal, Bhupesh; Durani, Susheel

    2011-05-26

    The competing interactions folding and unfolding protein structure remain obscure. Using homopolypeptides, we ask if poly-L structure may have a role. We mutate the structure to alternating-L,D stereochemistry and substitute water as the fold-promoting solvent with methanol and dimethyl sulfoxide (DMSO) as the fold-denaturing solvents. Circular dichroism and molecular dynamics established previously that, while both isomers were folded in water, the poly-L isomer was unfolded and alternating-L,D isomer folded in methanol. Nuclear magnetic resonance and molecular dynamics establish now that both isomers are unfolded in DMSO. We calculated energetics of folding-unfolding equilibrium with water and methanol as solvents. We have now calculated interactions of unfolded polypeptide structures with DMSO as solvent. Methanol was found to unfold and water fold poly-L structure as a dielectric. DMSO has now been found to unfold both poly-L and alternating-L,D structures by strong solvation of peptides to disrupt their hydrogen bonds. Accordingly, we propose that while linked peptides fold protein structure with hydrogen bonds they unfold the structure electrostatically due to the stereochemical effect of the poly-L structure. Protein folding to ordering of peptide hydrogen bonds with water as canonical solvent may thus involve two specific and independent solvent effects-one, strong screening of electrostatics of poly-L linked peptides, and two, weak dipolar solvation of peptides. Correspondingly, protein denaturation may involve two independent solvent effects-one, weak dielectric to unfold poly-L structure electrostatically, and two, strong polarity to disrupt peptide hydrogen bonds by solvation of peptides.

  3. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women.

    PubMed

    Smith, Jo Armour; Popovich, John M; Kulig, Kornelia

    2014-07-01

    Cross-sectional laboratory study. To compare peak lower-limb, pelvis, and trunk kinematics and interjoint and intersegmental coordination in women with strong and weak hip muscle performance. Persons with lower extremity musculoskeletal disorders often demonstrate a combination of weak hip musculature and altered kinematics during weight-bearing dynamic tasks. However, the association between hip strength and kinematics independent of pathology or pain is unclear. Peak hip extensor and abductor torques were measured in 150 healthy young women. Of these, 10 fit the criteria for the strong group and 9 for the weak group, representing those with the strongest and weakest hip musculature, respectively, of the 150 screened individuals. Kinematics of the hip, knee, pelvis, and trunk were measured during the stance phases of walking and rate-controlled hopping. Hip/knee and pelvis/trunk coordination were calculated using the vector coding technique. There were no group differences in peak hip, knee, or pelvis kinematics. Participants in the weak group demonstrated greater trunk lateral bend toward the stance limb during hopping (P = .002, effect size [d] = 1.88). In the transverse plane, those in the weak group utilized less inphase coordination between the hip and the knee during walking (P = .036, d = 1.45) and more antiphase coordination between the hip and knee during hopping (P = .03, d = 1.47). In the absence of pain or pathology, poor hip muscle performance does not affect peak hip or knee joint kinematics in young women, but is associated with significantly different lower-limb and trunk/pelvis coordination during weight-bearing dynamic tasks. J Orthop Sports Phys Ther 2014;44(7):525-531. Epub 10 May 2014. doi:10.2519/jospt.2014.5028.

  4. State Coordination of Higher Education: The Modern Concept.

    ERIC Educational Resources Information Center

    Glenny, Lyman A.

    Coordination of higher education as practiced in three similar organizational forms is assessed: the statewide governing board, the regulatory coordinating board, and the advisory board. Attention is directed to why coordination is important, criticism of coordination, kinds of organizations used, the accomplishments and weaknesses of the…

  5. Functionally relevant protein motions: Extracting basin-specific collective coordinates from molecular dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Pan, Patricia Wang; Dickson, Russell J.; Gordon, Heather L.; Rothstein, Stuart M.; Tanaka, Shigenori

    2005-01-01

    Functionally relevant motion of proteins has been associated with a number of atoms moving in a concerted fashion along so-called "collective coordinates." We present an approach to extract collective coordinates from conformations obtained from molecular dynamics simulations. The power of this technique for differentiating local structural fuctuations between classes of conformers obtained by clustering is illustrated by analyzing nanosecond-long trajectories for the response regulator protein Spo0F of Bacillus subtilis, generated both in vacuo and using an implicit-solvent representation. Conformational clustering is performed using automated histogram filtering of the inter-Cα distances. Orthogonal (varimax) rotation of the vectors obtained by principal component analysis of these interresidue distances for the members of individual clusters is key to the interpretation of collective coordinates dominating each conformational class. The rotated loadings plots isolate significant variation in interresidue distances, and these are associated with entire mobile secondary structure elements. From this we infer concerted motions of these structural elements. For the Spo0F simulations employing an implicit-solvent representation, collective coordinates obtained in this fashion are consistent with the location of the protein's known active sites and experimentally determined mobile regions.

  6. On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Galib, Mirza; Schenter, Gregory K.

    The phenomena of solvent exchange control the process of solvating ions, protons, and charged molecules. Building upon our extension of Marcus’ philosophy of electron transfer, here we provide a new perspective of ultrafast solvent exchange mechanism around ions measurable by two-dimensional infrared (2DIR) spectroscopy. In this theory, solvent rearrangement drives an ion-bound water to an activated state of higher coordination number, triggering ion-water separation that leads to the solvent-bound state of the water molecule. This ion-bound to solvent-bound transition rate for a BF 4 --water system is then computed using ab initio molecular dynamics and Marcus theory, and is foundmore » to be in excellent agreement with the 2DIR measurement.« less

  7. On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics

    DOE PAGES

    Roy, Santanu; Galib, Mirza; Schenter, Gregory K.; ...

    2017-12-24

    The phenomena of solvent exchange control the process of solvating ions, protons, and charged molecules. Building upon our extension of Marcus’ philosophy of electron transfer, here we provide a new perspective of ultrafast solvent exchange mechanism around ions measurable by two-dimensional infrared (2DIR) spectroscopy. In this theory, solvent rearrangement drives an ion-bound water to an activated state of higher coordination number, triggering ion-water separation that leads to the solvent-bound state of the water molecule. This ion-bound to solvent-bound transition rate for a BF 4 --water system is then computed using ab initio molecular dynamics and Marcus theory, and is foundmore » to be in excellent agreement with the 2DIR measurement.« less

  8. On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Galib, Mirza; Schenter, Gregory K.

    The phenomena of solvent exchange control the process of solvating ions, protons, and charged molecules. Building upon our extension of Marcus’ philosophy of electron transfer, we provide a new perspective of ultrafast solvent exchange mechanism around ions measurable by two-dimensional infrared (2DIR) spectroscopy. In this theory, solvent rearrangement drives an ion-bound water to an activated state of higher coordination number, triggering ion-water separation that leads to the solvent-bound state of the water molecule. This ion-bound to solvent-bound transition rate for a BF4- water system is computed using ab initio molecular dynamics and Marcus theory, and is found to be inmore » excellent agreement with the 2DIR measurement.« less

  9. Molecular Dynamic Simulation of Diffusion Coefficients for Alkanols in Supercritical CO2 1

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Lai, Shuhui; Gao, Wei; Chen, Liuping

    2018-07-01

    The infinite dilution diffusion coefficients ( D 12) of methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol in supercritical CO2 (scCO2) at 313.2 K and 10-16 MPa were simulated by molecular dynamics (MD) simulation. The microscopic structure was also analyzed by calculation of the radial distribution function, coordination number (CN) between the center mass of solute and solvent molecules, and the average number of hydrogen bonding of this system. In infinite dilute solution, the probability of forming hydrogen bond between alkanol molecules is greatly reduced relative to pure alkanol fluid, and the weak hydrogen bonds formed between alkanol and CO2 molecules. In general, this work provides a reliable simulation method for transfer properties of solutes in scCO2. The prediction data were provides for the design and development of chemical processing. The results are helpful for one to deeper understand the relationship between microscopic structures of fluid and its transfer properties.

  10. Sequential elution process

    DOEpatents

    Kingsley, I.S.

    1987-01-06

    A process and apparatus are disclosed for the separation of complex mixtures of carbonaceous material by sequential elution with successively stronger solvents. In the process, a column containing glass beads is maintained in a fluidized state by a rapidly flowing stream of a weak solvent, and the sample is injected into this flowing stream such that a portion of the sample is dissolved therein and the remainder of the sample is precipitated therein and collected as a uniform deposit on the glass beads. Successively stronger solvents are then passed through the column to sequentially elute less soluble materials. 1 fig.

  11. Development of novel purifiers with appropriate functional groups based on solvent polarities at bulk filtration

    NASA Astrophysics Data System (ADS)

    Kohyama, Tetsu; Kaneko, Fumiya; Ly, Saksatha; Hamzik, James; Jaber, Jad; Yamada, Yoshiaki

    2017-03-01

    Weak-polar solvents like PGMEA (Propylene Glycol Monomethyl Ether Acetate) or CHN (Cyclohexanone) are used to dissolve hydrophobic photo-resist polymers, which are challenging for traditional cleaning methods such as distillation, ion-exchange resins service or water-washing processes. This paper investigated two novel surface modifications to see their effectiveness at metal removal and to understand the mechanism. The experiments yielded effective purification methods for metal reduction, focusing on solvent polarities based on HSP (Hansen Solubility Parameters), and developing optimal purification strategies.

  12. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  13. Solvent-regulated assemblies of four Zn(II) coordination polymers constructed by flexible tetracarboxylates and pyridyl ligands

    NASA Astrophysics Data System (ADS)

    Fang, Kang; He, Xiang; Shao, Min; Li, Ming-Xing

    2016-08-01

    Four unique complexes with diverse coordination architectures were synthesized upon complexation of 5,5-(1,4-phenylenebis (methylene))bis (oxy)- diisophthalic acid (H4L) with zinc ions by using different solvent. namely, {[Zn(H2L) (bpp)]·DEF}n (1), {[Zn2(L) (bpp)2]·4H2O}n (2), {[Zn2(L) (pdp)2]·3H2O·DEF}n (3), {[Zn2(L) (pdp)2].4H2O}n (4). Complexes 1,2 and 3,4 are obtained by varying solvents to control their structures. The size of solvent molecular plays an important role to control different structure of these compounds. Compound 1 is 2D waved framework with (4, 4) grid layer as sql topology. Compound 3 displays a (4,6)-connected 2-nodal net with a fsc topology. Compounds 2 and 4 are all three-dimensional network simplified as (4,4)-connected 2-nodal net with a bbf topology. The photochemical properties of compounds 1-4 were tested in the solid state at room temperature, owing to their strong luminescent emissions, complexes 1-4 are good candidates for photoactive materials.

  14. Investigation of solvent-free MALDI-TOFMS sample preparation methods for the analysis of organometallic and coordination compounds.

    PubMed

    Hughes, Laura; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth

    2009-01-15

    An investigation of various solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) sample preparation methods for the characterization of organometallic and coordination compounds is described. Such methods are desirable for insoluble materials, compounds that are only soluble in disadvantageous solvents, or complexes that dissociate in solution, all of which present a major "difficulty" to most mass spectrometry techniques. First-row transition metal acetylacetonate complexes, which have been characterized previously by solution preparation MALDI-TOFMS, were used to evaluate the various solvent-free procedures. These procedures comprise two distinct steps: the first being the efficient "solids mixing" (the mixing of sample and matrix), and the second being the effective transfer of the sample/matrix mixture to the MALDI target plate. This investigation shows that vortex mixing is the most efficient first step and that smearing using a microspatula is the most effective second step. In addition, the second step is shown to be much more critical than the first step in obtaining high-quality data. Case studies of truly insoluble materials highlight the importance of these techniques for the wider chemistry community.

  15. Strengthening of the Coordination Shell by Counter Ions in Aqueous Th 4+ Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atta-Fynn, Raymond; Bylaska, Eric J.; de Jong, Wibe A.

    The presence of counter ions in solutions containing highly charged metal cations can trigger processes such as ion-pair formation, hydrogen bond breakages and subsequent reformation, and ligand exchanges. In this work, it is shown how halide (Cl-, Br-) and perchlorate (ClO4-) anions affect the strength of the primary solvent coordination shells around Th4+ using explicit solvent and finite temperature ab initio molecular dynamics modeling methods. The 9-fold solvent geometry was found to be the most stable hydration structure in each aqueous solution. Relative to the dilute aqueous solution, the presence of the counter ions did not significantly alter the geometrymore » of the primary hydration shell. However, the free energy analyses indicated that the 10-fold hydrated states were thermodynamically accessible in dilute and bromide aqueous solutions within 1 kcal/mol. Analysis of the results showed that the hydrogen bond lifetimes were longer and solvent exchange energy barriers were larger in solutions with counter ions in comparison with the solution with no counter ions. This implies that the presence of the counter ions induces a strengthening of the Th4+ hydration shell.« less

  16. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  17. Analytical RISM-MP2 free energy gradient method: Application to the Schlenk equilibrium of Grignard reagent

    NASA Astrophysics Data System (ADS)

    Mori, Toshifumi; Kato, Shigeki

    2007-03-01

    We present a method to evaluate the analytical gradient of reference interaction site model Møller-Plesset second order free energy with respect to solute nuclear coordinates. It is applied to calculate the geometries and energies in the equilibria of the Grignard reagent (CH 3MgCl) in dimethylether solvent. The Mg-Mg and Mg-Cl distances as well as the binding energies of solvents are largely affected by the dynamical electron correlation. The solvent effect on the Schlenk equilibrium is examined.

  18. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    PubMed

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  19. Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE).

    PubMed

    Moreno, Karlos X; Nasr, Khaled; Milne, Mark; Sherry, A Dean; Goux, Warren J

    2015-08-01

    Here we report the polarization of the solvent OH protons by SABRE using standard iridium-based catalysts under slightly acidic conditions. Solvent polarization was observed in the presence of a variety of structurally similar N-donor substrates while no solvent enhancement was observed in the absence of substrate or para-hydrogen (p-H2). Solvent polarization was sensitive to the polarizing field and catalyst:substrate ratio in a manner similar to that of substrate protons. SABRE experiments with pyridine-d5 suggest a mechanism where hyperpolarization is transferred from the free substrate to the solvent by chemical exchange while measured hyperpolarization decay times suggest a complimentary mechanism which occurs by direct coordination of the solvent to the catalytic complex. We found the solvent hyperpolarization to decay nearly 3 times more slowly than its characteristic spin-lattice relaxation time suggesting that the hyperpolarized state of the solvent may be sufficiently long lived (∼20s) to hyperpolarize biomolecules having exchangeable protons. This route may offer future opportunities for SABRE to impact metabolic imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE)

    NASA Astrophysics Data System (ADS)

    Moreno, Karlos X.; Nasr, Khaled; Milne, Mark; Sherry, A. Dean; Goux, Warren J.

    2015-08-01

    Here we report the polarization of the solvent OH protons by SABRE using standard iridium-based catalysts under slightly acidic conditions. Solvent polarization was observed in the presence of a variety of structurally similar N-donor substrates while no solvent enhancement was observed in the absence of substrate or para-hydrogen (p-H2). Solvent polarization was sensitive to the polarizing field and catalyst:substrate ratio in a manner similar to that of substrate protons. SABRE experiments with pyridine-d5 suggest a mechanism where hyperpolarization is transferred from the free substrate to the solvent by chemical exchange while measured hyperpolarization decay times suggest a complimentary mechanism which occurs by direct coordination of the solvent to the catalytic complex. We found the solvent hyperpolarization to decay nearly 3 times more slowly than its characteristic spin-lattice relaxation time suggesting that the hyperpolarized state of the solvent may be sufficiently long lived (∼20 s) to hyperpolarize biomolecules having exchangeable protons. This route may offer future opportunities for SABRE to impact metabolic imaging.

  1. Coordination Polymer Gels with Modular Nanomorphologies, Tunable Emissions, and Stimuli-Responsive Behavior Based on an Amphiphilic Tripodal Gelator.

    PubMed

    Sutar, Papri; Maji, Tapas Kumar

    2017-08-21

    The recent upsurge in research on coordination polymer gels (CPGs) stems from their synthetic modularity, nanoscale processability, and versatile functionalities. Here we report self-assembly of an amphiphilic, tripodal low-molecular weight gelator (L) that consists of 4,4',4-[1,3,5-phenyl-tri(methoxy)]-tris-benzene core and 2,2':6',2″-terpyridyl termini, with different metal ions toward the formation of CPGs that show controllable nanomorphologies, tunable emission, and stimuli-responsive behaviors. L can also act as a selective chemosensor for Zn II with very low limit of detection (0.18 ppm) in aqueous medium. Coordination-driven self-assembly of L with Zn II in H 2 O/MeOH solvent mixture results in a coordination polymer hydrogel (ZnL) that exhibits sheet like morphology and charge-transfer emission. On the other hand, coordination of L with Tb III and Eu III in CHCl 3 /tetrahydrofuran solvent mixture results in green- and red-emissive CPGs, respectively, with nanotubular morphology. Moreover, precise stoichiometric control of L/Eu III /Tb III ratio leads to the formation of bimetallic CPGs that show emissions over a broad spectral range, including white-light-emission. We also explore the multistimuli responsive properties of the white-light-emitting CPG by exploiting the dynamics of Ln III -tpy coordination.

  2. A critical overview of non-aqueous capillary electrophoresis. Part I: mobility and separation selectivity.

    PubMed

    Kenndler, Ernst

    2014-03-28

    This two-part review critically gives an overview on the theoretical and practical advances in non-aqueous capillary electrophoresis (NACE) achieved over the recent five years. Part I starts out by reviewing the aspects relevant to electromigration in organic solvents and evaluates potential advantages of the latter in comparison to aqueous solvent systems. The crucial role of solubility for the species involved in CE - analytes and back ground electrolyte constituents - is discussed both for ionic and neutral compounds. The impact of organic solvents on the electrophoretic and electroosmotic mobility and on the ionization (pKa values) of weak acids and bases is highlighted. Special emphasis is placed on methanol, acetonitrile and mixtures of these solvents, being the most frequent employed media for NACE applications. In addition, also solvents less commonly used in NACE will be covered, including other alcohols, amides (formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide), propylene carbonate, dimethylsulphoxide, and nitromethane. The discussions address the consequences of dramatic pKa shifts frequently seen for weak acids and bases, and the important contributions of medium-specific electroosmotic flow (EOF) to electromigration in nonaqueous media. Important for NACE, the role of the water content on pKa and mobility is analyzed. Finally, association phenomena rather specific to nonaqueous solvents (ion pairing, homo- and heteroconjugation) will be addressed, along with their potential advantages for the development of NACE separation protocols. It is pointed out that this review is not intended as a listing of all papers that have been published on NACE in the period mentioned above. It rather deals with general aspects of migration and selectivity in organic solvent systems, and discusses - critically - examples from the literature with particular interest to the topic. An analog discussion about the role of the solvent on efficiency will be presented in Part II. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  4. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI) 2 in Diglyme: Implications for Multivalent Electrolytes

    DOE PAGES

    Baskin, Artem; Prendergast, David

    2016-02-05

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, Artem; Prendergast, David

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  6. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry

    DOE PAGES

    Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; ...

    2015-11-17

    The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF 6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC) n(DMC) m–Li+ and (EC) n(DMC) m–LiPF 6 solvates in the gas-phase and for an implicit solvent (asmore » a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC 4)–Li+ and (EC) 3–LiPF 6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF 6 mixed solvent electrolyte was studied using the BOMD simulations.« less

  7. Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO.sub.2

    DOEpatents

    Matzger, Adam J.; Liu, Baojian; Wong-Foy, Antek G.

    2016-07-19

    Flowing supercritical CO.sub.2 is used to activate metal organic framework materials (MOF). MOFs are activated directly from N,N-dimethylformamide (DMF) thus avoiding exchange with a volatile solvent. Most MCPs display increased surface areas directly after treatment although those with coordinatively unsaturated metal centers benefit from additional heating.

  8. Dendritic brushes under theta and poor solvent conditions

    NASA Astrophysics Data System (ADS)

    Gergidis, Leonidas N.; Kalogirou, Andreas; Charalambopoulos, Antonios; Vlahos, Costas

    2013-07-01

    The effects of solvent quality on the internal stratification of polymer brushes formed by dendron polymers up to third generation were studied by means of molecular dynamics simulations with Langevin thermostat. The distributions of polymer units, of the free ends, the radii of gyration, and the back folding probabilities of the dendritic spacers were studied at the macroscopic states of theta and poor solvent. For high grafting densities we observed a small decrease in the height of the brush as the solvent quality decreases. The internal stratification in theta solvent was similar to the one we found in good solvent, with two and in some cases three kinds of populations containing short dendrons with weakly extended spacers, intermediate-height dendrons, and tall dendrons with highly stretched spacers. The differences increase as the grafting density decreases and single dendron populations were evident in theta and poor solvent. In poor solvent at low grafting densities, solvent micelles, polymeric pinned lamellae, spherical and single chain collapsed micelles were observed. The scaling dependence of the height of the dendritic brush at high density brushes for both solvents was found to be in agreement with existing analytical results.

  9. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wei; Xiang, Guolei; Shang, Jin

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simplemore » washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.« less

  10. Structural and thermodynamic properties of the Cm III ion solvated by water and methanol

    DOE PAGES

    Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; ...

    2016-04-27

    The geometric and electronic structures of the 9-coordinate Cm 3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shownmore » to be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less

  11. Energy gap law of electron transfer in nonpolar solvents.

    PubMed

    Tachiya, M; Seki, Kazuhiko

    2007-09-27

    We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.

  12. How Do Teachers Coordinate Their Work? A Framing Approach

    ERIC Educational Resources Information Center

    Dumay, Xavier

    2014-01-01

    Since the 1970s, schools have been characterized as loosely coupled systems, meaning that the teachers' work is weakly coordinated at the local level. Nonetheless, few studies have focused on the local variations of coordination modes, their sources and their nature. In this article, the process of local coordination of the teachers' work is…

  13. Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg

    2015-04-23

    Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation ofmore » electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.« less

  14. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  15. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: a mechanistic study using femtosecond fluorescence up-conversion technique.

    PubMed

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-28

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4(')-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and∕or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π∗ character may also decay via intersystem crossing to the n-π∗ triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  16. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: A mechanistic study using femtosecond fluorescence up-conversion technique

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-01

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4'-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and/or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π* character may also decay via intersystem crossing to the n-π* triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  17. Ordering nanoparticles with polymer brushes

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-01

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.

  18. Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination.

    PubMed

    Qiu, Youai; Tian, Cong; Massignan, Leonardo; Rogge, Torben; Ackermann, Lutz

    2018-05-14

    Electrocatalysis has been identified as a powerful strategy for organometallic catalysis, and yet electrocatalytic C-H activation is restricted to strongly N-coordinating directing groups. The first example of electrocatalytic C-H activation by weak O-coordination is presented, in which a versatile ruthenium(II) carboxylate catalyst enables electrooxidative C-H/O-H functionalization for alkyne annulations in the absence of metal oxidants; thereby exploiting sustainable electricity as the sole oxidant. Mechanistic insights provide strong support for a facile organometallic C-H ruthenation and an effective electrochemical reoxidation of the key ruthenium(0) intermediate. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. First-Principles Molecular Dynamics Studies of Organometallic Complexes and Homogeneous Catalytic Processes.

    PubMed

    Vidossich, Pietro; Lledós, Agustí; Ujaque, Gregori

    2016-06-21

    Computational chemistry is a valuable aid to complement experimental studies of organometallic systems and their reactivity. It allows probing mechanistic hypotheses and investigating molecular structures, shedding light on the behavior and properties of molecular assemblies at the atomic scale. When approaching a chemical problem, the computational chemist has to decide on the theoretical approach needed to describe electron/nuclear interactions and the composition of the model used to approximate the actual system. Both factors determine the reliability of the modeling study. The community dedicated much effort to developing and improving the performance and accuracy of theoretical approaches for electronic structure calculations, on which the description of (inter)atomic interactions rely. Here, the importance of the model system used in computational studies is highlighted through examples from our recent research focused on organometallic systems and homogeneous catalytic processes. We show how the inclusion of explicit solvent allows the characterization of molecular events that would otherwise not be accessible in reduced model systems (clusters). These include the stabilization of nascent charged fragments via microscopic solvation (notably, hydrogen bonding), transfer of charge (protons) between distant fragments mediated by solvent molecules, and solvent coordination to unsaturated metal centers. Furthermore, when weak interactions are involved, we show how conformational and solvation properties of organometallic complexes are also affected by the explicit inclusion of solvent molecules. Such extended model systems may be treated under periodic boundary conditions, thus removing the cluster/continuum (or vacuum) boundary, and require a statistical mechanics simulation technique to sample the accessible configurational space. First-principles molecular dynamics, in which atomic forces are computed from electronic structure calculations (namely, density functional theory), is certainly the technique of choice to investigate chemical events in solution. This methodology is well established and thanks to advances in both algorithms and computational resources simulation times required for the modeling of chemical events are nowadays accessible, though the computational requirements use to be high. Specific applications reviewed here include mechanistic studies of the Shilov and Wacker processes, speciation in Pd chemistry, hydrogen bonding to metal centers, and the dynamics of agostic interactions.

  20. Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent.

    PubMed

    Grubb, Michael P; Coulter, Philip M; Marroux, Hugo J B; Hornung, Balazs; McMullen, Ryan S; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2016-11-01

    Spectroscopically observing the translational and rotational motion of solute molecules in liquid solutions is typically impeded by their interactions with the solvent, which conceal spectral detail through linewidth broadening. Here we show that unique insights into solute dynamics can be made with perfluorinated solvents, which interact weakly with solutes and provide a simplified liquid environment that helps to bridge the gap in our understanding of gas- and liquid-phase dynamics. Specifically, we show that in such solvents, the translational and rotational cooling of an energetic CN radical can be observed directly using ultrafast transient absorption spectroscopy. We observe that translational-energy dissipation within these liquids can be modelled through a series of classic collisions, whereas classically simulated rotational-energy dissipation is shown to be distinctly faster than experimentally measured. We also observe the onset of rotational hindering from nearby solvent molecules, which arises as the average rotational energy of the solute falls below the effective barrier to rotation induced by the solvent.

  1. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    PubMed

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  2. Movement - uncoordinated

    MedlinePlus

    ... thallium, and lead Solvents such as toluene or carbon tetrachloride Other causes include: Certain cancers, in which ... system and muscles, paying careful attention to walking, balance, and coordination of pointing with fingers and toes. ...

  3. Distinct dissociation kinetics between ion pairs: Solvent-coordinate free-energy landscape analysis.

    PubMed

    Yonetani, Yoshiteru

    2015-07-28

    Different ion pairs exhibit different dissociation kinetics; however, while the nature of this process is vital for understanding various molecular systems, the underlying mechanism remains unclear. In this study, to examine the origin of different kinetic rate constants for this process, molecular dynamics simulations were conducted for LiCl, NaCl, KCl, and CsCl in water. The results showed substantial differences in dissociation rate constant, following the trend kLiCl < kNaCl < kKCl < kCsCl. Analysis of the free-energy landscape with a solvent reaction coordinate and subsequent rate component analysis showed that the differences in these rate constants arose predominantly from the variation in solvent-state distribution between the ion pairs. The formation of a water-bridging configuration, in which the water molecule binds to an anion and a cation simultaneously, was identified as a key step in this process: water-bridge formation lowers the related dissociation free-energy barrier, thereby increasing the probability of ion-pair dissociation. Consequently, a higher probability of water-bridge formation leads to a higher ion-pair dissociation rate.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; O'Neil, Hugh

    In this paper, we have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160 K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamicalmore » transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160 K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Finally, our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics.« less

  5. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  6. Microscopic relaxations in a protein sustained down to 160 K in a non-glass forming organic solvent

    DOE PAGES

    Mamontov, Eugene; O'Neil, Hugh

    2016-05-03

    In this paper, we have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160 K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamicalmore » transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160 K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Finally, our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uemura, Kazuhiro, E-mail: k_uemura@gifu-u.ac.j; Onishi, Fumiaki; Yamasaki, Yukari

    NO{sub 2} containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO{sub 2}) and 2,5-dinitroterephthalate (bdc-(NO{sub 2}){sub 2}), afford porous coordination polymers, {l_brace}[Zn{sub 2}(bdc-NO{sub 2}){sub 2}(dabco)].solvents{r_brace}{sub n} (2 contains solvents) and {l_brace}[Zn{sub 2}(bdc-(NO{sub 2}){sub 2}){sub 2}(dabco)].solvents{r_brace}{sub n} (3 contains solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn{sub 2} units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2 contains solvents and 3 contains solvents, a rectangle pore surrounded by eight Zn{sub 2} corners contains two and four NO{sub 2} moieties, respectively. Thermal gravimetry (TG) and X-ray powdermore » diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me{sub 2}CO. Adsorption measurements reveal that dried 2 and 3 adsorb H{sub 2}O molecules to be {l_brace}[Zn{sub 2}(bdc-NO{sub 2}){sub 2}(dabco)].4H{sub 2}O{r_brace}{sub n} (2 contains 4H{sub 2}O) and {l_brace}[Zn{sub 2}(bdc-(NO{sub 2}){sub 2}){sub 2}(dabco)].6H{sub 2}O{r_brace}{sub n} (3 contains 6H{sub 2}O), showing the pore hydrophilicity enhancement caused by NO{sub 2} group introduction. - Graphical abstract: Two hydrophilic porous coordination polymers, [Zn{sub 2}(bdc-NO{sub 2}){sub 2}(dabco)]{sub n} (2, bdc-NO{sub 2}=nitroterephthalate, dabco=1,4-diazabicyclo[2.2.2]octane) and [Zn{sub 2}(bdc-(NO{sub 2}){sub 2}){sub 2}(dabco)]{sub n} (3, bdc-(NO{sub 2}){sub 2}=2,5-dinitroterephthalate), have been synthesized and characterized by single X-ray analyses, thermal gravimetry, and adsorption measurements.« less

  8. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  9. Crystal structure of bis-[μ-(4-meth-oxy-phen-yl)methane-thiol-ato-κ(2) S:S]bis-[chlorido-(η(6)-1-isopropyl-4-methyl-benzene)-ruthenium(II)] chloro-form disolvate.

    PubMed

    Stíbal, David; Süss-Fink, Georg; Therrien, Bruno

    2015-10-01

    The mol-ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pr (i) )2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related Ru(II) atoms are bridged by two 4-meth-oxy-α-toluene-thiol-ato [(4-meth-oxy-phen-yl)methane-thiol-ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the Ru(II) atom. In the crystal, the CH moiety of the chloro-form mol-ecule inter-acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter-acts more weakly with the methyl group of the bridging 4-meth-oxy-α-toluene-thiol-ato unit. This assembly leads to the formation of supra-molecular chains extending parallel to [021].

  10. High-spin ribbons and antiferromagnetic ordering of a Mn(II)-biradical-Mn(II) complex.

    PubMed

    Fatila, Elisabeth M; Clérac, Rodolphe; Rouzières, Mathieu; Soldatov, Dmitriy V; Jennings, Michael; Preuss, Kathryn E

    2013-09-11

    A binuclear metal coordination complex of the first thiazyl-based biradical ligand 1 is reported (1 = 4,6-bis(1,2,3,5-dithiadiazolyl)pyrimidine; hfac =1,1,1,5,5,5,-hexafluoroacetylacetonato-). The Mn(hfac)2-biradical-Mn(hfac)2 complex 2 is a rare example of a discrete, molecular species employing a neutral bridging biradical ligand. It is soluble in common organic solvents and can be easily sublimed as a crystalline solid. Complex 2 has a spin ground state of S(T) = 4 resulting from antiferromagnetic coupling between the S(birad) = 1 biradical bridging ligand and two S(Mn) = 5/2 Mn(II) ions. Electrostatic contacts between atoms with large spin density promote a ferromagnetic arrangement of the moments of neighboring complexes in ribbon-like arrays. Weak antiferromagnetic coupling between these high-spin ribbons stabilizes an ordered antiferromagnetic ground state below 4.5 K. This is an unusual example of magnetic ordering in a molecular metal-radical complex, wherein the electrostatic contacts that direct the crystal packing are also responsible for providing an efficient exchange coupling pathway between molecules.

  11. Peptide chain dynamics in light and heavy water: zooming in on internal friction.

    PubMed

    Schulz, Julius C F; Schmidt, Lennart; Best, Robert B; Dzubiella, Joachim; Netz, Roland R

    2012-04-11

    Frictional effects due to the chain itself, rather than the solvent, may have a significant effect on protein dynamics. Experimentally, such "internal friction" has been investigated by studying folding or binding kinetics at varying solvent viscosity; however, the molecular origin of these effects is hard to pinpoint. We consider the kinetics of disordered glycine-serine and α-helix forming alanine peptides and a coarse-grained protein folding model in explicit-solvent molecular dynamics simulations. By varying the solvent mass over more than two orders of magnitude, we alter only the solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of hydrogen bonds upon folding. © 2012 American Chemical Society

  12. Two-step adsorption on jungle-gym-type porous coordination polymers: dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature.

    PubMed

    Uemura, Kazuhiro; Yamasaki, Yukari; Onishi, Fumiaki; Kita, Hidetoshi; Ebihara, Masahiro

    2010-11-01

    A preliminary study of isopropanol (IPA) adsorption/desorption isotherms on a jungle-gym-type porous coordination polymer, [Zn(2)(bdc)(2)(dabco)](n) (1, H(2)bdc = 1,4-benzenedicarboxylic acid, dabco =1,4-diazabicyclo[2.2.2]octane), showed unambiguous two-step profiles via a highly shrunk intermediate framework. The results of adsorption measurements on 1, using probing gas molecules of alcohol (MeOH and EtOH) for the size effect and Me(2)CO for the influence of hydrogen bonding, show that alcohol adsorption isotherms are gradual two-step profiles, whereas the Me(2)CO isotherm is a typical type-I isotherm, indicating that a two-step adsorption/desorption is involved with hydrogen bonds. To further clarify these characteristic adsorption/desorption behaviors, selecting nitroterephthalate (bdc-NO(2)), bromoterephthalate (bdc-Br), and 2,5-dichloroterephthalate (bdc-Cl(2)) as substituted dicarboxylate ligands, isomorphous jungle-gym-type porous coordination polymers, {[Zn(2)(bdc-NO(2))(2)(dabco)]·solvents}(n) (2 ⊃ solvents), {[Zn(2)(bdc-Br)(2)(dabco)]·solvents}(n) (3 ⊃ solvents), and {[Zn(2)(bdc-Cl(2))(2)(dabco)]·solvents}(n) (4 ⊃ solvents), were synthesized and characterized by single-crystal X-ray analyses. Thermal gravimetry, X-ray powder diffraction, and N(2) adsorption at 77 K measurements reveal that [Zn(2)(bdc-NO(2))(2)(dabco)](n) (2), [Zn(2)(bdc-Br)(2)(dabco)](n) (3), and [Zn(2)(bdc-Cl(2))(2)(dabco)](n) (4) maintain their frameworks without guest molecules with Brunauer-Emmett-Teller (BET) surface areas of 1568 (2), 1292 (3), and 1216 (4) m(2) g(-1). As found in results of MeOH, EtOH, IPA, and Me(2)CO adsorption/desorption on 2-4, only MeOH adsorption on 2 shows an obvious two-step profile. Considering the substituent effects and adsorbate sizes, the hydrogen bonds, which are triggers for two-step adsorption, are formed between adsorbates and carboxylate groups at the corners in the pores, inducing wide pores to become narrow pores. Interestingly, such a two-step MeOH adsorption on 2 depends on the temperature, attributed to the small free-energy difference (ΔF(host)) between the two guest-free forms, wide and narrow pores.

  13. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Banerjee; J Finkelstein; A Smirnov

    2011-12-31

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg{sub 4}(3,5-PDC){sub 4}(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-Dmore » network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing multiple desolvation routes, we were unable to measure BET surface areas greater than 51.9 m{sup 2}/g for compound 1.« less

  14. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Finkelstein, Jeffrey; Smirnov, A.

    2015-10-15

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg4(3,5-PDC)4(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network withmore » a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing multiple desolvation routes, we were unable to measure BET surface areas greater than 51.9 m{sup 2}/g for compound 1.« less

  15. Entry into and Release of Solvents by Escherichia coli in an Organic-Aqueous Two-Liquid-Phase System and Substrate Specificity of the AcrAB-TolC Solvent-Extruding Pump

    PubMed Central

    Tsukagoshi, Norihiko; Aono, Rikizo

    2000-01-01

    Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log POW of the solvent, where POW is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of ΔacrAB and/or ΔtolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log POW = 5.5). The ΔtolC mutant was more sensitive to nonane than the ΔacrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log POW higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The ΔtolC mutant accumulated n-nonane or decane (log POW = 6.0) more abundantly than the parent or the ΔacrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log POW in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane. PMID:10940021

  16. Improving Protocols for Protein Mapping through Proper Comparison to Crystallography Data

    PubMed Central

    Lexa, Katrina W.; Carlson, Heather A.

    2013-01-01

    Computational approaches to fragment-based drug design (FBDD) can complement experiments and facilitate the identification of potential hot spots along the protein surface. However, the evaluation of computational methods for mapping binding sites frequently focuses upon the ability to reproduce crystallographic coordinates to within a low RMSD threshold. This dependency on the deposited coordinate data overlooks the original electron density from the experiment, thus techniques may be developed based upon subjective - or even erroneous - atomic coordinates. This can become a significant drawback in applications to systems where the location of hot spots is unknown. Based on comparison to crystallographic density, we previously showed that mixed-solvent molecular dynamics (MixMD) accurately identifies the active site for HEWL, with acetonitrile as an organic solvent. Here, we concentrated on the influence of protic solvent on simulation and refined the optimal MixMD approach for extrapolation of the method to systems without established sites. Our results establish an accurate approach for comparing simulations to experiment. We have outlined the most efficient strategy for MixMD, based on simulation length and number of runs. The development outlined here makes MixMD a robust method which should prove useful across a broad range of target structures. Lastly, our results with MixMD match experimental data so well that consistency between simulations and density may be a useful way to aid the identification of probes vs waters during the refinement of future MSCS crystallographic structures. PMID:23327200

  17. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, H.D. Jr.

    1993-04-20

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  18. Modelling of ceramide interactions with porous graphite carbon in non-aqueous liquid chromatography.

    PubMed

    West, C; Cilpa, G; Gaudin, K; Chaminade, P; Lesellier, E

    2005-09-16

    Interactions of solutes on porous graphitic carbon (PGC) with non-aqueous mobile phases are studied by the linear solvation energy relationship (LSER). Studies have been carried out with eight binary mixtures composed of a weak solvent (acetonitrile or methanol) and a strong solvent (tetrahydrofuran, n-butanol, CH2Cl2, 1,1,2-trichloro-2,2,1-trifluoroethane). The systematic analysis of a set of test compounds was performed for each solvent mixture in isocratic mode (50:50). The results were compared to those obtained on PGC with hydro-organic liquids and supercritical fluids. They were then correlated with the observed retention behaviour of lipid compounds, more particularly ceramides.

  19. Ordering nanoparticles with polymer brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  20. The role of different structural motifs in the ultrafast dynamics of second generation protein stains.

    PubMed

    Chatterjee, Soumit; Karuso, Peter; Boulangé, Agathe; Peixoto, Philippe A; Franck, Xavier; Datta, Anindya

    2013-12-05

    Engineering the properties of fluorescent probes through modifications of the fluorophore structure has become a subject of interest in recent times. By doing this, the photophysical and photochemical properties of the modified fluorophore can be understood and this can guide the design and synthesis of better fluorophores for use in biotechnology. In this work, the electronic spectra and fluorescence decay kinetics of four analogues of the fluorescent natural product epicocconone were investigated. Epicocconone is unique in that the native state is weakly green fluorescent, whereas the enamine formed reversibly with proteins is highly emissive in the red. It was found that the ultrafast dynamics of the analogues depends profoundly on the H-bonding effect of solvents and solvent viscosity though solvent polarity also plays a role. Comparing the steady state and time-resolved data, the weak fluorescence of epicocconone in its native state is most likely due to the photoisomerization of the hydrocarbon side chain, while the keto enol moiety also has a role to play in determining the fluorescence quantum yield. This understanding is expected to aid the design of better protein stains from the same family.

  1. Ordering nanoparticles with polymer brushes

    DOE PAGES

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-08

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  2. Cyclic Solvent Vapor Annealing for Rapid, Robust Vertical Orientation of Features in BCP Thin Films

    NASA Astrophysics Data System (ADS)

    Paradiso, Sean; Delaney, Kris; Fredrickson, Glenn

    2015-03-01

    Methods for reliably controlling block copolymer self assembly have seen much attention over the past decade as new applications for nanostructured thin films emerge in the fields of nanopatterning and lithography. While solvent assisted annealing techniques are established as flexible and simple methods for achieving long range order, solvent annealing alone exhibits a very weak thermodynamic driving force for vertically orienting domains with respect to the free surface. To address the desire for oriented features, we have investigated a cyclic solvent vapor annealing (CSVA) approach that combines the mobility benefits of solvent annealing with selective stress experienced by structures oriented parallel to the free surface as the film is repeatedly swollen with solvent and dried. Using dynamical self-consistent field theory (DSCFT) calculations, we establish the conditions under which the method significantly outperforms both static and cyclic thermal annealing and implicate the orientation selection as a consequence of the swelling/deswelling process. Our results suggest that CSVA may prove to be a potent method for the rapid formation of highly ordered, vertically oriented features in block copolymer thin films.

  3. Acquired intolerance to organic solvents and results of vestibular testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyntelberg, F.; Vesterhauge, S.; Fog, P.

    1986-01-01

    Among 160 consecutive patients referred to the Clinic of Occupational Medicine, Rigshospitalet, for symptoms connected with exposure to organic solvents, 20 exhibited symptoms of acquired intolerance to minor amounts of organic solvents. Later, an additional 30 consecutive patients with symptoms of acquired intolerance were included, yielding a total of 43 men and 7 women. The characteristics of the clinical syndrome described are complaints of dizziness, nausea, and weakness after exposure to minimal solvent vapor concentrations. After having tolerated long-term occupational exposure to moderate or high air concentrations of various organic solvents, the patients became intolerant within a short period ofmore » time. Since dizziness was a frequent complaint, we tried to obtain a measure of the patients' complaints using vestibular tests. As a diagnostic test the combined vestibular tests had a sensitivity of 0.55 and a specificity of 0.87. No differences between patients with and without intolerance could be detected by the vestibular tests used. We conclude that acquired intolerance to organic solvents is a new but characteristic and easily recognizable syndrome, often with severe consequences for the patient's working ability.« less

  4. Parallel Tempering of Dark Matter from the Ebola Virus Proteome: Comparison of CHARMM36m and CHARMM22 Force Fields with Implicit Solvent and Coarse Grained Model

    DTIC Science & Technology

    2017-08-10

    simulation models the conformational plasticity along the helix-forming reaction coordinate was limited by free - energy barriers. By comparison the coarse...revealed. The latter becomes evident in comparing the energy Z-score landscapes , where CHARMM22 simulation shows a manifold of shuttling...solvent simulations of calculating the charging free energy of protein conformations.33 Deviation to the protocol by modification of Born radii

  5. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  6. The Role of Solvent Reorganization Dynamics in Electron-Transfer Processes. Theory-Experiment Comparisons for Electrochemical and Homogeneous Electron Exchange Involving Metallocene Redox Couples

    DTIC Science & Technology

    1985-08-01

    Kodak) by crystallization from acetone; it was recrystallized twice from ethanol and dried in a vacuum oven. Tetraethylamonium perchlorate (TEAP) (G...the electrooxidation of in(Cp’) 2 , which yielded significantly smaller reverse (cathodic) currents in the most strongly coordinating solvents (DMX...DM50) at slower scan rates (< 0.5 V sec-1). Nevertheless, satisfactory a.c. polarograms were obtained for each of these system=. 5 4 Temperature

  7. Programme coordinators' perceptions of strengths, weaknesses, opportunities and threats associated with school nutrition programmes.

    PubMed

    Valaitis, Renata F; Hanning, Rhona M; Herrmann, Isabela S

    2014-06-01

    As part of a larger evaluation of school nutrition programmes (SNP), the present study examined programme coordinators' perceptions of strengths, weaknesses, opportunities and threats (SWOT) regarding their SNP and public health professionals' support. Qualitative interviews were conducted with twenty-two of eighty-one programme coordinators who had completed a programme evaluation survey. Interviews followed a SWOT framework to evaluate programmes and assessed coordinators' perceptions regarding current and future partnerships with public health professionals. The study was conducted in a large, urban region within Ontario. The twenty-two coordinators who participated represented a cross-section of elementary, secondary, Public and Catholic schools. SNP varied enormously in foods/services offered, how they offered them and perceived needs. Major strengths included universality, the ability to reach needy students and the provision of social opportunities. Major weaknesses included challenges in forming funding partnerships, lack of volunteers, scheduling and timing issues, and coordinator workload. Common threats to effective SNP delivery included lack of sustainable funding, complexity in tracking programme use and food distribution, unreliable help from school staff, and conflicts with school administration. Opportunities for increased public health professionals' assistance included menu planning, nutrition education, expansion of programme food offerings, and help identifying community partners and sustainable funding. The present research identified opportunities for improving SNP and strategies for building on strengths. Since programmes were so diverse, tailored strategies are needed. Public health professionals can play a major role through supporting menu planning, food safety training, access to healthy foods, curriculum planning and by building community partnerships.

  8. Quantifying the Molecular Origins of Opposite Solvent Effects on Protein-Protein Interactions

    PubMed Central

    Vagenende, Vincent; Han, Alvin X.; Pek, Han B.; Loo, Bernard L. W.

    2013-01-01

    Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments. PMID:23696727

  9. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions.

    PubMed

    Vagenende, Vincent; Han, Alvin X; Pek, Han B; Loo, Bernard L W

    2013-01-01

    Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.

  10. Polder maps: Improving OMIT maps by excluding bulk solvent

    DOE PAGES

    Liebschner, Dorothee; Afonine, Pavel V.; Moriarty, Nigel W.; ...

    2017-02-01

    The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factorsmore » and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. As a result, the tools described in this manuscript have been implemented and are available in PHENIX.« less

  11. Behavior of anionic molybdenum(IV, VI) and tungsten(IV, VI) complexes containing bulky hydrophobic dithiolate ligands and intramolecular NH···S hydrogen bonds in nonpolar solvents.

    PubMed

    Hasenaka, Yuki; Okamura, Taka-aki; Tatsumi, Miki; Inazumi, Naoya; Onitsuka, Kiyotaka

    2014-11-07

    Molybdenum(IV, VI) and tungsten(IV, VI) complexes, (Et4N)2[M(IV)O{1,2-S2-3,6-(RCONH)2C6H2}2] and (Et4N)2[M(VI)O2{1,2-S2-3,6-(RCONH)2C6H2}2] (M = Mo, W; R = (4-(t)BuC6H4)3C), with bulky hydrophobic dithiolate ligands containing NH···S hydrogen bonds were synthesized. These complexes are soluble in nonpolar solvents like toluene, which allows the detection of unsymmetrical coordination structures and elusive intermolecular interactions in solution. The (1)H NMR spectra of the complexes in toluene-d8 revealed an unsymmetrical coordination structure, and proximity of the counterions to the anion moiety was suggested at low temperatures. The oxygen-atom-transfer reaction between the molybdenum(IV) complex and Me3NO in toluene was considerably accelerated in nonpolar solvents, and this increase was attributed to the favorable access of the substrate to the active center in the hydrophobic environment.

  12. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules.

    PubMed

    Oksanen, Esko; Chen, Julian C-H; Fisher, Suzanne Zoë

    2017-04-07

    Abstract : The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  13. Neutron crystallography for the study of hydrogen bonds in macromolecules

    DOE PAGES

    Oksanen, Esko; Chen, Julian C.; Fisher, Zoe

    2017-04-07

    The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, themore » protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. Finally, this article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.« less

  14. Neutron crystallography for the study of hydrogen bonds in macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oksanen, Esko; Chen, Julian C.; Fisher, Zoe

    The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, themore » protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. Finally, this article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.« less

  15. Tuning structure and mobility of solvation shells surrounding tracer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmer, James; Jain, Avni; Bollinger, Jonathan A.

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less

  16. Tuning structure and mobility of solvation shells surrounding tracer additives.

    PubMed

    Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.

  17. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.

    PubMed

    Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X

    2014-04-01

    The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.

  18. Probing the coordination environment of Ti(3+) ions coordinated to nitrogen-containing Lewis bases.

    PubMed

    Morra, E; Maurelli, S; Chiesa, M; Van Doorslaer, S

    2015-08-28

    Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate the coordination of nitrogen-containing ligands to Ti(3+)-chloro complexes. Frozen solutions of TiCl3 and TiCl3(Py)3 dissolved in nitrogen-containing solvents have been investigated together with the TiCl3(Py)3 solid-state complex. For these different systems, the hyperfine and nuclear quadrupole data of Ti(3+)-bound (14)N nuclei are reported and discussed in the light of DFT computations, allowing for a detailed description of the microscopic structure of these systems.

  19. The influence of self-assembling supramolecular structures on the passive membrane transport of ion-paired molecules.

    PubMed

    Benaouda, F; Brown, M B; Shah, B; Martin, G P; Jones, S A

    2012-12-15

    Weak ion-ion interactions, such as those associated with ion-pair formation, are difficult to isolate and characterise in the liquid state, but they have the potential to alter significantly the physicochemical behaviour of molecules in solution. The aim of this work was to gain a better understanding of how ion-ion interactions influenced passive membrane transport. The test system was composed of propylene (PG) glycol, water and diclofenac diethylamine (DDEA). Infrared spectroscopy was employed to determine the nature of the DDEA ion-pair interactions and the drug-vehicle association. Passive transport was assessed using homogeneous synthetic membranes. Solution-state analysis demonstrated that the ion-pair was unperturbed by vehicle composition changes, but the solvent-DDEA interactions were modified. DDEA-PG/water hydrogen bonding influenced the ion-pair solubility (X(dev)) and the solvent interactions slowed transport rate in PG-rich vehicles (0.84±0.05 μg cm(-2) h(-1), at ln(X(dev))=0.57). In water-rich co-solvents, the presence of strong water structuring facilitated a significant increase (p<0.05) in transmembrane penetration rate (e.g. 4.33±0.92 μg cm(-2) h(-1), at ln(X(dev))=-0.13). The data demonstrates that weak ion-ion interactions can result in the embedding of polar entities within a stable solvent complex and spontaneous supramolecular assembly should be considered when interpreting transmembrane transport processes of ionic molecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance.

    PubMed

    Shao, Yuyan; Liu, Tianbiao; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark; Xiao, Jie; Lv, Dongping; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a study in understanding coordination chemistry of Mg(BH₄)₂ in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new electrolyte is developed based on Mg(BH₄)₂, diglyme and LiBH₄. The preliminary electrochemical test results show that the new electrolyte demonstrates a close to 100% coulombic efficiency, no dendrite formation, and stable cycling performance for Mg plating/stripping and Mg insertion/de-insertion in a model cathode material Mo₆S₈ Chevrel phase.

  1. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    DOE PAGES

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; ...

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH 4) 2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimizedmore » LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less

  2. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    NASA Astrophysics Data System (ADS)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  3. Determination of void volume in normal phase liquid chromatography.

    PubMed

    Jiang, Ping; Wu, Di; Lucy, Charles A

    2014-01-10

    Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Correlation of the rates of solvolysis of neopentyl chloroformate-a recommended protecting agent.

    PubMed

    D'Souza, Malcolm J; Carter, Shannon E; Kevill, Dennis N

    2011-02-15

    The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents.

  5. Dual Ionic and Organic Nature of Ionic Liquids

    PubMed Central

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  6. Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution

    NASA Astrophysics Data System (ADS)

    Zuehlsdorff, T. J.; Isborn, C. M.

    2018-01-01

    The correct treatment of vibronic effects is vital for the modeling of absorption spectra of many solvated dyes. Vibronic spectra for small dyes in solution can be easily computed within the Franck-Condon approximation using an implicit solvent model. However, implicit solvent models neglect specific solute-solvent interactions on the electronic excited state. On the other hand, a straightforward way to account for solute-solvent interactions and temperature-dependent broadening is by computing vertical excitation energies obtained from an ensemble of solute-solvent conformations. Ensemble approaches usually do not account for vibronic transitions and thus often produce spectral shapes in poor agreement with experiment. We address these shortcomings by combining zero-temperature vibronic fine structure with vertical excitations computed for a room-temperature ensemble of solute-solvent configurations. In this combined approach, all temperature-dependent broadening is treated classically through the sampling of configurations and quantum mechanical vibronic contributions are included as a zero-temperature correction to each vertical transition. In our calculation of the vertical excitations, significant regions of the solvent environment are treated fully quantum mechanically to account for solute-solvent polarization and charge-transfer. For the Franck-Condon calculations, a small amount of frozen explicit solvent is considered in order to capture solvent effects on the vibronic shape function. We test the proposed method by comparing calculated and experimental absorption spectra of Nile red and the green fluorescent protein chromophore in polar and non-polar solvents. For systems with strong solute-solvent interactions, the combined approach yields significant improvements over the ensemble approach. For systems with weak to moderate solute-solvent interactions, both the high-energy vibronic tail and the width of the spectra are in excellent agreement with experiments.

  7. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  8. Solvent screening for a hard-to-dissolve molecular crystal.

    PubMed

    Maiti, A; Pagoria, P F; Gash, A E; Han, T Y; Orme, C A; Gee, R H; Fried, L E

    2008-09-01

    Materials with a high-degree of inter- and intra-molecular hydrogen bonding generally have limited solubility in conventional organic solvents. This presents a problem for the dissolution, manipulation and purification of these materials. Using a state-of-the-art density-functional-theory based quantum chemical solvation model we systematically evaluated solvents for a known hydrogen-bonded molecular crystal. This, coupled with direct solubility measurements, uncovered a class of ionic liquids involving fluoride anions that possess more than two orders of magnitude higher solvation power as compared with the best conventional solvents. The crystal structure of one such ionic liquid, determined by X-ray diffraction spectroscopy, indicates that F- ions are stabilized through H-bonded chains with water. The presence of coordinating water in such ionic liquids seems to facilitate the dissolution process by keeping the chemical activity of the F- ions in check.

  9. Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2014-10-01

    The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.

  10. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    DOEpatents

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  11. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  12. Structure and dynamics of phosphate ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Pribil, Andreas B; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2008-11-15

    A simulation of phosphate in aqueous solution was carried out employing the new QMCF MD approach which offers the possibility to investigate composite systems with the accuracy of a QMMM method but without the time consuming creation of solute-solvent potential functions. The data of the simulations give a clear picture of the hydration shells of the phosphate anion. The first shell consists of 13 water molecules and each oxygen of the phosphate forms in average three hydrogens bonds to different solvent molecules. Several structural parameters such as radial distribution functions and coordination number distributions allow to fully characterize the embedding of the highly charged phosphate ion in the solvent water. The dynamics of the hydration structure of phosphate are described by mean residence times of the solvent molecules in the first hydration shell and the water exchange rate. 2008 Wiley Periodicals, Inc.

  13. Systematic Perturbations of Binuclear Non-heme Iron Sites: Structure and Dioxygen Reactivity of de Novo Due Ferri Proteins

    DOE PAGES

    Snyder, Rae Ana; Betzu, Justine; Butch, Susan E.; ...

    2015-07-08

    We report that DFsc (single-chain due ferri) proteins allow for modeling binuclear non-heme iron enzymes with a similar fold. Three 4A → 4G variants of DFsc were studied to investigate the effects of (1) increasing the size of the substrate/solvent access channel (G4DFsc), (2) including an additional His residue in the first coordination sphere along with three additional helix-stabilizing mutations [3His-G4DFsc(Mut3)], and (3) the three helix-stabilizing mutations alone [G4DFsc-(Mut3)] on the biferrous structures and their O 2 reactivities. Near-infrared circular dichroism and magnetic circular dichroism (MCD) spectroscopy show that the 4A → 4G mutations increase coordination of the diiron sitemore » from 4-coordinate/5-coordinate to 5-coordinate/5-coordinate, likely reflecting increased solvent accessibility. While the three helix-stabilizing mutations [G4DFsc(Mut3)] do not affect the coordination number, addition of the third active site His residue [3His-G4DFsc(Mut3)] results in a 5-coordinate/6-coordinate site. Although all 4A → 4G variants have significantly slower pseudo-first-order rates when reacting with excess O 2 than DFsc (~2 s ₋1), G4DFsc and 3His-G4DFsc(Mut3) have rates (~0.02 and ~0.04 s ₋1) faster than that of G4DFsc(Mut3) (~0.002 s ₋1). These trends in the rate of O 2 reactivity correlate with exchange coupling between the Fe(II) sites and suggest that the two-electron reduction of O 2 occurs through end-on binding at one Fe(II) rather than through a peroxy-bridged intermediate. Finally, UV–vis absorption and MCD spectroscopies indicate that an Fe(III)Fe(III)-OH species first forms in all three variants but converts into an Fe(III)-μ-OH-Fe(III) species only in the 2-His forms, a process inhibited by the additional active site His ligand that coordinatively saturates one of the iron centers in 3His-G4DFsc(Mut3).« less

  14. Systematic Perturbations of Binuclear Non-heme Iron Sites: Structure and Dioxygen Reactivity of de Novo Due Ferri Proteins.

    PubMed

    Snyder, Rae Ana; Betzu, Justine; Butch, Susan E; Reig, Amanda J; DeGrado, William F; Solomon, Edward I

    2015-08-04

    DFsc (single-chain due ferri) proteins allow for modeling binuclear non-heme iron enzymes with a similar fold. Three 4A → 4G variants of DFsc were studied to investigate the effects of (1) increasing the size of the substrate/solvent access channel (G4DFsc), (2) including an additional His residue in the first coordination sphere along with three additional helix-stabilizing mutations [3His-G4DFsc(Mut3)], and (3) the three helix-stabilizing mutations alone [G4DFsc(Mut3)] on the biferrous structures and their O2 reactivities. Near-infrared circular dichroism and magnetic circular dichroism (MCD) spectroscopy show that the 4A → 4G mutations increase coordination of the diiron site from 4-coordinate/5-coordinate to 5-coordinate/5-coordinate, likely reflecting increased solvent accessibility. While the three helix-stabilizing mutations [G4DFsc(Mut3)] do not affect the coordination number, addition of the third active site His residue [3His-G4DFsc(Mut3)] results in a 5-coordinate/6-coordinate site. Although all 4A→ 4G variants have significantly slower pseudo-first-order rates when reacting with excess O2 than DFsc (∼2 s(-1)), G4DFsc and 3His-G4DFsc(Mut3) have rates (∼0.02 and ∼0.04 s(-1)) faster than that of G4DFsc(Mut3) (∼0.002 s(-1)). These trends in the rate of O2 reactivity correlate with exchange coupling between the Fe(II) sites and suggest that the two-electron reduction of O2 occurs through end-on binding at one Fe(II) rather than through a peroxy-bridged intermediate. UV-vis absorption and MCD spectroscopies indicate that an Fe(III)Fe(III)-OH species first forms in all three variants but converts into an Fe(III)-μ-OH-Fe(III) species only in the 2-His forms, a process inhibited by the additional active site His ligand that coordinatively saturates one of the iron centers in 3His-G4DFsc(Mut3).

  15. n→π* Non-Covalent Interaction is Weak but Strong in Action

    NASA Astrophysics Data System (ADS)

    Singh, Santosh Kumar; Das, Aloke

    2017-06-01

    n→π* interaction is a newly discovered non-covalent interaction which involves delocalization of lone pair (n) electrons of an electronegative atom into π* orbital of a carbonyl group or an aromatic ring. It is widely observed in materials, biomolecules (protein, DNA, RNA), amino acids, neurotransmitter and drugs. However, due to its weak strength and counterintuitive nature its existence is debatable. Such weak interactions are often masked by solvent effects in condense phase or physiological conditions thereby, making it difficult to prove the presence of such weak interactions. Therefore, we have used isolated gas phase spectroscopy in combination with quantum chemical calculations to study n→π* interaction in several molecules where, our molecular systems are free from solvent effects or any external forces. Herein I will be discussing two of the molecular systems (phenyl formate and salicin) where, we have observed the significance of n→π* interaction in determining the conformational specificity of the molecules. We have proved the existence of n→π* interaction for the first time through IR spectroscopy by probing the carbonyl stretching frequency of phenyl formate. Our study is further pursued on a drug named salicin where, we have observed that its conformational preferences is ruled by n→π* interaction even though a strong hydrogen bonding interaction is present in the molecule. Our results show that n→π* interaction, in spite of its weak strength, should not be overlooked as it existence can play an important role in governing the structures of molecules like other strong non-covalent interactions do.

  16. Crystal growth, differential gas adsorption, high thermal stability, and reversible coordination of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halake, Shobha; Ok, Kang Min, E-mail: kmok@cau.ac.kr

    2015-11-15

    Single crystals of two barium-organic framework materials, Ba(SBA)(DMF){sub 4} (CAUMOF-15) and Ba{sub 2}(BTEC)(H{sub 2}O) (CAUMOF-16), have been grown through solvothermal reactions (H{sub 2}SBA=4,4′-sulfonyldibenzoic acid and H{sub 4}BTEC=1,2,4,5-benzenetetracarboxylic acid). The crystal structures of the reported frameworks have been determined by single-crystal X-ray diffraction. The materials have been fully characterized by powder X-ray diffraction (PXRD), elemental analyses, Infrared (IR) spectroscopy, and thermogravimetric analyses (TGA). CAUMOF-15 reveals a three-dimensional open-framework that comprises of an inorganic motif with one-dimensional chains and the SBA linkers. CAUMOF-16 shows another three-dimensional backbone consisting of layers of edge-shared BaO{sub 9} and BaO{sub 10} polyhedra, and BTEC pillars. Bothmore » of the 3D frameworks exhibit relatively high thermal stabilities. The PXRD and IR spectral data confirm that CAUMOF-15 and CAUMOF-16 reveal reversible coordinations of the respective solvent molecules, DMF and H{sub 2}O. Gas adsorption properties towards nitrogen, hydrogen, and carbon dioxide have been also investigated. - Graphical abstract: Crystals of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O), exhibiting a differential gas adsorption, a high thermal stability, and a reversible coordination of solvent molecules have been grown. - Highlights: • Crystals of two new 3D Ba-MOFs are grown. • The two Ba-MOFs reveal very high thermal stabilities up to ca. 400 °C. • Ba(SBA)(DMF){sub 4} exhibits differential gas adsorption properties. • The two Ba-MOFs show reversible coordination of the solvent molecules.« less

  17. Solvents and Parkinson disease: A systematic review of toxicological and epidemiological evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, Edward A., E-mail: e.lock@ljmu.ac.uk; Zhang, Jing; Checkoway, Harvey

    2013-02-01

    Parkinson disease (PD) is a debilitating neurodegenerative motor disorder, with its motor symptoms largely attributable to loss of dopaminergic neurons in the substantia nigra. The causes of PD remain poorly understood, although environmental toxicants may play etiologic roles. Solvents are widespread neurotoxicants present in the workplace and ambient environment. Case reports of parkinsonism, including PD, have been associated with exposures to various solvents, most notably trichloroethylene (TCE). Animal toxicology studies have been conducted on various organic solvents, with some, including TCE, demonstrating potential for inducing nigral system damage. However, a confirmed animal model of solvent-induced PD has not been developed.more » Numerous epidemiologic studies have investigated potential links between solvents and PD, yielding mostly null or weak associations. An exception is a recent study of twins indicating possible etiologic relations with TCE and other chlorinated solvents, although findings were based on small numbers, and dose–response gradients were not observed. At present, there is no consistent evidence from either the toxicological or epidemiologic perspective that any specific solvent or class of solvents is a cause of PD. Future toxicological research that addresses mechanisms of nigral damage from TCE and its metabolites, with exposure routes and doses relevant to human exposures, is recommended. Improvements in epidemiologic research, especially with regard to quantitative characterization of long-term exposures to specific solvents, are needed to advance scientific knowledge on this topic. -- Highlights: ► The potential for organic solvents to cause Parkinson's disease has been reviewed. ► Twins study suggests etiologic relations with chlorinated solvents and Parkinson's. ► Animal studies with TCE showed potential to cause damage to dopaminergic neurons. ► Need to determine if effects in animals are relevant to human exposure levels.« less

  18. Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy.

    PubMed Central

    Butler, Clive S; Fairhurst, Shirley A; Ferguson, Stuart J; Thomson, Andrew J; Berks, Ben C; Richardson, David J; Lowe, David J

    2002-01-01

    The first electron nuclear double resonance (ENDOR) study of a member of the Mo-bis-molybdopterin guanine dinucleotide family of molybdoenzymes is presented, using the periplasmic nitrate reductase from Paracoccus pantotrophus. Rapid freeze-quenched time-resolved EPR revealed that during turnover the intensity of a Mo(V) EPR signal known as High-g [resting] increases. This signal is split by two interacting protons that are not solvent-exchangeable. X-band proton-ENDOR analysis resolved broad symmetrical resonance features that arose from four classes of protons weakly coupled to the Mo(V). Signals from two of these were lost upon exchange into deuterated buffer, suggesting that they may originate from OH(-) or H(2)O groups. One of these signals was also lost when the enzyme was redox-cycled in the presence of azide. Since these protons are very weakly coupled OH/H(2)O groups, they are not likely to be ligated directly to the Mo(V). This suggests that protonation of a Mo(VI)zO group does not occur on reduction to Mo(V), but most probably accompanies reduction of Mo(V) to Mo(IV). A resonance feature from a more strongly coupled proton, that was not lost following exchange into deuterated buffer, could also be resolved at 22-24 MHz. The anisotropy of this feature, determined from ENDOR spectra collected at a range of field positions, indicated a Mo-proton distance of approx. 3.2 A, consistent with this being one of the beta-methylene protons of a Mo-Cys ligand. PMID:11964184

  19. Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate

    PubMed Central

    Omedes-Pujol, Marta

    2010-01-01

    Summary Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from 51V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane. PMID:21085513

  20. Periodic Early Childhood Hearing Screening: The EHDI Perspective

    ERIC Educational Resources Information Center

    Hoffman, Jeff; Houston, K. Todd; Munoz, Karen F.; Bradham, Tamala S.

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within state EHDI programs. Concerning periodic early childhood hearing screening, 47 coordinators listed 241 items and themes were identified within each SWOT…

  1. The EHDI and Early Intervention Connection

    ERIC Educational Resources Information Center

    Nelson, Lauri; Bradham, Tamala S.; Houston, K. Todd

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within state EHDI programs. For the early intervention focus question, 48 coordinators listed 273 items, and themes were identified within each SWOT category. A…

  2. Interdisciplinary Collaboration in EHDI Programs

    ERIC Educational Resources Information Center

    Nelson, Lauri; Houston, K. Todd; Hoffman, Jeff; Bradham, Tamala S.

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs were asked to complete a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that consisted of 12 evaluative areas of EHDI programs. For the interdisciplinary area, 47 coordinators responded with 224 items, and themes were identified within each SWOT…

  3. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    NASA Astrophysics Data System (ADS)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model supramolecular system involving four redox centers.

  4. Molybdenum-oxide based unique polyprotic nanoacids showing different deprotonations and related assembly processes in solution.

    PubMed

    Kistler, Melissa L; Liu, Tianbo; Gouzerh, Pierre; Todea, Ana Maria; Müller, Achim

    2009-07-14

    We report the self-assembly processes in solution of three Keplerate-type molybdenum-oxide based clusters {Mo72V30}, {Mo72Cr30} and {Mo72Fe30} (all with diameters of approximately 2.5 nm). These clusters behave as unique weak polyprotic acids owing to the external water ligands attached to the non-Mo metal centers. Whereas the Cr and Fe clusters have 30 water ligands attached at the 30 M3+ centers pointing outside, {Mo72V30} has 20 water ligands coordinated to vanadium atoms, of which only 10 are pointing outside. The self-assembly processes of the Keplerates leading to supramolecular blackberry-type structures are influenced by the effective charge densities on the cluster surfaces, which can be tuned by the pH values and solvent properties. As expected, {Mo72Cr30} and {Mo72Fe30} behave similarly in aqueous solution due to their analogous structures and in both cases the self-assembly follows the partial deprotonation of the external water ligands attached to the non-Mo metal centers. However, the M-OH2 functionalities differ not only in acidity but also lability, i.e. in different residence times of the H2O ligands. In contrast to {Mo72Cr30} and {Mo72Fe30}, the {Mo72V30} clusters carry a rather large number of negative charges so that their solution properties are different. They exist as discrete macroions in dilute aqueous solution, and form only in mixed water/organic solvent (like acetone) blackberry-type structures whose size increases with acetone content. The comparison of the properties of the clusters allows more general information about the interesting self-assembly phenomenon to be unveiled.

  5. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE PAGES

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; ...

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li +(FEC) 3] n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  6. TD-M06-2X insights into the absorption and emission spectra of dichlorvos and its molecularly imprinted recognition by methacrylic acid.

    PubMed

    Cheng, Xueli

    2016-11-01

    The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO → LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO → LUMO + 1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl - and a cation in its S 1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak. Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.

  7. Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.

    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium.more » The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.« less

  8. Coordination-Directed Stacking and Aggregation-Induced Emission Enhancement of the Zn(II) Schiff Base Complex.

    PubMed

    Wang, Dan; Li, Shu-Mu; Zheng, Jian-Quan; Kong, Duan-Yang; Zheng, Xiang-Jun; Fang, De-Cai; Jin, Lin-Pei

    2017-01-17

    2-(Trityliminomethyl)-quinolin-8-ol (HL) and its Zn(II) complex were synthesized and characterized by single-crystal X-ray diffraction. HL is an unsymmetrical molecule and coordinated with Zn(II) ion to form ZnL 2 in the antiparallel-mode arrangement via Zn-O (hydroxyl group) and Zn-N (quinoline ring) of HL. A high degree of ZnL 2 molecules ordering stacking is formed by the coordination bonds and intermolecular π-π interactions, in which head-to-tail arrangement (J-mode stacking) for L - is found. HL is nonfluorescent and ZnL 2 is weakly fluorescent in THF. The fluorescence emission of ZnL 2 enhances in THF/H 2 O as H 2 O% (volume %) is above 60% and aggregates particles with several hundred nanometers are formed, which is confirmed by DLS data and TEM images. The J-aggregates stacking for L - in ZnL 2 results in aggregation-induced emission enhancement (AIEE) for ZnL 2 in THF/H 2 O. Theoretical computations based on B3LYP/6-31G(d, p) and TD-B3LYP/6-31G(d, p) methods were carried out. ESIPT is the supposed mechanism for fluorescent silence of HL, and fluorescence emission of ZnL 2 is attributed to the restriction of ESIPT process. The oscillator strength of ZnL 2 increases from 0.017 for monomer to 0.032 for trimer. It indicates that a high degree of ZnL 2 molecules ordering stacking in THF/H 2 O is of benefit to fluorescence enhancement. HL is an ESIPT-coupled AIEE chemosensor for Zn(II) with high selectivity and sensitivity in aqueous medium. HL can efficiently detect intracellular Zn(II) ions because of ESIPT-coupled AIEE property of ZnL 2 in mixed solvent.

  9. Loss to Follow-Up: Issues and Recommendations

    ERIC Educational Resources Information Center

    Hoffman, Jeff; Munoz, Karen F.; Bradham, Tamala S.; Nelson, Lauri

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within state EHDI programs. Related to how EHDI programs address loss to follow-up, 47 coordinators responded with 277 items, and themes were identified in each…

  10. Strategic Analysis of Family Support in EHDI Systems

    ERIC Educational Resources Information Center

    Bradham, Tamala S.; Houston, K. Todd; Guignard, Gayla Hutsell; Hoffman, Jeff

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within state EHDI programs. For the family support area, 47 EHDI coordinators listed 255 items, and themes were identified within each category. A threats,…

  11. Is the Infrastructure of EHDI Programs Working?

    ERIC Educational Resources Information Center

    Houston, K. Todd; Hoffman, Jeff; Munoz, Karen F.; Bradham, Tamala S.

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that consisted of 12 evaluative areas of EHDI programs. For the EHDI program infrastructure area, 47 coordinators responded with a total of 292 items, and themes were identified in each…

  12. A Systematic Analysis of Audiological Services in EHDI

    ERIC Educational Resources Information Center

    Munoz, Karen F.; Bradham, Tamala S.; Nelson, Lauri

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within state EHDI programs. For audiological evaluation and services, 299 items were listed by 49 coordinators, and themes were identified within each SWOT category.…

  13. Integrating the Medical Home into the EHDI Process

    ERIC Educational Resources Information Center

    Munoz, Karen F.; Nelson, Lauri; Bradham, Tamala S.; Hoffman, Jeff; Houston, K. Todd

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within state EHDI programs. Related to how the medical home is integrated into the EHDI process, 273 items were listed by 48 coordinators, and themes were identified…

  14. High Performance Computing and Communications Panel Report.

    ERIC Educational Resources Information Center

    President's Council of Advisors on Science and Technology, Washington, DC.

    This report offers advice on the strengths and weaknesses of the High Performance Computing and Communications (HPCC) initiative, one of five presidential initiatives launched in 1992 and coordinated by the Federal Coordinating Council for Science, Engineering, and Technology. The HPCC program has the following objectives: (1) to extend U.S.…

  15. Newborn Hearing Screening: An Analysis of Current Practices

    ERIC Educational Resources Information Center

    Houston, K. Todd; Bradham, Tamala S.; Munoz, Karen F.; Guignard, Gayla Hutsell

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that consisted of 12 evaluative areas of EHDI programs. For the newborn hearing screening area, a total of 293 items were listed by 49 EHDI coordinators, and themes were identified within…

  16. Fostering Quality Improvement in EHDI Programs

    ERIC Educational Resources Information Center

    Bradham, Tamala S.; Hoffman, Jeff; Houston, K. Todd; Guignard, Gayla Hutsell

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that consisted of 12 evaluative areas of EHDI programs. For the quality improvement area, a total of 218 items were listed by 47 EHDI coordinators, and themes were identified in each…

  17. Data Management in the EHDI System

    ERIC Educational Resources Information Center

    Bradham, Tamala S.; Hoffman, Jeff; Houston, K. Todd

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within EHDI programs. Forty-seven coordinators listed 242 items in the area of data management, and themes were identified in each category. A threats, opportunities,…

  18. Effects of Shapes of Solute Molecules on Diffusion: A Study of Dependences on Solute Size, Solvent, and Temperature.

    PubMed

    Chan, T C; Li, H T; Li, K Y

    2015-12-24

    Diffusivities of basically linear, planar, and spherical solutes at infinite dilution in various solvents are studied to unravel the effects of solute shapes on diffusion. On the basis of the relationship between the reciprocal of diffusivity and the molecular volume of solute molecules with similar shape in a given solvent at constant temperature, the diffusivities of solutes of equal molecular volume but different shapes are evaluated and the effects due to different shapes of two equal-sized solute molecules on diffusion are determined. It is found that the effects are dependent on the size of the solute pairs studied. Evidence of the dependence of the solute-shape effects on solvent properties is also demonstrated and discussed. Here, some new diffusion data of aromatic compounds in methanol at different temperatures are reported. The result for methanol in this study indicates that the effects of solute shape on diffusivity are only weakly dependent on temperature.

  19. Correlation of the Rates of Solvolysis of Neopentyl Chloroformate—A Recommended Protecting Agent

    PubMed Central

    D’Souza, Malcolm J.; Carter, Shannon E.; Kevill, Dennis N.

    2011-01-01

    The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents. PMID:21541050

  20. Silver-free activation of ligated gold(I) chlorides: the use of [Me3NB12Cl11]- as a weakly coordinating anion in homogeneous gold catalysis.

    PubMed

    Wegener, Michael; Huber, Florian; Bolli, Christoph; Jenne, Carsten; Kirsch, Stefan F

    2015-01-12

    Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3NB12Cl11] (1) under silver-free conditions. This activation method with a weakly coordinating closo-dodecaborate anion was shown to be suitable for a large variety of reactions known to be catalyzed by homogeneous gold species, ranging from carbocyclizations to heterocyclizations. Additionally, the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  2. Photoinduced Cobalt(III)-Trifluoromethyl Bond Activation Enables Arene C-H Trifluoromethylation.

    PubMed

    Harris, Caleb F; Kuehner, Christopher S; Bacsa, John; Soper, Jake D

    2018-01-26

    Visible-light capture activates a thermodynamically inert Co III -CF 3 bond for direct C-H trifluoromethylation of arenes and heteroarenes. New trifluoromethylcobalt(III) complexes supported by a redox-active [OCO] pincer ligand were prepared. Coordinating solvents, such as MeCN, afford green, quasi-octahedral [( S OCO)Co III (CF 3 )(MeCN) 2 ] (2), but in non-coordinating solvents the complex is red, square pyramidal [( S OCO)Co III (CF 3 )(MeCN)] (3). Both are thermally stable, and 2 is stable in light. But exposure of 3 to low-energy light results in facile homolysis of the Co III -CF 3 bond, releasing . CF 3 radical, which is efficiently trapped by TEMPO . or (hetero)arenes. The homolytic aromatic substitution reactions do not require a sacrificial or substrate-derived oxidant because the Co II by-product of Co III -CF 3 homolysis produces H 2 . The photophysical properties of 2 and 3 provide a rationale for the disparate light stability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sampling the multiple folding mechanisms of Trp-cage in explicit solvent

    PubMed Central

    Juraszek, J.; Bolhuis, P. G.

    2006-01-01

    We investigate the kinetic pathways of folding and unfolding of the designed miniprotein Trp- cage in explicit solvent. Straightforward molecular dynamics and replica exchange methods both have severe convergence problems, whereas transition path sampling allows us to sample unbiased dynamical pathways between folded and unfolded states and leads to deeper understanding of the mechanisms of (un)folding. In contrast to previous predictions employing an implicit solvent, we find that Trp-cage folds primarily (80% of the paths) via a pathway forming the tertiary contacts and the salt bridge, before helix formation. The remaining 20% of the paths occur in the opposite order, by first forming the helix. The transition states of the rate-limiting steps are solvated native-like structures. Water expulsion is found to be the last step upon folding for each route. Committor analysis suggests that the dynamics of the solvent is not part of the reaction coordinate. Nevertheless, during the transition, specific water molecules are strongly bound and can play a structural role in the folding. PMID:17035504

  4. Molecular and electronic structures of mononuclear iron complexes using strongly electron-donating ligands and their oxidized forms.

    PubMed

    Strautmann, Julia B H; George, Serena DeBeer; Bothe, Eberhard; Bill, Eckhard; Weyhermüller, Thomas; Stammler, Anja; Bögge, Hartmut; Glaser, Thorsten

    2008-08-04

    The ligand L (2-) (H 2L = N, N'-dimethyl- N, N'-bis(3,5-di- t-butyl-2-hydroxybenzyl)-1,2-diaminoethane) has been employed for the synthesis of two mononuclear Fe (III) complexes, namely, [LFe(eta (2)-NO 3)] and [LFeCl]. L (2-) is comprised of four strongly electron-donating groups (two tert-amines and two phenolates) that increase the electron density at the coordinated ferric ions. This property should facilitate oxidation of the complexes, that is, stabilization of the oxidized species. The molecular structures in the solid state have been established by X-ray diffraction studies. [LFeCl] is five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation, while [LFe(eta (2)-NO 3)] is six-coordinate in a distorted octahedral environment with the ligand in a beta-cis conformation. The electronic structures have been studied using magnetization, EPR, Mossbauer (with and without applied field), UV-vis-NIR, and X-ray absorption spectroscopies, which demonstrate highly anisotropic covalency from the strong sigma- and pi-donating phenolates. This analysis is supported by DFT calculations on [LFeCl]. The variations of the well-understood spectroscopic data in the solid state to the spectroscopic data in solution have been used to obtain insight in the molecular structure of the two complexes in solution. While the molecular structures of the solid states are retained in solutions of nonpolar aprotic solvents, there is, however, one common molecular structure in all protic polar solvents. The analysis of the LMCT transitions and the rhombicity E/ D clearly establish that both compounds exhibit a beta-cis conformation in these protic polar solvents. These two open coordination sites, cis to each other, allow access for two potential ligands in close proximity. Electrochemical analysis establishes two reversible oxidation waves for [LFeCl] at +0.55 V and +0.93 V vs Fc (+)/Fc and one reversible oxidation wave at +0.59 V with an irreversible oxidation at +1.07 V vs Fc (+)/Fc for [LFe(eta (2)-NO 3)]. The one- and the two-electron oxidations of [LFeCl] by chronoamperometry have been followed spectroscopically. The increase of a strong band centered at 420 nm indicates the formulation of [LFeCl] (+) as a Fe (III) monophenoxyl radical complex and of [LFeCl] (2+) as a Fe (III) bisphenoxyl radical complex. These studies imply that the ligand L (2-) is capable of providing a flexible coordination geometry with two binding sites for substrates and the allocation of two oxidation equivalents on the ligand.

  5. Molecular dynamics simulations of glycosyltransferase LgtC.

    PubMed

    Snajdrová, Lenka; Kulhánek, Petr; Imberty, Anne; Koca, Jaroslav

    2004-04-02

    Molecular dynamics simulations have been performed on fully solvated alpha-(1-->4)-galactosyltransferase LgtC from Neisseria meningitidis with and without the donor substrate UDP-Gal and in the presence of the manganese ion. The analysis of the trajectories revealed a limited movement in the loop X (residues 75-80) and a larger conformational change in the loop Y (residues 246-251) in the simulation, when UDP-Gal was not present. In this case, the loops X and Y open by almost 10A, exposing the active site to the solvent. The 'hinge region' responsible for the opening is composed of residues 246-247. We have also analyzed the behavior of the manganese ion in the simulations. The coordination number is 6 when UDP-Gal is present and it increases to 7 when it is absent. In the latter case, three water molecules become coordinated to the ion. In both cases, the coordination is very stable implying that the manganese ion is tightly bound in the active site of the enzyme even if UDP-Gal is not present. Further analysis of the structural water molecules location confirmed that the mobility of water molecules in the active site and the accessibility of this site for solvent are higher in the absence of the substrate.

  6. High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery.

    PubMed

    Li, Chao; Lou, Xiaobing; Shen, Ming; Hu, Xiaoshi; Guo, Zhi; Wang, Yong; Hu, Bingwen; Chen, Qun

    2016-06-22

    We report the designed synthesis of Co 1,3,5-benzenetricarboxylate coordination polymers (CPs) via a straightforward hydrothermal method, in which three kinds of reaction solvents are selected to form CPs with various morphologies and dimensions. When tested as anode materials in Li-ion battery, the cycling stabilities of the three CoBTC CPs at a current density of 100 mA g(-1) have not evident difference; however, the reversible capacities are widely divergent when the current density is increased to 2 A g(-1). The optimized product CoBTC-EtOH maintains a reversible capacity of 473 mAh g(-1) at a rate of 2 A g(-1) after 500 galvanostatic charging/discharging cycles while retaining a nearly 100% Coulombic efficiency. The hollow microspherical morphology, accessible specific area, and the absence of coordination solvent of CoBTC-EtOH might be responsible for such difference. Furthermore, the ex situ soft X-ray absorption spectroscopy studies of CoBTC-EtOH under different states-of-charge suggest that the Co ions remain in the Co(2+) state during the charging/discharging process. Therefore, Li ions are inserted to the organic moiety (including the carboxylate groups and the benzene ring) of CoBTC without the direct engagement of Co ions during electrochemical cycling.

  7. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    PubMed

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  8. Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles.

    PubMed

    Joshi, Deepika P; Pant, Geeta; Arora, Neha; Nainwal, Seema

    2017-02-01

    Present work describes the formation of α-Fe 2 O 3 @SiO 2 core shell structure by systematic layer by layer deposition of silica shell on core iron oxide nanoparticles prepared via various solvents. Sol-gel method has been used to synthesize magnetic core and the dielectric shell. The average crystallite size of iron oxide nanoparticles was calculated ∼20 nm by X-ray diffraction pattern. Morphological study by scanning electron microscopy revealed that the core-shell nanoparticles were spherical in shape and the average size of nanoparticles increased by varying solvent from methanol to ethanol to isopropanol due to different chemical structure and nature of the solvents. It was also observed that the particles prepared by solvent ethanol were more regular and homogeneous as compared to other solvents. Magnetic measurements showed the weak ferromagnetic behaviour of both core α-Fe 2 O 3 and silica-coated iron oxide nanoparticles which remained same irrespective of the solvent chosen. However, magnetization showed dependency on the types of solvent chosen due to the variation in shell thickness. At room temperature, dielectric constant and dielectric loss of silica nanoparticles for all the solvents showed decrement with the increment in frequency. Decrement in the value of dielectric constant and increment in dielectric loss was observed for silica coated iron oxide nanoparticles in comparison of pure silica, due to the presence of metallic core. Homogeneous and regular silica layer prepared by using ethanol as a solvent could serve as protecting layer to shield the magnetic behaviour of iron oxide nanoparticles as well as to provide better thermal insulation over pure α-Fe 2 O 3 nanoparticles.

  9. Professional Development: Are We Meeting the Needs of State EHDI Programs?

    ERIC Educational Resources Information Center

    Houston, K. Todd; Munoz, Karen F.; Bradham, Tamala S.

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that consisted of 12 evaluative areas of EHDI programs. For the professional development area, 47 coordinators responded with a total of 223 items, and themes were identified in each SWOT…

  10. Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular-dynamics study

    NASA Technical Reports Server (NTRS)

    Benjamin, Ilan; Pohorille, Andrew

    1993-01-01

    The gauche-trans isomerization reaction of 1,2-dichloroethane at the liquid-vapor interface of water is studied using molecular-dynamics computer simulations. The solvent bulk and surface effects on the torsional potential of mean force and on barrier recrossing dynamics are computed. The isomerization reaction involves a large change in the electric dipole moment, and as a result the trans/gauche ratio is considerably affected by the transition from the bulk solvent to the surface. Reactive flux correlation function calculations of the reaction rate reveal that deviation from the transition-state theory due to barrier recrossing is greater at the surface than in the bulk water. This suggests that the system exhibits non-Rice-Ramsperger-Kassel-Marcus behavior due to the weak solvent-solute coupling at the water liquid-vapor interface.

  11. Effects of solvent density on retention in gas-liquid chromatography. I. Alkanes solutes in polyethylene glycol stationary phases.

    PubMed

    González, F R; Pérez-Parajón, J; García-Domínguez, J A

    2002-04-12

    Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.

  12. Spectral characteristics of tramadol in different solvents and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Anton Smith, A.; Manavalan, R.; Kannan, K.; Rajendiran, N.

    2009-10-01

    Effect of solvents and β-cyclodextrin on the absorption and fluorescence spectra of tramadol drug has been investigated and compared with anisole. The solid inclusion complex of tramadol with β-CD is investigated by FT-IR, 1H NMR, scanning electron microscope (SEM), DSC and semiempirical methods. The thermodynamic parameter (Δ G) of inclusion process is determined. A solvent study shows (i) the spectral behaviour of both tramadol and anisole molecules is similar to each other and (ii) the cyclohexanol group in tramadol is not effectively conjugated with anisole group. However, in β-CD, due to space restriction of the CD cavity, a weak interaction is present between the above groups in tramadol. β-Cyclodextrin studies show that tramadol forms 1:2 inclusion complex with β-CD. A mechanism is proposed for the inclusion process.

  13. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  14. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    PubMed Central

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-01-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities. PMID:27853187

  15. Synthesis, Photophysical Characterization, and Gelation Studies of a Stilbene-Cholesterol Derivative

    ERIC Educational Resources Information Center

    Geiger, H. Christina; Geiger, David K.; Baldwin, Christine

    2006-01-01

    Organogels are low molar mass organic compounds with the ability to immobilize an incredible quantity of solvent and fibrous aggregation of these compounds formed by noncovalent interaction usually involves hydrogen bonding. For stilbene-cholesterol based gelators, the driving force for molecular aggregation are weak van der Waal interactions…

  16. Simply enhancing throughput of free-flow electrophoresis via organic-aqueous environment for purification of weak polarity solute of phenazine-1-carboxylic acid in fermentation of Pseudomonas sp. M18.

    PubMed

    Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan

    2012-09-01

    Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photophysical properties of a new series of water soluble iridium bisterpyridine complexes functionalised at the 4' position.

    PubMed

    Goldstein, Daniel C; Cheng, Yuen Yap; Schmidt, Timothy W; Bhadbhade, Mohan; Thordarson, Pall

    2011-03-07

    Four new hetero- and homo-leptic iridium(III) bisterpyridine complexes have been prepared which incorporate aniline (tpy-φ-NH(2)), benzoic acid (tpy-φ-COOH), and benzyl alcohol (tpy-φ-CH(2)OH) substituents at the 4' positions of the tpy ligands (tpy = 2,2':6',2''-terpyridine, φ = phenylene). The electrochemical behaviour and ground and excited state spectroscopic properties of the complexes are reported, and the X-ray crystal structures of a homoleptic benzyl alcohol [Ir(tpy-φ-CH(2)OH)(2)](PF(6))(3), homoleptic aniline [Ir(tpy-φ-NH(2))(2)](PF(6))(3), and heteroleptic benzyl alcohol/aniline substituted complex [Ir(tpy-φ-CH(2)OH)(tpy-φ-NH(2))](PF(6))(3) have been solved. Complexes with aniline substituents were found to display absorption bands at around 430 nm corresponding to intraligand charge transfer (ILCT) that are sensitive to changes in solvent and pH. Strong emission in the visible region involving the ILCT state is observed in two of the complexes (Φ(e) = 0.7% and 2.6%) in acetonitrile. In the heteroleptic aniline/benzyl alcohol complex the Stokes shift is shown to be linearly related to solvent polarisability according to the Lippert equation, but only for solvents with weak hydrogen bonding interactions. Additionally, in water, emission from the ILCT state is quenched and only weak ligand centred (LC) emission is observed. The long lifetimes and quantum yields of these complexes make them interesting candidates for probes in sensing applications, especially [Ir(tpy-φ-CH(2)OH)(tpy-φ-NH(2))(2)](PF(6))(3) due to its unusual sensitivity to the solvent environment.

  18. Structure of a tethered polymer under flow using molecular dynamics and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, Rafael; Coveney, Peter V.

    2006-03-01

    We analyse the structure of a single polymer tethered to a solid surface undergoing a Couette flow. We study the problem using molecular dynamics (MD) and hybrid MD-continuum simulations, wherein the polymer and the surrounding solvent are treated via standard MD, and the solvent flow farther away from the polymer is solved by continuum fluid dynamics (CFD). The polymer represents a freely jointed chain (FJC) and is modelled by Lennard-Jones (LJ) beads interacting through the FENE potential. The solvent (modelled as a LJ fluid) and a weakly attractive wall are treated at the molecular level. At large shear rates the polymer becomes more elongated than predicted by existing theoretical scaling laws. Also, along the normal-to-wall direction the structure observed for the FJC is, surprisingly, very similar to that predicted for a semiflexible chain. Comparison with previous Brownian dynamics simulations (which exclude both solvent and wall potential) indicates that these effects are due to the polymer-solvent and polymer-wall interactions. The hybrid simulations are in perfect agreement with the MD simulations, showing no trace of finite size effects. Importantly, the extra cost required to couple the MD and CFD domains is negligible.

  19. Direct and Quantitative Characterization of Dynamic Ligand Exchange between Coordination-Driven Self-Assembled Supramolecular Polygons

    PubMed Central

    Zheng, Yao-Rong; Stang, Peter J.

    2009-01-01

    The direct observation of dynamic ligand exchange beween Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable isotope labeling (1H/2D) of the pyridyl donors and electrospray ionization mass spectrometry (ESI-MS) together with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established based on quantitative mass spectral results. Further investigation showed that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counter anions. PMID:19243144

  20. Direct and quantitative characterization of dynamic ligand exchange between coordination-driven self-assembled supramolecular polygons.

    PubMed

    Zheng, Yao-Rong; Stang, Peter J

    2009-03-18

    The direct observation of dynamic ligand exchange between Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable (1)H/(2)D isotope labeling of the pyridyl donors and electrospray ionization mass spectrometry combined with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established on the basis of quantitative mass spectral results. Further investigation has shown that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counteranions.

  1. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  2. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  3. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  4. The Behavior of the Ru-bda Water Oxidation Catalysts at Low Oxidation States.

    PubMed

    Matheu, Roc; Ghaderian, Abolfazl; Francas, Laia; Chernev, Petko; Ertem, Mehmed; Benet-Buchholz, Jordi; Batista, Victor; Haumann, Michael; Gimbert-Suriñach, Carolina; Sala, Xavier; Llobet, Antoni

    2018-06-13

    The Ru complex [RuII(bda-κ-N2O2)(N-NH2)2], 1, (bda2- = (2,2'-bipyridine)-6,6'-dicarboxylate; N-NH2 = 4-(pyridin-4-yl)aniline) is used as a synthetic intermediate to prepare Ru-bda complexes that contain the NO+, acetonitrile (MeCN) or H2O ligands at oxidation states II and III. Complex 1 reacts with excess NO+ to form a Ru complex where the aryl amine ligands N-NH2 in 1 are transformed into diazonium salts (N-N2+ = 4-(pyridin-4-yl)benzenediazonium)) together with the formation of a new Ru-NO group at the equatorial zone, to generate [RuII(bda-κ-N2O)(NO)(N-N2)2]3+, 23+. Similarly, complex 1 can also react with a coordinating solvent, such as MeCN, at room temperature leading to complex [RuII(bda-κ-N2O)(MeCN)(N-NH2)2], 3. Finally in acidic aqueous solutions solvent water coordinates the Ru center forming {[RuII(bda-κ-(NO)3)(H2O)(N-NH3)2](H2O)n}2+, 42+, that is strongly hydrogen bonded with additional water molecules at the second coordination sphere. We have additionally characterized the one electron oxidized complex {[RuIII(bda-κ-(NO)3.5)(H2O)(N-NH3)2](H2O)n}3+, 53+. The coordination mode of the complexes has been studied both in the solid state and in solution through single-crystal XRD, X-ray absorption spectroscopy, variable-temperature NMR and DFT calculations. While the κ-N2O is the main coordination mode for 23+ and 3, an equilibrium that involves isomers with κ-N2O and κ-NO2 coordination modes and neighboring hydrogen bonded water molecules is observed for 42+ and 53+. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Trends in Syntheses, Structures, and Properties for Three Series of Ammine Rare-Earth Metal Borohydrides, M(BH4)3·nNH3 (M = Y, Gd, and Dy).

    PubMed

    Jepsen, Lars H; Ley, Morten B; Černý, Radovan; Lee, Young-Su; Cho, Young Whan; Ravnsbæk, Dorthe; Besenbacher, Flemming; Skibsted, Jørgen; Jensen, Torben R

    2015-08-03

    Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.

  6. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  7. Allotropic control: How certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers

    DOE PAGES

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.

    2016-07-28

    Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less

  8. Allotropic control: How certain fluorinated carbonate electrolytes protect aluminum current collectors by promoting the formation of insoluble coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.

    Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less

  9. Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid)

    USGS Publications Warehouse

    Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.

    1997-01-01

    Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.

  10. Silver(i) complexes with 1'-(diphenylphosphino)-1-cyanoferrocene: the art of improvisation in coordination.

    PubMed

    Škoch, Karel; Uhlík, Filip; Císařová, Ivana; Štěpnička, Petr

    2016-06-28

    1'-(Diphenylphosphino)-1-cyanoferrocene () reacts with silver(i) halides at a 1 : 1 metal-to-ligand ratio to afford the heterocubane complexes [Ag(μ3-X)(-κP)]4, where X = Cl (), Br (), and I (). In addition, the reaction with AgCl with 2 equiv. of leads to chloride-bridged dimer [(μ-Cl)2{Ag(-κP)2}2] () and, presumably, also to [(μ(P,N)-){AgCl(-κP)}]2 (). While similar reactions with AgCN furnished only the insoluble coordination polymer [(-κP)2Ag(NC)Ag(CN)]n (), those with AgSCN afforded the heterocubane [Ag(-κP)(μ-SCN-S,S,N)]4 () and the thiocyanato-bridged disilver(i) complex [Ag(-κP)2(μ-SCN-S,N)]2 (), thereby resembling reactions in the AgCl- system. Attempted reactions with AgF led to ill-defined products, among which [Ag(-κP)2(μ-HF2)]2 () and [(μ-SiF6){Ag(-κP)2}2] () could be identified. The latter compound was prepared also from Ag2[SiF6] and . Reactions between and AgClO4 or Ag[BF4] afforded disilver complexes [(μ(P,N)-)Ag(ClO4-κO)]2 () and [(μ(P,N)-)Ag(BF4-κF)]2 () featuring pseudolinear Ag(i) centers that are weakly coordinated by the counter anions. A similar reaction with Ag[SbF6] followed by crystallization from ethyl acetate produced an analogous complex, albeit with coordinated solvent, [(μ(P,N)-)Ag(AcOEt-κO)]2[SbF6]2 (). Ultimately, a compound devoid of any additional ligands at the Ag(i) centers, [(μ(P,N)-)Ag]2[B(C6H3(CF3)2-3,5)4]2 (), was obtained from the reaction of with silver(i) tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. The reaction of Ag[BF4] with two equivalents of produced unique coordination polymer [Ag(-κP)(μ(P,N)-)]n[BF4]n (), the structure of which contained one of the phosphinoferrocene ligands coordinated as a P,N-chelate and the other forming a bridge to an adjacent Ag(i) center. All of these compounds were structurally characterized by single-crystal X-ray crystallography, revealing that the lengths of the bonds between silver and its anionic ligand(s) typically exceed the sum of the respective covalent radii, which is in line with the results of theoretical calculations at the density-functional theory (DFT) level, suggesting that standard covalent dative bonds are formed between silver and phosphorus (soft acid/soft base interactions) while the interactions between silver and the ligand's nitrile group (if coordinated) or the supporting anion are of predominantly electrostatic nature.

  11. [Exposure to solvents and tardy epilepsy: 2 clinical cases].

    PubMed

    Bernardini, P; Scoppetta, C

    1992-01-01

    Organic solvents (OS) are widely used in industry and craft work. The neurotoxic effects of OS are well known in occupational exposure occurring in poor industrial hygiene conditions. There has been interest recently in a possible epileptogenic effect of OS exposure. Two cases are reported of late onset epilepsy observed in workers heavily exposed to OS. Case 1 was a 27-year-old male painter employed in a car body repair workshop. Solvent exposure was high for a few months because after his regular work, the man continued working as a car body painter in his own private concern. After a period of weakness and headache, probably indicating an excessive solvent absorption, he suffered two generalized paroxysmal seizures during sleep which necessitated hospitalization and continuous treatment with barbiturates. Case 2 was a 44-year-old male painter in a road advertising billboard factory who was continuously exposed to OS. Ten years previously he had been exposed to accidental massive inhalation of solvent vapours while opening a drum of solvents for coloured paint. Acute solvent poisoning followed and seven weeks later he suffered several epileptic episodes associated with typical EEG alterations; for many years, however, treatment was ineffective. In both cases there was neither a history of neurologic disease nor any other neurologic dysfunctions and the results of comprehensive neuroradiological studies were normal. Evidence exists of a chronological connection between high exposure to paint solvents and clinical evidence of late onset epilepsy, but it is not possible to identify a definite causal relationship.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Simultaneous spin-coating and solvent annealing: Manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells

    DOE PAGES

    He, Zhicai; Liu, Feng; Wang, Cheng; ...

    2015-08-20

    Here, we developed a simultaneous spin-coating/solvent-annealing process and demonstrated morphology optimization for PTB7 based organic photovoltaics. This novel processing method enhances the edge-on crystalline content in thin films and induces the formation of weak PCBM aggregates. As a result, the efficiency of polymer solar cells increased from 9.2% to a certified high efficiency of 9.61%, owing to an enhanced short-circuit current (J sc, 18.4 mA cm –2vs. 17. 5 mA cm –2) and an improved fill factor.

  13. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  14. Synthesis and structural characterization of lithium, sodium and potassium complexes supported by a tridentate amino-bisphenolate ligand

    NASA Astrophysics Data System (ADS)

    Durango-García, Clara J.; Rufino-Felipe, Ernesto; López-Cardoso, Marcela; Muñoz-Hernández, Miguel-Ángel; Montiel-Palma, Virginia

    2018-07-01

    Reactions of methylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol) (1) with one or two equivalents of bulk Li, Na or K metals in THF or DMSO render mono or dialkali metal complexes depending on the stoichiometric ratio of the reactants. The metal-methylamino-N-(2-methylene-4,6-tert-butylphenol)sbnd N-(2-methylene-4,6-tert-butylphenolate) complexes, 2Li, 2Na and 2K, are generated upon the substitution of a single phenol hydrogen of 1. In the solid state, complex 2Na is a dimer due to the establishment of two symmetric hydrogen bonds between two adjacent molecules. The Na center also engages into the formation of a ten-membered metallacycle ring with a butterfly-like structure. Due to dimerization, an intermolecular six-membered core is formed involving two sodium and four oxygen atoms. The weakly coordinated nitrogen atom from the ligand is nearly perpendicular to the hexagonal core. The dimetal-methylamino-N,N‧-bis(2-methylene-4,6-di-tert-butylphenolate) complexes, 3Li, 3Na and 3K result from metal substitution of the two phenol hydrogens from ligand 1. The SC-XRD structures of 3Li and 3Na are discreet, each incorporating two metal atoms in different coordination environments. Ten-membered rings with boat-boat conformations are also observed as are rhombic central M2O2 cores. The molecular structure of 3K in DMSO shows a higher degree of aggregation. It effectively comprises four K atoms, two ligand backbones and seven solvent molecules forming a central four-membered K2O2 ring perpendicular to an eight-membered structure formed also by K and O atoms spanning over the two ligand moieties.

  15. Dynamics at Lys-553 of the acto-myosin interface in the weakly and strongly bound states.

    PubMed Central

    MacLean, J J; Chrin, L R; Berger, C L

    2000-01-01

    Lys-553 of skeletal muscle myosin subfragment 1 (S1) was specifically labeled with the fluorescent probe FHS (6-[fluorescein-5(and 6)-carboxamido]hexanoic acid succinimidyl ester) and fluorescence quenching experiments were carried out to determine the accessibility of this probe at Lys-553 in both the strongly and weakly actin-bound states of the MgATPase cycle. Solvent quenchers of varying charge [nitromethane, (2,2,6, 6-tetramethyl-1-piperinyloxy) (TEMPO), iodide (I(-)), and thallium (Tl(+))] were used to assess both the steric and electrostatic accessibilities of the FHS probe at Lys-553. In the strongly bound rigor (nucleotide-free) and MgADP states, actin offered no protection from solvent quenching of FHS by nitromethane, TEMPO, or thallium, but did decrease the Stern-Volmer constant by almost a factor of two when iodide was used as the quencher. The protection from iodide quenching was almost fully reversed with the addition of 150 mM KCl, suggesting this effect is ionic in nature rather than steric. Conversely, actin offered no protection from iodide quenching at low ionic strength during steady-state ATP hydrolysis, even with a significant fraction of the myosin heads bound to actin. Thus, the lower 50 kD subdomain of myosin containing Lys-553 appears to interact differently with actin in the weakly and strongly bound states. PMID:10692329

  16. Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2009-11-19

    We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges on larger units in the polymer chain.

  17. Part I. Student success in intensive versus traditional introductory chemistry courses. Part II. Synthesis of salts of the weakly coordinating trisphat anion

    NASA Astrophysics Data System (ADS)

    Hall, Mildred V.

    Part I. Intensive courses have been shown to be associated with equal or greater student success than traditional-length courses in a wide variety of disciplines and education levels. Student records from intensive and traditional-length introductory general chemistry courses were analyzed to determine the effects, of the course format, the level of academic experience, life experience (age), GPA, academic major and gender on student success in the course. Pretest scores, GPA and ACT composite scores were used as measures of academic ability and prior knowledge; t-tests comparing the means of these variables were used to establish that the populations were comparable prior to the course. Final exam scores, total course points and pretest-posttest differences were used as measures of student success; t-tests were used to determine if differences existed between the populations. ANCOVA analyses revealed that student GPA, pretest scores and course format were the only variables tested that were significant in accounting for the variance of the academic success measures. In general, the results indicate that students achieved greater academic success in the intensive-format course, regardless of the level of academic experience, life experience, academic major or gender. Part II. Weakly coordinating anions have many important applications, one of which is to function as co-catalysts in the polymerization of olefins by zirconocene. The structure of tris(tetrachlorobenzenedialato) phosphate(V) or "trisphat" anion suggests that it might be an outstanding example of a weakly coordinating anion. Trisphat acid was synthesized and immediately used to prepare the stable tributylammonium trisphat, which was further reacted to produce trisphat salts of Group I metal cations in high yields. Results of the 35Cl NQR analysis of these trisphat salts indicate only very weak coordination between the metal cations and the chlorine atoms of the trisphat anion.

  18. Improving the Efficiency of Non-equilibrium Sampling in the Aqueous Environment via Implicit-Solvent Simulations.

    PubMed

    Liu, Hui; Chen, Fu; Sun, Huiyong; Li, Dan; Hou, Tingjun

    2017-04-11

    By means of estimators based on non-equilibrium work, equilibrium free energy differences or potentials of mean force (PMFs) of a system of interest can be computed from biased molecular dynamics (MD) simulations. The approach, however, is often plagued by slow conformational sampling and poor convergence, especially when the solvent effects are taken into account. Here, as a possible way to alleviate the problem, several widely used implicit-solvent models, which are derived from the analytic generalized Born (GB) equation and implemented in the AMBER suite of programs, were employed in free energy calculations based on non-equilibrium work and evaluated for their abilities to emulate explicit water. As a test case, pulling MD simulations were carried out on an alanine polypeptide with different solvent models and protocols, followed by comparisons of the reconstructed PMF profiles along the unfolding coordinate. The results show that when employing the non-equilibrium work method, sampling with an implicit-solvent model is several times faster and, more importantly, converges more rapidly than that with explicit water due to reduction of dissipation. Among the assessed GB models, the Neck variants outperform the OBC and HCT variants in terms of accuracy, whereas their computational costs are comparable. In addition, for the best-performing models, the impact of the solvent-accessible surface area (SASA) dependent nonpolar solvation term was also examined. The present study highlights the advantages of implicit-solvent models for non-equilibrium sampling.

  19. Influence of a Confined Methanol Solvent on the Reactivity of Active Sites in UiO-66.

    PubMed

    Caratelli, Chiara; Hajek, Julianna; Rogge, Sven M J; Vandenbrande, Steven; Meijer, Evert Jan; Waroquier, Michel; Van Speybroeck, Veronique

    2018-02-19

    UiO-66, composed of Zr-oxide bricks and terephthalate linkers, is currently one of the most studied metal-organic frameworks due to its exceptional stability. Defects can be introduced in the structure, creating undercoordinated Zr atoms which are Lewis acid sites. Here, additional Brønsted sites can be generated by coordinated protic species from the solvent. In this Article, a multilevel modeling approach was applied to unravel the effect of a confined methanol solvent on the active sites in UiO-66. First, active sites were explored with static periodic density functional theory calculations to investigate adsorption of water and methanol. Solvent was then introduced in the pores with grand canonical Monte Carlo simulations, followed by a series of molecular dynamics simulations at operating conditions. A hydrogen-bonded network of methanol molecules is formed, allowing the protons to shuttle between solvent methanol, adsorbed water, and the inorganic brick. Upon deprotonation of an active site, the methanol solvent aids the transfer of protons and stabilizes charged configurations via hydrogen bonding, which could be crucial in stabilizing reactive intermediates. The multilevel modeling approach adopted here sheds light on the important role of a confined solvent on the active sites in the UiO-66 material, introducing dynamic acidity in the system at finite temperatures by which protons may be easily shuttled from various positions at the active sites. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Health effects of long-term solvent exposure among women in blue-collar occupations.

    PubMed

    Parkinson, D K; Bromet, E J; Cohen, S; Dunn, L O; Dew, M A; Ryan, C; Schwartz, J E

    1990-01-01

    The relationship of solvent exposure to self-reported neurologic and somatic symptoms as well as neuropsychological performance was examined in a sample of 567 female blue collar workers who were members of the International Brotherhood of Electrical Workers (IBEW). Structured interviews were conducted at IBEW offices. Five solvent exposure categories were derived--never exposed, exposed prior to but not during the past year, exposed during the past year but not currently, currently exposed less than 50% of the time, and currently exposed more than 50% of the time. No differences among the groups on neuropsychological performance were found. On the other hand, heightened exposure was significantly related to depression, severe headaches, light-headedness, room spinning, appetite difficulties, funny taste in mouth, weakness/fatigue, rashes, and abdominal pain after controlling for the effects of seven risk factors (age, smoking, moderate-heavy alcohol consumption, severe obesity, history of physician-diagnosed chronic illness, working in a clean room, and exposure to other chemicals). These findings are consistent with Scandinavian studies of solvent-exposed male workers and point to the need for careful prospective research.

  1. An NMR (Nuclear Magnetic Resonance) Investigation of the Chemical Association and Molecular Dynamics in Asphalt Ridge Tar Sand Ore and Bitumen

    DOE R&D Accomplishments Database

    Netzel, D. A.; Coover, P. T.

    1987-09-01

    Preliminary studies on tar sand bitumen given in this report have shown that the reassociation of tar sand bitumen to its original molecular configuration after thermal stressing is a first-order process requiring nearly a week to establish equilibrium. Studies were also conducted on the dissolution of tar sand bitumen in solvents of varying polarity. At a high-weight fraction of solute to solvent the apparent molecular weight of the bitumen molecules was greater than that of the original bitumen when dissolved in chloroform-d{sub 1} and benzene-d{sub 6}. This increase in the apparent molecular weight may be due to micellar formation or a weak solute-solvent molecular complex. Upon further dilution with any of the solvents studied, the apparent molecular weight of the tar sand bitumen decreased because of reduced van der Waals forces of interaction and/or hydrogen bonding. To define the exact nature of the interactions, it will be necessary to have viscosity measurements of the solutions.

  2. Flexible binding simulation by a novel and improved version of virtual-system coupled adaptive umbrella sampling

    NASA Astrophysics Data System (ADS)

    Dasgupta, Bhaskar; Nakamura, Haruki; Higo, Junichi

    2016-10-01

    Virtual-system coupled adaptive umbrella sampling (VAUS) enhances sampling along a reaction coordinate by using a virtual degree of freedom. However, VAUS and regular adaptive umbrella sampling (AUS) methods are yet computationally expensive. To decrease the computational burden further, improvements of VAUS for all-atom explicit solvent simulation are presented here. The improvements include probability distribution calculation by a Markov approximation; parameterization of biasing forces by iterative polynomial fitting; and force scaling. These when applied to study Ala-pentapeptide dimerization in explicit solvent showed advantage over regular AUS. By using improved VAUS larger biological systems are amenable.

  3. Coordination-Supported Imidazolate Networks: Water- and Heat-Stable Mesoporous Polymers for Catalysis

    DOE PAGES

    Zhang, Pengfei; Yang, Shize; Chisholm, Matthew F.; ...

    2017-05-29

    The poor water stability of most porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is widely recognised as a barrier hampering their practical applications. Herein, a facile and scalable route to prepare metal-containing polymers with a good stability in boiling water (100°C, 24 h) and air (up to 390°C) is presented. The bifunctional 1-vinylimidazole (VIm) with both a coordinating site and a polymerizable organic group is introduced as the building block. This core strategy includes the synthesis of a rigid monomer with four VIm branches via a coordination process at room temperature, followed by a radical polymerization. Here we callmore » this material Coordination-supported Imidazolate Networks (CINs). Interestingly, CINs are composed of rich mesopores from 2 to 15 nm, as characterized by low-energy (60 kV) STEM-HAADF images. Especially, the stable CINs illustrate a high turnover frequency (TOF) of 779 h -1 in the catalytic oxidation of phenol with H 2O as the green solvent.« less

  4. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.

    PubMed

    Mantziaris, Charalampos; Bockemühl, Till; Holmes, Philip; Borgmann, Anke; Daun, Silvia; Büschges, Ansgar

    2017-10-01

    To efficiently move around, animals need to coordinate their limbs. Proper, context-dependent coupling among the neural networks underlying leg movement is necessary for generating intersegmental coordination. In the slow-walking stick insect, local sensory information is very important for shaping coordination. However, central coupling mechanisms among segmental central pattern generators (CPGs) may also contribute to this. Here, we analyzed the interactions between contralateral networks that drive the depressor trochanteris muscle of the legs in both isolated and interconnected deafferented thoracic ganglia of the stick insect on application of pilocarpine, a muscarinic acetylcholine receptor agonist. Our results show that depressor CPG activity is only weakly coupled between all segments. Intrasegmental phase relationships differ between the three isolated ganglia, and they are modified and stabilized when ganglia are interconnected. However, the coordination patterns that emerge do not resemble those observed during walking. Our findings are in line with recent studies and highlight the influence of sensory input on coordination in slowly walking insects. Finally, as a direct interaction between depressor CPG networks and contralateral motoneurons could not be observed, we hypothesize that coupling is based on interactions at the level of CPG interneurons. NEW & NOTEWORTHY Maintaining functional interleg coordination is vitally important as animals locomote through changing environments. The relative importance of central mechanisms vs. sensory feedback in this process is not well understood. We analyzed coordination among the neural networks generating leg movements in stick insect preparations lacking phasic sensory feedback. Under these conditions, the networks governing different legs were only weakly coupled. In stick insect, central connections alone are thus insufficient to produce the leg coordination observed behaviorally. Copyright © 2017 the American Physiological Society.

  5. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  6. Capturing the Role of Explicit Solvent in the Dimerization of RuV (bda) Water Oxidation Catalysts.

    PubMed

    Zhan, Shaoqi; Mårtensson, Daniel; Purg, Miha; Kamerlin, Shina C L; Ahlquist, Mårten S G

    2017-06-06

    A ground-breaking empirical valence bond study for a soluble transition-metal complex is presented. The full reaction of catalyst monomers approaching and reacting in the Ru V oxidation state were studied. Analysis of the solvation shell in the reactant and along the reaction coordinate revealed that the oxo itself is hydrophobic, which adds a significant driving force to form the dimer. The effect of the solvent on the reaction between the prereactive dimer and the product was small. The solvent seems to lower the barrier for the isoquinoline (isoq) complex while it is increased for pyridines. By comparing the reaction in the gas phase and solution, the proposed π-stacking interaction of the isoq ligands is found to be entirely driven by the water medium. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A diketiminate-bound diiron complex with a bridging carbonate ligand

    PubMed Central

    Sadique, Azwana R.; Brennessel, William W.; Holland, Patrick L.

    2009-01-01

    Reduction of carbon dioxide by a diiron(I) complex gives μ-carbonato-κ3 O:O′,O′′-bis­{[2,2,6,6-tetra­methyl-3,5-bis­(2,4,6-triisopropyl­phenyl)heptane-2,5-diiminate(1−)-κ2 N,N′]iron(II)} toluene disolvate, [Fe2(C41H65N)2(CO3)]·2C7H8, a diiron(II) species with a bridging carbonate ligand. The asymmetric unit contains one diiron complex and two cocrystallized toluene solvent mol­ecules that are distributed over three sites, one with atoms in general positions and two in crystallographic sites. Both FeII atoms are η2-coordinated to diketiminate ligands, but η1- and η2-coordinated to the bridging carbonate ligand. Thus, one FeII center is three-coordinate and the other is four-coordinate. The bridging carbonate ligand is nearly perpendicular to the iron–diketiminate plane of the four-coordinate FeII center and parallel to the plane of the three-coordinate FeII center. PMID:19407402

  8. Structure and Dynamics of Solvent Landscapes in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Leite, Vitor B. Pereira

    The dynamics of solvent polarization plays a major role in the control of charge transfer reactions. The success of Marcus theory describing the solvent influence via a single collective quadratic polarization coordinate has been remarkable. Onuchic and Wolynes have recently proposed (J. Chem Phys 98 (3) 2218, 1993) a simple model demonstrating how a many-dimensional-complex model composed by several dipole moments (representing solvent molecules or polar groups in proteins) can be reduced under the appropriate limits into the Marcus Model. This work presents a dynamical study of the same model, which is characterized by two parameters, an average dipole-dipole interaction as a term associated with the potential energy landscape roughness. It is shown why the effective potential, obtained using a thermodynamic approach, is appropriate for the dynamics of the system. At high temperatures, the system exhibits effective diffusive one-dimensional dynamics, where the Born-Marcus limit is recovered. At low temperatures, a glassy phase appears with a slow non-self-averaging dynamics. At intermediate temperatures, the concept of equivalent diffusion paths and polarization dependence effects are discussed. This approach is extended to treat more realistic solvent models. Real solvents are discussed in terms of simple parameters described above, and an analysis of how different regimes affect the rate of charge transfer is presented. Finally, these ideas are correlated to analogous problems in other areas.

  9. Secondary interactions in thallium(I) coordination, [Tl 2(DBM) 2] n, DBM - = 1,3-diphenylpropane-1,3-dionate (dibenzoylmethanide)

    NASA Astrophysics Data System (ADS)

    Askarinejad, Azadeh; Morsali, Ali; Zhu, Long-Guan

    2006-05-01

    The Tl I complex of 1,3-diphenylpropane-1,3-dionate (dibenzoylmethanide, DBM -), [Tl 2(DBM) 2] n, has been synthesized and characterized. The single-crystal X-ray data show there are two different Tl environments. One type of Tl-atom in the TlO 4C 6Tl 2 environment is twelve-coordinated, with two weak Tl⋯Tl and hexahapto ( η) interactions, TlC 6. The other type of Tl-atom in the TlO 4C 2Tl 2 units is eight-coordinated, with two weak Tl⋯Tl and dihapto ( η) interactions, TlC 2. The dimeric units [Tl 2(DBM) 2] linked through Tl⋯Tl and polyhapto interactions, TlC 6 and TlC 2, and produce the 1D polymeric chains. Comparison with the analogous Pb(II) compound indicates that Tl I may also act as both a Lewis acid and a Lewis base.

  10. Detection of phosphorylation states by intermolecular sensitization of lanthanide-peptide conjugates.

    PubMed

    Pazos, Elena; Goličnik, Marko; Mascareñas, José L; Vázquez, M Eugenio

    2012-10-04

    The luminescence of a designed peptide equipped with a coordinatively-unsaturated lanthanide complex is modulated by the phosphorylation state of a serine residue in the sequence. While the phosphorylated state is weakly emissive, even in the presence of an external antenna, removal of the phosphate allows coordination of the sensitizer to the metal, yielding a highly emissive supramolecular complex.

  11. Developmental Co-Ordination Disorder (DCD) in Adolescents and Adults in Further and Higher Education

    ERIC Educational Resources Information Center

    Kirby, Amanda; Sugden, David; Beveridge, Sally; Edwards, Lisa

    2008-01-01

    Few studies have looked at the strengths and weaknesses and needs of students with developmental co-ordination disorder (DCD). This paper describes a cohort of 93 UK students currently studying at further or higher education and who have reported motor difficulties present since childhood. The study group consisted of 21 reporting to have DCD…

  12. Combinatorial Discovery of Cosolvent Systems for Production of Narrow Dispersion Thiolate-Protected Gold Nanoparticles

    PubMed Central

    2015-01-01

    The effect of aqueous solvent concentration in the synthesis of water-soluble thiolate-protected gold nanoparticles (AuNPs) was investigated for 13 water-miscible solvents and three thiolate ligands (p-mercaptobenzoic acid, thiomalic acid, and glutathione). The results were analyzed by construction of heat maps that rank each reaction result for polydispersity. When solvents were organized in the heat map according to their Dimroth–Reichardt ET parameter (an approximate measure of polarity), two “hot spots” become apparent that are independent of the ligand used. We speculate that one hot spot may arise in part from the metal chelation or coordination ability of solvents that include diglyme, 1,2-dimethoxyethane, 1,4-dioxane, and tetrahydrofuran. The second hot spot arises at concentrations of alcohols including 2-propanol and 1-butanol that appear to selectively precipitate a growing product, presumably stopping its growth at a certain size. We observe some tightly dispersed products that appear novel. Overall, this study expands the number of tightly dispersed water-soluble AuNPs that can be directly synthesized. PMID:25459632

  13. Combinatorial discovery of cosolvent systems for production of narrow dispersion thiolate-protected gold nanoparticles.

    PubMed

    Wong, O Andrea; Compel, W Scott; Ackerson, Christopher J

    2015-01-12

    The effect of aqueous solvent concentration in the synthesis of water-soluble thiolate-protected gold nanoparticles (AuNPs) was investigated for 13 water-miscible solvents and three thiolate ligands (p-mercaptobenzoic acid, thiomalic acid, and glutathione). The results were analyzed by construction of heat maps that rank each reaction result for polydispersity. When solvents were organized in the heat map according to their Dimroth-Reichardt ET parameter (an approximate measure of polarity), two "hot spots" become apparent that are independent of the ligand used. We speculate that one hot spot may arise in part from the metal chelation or coordination ability of solvents that include diglyme, 1,2-dimethoxyethane, 1,4-dioxane, and tetrahydrofuran. The second hot spot arises at concentrations of alcohols including 2-propanol and 1-butanol that appear to selectively precipitate a growing product, presumably stopping its growth at a certain size. We observe some tightly dispersed products that appear novel. Overall, this study expands the number of tightly dispersed water-soluble AuNPs that can be directly synthesized.

  14. POLAR, NON-COORDINATING IONIC LIQUIDS AS SOLVENTS FOR ALTERNATING COPOLYMERIZATION OF STYRENE AND CO CATALYZED BY CATIONIC PALLADIUM CATALYSTS. (R828257)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wentao; Leung, Kevin; Shao, Qian

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less

  16. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    DOE PAGES

    Song, Wentao; Leung, Kevin; Shao, Qian; ...

    2016-09-15

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less

  17. Features of the adsorption of naproxen enantiomers on weak chiral anion-exchangers in nonlinear chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asnin, Leonid; Kaczmarski, Krzysztof; Guiochon, Georges A

    The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the bindingmore » energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism.« less

  18. Structural and Computational Studies of Cp(CO)2(PCy3)MoFBF3, a Complex with a Bound BF4- Ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Tan-Yun; Szalda, David J.; Franz, James A.

    2010-02-15

    Hydride transfer from Cp(CO)2(PCy3)MoH to Ph3C+BF4 gives Cp(CO)2(PCy3)MoFBF3, and the crystal structure of this complex was determined. In the weakly bound FBF3 ligand, the B-F(bridging) bond length is 1.475(8) Å, which is 0.15 Å longer than the average length of the three B-F(terminal) bonds. The PCy3 and FBF3 ligands are cis to each other in the four-legged piano stool structure. Electronic structure (DFT) calculations predict the trans isomer of Cp(CO)2(PCy3)MoFBF3 to be 9.5 kcal/mol (in ΔGog,298)) less stable than the cis isomer that was crystallographically characterized. Hydride transfer from Cp(CO)2(PCy3)MoH to Ph3C+BAr'4 [Ar' = 3,5-bis(trifluoromethyl)phenyl] in CH2Cl2 solvent produces [Cp(CO)2(PCy3)Mo(ClCH2Cl)]+[BAr'4]more » , in which CH2Cl2 is coordinated to the metal. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  19. Effects of electrolytes on redox potentials through ion pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  20. Effects of electrolytes on redox potentials through ion pairing

    DOE PAGES

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas; ...

    2017-09-21

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  1. Models for liquid-liquid partition in the system dimethyl sulfoxide-organic solvent and their use for estimating descriptors for organic compounds.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2011-07-15

    Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Rifampin

    MedlinePlus

    ... lack of coordination difficulty concentrating confusion changes in behavior muscle weakness pain in the arms, hands, feet, or legs heartburn stomach cramps diarrhea gas painful or irregular menstrual periods vision changes Some ...

  3. Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers.

    PubMed

    Deng, Jingjing; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2015-07-07

    This study demonstrates a new strategy for colorimetric and fluorescent dual mode sensing of alcoholic strength (AS) in spirit samples based on stimuli-responsive infinite coordination polymers (ICPs). The ICP supramolecular network is prepared with 1,4-bis(imidazol-1-ylmethyl)benzene (bix) as the ligand and Zn(2+) as the central metal ion in ethanol, in which rhodamine B (RhB) is encapsulated through self-adaptive chemistry. In pure ethanol solvent, the as-formed RhB/Zn(bix) is well dispersed and quite stable. However, the addition of water into the ethanol dispersion of RhB/Zn(bix) destroys Zn(bix) network structure, resulting in the release of RhB from ICP into the solvent. As a consequence, the solvent displays the color of released RhB and, at the meantime, turns on the fluorescence of RhB, which constitutes a new mechanism for colorimetric and fluorescent dual mode sensing of AS in commercial spirit samples. With the method developed here, we could distinguish the AS of different commercial spirit samples by the naked eye within a wide linear range from 20 to 100% vol and by monitoring the increase of fluorescent intensity of the released RhB. This study not only offers a new method for on-spot visible detection of AS in commercial spirit samples, but also provides a strategy for designing dual mode sensing mechanisms for different analytical purposes based on novel stimuli-responsive materials.

  4. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn; Chen Wulin; Zheng Jun

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Signmore » 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.« less

  5. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Yan, Pengfei

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition,more » such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.« less

  6. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside Sn2 Reactions: a Reaction Force and Atomic Contribution Analysis.

    PubMed

    Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés

    2016-10-09

    The solvent effect on the nucleophile and leaving group atoms of the prototypical F - + CH 3 Cl → CH 3 F + Cl - backside bimolecular nucleophilic substitution reaction (S N 2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE 0 and ΔE ↕ of Y - + CH 3 X → YCH 3 + X - (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.

  7. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye.

    PubMed

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δλ=10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Active Solvent Modulation: A Valve-Based Approach To Improve Separation Compatibility in Two-Dimensional Liquid Chromatography.

    PubMed

    Stoll, Dwight R; Shoykhet, Konstantin; Petersson, Patrik; Buckenmaier, Stephan

    2017-09-05

    Two-dimensional liquid chromatography (2D-LC) is increasingly being viewed as a viable tool for solving difficult separation problems, ranging from targeted separations of structurally similar molecules to untargeted separations of highly complex mixtures. In spite of this performance potential, though, many users find method development challenging and most frequently cite the "incompatibility" between the solvent systems used in the first and second dimensions as a major obstacle. This solvent strength related incompatibility can lead to severe peak distortion and loss of resolution and sensitivity in the second dimension. In this paper, we describe a novel approach to address the incompatibility problem, which we refer to as Active Solvent Modulation (ASM). This valve-based approach enables dilution of 1 D effluent with weak solvent prior to transfer to the 2 D column but without the need for additional instrument hardware. ASM is related to the concept we refer to as Fixed Solvent Modulation (FSM), with the important difference being that ASM allows toggling of the diluent stream during each 2 D separation cycle. In this work, we show that ASM eliminates the major drawbacks of FSM including complex elution solvent profiles, baseline disturbances, and slow 2 D re-equilibration and demonstrate improvements in 2 D separation quality using both simple small molecule probes and degradants of heat-treated bovine insulin as case studies. We believe that ASM will significantly ease method development for 2D-LC, providing a path to practical methods that involve both highly complementary 1 D and 2 D separations and sensitive detection.

  9. Chloridotetra­kis(pyridine-4-carb­alde­hyde-κN)copper(II) chloride

    PubMed Central

    Meng, Xiu-Jin; Zhang, Shu-Hua; Yang, Ge-Ge; Huang, Xue-Ren; Jiang, Yi-Min

    2009-01-01

    In the mol­ecular structure of the title compound, [CuCl(C6H5NO)4]Cl, the CuII atom is coordinated by four N atoms of four pyridine-4-carboxaldehyde ligands and one chloride anion in a slightly distorted square-pyramidal coordination geometry. There is also a non-coordinating Cl− anion in the crystal structure. The CuII atom and both Cl atoms are situated on fourfold rotation axes. A weak C—H⋯Cl inter­action is also present. PMID:21578129

  10. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less

  11. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.; Birdwell, Joseph F.; Bonnesen, Peter V.

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less

  12. The reorganization energy of electron transfer in nonpolar solvents: Molecular level treatment of the solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leontyev, I.V.; Tachiya, M.

    The intermolecular electron transfer in a solute pair consisting of pyrene and dimethylaniline is investigated in a nonpolar solvent, n-hexane. The earlier elaborated approach [M. Tachiya, J. Phys Chem. 97, 5911 (1993)] is used; this method provides a physically relevant background for separating inertial and inertialess polarization responses for both nonpolarizable and polarizable molecular level simulations. The molecular-dynamics technique was implemented for obtaining the equilibrium ensemble of solvent configurations. The nonpolar solvent, n-hexane, was treated in terms of OPLS-AA parametrization. Solute Lennard-Jones parameters were taken from the same parametrization. Solute charge distributions of the initial and final states were determinedmore » using ab initio level [HF/6-31G(d,p)] quantum-chemical calculations. Configuration analysis was performed explicitly taking into account the anisotropic polarizability of n-hexane. It is shown that the Gaussian law well describes calculated distribution functions of the solvent coordinate, therefore, the rate constant of the ET reaction can be characterized by the reorganization energy. Evaluated values of the reorganization energies are in a range of 0.03-0.11 eV and significant contribution (more then 40% of magnitude) comes from anisotropic polarizability. Investigation of the reorganization energy {lambda} dependence on the solute pair separation distance d revealed unexpected behavior. The dependence has a very sharp peak at the distance d=7 A where solvent molecules are able to penetrate into the intermediate space between the solute pair. The reason for such behavior is clarified. This new effect has a purely molecular origin and cannot be described within conventional continuum solvent models.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shuang; Yi, Fei-Yan; Li, Guanghua

    Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing featuremore » is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.« less

  14. First-row transition metal complexes of ENENES ligands: the ability of the thioether donor to impact the coordination chemistry

    DOE PAGES

    Dub, Pavel A.; Scott, Brian L.; Gordon, John C.

    2015-12-21

    We report the reactions of two variants of ENENES ligands, E(CH 2) 2NH(CH) 2SR, where E = 4-morpholinyl, R = Ph (a), Bn (b) with MCl 2 (M = Mn, Fe, Co, Ni and Cu) in coordinating solvents (MeCN, EtOH) affords isolable complexes, whose magnetic susceptibility measurements suggest paramagnetism and a high-spin formulation. X-Ray diffraction studies of available crystals show that the ligand coordinates to the metal in either a bidentate κ 2[N,N'] or tridentate κ 3[N,N',S] fashion, depending on the nature of ligand and/or identity of the metal atom. In the case of a less basic SPh moiety, amore » bidentate coordination mode was identified for harder metals (Mn, Fe), whereas a tridentate coordination mode was identified in the case of a more basic SBn moiety with softer metals (Ni, Cu). In the intermediate case of Co, ligands a and b coordinate via κ 2[N,N'] and κ 3[N,N',S] coordination modes, which can be conveniently predicted by DFT calculations. Finally, for the softest metal (Cu), ligand a coordinates in a κ 3[N,N',S] fashion.« less

  15. Structures of M2(SO2)6B12F12 (M = Ag or K) and Ag2(H2O)4B12F12: Comparison of the Coordination of SO2 versus H2O and of B12F122- versus Other Weakly Coordinating Anions to Metal Ions in the Solid State.

    PubMed

    Malischewski, Moritz; Peryshkov, Dmitry V; Bukovsky, Eric V; Seppelt, Konrad; Strauss, Steven H

    2016-12-05

    The structures of three solvated monovalent cation salts of the superweak anion B 12 F 12 2- (Y 2- ), K 2 (SO 2 ) 6 Y, Ag 2 (SO 2 ) 6 Y, and Ag 2 (H 2 O) 4 Y, are reported and discussed with respect to previously reported structures of Ag + and K + with other weakly coordinating anions. The structures of K 2 (SO 2 ) 6 Y and Ag 2 (SO 2 ) 6 Y are isomorphous and are based on expanded cubic close-packed arrays of Y 2- anions with M(OSO) 6 + complexes centered in the trigonal holes of one expanded close-packed layer of B 12 centroids (⊙). The K + and Ag + ions have virtually identical bicapped trigonal prism MO 6 F 2 coordination spheres, with M-O distances of 2.735(1)-3.032(2) Å for the potassium salt and 2.526(5)-2.790(5) Å for the silver salt. Each M(OSO) 6 + complex is connected to three other cationic complexes through their six μ-SO 2 -κ 1 O,κ 2 O' ligands. The structure of Ag 2 (H 2 O) 4 Y is unique [different from that of K 2 (H 2 O) 4 Y]. Planes of close-packed arrays of anions are offset from neighboring planes along only one of the linear ⊙···⊙···⊙ directions of the close-packed arrays, with [Ag(μ-H 2 O) 2 Ag(μ-H 2 O) 2 )] ∞ infinite chains between the planes of anions. There are two nearly identical AgO 4 F 2 coordination spheres, with Ag-O distances of 2.371(5)-2.524(5) Å and Ag-F distances of 2.734(4)-2.751(4) Å. This is only the second structurally characterized compound with four H 2 O molecules coordinated to a Ag + ion in the solid state. Comparisons with crystalline H 2 O and SO 2 solvates of other Ag + and K + salts of weakly coordinating anions show that (i) N[(SO 2 ) 2 (1,2-C 6 H 4 )] - , BF 4 - , SbF 6 - , and Al(OC(CF 3 ) 3 ) 4 - coordinate much more strongly to Ag + than does Y 2- , (ii) SnF 6 2- coordinates somewhat more strongly to K + than does Y 2- , and (iii) B 12 Cl 12 2- coordinates to K + about the same as, if not slightly weaker than, Y 2- .

  16. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  17. Occupational exposure to petroleum-based and oxygenated solvents and hypopharyngeal and laryngeal cancer in France: the ICARE study.

    PubMed

    Barul, Christine; Carton, Matthieu; Radoï, Loredana; Menvielle, Gwenn; Pilorget, Corinne; Bara, Simona; Stücker, Isabelle; Luce, Danièle

    2018-04-05

    To examine associations between occupational exposure to petroleum-based and oxygenated solvents and the risk of hypopharyngeal and laryngeal cancer. ICARE is a large, frequency-matched population-based case-control study conducted in France. Lifetime occupational history, tobacco smoking and alcohol consumption were collected. Analyses were restricted to men and included 383 cases of hypopharyngeal cancer, 454 cases of laryngeal cancer, and 2780 controls. Job-exposure matrices were used to assess exposure to five petroleum-based solvents (benzene; gasoline; white spirits; diesel, fuels and kerosene; special petroleum products) and to five oxygenated solvents (alcohols; ketones and esters; ethylene glycol; diethyl ether; tetrahydrofuran). Odds ratios (ORs) adjusted for smoking, alcohol drinking and other potential confounders and 95% confidence intervals (CI) were estimated with unconditional logistic models. No significant association was found between hypopharyngeal or laryngeal cancer risk and exposure to the solvents under study. Non-significantly elevated risks of hypopharyngeal cancer were found in men exposed to high cumulative levels of white spirits (OR = 1.46; 95% CI: 0.88-2.43) and tetrahydrofuran (OR = 2.63; 95CI%: 0.55-12.65), with some indication of a dose-response relationship (p for trend: 0.09 and 0.07 respectively). This study provides weak evidence for an association between hypopharyngeal cancer and exposure to white spirits and tetrahydrofuran, and overall does not suggest a substantial role of exposure to petroleum-based or oxygenated solvents in hypopharyngeal or laryngeal cancer risk.

  18. Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes.

    PubMed

    Gkionis, Konstantinos; Kruse, Holger; Šponer, Jiří

    2016-04-12

    Modern dispersion-corrected DFT methods have made it possible to perform reliable QM studies on complete nucleic acid (NA) building blocks having hundreds of atoms. Such calculations, although still limited to investigations of potential energy surfaces, enhance the portfolio of computational methods applicable to NAs and offer considerably more accurate intrinsic descriptions of NAs than standard MM. However, in practice such calculations are hampered by the use of implicit solvent environments and truncation of the systems. Conventional QM optimizations are spoiled by spurious intramolecular interactions and severe structural deformations. Here we compare two approaches designed to suppress such artifacts: partially restrained continuum solvent QM and explicit solvent QM/MM optimizations. We report geometry relaxations of a set of diverse double-quartet guanine quadruplex (GQ) DNA stems. Both methods provide neat structures without major artifacts. However, each one also has distinct weaknesses. In restrained optimizations, all errors in the target geometries (i.e., low-resolution X-ray and NMR structures) are transferred to the optimized geometries. In QM/MM, the initial solvent configuration causes some heterogeneity in the geometries. Nevertheless, both approaches represent a decisive step forward compared to conventional optimizations. We refine earlier computations that revealed sizable differences in the relative energies of GQ stems computed with AMBER MM and QM. We also explore the dependence of the QM/MM results on the applied computational protocol.

  19. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Zafer Yeşilel, Okan; Büyükgüngör, Orhan

    Four coordination polymers including, [Co(µ-Htbip){sub 2}(µ-dib)]{sub n} (1), [Co(µ-tbip)(µ-dmib){sub 0.5}]{sub n} (2), [Zn{sub 2}(µ-tbip)(µ{sub 3}-tbip)(µ-dmib){sub 1.5}]{sub n} (3) and [Cd(µ{sub 3}-tbip)(µ-dib){sub 0.5} (H{sub 2}O)]{sub n} (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structuremore » with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Graphical abstract: Four coordination polymers were hydrothermally synthesized and characterized by various techniques. The complexes showed the structural diversity depending on ligands and coordination number of metal centers. The tbip ligand displayed four different coordination modes in its complexes. In 1 and 2, complexes 1 and 2 are 3D and 2D structures with the dia and sql topologies depending on coordination geometries of Co ions, respectively. Complexes 3 and 4 are 3D and 2D structures with the fsh 4,6-conn and sql topology, respectively. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Highlights: • Four new 2D and 3D coordination polymers with 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers. • The structural diversity depending on ligands and coordination number of metal centers. • Fluorescent sensor for the detection of acetone.« less

  20. Deep brain stimulation

    MedlinePlus

    ... the skull Problems with speech, memory, muscle weakness, balance, vision, coordination, and other functions, which may be short-term or permanent Seizures Stroke Risks of general anesthesia are: Reactions to medicines Problems breathing

  1. Zonisamide

    MedlinePlus

    ... difficulty thinking of words or trouble speaking difficulty thinking or concentrating lack of coordination difficulty walking severe weakness severe muscle pain extreme tiredness loss of appetite fast, shallow breathing irregular heartbeat loss of consciousness Zonisamide ...

  2. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  3. Antioxidant Properties of Pterocarpans through Their Copper(II) Coordination Ability. A DFT Study in Vacuo and in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Alagona, Giuliano; Ghio, Caterina

    2009-10-01

    The antioxidant activity of 3,9-dimethoxy-4-prenylpterocarpan (bitucarpin A) and 3,9-dihydroxy-4,8-diprenylpterocarpan (erybraedin C) is supposed to be related to their copper coordination ability. Therefore several complexes with Cu2+ of low-energy conformers of these two prenylated pterocarpans, whose conformational landscape was the subject of a prior B3LYP/6-31G* study (Alagona, Ghio, Monti Phys. Chem. Chem. Phys. 2004, 6, 2849), have been taken into account at the same computational level, with the metal ion described by effective core potentials in the LanL2DZ valence basis set. Their metal ion affinity (MIA) values have been determined and compared with the results obtained earlier with the same methods for the preferred binding sites of plicatin B, a prenylchalcone that can exist in E and Z configurations as well as in tautomeric forms. The stability order of the metalated species at the various coordination sites strongly depends on their position and nature. The spin density of the cation upon ligand coordination becomes vanishingly small, whereas the ligand spin density approaches 1. Thus the ligand is oxidized to a radical cation (Ligand•+), while Cu(II) is reduced to Cu(I). A very favorable MIA is obtained in vacuo when Cu2+ is chelated between the prenyl and O lone pair moieties for both pterocarpans (MIA = 370 and 380 kcal/mol for bitucarpin A and erybraedin C, respectively). High affinity values are found also when the cation is sequestered within the two end groups (prenyl π density and D ring) in the Ot configuration (MIA = 371 and 373 kcal/mol for bitucarpin A and erybraedin C, respectively). In aqueous solution, the solvent effect dampens the free energy differences and reduces the MIA especially when the ion is remarkably exposed to the solvent. Conversely, when Cu2+ is sequestered, the MIA decrease in solution is limited (MIA = 327 and 360 kcal/mol for bitucarpin A and erybraedin C, respectively). The solvent effect is significantly larger in plicatin B, where the MIA is lowered by 80 to 140 kcal/mol, probably because (a) the screening ability of the substituted phenolic ring is lower and (b) the positive charge on the ligand is less efficiently delocalized than in the four fused ring system of pterocarpans.

  4. Volatile anesthetic binding to proteins is influenced by solvent and aliphatic residues.

    PubMed

    Streiff, John H; Jones, Keith A

    2008-10-01

    The main objective of this work was to characterize VA binding sites in multiple anesthetic target proteins. A computational algorithm was used to quantify the solvent exclusion and aliphatic character of amphiphilic pockets in the structures of VA binding proteins. VA binding sites in the protein structures were defined as the pockets with solvent exclusion and aliphatic character that exceeded minimum values observed in the VA binding sites of serum albumin, firefly luciferase, and apoferritin. We found that the structures of VA binding proteins are enriched in these pockets and that the predicted binding sites were consistent with experimental determined binding locations in several proteins. Autodock3 was used to dock the simulated molecules of 1,1,1,2,2-pentafluoroethane, difluoromethyl 1,1,1,2-tetrafluoroethyl ether, and sevoflurane and the isomers of halothane and isoflurane into these potential binding sites. We found that the binding of the various VA molecules to the amphiphilic pockets is driven primarily by VDW interactions and to a lesser extent by weak hydrogen bonding and electrostatic interactions. In addition, the trend in Delta G binding values follows the Meyer-Overton rule. These results suggest that VA potencies are related to the VDW interactions between the VA ligand and protein target. It is likely that VA bind to sites with a high degree of solvent exclusion and aliphatic character because aliphatic residues provide favorable VDW contacts and weak hydrogen bond donors. Water molecules occupying these sites maintain pocket integrity, associate with the VA ligand, and diminish the unfavorable solvation enthalpy of the VA. Water molecules displaced into the bulk by the VA ligand may provide an additional favorable enthalpic contribution to VA binding. Anesthesia is a component of many health related procedures, the outcomes of which could be improved with a better understanding of the molecular targets and mechanisms of anesthetic action.

  5. Monitoring equilibrium reaction dynamics of a nearly barrierless molecular rotor using ultrafast vibrational echoes

    NASA Astrophysics Data System (ADS)

    Nilsen, Ian A.; Osborne, Derek G.; White, Aaron M.; Anna, Jessica M.; Kubarych, Kevin J.

    2014-10-01

    Using rapidly acquired spectral diffusion, a recently developed variation of heterodyne detected infrared photon echo spectroscopy, we observe ˜3 ps solvent independent spectral diffusion of benzene chromium tricarbonyl (C6H6Cr(CO)3, BCT) in a series of nonpolar linear alkane solvents. The spectral dynamics is attributed to low-barrier internal torsional motion. This tripod complex has two stable minima corresponding to staggered and eclipsed conformations, which differ in energy by roughly half of kBT. The solvent independence is due to the relative size of the rotor compared with the solvent molecules, which create a solvent cage in which torsional motion occurs largely free from solvent damping. Since the one-dimensional transition state is computed to be only 0.03 kBT above the higher energy eclipsed conformation, this model system offers an unusual, nearly barrierless reaction, which nevertheless is characterized by torsional coordinate dependent vibrational frequencies. Hence, by studying the spectral diffusion of the tripod carbonyls, it is possible to gain insight into the fundamental dynamics of internal rotational motion, and we find some evidence for the importance of non-diffusive ballistic motion even in the room-temperature liquid environment. Using several different approaches to describe equilibrium kinetics, as well as the influence of reactive dynamics on spectroscopic observables, we provide evidence that the low-barrier torsional motion of BCT provides an excellent test case for detailed studies of the links between chemical exchange and linear and nonlinear vibrational spectroscopy.

  6. A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron- complexed curcumin

    NASA Astrophysics Data System (ADS)

    Mohammed, Fatima; Rashid-Doubell, Fiza; Cassidy, Seamas; Henari, Fryad

    2017-08-01

    Curcumin is a yellow phenolic compound with a wide range of reported biological effects. However, two main obstacles hinder the use of curcumin therapeutically, namely its poor bioavailability and photostability. We have synthesized two curcumin complexes, the first a boron curcumin complex (B-Cur2) and the second an iron (Fe-Cur3) complex of curcumin. Both derivatives showed high fluorescence efficiency (quantum yield) and greater photostability in solution. The improved photostability could be attributed to the coordination structures and the removal of β-diketone group from curcumin. The fluorescence and ultra violet/visible absorption spectra of curcumin, B-Cur2 and Fe-Cur3 all have a similar spectral pattern when dissolved in the same organic solvent. However, a shift towards a lower wavelength was observed when moving from polar to non-polar solvents, possibly due to differences in solvent polarity. A plot of Stokes' shift vs the orientation polarity parameter (Δf) or vs the solvent polarity parameter (ET 30) showed an improved correlation between the solvent polarity parameter than with the orientation polarity parameter and indicating that the red shift observed could be due to hydrogen-bonding between the solvent molecules. A similar association was obtained when Stokes' shift was replaced by maximum synchronous fluorescence. Both B-Cur2 and Fe-Cur3 had larger quantum yields than curcumin, suggesting they may be good candidates for medical imaging and in vitro studies.

  7. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations.

    PubMed

    Chen, Ying; Bylaska, Eric J; Weare, John H

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.

  8. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of themore » observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.« less

  9. Solvophobic and solvophilic contributions in the water-to-aqueous guanidinium chloride transfer free energy of model peptides

    NASA Astrophysics Data System (ADS)

    Tomar, Dheeraj S.; Ramesh, Niral; Asthagiri, D.

    2018-06-01

    We study the solvation free energy of two different conformations (helix and extended) of two different peptides (deca-alanine and deca-glycine) in two different solvents (water and aqueous guanidinium chloride, GdmCl). The free energies are obtained using the quasichemical organization of the potential distribution theorem, an approach that naturally provides the repulsive (solvophobic or cavity) and attractive (solvophilic) contributions to solvation. The solvophilic contribution is further parsed into a chemistry contribution arising from solute interaction with the solvent in the first solvation shell and a long-range contribution arising from non-specific interactions between the solute and the solvent beyond the first solvation shell. The cavity contribution is obtained for two different envelopes, ΣS E, which theory helps identify as the solvent excluded volume, and ΣG, a larger envelope beyond which solute-solvent interactions are Gaussian. The ΣS E envelope is independent of the solvent, as expected on the basis of the insensitivity to the solvent type of the distance of closest approach between protein heavy atoms and solvent heavy atoms, but contrary to the intuition based on treating solvent constituents as spheres of some effective radii. For both envelopes, the cavity contribution in water is proportional to the surface area of the envelope. The same does not hold for GdmCl(aq), revealing the limitation of using molecular area to assess solvation energetics. The ΣG-cavity contribution predicts that GdmCl(aq) should favor the more compact state, contrary to the role of GdmCl in unfolding proteins. The chemistry contribution attenuates this effect, but still the net local (chemistry plus ΣG-packing) contribution is inadequate in capturing the role of GdmCl. With the inclusion of the long-range contribution, which is dominated by van der Waals interaction, aqueous GdmCl favors the extended conformation over the compact conformation. Our finding emphasizes the importance of weak, but attractive, long-range dispersion interactions in protein solution thermodynamics.

  10. Solvophobic and solvophilic contributions in the water-to-aqueous guanidinium chloride transfer free energy of model peptides.

    PubMed

    Tomar, Dheeraj S; Ramesh, Niral; Asthagiri, D

    2018-06-14

    We study the solvation free energy of two different conformations (helix and extended) of two different peptides (deca-alanine and deca-glycine) in two different solvents (water and aqueous guanidinium chloride, GdmCl). The free energies are obtained using the quasichemical organization of the potential distribution theorem, an approach that naturally provides the repulsive (solvophobic or cavity) and attractive (solvophilic) contributions to solvation. The solvophilic contribution is further parsed into a chemistry contribution arising from solute interaction with the solvent in the first solvation shell and a long-range contribution arising from non-specific interactions between the solute and the solvent beyond the first solvation shell. The cavity contribution is obtained for two different envelopes, Σ SE , which theory helps identify as the solvent excluded volume, and Σ G , a larger envelope beyond which solute-solvent interactions are Gaussian. The Σ SE envelope is independent of the solvent, as expected on the basis of the insensitivity to the solvent type of the distance of closest approach between protein heavy atoms and solvent heavy atoms, but contrary to the intuition based on treating solvent constituents as spheres of some effective radii. For both envelopes, the cavity contribution in water is proportional to the surface area of the envelope. The same does not hold for GdmCl(aq), revealing the limitation of using molecular area to assess solvation energetics. The Σ G -cavity contribution predicts that GdmCl(aq) should favor the more compact state, contrary to the role of GdmCl in unfolding proteins. The chemistry contribution attenuates this effect, but still the net local (chemistry plus Σ G -packing) contribution is inadequate in capturing the role of GdmCl. With the inclusion of the long-range contribution, which is dominated by van der Waals interaction, aqueous GdmCl favors the extended conformation over the compact conformation. Our finding emphasizes the importance of weak, but attractive, long-range dispersion interactions in protein solution thermodynamics.

  11. A unique substituted Co(II)-formate coordination framework exhibits weak ferromagnetic single-chain-magnet like behavior.

    PubMed

    Zhao, Jiong-Peng; Yang, Qian; Liu, Zhong-Yi; Zhao, Ran; Hu, Bo-Wen; Du, Miao; Chang, Ze; Bu, Xian-He

    2012-07-04

    A magnetic isolated chain-based substituted cobalt-formate framework was obtained with isonicotine as a spacer. In the chain, canted antiferromagnetic interactions exist in between the Co(II) ions, and slow magnetic relaxation is detected at low temperature. For the block effects of the isonicotine ligands, the complex could be considered as a peculiar example of a weak ferromagnetic single-chain-magnet.

  12. Coordination-Supported Imidazolate Networks: Water- and Heat-Stable Mesoporous Polymers for Catalysis.

    PubMed

    Zhang, Pengfei; Yang, Shize; Chisholm, Matthew F; Jiang, Xueguang; Huang, Caili; Dai, Sheng

    2017-07-26

    The poor water stability of most porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is widely recognized as a barrier hampering their practical applications. Here, a facile and scalable route to prepare metal-containing polymers with a good stability in boiling water (100 °C, 24 h) and air (up to 390 °C) is presented. The bifunctional 1-vinylimidazole (VIm) with a coordinating site and a polymerizable organic group is introduced as the building block. This core strategy includes the synthesis of a rigid monomer with four VIm branches through a coordination process at room temperature, followed by a radical polymerization. We refer to this material as coordination-supported imidazolate networks (CINs). Interestingly, CINs are composed of rich mesopores from 2-15 nm, as characterized by low-energy (60 kV) STEM-HAADF images. In particular, the stable CINs illustrate a high turnover frequency (TOF) of 779 h -1 in the catalytic oxidation of phenol with H 2 O as the green solvent. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Wood liquefaction and its application to Novolac resin

    Treesearch

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Wood liquefaction was conducted using phenol as a reagent solvent with a weak acid catalyst in two different reactors: (Alma et al., 1995a.) an atmospheric glass reactor and (Alma et al., 1995b.) a sealed Parr® reactor. Residues were characterized by wet chemical analyses, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). The FT-IR...

  14. Weak coordination between leaf structure and function among closely related tomato species.

    PubMed

    Muir, Christopher D; Conesa, Miquel À; Roldán, Emilio J; Molins, Arántzazu; Galmés, Jeroni

    2017-03-01

    Theory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resource-acquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa. We found weak integration between leaf structure (e.g. leaf mass per area) and physiological function (photosynthetic rate, biochemical capacity and CO 2 diffusion), even though all were arrayed in the predicted direction along a 'fast-slow' spectrum. This suggests considerable scope for unique trait combinations to evolve in response to new environments or in crop breeding. In particular, we found that partially independent variation in stomatal and mesophyll conductance may allow a plant to improve water-use efficiency without necessarily sacrificing maximum photosynthetic rates. Our study does not imply that functional trait spectra, such as the leaf economics spectrum, are unimportant, but that many important axes of variation within a taxonomic group may be unique and not generalizable to other taxa. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Selecting the spin crossover profile with controlled crystallization of mononuclear Fe(iii) polymorphs.

    PubMed

    Vicente, Ana I; Ferreira, Liliana P; Carvalho, Maria de Deus; Rodrigues, Vítor H N; Dîrtu, Marinela M; Garcia, Yann; Calhorda, Maria José; Martinho, Paulo N

    2018-05-08

    Two polymorphic species of the [Fe(5-Br-salEen)2]ClO4 compound were obtained, each of them being selectively recovered after evaporation of the solvent at a controlled rate. While polymorph 1a is formed during slow evaporation, fast evaporation favors polymorph 1b. The importance of the evaporation rate was recognized after detailed studies of the reaction temperature, solvent evaporation rate and crystallization temperature effects. The complex in the new polymorphic form 1a showed an abrupt spin crossover at 172 K with a small 1 K hysteresis window and over a narrow 10 K range. 57Fe Mössbauer spectroscopy and differential scanning calorimetry, complemented by X-ray studies for both the high-spin and low-spin forms, were used to further characterize the new polymorphic phase 1a. Both polymorphs are based on the same Fe(iii) complex cation hydrogen bonded to the perchlorate anion. These units are loosely bound in the crystals via weak interactions. In the new polymorph 1a, the hydrogen bonds are stronger, while the weak hydrogen and halogen bonds, as well as π-π stacking, create a cooperative network, not present in 1b, responsible for the spin transition profile.

  16. Specific and Non-Specific Protein Association in Solution: Computation of Solvent Effects and Prediction of First-Encounter Modes for Efficient Configurational Bias Monte Carlo Simulations

    PubMed Central

    Cardone, Antonio; Pant, Harish; Hassan, Sergio A.

    2013-01-01

    Weak and ultra-weak protein-protein association play a role in molecular recognition, and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolves. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized based on binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed. PMID:24044772

  17. Λ N → NN EFT potentials and hypertriton non-mesonic weak decay

    NASA Astrophysics Data System (ADS)

    Pérez-Obiol, Axel; Entem, David R.; Nogga, Andreas

    2018-05-01

    The potential for the Λ N → NN weak transition, the main responsible for the non-mesonic weak decay of hypernuclei, has been developed within the framework of effective field theory (EFT) up to next-to-leading order (NLO). The leading order (LO) and NLO contributions have been calculated in both momentum and coordinate space, and have been organised into the different operators which mediate the N → NN transition. We compare the ranges of the one-meson and two-pion exchanges for each operator. The non-mesonic weak decay of the hypertriton has been computed within the plane-wave approximation using the LO weak potential and modern strong EFT NN potentials. Formally, two methods to calculate the final state interactions among the decay products are presented. We briefly comment on the calculation of the {}{{Λ }}{}3H{\\to }3 He+{π }- mesonic weak decay.

  18. Enhanced and effective conformational sampling of protein molecular systems for their free energy landscapes.

    PubMed

    Higo, Junichi; Ikebe, Jinzen; Kamiya, Narutoshi; Nakamura, Haruki

    2012-03-01

    Protein folding and protein-ligand docking have long persisted as important subjects in biophysics. Using multicanonical molecular dynamics (McMD) simulations with realistic expressions, i.e., all-atom protein models and an explicit solvent, free-energy landscapes have been computed for several systems, such as the folding of peptides/proteins composed of a few amino acids up to nearly 60 amino-acid residues, protein-ligand interactions, and coupled folding and binding of intrinsically disordered proteins. Recent progress in conformational sampling and its applications to biophysical systems are reviewed in this report, including descriptions of several outstanding studies. In addition, an algorithm and detailed procedures used for multicanonical sampling are presented along with the methodology of adaptive umbrella sampling. Both methods control the simulation so that low-probability regions along a reaction coordinate are sampled frequently. The reaction coordinate is the potential energy for multicanonical sampling and is a structural identifier for adaptive umbrella sampling. One might imagine that this probability control invariably enhances conformational transitions among distinct stable states, but this study examines the enhanced conformational sampling of a simple system and shows that reasonably well-controlled sampling slows the transitions. This slowing is induced by a rapid change of entropy along the reaction coordinate. We then provide a recipe to speed up the sampling by loosening the rapid change of entropy. Finally, we report all-atom McMD simulation results of various biophysical systems in an explicit solvent.

  19. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  20. Direct Immersion Annealing of Thin Block Copolymer Films.

    PubMed

    Modi, Arvind; Bhaway, Sarang M; Vogt, Bryan D; Douglas, Jack F; Al-Enizi, Abdullah; Elzatahry, Ahmed; Sharma, Ashutosh; Karim, Alamgir

    2015-10-07

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene-poly(methyl methacrylate) (PS-PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in the "optimal long-range order" processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.

  1. Direct Immersion Annealing of Thin Block Copolymer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, Arvind; Bhaway, Sarang M.; Vogt, Bryan D.

    2015-09-09

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene–poly(methyl methacrylate) (PS–PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in themore » “optimal long-range order” processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering.« less

  2. Rapid method for the quantification of hydroquinone concentration: chemiluminescent analysis.

    PubMed

    Chen, Tung-Sheng; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Jong, Gwo-Ping; Wang, Hsueh-Fang; Shen, Chia-Yao; Padma, V Vijaya; Huang, Chih-Yang; Chang, Yen-Lin

    2015-11-01

    Topical hydroquinone serves as a skin whitener and is usually available in cosmetics or on prescription based on the hydroquinone concentration. Quantification of hydroquinone content therefore becomes an important issue in topical agents. High-performance liquid chromatography (HPLC) is the commonest method for determining hydroquinone content in topical agents, but this method is time-consuming and uses many solvents that can become an environmental issue. We report a rapid method for quantifying hydroquinone content by chemiluminescent analysis. Hydroquinone induces the production of hydrogen peroxide in the presence of basic compounds. Hydrogen peroxide induced by hydroquinone oxidized light-emitting materials such as lucigenin, resulted in the production of ultra-weak chemiluminescence that was detected by a chemiluminescence analyzer. The intensity of the chemiluminescence was found to be proportional to the hydroquinone concentration. We suggest that the rapid (measurement time, 60 s) and virtually solvent-free (solvent volume, <2 mL) chemiluminescent method described here for quantifying hydroquinone content may be an alternative to HPLC analysis. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes.

    PubMed

    Hári, József; Gyürki, Ádám; Sárközi, Márk; Földes, Enikő; Pukánszky, Béla

    2016-01-15

    Halloysite nanotubes used as potential carrier material for a controlled release stabilizer in polyethylene were thoroughly characterized with several techniques including the measurement of specific surface area, pore volume and surface energy. The high surface energy of the halloysite results in the strong bonding of the additive to the surface. Dissolution experiments carried out with eight different solvents for the determination of the effect of solvent characteristics on the amount of irreversibly bonded quercetin proved that adsorption and dissolution depend on competitive interactions prevailing in the system. Solvents with low polarity dissolve only surplus quercetin adsorbed in multilayers. Polyethylene is a very apolar polymer forming weak interactions with every substance; quercetin dissolves into it from the halloysite surface only above a critical surface coverage. Stabilization experiments confirmed that strong adhesion prevents dissolution and results in limited stabilization efficiency. At larger adsorbed amounts better stability and extended effect were measured indicating dissolution and controlled release. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    DOE PAGES

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne

    2015-11-24

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ionsmore » having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D 2-tagged GlyGlyH +·(H 2O) 1–4 are presented. As a result, they display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.« less

  5. Computer simulations of the solvatochromism of betaine-30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mente, S.R.; Maroncelli, M.

    1999-09-09

    Monte Carlo simulations of the pyridinium N-phenolate dye betaine-30 in 12 solvents (20 solvent representations) were performed in order to explore the molecular basis of the E{sub T}(30) scale of solvent polarity. Ab initio (HF/6-31G{sup *}) and semiempirical (AM1 and INDO/S) electronic structure calculations were used to determine the geometry and charge distribution of betaine-30 in its S{sub 0} and S{sub 1} states. The solvent effect on the betaine absorption spectrum was assumed to derive from electrostatic interactions between the effective charge distributions of solvent molecules and the charge shift brought about by the S{sub 0} {r_arrow} S{sub 1} transition.more » Two models for this charge shift, one obtained from INDO/S calculations and the other an idealized two-site model, were used for the spectral calculations. Good agreement between simulated and observed {Delta}E{sub T} shifts (E{sub T}(30) values measured relative to the nonpolar standard tetramethylsilane) was found for both charge-shift models. In water and other hydroxylic solvents, the O atom of the betaine solute was observed to form moderately strong hydrogen bonds to between one and two solvent molecules. The contribution of these specifically coordinated molecules to the {Delta}E{sub T} shift was found to be large, (30--60%) and comparable to experimental estimates. Additional simulations of acetonitrile and methanol in equilibrium with the S{sub 1} state of betaine-30 were used to determine reorganization energies in these solvents and to decide the extent to which the solvent response to the S{sub 0} {leftrightarrow} S{sub 1} transition conforms to linear response predictions. In both solvents, the spectral distributions observed in the S{sub 0} state simulations were {approximately} 15% narrower than those in the S{sub 1} simulations, indicating only a relatively small departure from linear behavior. Reorganization energies were also estimated for a number of other solvents and compared to values reported in previous experimental and theoretical studies.« less

  6. Mobile prehospital emergency care: an analysis of implementation in the State of Rio de Janeiro, Brazil.

    PubMed

    O'Dwyer, Gisele; Machado, Cristiani Vieira; Alves, Renan Paes; Salvador, Fernanda Gonçalves

    2016-06-01

    Mobile prehospital care is a key component of emergency care. The aim of this study was to analyze the implementation of the State of Rio de Janeiro's Mobile Emergency Medical Service (SAMU, acronym in Portuguese). The methodology employed included document analysis, visits to six SAMU emergency call centers, and semistructured interviews conducted with 12 local and state emergency care coordinators. The study's conceptual framework was based on Giddens' theory of structuration. Intergovernmental conflicts were observed between the state and municipal governments, and between municipal governments. Despite the shortage of hospital beds, the SAMUs in periphery regions were better integrated with the emergency care network than the metropolitan SAMUs. The steering committees were not very active and weaknesses were observed relating to the limited role played by the state government in funding, management, and monitoring. It was concluded that the SAMU implementation process in the state was marked by political tensions and management and coordination weaknesses. As a result, serious drawbacks remain in the coordination of the SAMU with the other health services and the regionalization of emergency care in the state.

  7. Aromatic as well as aliphatic hydrocarbon solvent axonopathy.

    PubMed

    Spencer, Peter S; Kim, Min Sun; Sabri, Mohammad I

    2002-03-01

    Superfund sites that contain mixtures of aromatic and aliphatic solvents represent an undefined health hazard. After prolonged exposure to relatively high levels of certain aliphatic solvents (e.g. n-hexane, 2-hexanone), humans and animals develop a dose-dependent neurodegeneration that occurs clinically as a symmetrical peripheral neuropathy. This is triggered by the action of 2,5-hexanedione (1,2-diacetylethane), a 1,4-diketone (gamma-diketone) metabolite that targets proteins required for the maintenance of neuronal (and testicular Sertoli cell) integrity. Certain aromatic solvents (1,2-diethylbenzene, 1,2,4-triethylbenzene) cause electrophysiological changes consistent with sensorimotor neuropathy in rodents, but the underlying mechanisms and pathogenesis are unclear. Our recent studies show that the o-diacetyl derivative and likely metabolite of 1,2-diethylbenzene, 1,2-diacetylbenzene, behaves as a neurotoxic (aromatic) gamma-diketone of high neurotoxic potency. Rats treated with 1,2-diacetylbenzene develop limb weakness associated with proximal, neurofilament-filled giant axonal swellings comparable to those seen in animals treated with the potent 3,4-dimethyl derivative of 2,5-hexanedione. The blue chromogen induced by treatment with 1,2-diacetylbenzene is under study as a possible urinary biomarker of exposure to aromatic solvents (e.g. 1,2-diethylbenzene, tetralin) with neurotoxic potential. Development and validation of sensitive new biomarkers, especially for non-cancer endpoints, will aid in assessing the health risk associated with exposure to hazardous substances at Superfund sites.

  8. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.

    PubMed

    Smirnov, Vladimir S; Kislenko, Sergey A

    2018-01-05

    The molecular life of intermediates, namely, O 2 - and Li + , produced during the discharge of aprotic Li-O 2 batteries was investigated by molecular dynamics simulation. This work is of potential interest in the development of new electrolytes for Li-air batteries. We present the results on the structure and stability of the Li + and O 2 - solvation shells and the thermodynamics and kinetics of the ion-association reaction in solvents such as dimethyl sulfoxide (DMSO), dimethoxyethane (DME), and acetonitrile (ACN). The residence time of solvent molecules in the Li + solvation shell increases with the solvent donor number and is 100 times larger in DMSO than in ACN. In DMSO and DME, the Li + ion diffuses with its solvation shell as a whole. On the contrary, in ACN it diffuses as a "bare" ion because of weak solvation. The rate constant for the association of the lithium ion with the superoxide anion in DMSO is two orders of magnitude slower than that in ACN due to fact that the free-energy barrier is 2.5 times larger in DMSO than in ACN. In addition, we show that despite the strong dependence of the Li + shell stability on donor number, the rate of association does not necessarily correlate with this solvent property. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dynamic solvophobic effect and its cooperativity in the hydrogen-bonding liquids studied by dielectric and nuclear magnetic resonance relaxation.

    PubMed

    Yamaguchi, Tsuyoshi; Furuhashi, Hiroki; Matsuoka, Tatsuro; Koda, Shinobu

    2008-12-25

    The reorientational relaxation of solvent molecules in the mixture of nonpolar solutes and hydrogen-bonding liquids including water, alcohols, and amides are studied by dielectric and 2H-nuclear magnetic resonance (NMR) spin-lattice relaxations. The retardation of the reorientational motion of the solvent by weak solute-solvent interaction is observed in all the solvent systems. On the other hand, no clear correlation between the strength of the solute-solvent interaction and the slowing down of the solvent motion is found in N,N-dimethylacetamide, which suggests the importance of the hydrogen bonding in the dynamic solvophobic effect. The cooperativity of the reorientational relaxation is investigated by the comparison between the collective relaxation measured by the dielectric spectroscopy and the single-molecular reorientation determined by NMR. The modification of the dielectric relaxation time caused by the dissolution of the solute is larger than that of the single-molecular reorientational relaxation time in all the solvents studied here. The effect of the static correlation between the dipole moments of different molecules is calculated from the static dielectric constant, and the effect of the dynamic correlation is estimated. The difference in the effects of the solutes on the collective and single-molecular reorientational relaxation is mainly ascribed to the dynamic cooperativity in the cases of water and alcohols, which is consistent with the picture on the dynamic solvophobicity derived by our previous theoretical analysis (Yamaguchi, T.; Matsuoka, T.; Koda, S. J. Chem. Phys. 2004, 120, 7590). On the other hand, the static correlation plays the principal role in the case of N-methylformamide.

  10. Unravelling the mechanisms of vibrational relaxation in solution.

    PubMed

    Grubb, Michael P; Coulter, Philip M; Marroux, Hugo J B; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2017-04-01

    We present a systematic study of the mode-specific vibrational relaxation of NO 2 in six weakly-interacting solvents (perfluorohexane, perfluoromethylcyclohexane, perfluorodecalin, carbon tetrachloride, chloroform, and d-chloroform), chosen to elucidate the dominant energy transfer mechanisms in the solution phase. Broadband transient vibrational absorption spectroscopy has allowed us to extract quantum state-resolved relaxation dynamics of the two distinct NO 2 fragments produced from the 340 nm photolysis of N 2 O 4 → NO 2 (X) + NO 2 (A) and their separate paths to thermal equilibrium. Distinct relaxation pathways are observed for the NO 2 bending and stretching modes, even at energies as high as 7000 cm -1 above the potential minimum. Vibrational energy transfer is governed by different interaction mechanisms in the various solvent environments, and proceeds with timescales ranging from 20-1100 ps. NO 2 relaxation rates in the perfluorocarbon solvents are identical despite differences in acceptor mode state densities, infrared absorption cross sections, and local solvent structure. Vibrational energy is shown to be transferred to non-vibrational solvent degrees of freedom (V-T) through impulsive collisions with the perfluorocarbon molecules. Conversely, NO 2 relaxation in chlorinated solvents is reliant on vibrational resonances (V-V) while V-T energy transfer is inefficient and thermal excitation of the surrounding solvent molecules inhibits faster vibrational relaxation through direct complexation. Intramolecular vibrational redistribution allows the symmetric stretch of NO 2 to act as a gateway for antisymmetric stretch energy to exit the molecule. This study establishes an unprecedented level of detail for the cooling dynamics of a solvated small molecule, and provides a benchmark system for future theoretical studies of vibrational relaxation processes in solution.

  11. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies

    NASA Astrophysics Data System (ADS)

    Byrne, Kevin; Zubair, Muhammad; Zhu, Nianyong; Zhou, Xiao-Ping; Fox, Daniel S.; Zhang, Hongzhou; Twamley, Brendan; Lennox, Matthew J.; Düren, Tina; Schmitt, Wolfgang

    2017-05-01

    Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible.

  12. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies

    PubMed Central

    Byrne, Kevin; Zubair, Muhammad; Zhu, Nianyong; Zhou, Xiao-Ping; Fox, Daniel S.; Zhang, Hongzhou; Twamley, Brendan; Lennox, Matthew J.; Düren, Tina; Schmitt, Wolfgang

    2017-01-01

    Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible. PMID:28485392

  13. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  14. Coordination of the health policy dialogue process in Guinea: pre- and post-Ebola.

    PubMed

    Ade, Nadege; Réne, Adzodo; Khalifa, Mara; Babila, Kevin Ousman; Monono, Martin Ekeke; Tarcisse, Elongo; Nabyonga-Orem, Juliet

    2016-07-18

    Policy dialogue can be defined as an iterative process that involves a broad range of stakeholders discussing a particular issue with a concrete purpose in mind. Policy dialogue in health is increasingly being recognised by health stakeholders in developing countries, as an important process or mechanism for improving collaboration and harmonization in health and for developing comprehensive and evidence-based health sector strategies and plans. It is with this perspective in mind that Guinea, in 2013, started a policy dialogue process, engaging a plethora of actors to revise the country's national health policy and develop a new national health development plan (2015-2024). This study examines the coordination of the policy dialogue process in developing these key strategic governance documents of the Guinean health sector from the actors' perspective. A qualitative case study approach was undertaken, comprising of interviews with key stakeholders who participated in the policy dialogue process. A review of the literature informed the development of a conceptual framework and the data collection survey questionnaire. The results were analysed both inductively and deductively. A total of 22 out of 32 individuals were interviewed. The results suggest both areas of strengths and weaknesses in the coordination of the policy dialogue process in Guinea. The aspects of good coordination observed were the iterative nature of the dialogue and the availability of neutral and well-experienced facilitators. Weak coordination was perceived through the unavailability of supporting documentation, time and financial constraints experienced during the dialogue process. The onset of the Ebola epidemic in Guinea impacted on coordination dynamics by causing a slowdown of its activities and then its virtual halt. The findings herein highlight the need for policy dialogue coordination structures to have the necessary administrative and institutional support to facilitate their effective functioning. The findings also point to the need for further research on the practical and operational aspects of national dialogue coordination structures to determine how to best strengthen their capacities.

  15. The role of the CN vibration in the activated dynamics of LiNC<−>LiCN isomerization in an argon solvent at high temperatures.

    PubMed

    Garcia-Muller, Pablo L; Hernandez, Rigoberto; Benito, R M; Borondo, F

    2014-08-21

    The isomerization between CN-Li and Li-CN in an argon bath provides a paradigmatic example of a reaction in a solvent with tunable coupling. In previous work, we found that the rates exhibited a turnover with the density of the argon bath in the limit that the CN bond was held fixed [P. L. Garcia-Muller, R. Hernandez, R. M. Benito, and F. Borondo, J. Chem. Phys. 137, 204301 (2012)]. Here, we report the effect of the CN bond vibration on the dynamics and the persistence of the turnover. As hypothesized earlier, the CN bond is indeed weakly coupled with the reaction path despite the presence of the argon cage.

  16. Co(II) derivatives of Cu,Zn-superoxide dismutase with the cobalt bound in the place of copper. A new spectroscopic tool for the study of the active site.

    PubMed

    Desideri, A; Cocco, D; Calabrese, L; Rotilio, G

    1984-03-29

    Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.

  17. Nonadiabatic Photodynamics of a Retinal Model in Polar and Nonpolar Environment

    PubMed Central

    2013-01-01

    The nonadiabatic photodynamics of the all-trans-2,4-pentadiene-iminium cation (protonated Schiff base 3, PSB3) and the all-trans-3-methyl-2,4-pentadiene-iminium cation (MePSB3) were investigated in the gas phase and in polar (aqueous) and nonpolar (n-hexane) solutions by means of surface hopping using a multireference configuration-interaction (MRCI) quantum mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for radiationless deactivation to the ground state, and structural and electronic parameters are compared. A strong influence of the polar solvent on the location of the crossing seam, in particular in the bond length alternation (BLA) coordinate, is found. Additionally, inclusion of the polar solvent changes the orientation of the intersection cone from sloped in the gas phase to peaked, thus enhancing considerably its efficiency for deactivation of the molecular system to the ground state. These factors cause, especially for MePSB3, a substantial decrease in the lifetime of the excited state despite the steric inhibition by the solvent. PMID:23470211

  18. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    DOE PAGES

    van Driel, Tim B.; Kjær, Kasper S.; Hartsock, Robert W.; ...

    2016-11-28

    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2(dimen) 4] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute–solvent pair distribution function, enabling themore » solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis.« less

  19. Comparison of energy interaction parameters for the complexation of Pr(III) with glutathione reduced (GSH) in absence and presence of Zn(II) in aqueous and aquated organic solvents using 4f?4f transition spectra as PROBE

    NASA Astrophysics Data System (ADS)

    Singh, Th. David; Sumitra, Ch.; Yaiphaba, N.; Devi, H. Debecca; Devi, M. Indira; Singh, N. Rajmuhon

    2005-04-01

    The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon ( F K), Racah ( E K) and Lande ( ξ4f), Nephelauxetic parameter ( β) and bonding parameter ( b1/2) are computed to explain the nature of complexation.

  20. Interplay of non-Markov and internal friction effects in the barrier crossing kinetics of biopolymers: insights from an analytically solvable model.

    PubMed

    Makarov, Dmitrii E

    2013-01-07

    Conformational rearrangements in biomolecules (such as protein folding or enzyme-ligand binding) are often interpreted in terms of low-dimensional models of barrier crossing such as Kramers' theory. Dimensionality reduction, however, entails memory effects; as a result, the effective frictional drag force along the reaction coordinate nontrivially depends on the time scale of the transition. Moreover, when both solvent and "internal" friction effects are important, their interplay results in a highly nonlinear dependence of the effective friction on solvent viscosity that is not captured by common phenomenological models of barrier crossing. Here, these effects are illustrated using an analytically solvable toy model of an unstructured polymer chain involved in an inter- or intramolecular transition. The transition rate is calculated using the Grote-Hynes and Langer theories, which--unlike Kramers' theory--account for memory. The resulting effective frictional force exerted by the polymer along the reaction coordinate can be rationalized in terms of the effective number of monomers engaged in the transition. Faster transitions (relative to the polymer reconfiguration time scale) involve fewer monomers and, correspondingly, lower friction forces, because the polymer chain does not have enough time to reconfigure in response to the transition.

  1. Diverse Zn(II) MOFs assembled from V-shaped asymmetric multicarboxylate and N-donor ligands

    NASA Astrophysics Data System (ADS)

    Ye, Run-Ping; Yang, Jin-Xia; Zhang, Xin; Zhang, Lei; Yao, Yuan-Gen

    2016-02-01

    By reacting an asymmetry semi-rigid V-shaped linker H3L (H3L = 3-(3-carboxyphenoxy) phthalic acid) and Zn(NO3)2·6H2O under different N-donor ligands in different solvents, four new Zn-based coordination polymers, [Zn(HL)(2,2‧-bpy)(H2O)]n(1), [Zn(HL)(4,4‧-bpy)]n·n(DMA) (2), [Zn3(L)2(phen)3(H2O)]n·n(H2O) (3) and [Zn(HL)(phen)(H2O)]2(4) (2,2‧-bpy = 2,2‧-bipyridine; 4,4‧-bpy = 4,4‧-bipyridine; phen = 1,10-phenanthroline; DMA = N,N-dimethylacetamide) have been obtained. All of these compounds have been clearly identified by single crystal X-ray diffraction analysis. Compound 1 exhibits one-dimensional (1D) chain structure constructed from uninuclear Zn(II) motif, which further extends into 2D supramolecular architecture via intermolecular π-π interactions and hydrogen bonds. Structural analysis reveals that the structure of 2 and 3 can be described as a 2D hcb topology network with the point symbol of {63}. Compound 4 shows a 0D binuclear motif while its 3D packing network has a large potential solvent voids. The results of this research demonstrate that the solvent and the secondary ligands could co-regulate different structural coordination polymers with interesting properties. In addition, the thermal stabilities and solid-state luminescence properties of compounds 1-4 have also been investigated.

  2. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  3. Guide to Understanding Facial Palsy

    MedlinePlus

    ... to many different facial muscles. These muscles control facial expression. The coordinated activity of this nerve and these ... involves a weakness of the muscles responsible for facial expression and side-to-side eye movement. Moebius syndrome ...

  4. [Financing, organization, costs and services performance of the Argentinean health sub-systems.

    PubMed

    Yavich, Natalia; Báscolo, Ernesto Pablo; Haggerty, Jeannie

    2016-01-01

    To analyze the relationship between health system financing and services organization models with costs and health services performance in each of Rosario's health sub-systems. The financing and organization models were characterized using secondary data. Costs were calculated using the WHO/SHA methodology. Healthcare quality was measured by a household survey (n=822). Public subsystem:Vertically integrated funding and primary healthcare as a leading strategy to provide services produced low costs and individual-oriented healthcare but with weak accessibility conditions and comprehensiveness. Private subsystem: Contractual integration and weak regulatory and coordination mechanisms produced effects opposed to those of the public sub-system. Social security: Contractual integration and strong regulatory and coordination mechanisms contributed to intermediate costs and overall high performance. Each subsystem financing and services organization model had a strong and heterogeneous influence on costs and health services performance.

  5. alpha-(Phenylazo)-4-nitrobenzyl cyanide, a new acid-base indicator.

    PubMed

    Légrádi, L

    1970-02-01

    A new acid-base indicator, alpha-(phenylazo)-4-nitrobenzyl cyanide, is proposed. The indicator changes colour from yellow to violet in the presence of alkali owing to the formation of a nitronic acid structure. This indicator is applicable for the titration of weak acids in acetone and ethanol media or in a mixture of these organic solvents and water, with 0.1M aqueous sodium hydroxide as titrant. The absorption spectra have been recorded for the indicator in 25%, 50% and 75% aqueous ethanol and acetone. By means of the spectra the dissociation constants in these media have been determined. The pK value of alpha-(phenylazo)-4-nitrobenzyl cyanide is 12.10 in water, and is decreased considerably in acetone but only slightly in ethanol. This behaviour is similar to that of positively charged weak acids and irregular for a weak acid carrying no charge or a negative charge.

  6. Determination of the formation of dark state via depleted spontaneous emission in a complex solvated molecule.

    PubMed

    Guo, Xunmin; Wang, Sufan; Xia, Andong; Su, Hongmei

    2007-07-05

    We present a general two-color two-pulse femtosecond pump-dump approach to study the specific population transfer along the reaction coordinate through the higher vibrational energy levels of excited states of a complex solvated molecule via the depleted spontaneous emission. The time-dependent fluorescence depletion provides the correlated dynamical information between the monitored fluorescence state and the SEP "dumped" dark states, and therefore allow us to obtain the dynamics of the formation of the dark states corresponding to the ultrafast photoisomerization processes. The excited-state dynamics of LDS 751 have been investigated as a function of solvent viscosity and solvent polarity, where a cooperative two-step isomerization process is clearly identified within LDS 751 upon excitation.

  7. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-07

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO{sub 4}) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-{Delta}G{sub r}) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO{sub 4} concentrations,more » and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-{Delta}G{sub r}), the former in ethanol and ACN increases only linearly with the increase in driving force (-{Delta}G{sub r}). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.« less

  8. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum–classical approximation. II. Proton transfer reaction in non-polar solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp

    2015-05-07

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates ismore » reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.« less

  9. [Coordination between pharmaceutical services for integrated pharmacotherapy: the case of Catalonia].

    PubMed

    Costa, Karen Sarmento; Goldbaum, Moisés; Guayta-Escolies, Rafel; Modamio, Pilar; Mariño, Eduardo Luis; Tolsá, José Luis Segú

    2017-08-01

    Pharmaceutical policies have been considered strategies to contribute to the guarantee of care coordination and clinical integration. This study sought to describe the pharmaceutical services developed at different levels of care in the health network in Catalonia, as well as to identify and analyze the mechanisms and instruments that act as facilitators and/or barriers to the coordination of pharmacotherapy. This is a descriptive study of 12 cases of hospital pharmacy services, primary care and community pharmacies. Advances related to the perception, formalization and clinical and assistance coordination of the pharmaceutical services were identified. However, weaknesses and potential improvements in coordination were observed. The conclusion drawn was that the different tools and instruments implemented appear to facilitate a greater possibility of integration between pharmaceutical services and the latter with the health services network to contribute to integrated pharmacotherapy.

  10. An ellipsoid-chain model for conjugated polymer solutions

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.; Chen, Show A.

    2012-02-01

    We propose an ellipsoid-chain model which may be routinely parameterized to capture large-scale properties of semiflexible, amphiphilic conjugated polymers in various solvent media. The model naturally utilizes the defect locations as pivotal centers connecting adjacent ellipsoids (each currently representing ten monomer units), and a variant umbrella-sampling scheme is employed to construct the potentials of mean force (PMF) for specific solvent media using atomistic dynamics data and simplex optimization. The performances, both efficacy and efficiency, of the model are thoroughly evaluated by comparing the simulation results on long, single-chain (i.e., 300-mer) structures with those from two existing, finer-grained models for a standard conjugated polymer (i.e., poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV) in two distinct solvents (i.e., chloroform or toluene) as well as a hybrid, binary-solvent medium (i.e., chloroform/toluene = 1:1 in number density). The coarse-grained Monte Carlo (CGMC) simulation of the ellipsoid-chain model is shown to be the most efficient—about 300 times faster than the coarse-grained molecular dynamics (CGMD) simulation of the finest CG model that employs explicit solvents—in capturing elementary single-chain structures for both single-solvent media, and is a few times faster than the coarse-grained Langevin dynamics (CGLD) simulation of another implicit-solvent polymer model with a slightly greater coarse-graining level than in the CGMD simulation. For the binary-solvent system considered, however, both of the two implicit-solvent schemes (i.e., CGMC and CGLD) fail to capture the effects of conspicuous concentration fluctuations near the polymer-solvent interface, arising from a pronounced coupling between the solvent molecules and different parts of the polymer. Essential physical implications are elaborated on the success as well as the failure of the two implicit-solvent CG schemes under varying solvent conditions. Within the ellipsoid-chain model, the impact of synthesized defects on local segmental ordering as well as bulk chain conformation is also scrutinized, and essential consequences in practical applications discussed. In future perspectives, we remark on strategy that takes advantage of the coordination among various CG models and simulation schemes to warrant computational efficiency and accuracy, with the anticipated capability of simulating larger-scale, many-chain aggregate systems.

  11. Poly(diiododiacetylene): A Potential Precursor for New All-Carbon Materials

    NASA Astrophysics Data System (ADS)

    Resch, Daniel Joseph

    Poly(diiododiacetylene) (PIDA) is a polymer consisting entirely of carbon and iodine. The polymer is prepared by cocrystallizing a bis(nitrile) oxalamide host with the monomer diiodobutadiyne. These compounds are held together by a halogen bond and an ordered 1,4-topochemical polymerization occurs in the solid state. The formation of the monomer cocrystals was found to be highly solvent dependent. Acetonitrile was found to greatly improve the yield of cocrystals over solvents used in the past. Cocrystals could not be obtained from other solvents such as dimethoxyethane and acetone. THF did give some cocrystal but the yield was poor. The use of acetonitrile as a solvent now allows for PIDA cocrystals to be reliably prepared in excellent yield for detailed studies. The weak C-I bonds in PIDA can be broken under mild conditions with simple Lewis bases like pyrrolidine and iodide ion. Studies with small molecule models show that the mechanism of elimination is E2-like and highly solvent dependent. Polar aprotic solvents favor the reaction while non-polar solvents disfavor it. Reaction occurs in protic solvents, but the rate is much slower. Iodide was found to carry out the reaction in 1 hour d5-PhNO 2 while reaction with pyrrolidine did not reach completion in 15 hours. When PIDA is subjected to deiodination the product is an amorphous graphite-like material that contains non-carbon atoms. Depending on the reaction conditions, it is possible to incorporate sulfur or phosphorus into the final product. The source of these elements is the reducing agent that is typically added to sequester molecular iodine. Sequestering the iodine prevents it from reacting with the carbon species. New insights into the deiodination reaction have made PIDA more promising as a precursor to prepare all-carbon materials or heteroatom-functionalized carbon under mild conditions.

  12. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations

    NASA Astrophysics Data System (ADS)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-01

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  13. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    PubMed

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  14. Selective Anion Binding by a Cofacial Binuclear Zinc Complex of a Schiff-Base Pyrrole Macrocycle

    PubMed Central

    Devoille, Aline M. J.; Richardson, Patricia; Bill, Nathan; Sessler, Jonathan L.; Love, Jason B.

    2011-01-01

    The synthesis of the new cofacial binuclear zinc complex [Zn2(L)] of a Schiff-base pyrrole macrocycle is reported. It was discovered that the binuclear microenvironment between the two metals of [Zn2(L)] is suited for the encapsulation of anions, leading to the formation of [K(THF)6][Zn2(μ-Cl)(L)].2THF and [Bun4N][Zn2(μ-OH)(L)] which were characterized by X-ray crystallography. Unusually obtuse Zn-X-Zn angles (X=Cl: 150.54(9)° and OH: 157.4(3)°) illustrate the weak character of these interactions and the importance of the cleft pre-organization to stabilize the host. In the absence of added anion, aggregation of [Zn2(L)] was inferred and investigated by successive dilutions and by the addition of coordinating solvents to [Zn2(L)] solutions using NMR spectroscopy as well as isothermal microcalorimetry (ITC). On anion addition, evidence for de-aggregation of [Zn2(L)], combined with the formation of the 1:1 host-guest complex, was observed by NMR spectroscopy and ITC titrations. Furthermore, [Zn2(L)] binds to Cl− selectively in THF as deduced from the ITC analyses, while other halides induce only de-aggregation. These conclusions were reinforced by DFT calculations, which indicated that the binding energies of OH− and Cl− were significantly greater than for the other halides. PMID:21391550

  15. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  16. Molecular dynamics simulations of human tRNA Lys,3 UUU: the role of modified bases in mRNA recognition.

    PubMed

    McCrate, Nina E; Varner, Mychel E; Kim, Kenneth I; Nagan, Maria C

    2006-01-01

    Accuracy in translation of the genetic code into proteins depends upon correct tRNA-mRNA recognition in the context of the ribosome. In human tRNA(Lys,3)UUU three modified bases are present in the anticodon stem-loop--2-methylthio-N6-threonylcarbamoyladenosine at position 37 (ms2t6A37), 5-methoxycarbonylmethyl-2-thiouridine at position 34 (mcm5s2U34) and pseudouridine (psi) at position 39--two of which, ms2t6A37 and mcm5s2U34, are required to achieve wild-type binding activity of wild-type human tRNA(Lys,3)UUU [C. Yarian, M. Marszalek, E. Sochacka, A. Malkiewicz, R. Guenther, A. Miskiewicz and P. F. Agris (2000) Biochemistry, 39, 13390-13395]. Molecular dynamics simulations of nine tRNA anticodon stem-loops with different combinations of nonstandard bases were performed. The wild-type simulation exhibited a canonical anticodon stair-stepped conformation. The ms2t6 modification at position 37 is required for maintenance of this structure and reduces solvent accessibility of U36. Ms2t6A37 generally hydrogen bonds across the loop and may prevent U36 from rotating into solution. A water molecule does coordinate to psi39 most of the simulation time but weakly, as most of the residence lifetimes are <40 ps.

  17. Importance of counteranions on the hydration structure of the curium ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atta Fynn, Raymond; Bylaska, Eric J.; De Jong, Wibe A.

    2013-07-04

    Using density functional theory based ab initio molecular dynamics and metadynamics we show that counter ions can trigger noticeable changes in the hydration shell structure of the curium ion. The free energies of curium-water coordination and the solvent hydrogen bond (HB) lifetimes in the absence and presence the counter anions predict that chloride and bromide counter anions strengthen the first shell and consequently the 8-fold coordination state is dominant by at least 98%. In contrast, the perchlorate counter anions are found to weaken the coordination shell and the HB network, with the 9-fold and 8-fold states existing in an 8:1more » ratio, which is in good agreement with reported 9:1 ratio seen in time resolved fluorescence spectroscopy experiments. To our knowledge this is the first time molecular simulations have shown that counter anions can directly affect the first hydration shell structure of a cation.« less

  18. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    PubMed

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 μs observed in experiment.

  19. catena-Poly[[[4,6-bis-(2-pyrid-yl)-1,3,5-triazin-2-olato]copper(II)]-μ-chlorido].

    PubMed

    Cao, Man-Li

    2011-06-01

    The title compound, [Cu(C(13)H(8)N(5)O)Cl](n), has a chain structure parallel to [100] with Cu(2+) cations in a trigonal-bipyramidal coordination environment. The ligand adopts a tridentate tripyridyl coordination mode and a chloride ion acts as a bridge. The chains are linked via weak C-H⋯O and C-H⋯Cl hydrogen bonds into a three-dimensional supra-molecular network.

  20. Micro practices of coordination based on complex adaptive systems: user needs and strategies for coordinating public health in Denmark.

    PubMed

    Terkildsen, Morten Deleuran; Wittrup, Inge; Burau, Viola

    2015-01-01

    Many highly formalised approaches to coordination poorly fit public health and recent studies call for coordination based on complex adaptive systems. Our contribution is two-fold. Empirically, we focus on public health, and theoretically we build on the patient perspective and treat coordination as a process of contingent, two-level negotiations of user needs. The paper draws on the concept of user needs-based coordination and sees coordination as a process, whereby needs emerging from the life world of the user are made amenable to the health system through negotiations. The analysis is based on an explorative case study of a health promotion initiative in Denmark. It adopts an anthropological qualitative approach and uses a range of qualitative data. The analysis identifies four strategies of coordination: the coordinator focusing on the individual user or on relations with other professionals; and the manager coaching the coordinator or providing structural support. Crucially, the coordination strategies by management remain weak as they do not directly relate to specific user needs. In process of bottom-up negotiations user needs become blurred and this is especially a challenge for management. The study therefore calls for an increased focus on the level nature of negotiations to bridge the gap that currently weakens coordination strategies by management.

  1. Multiscale structure, interfacial cohesion, adsorbed layers, miscibility and properties in dense polymer-particle mixtures

    NASA Astrophysics Data System (ADS)

    Schweizer, Ken

    2012-02-01

    A major goal in polymer nanocomposite research is to understand and predict how the chemical and physical nature of individual polymers and nanoparticles, and thermodynamic state (temperature, composition, solvent dilution, filler loading), determine bulk assembly, miscibility and properties. Microscopic PRISM theory provides a route to this goal for equilibrium disordered mixtures. A major prediction is that by manipulating the net polymer-particle interfacial attraction, miscibility is realizable via the formation of thin thermodynamically stable adsorbed layers, which, however, are destroyed by entropic depletion and bridging attraction effects if interface cohesion is too weak or strong, respectively. This and related issues are quantitatively explored for miscible mixtures of hydrocarbon polymers, silica nanospheres, and solvent using x-ray scattering, neutron scattering and rheology. Under melt conditions, quantitative agreement between theory and silica scattering experiments is achieved under both steric stabilization and weak depletion conditions. Using contrast matching neutron scattering to characterize the collective structure factors of polymers, particles and their interface, the existence and size of adsorbed polymer layers, and their consequences on microstructure, is determined. Failure of the incompressible RPA, accuracy of PRISM theory, the nm thickness of adsorbed layers, and qualitative sensitivity of the bulk modulus to interfacial cohesion and particle size are demonstrated for concentrated PEO-silica-ethanol nanocomposites. Temperature-dependent complexity is discovered when water is the solvent, and nonequilibrium effects emerge for adsorbing entangled polymers that strongly impact structure. By varying polymer chemistry, the effect of polymer-particle attraction on the intrinsic viscosity is explored with striking non-classical effects observed. This work was performed in collaboration with S.Y.Kim, L.M.Hall, C.Zukoski and B.Anderson.

  2. Comparative studies on the human serum albumin binding of the clinically approved EGFR inhibitors gefitinib, erlotinib, afatinib, osimertinib and the investigational inhibitor KP2187.

    PubMed

    Dömötör, Orsolya; Pelivan, Karla; Borics, Attila; Keppler, Bernhard K; Kowol, Christian R; Enyedy, Éva A

    2018-05-30

    Binding interactions between human serum albumin (HSA) and four approved epidermal growth factor receptor (EGFR) inhibitors gefitinib (GEF), erlotinib (ERL), afatinib (AFA), osimertinib (OSI), as well as the experimental drug KP2187, were investigated by means of spectrofluorometric and molecular modelling methods. Steady-state and time resolved spectrofluorometric techniques were carried out, including direct quenching of protein fluorescence and site marker displacement measurements. Proton dissociation processes and solvent dependent fluorescence properties were investigated as well. The EGFR inhibitors were predominantly presented in their single protonated form (HL + ) at physiological pH except ERL, which is charge-neutral. Significant solvent dependent fluorescence properties were found for GEF, ERL and KP2187, namely their emission spectra show strong dependence on the polarity and the hydrogen bonding ability of the solvents. The inhibitors proved to be bound at site I of HSA (in subdomain IIA) in a weak-to-moderate fashion (logK' 3.9-4.9) using spectrofluorometry. OSI (logK' 4.3) and KP2187 can additionally bind in site II (in subdomain IIIA), while GEF, ERL and AFA clearly show no interaction here. Docking methods qualitatively confirmed binding site preferences of compounds GEF and KP2187, and indicated that they probably bind to HSA in their neutral forms. Binding constants calculated on the basis of the various experimental data indicate a weak-to-moderate binding on HSA, only OSI exhibits somewhat higher affinity towards this protein. However, model calculations performed at physiological blood concentrations of HSA resulted in high (ca. 90%) bound fractions for the inhibitors, highlighting the importance of plasma protein binding. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Hydration of copper(II): new insights from density functional theory and the COSMO solvation model.

    PubMed

    Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A

    2008-09-25

    The hydrated structure of the Cu(II) ion has been a subject of ongoing debate in the literature. In this article, we use density functional theory (B3LYP) and the COSMO continuum solvent model to characterize the structure and stability of [Cu(H2O)n](2+) clusters as a function of coordination number (4, 5, and 6) and cluster size (n = 4-18). We find that the most thermodynamically favored Cu(II) complexes in the gas phase have a very open four-coordinate structure. They are formed from a stable square-planar [Cu(H2O)8](2+) core stabilized by an unpaired electron in the Cu(II) ion d(x(2)-y(2)) orbital. This is consistent with cluster geometries suggested by recent mass-spectrometric experiments. In the aqueous phase, we find that the more compact five-coordinate square-pyramidal geometry is more stable than either the four-coordinate or six-coordinate clusters in agreement with recent combined EXAFS and XANES studies of aqueous solutions of Cu(II). However, a small energetic difference (approximately 1.4 kcal/mol) between the five- and six-coordinate models with two full hydration shells around the metal ion suggests that both forms may coexist in solution.

  4. Miller Fisher Syndrome

    MedlinePlus

    ... weeks earlier. Slurred speech, difficulty swallowing and abnormal facial expression with inability to smile or whistle may also occur. Examination shows poor balance and coordination of the hands as well as loss of ... Facial weakness, enlarged or dilated pupils and a decreased ...

  5. Selection of propolis Tetragonula sp. extract solvent with flavonoids and polyphenols concentration and antioxidant activity parameters

    NASA Astrophysics Data System (ADS)

    Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad; Pratami, Diah Kartika; Mun'im, Abdul

    2018-02-01

    Antioxidants are inhibitory compounds that can inhibit auto oxidation reaction by binding to free radicals and highly reactive molecules. The human body needs antioxidant. Antioxidants can be obtained from a variety of natural ingredients, including propolis. Propolis is the natural sap of the bees, obtained from the herbs around the honeycomb. Ethanol is the solvent that often used to extract propolis. Although it has many advantages, ethanol also has weaknesses such as intolerance to alcohol by some people. Therefore, this research was to extract propolis Tetragonula sp. coarse (C) and soft (S) using four varieties of organic solvent, i.e. olive oil (OO), virgin coconut oil (VCO), propylene glycol (PG), and lecithin (L). It was expected to get the best solvent in extracting propolis. The selection of the best solvent was determined by total flavonoids and polyphenols content assay and antioxidant activity. At each test, the absorbance value read by a microplate reader. Flavonoids content assay is using AlCl3 method with best result on rough-VCO propolis extract of 2509,767 ± 615,02 µg/mL. Polyphenols content assay was using Folin Ciocalteu method with the best results on soft-VCO propolis extract of 1391 ± 171.47 µg/mL. Antioxidant activity assay is using DPPH method with best result on soft-VCO propolis extract with IC50 value of 1,559 ± 0,222 µg/mL.

  6. Parental occupational exposure to solvents and heavy metals and risk of developing testicular germ cell tumors in sons (NORD-TEST Denmark).

    PubMed

    Olsson, Ann; Togawa, Kayo; Schüz, Joachim; Le Cornet, Charlotte; Fervers, Beatrice; Oksbjerg Dalton, Susanne; Pukkala, Eero; Feychting, Maria; Skakkebæk, Niels Erik; Hansen, Johnni

    2018-06-07

    Objective The present study aims to assess if parental occupational exposure to solvents or heavy metals is associated with risk of testicular germ cell tumors (TGCT) in sons in Denmark. Methods The NORD-TEST Denmark included 3421 cases diagnosed with TGCT at ages 14-49 years in Denmark between 1981 and 2014. Controls (N=14 024) selected from the central population registry were matched to cases on birth year. The Danish Supplementary Pension Fund provided parental occupational information. A job-exposure matrix was used to assign exposures, and conditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI). Results The overall analyses showed no significant associations except for paternal exposure to a sub-group of "heavy metal(s) and solvent(s)" (OR 1.50, 95% CI 1.01-2.24). Most fathers in this category had worked in wood related jobs and were assigned exposure to chromium VI and toluene. Other sub-group analyses suggested that maternal exposure to aromatic hydrocarbon were associated with TGCT risk, in sons born in 1970-1979, and to heavy metals (chromium, iron and nickel) in sons born in 1980-1998. Conclusion NORD-TEST Denmark provides no strong support for an association between parental exposures to solvents or heavy metals and TGCT in sons, and only weak support for an association between paternal exposure to chromium and toluene and TGCT risk in sons.

  7. Synthesis, structure, and magnetic properties of two 1-D helical coordination polymeric Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng

    2008-01-01

    Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.

  8. Generalized transformations and coordinates for static spherically symmetric general relativity

    NASA Astrophysics Data System (ADS)

    Hill, James M.; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  9. Ellipsoidal analysis of coordination polyhedra

    PubMed Central

    Cumby, James; Attfield, J. Paul

    2017-01-01

    The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules. PMID:28146146

  10. The coordination chemistry of group 15 element ligand complexes--a developing area.

    PubMed

    Scheer, Manfred

    2008-09-07

    A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.

  11. Generalized transformations and coordinates for static spherically symmetric general relativity.

    PubMed

    Hill, James M; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  12. Generalized transformations and coordinates for static spherically symmetric general relativity

    PubMed Central

    2018-01-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington–Finkelstein transformation and the Kruskal–Szekeres coordinates. PMID:29765624

  13. Optimizing Catalysts for Solar Fuel Production: Spectroscopic Characterization of the Key Reaction Intermediates

    DTIC Science & Technology

    2013-04-01

    which freezes ions into well defined structures and coats them with an inert layer of weakly bound adducts. These cold aggregates were then...evaporation of the cryogenic solvent. Instrument development. Cryogenic ion processing. Cold ion spectroscopy. Trapped reaction intermediates U U U...spectrometer. The key advance incorporated into this instrument is the introduction of a cryogenic (10K) ion processing stage, where ions can be frozen

  14. An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant

    A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl 2·6H 2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl 2·nH 2O is then ammoniated directly using liquefied NH 3 in the absence of solvent to form MgCl 2·6NH 3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl 2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques.more » Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH 2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.« less

  15. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution

    PubMed Central

    2011-01-01

    The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O–D stretching bands of partially deuterated water bound to these metal ions and the O–D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M–O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M–O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M–O bond distances and coordination numbers also for the alkali metal ions even though the M–O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M–O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) Å, which corresponds to six-, seven-, eight- and eight-coordination. These coordination numbers are supported by the linear relationship of the hydration enthalpies and the M–O bond distances. This correlation indicates that the hydrated lithium ion is four-coordinate in aqueous solution. New ionic radii are proposed for four- and six-coordinate lithium(I), 0.60 and 0.79 Å, respectively, as well as for five- and six-coordinate sodium(I), 1.02 and 1.07 Å, respectively. The ionic radii for six- and seven-coordinate K+, 1.38 and 1.46 Å, respectively, and eight-coordinate Rb+ and Cs+, 1.64 and 1.73 Å, respectively, are confirmed from previous studies. The M–O bond distances in dimethyl sulfoxide solvated sodium, potassium, rubidium and cesium ions in solution are very similar to those observed in aqueous solution. PMID:22168370

  16. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    PubMed

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  17. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfermore » processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.« less

  18. Dynamic Kinetic Resolution of Allylic Sulfoxides by Rh-Catalyzed Hydrogenation: A Combined Theoretical and Experimental Mechanistic Study

    PubMed Central

    Dornan, Peter K.; Kou, Kevin G. M.; Houk, K. N.; Dong, Vy M.

    2014-01-01

    A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In non-polar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O–coordination throughout the catalytic cycle for hydrogenation. PMID:24350903

  19. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents.

    PubMed

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-28

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  20. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-01

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  1. Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes

    NASA Astrophysics Data System (ADS)

    Gangu, Kranthi Kumar; Maddila, Suresh; Mukkamala, Saratchandra Babu; Jonnalagadda, Sreekantha B.

    2017-09-01

    Two mono nuclear coordination complexes, namely, [Co(4,5-Imdc)2 (H2O)2] (1) and [Cd(4,5-Imdc)2(H2O)3]·H2O (2) were constructed using Co(II) and Cd(II) metal salts with 4,5-Imidazoledicarboxylic acid (4,5-Imdc) as organic ligand. Both 1, 2 were structurally characterized by single crystal XRD and the results reveal that 1 belongs to P21/n space group with unit cell parameters [a = 5.0514(3) Å, b = 22.5786(9) Å, c = 6.5377(3) Å, β = 111.5°] whereas, 2 belongs to P21/c space group with unit cell parameters [a = 6.9116(1) Å, b = 17.4579(2) Å, c = 13.8941(2) Å, β = 97.7°]. While Co(II) in 1 exhibited a six coordination geometry with 4,5-Imdc and water molecules, Cd(II) ion in 2 showed a seven coordination with the same ligand and solvent. In both 1 and 2, the hydrogen bond interactions with mononuclear unit generated 3D-supramolecular structures. Both complexes exhibit solid state fluorescent emission at room temperature. The efficacy of both the complexes as heterogeneous catalysts was examined in the green synthesis of six pyrano[2,3,c]pyrazole derivatives with ethanol as solvent via one-pot reaction between four components, a mixture of aromatic aldehyde, malononitrile, hydrazine hydrate and dimethyl acetylenedicarboxylate. Both 1 and 2 have produced pyrano [2,3,c]pyrazoles in impressive yields (92-98%) at room temperature in short interval of times (<20 min), with no need for any chromatographic separations. With good stability, ease of preparation and recovery plus reusability up to six cycles, both 1 and 2 prove to be excellent environmental friendly catalysts for the value-added organic transformations using green principles.

  2. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng Y.; Cabelli D.; Stich, T.A.

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O{sub 2}{sup -}). This behavior limits the amount of H{sub 2}O{sub 2} produced at high [O{sub 2}{sup -}]; its desirability can be explained by the multiple roles of H{sub 2}O{sub 2} in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantlymore » in the reduced state (unlike most other MnSODs). At high [O{sub 2}{sup -}], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn{sup 3+} species in yeast Mn{sup 3+}SODs, including the well-characterized 5-coordinate Mn{sup 3+} species and a 6-coordinate L-Mn{sup 3+} species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O{sub 2}{sup -}].« less

  3. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    PubMed Central

    Sheng, Yuewei; Stich, Troy A.; Barnese, Kevin; Gralla, Edith B.; Cascio, Duilio; Britt, R. David; Cabelli, Diane E.; Valentine, Joan Selverstone

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O2−). This behavior limits the amount of H2O2 produced at high [O2−]; its desirability can be explained by the multiple roles of H2O2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O2−] the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn3+ species in yeast Mn3+SODs, including the well-characterized 5-coordinate Mn3+ species and a 6-coordinate L-Mn3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O2−]. PMID:22077216

  4. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

    PubMed

    Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta

    2017-12-22

    The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Solvent effects on the Raman spectra of the isolated carbon-hydrogen stretches of cyclohexane-d11: A molecular dynamics simulation study of liquid and supercritical solvation

    NASA Astrophysics Data System (ADS)

    Frankland, Sarah-Jane Victoria

    Molecular dynamics simulations of solvent effects on the Raman spectra of isotopically isolated C-H stretches of cyclohexane-d11 were performed in liquids and supercritical CO2. The red spectral shifts from the gas phase origin were derived three different ways: (1) from the Lennard-Jones force on the normal coordinate of the vibration; (2) from this force with an additional term to account for the polarizabilily change on excitation, and (3) as an empirical difference potential between the v = 0 and v = 1 state of the hydrogen atom involved in the vibration. Model 3 was successfully parametrized to reproduce the experimental spectral shifts and linewidths. The simulated lineshapes from these models were homogeneously broadened from gas to liquid densities primarily by collisions of nearby solvent molecules with the solute. Both the simulations and isolated binary collision theory showed the density dependence of the linewidth to be related to that of the collision rate. Two additional projects were done which use Monte-Carlo algorithms involving two molecules. In the first project 1:1 complexes of solute and solvent were formed at the potential surface minima such that the geometries of conformers, energies of formation, and electronic spectral shifts could be studied. Complexes between 7- azaindole, indole, carbazole, and 1-azacarbazole and hydrogen-bonding solvents were most stable when the solvent was hydrogen-bonded at the solute N-H site. The energies of formation compared well with values obtained from ab initio calculations. Complexes of coumarins 102 and 153 and fluorinated alcohols showed the more stable conformers to have the alcohols bound at the coumarin carbonyl group. In the second project, one solvent molecule was randomly placed around the solute molecule in order to simplify bulk liquid simulation to only two molecules. This approximation was rised to show that the dynamic Stokes shift of coumarin 153 in over 30 solvents correlates with the permanent charge distribution of the solvent.

  6. catena-Poly[[[4,6-bis­(2-pyrid­yl)-1,3,5-triazin-2-olato]copper(II)]-μ-chlorido

    PubMed Central

    Cao, Man-Li

    2011-01-01

    The title compound, [Cu(C13H8N5O)Cl]n, has a chain structure parallel to [100] with Cu2+ cations in a trigonal–bipyramidal coordination environment. The ligand adopts a tridentate tripyridyl coordination mode and a chloride ion acts as a bridge. The chains are linked via weak C—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional supra­molecular network. PMID:21754632

  7. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  8. Bis(μ-ferrocene­carboxyl­ato)bis­[aqua­­bis(ferrocene­carboxyl­ato)methano­l­erbium(III)] methanol disolvate

    PubMed Central

    Liu, Jianmin; Li, Yuanyuan; Li, Dacheng

    2012-01-01

    In the centrosymmetric title coordination compound, [Er2{Fe(C5H5)(C6H4O2)}6(CH3OH)2(H2O)2]·2CH3OH, the two ErIII ions are bridged by two ferrocene­carboxyl­ate anions as asymmetrically bridging ligands, leading to dimeric cores. The ErIII ion has a distorted dodeca­hedral coordination with six coordinating O atoms derived from the ferrocene­carboxyl­ate ligands and two coordinated O atoms from one water mol­ecule and one methanol mol­ecule. The asymmetric unit comprises a half of the complex mol­ecule and a methanol solvent mol­ecule. Intra­molecular O—H⋯O and C—H⋯O inter­actions occur. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds and C—H⋯O as well as C—H⋯π inter­actions. PMID:22259358

  9. Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.

    PubMed

    Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J

    2010-12-01

    The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.

  10. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  11. Ab initio calculation of proton-coupled electron transfer rates using the external-potential representation: A ubiquinol complex in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Takeshi; Kato, Shigeki

    2007-06-14

    In quantum-mechanical/molecular-mechanical (QM/MM) treatment of chemical reactions in condensed phases, one solves the electronic Schroedinger equation for the solute (or an active site) under the electrostatic field from the environment. This Schroedinger equation depends parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This fact suggests that one may use R and V as natural collective coordinates for describing the entire system, where V plays the role of collective solvent variables. In this paper such an (R,V) representation of the QM/MM canonical ensemble is described, with particular focus on how to treat charge transfer processes inmore » this representation. As an example, the above method is applied to the proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent. Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction site model self-consistent field method, the equilibrium points and the minimum free-energy crossing point are located in the (R,V) space, and then the kinetic isotope effects (KIEs) are evaluated approximately. The results suggest that a stiffer proton potential at the transition state may be responsible for unusual KIEs observed experimentally for related systems.« less

  12. An absorption spectral study of Nd (III) with glutathione (reduced), GSH in aqueous and aquated organic solvent in presence and absence of Zn (II)

    NASA Astrophysics Data System (ADS)

    Mehta, Jignasu P.; Bhatt, Prashant N.; Misra, Sudhindra N.

    2003-02-01

    The coordination chemistry of glutathione (reduced) GSH is of great importance as it acts as an excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. We have studied two chemically dissimilar metal ions viz. Nd (III) being hard metal ion, which will prefer hard donor sites like carboxylic groups, and Zn (II) the soft metal ion more suited to peptide-NH and sulfhydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic complexation of GSH with Nd (III) and Zn (II) has been explored in aqueous and aquated organic solvents. The changes in the oscillator strengths of different 4f-4f bands and Judd-Ofelt intensity (Tλ) parameters determined experimentally is being used to investigate the complexation of GSH. The in vivo intracellular complexation of GSH with Ca (II) in presence of Zn (II) ion has been mimicked through Nd (III)-GSH-Zn (II) absorption spectral studies in vitro.

  13. The mechanism of epoxide carbonylation by [Lewis Acid]+[Co(CO)4]- catalysts.

    PubMed

    Church, Tamara L; Getzler, Yutan D Y L; Coates, Geoffrey W

    2006-08-09

    A detailed mechanistic investigation of epoxide carbonylation by the catalyst [(salph)Al(THF)2]+ [Co(CO)4]- (1, salph = N,N'-o-phenylenebis(3,5-di-tert-butylsalicylideneimine), THF = tetrahydrofuran) is reported. When the carbonylation of 1,2-epoxybutane (EB) to beta-valerolactone is performed in 1,2-dimethoxyethane solution, the reaction rate is independent of the epoxide concentration and the carbon monoxide pressure but first order in 1. The rate of lactone formation varies considerably in different solvents and depends primarily on the coordinating ability of the solvent. In mixtures of THF and cis/trans-2,5-dimethyltetrahydrofuran, the reaction is first order in THF. From spectroscopic and kinetic data, the catalyst resting state was assigned to be the neutral (beta-aluminoxy)acylcobalt species (salph)AlOCH(Et)CH2COCo(CO)4 (3a), which was successfully trapped with isocyanates. As the formation of 3a from EB, CO, and 1 is rapid, lactone ring closing is rate-determining. The favorable impact of donating solvents was attributed to the necessity of stabilizing the aluminum cation formed upon generation of the lactone.

  14. Ancillary Ligand Effects upon the Photochemistry of Mn(bpy)(CO)3X Complexes (X = Br-, PhCC-).

    PubMed

    Yempally, Veeranna; Moncho, Salvador; Hasanayn, Faraj; Fan, Wai Yip; Brothers, Edward N; Bengali, Ashfaq A

    2017-09-18

    The photochemistry of two Mn(bpy)(CO) 3 X complexes (X = PhCC - , Br - ) has been studied in the coordinating solvents THF (terahydrofuran) and MeCN (acetonitrile) employing time-resolved infrared spectroscopy. The two complexes are found to exhibit strikingly different photoreactivities and solvent dependencies. In MeCN, photolysis of 1-(CO)(Br) [1 = Mn(bpy)(CO) 2 ] affords the ionic complex [1-(MeCN) 2 ]Br as a final product. In contrast, photolysis of 1-(CO)(CCPh) in MeCN results in facial to meridional isomerization of the parent complex. When THF is used as solvent, photolysis results in facial to meridional isomerization in both complexes, though the isomerization rate is larger for X = Br - . Pronounced differences are also observed in the photosubstitution chemistry of the two complexes where both the rate of MeCN exchange from 1-(MeCN)(X) by THFA (tetrahydrofurfurylamine) and the nature of the intermediates generated in the reaction are dependent upon X. DFT calculations are used to support analysis of some of the experiments.

  15. Synthesis, characterization and properties of copper(I) complexes with bis(diphenylphosphino)-ferrocene ancillary ligand

    NASA Astrophysics Data System (ADS)

    Liu, Xinfang; Zhang, Songlin; Ding, Yuqiang

    2012-06-01

    Three copper(I) complexes (2-4) containing dppf ancillary ligand (dppf = bis(diphenylphosphino)-ferrocene) were synthesized when chloride-bridged copper(I) complex 1 reacted with acetanilide and characterized by IR, element analysis and NMR spectrum. And the crystal structures of complexes 2 and 4 have been determined by X-ray diffraction method. Complex 2, an acetate-bridged copper(I) complex, was obtained under N2 atmosphere in un-dried solvent; the acetate ion came from the hydrolysis reaction of acetanilide due to residual water in solvent. Acetanilide was deprotonated and coordinated with the copper(I) centre to form a copper(I) amidate complex 3 when reacted in pre-dried solvent. In addition, a known complex 4, the oxidation product of dppf, was isolated from the same reaction system when reacted in air atmosphere. CV and TG experiments were carried out to check the electron transfer properties and thermal stabilities of complexes 2-3. Finally, the arylation reaction of complex 3 with iodobenzene was performed to study the reaction mechanism of copper(I) catalyzed Goldberg reaction.

  16. Optimized coordinates in vibrational coupled cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomsen, Bo; Christiansen, Ove; Yagi, Kiyoshi

    The use of variationally optimized coordinates, which minimize the vibrational self-consistent field (VSCF) ground state energy with respect to orthogonal transformations of the coordinates, has recently been shown to improve the convergence of vibrational configuration interaction (VCI) towards the exact full VCI [K. Yagi, M. Keçeli, and S. Hirata, J. Chem. Phys. 137, 204118 (2012)]. The present paper proposes an incorporation of optimized coordinates into the vibrational coupled cluster (VCC), which has in the past been shown to outperform VCI in approximate calculations where similar restricted state spaces are employed in VCI and VCC. An embarrassingly parallel algorithm for variationalmore » optimization of coordinates for VSCF is implemented and the resulting coordinates and potentials are introduced into a VCC program. The performance of VCC in optimized coordinates (denoted oc-VCC) is examined through pilot applications to water, formaldehyde, and a series of water clusters (dimer, trimer, and hexamer) by comparing the calculated vibrational energy levels with those of the conventional VCC in normal coordinates and VCI in optimized coordinates. For water clusters, in particular, oc-VCC is found to gain orders of magnitude improvement in the accuracy, exemplifying that the combination of optimized coordinates localized to each monomer with the size-extensive VCC wave function provides a supreme description of systems consisting of weakly interacting sub-systems.« less

  17. Effects of an Organizational Linkage Intervention on Inter-Organizational Service Coordination Between Probation/Parole Agencies and Community Treatment Providers.

    PubMed

    Welsh, Wayne N; Knudsen, Hannah K; Knight, Kevin; Ducharme, Lori; Pankow, Jennifer; Urbine, Terry; Lindsey, Adrienne; Abdel-Salam, Sami; Wood, Jennifer; Monico, Laura; Link, Nathan; Albizu-Garcia, Carmen; Friedmann, Peter D

    2016-01-01

    Weak coordination between community correctional agencies and community-based treatment providers is a major barrier to diffusion of medication-assisted treatment (MAT)--the inclusion of medications (e.g., methadone and buprenorphine) in combination with traditional counseling and behavioral therapies to treat substance use disorders. In a multisite cluster randomized trial, experimental sites (j = 10) received a 3-h MAT training plus a 12-month linkage intervention; control sites (j = 10) received the 3-h training alone. Hierarchical linear models showed that the intervention resulted in significant improvements in perceptions of interagency coordination among treatment providers, but not probation/parole agents. Implications for policy and practice are discussed.

  18. Ionothermal synthesis, characterization of a new layered gallium phosphate with an unusual heptamer SBU

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Huang, Liangliang; Ma, Yike; Jiao, Shufei; Jiang, Yansong; Bi, Yanfeng

    2017-10-01

    A new layered gallium phosphate Ga3(PO4)4(C2N2H8)·(H2C2N2H8)2·Cl (compound 1), has been ionothermally synthesized in the presence of deep eutectic solvent (DES) comprising mixtures of choline chloride and 2-imidazolidone (IMI). Single-crystal X-ray diffraction analysis reveals that compound 1 shows 2D layered framework with 10-ring windows, which is constructed from unusual heptamer second building units (SBUs). The ethylenediamine (en) units deriving from the decomposition of IMI, play a dual role as bidentate ligands coordinated with 6-fold coordinate gallium atoms and the templates. Additionally, compound 1 shows photoluminescence property in solid state at room temperature.

  19. Drug delivery by water-soluble organometallic cages.

    PubMed

    Therrien, Bruno

    2012-01-01

    Until recently, organometallic derivatives were generally viewed as moisture- and air-sensitive compounds, and consequently very challenging to synthesise and very demanding in terms of laboratory requirements (Schlenk techniques, dried solvent, glove box). However, an increasing number of stable, water-soluble organometallic compounds are now available, and organometallic chemistry in aqueous phase is a flourishing area of research. As such, coordination-driven self-assemblies using organometallic building blocks are compatible with water, thus opening new perspectives in bio-organometallic chemistry.This chapter gives a short history of coordination-driven self-assembly, with a special attention to organometallic metalla-cycles, especially those composed of half-sandwich complexes. These metalla-assemblies have been used as sensors, as anticancer agents, as well as drug carriers.

  20. Tetra­kis(1,1,1-trifluoro­acetyl­acetonato-κ2 O,O′)hafnium(IV) toluene disolvate

    PubMed Central

    Viljoen, J. Augustinus; Muller, Alfred; Roodt, Andreas

    2008-01-01

    In the title compound, [Hf(C5H4F3O2)4]·2C7H8, the HfIV atom, lying on a twofold rotation axis, is coordinated by eight O atoms from four 1,1,1-trifluoro­acetyl­acetonate ligands with an average Hf—O distance of 2.173 (1) Å and O—Hf—O bite angles of 75.69 (5) and 75.54 (5)°. The coordination polyhedron shows a slightly distorted Archimedean square antiprismatic geometry. The asymmetric unit contains a toluene solvent mol­ecule. The crystal structure involves C—H⋯.F hydrogen bonds. PMID:21202519

  1. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    PubMed

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.

  2. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    NASA Astrophysics Data System (ADS)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  3. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    PubMed

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-08

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SN1 reactions in supercritical carbon dioxide in the presence of alcohols: the role of preferential solvation.

    PubMed

    Delgado-Abad, Thais; Martínez-Ferrer, Jaime; Acerete, Rafael; Asensio, Gregorio; Mello, Rossella; González-Núñez, María Elena

    2016-07-06

    Ethanol () inhibits SN1 reactions of alkyl halides in supercritical carbon dioxide (scCO2) and gives no ethers as products. The unexpected behaviour of alcohols in the reaction of alkyl halides with 1,3-dimethoxybenzene () in scCO2 under different conditions is rationalised in terms of Brønsted and Lewis acid-base equilibria of reagents, intermediates, additives and products in a singular solvent characterised by: (i) the strong quadrupole and Lewis acid character of carbon dioxide, which hinders SN2 paths by strongly solvating basic solutes; (ii) the weak Lewis base character of carbon dioxide, which prevents it from behaving as a proton sink; (iii) the compressible nature of scCO2, which enhances the impact of preferential solvation on carbon dioxide availability for the solvent-demanding rate determining step.

  5. Toluene inducing acute respiratory failure in a spray paint sniffer.

    PubMed

    Peralta, Diego P; Chang, Aymara Y

    2012-01-01

    Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure.

  6. Toluene inducing acute respiratory failure in a spray paint sniffer

    PubMed Central

    Peralta, Diego P.; Chang, Aymara Y.

    2012-01-01

    Summary Background: Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. Case Report: I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Conclusions: Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure. PMID:23569498

  7. A Model for the Flexibility of the Distal Histidine in Dehaloperoxidase-Hemoglobin A Based on X-ray Crystal Structures of the Carbon Monoxide Adduct

    PubMed Central

    2015-01-01

    Dehaloperoxidase hemoglobin A (DHP A) is a multifunctional hemoglobin that appears to have evolved oxidative pathways for the degradation of xenobiotics as a protective function that complements the oxygen transport function. DHP A possesses at least two internal binding sites, one for substrates and one for inhibitors, which include various halogenated phenols and indoles. Herein, we report the X-ray crystallographic structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures with 6-coordinated heme, the conformation of the distal histidine (H55) in DHPCO is primarily external or solvent exposed, despite the fact that the heme Fe is 6-coordinated. As observed generally in globins, DHP exhibits two distal histidine conformations (one internal and one external). In previous structural studies, we have shown that the distribution of H55 conformations is weighted strongly toward the external position when the DHP heme Fe is 5-coordinated. The large population of the external conformation of the distal histidine observed in DHPCO crystals at pH 6.0 indicates that some structural factor in DHP must account for the difference from other globins, which exhibit a significant external conformation only when pH < 4.5. While the original hypothesis suggested that interaction with a heme-Fe-bound ligand was the determinant of H55 conformation, the current study forces a refinement of that hypothesis. The external or open conformation of H55 is observed to have interactions with two propionate groups in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively weak hydrogen bonding interaction between H55 and CO, combined with strong interactions with heme propionate (position 6), is hypothesized to strengthen the external conformation of H55. Density function theory (DFT) calculations were conducted to test whether there is a weaker hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine how the tautomeric forms of H55 affect the dynamic motions of the distal histidine that govern the switching between open and closed conformations. The calculations support the modified hypothesis suggesting a competition between the strength of interactions with heme ligand and the heme propionates as the factors that determine the conformation of the distal histidine. PMID:24670063

  8. Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra(carboxyphenyl)porphyrins and lanthanide-bridging ions.

    PubMed

    Muniappan, Sankar; Lipstman, Sophia; George, Sumod; Goldberg, Israel

    2007-07-09

    New types of porphyrin-based framework solids were constructed by reacting meso-tetra(3-carboxyphenyl)porphyrin and meso-tetra(4-carboxyphenyl)metalloporphyrins with common salts of lanthanide metal ions. The large size, high coordination numbers and strong affinity for oxo ligands of the latter, combined with favorable hydrothermal reaction conditions, allowed the formation of open three-dimensional single-framework architectures by coordination polymerization, in which the tetradentate porphyrin units are intercoordinated by multinuclear assemblies of the bridging metal ions. The latter serve as construction pillars of the supramolecular arrays, affording stable structures. Several modes of coordination polymerization were revealed by single-crystal X-ray diffraction. They differ by the spatial functionality of the porphyrin building blocks, the coordination patterns of the lanthanide-carboxylate assemblies, and the topology of the resulting frameworks. The seven new reported structures exhibit periodically spaced 0.4-0.6 nm wide channel voids that perforate the respective crystalline polymeric architectures and are accessible to solvent components. Materials based on the m-carboxyphenyl derivative reveal smaller channels than those based on the p-carboxyphenyl analogues. An additional complex of the former with a smaller third-row transition metal (Co) is characterized by coordination connectivity in two dimensions only. Thermal and powder-diffraction analyses confirm the stability of the lanthanide-TmCPP (TmCPP=tetra(m-carboxyphenyl)porphyrin) frameworks.

  9. Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jin-Hua; Zhang, E.; Tang, Gui-Mei, E-mail: meiguit@163.com

    2016-09-15

    Three new metal coordination complexes, namely, [Co(BPO){sub 2}(H{sub 2}O){sub 4}](BS){sub 2}(H{sub 2}O){sub 2} (1), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](ABS){sub 2}(H{sub 2}O){sub 2} (2), [Co(BPO){sub 2}(H{sub 2}O){sub 4}](MBS){sub 2}(H{sub 2}O){sub 2} (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1–3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O–H···O/N) and packing interactions (C–H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesismore » of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. - Graphical abstract: Three new metal coordination complexes with bipyridinyl-oxadiazole were obtained under hydrothermal conditions, which display a zero-dimensional motif, and show high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time. Display Omitted.« less

  10. Role of the Iron Axial Ligands of Heme Carrier HasA in Heme Uptake and Release*

    PubMed Central

    Caillet-Saguy, Célia; Piccioli, Mario; Turano, Paola; Lukat-Rodgers, Gudrun; Wolff, Nicolas; Rodgers, Kenton R.; Izadi-Pruneyre, Nadia; Delepierre, Muriel; Lecroisey, Anne

    2012-01-01

    The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His32 and Tyr75, respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr75-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins. PMID:22700962

  11. Self-assembly of a chiral lipid gelator controlled by solvent and speed of gelation.

    PubMed

    Xue, Pengchong; Lu, Ran; Yang, Xinchun; Zhao, Li; Xu, Defang; Liu, Yan; Zhang, Hanzhuang; Nomoto, Hiroyuki; Takafuji, Makoto; Ihara, Hirotaka

    2009-09-28

    Glutamine derivative 1 with two-photon absorbing units has been synthesized and was found to show gelation ability in some solvents. Its self-assembly in the gel phase could be controlled by the solvent and speed of gelation. For example, in DMSO the organogelator self-assembled into H-aggregates with weak exciton coupling between the aromatic moieties. On the other hand, in DMSO/diphenyl ether (1:9, v/v) the molecules formed 1D aggregates, but with strong exciton coupling due to the small distance between the chromophores. Moreover, the formation of these two kinds of aggregates could be adjusted by the ratio of DMSO to diphenyl ether. In DMSO/toluene, DMSO/butanol, DMSO/butyl acetate, and DMSO/acetic acid systems similar results were observed. Therefore, conversion of the packing model occurs irrespective of the nature of the solvent. Notably, a unique sign inversion in the CD spectra could be realized by controlling the speed of gelation in the DMSO/diphenyl ether (1:9, v/v) system. It was found that a low speed of gelation induces the gelator to adopt a packing model with strong pi-pi interactions between the aromatic units. Moreover, the gels, when excited at 800 nm, emit strong green fluorescence and the quantum chemical calculations suggest that intramolecular charge transfer leads to two-photon absorption of the gelator molecule.

  12. Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents.

    PubMed Central

    Solovyova, A; Schuck, P; Costenaro, L; Ebel, C

    2001-01-01

    We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle. PMID:11566761

  13. Self-Organization of Polymer Brush Layers in a Poor Solvent

    NASA Astrophysics Data System (ADS)

    Karim, A.; Tsukruk, V. V.; Douglas, J. F.; Satija, S. K.; Fetters, L. J.; Reneker, D. H.; Foster, M. D.

    1995-10-01

    Synthesis of densely grafted polymer brushes from good solvent polymer solutions is difficult when the surface interaction is only weakly attractive because of the strong steric repulsion between the polymer chains. To circumvent this difficulty we graft polymer layers in a poor solvent to exploit attractive polymer-polymer interactions which largely nullify the repulsive steric interactions. This simple strategy gives rise to densely grafted and homogeneous polymer brush layers. Model end-grafted polystyrene chains (M_w = 105,000) are prepared in the poor solvent cyclohexane (9.5 °C) where the chains are chemically attached to the surface utilizing a trichlorosilane end-group. Polished silicon wafers were then exposed to the reactive polymer solutions for a series of “induction times” tau_I and the evolving layer was characterized by X-ray reflectivity and atomic force microscopy. Distinct morphologies were found depending on tau_I. For short tau_I, corresponding to a grafting density less than 5 mg/m^2, the grafted layer forms an inhomogeneous island-like structure. At intermediate tau_I, where the coverage becomes percolating, a surface pattern develops which appears similar to spinodal decomposition in bulk solution. Finally, after sufficiently long tau_I, a dense and nearly homogeneous layer with a sharp interface is formed which does not exhibit surface pattern formation. The stages of brush growth are discussed qualitatively in terms of a random deposition model.

  14. Effective temperatures of hot Brownian motion.

    PubMed

    Falasco, G; Gnann, M V; Rings, D; Kroy, K

    2014-09-01

    We derive generalized Langevin equations for the translational and rotational motion of a heated Brownian particle from the fluctuating hydrodynamics of its nonisothermal solvent. The temperature gradient around the particle couples to the hydrodynamic modes excited by the particle itself so that the resulting noise spectrum is governed by a frequency-dependent temperature. We show how the effective temperatures at which the particle coordinates and (angular) velocities appear to be thermalized emerge from this central quantity.

  15. Designed Proteins as Optimized Oxygen Carriers for Artificial Blood

    DTIC Science & Technology

    2013-02-01

    to the lower energy for electron transfer when coupled to a proton transfer from water (3). Thus we set out to compare the rate of solvent...binding affinities and reduction potentials are the sole result of differences in internal electric fields in these proteins wrought by the surface...serving as the source of potential energy for the hexa- to penta-coordinate conformational change, and one in which the b-position glutamates from

  16. The Global Fund's paradigm of oversight, monitoring, and results in Mozambique.

    PubMed

    Warren, Ashley; Cordon, Roberto; Told, Michaela; de Savigny, Don; Kickbusch, Ilona; Tanner, Marcel

    2017-12-12

    The Global Fund is one of the largest actors in global health. In 2015 the Global Fund was credited with disbursing close to 10 % of all development assistance for health. In 2011 it began a reform process in response to internal reviews following allegations of recipients' misuse of funds. Reforms have focused on grant application processes thus far while the core structures and paradigm have remained intact. We report results of discussions with key stakeholders on the Global Fund, its paradigm of oversight, monitoring, and results in Mozambique. We conducted 38 semi-structured in-depth interviews in Maputo, Mozambique and members of the Global Fund Board and Secretariat in Switzerland. In-country stakeholders were representatives from Global Fund country structures (eg. Principle Recipient), the Ministry of Health, health or development attachés bilateral and multilateral agencies, consultants, and the NGO coordinating body. Thematic coding revealed concerns about the combination of weak country oversight with stringent and cumbersome requirements for monitoring and evaluation linked to performance-based financing. Analysis revealed that despite the changes associated with the New Funding Model, respondents in both Maputo and Geneva firmly believe challenges remain in Global Fund's structure and paradigm. The lack of a country office has many negative downstream effects including reliance on in-country partners and ineffective coordination. Due to weak managerial and absorptive capacity, more oversight is required than is afforded by country team visits. In-country partners provide much needed support for Global Fund recipients, but roles, responsibilities, and accountability must be clearly defined for a successful long-term partnership. Furthermore, decision-makers in Geneva recognize in-country coordination as vital to successful implementation, and partners welcome increased Global Fund engagement. To date, there are no institutional requirements for formalized coordination, and the Global Fund has no consistent representation in Mozambique's in-country coordination groups. The Global Fund should adapt grant implementation and monitoring procedures to the specific local realities that would be illuminated by more formalized coordination.

  17. Exploring a novel preparation method of 1D metal organic frameworks based on supercritical CO2.

    PubMed

    López-Periago, A; Vallcorba, O; Frontera, C; Domingo, C; Ayllón, J A

    2015-04-28

    The preparation of copper(II) one-dimensional MOFs using an eco-efficient method is reported here. This method is based exclusively on using supercritical CO2 as a solvent, without the addition of any other additive or co-solvent. Neutral acetylacetonate copper complexes and two linear linkers, namely, the bidentate 4,4'-bipyridine and 4,4'-trimethylenedipyridine molecules, were reacted under compressed CO2 at 60 °C and 20 MPa for periods of 4 or 24 h. The success achieved in the synthesis of the different studied 1D-MOFs was related to the solubility of the reagents in supercritical CO2. The reaction yield of the synthesized coordination polymers via the supercritical route was close to 100% because both the reactants were almost completely depleted in the performed experiments.

  18. The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering

    PubMed Central

    Szala‐Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T.

    2017-01-01

    Abstract Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. PMID:28672104

  19. Statistical Determinants of Selective Ionic Complexation: Ions in Solvent, Transport Proteins, and Other “Hosts”

    PubMed Central

    Bostick, David L.; Brooks, Charles L.

    2009-01-01

    To provide utility in understanding the molecular evolution of ion-selective biomembrane channels/transporters, globular proteins, and ionophoric compounds, as well as in guiding their modification and design, we present a statistical mechanical basis for deconstructing the impact of the coordination structure and chemistry of selective multidentate ionic complexes. The deconstruction augments familiar ideas in liquid structure theory to realize the ionic complex as an open ion-ligated system acting under the influence of an “external field” provided by the host (or surrounding medium). Using considerations derived from this basis, we show that selective complexation arises from exploitation of a particular ion's coordination preferences. These preferences derive from a balance of interactions much like that which dictates the Hofmeister effect. By analyzing the coordination-state space of small family IA and VIIA ions in simulated fluid media, we derive domains of coordinated states that confer selectivity for a given ion upon isolating and constraining particular attributes (order parameters) of a complex comprised of a given type of ligand. We demonstrate that such domains may be used to rationalize the ion-coordinated environments provided by selective ionophores and biological ion channels/transporters of known structure, and that they can serve as a means toward deriving rational design principles for ion-selective hosts. PMID:19486671

  20. Crystal structure of (4-cyano­pyridine-κN){5,10,15,20-tetrakis[4-(benzoyloxy)phenyl]porphyrinato-κ4 N}zinc–4-cyano­pyridine (1/1)

    PubMed Central

    Nasri, Soumaya; Amiri, Nesrine; Turowska-Tyrk, Ilona; Daran, Jean-Claude; Nasri, Habib

    2016-01-01

    In the title compound, [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2 or [Zn(TPBP)(4-CNpy]·(4-CNpy) [where TPBP and 4-CNpy are 5,10,15,20-(tetra­phenyl­benzoate)porphyrinate and 4-cyano­pyridine, respectively], the ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn—N(pyrrole) bond length is 2.060 (6) Å and the Zn—N(4-CNpy) bond length is 2.159 (2) Å. The zinc cation is displaced by 0.319 (1) Å from the N4C20 mean plane of the porphyrinate anion toward the 4-cyano­pyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP)(4-CNpy)] complex mol­ecules are linked together via weak C—H⋯N, C—H⋯O and C—H⋯π inter­actions, forming supra­molecular channels parallel to the c axis. The non-coordinating 4-cyano­pyridine mol­ecules are located in the channels and linked with the complex mol­ecules, via weak C—H⋯N inter­actions and π-π stacking or via weak C—H⋯O and C—H⋯π inter­actions. The non-coordinating 4-cyano­pyridine mol­ecule is disordered over two positions with an occupancy ratio of 0.666 (4):0.334 (4). PMID:26958379

  1. D-A type sensor array for differentiation and identification of white wine varieties based on specific solvent effect activated by CT-LE transition

    NASA Astrophysics Data System (ADS)

    Han, Jingqi; Zhang, Xin; Li, Hao; Hou, Yue; Hou, Jingdan; Li, Zhongfeng; Yang, Feng; Liu, Yang; Han, Tianyu

    2018-02-01

    In this work, we synthesize a series of compounds with electron donor (D) and acceptor (A) units. They show general solvent effect in aprotic solvents, suggesting a charge transfer (CT) process. While in protic solvents including water, ethanol and methanol, the spectra exert no polarity-dependence but a remarkable hypochromatic shift together with the fading of CT band. Dynamic analysis implies that intermolecular hydrogen bond will be formed between carboxylic acid and protic solvent, boosting another deactivation pathway that jumps off a bigger energy gap, in other words, favoring the locally excited (LE) state emission. The CT-LE transition involves variations in both absorption and emission spectra, and further poses competition with other mechanisms including activated/restricted intramolecular rotation (IR/RIR). Inspired by the cross-reactivity, we turn our attention to the development of sensor array, in order to identify white wine varieties. The differential spectral responses are recorded, generating multiple factors including absorption wavelength (λab), emission wavelength (λem), absorbance (Abs.) and emission intensity (Int.). These factors are processed with principal component analysis (PCA), creating a three-dimensional fingerprint data base for white wines. The data points in the coordinate system are clustered into 10 different groups, demonstrating a clear differentiation of all the white wines. More importantly, as our final test for whether the sensor array can identify the counterfeits, an adulterated liquor sample, which is provided by police officers, is fingerprinted on the three-dimensional diagram. Its canonical factors fall into an area distinct from the adulterated wine, indicating a clear identification.

  2. Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations

    NASA Astrophysics Data System (ADS)

    Daniel, William Francis McKemie, Jr.

    Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (<105 Pa) must be developed. Single component systems do not suffer from compositional changes over time and display more stable performance in a wider variety of temperatures and humidity conditions. A solvent-free system also has the potential to be homogeneous which replaces the large energetic interactions with comparatively small architectural interaction parameters. If a solvent-free alternative to liquid-filled gels is to be created, we must first consider the fundamental barrier to softer elastomers, i.e. entanglements - intrinsic topological restrains which define a lower limit of modulus ( 105 Pa). These entanglements are determined by chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush-like polymer) to experimentally verify theoretical predictions of disentangled bottlebrush melts. By attaching well-defined side chains onto long polymer backbones, individual polymer strands are separated in space (similar to dilution with solvent) accompanied by a comparatively small increase in the rigidity of the strands. The end result is an architectural disentangled melt with an entanglement plateau modulus as much as three orders of magnitude lower than typical linear polymers and a broadly expanded potential for extensibility once crosslinked.

  3. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.

    PubMed

    Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2017-11-17

    A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.

  4. A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances.

    PubMed

    Li, Dongmei; Guan, Tian; He, Yonghong; Liu, Fang; Yang, Anping; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo

    2018-07-01

    A new chiral sensor based on weak measurement to accurately measure the optical rotation (OR) has been developed for the estimation of a trace amount of chiral molecule. With the principle of optical weak measurement in frequency domain, the central wavelength shift of output spectra is quantitatively relative to the angle of preselected polarization. Hence, a chiral molecule (e.g., L-amino acid, or D-amino acid) can be enantioselectively determined by modifying the preselection angle with the OR, which will cause the rotation of a polarization plane. The concentration of the chiral sample, corresponding to its optical activity, is quantitatively analyzed with the central wavelength shift of output spectra, which can be collected in real time. Immune to the refractive index change, the proposed chiral sensor is valid in complicated measuring circumstance. The detections of Proline enantiomer concentration in different solvents were implemented. The results demonstrated that weak measurement acted as a reliable method to chiral recognition of Proline enantiomers in diverse circumstance with the merits of high precision and good robustness. In addition, this real-time monitoring approach plays a crucial part in asymmetric synthesis and biological systems. Copyright © 2018. Published by Elsevier B.V.

  5. On the ion-pair dissociation mechanisms in the small NaCl·(H2 O)6 cluster: A perspective from reaction path search calculations.

    PubMed

    Takayanagi, Toshiyuki; Nakatomi, Taiki; Yonetani, Yoshiteru

    2018-04-20

    We performed reaction path search calculations for the NaCl·(H 2 O) 6 cluster using the global reaction route mapping (GRRM) code to understand the atomic-level mechanisms of the NaCl → Na +  + Cl - ionic dissociation induced by water solvents. Low-lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the NaCl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7-3.7 Å and that the NaCl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. Trichlorido[(meth­yl{2-[meth­yl(2-pyridyl­meth­yl)amino]eth­yl}amino)acetonitrile]iron(III) methanol hemisolvate

    PubMed Central

    Nielsen, Anne; McKenzie, Christine J.; Bond, Andrew D.

    2009-01-01

    The title compound, [FeCl3(C12H18N4)]·0.5CH3OH, contains an FeIII ion in a distorted octa­hedral coordination environment. The neutral N,N′,N′′-tridentate ligand adopts a fac coordination mode, and chloride ligands lie trans to each of the three coordinated N atoms. In the crystal, the complexes form columns extending parallel to the approximate local threefold axes of the FeN3Cl3 octa­hedra, and the columns are arranged so that the uncoordinated nitrile groups align in an anti­parallel manner and the pyridyl rings form offset face-to-face arrangements [inter­planar separations = 2.95 (1) and 3.11 (1) Å; centroid–centroid distances = 5.31 (1) and 4.92 (1) Å]. The methanol solvent mol­ecule is disordered about a twofold rotation axis. PMID:21578169

  7. Studying the role of protein dynamics in an SN2 enzyme reaction using free-energy surfaces and solvent coordinates

    NASA Astrophysics Data System (ADS)

    García-Meseguer, Rafael; Martí, Sergio; Ruiz-Pernía, J. Javier; Moliner, Vicent; Tuñón, Iñaki

    2013-07-01

    Conformational changes are known to be able to drive an enzyme through its catalytic cycle, allowing, for example, substrate binding or product release. However, the influence of protein motions on the chemical step is a controversial issue. One proposal is that the simple equilibrium fluctuations incorporated into transition-state theory are insufficient to account for the catalytic effect of enzymes and that protein motions should be treated dynamically. Here, we propose the use of free-energy surfaces, obtained as a function of both a chemical coordinate and an environmental coordinate, as an efficient way to elucidate the role of protein structure and motions during the reaction. We show that the structure of the protein provides an adequate environment for the progress of the reaction, although a certain degree of flexibility is needed to attain the full catalytic effect. However, these motions do not introduce significant dynamical corrections to the rate constant and can be described as equilibrium fluctuations.

  8. Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol

    NASA Astrophysics Data System (ADS)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2018-04-01

    We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.

  9. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers.

    PubMed

    Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni

    2016-03-21

    The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).

  10. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aproticmore » solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.« less

  11. Comorbidities in Preschool Children at Family Risk of Dyslexia

    ERIC Educational Resources Information Center

    Gooch, Debbie; Hulme, Charles; Nash, Hannah M.; Snowling, Margaret J.

    2014-01-01

    Background: Comorbidity among developmental disorders such as dyslexia, language impairment, attention deficit/hyperactivity disorder and developmental coordination disorder is common. This study explores comorbid weaknesses in preschool children at family risk of dyslexia with and without language impairment and considers the role that…

  12. Isolation and reversible dimerization of a selenium-selenium three-electron σ-bond.

    PubMed

    Zhang, Senwang; Wang, Xingyong; Su, Yuanting; Qiu, Yunfan; Zhang, Zaichao; Wang, Xinping

    2014-06-11

    Three-electron σ-bonding that was proposed by Linus Pauling in 1931 has been recognized as important in intermediates encountered in many areas. A number of three-electron bonding systems have been spectroscopically investigated in the gas phase, solution and solid matrix. However, X-ray diffraction studies have only been possible on simple noble gas dimer Xe∴Xe and cyclic framework-constrained N∴N radical cations. Here, we show that a diselena species modified with a naphthalene scaffold can undergo one-electron oxidation using a large and weakly coordinating anion, to afford a room-temperature-stable radical cation containing a Se∴Se three-electron σ-bond. When a small anion is used, a reversible dimerization with phase and marked colour changes is observed: radical cation in solution (blue) but diamagnetic dimer in the solid state (brown). These findings suggest that more examples of three-electron σ-bonds may be stabilized and isolated by using naphthalene scaffolds together with large and weakly coordinating anions.

  13. Metal-metal interactions in tetrakis(diphenylphosphino)benzene-bridged dimetallic complexes and their related coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei-Wei; Fox, M.A.

    1994-06-22

    Electrochemical, EPR, and spectroelectrochemical methods have been used to probe electronic coupling through a 1,2,4,5-tetrakis(diphenylphosphino)benzene bridging ligand connecting metal centers in several Ni-, Pd-, and Pt-containing dimetallic complexes. These dimetalated complexes showed weak intervalence charge transfer (IT) bands and slightly shifted redox potentials in comparison with their monometallic models. A Marcus-Hush analysis of the energies of the IT bands for the electrochemically generated mixed-valence heterodimetallic complexes (Ni{sup o}-Pd{sup II} and Ni{sup o}-Pt{sup II}, respectively) established the magnitude of intermetallic electronic coupling. The weak thermal coupling observed in these dimetalated complexes is consistent with the very low conductivities (10{sup {minus}8}-10{sup {minus}10}{omega}{supmore » -1} cm{sup {minus}1}) observed in the polymeric analogs of these complexes, namely, the newly prepared metal coordination polymers (M = Ni{sup II}, Pd{sup II}, Pt{sup II}) with 1,2,4,5-tetrakis(diphenylphosphino)benzene.« less

  14. Does the University-Industry Link Affect Solving Challenges of the Job Market? Lessons From Teacher Education and the Ministry of Education in Malawi

    PubMed Central

    Mkandawire, Matthews Tiwaone; Luo, Zubing; Maulidi, Felix Kondwani

    2018-01-01

    About half of the secondary school teachers in Malawi are professionally unqualified. Furthermore, the net enrolment of eligible pupils in secondary schools is at 36% per year. Hence, this study sought to establish factors affecting access to quality and relevant secondary education in Malawi with reference to coordination, collaboration, and feedback between secondary school teacher education institutions and the Ministry of Education. Officials from the Ministry of Education and secondary school teacher training colleges participated in the study. Findings suggest that there is weak collaboration, coordination, and feedback between teacher training institutions and the Ministry of Education which is affecting the quality and relevance of education in Malawi. The study has also established that the weak linkage has resulted into perceived mismatches between expectations of the ministry and those of the education institutions about the problem in question. Theoretical and practical implications of this study are discussed in this article. PMID:29417093

  15. Assessment of Institutional Capacities of Flood Management Institution in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Noor M.

    2009-03-01

    Pakistan is frequently devastated by floods. The flood impacts can be reduced if the flood management institutional capacities are improved. This paper reviews and assesses the capacities of flood management institution in Pakistan. Citing a number of case studies about the flood management practices in Pakistan, the study estimates the weaknesses and strengths of the institution with respect to various phases of flood management, namely, mitigation, preparedness, response, and rehabilitation and also with respect to various characteristics of institutions, namely, deliberation, coordination, implementation, and evaluation, using an improved capacity assessment framework. It has been found that the performance of the mitigation and rehabilitation phases is not satisfactory and that of preparedness and response is satisfactory. It is concluded that the functions of deliberation need to be improved while the other three characteristics of institution namely, coordination, implementation, and evaluation are performing well. The study will help the policy makers to concentrate on the identified weak capacities.

  16. Dielectric Interactions and the Prediction of Retention Times of Pesticides in Supercritical Fluid Chromatography with CO2

    NASA Astrophysics Data System (ADS)

    Alvarez, Guillermo A.; Baumanna, Wolfram

    2005-02-01

    A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of a gas (and hence the solvent strength becomes negligible), a dramatic loss of the retention times of all pesticides is observed in the experiments; this is attributed to desorption of the solute from the stationary phase, as predicted by Le Châtelier's principle for the (exothermic) adsorption process.

  17. The legacy of chlorinated solvents in the Birmingham aquifer, UK: Observations spanning three decades and the challenge of future urban groundwater development

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Turner, Ryan J.; Glibbery (née Murcott), Penny; Cuthbert, Mark O.

    2012-10-01

    Licensed abstraction well data collected during 1986-2008 from a total of 77 wells mainly located at industrial sites combined with historic land use data from 1975 has allowed insight into the legacy of chlorinated solvent contamination in the Birmingham aquifer that underlies the UK's second largest city. This legacy, expected to be reasonably symptomatic of those occurring in other urban aquifers, was characterised by: dominance of parent solvents, particularly TCE (trichloroethene) that widely exceeded drinking-water quality criteria; greater TCE occurrence in wells in proximity to increased historic land use by the metal/engineering solvent-user industry (the relationship providing a first-pass indicator of future resource development potential); regional groundwater vulnerability controls; well abstraction changes (over months to decades) influential of observed concentration transients and anticipated plume capture or release; persistence of contamination over decades (with less soluble PCE (perchloroethene) showing increased persistence relative to TCE) that was reasonably ascribed to slow contaminant release from DNAPL (dense non-aqueous phase liquid) sources and, or low permeability layers; presence of dechlorination products arising from solvent (bio)degradation, although this key attenuation process appeared to have moderate to weak influence regionally on plumes; and, inadvertent, but significant solvent mass removal from the aquifer by industrial abstractions. Key challenges to realising future urban groundwater development were identified based on the observed legacy and well capture zone simulations. Despite the extensive contamination of the aquifer, it should still be possible to develop wells of high (several megalitres per day) capacity for drinking water supply (or other lower grade uses) without the requirement for solvent treatment. In those areas with higher risk of contamination, our dataset, together with application of emergent risk assessment approaches (that our dataset may serve to validate), could be used to inform potential abstractors as to whether solvent treatment is likely to be required at a particular abstraction site with time. Challenges identified that were relevant to the future development of Birmingham and urban aquifers more generally include the adequacy of groundwater quality monitoring data and uncertainties in contaminant source terms, abstraction well capture zone predictions and plume natural attenuation, in particular degradation rates. The study endorses that despite significant solvent contamination encountered, strategies can, and need, to be increasingly found to reclaim urban aquifer resources and more sustainably meet urban water demands.

  18. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig; Pavanello, Michele

    2012-05-21

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations.more » In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.« less

  19. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon1.fr

    2014-05-01

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoS{sub x} (x≈4) of 10–30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoS{sub x} under nitrogen or hydrogen flow atmore » 400 °C allows obtaining mesoporous MoS{sub 2} materials with very high pore volume and specific surface area, up to 0.45 cm{sup 3}/g and 190 m{sup 2}/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts. - Graphical abstract: Solution reaction in propylene carbonate allows preparing weakly agglomerated molybdenum sulfide with particle size 20 nm and advantageous catalytic properties. - Highlights: • Solution reaction in propylene carbonate yields MoS{sub x} particles near 20 nm size. • Addition of starch as capping agent reduces particles size and hinder agglomeration. • EXAFS at Mo K edge shows rapid oxygen to sulfur exchange in the solution. • Thermal treatment leads to MoS{sub 2} with very high porosity and surface area.« less

  20. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes.

    PubMed

    Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (μ(eff)∼5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. μ-Carbonato-κ(4) O,O':O',O''-bis-{[2'-(di-tert-butyl-phosphan-yl)biphenyl-2-yl-κ(2) P,C (1)]palladium(II)} dichloro-methane monosolvate.

    PubMed

    Muller, Alfred; Holzapfel, Cedric W

    2012-12-01

    The title compound, [(μ2-CO3){Pd(P(t-C4H9)2(C12H8)}2]·CH2Cl2, the first CO3-bridged palladium dimer complex reported to date, was obtained while preparing the Pd(0) complex with (2-biphen-yl)P( (t) Bu)2. In the crystal, each palladium dimer is accompanied by a dichloro-methane solvent mol-ecule. Coordination of the carbonate and chelated phosphane ligands gives distorted square-planar environments at the Pd atoms. Important geometrical parameters include Pd-P(av.) = 2.2135 (4) Å, Pd-C(av.) = 1.9648 (16) Å and P-Pd-C = 84.05 (5) and 87.98 (5)°, and O-Pd-O' = 60.56 (4) and 61.13 (4)°. Bonding with the carbonate O atoms shows values of 2.1616 (11) and 2.1452 (11) Å for the Pd-O-Pd bridge, whereas other Pd-O distances are slightly longer at 2.2136 (11) and 2.1946 (11) Å. One of the tert-butyl groups is disordered over two set of sites with an occupancy ratio of 0.723 (6):0.277 (6). Weak C-H⋯O interactions are observed propagating the molecules along the [100] direction.

  2. μ-Carbonato-κ4 O,O′:O′,O′′-bis­{[2′-(di-tert-butyl­phosphan­yl)biphenyl-2-yl-κ2 P,C 1]palladium(II)} dichloro­methane monosolvate

    PubMed Central

    Muller, Alfred; Holzapfel, Cedric W.

    2012-01-01

    The title compound, [(μ2-CO3){Pd(P(t-C4H9)2(C12H8)}2]·CH2Cl2, the first CO3-bridged palladium dimer complex reported to date, was obtained while preparing the Pd0 complex with (2-biphen­yl)P(tBu)2. In the crystal, each palladium dimer is accompanied by a dichloro­methane solvent mol­ecule. Coordination of the carbonate and chelated phosphane ligands gives distorted square-planar environments at the Pd atoms. Important geometrical parameters include Pd—P(av.) = 2.2135 (4) Å, Pd—C(av.) = 1.9648 (16) Å and P—Pd—C = 84.05 (5) and 87.98 (5)°, and O—Pd—O′ = 60.56 (4) and 61.13 (4)°. Bonding with the carbonate O atoms shows values of 2.1616 (11) and 2.1452 (11) Å for the Pd—O—Pd bridge, whereas other Pd—O distances are slightly longer at 2.2136 (11) and 2.1946 (11) Å. One of the tert-butyl groups is disordered over two set of sites with an occupancy ratio of 0.723 (6):0.277 (6). Weak C—H⋯O interactions are observed propagating the molecules along the [100] direction. PMID:23468771

  3. Critical conditions of polymer adsorption and chromatography on non-porous substrates.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-07-15

    We present a novel thermodynamic theory and Monte Carlo simulation model for adsorption of macromolecules to solid surfaces that is applied for calculating the chain partition during separation on chromatographic columns packed with non-porous particles. We show that similarly to polymer separation on porous substrates, it is possible to attain three chromatographic modes: size exclusion chromatography at very weak or no adsorption, liquid adsorption chromatography when adsorption effects prevail, and liquid chromatography at critical conditions that occurs at the critical point of adsorption. The main attention is paid to the analysis of the critical conditions, at which the retention is chain length independent. The theoretical results are verified with specially designed experiments on isocratic separation of linear polystyrenes on a column packed with non-porous particles at various solvent compositions. Without invoking any adjustable parameters related to the column and particle geometry, we describe quantitatively the observed transition between the size exclusion and adsorption separation regimes upon the variation of solvent composition, with the intermediate mode occurring at a well-defined critical point of adsorption. A relationship is established between the experimental solvent composition and the effective adsorption potential used in model simulations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Direct Immersion Annealing of Block Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene -poly(methyl methacrylate) (PS -PMMA) system: rapid short range order, optimal long-range order, and a film instability regime. Kinetic studies in the ``optimal long-range order'' processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering. Inclusion of nanoparticles in these films at high concentrations and fast ordering kinetics study with neutron reflectivity and SANS will be discussed. This is (late) Contributed Talk Abstract for Dillon Medal Symposium at DPOLY - discussed with DPOLY Chair Dvora Perahia.

  5. Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality

    NASA Astrophysics Data System (ADS)

    Cao, Qianqian; Tian, Xiu; You, Hao

    2018-04-01

    We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.

  6. Self-Assembly and Drug Release Capacities of Organogels via Some Amide Compounds with Aromatic Substituent Headgroups

    PubMed Central

    Zhang, Lexin; Jiao, Tifeng; Ma, Kai; Xing, Ruirui; Liu, Yamei; Xiao, Yong; Zhou, Jingxin; Zhang, Qingrui; Peng, Qiuming

    2016-01-01

    In this work, some amide compounds with different aromatic substituent headgroups were synthesized and their gelation self-assembly behaviors in 22 solvents were characterized as new gelators. The obtained results indicated that the size of aromatic substituent headgroups in molecular skeletons in gelators showed crucial effect in the gel formation and self-assembly behavior of all compounds in the solvents used. Larger aromatic headgroups in molecular structures in the synthesized gelator molecules are helpful to form various gel nanostructures. Morphological investigations showed that the gelator molecules can self-assembly and stack into various organized aggregates with solvent change, such as wrinkle, belt, rod, and lamella-like structures. Spectral characterizations suggested that there existed various weak interactions including π-π stacking, hydrogen bonding, and hydrophobic forces due to aromatic substituent headgroups and alkyl substituent chains in molecular structures. In addition, the drug release capacities experiments demonstrated that the drug release rate in present obtained gels can be tuned by adjusting the concentrations of dye. The present work would open up enormous insight to design and investigate new kind of soft materials with designed molecular structures and tunable drug release performance. PMID:28773663

  7. A carbohydrate-anion recognition system in aprotic solvents.

    PubMed

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  8. Time resolved infrared studies of C-H bond activation by organometallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, M.C.

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on themore » structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.« less

  9. Evaluation of DNA Force Fields in Implicit Solvation

    PubMed Central

    Gaillard, Thomas; Case, David A.

    2011-01-01

    DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178

  10. Synthesis and Characterization of a Series of Structurally and Electronically Diverse Fe(II) Complexes Featuring a Family of Triphenylamido-Amine Ligands

    PubMed Central

    Paraskevopoulou, Patrina; Ai, Lin; Wang, Qiuwen; Pinnapareddy, Devender; Acharyya, Rama; Dinda, Rupam; Das, Purak; Çelenligil-Çetin, Remle; Floros, Georgios; Sanakis, Yiannis; Choudhury, Amitava; Rath, Nigam P.; Stavropoulos, Pericles

    2009-01-01

    A family of triphenylamido-amine ligands of the general stoichiometry LxH3 = [R-NH-(2-C6H4)]3N (R = 4-t-BuPh (L1H3), 3,5-t-Bu2Ph (L2H3), 3,5-(CF3)2Ph (L3H3), CO-t-Bu (L4H3) 3,5-Cl2Ph (L5H3), COPh (L6H3), CO-i-Pr (L7H3), COCF3 (L8H3), i-Pr (L9H3)) has been synthesized and characterized, featuring a rigid triphenylamido-amine scaffold and an array of stereoelectronically diverse aryl, acyl and alkyl substituents (R). These ligands are deprotonated by potassium hydride in THF or DMA and reacted with anhydrous FeCl2 to afford a series of ferrous complexes, exhibiting stoichiometric variation and structural complexity. The prevalent [(Lx)Fe(II)–solv]− structures (Lx = L1, L2, L3, L5, solv = THF; Lx = L8, solv = DMA; Lx = L6, L8, solv = MeCN), reveal a distorted trigonal bipyramidal geometry, featuring ligand-derived [N3,amidoNamine] coordination and solvent attachment trans to the Namine atom. Specifically for [(L8)Fe(II)–DMA]−, an Namido residue is coordinated as the corresponding Nimino moiety (Fe–N(Ar)=C(CF3)–O−). In contrast, compounds [(L4)Fe(II)] −, [(L6)2Fe(II)2]2−, [K(L7)2Fe(II)2]22− and [K(L9)Fe]2 are all solvent-free in their coordination sphere and exhibit four-coordinate geometries of significant diversity. In particular, [(L4)Fe(II)]− demonstrates coordination of one amidato residue via the O-atom end (Fe–O–C(t-Bu)=N(Ar)). Furthermore, [(L6)2Fe(II)2]2− and [K(L7)2Fe(II)2]22− are similar structures exhibiting bridging amidato residues (Fe–N(Ar)–C(R)=O–Fe) in dimeric structural units. Finally the structure of [K(L9)Fe]2 is the only example featuring a minimal [N3,amidoNamine] coordination sphere around each Fe(II) site. All compounds have been characterized by a variety of physicochemical techniques, including Mössbauer spectroscopy and electrochemistry, to reveal electronic attributes that are responsible for a range of Fe(II)/Fe(III) redox potentials exceeding 1.0 V. PMID:19950956

  11. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy.

    PubMed

    Xi, Juqun; Da, Lanyue; Yang, Changshui; Chen, Rui; Gao, Lizeng; Fan, Lei; Han, Jie

    2017-01-01

    Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn 2+ -coordinated doxorubicin (DOX)-loaded poly(lactic- co -glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn 2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn 2+ -PDA@DOX/PLGA nanoparticles. In our system, Mn 2+ -PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn 2+ could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn 2+ -PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties.

  12. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy

    PubMed Central

    Xi, Juqun; Da, Lanyue; Yang, Changshui; Chen, Rui; Gao, Lizeng; Fan, Lei; Han, Jie

    2017-01-01

    Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn2+-coordinated doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn2+-PDA@DOX/PLGA nanoparticles. In our system, Mn2+-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn2+ could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn2+-PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties. PMID:28479854

  13. Interpenetrating and non-interpenetrating 3-dimensional coordination polymer frameworks from multiple building blocks

    NASA Astrophysics Data System (ADS)

    Bradshaw, Darren; Rosseinsky, Matthew J.

    2005-12-01

    Reaction of Co(NO3)2ṡ6H2O with the multidentate ligands benzene-1,3,5-tricarboxylate (btc) and the flexible bipyridyl ligand 1,2-bis(4-pyridyl)ethane (bpe) affords the 3-dimensional coordination polymers [Co3(btc)2(bpe)3(eg)2]ṡ(guests) 1, where eg = ethylene glycol, and [Co2(Hbtc)2(bpe)2]ṡ(bpe) 2. Both phases are comprised of infinite metal-carboxylate dimer chains, linked into 2-dimensional sheets by the bpe ligands. These sheets are further linked to adjacent sheets through covalent interactions, 1, or through hydrogen-bonding interactions, 2, to yield the 3-dimensional structures. Phase 1 exhibits solvent filled 1-dimensional pores, whereas 2 is triply-interpenetrated to form a dense solid array.

  14. The OsO(3)F(+) and mu-F(OsO(3)F)(2)(+) cations: their syntheses and study by Raman and (19)F NMR spectroscopy and electron structure calculations and X-ray crystal structures of [OsO(3)F][PnF(6)] (Pn = As, Sb), [OsO(3)F][HF](2)[AsF(6)], [OsO(3)F][HF][SbF(6)], and [OsO(3)F][Sb(3)F(16)].

    PubMed

    Gerken, Michael; Dixon, David A; Schrobilgen, Gary J

    2002-01-28

    The fluoride ion donor properties of OsO(3)F(2) have been investigated. The salts [OsO(3)F][AsF(6)], [OsO(3)F][HF](2)[AsF(6)], mu-F(OsO(3)F)(2)[AsF(6)], [OsO(3)F][HF](2)[SbF(6)], and [OsO(3)F][HF][SbF(6)] have been prepared by reaction of OsO(3)F(2) with AsF(5) and SbF(5) in HF solvent and have been characterized in the solid state by Raman spectroscopy. The single-crystal X-ray diffraction studies of [OsO(3)F][AsF(6)] (P2(1)/n, a = 7.0001(11) A, c = 8.8629(13) A, beta = 92.270(7) degrees, Z = 4, and R(1) = 0.0401 at -126 degrees C), [OsO(3)F][SbF(6)] (P2(1)/c, a = 5.4772(14) A, b = 10.115(3) A, c = 12.234(3) A, beta = 99.321(5) degrees, Z = 4, and R(1) = 0.0325 at -173 degrees C), [OsO(3)F][HF](2)[AsF(6)] (P2(1)/n, a = 5.1491(9) A, b = 8.129(2) A, c = 19.636(7) A, beta = 95.099(7) degrees, Z = 4, and R(1) = 0.0348 at -117 degrees C), and [OsO(3)F][HF][SbF(6)] (Pc, a = 5.244(4) A, b = 9.646(6) A, c = 15.269(10) A, beta = 97.154(13) degrees, Z = 4, and R(1) = 0.0558 at -133 degrees C) have shown that the OsO(3)F(+) cations exhibit strong contacts to the anions and HF solvent molecules giving rise to cyclic, dimeric structures in which the osmium atoms have coordination numbers of 6. The reaction of OsO(3)F(2) with neat SbF(5) yielded [OsO(3)F][Sb(3)F(16)], which has been characterized by (19)F NMR spectroscopy in SbF(5) and SO(2)ClF solvents and by Raman spectroscopy and single-crystal X-ray diffraction in the solid state (P4(1)m, a = 10.076(6) A, c = 7.585(8) A, Z = 2, and R(1) = 0.0858 at -113 degrees C). The weak fluoride ion basicity of the Sb(3)F(16)(-) anion resulted in an OsO(3)F(+) cation (C(3)(v) point symmetry) that is well isolated from the anion and in which the osmium is four-coordinate. The geometrical parameters and vibrational frequencies of OsO(3)F(+), ReO(3)F, mu-F(OsO(3)F)(2)(+), (FO(3)Os--FPnF(5))(2), and (FO(3)Os--(HF)(2)--FPnF(5))(2) (Pn = As, Sb) have been calculated using density functional theory methods.

  15. Generalized Born Models of Macromolecular Solvation Effects

    NASA Astrophysics Data System (ADS)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  16. Anomalous Protein-Protein Interactions in Multivalent Salt Solution.

    PubMed

    Pasquier, Coralie; Vazdar, Mario; Forsman, Jan; Jungwirth, Pavel; Lund, Mikael

    2017-04-13

    The stability of aqueous protein solutions is strongly affected by multivalent ions, which induce ion-ion correlations beyond the scope of classical mean-field theory. Using all-atom molecular dynamics (MD) and coarse grained Monte Carlo (MC) simulations, we investigate the interaction between a pair of protein molecules in 3:1 electrolyte solution. In agreement with available experimental findings of "reentrant protein condensation", we observe an anomalous trend in the protein-protein potential of mean force with increasing electrolyte concentration in the order: (i) double-layer repulsion, (ii) ion-ion correlation attraction, (iii) overcharge repulsion, and in excess of 1:1 salt, (iv) non Coulombic attraction. To efficiently sample configurational space we explore hybrid continuum solvent models, applicable to many-protein systems, where weakly coupled ions are treated implicitly, while strongly coupled ones are treated explicitly. Good agreement is found with the primitive model of electrolytes, as well as with atomic models of protein and solvent.

  17. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  18. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  19. Environmental impact assessment as a complement of life cycle assessment. Case study: Upgrading of biogas.

    PubMed

    Morero, Betzabet; Rodriguez, María B; Campanella, Enrique A

    2015-08-01

    This work presents a comparison between an environmental impact assessment (EIA) and a life cycle assessment (LCA) using a case study: upgrading of biogas. The upgrading of biogas is studied using three solvents: water, physical solvent and amine. The EIA follows the requirements of the legislation of Santa Fe Province (Argentina), and the LCA follows ISO 14040. The LCA results showed that water produces a minor impact in most of the considered categories whereas the high impact in the process with amines is the result of its high energy consumptions. The positive results obtained in the EIA (mainly associated with the cultural and socioeconomic components) make the project feasible and all the negative impacts can be mitigated by preventive and remedial measures. From the strengths and weaknesses of each tool, it is inferred that the EIA is a procedure that can complement the LCA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Self-assembly of an imidazolate-bridged Fe(III)/Cu(II) heterometallic cage.

    PubMed

    Reichel, Florian; Clegg, Jack K; Gloe, Karsten; Gloe, Kerstin; Weigand, Jan J; Reynolds, Jason K; Li, Chun-Guang; Aldrich-Wright, Janice R; Kepert, Cameron J; Lindoy, Leonard F; Yao, Hong-Chang; Li, Feng

    2014-01-21

    A rare, discrete, mixed-valent, heterometallic Fe(III)/Cu(II) cage, [Cu6Fe8L8](ClO4)12·χsolvent (H3L = tris{[2-{(imidazole-4-yl)methylidene}amino]ethyl}amine), was designed and synthesized via metal-ion-directed self-assembly with neutral tripodal metalloligands. The formation of this coordination cage was demonstrated by X-ray crystallography, ESI mass spectrometry, FT-IR, and UV-vis-NIR spectroscopy.

  1. 9-Triptycenecarboxylate-Bridged Diiron(II) Complexes

    PubMed Central

    Friedle, Simone; Kodanko, Jeremy J.; Fornace, Kyrstin L.; Lippard, Stephen J.

    2008-01-01

    The synthesis and characterization of diiron(II) complexes supported by 9-triptycenecarboxylate ligands (-O2CTrp) is described. The interlocking nature of the triptycenecarboxylates facilitates formation of quadruply bridged diiron(II) complexes of the type [Fe2(μ-O2CTrp)4(L)2] (L = THF, pyridine or imidazole derivative) with a paddlewheel geometry. A systematic lengthening of the Fe-Fe distance occurs with the increase in steric bulk of the neutral donor L, resulting in values of up to 3 Å without disassembly of the paddlewheel structure. Reactions with an excess of water do not lead to decomposition of the diiron(II) core, indicating that these quadruply bridged complexes are of exceptional stability. The red-colored complexes [Fe2(μ-O2CTrp)4(4-AcPy)2] (10) and [Fe2(μ-O2CTrp)4(4-CNPy)2] (11) exhibit solvent-dependent thermochromism in coordinating solvents that was studied by variable temperature UV-vis spectroscopy. Reaction of [Fe2(μ-O2CTrp)4(THF)2] with N,N,N’,N’-tetramethylethylenediamine (TMEDA), tetra-n-butyl ammonium thiocyanate, or excess 2-methylimidazole resulted in the formation of mononuclear complexes [Fe(O2CTrp)2(TMEDA)] (13), (n-Bu4N)2[Fe(O2CTrp)2(SCN)2] (14), and [Fe(O2CTrp)2(2-MeIm)2] (15) having an O4/N2 coordination sphere composition. PMID:19915653

  2. Understanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends.

    PubMed

    Oldiges, K; Diddens, D; Ebrahiminia, M; Hooper, J B; Cekic-Laskovic, I; Heuer, A; Bedrov, D; Winter, M; Brunklaus, G

    2018-06-20

    To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.

  3. Distal histidine conformational flexibility in dehaloperoxidase from Amphitrite ornata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zuxu; de Serrano, Vesna; Betts, Laurie

    2009-01-28

    The enzyme dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a heme protein which has a globin fold but can function as both a hemoglobin and a peroxidase. As a peroxidase, DHP is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. As a hemoglobin, DHP cycles between the oxy and deoxy states as it reversibly binds oxygen for storage. Here, it is reported that the distal histidine, His55, exhibits conformational flexibility in the deoxy form and is consequently observed in two solvent-exposed conformations more than 9.5 {angstrom} away from the heme. These conformationsmore » are analogous to the open conformation of sperm whale myoglobin. The heme iron in deoxy ferrous DHP is five-coordinate and has an out-of-plane displacement of 0.25 {angstrom} from the heme plane. The observation of five-coordinate heme iron with His55 in a remote solvent-exposed conformation is consistent with the hypothesis that His55 interacts with heme iron ligands through hydrogen bonding in the closed conformation. Since His55 is also displaced by the binding of 4-iodophenol in an internal pocket, these results provide new insight into the correlation between heme iron ligation, molecular binding in the distal pocket and the conformation of the distal histidine in DHP.« less

  4. Impact of substituents and nonplanarity on nickel and copper porphyrin electrochemistry: first observation of a Cu(II)/Cu(III) reaction in nonaqueous media.

    PubMed

    Fang, Yuanyuan; Senge, Mathias O; Van Caemelbecke, Eric; Smith, Kevin M; Medforth, Craig J; Zhang, Min; Kadish, Karl M

    2014-10-06

    Electrochemical studies of the oxidation of dodecasubstituted and highly nonplanar nickel porphyrins in a noncoordinating solvent have previously revealed the first nickel(III) porphyrin dication. Herein, we investigate if these nonplanar porphyrins can also be used to detect the so far unobserved copper(III) porphyrin dication. Electrochemical studies of the oxidation of (DPP)Cu and (OETPP)Cu show three processes, the first two of which are macrocycle-centered to give the porphyrin dication followed by a Cu(II)/Cu(III) process at more positive potential. Support for the assignment of the Cu(II)/Cu(III) process comes from the linear relationships observed between E1/2 and the third ionization potential of the central metal ions for iron, cobalt, nickel, and copper complexes of (DPP)M and (OETPP)M. In addition, the oxidation behavior of additional nonplanar nickel porphyrins is investigated in a noncoordinating solvent, with nickel meso-tetraalkylporphyrins also being found to form nickel(III) porphyrin dications. Finally, examination of the nickel meso-tetraalkylporphyrins in a coordinating solvent (pyridine) reveals that the first oxidation becomes metal-centered under these conditions, as was previously noted for a range of nominally planar porphyrins.

  5. Super strong dopamine hydrogels with shape memory and bioinspired actuating behaviours modulated by solvent exchange.

    PubMed

    Huang, Jiahe; Liao, Jiexin; Wang, Tao; Sun, Weixiang; Tong, Zhen

    2018-03-28

    Dopamine-containing hydrogels were synthesized by copolymerization of dopamine methacrylamide (DMA), N,N-dimethylacrylamide (DMAA), and an N,N'-methylenebisacrylamide (BIS) crosslinker in a mixed solvent of water and DMSO. The association of DMA was formed by simply immersing in water to facilely reinforce the hydrogel due to the introduction of the second physical crosslinking. The tensile strength of the hydrogels was increased greatly and regulated in a wide range from 200 kPa to over 2 MPa. The association of DMA was destroyed upon immersing in DMSO. This reversible formation and dissociation of the association structure endowed the hydrogel with shape memory and actuating capabilities. Rapid shape fixing in water and complete shape recovery in DMSO was realized within several minutes. Bioinspired functional soft actuators were designed based on the reversible association and metal ion coordination of DMA, including fast responsive hydrogel tentacles, programable multiple shape change, reversible and versatile painting and writing "hydrogel paper". The facile preparation and strength regulation provide a new way to design novel soft actuators through solvent exchange, and will inspire more complex applications upon combining the association with other properties of mussel inspired dopamine derivatives.

  6. A systematic investigation of sample diluents in modern supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Tarafder, Abhijit; Hill, Jason; Fairchild, Jacob; Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy

    2017-08-18

    This paper focuses on the possibility to inject large volumes (up to 10μL) in ultra-high performance supercritical fluid chromatography (UHPSFC) under generic gradient conditions. Several injection and method parameters have been individually evaluated (i.e. analyte concentration, injection volume, initial percentage of co-solvent in the gradient, nature of the weak needle wash solvent, nature of the sample diluent, nature of the column and of the analyte). The most critical parameters were further investigated using in a multivariate approach. The overall results suggested that several aprotic solvents including methyl tert-butyl ether (MTBE), dichloromethane, acetonitrile or cyclopentyl methyl ether (CPME) were well adapted for the injection of large volume in UHPSFC, while MeOH was generally the worst alternative. However, the nature of the stationary phase also had a strong impact and some of these diluents did not perform equally on each column. This was due to the existence of a competition in the adsorption of the analyte and the diluent on the stationary phase. This observation introduced the idea that the sample diluent should not only be chosen according to the analyte but also to the column chemistry to limit the interactions between the diluent and the ligands. Other important characteristics of the "ideal" SFC sample diluent were finally highlighted. Aprotic solvents with low viscosity are preferable to avoid strong solvent effects and viscous fingering, respectively. In the end, the authors suggest that the choice of the sample diluent should be part of the method development, as a function of the analyte and the selected stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Loganathan, Narasimhan; Bowers, Geoffrey M.

    Layered aluminosilicates play a dominant role in the mechanical and gas storage properties of the subsurface, are used in diverse industrial applications, and serve as model materials for understanding solvent-ion-support systems. Although expansion in the presence of H2O is well known to be systematically correlated with the hydration free energy of the interlayer cation, in environments dominated by non-polar solvents (i.e. CO2), uptake into the interlayer is not well-understood. Using novel high pressure capabilities, we investigated the interaction of super-critical CO2 with Na+-, NH4+-, and Cs+-saturated montmorillonite, comparing results with predictions from molecular dynamics simulations. Despite the known trend inmore » H2O, and that cation solvation energies in CO2 suggest a stronger interaction with Na+, both the NH4+- and Cs+-clays readily absorbed CO2 and expanded while the Na+-clay did not. The apparent inertness of the Na+-clay was not due to kinetics, as experiments seeking a stable expanded state showed that none exists. Molecular dynamics simulations revealed a large endothermicity to CO2 intercalation in the Na+-clay, but little or no energy barrier for the NH4+- and Cs+-clays. Consequently, we have shown for the first time that in the presence of a low dielectric constant gas swelling depends more on the strength of the interaction between interlayer cation and aluminosilicate sheets and less on that with solvent. The finding suggests a distinct regime in layered aluminosilicates swelling behavior triggered by low solvent polarizability, with important implications in geomechanics, storage and retention of volatile gases, and across industrial uses in gelling, decoloring, heterogeneous catalysis, and semi-permeable reactive barriers.« less

  8. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect.

    PubMed

    Abel, Silvestre Bongiovanni; Yslas, Edith I; Rivarola, Claudia R; Barbero, Cesar A

    2018-03-23

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer's nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH < 4) are able to absorb near infrared radiation (NIR) creating a photothermal effect in an aqueous medium. Thus, multifunctional nanoparticles are obtained. The application of NIR on a F-PANI-NPs dispersion in contact with Pseudomonas aeruginosa causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  9. Charge-transfer-to-solvent reactions from I{sup −} to water, methanol, and ethanol studied by time-resolved photoelectron spectroscopy of liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuyama, Haruki; Karashima, Shutaro; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp

    The charge-transfer-to-solvent (CTTS) reactions from iodide (I{sup −}) to H{sub 2}O, D{sub 2}O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H{sub 2}O and D{sub 2}O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field createdmore » for I{sup −}. The photoelectron spectra for CTTS in H{sub 2}O and D{sub 2}O—measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]—indicate that internal conversion yields from the photoexcited I{sup −*} (CTTS) state are less than 10%, while alcohols provide 2–3 times greater yields of internal conversion from I{sup −*}. The overall geminate recombination yields are found to be in the order of H{sub 2}O > D{sub 2}O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.« less

  10. NIR dual luminescence from an extended porphyrin. Spectroscopy, photophysics and theory.

    PubMed

    Gourlaouen, Christophe; Daniel, Chantal; Durola, Fabien; Frey, Julien; Heitz, Valérie; Sauvage, Jean-Pierre; Ventura, Barbara; Flamigni, Lucia

    2014-05-22

    Spectroscopic and photophysical properties of an extended Zn porphyrin with fused bis(tetraazaanthracene) arms including a 2,9-diphenyl-1,10-phenanthroline incorporated in a polyether macrocycle are investigated in solvents of different polarity pointing to the presence of two emitting singlet excited states. The absorption and emission features are identified and ascribed, on the basis of solvent polarity dependence, to a π-π* and to a charge transfer (CT) state, respectively. Whereas the intraligand π-π* transition is assigned to the intense absorption observed at 442-455 nm, the CT states contribute to the bands at 521-525 nm and 472-481 nm. The theoretical analysis of the absorption spectrum confirms the presence of two strong bands centered at 536 and 437 nm corresponding to CT and π-π* states, respectively. Weak CT transitions are calculated at 657 and 486 nm. Two emission maxima are observed in toluene at 724 nm from a (1)π-π* state and at 800 nm from a (1)CT state, respectively. (1)CT bands shift bathochromically by increasing the solvent polarity whereas the energy of the (1)π-π band is less affected. Likewise, the emission yield and lifetime associated with the low energy (1)CT band are strongly affected by solvent polarity. This is rationalized by a (1)π-π* → (1)CT internal conversion driven by solvent polarity, this process being competitive with the (1)π-π* to ground state deactivation channel. Time resolved absorption spectra indicate the presence of two triplet states, a short-lived one (nanoseconds range) and a longer lived one (hundreds of microsecond range) ascribed to a (3)π-π* and a (3)CT, respectively. For them, a conversion mechanism similar to that of the singlet excited states is suggested.

  11. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect

    NASA Astrophysics Data System (ADS)

    Bongiovanni Abel, Silvestre; Yslas, Edith I.; Rivarola, Claudia R.; Barbero, Cesar A.

    2018-03-01

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer’s nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH < 4) are able to absorb near infrared radiation (NIR) creating a photothermal effect in an aqueous medium. Thus, multifunctional nanoparticles are obtained. The application of NIR on a F-PANI-NPs dispersion in contact with Pseudomonas aeruginosa causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  12. The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering.

    PubMed

    Szala-Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T; Hardacre, Christopher; Youngs, Tristan G A

    2017-09-20

    Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crystal structure of [NaZn(BTC)(H2O)4]·1.5H2O (BTC = benzene-1,3,5-tri-carb-oxy-l-ate): a heterometallic coordination compound.

    PubMed

    Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing

    2015-07-01

    The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.

  14. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    PubMed

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  15. Calculation of absolute protein-ligand binding free energy using distributed replica sampling

    NASA Astrophysics Data System (ADS)

    Rodinger, Tomas; Howell, P. Lynne; Pomès, Régis

    2008-10-01

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  16. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  17. Debye potentials for heterogeneous media

    NASA Astrophysics Data System (ADS)

    Panamarev, N. S.; Donchenko, V. A.; Zemlyanov, Al. A.; Samokhvalov, I. V.; Apeksimov, D. V.; Panamaryova, A. N.; Trifonova, A. V.

    2017-11-01

    The paper presents the results of the Helmholtz equation solution by the method of perturbation theory in the spherical coordinate system for the Debye potentials for weakly heterogeneous media based on metal nanoparticles and the dielectric matrix. In that case, the dielectric function of a composite changes in space in the radial direction.

  18. Discontinuous Galerkin Methods for Turbulence Simulation

    NASA Technical Reports Server (NTRS)

    Collis, S. Scott

    2002-01-01

    A discontinuous Galerkin (DG) method is formulated, implemented, and tested for simulation of compressible turbulent flows. The method is applied to turbulent channel flow at low Reynolds number, where it is found to successfully predict low-order statistics with fewer degrees of freedom than traditional numerical methods. This reduction is achieved by utilizing local hp-refinement such that the computational grid is refined simultaneously in all three spatial coordinates with decreasing distance from the wall. Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly through integrals of the numerical fluxes. Both for a model advection-diffusion problem and for turbulent channel flow, weak enforcement of wall boundaries is found to improve results at low resolution. Such weak boundary conditions may play a pivotal role in wall modeling for large-eddy simulation.

  19. Tuned range separated hybrid functionals for solvated low bandgap oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, Thiago B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de; Kümmel, Stephan

    2015-07-21

    The description of charge transfer excitations has long been a challenge to time dependent density functional theory. The recently developed concept of “optimally tuned range separated hybrid (OT-RSH) functionals” has proven to describe charge transfer excitations accurately in many cases. However, describing solvated or embedded systems is yet a challenge. This challenge is not only computational but also conceptual, because the tuning requires identifying a specific orbital, typically the highest occupied one of the molecule under study. For solvated molecules, this orbital may be delocalized over the solvent. We here demonstrate that one way of overcoming this problem is tomore » use a locally projected self-consistent field diagonalization on an absolutely localized molecular orbital expansion. We employ this approach to determine ionization energies and the optical gap of solvated oligothiophenes, i.e., paradigm low gap systems that are of relevance in organic electronics. Dioxane solvent molecules are explicitly represented in our calculations, and the ambiguities of straightforward parameter tuning in solution are elucidated. We show that a consistent estimate of the optimal range separated parameter (ω) at the limit of bulk solvation can be obtained by gradually extending the solvated system. In particular, ω is influenced by the solvent beyond the first coordination sphere. For determining ionization energies, a considerable number of solvent molecules on the first solvation shell must be taken into account. We demonstrate that accurately calculating optical gaps of solvated systems using OT-RSH can be done in three steps: (i) including the chemical environment when determining the range-separation parameter, (ii) taking into account the screening due to the solvent, and (iii) using realistic molecular geometries.« less

  20. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  1. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids.

    PubMed

    Poole, Colin F

    2004-05-28

    Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.

  2. Unravelling the mechanisms of vibrational relaxation in solution† †All experimental data are archived in the University of Bristol's Research Data Storage Facility (DOI: 10.5523/bris.2vk036f35m5aq2dnlb79c0wcsh). ‡ ‡Electronic supplementary information (ESI) available: Further discussion of spectral lineshapes, concentration dependence of transient absorption data, theoretical calculations, IR-pump IR-probe spectra, transient absorption spectra including animation of spectra. See DOI: 10.1039/c6sc05234g Click here for additional data file. Click here for additional data file.

    PubMed Central

    Grubb, Michael P.; Coulter, Philip M.; Marroux, Hugo J. B.

    2017-01-01

    We present a systematic study of the mode-specific vibrational relaxation of NO2 in six weakly-interacting solvents (perfluorohexane, perfluoromethylcyclohexane, perfluorodecalin, carbon tetrachloride, chloroform, and d-chloroform), chosen to elucidate the dominant energy transfer mechanisms in the solution phase. Broadband transient vibrational absorption spectroscopy has allowed us to extract quantum state-resolved relaxation dynamics of the two distinct NO2 fragments produced from the 340 nm photolysis of N2O4 → NO2(X) + NO2(A) and their separate paths to thermal equilibrium. Distinct relaxation pathways are observed for the NO2 bending and stretching modes, even at energies as high as 7000 cm–1 above the potential minimum. Vibrational energy transfer is governed by different interaction mechanisms in the various solvent environments, and proceeds with timescales ranging from 20–1100 ps. NO2 relaxation rates in the perfluorocarbon solvents are identical despite differences in acceptor mode state densities, infrared absorption cross sections, and local solvent structure. Vibrational energy is shown to be transferred to non-vibrational solvent degrees of freedom (V-T) through impulsive collisions with the perfluorocarbon molecules. Conversely, NO2 relaxation in chlorinated solvents is reliant on vibrational resonances (V-V) while V-T energy transfer is inefficient and thermal excitation of the surrounding solvent molecules inhibits faster vibrational relaxation through direct complexation. Intramolecular vibrational redistribution allows the symmetric stretch of NO2 to act as a gateway for antisymmetric stretch energy to exit the molecule. This study establishes an unprecedented level of detail for the cooling dynamics of a solvated small molecule, and provides a benchmark system for future theoretical studies of vibrational relaxation processes in solution. PMID:28451375

  3. Water as a matrix for life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Life is based on non-covalent interactions. They might be either specific (enzyme-substrate interactions, selective ion transport) or nonspecific (lipid-lipid and lipid-protein interactions needed for membrane integrity, fusion and division). Their strength needs to be properly tuned, and this is mediated by the solvent. If interactions are too weak, there might be undesired response to natural fluctuations of physical and chemical parameters. If they are too strong it could impede kinetics and energetics of cellular processes. Thus, the solvent must allow for balancing these interactions. Physical and chemical properties of solvent provide strong constraints for life. Water exhibits a remarkable trait that it promotes both solvophobic and solvophilic interactions. Solvophobic interactions; related to high dielectric constant of the solvent) are necessary for self-organization of matter whereas solvophilic interactions are needed to ensure solubility of polar species. Water offers a large temperature domain of stable liquid and the characteristics hydrophobic effects are a consequence of the temperature in sensitivity of essential properties of its liquid state. Water, however, is not the only liquid with these favorable properties. I will compare in detail properties of water and other pure liquids or their mixtures that have a high dielectric constant and simultaneously support self-organization. I will also discuss properties of water that are unfavorable to life (e.g. its chemical activity against polymerization reactions) and close with summarizing what are alternatives to water as a matrix of life in space.

  4. Water as a matrix for life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Pratt, Lawrence

    2006-01-01

    "Follow the water" is the canonical strategy in searching for life in the universe. Conventionally, discussion of this topic is focused on how solvent supports organic chemistry sufficiently rich to seed life. Perhaps more importantly, solvent must promote self-organization of organic matter into functional structures capable of responding to environmental changes. This process is based on non-covalent interactions. They are constantly formed and broken in response to internal and external stimuli. This requires that their strength must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. Non-covalent interactions are strongly mediated by the solvent. Specifically, high dielectric solvents for life are needed for solubility of polar species and flexibility of biological structures stabilized by electrostatic interactions. Water exhibits a remarkable trait that it promotes solvophobic interactions between non-polar species, which are responsible for self-organization phenomena such as the formation of cellular boundary structures, and protein folding and aggregation. Unusual temperature dependence of hydrophobic interactions - they often become stronger as temperature increases - is a consequence of the temperature insensitivity of properties of the liquid water. This contributes to the existence of robust life over a wide temperature range. Water is not the only liquid with favorable properties for supporting life. Other pure liquids or their mixtures that have high dielectric constants and simultaneously support some level of self-organization will be discussed.

  5. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery.

    PubMed

    Tang, Wei-Lun; Tang, Wei-Hsin; Szeitz, Andras; Kulkarni, Jayesh; Cullis, Pieter; Li, Shyh-Dar

    2018-06-01

    The solvent-assisted active loading technology (SALT) was developed for encapsulating a water insoluble weak base into the liposomal core in the presence of 5% DMSO. In this study, we further examined the effect of various water miscible solvents in promoting active loading of other types of drugs into liposomes. To achieve complete drug loading, the amount of solvent required must result in complete drug solubilization and membrane permeability enhancement, but must be below the threshold that induces liposomal aggregation or causes bilayer disruption. We then used the SALT to load gambogic acid (GA, an insoluble model drug that shows promising anticancer effect) into liposomes, and optimized the loading gradient and lipid composition to prepare a stable formulation (Lipo-GA) that displayed >95% drug retention after incubation with serum for 3 days. Lipo-GA contained a high drug-to-lipid ratio of 1/5 (w/w) with a mean particle size of ∼75 nm. It also displayed a prolonged circulation half-life (1.5 h vs. 18.6 h) and enhanced antitumor activity in two syngeneic mice models compared to free GA. Particularly, complete tumor regression was observed in the EMT6 tumor model for 14 d with significant inhibition of multiple oncogenes including HIF-1α, VEGF-A, STAT3, BCL-2, and NF-κB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Health hazard evaluation report HETA 84-419-1697, USGS Laboratory, Doraville, Georgia. [Benzene, methylene chloride, hexane, and acetone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondinelli, R.; Wilcox, T.; Roper, P.

    1986-05-01

    The U.S. Geological Survey National Water Quality Laboratory, Doraville, Georgia requested an evaluation of physical complaints reported by employees to determine possible work related causes. Laboratory workers, in general, complained of physical symptoms which were irritative (rash, sore throat, nose or sinus irritation), neurological (numbness, muscle weakness) and nonspecific (dizziness, headache, emotional swings, insomnia, muscle aching, fatigue). Reported exposure to solvents such as benzene, methylene chloride, hexane and acetone were positively related with light headedness or dizziness, numbness, unexplained muscle weakness and muscle aching. Air sampling did not reveal any remarkable exposure to chemical contaminants. The authors conclude that nomore » relationship could be established between chemical exposures and antinuclear antibody positivity. Exposure to chemicals measured by air sampling were below occupational health exposure limits.« less

  7. General synthesis of inorganic single-walled nanotubes

    PubMed Central

    Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun

    2015-01-01

    The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862

  8. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Zhuang, Gui-lin; Chen, Wu-lin; Zheng, Jun; Yu, Hui-you; Wang, Jian-guo

    2012-08-01

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H3SIDA) and Ln(NO3)3 (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd3+ ions for anti-anti and syn-anti carboxylate bridges are -1.0×10-3 and -5.0×10-3 cm-1, respectively, which reveals weak antiferromagnetic interaction in 4.

  9. Game-based interventions and their impact on dementia: a narrative review.

    PubMed

    Zheng, Jiaying; Chen, Xueping; Yu, Ping

    2017-12-01

    The aim of this review was to examine the efficacy of game-based interventions for people with dementia. Seven studies that met the inclusion criteria were found in four databases. Their interventions and key findings were analysed and synthesised. Game-based interventions for people with dementia are showing promise for improving cognition, coordination and behavioural and psychological symptoms. The generalisability of the findings is limited by weak methodology and small sample size. Game-based interventions can improve cognition, coordination and behavioural and psychological symptoms for people with dementia. Future research should include methodological improvement and practice guideline development.

  10. Recombination and the evolution of coordinated phenotypic expression in a frequency-dependent game

    PubMed Central

    Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon

    2011-01-01

    A long standing question in evolutionary biology concerns the maintenance of adaptive combinations of traits in the presence of recombination. This problem may be solved if positive epistasis selects for reducing the rate of recombination between such traits, but this requires sufficiently strong epistasis. Here we use a model that we developed previously to analyze a frequency-dependent strategy game in asexual populations, to study how adaptive combinations of traits may be maintained in the presence of recombination when epistasis is too weak to select for genetic linkage. Previously, in the asexual case, our model demonstrated the evolution of adaptive associations between social foraging strategies and learning rules. We verify that these adaptive associations, which are represented by different two-locus haplotypes, can easily be broken by genetic recombination. We also confirm that a modifier allele that reduces the rate of recombination fails to evolve (due to weak epistasis). However, we find that under the same conditions of weak epistasis, there is an alternative mechanism that allows association between traits to evolve. This is based on a genetic switch that responds to the presence of one social foraging allele by activating one of two alternative learning alleles that are carried by all individuals. We suggest that such coordinated phenotypic expression by genetic switches offers a general and robust mechanism for the evolution of adaptive combinations of traits in the presence of recombination. PMID:21945887

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnew, Douglas W.; Gembicky, Milan; Moore, Curtis E.

    Here, the preparation of 3D and 2D Cu(I) coordination networks using ditopic m-terphenyl isocyanides is described. The incorporation of sterically encumbering substituents enables the controlled, solid-state preparation of Cu(I) tris-isocyanide nodes with a labile solvent ligand in a manner mirroring solution-phase chemistry of monomeric complexes. The protection afforded by the m-terphenyl groups is also shown to engender significant stability towards heat as well as acidic or basic conditions, resulting in robust single-metal-node networks that can transition from 3D to 2D extended structures.

  12. Perspectives on Computational Organic Chemistry

    PubMed Central

    Streitwieser, Andrew

    2009-01-01

    The author reviews how his early love for theoretical organic chemistry led to experimental research and the extended search for quantitative correlations between experiment and quantum calculations. The experimental work led to ion pair acidities of alkali-organic compounds and most recently to equilibria and reactions of lithium and cesium enolates in THF. This chemistry is now being modeled by ab initio calculations. An important consideration is the treatment of solvation in which coordination of the alkali cation with the ether solvent plays a major role. PMID:19518150

  13. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    PubMed

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are interpreted in terms of ion association, ion-dipole interactions, and structural factors of the ionic liquid and investigated organic solvents. The ionic liquid is solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation.

  14. Movement dynamics reflect a functional role for weak coupling and role structure in dyadic problem solving.

    PubMed

    Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T

    2015-11-01

    Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.

  15. Two novel two-dimensional copper(II) coordination polymers with 1-(4-aminobenzyl)-1,2,4-triazole: Synthesis, crystal structure, magnetic characterization and absorption of anion pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wu, Xiang Xia; Guo, Jian-Hua; Huo, Jian-Zhong; Ding, Bin

    2017-01-01

    In this work a flexible multi-dentate 1-(4-aminobenzyl)-1,2,4-triazole (abtz) ligand has been employed, two novel triazole-Cu(II) coordination polymers {[Cu(abtz)2(Br)2]·(H2O)2}n (1) and {[Cu(abtz)2]·(SiF6)·(H2O)2}n (2) have been isolated under solvo-thermal conditions. 1 is a 2D neutral CuII coordination polymer while 2 is 2D cation micro-porous CuII coordination polymer with the channel dimensionalities of 11.852(1) Å × 11.852(1) Å (metal-metal distances). Variable-temperature magnetic susceptibility data of 1 and 2 have been recorded in the 2-300 K temperature range indicating weak anti-ferromagnetic interactions. Further absorption properties of anion pollutants for 2 also have been investigated. 2 presents the novel example of cationic triazole-copper(II) coordination framework for effectively capturing anion pollutants Cr2O72- in the water solutions and selectively capturing Congo Red in the methanol solutions.

  16. What should be impossible: resolution of the mononuclear gallium coordination complex, Tris(benzohydroxamato)gallium(III).

    PubMed

    Brumaghim, Julia L; Raymond, Kenneth N

    2003-10-08

    Complexes of Ga3+, a d10 metal ion which lacks ligand-field-stabilization energy, are considered labile. In fact, hexaaquagallium(III) has a ligand exchange rate of 403 s-1, 2.5 times that of the analagous Fe3+ complex (Hugi-Cleary, D.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 4444-4450). Given this lability, resolution of Ga3+ complexes should be impossible. Despite this, we report the resolution of the Lambda and Delta isomers of tris(benzohydroxamate)gallium (III) (1), the first resolution of a mononuclear gallium complex. Not only is resolution possible, but these resolved complexes show remarkable resistance to racemization in aprotic solvents. The unprecedented stability of Lambda- and Delta-1 is a surprise, and as such, alters our understanding of classical coordination chemistry.

  17. Modelling the atomic structure of Al92U8 metallic glass.

    PubMed

    Michalik, S; Bednarcik, J; Jóvári, P; Honkimäki, V; Webb, A; Franz, H; Fazakas, E; Varga, L K

    2010-10-13

    The local atomic structure of the glassy Al(92)U(8) alloy was modelled by the reverse Monte Carlo (RMC) method, fitting x-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) signals. The final structural model was analysed by means of partial pair correlation functions, coordination number distributions and Voronoi tessellation. In our study we found that the most probable atomic separations between Al-Al and U-Al pairs in the glassy Al(92)U(8) alloy are 2.7 Å and 3.1 Å with coordination numbers 11.7 and 17.1, respectively. The Voronoi analysis did not support evidence of the existence of well-defined building blocks directly embedded in the amorphous matrix. The dense-random-packing model seems to be adequate for describing the connection between solvent and solute atoms.

  18. Synthesis, selected coordination chemistry and extraction behavior of a (phosphinoylmethyl)pyridyl N-oxide-functionalized ligand based upon a 1,4-diazepane platform

    DOE PAGES

    Ouizem, Sabrina; Rosario Amorin, Daniel; Dickie, Diane A.; ...

    2015-05-09

    For syntheses of new multidentate chelating ligands ((6,6'4(1,4-diazepane-1,4-diyl)bis(methylene))bis(pyridine-6,2-diyl))bis(methylene))bis(diphenylphosphine oxide) (2) and 6,6'-((1,4-diazepane1,4-diyl)bis(methylene))bis(2-((diphenylphosphoryl)methyl)pyridine 1-oxide) (3), based upon a 1,4-diazepane platform functionalized with 2-(diphenylphosphinoylmethyl)pyridine P-oxide and 2-(diphenylphosphinoylmethyl)pyridine NP-dioxide fragments, respectively, the results are reported. Our results from studies of the coordination chemistry of the ligands with selected lanthanide nitrates and Cu(BF 4)(2) are outlined, and crystal structures for two complexes, [Cu(2)](BF 4) 2 and [Cu(3)](BF 4) 2, are described along with survey Eu(III) and Am(III) solvent extraction analysis, for 3.

  19. A weak-coupling immersed boundary method for fluid-structure interaction with low density ratio of solid to fluid

    NASA Astrophysics Data System (ADS)

    Kim, Woojin; Lee, Injae; Choi, Haecheon

    2018-04-01

    We present a weak-coupling approach for fluid-structure interaction with low density ratio (ρ) of solid to fluid. For accurate and stable solutions, we introduce predictors, an explicit two-step method and the implicit Euler method, to obtain provisional velocity and position of fluid-structure interface at each time step, respectively. The incompressible Navier-Stokes equations, together with these provisional velocity and position at the fluid-structure interface, are solved in an Eulerian coordinate using an immersed-boundary finite-volume method on a staggered mesh. The dynamic equation of an elastic solid-body motion, together with the hydrodynamic force at the provisional position of the interface, is solved in a Lagrangian coordinate using a finite element method. Each governing equation for fluid and structure is implicitly solved using second-order time integrators. The overall second-order temporal accuracy is preserved even with the use of lower-order predictors. A linear stability analysis is also conducted for an ideal case to find the optimal explicit two-step method that provides stable solutions down to the lowest density ratio. With the present weak coupling, three different fluid-structure interaction problems were simulated: flows around an elastically mounted rigid circular cylinder, an elastic beam attached to the base of a stationary circular cylinder, and a flexible plate, respectively. The lowest density ratios providing stable solutions are searched for the first two problems and they are much lower than 1 (ρmin = 0.21 and 0.31, respectively). The simulation results agree well with those from strong coupling suggested here and also from previous numerical and experimental studies, indicating the efficiency and accuracy of the present weak coupling.

  20. Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Dana J.; Gonzalez, Miguel I.; Legendre, Christina M.

    Here, calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H 4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H 2olz)•4H 2O chains, two-dimensional Ca(H 2olz)•2H 2O sheets, and a three-dimensional metal-organic framework Ca(H 2olz)•2DMF (DMF= N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H 2olz) phase when exposed to aqueous HCl. The compounds Ca(H 2olz)•xH 2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. Allmore » three calcium materials exhibited a delayed release of olsalazine relative to Na 2(H 2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.« less

Top