Sample records for weakly interacting two-dimensional

  1. Weak antilocalization in Cd3As2 thin films

    PubMed Central

    Zhao, Bo; Cheng, Peihong; Pan, Haiyang; Zhang, Shuai; Wang, Baigeng; Wang, Guanghou; Xiu, Faxian; Song, Fengqi

    2016-01-01

    Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50 nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film. PMID:26935029

  2. Weak antilocalization in Cd3As2 thin films.

    PubMed

    Zhao, Bo; Cheng, Peihong; Pan, Haiyang; Zhang, Shuai; Wang, Baigeng; Wang, Guanghou; Xiu, Faxian; Song, Fengqi

    2016-03-03

    Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50 nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film.

  3. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    PubMed

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  4. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  5. 1-[6-(1H-Indol-1-yl)pyridin-2-yl]-1H-indole-3-carbaldehyde.

    PubMed

    Ramathilagam, C; Umarani, P R; Venkatesan, N; Rajakumar, P; Gunasekaran, B; Manivannan, V

    2014-02-01

    In the title compound, C22H15N3O, the dihedral angle between the two indole units is 33.72 (3)°. The mol-ecular structure features a weak intra-molecular C-H⋯N inter-action. In the crystal, weak C-H⋯O and C-H⋯π inter-actions, forming a two-dimensional network parallel to the bc plane.

  6. Fully- and weakly-nonlinear biperiodic traveling waves in shallow water

    NASA Astrophysics Data System (ADS)

    Hirakawa, Tomoaki; Okamura, Makoto

    2018-04-01

    We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.

  7. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  8. The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Tian, Qiang

    2005-04-01

    The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.

  9. Metallic phases from disordered (2+1)-dimensional quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Goldman, Hart; Raghu, S.

    2017-06-01

    Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED3) with a large, even number of fermion flavors remains metallic in the presence of weak scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. We also show that QED3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.

  10. Three-dimensional six-connecting organic building blocks based on polychlorotriphenylmethyl units--synthesis, self-assembly, and magnetic properties.

    PubMed

    Roques, Nans; Maspoch, Daniel; Wurst, Klaus; Ruiz-Molina, Daniel; Rovira, Concepció; Veciana, Jaume

    2006-12-13

    The synthesis of a three-dimensional, six-connecting, organic building block based on a robust, rigid, and open-shell polychlorotriphenylmethyl (PTM) unit (radical 1) is reported, and its self-assembly properties are described in detail. The tendencies of this highly polar molecule and its hydrogenated precursor, compound 4, to form hydrogen bonds with oxygenated solvents ([1THF(6)] and [4THF(6)]) were reduced by replacing THF with diethyl ether in the crystallization process to yield two-dimensional (2D) hydrogen-bonded structures ([1(Et(2)O)(3)] and [4(Et(2)O)(3)]). The presence of direct hydrogen bonds between the radicals in the latter phase of 1 gives rise to very weak ferromagnetic intermolecular interactions at low temperatures, whereas when the radicals are isolated by THF molecules these interactions are antiferromagnetic and very weak. The role played by the carboxylic groups not only in the self-assembly properties but also in the transmission of the magnetic interactions has been illustrated by determination of the crystal structure and measurement of the magnetic properties of the corresponding hexaester radical 6, in which the close packing of molecular units gives rise to weak antiferromagnetic intermolecular interactions. Attempts to avoid solvation of the molecules in the solid state and to increase the structural and magnetic dimensionality were pursued by recrystallization of both compounds 1 and 4 from concentrated nitric acid, affording two three-dimensional (3D) robust hydrogen-bonded structures. While the structure obtained with compound 4 is characterized by the presence of polar channels and boxes containing water guest molecules along the c axis, radical 1 was oxidized to the corresponding fuchsone 10, which presented a completely different close-packed, guest-free structure.

  11. The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions

    NASA Astrophysics Data System (ADS)

    Diehl, Joscha; Gubinelli, Massimiliano; Perkowski, Nicolas

    2017-09-01

    We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).

  12. Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions

    NASA Astrophysics Data System (ADS)

    Seydi, I.; Abedinpour, S. H.; Tanatar, B.

    2017-06-01

    We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.

  13. Two interacting Hofstadter butterflies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barelli, A.; Bellissard, J.; Jacquod, P.

    1997-04-01

    The problem of two interacting particles in a quasiperiodic potential is addressed. Using analytical and numerical methods, we explore the spectral properties and eigenstates structure from the weak to the strong interaction case. More precisely, a semiclassical approach based on noncommutative geometry techniques is used to understand the intricate structure of such a spectrum. An interaction induced localization effect is furthermore emphasized. We discuss the application of our results on a two-dimensional model of two particles in a uniform magnetic field with on-site interaction. {copyright} {ital 1997} {ital The American Physical Society}

  14. Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides

    DOE PAGES

    Mannebach, Ehren M.; Nyby, Clara; Ernst, Friederike; ...

    2017-11-09

    Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependencemore » of the measured strains. Furthermore, this work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.« less

  15. COMOC 2: Two-dimensional aerodynamics sequence, computer program user's guide

    NASA Technical Reports Server (NTRS)

    Manhardt, P. D.; Orzechowski, J. A.; Baker, A. J.

    1977-01-01

    The COMOC finite element fluid mechanics computer program system is applicable to diverse problem classes. The two dimensional aerodynamics sequence was established for solution of the potential and/or viscous and turbulent flowfields associated with subsonic flight of elementary two dimensional isolated airfoils. The sequence is constituted of three specific flowfield options in COMOC for two dimensional flows. These include the potential flow option, the boundary layer option, and the parabolic Navier-Stokes option. By sequencing through these options, it is possible to computationally construct a weak-interaction model of the aerodynamic flowfield. This report is the user's guide to operation of COMOC for the aerodynamics sequence.

  16. Exchange Enhancement of the Electron-Phonon Interaction: The Case of Weakly Doped Two-Dimensional Multivalley Semiconductors

    NASA Astrophysics Data System (ADS)

    Pamuk, Betül; Zoccante, Paolo; Baima, Jacopo; Mauri, Francesco; Calandra, Matteo

    2018-04-01

    The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the cases, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in LixZrNCl and that much larger Tcs could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.

  17. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  18. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  19. Surprises in low-dimensional correlated systems

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Hau

    In this thesis, correlation effects in low-dimensional systems were studied. In particular, we focus on two systems: a point-contact in the quantum-Hall regime under the influence of ac drive and quasi-one-dimensional ladder materials with generic interactions in weak coupling. Powerful techniques, including renormalization group, quantum field theory, operator product expansions, bosonization,...etc., were employed to extract surprising physics out of these strongly fluctuating systems. We first study the effect of an ac drive on the current-voltage (I-V) characteristics of a tunnel junction between two fractional Quantum Hall fluids at filling nu-1 an odd integer. In a semi-classical limit, the tunneling current exhibits mode-locking, which corresponds to plateaus in the I-V curve at integer multiples of I = ef , with f the ac drive frequency. However, the full quantum model exhibits rounded plateaus centered around the quantized current values due to quantum fluctuations. The locations of these plateaus can serve as an indirect hint of fractional charges. Switching attentions to quasi-one-dimensional coupled-chain systems, we present a systematic weak-coupling renormalization group (RG) technique and find that generally broad regions of the phase space of the ladder materials are unstable to pairing, usually with approximate d-wave symmetry. The dimensional crossovers from 1D to 2D were also discussed. Carbon nanotubes as possible candidates that display such unconventional pairing and interesting physics in weak coupling were discussed. Quite surprisingly, a hidden symmetry was found in the weakly-coupled two-leg ladder. A perturbative renormalization group analysis reveals that at half-filling the model scales onto an exactly soluble SO(8) symmetric Gross-Neveu model. Integrability of the Gross-Neveu model is employed to extract the exact energies, degeneracies and quantum numbers of all the low energy excited states, which fall into degenerate SO(8) multiplets. For generic physical interactions, there are four robust phases which have different SO(8) symmetries but share a common SO(5) symmetry. The effects of marginal chiral interactions were discussed at the end. Finally, we summarize our main results and discuss related open questions for future study.

  20. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  1. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  2. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    PubMed

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  3. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    PubMed

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  4. Quantum droplet of one-dimensional bosons with a three-body attraction

    NASA Astrophysics Data System (ADS)

    Sekino, Yuta; Nishida, Yusuke

    2018-01-01

    Ultracold atoms offer valuable opportunities where interparticle interactions can be controlled at will. In particular, by extinguishing the two-body interaction, one can realize unique systems governed by the three-body interaction, which is otherwise hidden behind the two-body interaction. Here we study one-dimensional bosons with a weak three-body attraction and show that they form few-body bound states as well as a many-body droplet stabilized by the quantum mechanical effect. Their binding energies relative to that of three bosons are all universal and the ground-state energy of the dilute droplet is found to grow exponentially as EN/E3→exp(8 N2/√{3 }π ) with increasing particle number N ≫1 . The realization of our system with coupled two-component bosons in an optical lattice is also discussed.

  5. Two- to three-dimensional crossover in a dense electron liquid in silicon

    NASA Astrophysics Data System (ADS)

    Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel

    2018-04-01

    Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.

  6. One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions

    PubMed Central

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-01-01

    Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479

  7. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions.

    PubMed

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-04-21

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Finite-amplitude strain waves in laser-excited plates.

    PubMed

    Mirzade, F Kh

    2008-07-09

    The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.

  9. Study of a structural phase transition by two dimensional Fourier transform NMR method

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.

    1985-09-01

    The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.

  10. Two-dimensional nonlinear finite element analysis of well damage due to reservoir compaction, well-to-well interactions, and localization on weak layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Fredrich, J.T.; Bruno, M.S.

    1996-05-01

    In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements andmore » surface subsidence agree with field observations.« less

  11. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  12. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  13. An Experiment on Two-Dimensional Interaction of Solitary Waves in Shallow Water System

    NASA Astrophysics Data System (ADS)

    Tsuji, Hidekazu; Yufu, Kei; Marubayashi, Kenji

    2012-11-01

    The dynamics of solitary waves in horizontally two-dimensional region is not yet well understood. Recently two-dimensional soliton interaction of Kadmotsetv-Petviashvili (KP) equation which describes the weakly nonlinear long wave in shallow water system has been theoretically studied (e.g. Kodama (2010)). It is clarified that the ``resonant'' interaction which forms Y-shaped triad can be described by exact solution. Li et al. (2011) experimentally studied the reflection of solitary wave at the wall and verified the theory of KP equation. To investigate more general interaction process, an experiment in wave tank using two wave makers which are controlled independently is carried out. The wave tank is 4 m in length and 3.6 m in width. The depth of the water is about 8cm. The wavemakers, which are piston-type and have board about 1.5 m in length, can produce orderly solitary wave which amplitude is 1.0-3.5 cm. We observe newly generated solitary wave due to interaction of original solitary waves which have different amplitude and/or propagation direction. The results are compared with the aforementioned theory of KP equation.

  14. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length a B to the fermion scattering length a 2D. We find a B ≃ 0.56a 2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  15. Weakly and strongly coupled Belousov-Zhabotinsky patterns.

    PubMed

    Weiss, Stephan; Deegan, Robert D

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  16. Weakly and strongly coupled Belousov-Zhabotinsky patterns

    NASA Astrophysics Data System (ADS)

    Weiss, Stephan; Deegan, Robert D.

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  17. Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang

    2017-10-01

    In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.

  18. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    PubMed

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  19. Designing perturbative metamaterials from discrete models.

    PubMed

    Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara

    2018-04-01

    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.

  20. Phase Diagram of the Bose Hubbard Model with Weak Links

    NASA Astrophysics Data System (ADS)

    Hettiarachchilage, Kalani; Rousseau, Valy; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark; Sheehy, Daniel

    2012-02-01

    We study the ground state phase diagram of strongly interacting ultracold Bose gas in a one-dimensional optical lattice with a tunable weak link, by means of Quantum Monte Carlo simulation. This model contains an on-site repulsive interaction (U) and two different near-neighbor hopping terms, J and t, for the weak link and the remainder of the chain, respectively. We show that by reducing the strength of J, a novel intermediate phase develops which is compressible and non-superfluid. This novel phase is identified as a Normal Bose Liquid (NBL) which does not appear in the phase diagram of the homogeneous bosonic Hubbard model. Further, we find a linear variation of the phase boundary of Normal Bose Liquid (NBL) to SuperFluid (SF) as a function of the strength of the weak link. These results may provide a new path to design advanced atomtronic devices in the future.

  1. Mass gap in the weak coupling limit of (2 +1 )-dimensional SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Sreeraj, T. P.

    2018-04-01

    We develop the dual description of (2 +1 )-dimensional SU(2) lattice gauge theory as interacting "Abelian-like" electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.

  2. Dimensional crossover and cold-atom realization of topological Mott insulators

    PubMed Central

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-01-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431

  3. Casimir forces between defects in one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.

    2005-08-01

    We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.

  4. Superconductivity induced by flexural modes in non-σh-symmetric Dirac-like two-dimensional materials: A theoretical study for silicene and germanene

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Polley, Arup

    2018-04-01

    In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the full gap-equation, solved using the constant-gap approximation and considering statically screened interactions; its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K, or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.

  5. Weak-triplet, color-octet scalars and the CDF dijet excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrescu, Bogdan A.; Krnjaic, Gordan Z.

    2012-04-24

    We extend the standard model to include a weak-triplet and color-octet scalar. This 'octo-triplet' field consists of three particles, two charged and one neutral, whose masses and renormalizable interactions depend only on two new parameters. The charged octo-triplet decay into a W boson and a gluon is suppressed by a loop factor and an accidental cancellation. Thus, the main decays of the charged octo-triplet may occur through higher-dimensional operators, mediated by a heavy vectorlike fermion, into quark pairs. For an octo-triplet mass below the tb¯ threshold, the decay into Wb b¯ through an off-shell top quark has a width comparablemore » to that into cs¯ or cb¯. Pair production with one octo-triplet decaying to two jets and the other decaying to a W and two soft b jets may explain the dijet-plus-W excess reported by the CDF Collaboration. The same higher-dimensional operators lead to CP violation in B s-B¯ s mixing.« less

  6. Metallic phases from disordered (2+1)-dimensional quantum electrodynamics

    DOE PAGES

    Goswami, Pallab; Goldman, Hart; Raghu, S.

    2017-06-15

    Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less

  7. Weak- versus strong-disorder superfluid—Bose glass transition in one dimension

    NASA Astrophysics Data System (ADS)

    Doggen, Elmer V. H.; Lemarié, Gabriel; Capponi, Sylvain; Laflorencie, Nicolas

    2017-11-01

    Using large-scale simulations based on matrix product state and quantum Monte Carlo techniques, we study the superfluid to Bose glass transition for one-dimensional attractive hard-core bosons at zero temperature, across the full regime from weak to strong disorder. As a function of interaction and disorder strength, we identify a Berezinskii-Kosterlitz-Thouless critical line with two different regimes. At small attraction where critical disorder is weak compared to the bandwidth, the critical Luttinger parameter Kc takes its universal Giamarchi-Schulz value Kc=3 /2 . Conversely, a nonuniversal Kc>3 /2 emerges for stronger attraction where weak-link physics is relevant. In this strong-disorder regime, the transition is characterized by self-similar power-law-distributed weak links with a continuously varying characteristic exponent α .

  8. Weak coupling of pseudoacoustic phonons and magnon dynamics in the incommensurate spin-ladder compound S r 14 C u 24 O 41

    DOE PAGES

    Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; ...

    2016-10-21

    Intriguing lattice dynamics have been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr 14Cu 24O 41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7–1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements alsomore » reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in Sr 14Cu 24O 41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. Furthermore, these findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.« less

  9. Solar Filament Longitudinal Oscillations along a Magnetic Field Tube with Two Dips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Yu-Hao; Zhang Li-Yue; Ouyang, Y.

    Large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it has been noted that there might be two magnetic dips, and hence two threads, along one magnetic field line. Following previous work, we intend to investigate the kinematics of the filament longitudinal oscillations when two threads are magnetically connected, which is done by solving one-dimensional radiative hydrodynamic equations with the numerical code MPI-AMRVAC. Two different types of perturbations are considered, and the difference from previousmore » works resulting from the interaction of the two filament threads is investigated. We find that even with the inclusion of the thread–thread interaction, the oscillation period is modified weakly, by at most 20% compared to the traditional pendulum model with one thread. However, the damping timescale is significantly affected by the thread–thread interaction. Hence, we should take it into account when applying the consistent seismology to the filaments where two threads are magnetically connected.« less

  10. Tailoring the structures and photonic properties of low-dimensional organic materials by crystal engineering.

    PubMed

    Li, Qing; Jin, Wang; Chu, Manman; Zhang, Wei; Gu, Jianmin; Shahid, Bilal; Chen, Aibing; Yu, Yifeng; Qiao, Shanlin; Zhao, Yong Sheng

    2018-03-08

    Low-dimensional organic materials have given rise to tremendous interest in optoelectronic applications, owing to their controllable photonic properties. However, the controlled-synthesis approaches for organic nano-/micro-architectures are very difficult to attain, because the weak interaction (van der Waals force) between the organic molecules cannot dominate the kinetic process of crystal growth. We report a simple method, which involves selective adhesion to the organic crystal plane by hydrogen-bonding interaction for modulating the crystal growth process, which leads either to the self-assembly of one organic molecule into two-dimensional (2D) microsheets with an obvious asymmetric light propagation or one-dimensional (1D) microrods with low propagation loss. The method of tailoring the structures and photonic properties for fabricating different micro-structures would provide enlightenment for the development of tailor-made mini-sized devices for photonic integrated circuits.

  11. Survival condition for low-frequency quasi-one-dimensional breathers in a two-dimensional strongly anisotropic crystal

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Zubova, E. A.; Manevitch, L. I.

    2005-06-01

    We investigate a two-dimensional (2D) strongly anisotropic crystal (2D SAC) on substrate: 2D system of coupled linear chains of particles with strong intrachain and weak interchain interactions, each chain being subjected to the sine background potential. Nonlinear dynamics of one of these chains when the rest of them are fixed is reduced to the well known Frenkel-Kontorova (FK) model. Depending on strengh of the substrate, the 2D SAC models a variety of physical systems: polymer crystals with identical chains having light side groups, an array of inductively coupled long Josephson junctions, anisotropic crystals having light and heavy sublattices. Continuum limit of the FK model, the sine-Gordon (sG) equation, allows two types of soliton solutions: topological solitons and breathers. It is known that the quasi-one-dimensional topological solitons can propagate also in a chain of 2D system of coupled chains and even in a helix chain in a three-dimensional model of polymer crystal. In contrast to this, numerical simulation shows that the long-living breathers inherent to the FK model do not exist in the 2D SAC with weak background potential. The effect changes scenario of kink-antikink collision with small relative velocity: at weak background potential the collision always results only in intensive phonon radiation while kink-antikink recombination in the FK model results in long-living low-frequency sG breather creation. We found the survival condition for breathers in the 2D SAC on substrate depending on breather frequency and strength of the background potential. The survival condition bears no relation to resonances between breather frequency and frequencies of phonon band—contrary to the case of the FK model.

  12. Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons

    PubMed Central

    Michal, Vincent P.; Aleiner, Igor L.; Altshuler, Boris L.; Shlyapnikov, Georgy V.

    2016-01-01

    We consider the many-body localization–delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator–fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator → fluid transition, and, for large interactions, there is a reentrance to the insulator regime. It is feasible to experimentally verify these predictions by tuning the interaction strength with the use of Feshbach or confinement-induced resonances, for example, in 7Li or 39K. PMID:27436894

  13. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  14. A two-dimensional silver(I) coordination polymer constructed from 4-aminophenylarsonate and triphenylphosphane: poly[[(μ₃-4-aminophenylarsonato-κ³N:O:O)(triphenylphosphane-κP)silver(I)] monohydrate].

    PubMed

    Xiao, Zu-Ping; Wen, Meng; Wang, Chun-Ya; Huang, Xi-He

    2015-04-01

    The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4-aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The Ag(I) centre is four-coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two Ag(I)-centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O-O edge. 4-Aminophenylarsonate (Hapa(-)) adopts a μ3-κ(3)N:O:O-tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (101̄) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R2(2)(8) hydrogen-bonded dimer involving two arsonate groups from two Hapa(-) ligands related by a centre of inversion. Additionally, there are hydrogen-bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa(-) ligands, and weak π-π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two-dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.

  15. Prethermal time crystals in a one-dimensional periodically driven Floquet system

    NASA Astrophysics Data System (ADS)

    Zeng, Tian-Sheng; Sheng, D. N.

    2017-09-01

    Motivated by experimental observations of time-symmetry breaking behavior in a periodically driven (Floquet) system, we study a one-dimensional spin model to explore the stability of such Floquet discrete time crystals (DTCs) under the interplay between interaction and the microwave driving. For intermediate interactions and high drivings, from the time evolution of both stroboscopic spin polarization and mutual information between two ends, we show that Floquet DTCs can exist in a prethermal time regime without the tuning of strong disorder. For much weak interactions the system is a symmetry-unbroken phase, while for strong interactions it gives its way to a thermal phase. Through analyzing the entanglement dynamics, we show that large driving fields protect the prethermal DTCs from many-body localization and thermalization. Our results suggest that by increasing the spin interaction, one can drive the experimental system into optimal regime for observing a robust prethermal DTC phase.

  16. Self-consistent perturbation theory for two dimensional twisted bilayers

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Tritsaris, Georgios A.; Kaxiras, Efthimios

    Theoretical modeling and ab-initio simulations of two dimensional heterostructures with arbitrary angles of rotation between layers involve unrealistically large and expensive calculations. To overcome this shortcoming, we develop a methodology for weakly interacting heterostructures that treats the effect of one layer on the other as perturbation, and restricts the calculations to their primitive cells. Thus, avoiding computationally expensive supercells. We start by approximating the interaction potential between the twisted bilayers to that of a hypothetical configuration (viz. ideally stacked untwisted layers), which produces band structures in reasonable agreement with full-scale ab-initio calculations for commensurate and twisted bilayers of graphene (Gr) and Gr/hexagonal boron nitride (h-BN) heterostructures. We then self-consistently calculate the charge density and hence, interaction potential of the heterostructures. In this work, we test our model for bilayers of various combinations of Gr, h-BN and transition metal dichalcogenides, and discuss the advantages and shortcomings of the self-consistently calculated interaction potential. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  17. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  18. Investigation of a four-body coupling in the one-dimensional extended Penson-Kolb-Hubbard model

    NASA Astrophysics Data System (ADS)

    Ding, Hanqin; Ma, Xiaojuan; Zhang, Jun

    2017-09-01

    The experimental advances in cold fermion gases motivates the investigation of a one-dimensional (1D) correlated electronic system by incorporating a four-body coupling. Using the low-energy field theory scheme and focusing on the weak-coupling regime, we extend the 1D Penson-Kolb-Hubbard (PKH) model at half filling. It is found that the additional four-body interaction may significantly modify the quantum phase diagram, favoring the presence of the superconducting phase even in the case of two-body repulsions.

  19. Two-dimensional crystals: managing light for optoelectronics.

    PubMed

    Eda, Goki; Maier, Stefan A

    2013-07-23

    Semiconducting two-dimensional (2D) crystals such as MoS2 and WSe2 exhibit unusual optical properties that can be exploited for novel optoelectronics ranging from flexible photovoltaic cells to harmonic generation and electro-optical modulation devices. Rapid progress of the field, particularly in the growth area, is beginning to enable ways to implement 2D crystals into devices with tailored functionalities. For practical device performance, a key challenge is to maximize light-matter interactions in the material, which is inherently weak due to its atomically thin nature. Light management around the 2D layers with the use of plasmonic nanostructures can provide a compelling solution.

  20. Crystal structure of 2-amino-pyridinium 6-chloro-nicotinate.

    PubMed

    Jasmine, N Jeeva; Rajam, A; Muthiah, P Thomas; Stanley, N; Razak, I Abdul; Rosli, M Mustaqim

    2015-09-01

    In the title salt, C5H7N(+)·C6H3ClNO(-), the 2-amino-pyri-din-ium cation inter-acts with the carboxyl-ate group of the 6-chloro-nicotinate anion through a pair of independent N-H⋯O hydrogen bonds, forming an R 2 (2)(8) ring motif. In the crystal, these dimeric units are connected further via N-H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C-H⋯N and C-H⋯O hydrogen bonds, together with weak π-π inter-actions, with centroid-centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).

  1. 8-Anilino-1-naphthalenesulfonate/Layered Double Hydroxide Ultrathin Films: Small Anion Assembly and Its Potential Application as a Fluorescent Biosensor.

    PubMed

    Zhang, Ping; Li, Ling; Zhao, Yun; Tian, Zeyun; Qin, Yumei; Lu, Jun

    2016-09-06

    The fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is a widely used fluorescent probe molecule for biochemistry analysis. This paper reported the fabrication of ANS/layered double hydroxide nanosheets (ANS/LDH)n ultrathin films (UTFs) via the layer-by-layer small anion assembly technique based on electrostatic interaction and two possible weak interactions: hydrogen-bond and induced electrostatic interactions between ANS and positive-charged LDH nanosheets. The obtained UTFs show a long-range-ordered periodic layered stacking structure and weak fluorescence in dry air or water, but it split into three narrow strong peaks in a weak polarity environment induced by the two-dimensional (2D) confinement effect of the LDH laminate; the fluorescence intensity increases with decreasing the solvent polarity, concomitant with the blue shift of the emission peaks, which show good sensoring reversibility. Meanwhile, the UTFs exhibit selective fluorescence enhancement to the bovine serum albumin (BSA)-like protein biomolecules, and the rate of fluorescence enhancement with the protein concentration is significantly different with the different protein aggregate states. The (ANS/LDH)n UTF has the potential to be a novel type of biological flourescence sensor material.

  2. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R.

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes aremore » limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.« less

  3. Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr 0.62 Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Petrovic, C.

    The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet Cr 0.62 Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β = 0.315 ( 7 ) with a critical temperature T c = 230.6 ( 3 ) K and γ = 1.81 ( 2 ) with T c = 229.1 ( 1 ) K are obtained by the Kouvel-Fisher method whereas δ = 6.35 ( 4 ) is obtained by a critical isotherm analysis at T c = 230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two independentmore » curves following a single scaling equation M | T-T c/T c| -β = f ± ( H |T-T c/T c| -β δ ) around T c , suggesting the reliability of the obtained exponents. Additionally, the determined exponents of Cr 0.62 Te exhibit an Ising-like behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with an extension from two to three dimensions on cooling through T c.« less

  4. Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr 0.62 Te

    DOE PAGES

    Liu, Yu; Petrovic, C.

    2017-10-09

    The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet Cr 0.62 Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β = 0.315 ( 7 ) with a critical temperature T c = 230.6 ( 3 ) K and γ = 1.81 ( 2 ) with T c = 229.1 ( 1 ) K are obtained by the Kouvel-Fisher method whereas δ = 6.35 ( 4 ) is obtained by a critical isotherm analysis at T c = 230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two independentmore » curves following a single scaling equation M | T-T c/T c| -β = f ± ( H |T-T c/T c| -β δ ) around T c , suggesting the reliability of the obtained exponents. Additionally, the determined exponents of Cr 0.62 Te exhibit an Ising-like behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with an extension from two to three dimensions on cooling through T c.« less

  5. Pairing of one-dimensional Bose-Fermi mixtures with unequal masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzi, Matteo; Max Planck Institut fuer QuantenOptik, Hans Kopfermann Strasse 1, D-85748 Garching; Imambekov, Adilet

    We have considered one-dimensional Bose-Fermi mixture with equal densities and unequal masses using numerical density matrix renormalization group. For the mass ratio of K-Rb mixture and attraction between bosons and fermions, we determined the phase diagram. For weak boson-boson interactions, there is a direct transition between two-component Luttinger liquid and collapsed phases as the boson-fermion attraction is increased. For strong enough boson-boson interactions, we find an intermediate 'paired' phase, which is a single-component Luttinger liquid of composite particles. We investigated correlation functions of such a 'paired' phase, studied the stability of 'paired' phase to density imbalance, and discussed various experimentalmore » techniques which can be used to detect it.« less

  6. Quasi-one-dimensional magnetism in MnxFe1-xNb2O6 compounds: From Heisenberg to Ising chains

    NASA Astrophysics Data System (ADS)

    Hneda, M. L.; Oliveira Neto, S. R.; da Cunha, J. B. M.; Gusmão, M. A.; Isnard, O.

    2018-06-01

    A series of MnxFe1-xNb2O6 compounds (0 ⩽ x ⩽ 1) is investigated by both X-ray and neutron powder diffraction, as well as specific-heat and magnetic measurements. The samples present orthorhombic Pbcn crystal symmetry, and exhibit weakly coupled magnetic chains. These chains are of Heisenberg type (weak anisotropy) on the Mn-rich side, and Ising-like (strong anisotropy) on the Fe-rich side. Except for 100% Fe (x = 0) , which has weakly-interacting ferromagnetic Ising chains, a negative Curie-Weiss temperature is obtained from the magnetic susceptibility, indicating dominant antiferromagnetic interactions. At the lowest probed temperature, T = 1.5K , true long-range magnetic order is only observed for x = 1 , 0.8, and 0. Although the ordering is globally antiferromagnetic in all cases, the first two are characterized by a two-sublattice structure with propagation vector k = (0, 0, 0) , while the latter presents alternatingly oriented ferromagnetic chains described by k = (0,1/2, 0) . For other compositions, short-range magnetic correlations are extracted from diffuse neutron-scattering data.

  7. The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1997-01-01

    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.

  8. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    NASA Astrophysics Data System (ADS)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  9. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin liquid candidates kappa-(BEDT-TTF) 2Cu2(CN)3 and EtMe3Sb[Pd(dmit) 2]2. With use of large-scale variational Monte Carlo calculations, we show that this new state has very competitive trial energy in an effective spin model thought to describe the essential features of the real materials.

  10. Critical Point of a Weakly Interacting Two-Dimensional Bose Gas

    NASA Astrophysics Data System (ADS)

    Prokof'ev, Nikolay; Ruebenacker, Oliver; Svistunov, Boris

    2002-03-01

    We study the Berezinskii-Kosterlitz-Thouless transition in a We study the Berezinskii-Kosterlitz-Thouless transition in a weakly interacting 2D quantum Bose gas using the concept of universality and numerical simulations of the classical |ψ|^4-model on a lattice. The critical density and chemical potential are given by relations n_c=(mT/2π hbar^2) ln(ξ hbar^2/ mU) and μ_c=(mTU/π hbar^2) ln(ξ_μ hbar^2/ mU), where T is the temperature, m is the mass, and U is the effective interaction. The dimensionless constant ξ= 380 ± 3 is very large and thus any quantitative analysis of the experimental data crucially depends on its value. For ξ_μ our result is ξ_μ = 13.2 ± 0.4 . We also report the study of the quasi-condensate correlations at the critical point.

  11. Full characterization of modular values for finite-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ho, Le Bin; Imoto, Nobuyuki

    2016-06-01

    Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.

  12. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

    DOE PAGES

    Velizhanin, Kirill A.; Saxena, Avadh

    2015-11-01

    The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexcitonmore » binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.« less

  13. Kosterlitz-Thouless transition and vortex-antivortex lattice melting in two-dimensional Fermi gases with p - or d -wave pairing

    NASA Astrophysics Data System (ADS)

    Cao, Gaoqing; He, Lianyi; Huang, Xu-Guang

    2017-12-01

    We present a theoretical study of the finite-temperature Kosterlitz-Thouless (KT) and vortex-antivortex lattice (VAL) melting transitions in two-dimensional Fermi gases with p - or d -wave pairing. For both pairings, when the interaction is tuned from weak to strong attractions, we observe a quantum phase transition from the Bardeen-Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein condensation (BEC) of difermions. The KT and VAL transition temperatures increase during this BCS-BEC transition and approach constant values in the deep BEC region. The BCS-BEC transition is characterized by the nonanalyticities of the chemical potential, the superfluid order parameter, and the sound velocities as functions of the interaction strength at both zero and finite temperatures; however, the temperature effect tends to weaken the nonanalyticities compared to the zero-temperature case. The effect of mismatched Fermi surfaces on the d -wave pairing is also studied.

  14. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2017-10-01

    We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.

  15. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    significant inhomogeneous broadening of the spectral gain. SK QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak...QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak electron and hole confinement to the QD, which results in low gain...exhibit full three- dimensional nano-scale confinement and elimination of the wetting layer states. The objectives of this project were to develop

  16. High resolution approach to the native state ensemble kinetics and thermodynamics.

    PubMed

    Wu, Sangwook; Zhuravlev, Pavel I; Papoian, Garegin A

    2008-12-15

    Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.

  17. Solitonic and chaotic behaviors of a (3+1)-dimensional nonlinear Schrödinger equation in a magnetized electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Chai, Jun

    2015-05-01

    In a magnetized e-p-i plasma with two-electron temperatures, the (3+1)-dimensional nonlinear Schrödinger equation for the ion-acoustic envelope solitons is hereby investigated. Bright and dark soliton solutions are both obtained. It is found that the soliton amplitude is inversely related to P, Q and R, with P, Q and R respectively as the coefficients of the dispersive term, nonlinear term and combined effect of the transverse perturbation and magnetic field. Head-on interactions are displayed, and with Q and R decreasing, can be transferred into the overtaking ones. Bright bound-state solitons are obtained, and the interaction period decreases with Q increasing. Both the head-on and overtaking interactions between the two dark solitons are displayed, and such a head-on interaction can be transformed into the overtaking one with R increasing. Upon the introduction of the external perturbation, the developed and weak chaos are observed. Phase projections and power spectra are presented. Difference between the two chaotic motions roots in the inequality between the nonlinear and perturbed terms. Developed chaos can be weakened with Q decreasing, or with the frequency of external perturbation increasing.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Pallab; Goldman, Hart; Raghu, S.

    Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less

  19. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  20. Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential

    NASA Astrophysics Data System (ADS)

    Hilou, Elaa; Du, Di; Kuei, Steve; Biswal, Sibani Lisa

    2018-02-01

    Interfacial characteristics are critical to various properties of two-dimensional (2D) materials such as band alignment at a heterojunction and nucleation kinetics in a 2D crystal. Despite the desire to harness these enhanced interfacial properties for engineering new materials, unexpected phase transitions and defects, unique to the 2D morphology, have left a number of open questions. In particular, the effects of configurational anisotropy, which are difficult to isolate experimentally, and their influence on interfacial properties are not well understood. In this work, we begin to probe this structure-thermodynamic relationship, using a rotating magnetic field to generate an anharmonic interaction potential in a 2D system of paramagnetic particles. At low magnetic field strengths, weakly interacting colloidal particles form non-close-packed, fluidlike droplets, whereas, at higher field strengths, crystallites with hexagonal ordering are observed. We examine spatial and interfacial properties of these 2D colloidal clusters by measuring the local bond orientation order parameter and interfacial stiffness as a function of the interaction strength. To our knowledge, this is the first study to measure the tunable interfacial stiffness of a 2D colloidal cluster by controlling particle interactions using external fields.

  1. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  2. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Danhong; Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106; Gumbs, Godfrey

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases andmore » then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.« less

  3. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  4. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  5. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Numerical simulations of Kadomtsev-Petviashvili soliton interactions

    NASA Astrophysics Data System (ADS)

    Infeld, E.; Senatorski, A.; Skorupski, A. A.

    1995-04-01

    The Kadomtsev-Petviashvili equation generalizes that of Korteweg and de Vries to two space dimensions and arises in various weakly dispersive media. Two very different species of soliton solutions are known for one variant, KPI. The first species to be discovered are line solitons, the second are two dimensional lumps. This paper describes numerical simulations, consistent with all constraints of the equation, in which very distorted line solitons break up into smaller line solitons and arrays of lumps. The arrays can interact with one another. In some cases, aspects of the results of the simulations can be understood in the light of specially constructed exact solutions. Simulations in which initial conditions fail to satisfy the constraints of the equation are also described.

  7. Improved models of stellar core collapse and still no explosions: what is missing?

    PubMed

    Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K

    2003-06-20

    Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.

  8. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE PAGES

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...

    2018-05-31

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  9. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  10. Dimensional control of supramolecular assemblies of diacetylene-derived peptide gemini amphiphile: from spherical micelles to foamlike networks.

    PubMed

    Jiang, Hao; Ehlers, Martin; Hu, Xiao-Yu; Zellermann, Elio; Schmuck, Carsten

    2018-05-22

    Peptide amphiphiles capable of assembling into multidimensional nanostructures have attracted much attention over the past decade due to their potential applications in materials science. Herein, a novel diacetylene-derived peptide gemini amphiphile with a fluorenylmethyloxycarbonyl (Fmoc) group at the N-terminus is reported to hierarchically assemble into spherical micelles, one-dimensional nanorods, two-dimensional foamlike networks and lamellae. Solvent polarity shows a remarkable effect on the self-assembled structures by changing the balance of four weak noncovalent interactions (hydrogen-bonding, π-π stacking, hydrophobic interaction, and electrostatic repulsion). We also show the time-evolution not only from spherical micelles to helical nanofibers in aqueous solution, but also from branched wormlike micelles to foamlike networks in methanol solution. In this work, the presence of the Fmoc group plays a key role in the self-assembly process. This work provides an efficient strategy for precise morphological control, aiding the future development in materials science.

  11. Bound states of dipolar bosons in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Volosniev, A. G.; Armstrong, J. R.; Fedorov, D. V.; Jensen, A. S.; Valiente, M.; Zinner, N. T.

    2013-04-01

    We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as a function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three-, four- and five-body problems in two or more tubes. Our results indicate that in the weakly coupled limit the intertube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.

  12. A one-dimensional nickel(II) coordination polymer containing 2,6-dipicolinate and dipyrido[3,2-a:2',3'-c]phenazine.

    PubMed

    Ma, Yi; Zhang, Li-Tian; Wang, Xiao-Fang; He, Yong-Ke; Han, Zheng-Bo

    2007-12-01

    A new coordination polymer, catena-poly[[(dipyrido[3,2-a:2',3'-c]phenazine-kappa(2)N,N')nickel(II)]-mu-2,6-dipicolinato-kappa(4)O(2),N,O(6):O(2')], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one-dimensional structure in which 2,6-dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one Ni(II) center, one dipyrido[3,2-a:2',3'-c]phenazine ligand and one 2,6-dipicolinate ligand. Each Ni(II) center is six-coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2-a:2',3'-c]phenazine ligand and two different 2,6-dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by pi-pi stacking interactions and weak interactions to form a three-dimensional supramolecular network.

  13. Cooperativity of self-organized Brownian motors pulling on soft cargoes.

    PubMed

    Orlandi, Javier G; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  14. Cooperativity of self-organized Brownian motors pulling on soft cargoes

    NASA Astrophysics Data System (ADS)

    Orlandi, Javier G.; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  15. Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction.

    PubMed

    Cattiaux, Patrick; Méléard, Sylvie

    2010-06-01

    We are interested in the long time behavior of a two-type density-dependent biological population conditioned on non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned on non-extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species.

  16. Optical spectroscopy and system-bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model

    NASA Astrophysics Data System (ADS)

    Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš

    2016-12-01

    Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system-bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.

  17. The stability of aluminium oxide monolayer and its interface with two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Song, Ting Ting; Yang, Ming; Chai, Jian Wei; Callsen, Martin; Zhou, Jun; Yang, Tong; Zhang, Zheng; Pan, Ji Sheng; Chi, Dong Zhi; Feng, Yuan Ping; Wang, Shi Jie

    2016-07-01

    The miniaturization of future electronic devices requires the knowledge of interfacial properties between two-dimensional channel materials and high-κ dielectrics in the limit of one atomic layer thickness. In this report, by combining particle-swarm optimization method with first-principles calculations, we present a detailed study of structural, electronic, mechanical, and dielectric properties of Al2O3 monolayer. We predict that planar Al2O3 monolayer is globally stable with a direct band gap of 5.99 eV and thermal stability up to 1100 K. The stability of this high-κ oxide monolayer can be enhanced by substrates such as graphene, for which the interfacial interaction is found to be weak. The band offsets between the Al2O3 monolayer and graphene are large enough for electronic applications. Our results not only predict a stable high-κ oxide monolayer, but also improve the understanding of interfacial properties between a high-κ dielectric monolayer and two-dimensional material.

  18. Molecular association via halogen bonding and other weak interactions in the crystal structures of 11-bromo-12-oxo-5β-cholan derivatives

    NASA Astrophysics Data System (ADS)

    Salunke, Deepak B.; Hazra, Braja G.; Gonnade, Rajesh G.; Pore, Vandana S.; Bhadbhade, Mohan M.

    2008-12-01

    Methyl 3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 2, methyl 11α-bromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 3, methyl 11β-bromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 4 and methyl 11,11-dibromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 5 were synthesized. The crystal structures of these molecules were resolved to study the effect of bulky bromine atom in the steroid skeleton of cholic acid with different stereo-chemical orientations at C-11 on the two-dimensional arrangement of molecules and solid-state properties. All the molecules associate only via weak intermolecular interactions in their crystal structures, notable one being the Halogen Bonded assembly (C-Br…O) in 5.

  19. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    PubMed Central

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  20. The new finite temperature Schrödinger equations with strong or weak interaction

    NASA Astrophysics Data System (ADS)

    Li, Heling; Yang, Bin; Shen, Hongjun

    2017-07-01

    Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.

  1. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    PubMed Central

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-01-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field. PMID:26459874

  2. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    NASA Astrophysics Data System (ADS)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  3. Weak solutions of the three-dimensional vorticity equation with vortex singularities

    NASA Technical Reports Server (NTRS)

    Winckelmans, G.; Leonard, A.

    1988-01-01

    The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.

  4. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  5. Landau instability and mobility edges of the interacting one-dimensional Bose gas in weak random potentials

    NASA Astrophysics Data System (ADS)

    Cherny, Alexander Yu; Caux, Jean-Sébastien; Brand, Joachim

    2018-01-01

    We study the frictional force exerted on the trapped, interacting 1D Bose gas under the influence of a moving random potential. Specifically we consider weak potentials generated by optical speckle patterns with finite correlation length. We show that repulsive interactions between bosons lead to a superfluid response and suppression of frictional force, which can inhibit the onset of Anderson localisation. We perform a quantitative analysis of the Landau instability based on the dynamic structure factor of the integrable Lieb-Liniger model and demonstrate the existence of effective mobility edges.

  6. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    PubMed

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE PAGES

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-10

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  8. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  9. Crystal structure and hydrogen-bonding patterns in 5-fluoro-cytosinium picrate.

    PubMed

    Mohana, Marimuthu; Thomas Muthiah, Packianathan; McMillen, Colin D

    2017-03-01

    In the crystal structure of the title compound, 5-fluoro-cytosinium picrate, C 4 H 5 FN 3 O + ·C 6 H 2 N 3 O 7 - , one N heteroatom of the 5-fluoro-cytosine (5FC) ring is protonated. The 5FC ring forms a dihedral angle of 19.97 (11)° with the ring of the picrate (PA - ) anion. In the crystal, the 5FC + cation inter-acts with the PA - anion through three-centre N-H⋯O hydrogen bonds, forming two conjoined rings having R 2 1 (6) and R 1 2 (6) motifs, and is extended by N-H⋯O hydrogen bonds and C-H⋯O inter-actions into a two-dimensional sheet structure lying parallel to (001). Also present in the crystal structure are weak C-F⋯π inter-actions.

  10. Phase competition in a one-dimensional three-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Tang, Yanfei; Maier, Thomas A.; Johnston, Steven

    2018-05-01

    We study the interplay between the electron-phonon (e -ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e -ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e -ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e -ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R) (2017), 10.1103/PhysRevB.95.121112] in infinite dimension, suggesting that the competition between the e -ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.

  11. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less

  12. Existence of global weak solution for a reduced gravity two and a half layer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhenhua, E-mail: zhenhua.guo.math@gmail.com; Li, Zilai, E-mail: lizilai0917@163.com; Yao, Lei, E-mail: yaolei1056@hotmail.com

    2013-12-15

    We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.

  13. Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies

    NASA Technical Reports Server (NTRS)

    Chen, Y.- J.; Davis, S. H.

    1999-01-01

    A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.

  14. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials

    PubMed Central

    Khanikaev, A. B.; Arju, N.; Fan, Z.; Purtseladze, D.; Lu, F.; Lee, J.; Sarriugarte, P.; Schnell, M.; Hillenbrand, R.; Belkin, M. A.; Shvets, G.

    2016-01-01

    Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating. PMID:27329108

  15. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  16. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  17. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE PAGES

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki; ...

    2016-09-20

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  18. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less

  19. 3D Finite Element Models of Shoulder Muscles for Computing Lines of Actions and Moment Arms

    PubMed Central

    Webb, Joshua D.; Blemker, Silvia S.; Delp, Scott L.

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterize the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account the large attachment areas, muscle-muscle interactions, and complex muscle fiber trajectories typical of shoulder muscles. To better represent shoulder muscle geometry we developed three-dimensional finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fiber paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fiber moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the three-dimensional model of supraspinatus showed that the anterior fibers provide substantial internal rotation while the posterior fibers act as external rotators. Including the effects of large attachment regions and three-dimensional mechanical interactions of muscle fibers constrains muscle motion, generates more realistic muscle paths, and allows deeper analysis of shoulder muscle function. PMID:22994141

  20. Richards-like two species population dynamics model.

    PubMed

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.

  1. The Eckhaus and the Benjamin-Feir instability near a weakly inverted bifurcation

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Deissler, Robert J.

    1991-01-01

    We investigate how the criteria for two prototype instabilities in one dimensional pattern forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation, to a spatially periodic or spatially and/or time periodic state, to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two dimensional patterns in systems with anisotropy as they arise from hydrodynamic instabilities in nematic liquid crystals.

  2. Eckhaus and Benjamin-Feir instabilities near a weakly inverted bifurcation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, H.R.; Deissler, R.J.

    1992-03-15

    We investigate how the criteria for two prototype instabilities in one-dimensional pattern-forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation to a spatially periodic or spatially and/or time-periodic state to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two-dimensional patterns in systems with anisotropy as they arise, for example, for hydrodynamic instabilities in nematic liquid crystals.

  3. Ultrafast optical excitations in supramolecular metallacycles with charge transfer properties.

    PubMed

    Flynn, Daniel C; Ramakrishna, Guda; Yang, Hai-Bo; Northrop, Brian H; Stang, Peter J; Goodson, Theodore

    2010-02-03

    New organometallic materials such as two-dimensional metallacycles and three-dimensional metallacages are important for the development of novel optical, electronic, and energy related applications. In this article, the ultrafast dynamics of two different platinum-containing metallacycles have been investigated by femtosecond fluorescence upconversion and transient absorption. These measurements were carried out in an effort to probe the charge transfer dynamics and the rate of intersystem crossing in metallacycles of different geometries and dimensions. The processes of ultrafast intersystem crossing and charge transfer vary between the two different classes of metallacyclic systems studied. For rectangular anthracene-containing metallacycles, the electronic coupling between adjacent ligands was relatively weak, whereas for the triangular phenanthrene-containing structures, there was a clear interaction between the conjugated ligand and the metal complex center. The transient lifetimes increased with increasing conjugation in that case. The results show that differences in the dimensionality and structure of metallacycles result in different optical properties, which may be utilized in the design of nonlinear optical materials and potential new, longer-lived excited state materials for further electronic applications.

  4. Two novel copper(II) complexes constructed from dicarboxylate ligands with different spacer lengths and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP): Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia

    2009-09-01

    Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.

  5. Alternative method of quantum state tomography toward a typical target via a weak-value measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Dai, Hong-Yi; Yang, Le; Zhang, Ming

    2018-03-01

    There is usually a limitation of weak interaction on the application of weak-value measurement. This limitation dominates the performance of the quantum state tomography toward a typical target in the finite and high-dimensional complex-valued superposition of its basis states, especially when the compressive sensing technique is also employed. Here we propose an alternative method of quantum state tomography, presented as a general model, toward such typical target via weak-value measurement to overcome such limitation. In this model the pointer for the weak-value measurement is a qubit, and the target-pointer coupling interaction is no longer needed within the weak interaction limitation, meanwhile this interaction under the compressive sensing can be described with the Taylor series of the unitary evolution operator. The postselection state at the target is the equal superposition of all basis states, and the pointer readouts are gathered under multiple Pauli operator measurements. The reconstructed quantum state is generated from an optimization algorithm of total variation augmented Lagrangian alternating direction algorithm. Furthermore, we demonstrate an example of this general model for the quantum state tomography toward the planar laser-energy distribution and discuss the relations among some parameters at both our general model and the original first-order approximate model for this tomography.

  6. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    PubMed

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  7. Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka

    2018-06-01

    A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.

  8. Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.

    PubMed

    Havel, T F; Najfeld, I; Yang, J X

    1994-08-16

    Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given.

  9. Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.

    PubMed Central

    Havel, T F; Najfeld, I; Yang, J X

    1994-01-01

    Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given. PMID:8058742

  10. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  11. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides

    DOE PAGES

    McGuire, Michael A.

    2017-04-27

    Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX 2 and MX 3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhancedmore » functionality. Here we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less

  12. The art of seeing and painting.

    PubMed

    Grossberg, Stephen

    2008-01-01

    The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understood paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.

  13. Graphene/MoS2 heterostructures as templates for growing two-dimensional metals: Predictions from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Šljivančanin, Željko; Belić, Milivoj

    2017-09-01

    Preparation of single-atom-thick layers of ordinary metals has been a challenging task since their closely packed atoms lack layered structure with highly anisotropic bonding. Using computational modeling based on density functional theory we showed that graphene/MoS2 heterostructures can be used as suitable templates to grow stable two-dimensional (2D) clusters, as well as extended monoatomic layers of metals with nonlayered structure in the bulk. Considering gold and lithium as two metals with markedly different properties, we found that Li intercalants strengthen coupling between graphene (G) and MoS2, mainly due to electrostatic attraction of 2D materials with positively charged Li atoms. However, intercalation with large Au atoms gives rise to a significant increase in the distance between G and MoS2 and thus, weakens their interaction. In addition to strong preference for 2D growth, we demonstrated that Au intercalants weakly interact with both G and MoS2, and hence G /MoS2 vertical heterostructures could be a promising framework to prepare gold 2D structures with electronic properties closely resembling those of the hypothetical free-standing hexagonal gold monolayer.

  14. Coherence lengths for three-dimensional superconductors in the BCS-Bose picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, R.M.; Casas, M.; Getino, J.M.

    1995-12-01

    Following an approach similar to that of Miyake or Randeria, Duan, and Shieh in two dimensions, we study a three-dimensional many-fermion gas at zero temperature interacting via some short-ranged two-body potential. To accommodate a possible singularity (e.g., the Coulomb repulsion) in the interaction, the potential is eliminated in favor of the two-body scattering {ital t}-matrix, the low-energy form of which is expressible in terms of the {ital s}-wave scattering length {ital a}{sub {ital s}}. The BCS gap equation for {ital s}-wave pairing is then solved simultaneously with the number equation in order to self-consistently obtain the zero-temperature BCS gap {Delta}more » as well as the chemical potential {mu} as functions of the dimensionless coupling variable {lambda}{equivalent_to}{ital k}{sub {ital F}}{ital a}{sub {ital s}}, where {ital k}{sub {ital F}} is the Fermi momentum. Results are valid for arbitrary coupling strength, and in the weak coupling limit reproduce the standard BCS results. Finally, root-mean-square pair sizes are obtained as a function of {lambda} and compared with experimental values.« less

  15. Interaction of N-vortex structures in a continuum, including atmosphere, hydrosphere and plasma

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily Yu.

    2017-10-01

    The results of analysis and numerical simulation of evolution and interaction of the N-vortex structures of various configuration and different vorticities in the continuum including atmosphere, hydrosphere and plasma are presented. It is found that in dependence on initial conditions the regimes of weak interaction with quasi-stationary evolution and active interaction with the "phase intermixing", when the evolution can lead to formation of complex forms of vorticity regions, are realized in the N-vortex systems. For the 2-vortex interaction the generalized critical parameter determining qualitative character of interaction of vortices is introduced. It is shown that for given initial conditions its value divides modes of active interaction and quasi-stationary evolution. The results of simulation of evolution and interaction of the two-dimensional and three-dimensional vortex structures, including such phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a type of "hydrodynamic vortex - dust particles" are presented. The applications of undertaken approach to the problems of such plasma systems as streams of charged particles in a uniform magnetic field B and plasma clouds in the ionosphere are considered. It is shown that the results obtained have obvious applications in studies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere and plasma.

  16. Two-dimensional liquid chromatography system for online top-down mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhixin; Zhao, Rui; Tolic, Nikola

    2010-10-01

    An online metal-free weak cation exchange-hydrophilic interaction liquid chromatography/reversed phase liquid chromatography (WCX-HILIC/RPLC) system has been developed for sensitive high-throughput top-down mass spectrometry. Analyzing posttranslational modifications (PTMs) of core histones, with focus on histone H4, tested the system. Using ~24 μg of core histones (H4, H2B, H2A and H3) purified from human fibroblasts, 41 H4 isoforms were identified, with the type and locations of PTMs unambiguously mapped for 20 of these variants. Compared to corresponding offline studies reported previously, online WCXHILIC/ RPLC platform offers significant improvement in sensitivity, with several orders of magnitude reduction in sample requirements and reduction inmore » the overall analysis time. To the best of our knowledge, this study represents the first online two-dimensional (2D) LC-MS/MS characterization of core histone mixture at the intact protein level.« less

  17. A Gibbs point field model for the spatial pattern of coronary capillaries

    NASA Astrophysics Data System (ADS)

    Karch, R.; Neumann, M.; Neumann, F.; Ullrich, R.; Neumüller, J.; Schreiner, W.

    2006-09-01

    We propose a Gibbs point field model for the pattern of coronary capillaries in transverse histologic sections from human hearts, based on the physiology of oxygen supply from capillaries to tissue. To specify the potential energy function of the Gibbs point field, we draw on an analogy between the equation of steady-state oxygen diffusion from an array of parallel capillaries to the surrounding tissue and Poisson's equation for the electrostatic potential of a two-dimensional distribution of identical point charges. The influence of factors other than diffusion is treated as a thermal disturbance. On this basis, we arrive at the well-known two-dimensional one-component plasma, a system of identical point charges exhibiting a weak (logarithmic) repulsive interaction that is completely characterized by a single dimensionless parameter. By variation of this parameter, the model is able to reproduce many characteristics of real capillary patterns.

  18. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  19. Synthesis, crystal structures and luminescent properties of two 4 d-4 f Ln-Ag heterometallic coordination polymers based on anion template

    NASA Astrophysics Data System (ADS)

    Fan, Le-Qing; Chen, Yuan; Wu, Ji-Huai; Huang, Yun-Fang

    2011-04-01

    Two new 4 d-4 f Ln-Ag heterometallic coordination polymers, {[ Ln3Ag 5(IN) 10(H 2O) 7]·4(ClO 4)·4(H 2O)} n ( Ln=Eu ( 1) and Sm ( 2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions by reactions of Ln2O 3, AgNO 3, HIN and HClO 4, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. It is proved that HClO 4 not only adjusts the pH value of the reaction mixture, but also acts as anion template. The structure determination reveals that 1 and 2 are isostructural and feature a novel two-dimensional (2D) layered hetrometallic structure constructed from one-dimensional Ln-carboxylate chains and pillared Ag(IN) 2 units. The 2D layers are further interlinked through Ag⋯Ag and Ag⋯O(ClO 4-) multiple weak interactions, which form a rare Ag-ClO 4 ribbon in lanthanide-transition metal coordination polymers, to give rise to a three-dimensional supramolecular architecture. Moreover, the luminescent properties of these two compounds have also been investigated at room temperature.

  20. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    NASA Astrophysics Data System (ADS)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  1. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    NASA Astrophysics Data System (ADS)

    Stepina, N. P.; Koptev, E. S.; Pogosov, A. G.; Dvurechenskii, A. V.; Nikiforov, A. I.; Zhdanov, E. Yu

    2012-07-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  2. Interaction between mean flow and turbulence in two dimensions

    PubMed Central

    2016-01-01

    This short note is written to call attention to an analytic approach to the interaction of developed turbulence with mean flows of simple geometry (jets and vortices). It is instructive to compare cases in two and three dimensions and see why the former are solvable and the latter are not (yet). We present the analytical solutions for two-dimensional mean flows generated by an inverse turbulent cascade on a sphere and in planar domains of different aspect ratios. These solutions are obtained in the limit of small friction when the flow is strong while turbulence can be considered weak and treated perturbatively. I then discuss when these simple solutions can be realized and when more complicated flows may appear instead. The next step of describing turbulence statistics inside a flow and directions of possible future progress are briefly discussed at the end. PMID:27493579

  3. Field-scale and wellbore modeling of compaction-induced casing failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.

    1999-06-01

    Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less

  4. Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1 -xLax)3Ir2O7

    NASA Astrophysics Data System (ADS)

    Lu, Xingye; McNally, D. E.; Moretti Sala, M.; Terzic, J.; Upton, M. H.; Casa, D.; Ingold, G.; Cao, G.; Schmitt, T.

    2017-01-01

    We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1 -xLax )3Ir2 O7 (0 ≤x ≤0.065 ). With increasing doping x , the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x =0 to 0.05, followed by a transition to two-dimensional short range order between x =0.05 and 0.065. Because of the interactions between the Jeff=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1 -xLax )3Ir2 O7 into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the Jeff=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.

  5. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex.

    PubMed

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I; Blackledge, Martin; van Nuland, Nico A J

    2009-05-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 muM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (K(d) = 132 +/- 13 muM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein-protein complexes.

  6. Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex

    PubMed Central

    Ortega-Roldan, Jose Luis; Jensen, Malene Ringkjøbing; Brutscher, Bernhard; Azuaga, Ana I.; Blackledge, Martin; van Nuland, Nico A. J.

    2009-01-01

    The description of the interactome represents one of key challenges remaining for structural biology. Physiologically important weak interactions, with dissociation constants above 100 μM, are remarkably common, but remain beyond the reach of most of structural biology. NMR spectroscopy, and in particular, residual dipolar couplings (RDCs) provide crucial conformational constraints on intermolecular orientation in molecular complexes, but the combination of free and bound contributions to the measured RDC seriously complicates their exploitation for weakly interacting partners. We develop a robust approach for the determination of weak complexes based on: (i) differential isotopic labeling of the partner proteins facilitating RDC measurement in both partners; (ii) measurement of RDC changes upon titration into different equilibrium mixtures of partially aligned free and complex forms of the proteins; (iii) novel analytical approaches to determine the effective alignment in all equilibrium mixtures; and (iv) extraction of precise RDCs for bound forms of both partner proteins. The approach is demonstrated for the determination of the three-dimensional structure of the weakly interacting CD2AP SH3-C:Ubiquitin complex (Kd = 132 ± 13 μM) and is shown, using cross-validation, to be highly precise. We expect this methodology to extend the remarkable and unique ability of NMR to study weak protein–protein complexes. PMID:19359362

  7. Nonequilibrium fluctuations as a distinctive feature of weak localization

    PubMed Central

    Barone, C.; Romeo, F.; Pagano, S.; Attanasio, C.; Carapella, G.; Cirillo, C.; Galdi, A.; Grimaldi, G.; Guarino, A.; Leo, A.; Nigro, A.; Sabatino, P.

    2015-01-01

    Two-dimensional materials, such as graphene, topological insulators, and two-dimensional electron gases, represent a technological playground to develop coherent electronics. In these systems, quantum interference effects, and in particular weak localization, are likely to occur. These coherence effects are usually characterized by well-defined features in dc electrical transport, such as a resistivity increase and negative magnetoresistance below a crossover temperature. Recently, it has been shown that in magnetic and superconducting compounds, undergoing a weak-localization transition, a specific low-frequency 1/f noise occurs. An interpretation in terms of nonequilibrium universal conductance fluctuations has been given. The universality of this unusual electric noise mechanism has been here verified by detailed voltage-spectral density investigations on ultrathin copper films. The reported experimental results validate the proposed theoretical framework, and also provide an alternative methodology to detect weak-localization effects by using electric noise spectroscopy. PMID:26024506

  8. Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling.

    PubMed

    Xing, Qiong; Huang, Peng; Yang, Ju; Sun, Jian-Qiang; Gong, Zhou; Dong, Xu; Guo, Da-Chuan; Chen, Shao-Min; Yang, Yu-Hong; Wang, Yan; Yang, Ming-Hui; Yi, Ming; Ding, Yi-Ming; Liu, Mai-Li; Zhang, Wei-Ping; Tang, Chun

    2014-10-20

    Proteins interact with each other to fulfill their functions. The importance of weak protein-protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra-weak interactions remain to be characterized. Phosphorylation can take place via a K(D)≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel Gd(III)-based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra-weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro- to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra-weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A disorder-enhanced quasi-one-dimensional superconductor

    PubMed Central

    Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.

    2016-01-01

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209

  10. A disorder-enhanced quasi-one-dimensional superconductor.

    PubMed

    Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C

    2016-07-22

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.

  11. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm.

    PubMed

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-11-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.

  12. Bending of solitons in weak and slowly varying inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan

    2015-12-01

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  13. Bending of solitons in weak and slowly varying inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in

    2015-12-15

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  14. Excitonic instability in optically pumped three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Balatsky, Alexander V.

    2018-02-01

    Recently it was suggested that transient excitonic instability can be realized in optically pumped two-dimensional (2D) Dirac materials (DMs), such as graphene and topological insulator surface states. Here we discuss the possibility of achieving a transient excitonic condensate in optically pumped three-dimensional (3D) DMs, such as Dirac and Weyl semimetals, described by nonequilibrium chemical potentials for photoexcited electrons and holes. Similar to the equilibrium case with long-range interactions, we find that for pumped 3D DMs with screened Coulomb potential two possible excitonic phases exist, an excitonic insulator phase and the charge density wave phase originating from intranodal and internodal interactions, respectively. In the pumped case, the critical coupling for excitonic instability vanishes; therefore the two phases coexist for arbitrarily weak coupling strengths. The excitonic gap in the charge density wave phase is always the largest one. The competition between screening effects and the increase of the density of states with optical pumping results in a rich phase diagram for the transient excitonic condensate. Based on the static theory of screening, we find that under certain conditions the value of the dimensionless coupling constant screening in 3D DMs can be weaker than in 2D DMs. Furthermore, we identify the signatures of the transient excitonic condensate that could be probed by scanning tunneling spectroscopy, photoemission, and optical conductivity measurements. Finally, we provide estimates of critical temperatures and excitonic gaps for existing and hypothetical 3D DMs.

  15. Effective interactions in a quantum Bose-Bose mixture

    NASA Astrophysics Data System (ADS)

    Utesov, O. I.; Baglay, M. I.; Andreev, S. V.

    2018-05-01

    We generalize the Beliaev diagrammatic theory of an interacting spinless Bose-Einstein condensate to the case of a binary mixture. We derive a set of coupled Dyson equations and find analytically the Green's functions of the system. The elementary excitation spectrum consists of two branches, one of which takes the characteristic parabolic form ω ∝p2 in the limit of a spin-independent interaction. We observe renormalization of the magnon mass and the spin-wave velocity due to the Andreev-Bashkin entrainment effect. For a three-dimensional weakly interacting gas the spectrum can be obtained by applying the Bogoliubov transformation to a second-quantized Hamiltonian in which the microscopic two-body potentials in each channel are replaced by the corresponding off-shell scattering amplitudes. The superfluid drag density can be calculated by considering a mixture of phonons and magnons interacting via the effective potentials. We show that this problem is identical to the second-order perturbative treatment of a Bose polaron. In two dimensions the drag contributes to the magnon dispersion already in the first approximation. Our consideration provides a basis for systematic study of emergent phases in quantum degenerate Bose-Bose mixtures.

  16. 7-Meth­oxy­indan-1-one

    PubMed Central

    Chang, Yuan Jay; Chen, Kew-Yu

    2012-01-01

    In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π inter­action. A second weak C—H⋯π inter­action links the layers, forming a three-dimensional structure. PMID:23284398

  17. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, H.A.; Hoover, W.G.; Kum, O.

    1995-08-01

    We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less

  18. Crystal structure of 1,3-bis-(1H-benzotriazol-1-yl-meth-yl)benzene.

    PubMed

    Macías, Mario A; Nuñez-Dallos, Nelson; Hurtado, John; Suescun, Leopoldo

    2016-06-01

    The mol-ecular structure of the title compound, C20H16N6, contains two benzotriazole units bonded to a benzene nucleus in a meta configuration, forming dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring and 57.08 (9)° with each other. The three-dimensional structure is controlled mainly by weak C-H⋯N and C-H⋯π inter-actions. The mol-ecules are connected in inversion-related pairs, forming the slabs of infinite chains that run along the [-110] and [110] directions.

  19. Hydrogen/deuterium (H/D) exchange of gelatinized starch studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-05-01

    Hydrogen/deuterium (H/D) exchange of gelatinized starch was probed by in-situ near-infrared (NIR) monitoring coupled with two-dimensional (2D) correlation spectroscopy. Gelatinized starch undergoes spontaneous H/D exchange in D2O. During the substitution, the exchange rate essentially becomes different depending on solvent accessibility of various parts of the molecule. Thus, by analyzing the change in the NIR feature observed during the substitution, it becomes possible to sort out local structure and dynamics of the system. 2D correlation analysis of the time-dependent NIR spectra reveals the presence of different local structure of the starch, each having different solvent accessibility. For example, during the H/D exchange, the D2O is first absorbed by starch molecules especially around the surface area between the starch and water, where the water molecules are weakly interacted with the starch molecules. This absorption is quickly followed by the development of HDO species. Further absorption of the D2O results in the penetration of the molecules inside the starch and eventually develops the relatively strong interaction between the HDO and starch molecules because of the presence of dominant starch molecules.

  20. High-harmonic generation from an atomically thin semiconductor [Observation of high harmonics from an atomically thin semiconductor

    DOE PAGES

    Liu, Hanzhe; Li, Yilei; You, Yong Sing; ...

    2016-11-14

    High-harmonic generation (HHG) in bulk solids permits the exploration of materials in a new regime of strong fields and attosecond timescales. The generation process has been discussed in the context of strongly driven electron dynamics in single-particle bands. Two-dimensional materials exhibit distinctive electronic properties compared to the bulk that could significantly modify the HHG process, including different symmetries, access to individual valleys and enhanced many-body interactions. Here we demonstrate non-perturbative HHG from a monolayer MoS 2 crystal, with even and odd harmonics extending to the 13th order. The even orders are predominantly polarized perpendicular to the pump and are compatiblemore » with the anomalous transverse intraband current arising from the material’s Berry curvature, while the weak parallel component suggests the importance of interband transitions. The odd harmonics exhibit a significant enhancement in efficiency per layer compared to the bulk, which is attributed to correlation effects. In conclusion, the combination of strong many-body Coulomb interactions and widely tunable electronic properties in two-dimensional materials offers a new platform for attosecond physics.« less

  1. Thermodynamics of Yukawa fluids near the one-component-plasma limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrapak, Sergey A.; Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20; Semenov, Igor L.

    Thermodynamics of weakly screened (near the one-component-plasma limit) Yukawa fluids in two and three dimensions is analyzed in detail. It is shown that the thermal component of the excess internal energy of these fluids, when expressed in terms of the properly normalized coupling strength, exhibits the scaling pertinent to the corresponding one-component-plasma limit (the scalings differ considerably between the two- and three-dimensional situations). This provides us with a simple and accurate practical tool to estimate thermodynamic properties of weakly screened Yukawa fluids. Particular attention is paid to the two-dimensional fluids, for which several important thermodynamic quantities are calculated to illustratemore » the application of the approach.« less

  2. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  4. Dynamics in multiple-well Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Nigro, M.; Capuzzi, P.; Cataldo, H. M.; Jezek, D. M.

    2018-01-01

    We study the dynamics of three-dimensional weakly linked Bose-Einstein condensates using a multimode model with an effective interaction parameter. The system is confined by a ring-shaped four-well trapping potential. By constructing a two-mode Hamiltonian in a reduced highly symmetric phase space, we examine the periodic orbits and calculate their time periods both in the self-trapping and Josephson regimes. The dynamics in the vicinity of the reduced phase space is investigated by means of a Floquet multiplier analysis, finding regions of different linear stability and analyzing their implications on the exact dynamics. The numerical exploration in an extended region of the phase space demonstrates that two-mode tools can also be useful for performing a partition of the space in different regimes. Comparisons with Gross-Pitaevskii simulations confirm these findings and emphasize the importance of properly determining the effective on-site interaction parameter governing the multimode dynamics.

  5. Polymer diffusion in the interphase between surface and solution.

    PubMed

    Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin

    2018-05-22

    Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.

  6. The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications.

    PubMed

    Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter

    2013-10-07

    We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.

  7. Web-based three-dimensional geo-referenced visualization

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Gong, Jianhua; Wang, Freeman

    1999-12-01

    This paper addresses several approaches to implementing web-based, three-dimensional (3-D), geo-referenced visualization. The discussion focuses on the relationship between multi-dimensional data sets and applications, as well as the thick/thin client and heavy/light server structure. Two models of data sets are addressed in this paper. One is the use of traditional 3-D data format such as 3-D Studio Max, Open Inventor 2.0, Vis5D and OBJ. The other is modelled by a web-based language such as VRML. Also, traditional languages such as C and C++, as well as web-based programming tools such as Java, Java3D and ActiveX, can be used for developing applications. The strengths and weaknesses of each approach are elaborated. Four practical solutions for using VRML and Java, Java and Java3D, VRML and ActiveX and Java wrapper classes (Java and C/C++), to develop applications are presented for web-based, real-time interactive and explorative visualization.

  8. Quantum phases of dipolar rotors on two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  9. Viscosity of a multichannel one-dimensional Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGottardi, Wade; Matveev, K. A.

    Many one-dimensional systems of experimental interest possess multiple bands arising from shallow confining potentials. In this paper, we study a gas of weakly interacting fermions and show that the bulk viscosity is dramatically altered by the occupation of more than one band. The reasons for this are twofold: a multichannel system is more easily displaced from equilibrium and the associated relaxation processes lead to more rapid equilibration than in the single channel case. We estimate the bulk viscosity in terms of the underlying microscopic interactions. The experimental relevance of this physics is discussed in the context of quantum wires andmore » trapped cold atomic gases.« less

  10. Cold atoms in one-dimensional rings: a Luttinger liquid approach to precision measurement

    NASA Astrophysics Data System (ADS)

    Ragole, Stephen; Taylor, Jacob

    Recent experiments have realized ring shaped traps for ultracold atoms. We consider the one-dimensional limit of these ring systems with a moving weak barrier, such as a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy with the superconducting charge qubit. In particular, we find that strongly-interacting atoms in such a system could be used for precision rotation sensing. We compare the performance of this new sensor to the state of the art non-interacting atom interferometry. Funding provided by the Physics Frontier Center at the JQI and by DARPA QUASAR.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie Haiying; Lu Jing; Yu Jiehui

    Three novel thiocyanate supramolecular compounds have been synthesized and characterized by X-ray diffraction and fluorescent spectra. Compound [pipH]{sub 2}[Co(NCS){sub 4}] (pip=piperazine) 1 possesses a two-dimensional layer connected by the combination of N-H...N hydrogen bonds and weak S...S contacts. Under the same conditions, using nickel salt instead of cobalt salt as a starting material, we obtained a different two-dimensional supramolecular layer [pipH]{sub 2}[Ni(NCS){sub 4}] 2 connected by unusual N-H...S hydrogen bonds and weak S...S contacts. In order to observe the influence of the dimension of ligand on the self-assembly structure, dabco was used for substituting pip, and compound [dabcoH]{sub 2}[Ni(NCS){sub 4}]more » (dabco=1,4-Diazabicyclo[2.2.2] octane) 3 was gained, which constructed two-dimensional, highly wavy network with hourglass-shaped cavities only through N-H...S hydrogen bonds.« less

  12. Effects of electronic interactions near the topological semimetal-insulator quantum phase transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Foster, Matthew

    The quasiparticle dispersion of gapless excitations residing at the quantum critical point (QCP) separating a two dimensional topological Dirac semimetal and a symmetry preserving band insulator, displays distinct power-law dependence with various components of spatial momenta. In this talk first I will review scaling of various thermodynamic and transport quantities at this QCP. Next I will demonstrate that even though such noninteracting QCP is stable against sufficiently weak but generic short-range interaction, the direct transition between the Dirac semimetal and band insulator can either (i) become a fluctuation driven first order transition, or (ii) get eliminated by an intervening broken symmetry phase, with staggered pattern in charge or spin being two prominent candidates, for sufficiently strong interactions. The novel quantum critical phenomena associated with the instability of critical excitations toward the formation of various broken symmetry phases will be discussed. Relevance of our study in strained graphene, black phosphorus, pressured organic compounds and oxide heterostructure will be highlighted. Welch Foundation Grant No. C-1809, NSF CAREER Grant No. DMR-1552327.

  13. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian

    2018-02-01

    In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.

  14. Number-squeezed and fragmented states of strongly interacting bosons in a double well

    NASA Astrophysics Data System (ADS)

    Corbo, Joel C.; DuBois, Jonathan L.; Whaley, K. Birgitta

    2017-11-01

    We present a systematic study of the phenomena of number squeezing and fragmentation for a repulsive Bose-Einstein condensate (BEC) in a three-dimensional double-well potential over a range of interaction strengths and barrier heights, including geometries that exhibit appreciable overlap in the one-body wave functions localized in the left and right wells. We compute the properties of the condensate with numerically exact, full-dimensional path-integral ground-state (PIGS) quantum Monte Carlo simulations and compare with results obtained from using two- and eight-mode truncated basis models. The truncated basis models are found to agree with the numerically exact PIGS simulations for weak interactions, but fail to correctly predict the amount of number squeezing and fragmentation exhibited by the PIGS simulations for strong interactions. We find that both number squeezing and fragmentation of the BEC show nonmonotonic behavior at large values of interaction strength a . The number squeezing shows a universal scaling with the product of number of particles and interaction strength (N a ), but no such universal behavior is found for fragmentation. Detailed analysis shows that the introduction of repulsive interactions not only suppresses number fluctuations to enhance number squeezing, but can also enhance delocalization across wells and tunneling between wells, each of which may suppress number squeezing. This results in a dynamical competition whose resolution shows a complex dependence on all three physical parameters defining the system: interaction strength, number of particles, and barrier height.

  15. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  16. Photoemission study of the electronic structure and charge density waves of Na₂Ti₂Sb₂O

    DOE PAGES

    Tan, S. Y.; Jiang, J.; Ye, Z. R.; ...

    2015-04-30

    The electronic structure of Na₂Ti₂Sb₂O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na₂Ti₂Sb₂O in the non-magnetic state, which indicates that there is no magnetic order in Na₂Ti₂Sb₂O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na₂Ti₂Sb₂O. Photon energy dependent ARPES results suggest that the electronic structure of Na₂Ti₂Sb₂O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV atmore » 7 K, indicating that Na₂Ti₂Sb₂O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)« less

  17. Anti-Weak Localization Measurements in the Ballistic Regime

    NASA Astrophysics Data System (ADS)

    Jayathilaka, Dilhani; Dedigama, Aruna; Murphy, Sheena; Edirisooriya, Madhavie; Goel, Niti; Mishima, Tetsuya; Santos, Michael; Mullen, Kieran

    2007-03-01

    Anti-weak localization dominates at low fields in systems in which spin-orbit coupling is strong. The experimental results are well described by theory [1] in low mobility systems in which the magnetic length (lB) is greater than the mean free path; however high mobility systems with strong spin-orbit interactions, such the InSb based two dimensional systems (2DESs) examined here, are not in this diffusive regime. A recently developed theory [2] addresses both the diffusive and ballistic regimes taking into account both the backscattered and non-backscattered contributions to the conductivity. We will discuss the agreement of the new theory to measurements of InSb 2DESs prepared with both strong Dresselhaus and Rashba effects. [1] S.V. Iordanskii, Yu B. Lyanda-Geller, and G.E. Pikus, JETP Lett. 60, 206 (1994). [2] L.E. Golub, Phys. Rev. B. 71, 235310 (2005).

  18. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGES

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  19. Constraining unparticle physics with cosmology and astrophysics.

    PubMed

    Davoudiasl, Hooman

    2007-10-05

    It has recently been suggested that a scale-invariant "unparticle" sector with a nontrivial infrared fixed point may couple to the standard model (SM) via higher-dimensional operators. The weakness of such interactions hides the unparticle phenomena at low energies. We demonstrate how cosmology and astrophysics can place significant bounds on the strength of unparticle-SM interactions. We also discuss the possibility of a having a non-negligible unparticle relic density today.

  20. Three-dimensional separation for interaction of shock waves with turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Goldberg, T. J.

    1973-01-01

    For the interaction of shock waves with turbulent boundary layers, obtained experimental three-dimensional separation results and correlations with earlier two-dimensional and three-dimensional data are presented. It is shown that separation occurs much earlier for turbulent three-dimensional than for two-dimensional flow at hypersonic speeds.

  1. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  2. Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering

    NASA Astrophysics Data System (ADS)

    Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand

    2010-03-01

    Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.

  3. [Co5(mu3-OH)2(btec)2(bpp)]n: a three-dimensional homometallic molecular metamagnet built from the mixed hydroxide/carboxylate-bridged ferrimagnetic-like chains.

    PubMed

    Jia, Hong-Peng; Li, Wei; Ju, Zhan-Feng; Zhang, Jie

    2007-09-07

    A three-dimensional homometallic complex [Co(5)(mu(3)-OH)(2)(btec)(2)(bpp)](n) is built from the mixed hydroxide/carboxylate bridged cobalt(ii) chains linked by the 1,2,4,5-benzenetetracarboxylate (btec(4-)) anion and 1,3-bis(4-pyridyl)-propane molecule (bpp). Within each chain, two mu(3)-OH-bridged metal triangles connect to each other by sharing a common vertex to give rise to a bow-tie type Co(5)(mu(3)-OH)(2) subunit, which is joined to adjacent subunits by four mu(1,1)-carboxylate bridges to form a step-like metal-oxygen backbone. The magnetic studies revealed that the coexistence of ferromagnetic and antiferrimagnetic interactions resulted in a ferrimagnetic-like behavior of the homometallic chains. Below a critical temperature (T(N) = 12.5 K), bulk antiferromagnetic ordering was observed at low field due to the weak interchain antiferromagnetic interactions. A metamagnetic transition occurred at a magnetic field of ca. 5 kOe at 2 K.

  4. Hydroelastic behaviour of a structure exposed to an underwater explosion

    PubMed Central

    Colicchio, G.; Greco, M.; Brocchini, M.; Faltinsen, O. M.

    2015-01-01

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid–structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151–168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid–structure interaction is examined, highlighting the need of the fluid–structure coupling to capture correctly the possible inception of cavitation. PMID:25512585

  5. Finite Deformation of Magnetoelastic Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure andmore » an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.« less

  6. Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina; Glazman, Leonid I.; Pustilnik, Michael

    2010-08-27

    We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation rate may significantly exceed its zero-temperature value. We also find the dependence of the differential inelastic scattering rate on the transferred energy. This rate yields information about temperature dependence of local pair correlations.

  7. Disorder effect on the Friedel oscillations in a one-dimensional Mott insulator

    NASA Astrophysics Data System (ADS)

    Weiss, Y.; Goldstein, M.; Berkovits, R.

    2007-07-01

    The Friedel oscillations resulting from coupling a quantum dot to one edge of a disordered one-dimensional wire in the Mott insulator regime are calculated numerically using the density matrix renormalization group method. By investigating the influence of a constant weak disorder on the Friedel oscillations decay we find that the effect of disorder is reduced by increasing the interaction strength. This behavior is opposite to the recently reported influence of disorder in the Anderson insulator regime.

  8. Two novel FeII-oxalate architectures: Solvent-free synthesis, structures, thermal and magnetic studies

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hua; Liu, Hui; Wei, Li; Wang, Guo-Ming

    2015-10-01

    Two novel FeII-oxalate framework with the formulas of [NH4][FeIILi3(C2O4)3] (1) and [NH4]2[FeII(C2O4)2]·H2O (2) have been prepared by an oxalic acid flux approach and structurally characterized by IR, elemental analysis, thermogravimetric analysis, single-crystal and powder X-ray diffraction. Heterometallic compound 1 displays a three-dimensional (3D) framework with a pto topology, while homometallic compound 2 features a pillar-layer architecture with a hms topology. Thermal analysis indicates that the two compounds can be stable up to 300 °C and 200 °C, respectively. Magnetic investigations suggest that the FeII ions in 1 and 2 exhibit weak magnetic exchange interactions.

  9. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin

    2014-09-19

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the structure and charge transfer within molecular layers.« less

  10. Two novel two-dimensional copper(II) coordination polymers with 1-(4-aminobenzyl)-1,2,4-triazole: Synthesis, crystal structure, magnetic characterization and absorption of anion pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wu, Xiang Xia; Guo, Jian-Hua; Huo, Jian-Zhong; Ding, Bin

    2017-01-01

    In this work a flexible multi-dentate 1-(4-aminobenzyl)-1,2,4-triazole (abtz) ligand has been employed, two novel triazole-Cu(II) coordination polymers {[Cu(abtz)2(Br)2]·(H2O)2}n (1) and {[Cu(abtz)2]·(SiF6)·(H2O)2}n (2) have been isolated under solvo-thermal conditions. 1 is a 2D neutral CuII coordination polymer while 2 is 2D cation micro-porous CuII coordination polymer with the channel dimensionalities of 11.852(1) Å × 11.852(1) Å (metal-metal distances). Variable-temperature magnetic susceptibility data of 1 and 2 have been recorded in the 2-300 K temperature range indicating weak anti-ferromagnetic interactions. Further absorption properties of anion pollutants for 2 also have been investigated. 2 presents the novel example of cationic triazole-copper(II) coordination framework for effectively capturing anion pollutants Cr2O72- in the water solutions and selectively capturing Congo Red in the methanol solutions.

  11. Quantized orbits in weakly coupled Belousov-Zhabotinsky reactors

    NASA Astrophysics Data System (ADS)

    Weiss, S.; Deegan, R. D.

    2015-06-01

    Using numerical and experimental tools, we study the motion of two coupled spiral cores in a light-sensitive variant of the Belousov-Zhabotinsky reaction. Each core resides on a separate two-dimensional domain, and is coupled to the other by light. When both spirals have the same sense of rotation, the cores are attracted to a circular trajectory with a diameter quantized in integer units of the spiral wavelength λ. When the spirals have opposite senses of rotation, the cores are attracted towards different but parallel straight trajectories, separated by an integer multiple of λ/2. We present a model that explains this behavior as the result of a spiral wavefront-core interaction that produces a deterministic displacement of the core and a retardation of its phase.

  12. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  13. Spin-orbit interaction of light on the surface of atomically thin crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Junxiao; Chen, Shizhen; Zhang, Wenshuai; Luo, Hailu; Wen, Shuangchun

    2017-09-01

    Two-dimensional (2D) atomic crystals have extraordinary electronic and photonic properties and hold great promise in the applications of photonic and optoelectronics. Here, we review some of our works about the spin-orbit interaction of light on the surface of 2D atomic crystals. First, we propose a general model to describe the spin-orbit interaction of light of the 2D free standing atomic crystal, and find that it is not necessary to involve the effective refractive index to describe the spin-orbit interaction. By developing the quantum weak measurements, we detect the spin-orbit interaction of light in 2D atomic crystals, which can act as a simple method for defining the layer numbers of graphene. Moreover, we find the transverse spin-dependent splitting in the photonic spin Hall effect exhibits a quantized behavior. Furthermore, the spin-orbit interaction of light for the case of air-topological insulator interface can be routed by adjusting the strength of the axion coupling. These basic finding may enhance the comprehension of the spin-orbit interaction, and find the important application in optoelectronic.

  14. Measuring three-dimensional interaction potentials using optical interference.

    PubMed

    Mojarad, Nassir; Sandoghdar, Vahid; Krishnan, Madhavi

    2013-04-22

    We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution.

  15. Landau levels from neutral Bogoliubov particles in two-dimensional nodal superconductors under strain and doping gradients

    NASA Astrophysics Data System (ADS)

    Nica, Emilian M.; Franz, Marcel

    2018-02-01

    Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.

  16. On interaction of P-waves with one-dimensional photonic crystal consisting of weak conducting matter and transparent dielectric layers

    NASA Astrophysics Data System (ADS)

    Yushkanov, A. A.; Zverev, N. V.

    2018-03-01

    An influence of quantum and spatial dispersion properties of the non-degenerate electron plasma on the interaction of electromagnetic P-waves with one-dimensional photonic crystal consisting of conductor with low carrier electron density and transparent dielectric matter, is studied numerically. It is shown that at the frequencies of order of the plasma frequency and at small widths of the conducting and dielectric layers of the photonic crystal, optical coefficients in the quantum non-degenerate plasma approach differ from the coefficients in the classical electron gas approach. And also, at these frequencies one observes a temperature dependence of the optical coefficients.

  17. Quantum Multicriticality near the Dirac-Semimetal to Band-Insulator Critical Point in Two Dimensions: A Controlled Ascent from One Dimension

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Foster, Matthew S.

    2018-01-01

    We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our phase diagram shows an intriguing interplay among CDW, AFM, and s -wave paired states that can be germane for a uniaxially strained optical honeycomb lattice for ultracold fermion atoms, or the organic compound α -(BEDT -TTF )2I3 .

  18. Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat

    2017-11-01

    Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.

  19. Quantifying two-dimensional nonstationary signal with power-law correlations by detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Fan, Qingju; Wu, Yonghong

    2015-08-01

    In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.

  20. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  1. Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P δ-layers.

    PubMed

    Shamim, Saquib; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, Arindam

    2017-05-04

    We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10 18 m -2 ) at low temperatures (0.3-4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate.

  2. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Rui; Feng, Chang; Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to usemore » the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.« less

  3. Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm

    PubMed Central

    Yu, Isseki; Mori, Takaharu; Ando, Tadashi; Harada, Ryuhei; Jung, Jaewoon; Sugita, Yuji; Feig, Michael

    2016-01-01

    Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology. DOI: http://dx.doi.org/10.7554/eLife.19274.001 PMID:27801646

  4. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  5. (Z)-3-(1-Chloro-prop-1-en-yl)-2-methyl-1-phenyl-sulfonyl-1H-indole.

    PubMed

    Umadevi, M; Saravanan, V; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G

    2013-11-16

    In the title compound, C18H16ClNO2S, the indole ring system forms a dihedral angle of 75.07 (8)° with the phenyl ring. The mol-ecular structure is stabilized by a weak intra-molecular C-H⋯O hydrogen bond. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming a chain along [10-1]. C-H⋯π inter-actions are also observed, leading to a three-dimensional network.

  6. Magnetism of cyano-bridged hetero-one-dimensional Ln3+-M3+ complexes (Ln3+ = Sm, Gd, Yb; M3+ = FeLS, Co).

    PubMed

    Figuerola, Albert; Diaz, Carmen; Ribas, Joan; Tangoulis, Vassilis; Sangregorio, Claudio; Gatteschi, Dante; Maestro, Miguel; Mahía, José

    2003-08-25

    The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).

  7. Oxidation and reduction under cover: Chemistry at the confined space between ultra-thin nanoporous silicates and Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Anibal Boscoboinik; Zhong, Jian -Qiang; Kestell, John

    2016-03-23

    The oxidation and reduction of Ru(0001) surfaces at the confined space between two-dimensional nanoporous silica frameworks and Ru(0001) have been investigated using synchrotron-based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). The porous nature of the frameworks and the weak interaction between the silica and the ruthenium substrate allow oxygen and hydrogen molecules to go through the nanopores and react with the metal at the interface between the silica framework and the metal surface. In this work, three types of two-dimensional silica frameworks have been used to study their influence in the oxidation and reduction of the ruthenium surface at elevated pressuresmore » and temperatures. These frameworks are bilayer silica (0.5 nm thick), bilayer aluminosilicate (0.5 nm thick), and zeolite MFI nanosheets (3 nm thick). It is found that the silica frameworks stay essentially intact under these conditions, but they strongly affect the oxidation of ruthenium, with the 0.5 nm thick aluminosilicate bilayer completely inhibiting the oxidation. Furthermore, the latter is believed to be related to the lower chemisorbed oxygen content arising from electrostatic interactions between the negatively charged aluminosilicate framework and the Ru(0001) substrate.« less

  8. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  9. Critical Two-Point Function for Long-Range O( n) Models Below the Upper Critical Dimension

    NASA Astrophysics Data System (ADS)

    Lohmann, Martin; Slade, Gordon; Wallace, Benjamin C.

    2017-12-01

    We consider the n-component |φ|^4 lattice spin model (n ≥ 1) and the weakly self-avoiding walk (n=0) on Z^d, in dimensions d=1,2,3. We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as r^{-(d+α )} with α \\in (0,2). The upper critical dimension is d_c=2α . For ɛ >0, and α = 1/2 (d+ɛ ), the dimension d=d_c-ɛ is below the upper critical dimension. For small ɛ , weak coupling, and all integers n ≥ 0, we prove that the two-point function at the critical point decays with distance as r^{-(d-α )}. This "sticking" of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.

  10. How to detect fluctuating stripes in the high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kivelson, S. A.; Bindloss, I. P.; Fradkin, E.; Oganesyan, V.; Tranquada, J. M.; Kapitulnik, A.; Howald, C.

    2003-10-01

    This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.

  11. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes

    PubMed Central

    Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.

    2016-01-01

    Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569

  12. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  13. Two-dimensional distributed-phase-reference protocol for quantum key distribution.

    PubMed

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-12-22

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

  14. Two-dimensional distributed-phase-reference protocol for quantum key distribution

    PubMed Central

    Bacco, Davide; Christensen, Jesper Bjerge; Castaneda, Mario A. Usuga; Ding, Yunhong; Forchhammer, Søren; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2016-01-01

    Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable. PMID:28004821

  15. Experimental Investigation of the Unsteady Flow Structures of Two Interacting Pitching Wings

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2015-11-01

    Birds, insects and fish propel themselves with unsteady motions of their wings and fins. Many of these animals are also found to fly or swim in three-dimensional flocks and schools. Numerous studies have explored the three-dimensional steady flow interactions and the two-dimensional unsteady flow interactions in collectives. Yet, the characterization of the three-dimensional unsteady interactions remains relatively unexplored. This study aims to characterize the flow structures and interactions between two sinusoidally pitching finite-span wings. The arrangement of the wings varies from a tandem to a bi-plane configuration. The vortex structures for these various arrangements are quantified by using particle image velocimetry. The vortex-wing interactions are also characterized as the synchrony between the wings is modified.

  16. Interactive Visualization of DGA Data Based on Multiple Views

    NASA Astrophysics Data System (ADS)

    Geng, Yujie; Lin, Ying; Ma, Yan; Guo, Zhihong; Gu, Chao; Wang, Mingtao

    2017-01-01

    The commission and operation of dissolved gas analysis (DGA) online monitoring makes up for the weakness of traditional DGA method. However, volume and high-dimensional DGA data brings a huge challenge for monitoring and analysis. In this paper, we present a novel interactive visualization model of DGA data based on multiple views. This model imitates multi-angle analysis by combining parallel coordinates, scatter plot matrix and data table. By offering brush, collaborative filter and focus + context technology, this model provides a convenient and flexible interactive way to analyze and understand the DGA data.

  17. On the mathematical modeling of the Reynolds stress's equations

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    By considering the Reynolds stress equations as a possible descriptor of complex turbulent fields, pressure-velocity interaction and turbulence dissipation are studied as two of the main physical contributions to Reynolds stress balancing in turbulent flow fields. It is proven that the pressure interaction term contains turbulence generation elements. However, the usual 'return to isotropy' element appears more weakly than in the standard models. In addition, convection-like elements are discovered mathematically, but there is no mathematical evidence that the pressure fluctuations contribute to the turbulent transport mechanism. Calculations of some simple one-dimensional fields indicate that this extra convection, rather than the turbulent transport, is needed mathematically. Similarly, an expression for the turbulence dissipation is developed. The end result is a dynamic equation for the dissipation tensor which is based on the tensorial length scales.

  18. On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows

    NASA Technical Reports Server (NTRS)

    Duck, P. W.; Hall, P.

    1988-01-01

    Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub 0. At values of the radius above a sub 0 all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.

  19. On the interaction of Tollmien-Schlichting waves in axisymmetric supersonic flows

    NASA Technical Reports Server (NTRS)

    Duck, P. W.; Hall, P.

    1989-01-01

    Two-dimensional lower branch Tollmien-Schlichting waves described by triple-deck theory are always stable for planar supersonic flows. The possible occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric body is investigated. In particular flows around bodies with typical radii comparable with the thickness of the upper deck are considered. It is shown that such unstable modes exist below a critical nondimensional radius of the body a sub O. At values of the radius above a sub O all the modes are stable while if unstable modes exist they are found to occur in pairs. The interaction of these modes in the nonlinear regime is investigated using a weakly nonlinear approach and it is found that, dependent on the frequencies of the imposed Tollmien-Schlichting waves, either of the modes can be set up.

  20. Hydroelastic behaviour of a structure exposed to an underwater explosion.

    PubMed

    Colicchio, G; Greco, M; Brocchini, M; Faltinsen, O M

    2015-01-28

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid-structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151-168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid-structure interaction is examined, highlighting the need of the fluid-structure coupling to capture correctly the possible inception of cavitation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Qianqian; Han, Ying; Lin, Hechun, E-mail: hclin@ee.ecnu.edu.cn

    One dimensional coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO{sub 4}{sup 2-} ions to generate a 1-D chain, and all oxygen atoms in SO{sub 4}{sup 2-} groups are connected to three nearest Gd atoms in µ{sup 3}:η{sup 1}:η{sup 1}:η{sup 2} fashion. Gd, S and N from SO{sub 4}{sup 2-} and NO{sub 3}{sup -} are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel andmore » linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH=7 T. - Graphical abstract: Coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] was obtained mediated by Bronsted acid Ionic Liquid, which presents a 1-D chains collected by SO{sub 4}{sup 2-} groups. Magnetic susceptibility of the polymer reveals weak antiferromagnetic interactions between the Gd(III) ions with the relatively large magneto-caloric effect of –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH= 7T.« less

  2. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.; Heinz, Tony F.; Marie, Xavier; Amand, Thierry; Urbaszek, Bernhard

    2018-04-01

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.

  3. Thermal drift is enough to drive a single microtubule along its axis even in the absence of motor proteins.

    PubMed Central

    Nakata, T; Sato-Yoshitake, R; Okada, Y; Noda, Y; Hirokawa, N

    1993-01-01

    One-dimensional diffusion of microtubules (MTs), a back-and-forth motion of MTs due to thermal diffusion, was reported in dynein motility assay. The interaction between MTs and dynein that allows such motion was implicated in its importance in the force generating cycle of dynein ATPase cycle. However, it was not known whether the phenomenon is special to motor proteins. Here we show two independent examples of one-dimensional diffusion of MTs in the absence of motor proteins. Dynamin, a MT-activated GTPase, causes a nucleotide dependent back-and-forth movement of single MT up to 1 micron along the longitudinal axes, although the MT never showed unidirectional consistent movement. Quantitative analysis of the motion and its nucleotide condition indicates that the motion is due to a thermal driven diffusion, restricted to one dimension, under the weak interaction between MT and dynamin. However, specific protein-protein interaction is not essential for the motion, because similar back-and-forth movement of MT was achieved on coverslips coated with only 0.8% methylcellulose. Both cases demonstrate that thermal diffusion could provide a considerable sliding of MTs only if MTs are restricted on the surface appropriately. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7906153

  4. Three-Dimensional Model of Heat and Mass Transfer in Fractured Rocks to Estimate Environmental Conditions Along Heated Drifts

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Painter, S. L.

    2004-12-01

    Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.

  5. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L.

    2017-08-01

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  6. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    PubMed

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  7. Looking for dark matter trails in colliding galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harvey, David; Robertson, Andrew; Massey, Richard; Kneib, Jean-Paul

    2017-02-01

    If dark matter interacts, even weakly, via non-gravitational forces, simulations predict that it will be preferentially scattered towards the trailing edge of the halo during collisions between galaxy clusters. This will temporarily create a non-symmetric mass profile, with a trailing overdensity along the direction of motion. To test this hypothesis, we fit (and subtract) symmetric haloes to the weak gravitational data of 72 merging galaxy clusters observed with the Hubble Space Telescope. We convert the shear directly into excess κ and project in to a one-dimensional profile. We generate numerical simulations and find that the one-dimensional profile is well described with simple Gaussian approximations. We detect the weak lensing signal of trailing gas at a 4σ confidence, finding a mean gas fraction of Mgas/Mdm = 0.13 ± 0.035. We find no evidence for scattered dark matter particles with an estimated scattering fraction of f = 0.03 ± 0.05. Finally, we find that if we can reduce the statistical error on the positional estimate of a single dark matter halo to <2.5 arcsec, then we will be able to detect a scattering fraction of 10 per cent at the 3σ level with current surveys. This potentially interesting new method can provide an important independent test for other complimentary studies of the self-interaction cross-section of dark matter.

  8. Interpenetration of a 3D Icosahedral M@Ni12 (M=Al, Ga) Framework with Porphyrin-Reminiscent Boron Layers in MNi9 B8.

    PubMed

    Zheng, Qiang; Wagner, Frank R; Ormeci, Alim; Prots, Yurii; Burkhardt, Ulrich; Schmidt, Marcus; Schnelle, Walter; Grin, Yuri; Leithe-Jasper, Andreas

    2015-11-09

    Two ternary borides MNi9 B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single-crystal X-ray diffraction data reveal AlNi9 B8 and GaNi9 B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two-dimensional layers, which consist of puckered [B16 ] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices-condensed [Ni12 ] icosahedra, which form a three-dimensional framework interpenetrated by boron porphyrin-reminiscent layers. An unusual local arrangement resembling a giant metallo-porphyrin entity is formed by the [B16 ] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B-B interactions and weak Ni-Ni interactions. Multi-center dative B-Ni interaction occurs between the Al-Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9 B8 is a Pauli-paramagnetic metal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-dimensional topological superconducting phases emerged from d-wave superconductors in proximity to antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming

    2017-05-01

    Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.

  10. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  11. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  12. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  13. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.

    PubMed

    Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi

    2011-11-09

    With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.

  14. Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide

    NASA Astrophysics Data System (ADS)

    Jin, Wencan

    The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS2) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS2, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS2, and as a result, its structural and physical properties can be affected. In this dissertation, the electronic structure and surface structure of MoS2 are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS 2 directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS2 thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals interfaces by twisting the relative orientation in bilayer-MoS2 and graphene-MoS 2-heterostructure systems.

  15. Statistical physics of topological emulsions and expanding populations

    NASA Astrophysics Data System (ADS)

    Korolev, Kirill Sergeevich

    This thesis studies how microscopic interactions lead to large scale phenomena in two very different systems: two-dimensional liquid crystals and expanding populations. First, we explore the interactions among circular droplets embedded in a two-dimensional liquid crystal. The interactions arise due to anchoring boundary conditions on the surface of the inclusions and the elastic deformations of the orientational order parameter in the continuous phase. We analytically compute the texture around a single droplet and the far-field droplet-droplet pair potential. The near-field pair potential is computed numerically. We find that droplets attract at long separations and repel at short separations, which results in a well-defined preferred distance between the droplets and stabilization of the emulsion. Self-organization, barriers to coalescence, and the effects of thermal fluctuations are also discussed. Second, we study the role of randomness in the number of offspring on the evolutionary dynamics of expanding populations. Several equally fit genetic variants (alleles) are considered. We find that spatial expansion combined with demographic fluctuations leads to a substantial loss of genetic diversity and spatial segregation of the alleles. The effects of these processes on recurring mutations and selective sweeps are studied as well. Third, the competition between two alleles of different fitness is investigated. We find that the essential features of this competition can be captured by a non-linear reaction-diffusion equation. During a range expansion the fitter allele forms growing sectors that eventually engulf the less fit allele. The applications to measuring relative fitness in microbiological experiments are discussed. Finally, we analyze how a combination of strong stochasticity and weak competition affects the spreading of beneficial mutations in stationary, non-expanding, populations.

  16. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts.

    PubMed

    Hu, Guiqing; Taylor, Dianne W; Liu, Jun; Taylor, Kenneth A

    2018-03-01

    Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology

    NASA Technical Reports Server (NTRS)

    Sondergaard, R.; Cantwell, B.; Mansour, N.

    1997-01-01

    Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.

  18. Critical behavior of two-dimensional vesicles in the deflated regime

    NASA Technical Reports Server (NTRS)

    Banavar, Jayanth R.; Maritan, Amos; Stella, Attilio

    1991-01-01

    The critical behavior of two-dimensional vesicles in the deflated regime is studied analytically using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement with the results of earlier studies the critical behavior is governed by a branched-polymer fixed point. The shape of the critical line in the gauge model is deduced in the weak and in the infinitely deflated regime.

  19. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction

    NASA Astrophysics Data System (ADS)

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-01

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.

  20. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction.

    PubMed

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-21

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.

  1. Validating two-dimensional leadership models on three-dimensionally structured fish schools

    PubMed Central

    Nagy, Máté; Holbrook, Robert I.; Biro, Dora; Burt de Perera, Theresa

    2017-01-01

    Identifying leader–follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader–follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader–follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader–follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader–follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups. PMID:28280582

  2. NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn

    2016-06-10

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less

  3. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  4. 3-Nitro-phenol-1,3,5-triazine-2,4,6-tri-amine (2/1).

    PubMed

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-06-01

    The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitro-phenol mol-ecules. The mean planes of the 3-nitro-phenol mol-ecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, mol-ecules are linked via O-H⋯N, N-H⋯N and N-H⋯O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C-H⋯π and π-π inter-actions [centroid-centroid distance = 3.9823 (9) Å].

  5. Unsteady Performance of Finite-Span Pitching Propulsors in Mixtures of Side-by-Side and In-Line Arrangements

    NASA Astrophysics Data System (ADS)

    Kurt, Melike; Moored, Keith

    2016-11-01

    Birds, insects, and fish propel themselves by flapping their wings or oscillating their fins in unsteady motions. Many of these animals fly or swim in groups or collectives, typically described as flocks, swarms and schools. The three-dimensional steady flow interactions and the two dimensional unsteady flow interactions that occur in collectives are well characterized. However, the interactions that occur among three-dimensional unsteady propulsors remain relatively unexplored. The aim of the current study is to measure the forces acting on and the energetics of two finite-span pitching wings. The wings are arranged in mixtures of canonical in-line and side-by-side configurations while the phase delay between the pitching wings is varied. The thrust force, fluid-mediated interaction force between the wings and the propulsive efficiency are quantified. The three-dimensional interaction mechanisms are compared and contrasted with previously examined two-dimensional mechanisms. Stereoscopic particle image velocimetry is employed to characterize the three-dimensional flow structures along the span of the pitching wings.

  6. Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O.

    PubMed

    Tan, S Y; Jiang, J; Ye, Z R; Niu, X H; Song, Y; Zhang, C L; Dai, P C; Xie, B P; Lai, X C; Feng, D L

    2015-04-30

    The electronic structure of Na2Ti2Sb2O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na2Ti2Sb2O in the non-magnetic state, which indicates that there is no magnetic order in Na2Ti2Sb2O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na2Ti2Sb2O. Photon energy dependent ARPES results suggest that the electronic structure of Na2Ti2Sb2O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV at 7 K, indicating that Na2Ti2Sb2O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime.

  7. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  8. Coherent control and storage of a microwave pulse in a one-dimensional array of artificial atoms using the Autler-Townes effect and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ayaz, M. Q.; Waqas, Mohsin; Qamar, Sajid; Qamar, Shahid

    2018-02-01

    In this paper we propose a scheme for coherent control and storage of a microwave pulse in superconducting circuits exploiting the idea of electromagnetically induced transparency (EIT) and the Aulter-Townes (AT) effect. We show that superconducting artificial atoms in a four-level tripod configuration act as EIT based coherent microwave (μ w ) memories with gain features, when they are attached to a one-dimensional transmission line. These atoms are allowed to interact with three microwave fields, such that there are two control fields and one probe field. Our proposed system works in such a way that one control field with large Rabi frequency when interacting with atoms, produces the AT effect. While the second control field with relatively small Rabi frequency produces EIT in one of the absorption windows produced due to the AT splitting for the weak probe field. The group velocity of the probe pulse reduces significantly through this EIT window. Interestingly, the output intensity of the probe pulse increases as we increase the number of artificial atoms. Our results show that the probe microwave pulse can be stored and retrieved with high fidelity.

  9. Three dimensional elements with Lagrange multipliers for the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Rok; Lee, Byung-Chai

    2018-07-01

    Three dimensional mixed elements for the modified couple stress theory are proposed. The C1 continuity for the displacement field, which is required because of the curvature term in the variational form of the theory, is satisfied weakly by introducing a supplementary rotation as an independent variable and constraining the relation between the rotation and the displacement with a Lagrange multiplier vector. An additional constraint about the deviatoric curvature is also considered for three dimensional problems. Weak forms with one constraint and two constraints are derived, and four elements satisfying convergence criteria are developed by applying different approximations to each field of independent variables. The elements pass a [InlineEquation not available: see fulltext.] patch test for three dimensional problems. Numerical examples show that the additional constraint could be considered essential for the three dimensional elements, and one of the elements is recommended for practical applications via the comparison of the performances of the elements. In addition, all the proposed elements can represent the size effect well.

  10. Thermal effects in light scattering from ultracold bosons in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakomy, Kazimierz; Idziaszek, Zbigniew; Trippenbach, Marek

    2009-10-15

    We study the scattering of a weak and far-detuned light from a system of ultracold bosons in one-dimensional and three-dimensional optical lattices. We show the connection between angular distributions of the scattered light and statistical properties of a Bose gas in a periodic potential. The angular patterns are determined by the Fourier transform of the second-order correlation function, and thus they can be used to retrieve information on particle number fluctuations and correlations. We consider superfluid and Mott-insulator phases of the Bose gas in a lattice and we analyze in detail how the scattering depends on the system dimensionality, temperature,more » and atom-atom interactions.« less

  11. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    PubMed

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  12. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at least in the buoyant plume region, and allow to reckon a variable, effective entrainment coefficient with a mean value around 0.1 (consistently with laboratory experiments). For the strong plume, analysis of the results reveals that the two most critical assumptions of one-dimensional integral models are the self-similarity and the pressure equilibrium. In such a case, the plume appears to be controlled by the dynamics in the jet stage (below the buoyancy reversal) and by mesoscale vorticity associated with the development of the umbrella.

  13. Quasi-molecular bosonic complexes-a pathway to SQUID with controlled sensitivity

    NASA Astrophysics Data System (ADS)

    Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Kuklov, Anatoly; Penna, Vittorio

    2016-02-01

    Recent experimental advances in realizing degenerate quantum dipolar gases in optical lattices and the flexibility of experimental setups in attaining various geometries offer the opportunity to explore exotic quantum many-body phases stabilized by anisotropic, long-range dipolar interaction. Moreover, the unprecedented control over the various physical properties of these systems, ranging from the quantum statistics of the particles, to the inter-particle interactions, allow one to engineer novel devices. In this paper, we consider dipolar bosons trapped in a stack of one-dimensional optical lattice layers, previously studied in (Safavi-Naini et al 2014 Phys. Rev. A 90 043604). Building on our prior results, we provide a description of the quantum phases stabilized in this system which include composite superfluids (CSFs), solids, and supercounterfluids, most of which are found to be threshold-less with respect to the dipolar interaction strength. We also demonstrate the effect of enhanced sensitivity to rotations of a SQUID-type device made of two CSF trapped in a ring-shaped optical lattice layer with weak links.

  14. Electron plasma environment at comet Grigg-Skjellerup: General observations and comparison with the environment at comet Halley

    NASA Technical Reports Server (NTRS)

    Reme, H.; Mazelle, C.; Sauvaud, J. A.; D'Uston, C.; Froment, F.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Larson, D. E.; Korth, A.

    1993-01-01

    The three-dimensional electron spectrometer of the Reme plasma analyzer-complete positive ion, electron and ram negative ion measurements near comet Halley (RPA-COPERNIC) experiment aboard the Giotto spacecraft, although damaged during the comet Halley encounter in March 1986, has provided very new results during the encounter on July 10, 1992, with the weakly active comet Grigg-Skjellerup (G-S). The main characteristic features of the highly structured interaction region extending from approximately 26,500 km inbound to approximately 37,200 km outbound are presented. These results are compared to the results obtained by the same instrument during the Giotto comet Halley fly-by. Despite the large difference in the size of the interaction regions (approximately 60,000 km for G-S, approximately 2000,000 km for Halley) due to 2 orders of magnitude difference in cometary neutral gas production rate, there are striking similarities in the solar wind interactions with the two comets.

  15. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  16. BCS-Bose model of exotic superconductors: Generalized coherence length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casas, M.; Getino, J.M.; de Llano, M.

    1994-12-01

    Analytic expressions are derived for the root-mean-square (rms) radius of a pair of fermions in a BCS many-fermion state in one, two, and three dimensions, in terms of the BCS gap energy and the associated chemical potential. These expressions are valid for any coupling strength of [ital any] pair interaction model implying a momentum-independent gap energy. The latter holds, e.g., for an attractive [delta] pair potential examined in the one-dimensional (1D) case (whose [ital N]-fermion ground state can be determined exactly) or for the BCS (electron-phonon) model interaction in any dimension. Weak-coupling and/or high-density limits for the rms radius aremore » identical in 1D, 2D, and 3D, and reduce to the familiar well-known Pippard result to within a factor of order unity. In contrast, strong-coupling and/or low-density limits coincide in 1D and 3D, but differ by a factor of order unity in the 2D limit, and in each case are essentially the size of a single, isolated pair. The 1D [delta] interaction McGuire-Yang-Gaudin many-fermion model is studied in detail. The interaction renormalization scheme of Miyake and of Randeria, Duan, and Shieh, and the BCS interaction model, both in 2D, are employed to analyze cuprate superconductor empirical results. Reasonable agreement between theoretical rms radii with experimental coherence lengths suggests that cuprates can be described moderately well as [ital weakly] [ital coupled] superconductors within the BCS-Bose formalism.« less

  17. Theory of nonreciprocal spin-wave excitations in spin Hall oscillators with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Zivieri, R.; Giordano, A.; Verba, R.; Azzerboni, B.; Carpentieri, M.; Slavin, A. N.; Finocchio, G.

    2018-04-01

    A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin current in spin Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i -DMI) is developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well as the frequencies and spatial profiles of the excited spin-wave modes. It is found that the frequency of the excited spin waves exhibits a quadratic redshift with the i -DMI strength. At the same time, in the range of small and moderate values of the i -DMI constant, the averaged wave number of the excited spin waves is almost independent of the i -DMI, which results in a rather weak dependence on the i -DMI of the threshold current of the spin-wave excitation. The obtained analytical results are confirmed by the results of micromagnetic simulations.

  18. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Das, Shubhankar; Rastogi, A.; Wu, Lijun; Zheng, Jin-Cheng; Hossain, Z.; Zhu, Yimei; Budhani, R. C.

    2014-08-01

    We present a study of δ doping at the LaTiO3/SrTiO3 interface with isostructural antiferromagnetic perovskite LaCrO3 that dramatically alters the properties of the two-dimensional electron gas at the interface. The effects include a reduction in sheet-carrier density, prominence of the low-temperature resistivity minimum, enhancement of weak antilocalization below 10 K, and observation of a strong anisotropic magnetoresistance (MR). The positive and negative MR for out-of-plane and in-plane fields, respectively, and the field and temperature dependencies of MR suggest Kondo scattering by localized Ti3+ moments renormalized by spin-orbit interaction at T < 10 K, with the increased δ-layer thickness. Electron-energy-loss spectroscopy and density functional calculations provide convincing evidence of blocking of electron transfer from LTO to STO by the δ layer.

  19. Crystal structure of 3-(adamantan-1-yl)-4-(4-chloro-phen-yl)-1H-1,2,4-triazole-5(4H)-thione.

    PubMed

    Al-Wabli, Reem I; El-Emam, Ali A; Alroqi, Obaid S; Chidan Kumar, C S; Fun, Hoong-Kun

    2015-02-01

    The title compound, C18H20ClN3S, is a functionalized triazoline-3-thione derivative. The benzene ring is almost perpendic-ular to the planar 1,2,4-triazole ring [maximum deviation = 0.007 (1) Å] with a dihedral angle of 89.61 (5)° between them and there is an adamantane substituent at the 3-position of the triazole-thione ring. In the crystal, N-H⋯S hydrogen-bonding inter-actions link the mol-ecules into chains extending along the c-axis direction. The crystal packing is further stabilized by weak C-H⋯π inter-actions that link adjacent chains into a two-dimensional structure in the bc plane. The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.

  20. Dependence of the friction strengthening of graphene on velocity.

    PubMed

    Zeng, Xingzhong; Peng, Yitian; Liu, Lei; Lang, Haojie; Cao, Xing'an

    2018-01-25

    Graphene shows great potential applications as a solid lubricant in micro- and nanoelectromechanical systems (MEMS/NEMS). An atomic-scale friction strengthening effect in a few initial atomic friction periods usually occurred on few-layer graphene. Here, velocity dependent friction strengthening was observed in atomic-scale frictional behavior of graphene by atomic force microscopy (AFM). The degree of the friction strengthening decreases with the increase of velocity first and then reaches a plateau. This could be attributed to the interaction potential between the tip and graphene at high velocity which is weaker than that at low velocity, because the strong tip-graphene contact interface needs a longer time to evolve. The subatomic-scale stick-slip behavior in the conventional stick-slip motion supports the weak interaction between the tip and graphene at high velocity. These findings can provide a deeper understanding of the atomic-scale friction mechanism of graphene and other two-dimensional materials.

  1. Enhanced superconductivity due to forward scattering in FeSe thin films on SrTiO 3 substrates

    DOE PAGES

    Rademaker, Louk; Wang, Yan; Berlijn, Tom; ...

    2016-02-10

    In this paper, we study the consequences of an electron–phonon (e–ph) interaction that is strongly peaked in the forward scattering (more » $${\\bf{q}}=0$$) direction in a two-dimensional superconductor using Migdal–Eliashberg theory. We find that strong forward scattering results in an enhanced T c that is linearly proportional to the strength of the dimensionless e–ph coupling constant $${\\lambda }_{m}$$ in the weak coupling limit. This interaction also produces distinct replica bands in the single-particle spectral function, similar to those observed in recent angle-resolved photoemission experiments on FeSe monolayers on SrTiO 3 and BaTiO 3 substrates. Finally, by comparing our model to photoemission experiments, we infer an e–ph coupling strength that can provide a significant portion of the observed high T c in these systems.« less

  2. Ion flow at comet Halley

    NASA Technical Reports Server (NTRS)

    Johnstone, A.; Coates, A.; Kellock, S.; Wilken, B.; Jockers, K.

    1986-01-01

    The three-dimensional positive ion analyzer aboard the Giotto spacecraft has been used to study the interaction between protons and alpha-particles in the solar wind and positive ions from comet Halley. Although the first impression of the overall structure is that the plasma flow evolves smoothly as the nucleus is approached, three sharp transitions of relatively small amplitude can be identified on both the inbound and outbound legs of the trajectory. The outermost one, at about one million km from the nucleus, appears to be a multiple crossing of a weak bow shock. The innermost one, at 80,000 km, is the boundary where the flowing plasma becomes depleted. On a microscopic scale, the turbulence created by the interaction between the two ion populations extends to a distance of several million km from the nucleus. At Giotto's closest approach to the nucleus, the plasma produced around the spacecraft by dust and gas impacts was much more energetic than had been expected.

  3. First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii–Kosterlitz–Thouless transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xia-Ji, E-mail: xiajiliu@swin.edu.au; Hu, Hui, E-mail: hhu@swin.edu.au

    2014-12-15

    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to themore » universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.« less

  4. Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.

    2018-03-01

    Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.

  5. Multi-Periodic Waves in Shallow Water

    DTIC Science & Technology

    1992-09-01

    models-the Kadomtsev - Petviashvili (KP) equation . The KP equation describes the evolu- tion of weakly nonlinear, weakly two-dimensional waves on water of...experimentally. The analytical model is a family of periodic solutions of the Kadomtsev -Petviashuili equation . The experiments demonstrate the accuracy... Petviashvili Equation (with Norman Schef- fner & Harvey Segur). Proceedings, Nonlinear Water Waves Workshop, University of Bristol. England, 1991. Resonant

  6. Cosmology and the weak interaction

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.

  7. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  8. Proton spin-lattice relaxation in low-dimensional ferromagnetic copper halides (abstract)

    NASA Astrophysics Data System (ADS)

    Marzke, R. F.; Haines, D. N.; Raffaelle, D. P.; Chamberlin, R. V.; Ramakrishna, B. L.

    1991-04-01

    1H spin-lattice relaxation times have been measured as functions of temperature and frequency in powder samples of the two-dimensional ferromagnetic compound (CH3NH3)2CuCl4 and in single crystals of the one-dimensional ferromagnets (C6H11NH3)CuB3 (CHAB), (C6H11NH3)CuCl3 (CHAC), and (C4H12N)CuCl3 (TMCuC). Sample temperatures were varied between 4.2 and 298 K, and NMR frequencies ranging from 12.6 to 54.0 MHz were used. Widths and shapes of the lines, typically several hundred Gauss broad at low temperatures, were recorded. The dependence of T1 upon magnetic field orientation was measured for the one-dimensional (1D) single crystal samples. Each compound showed basically two temperature regimes of different spin-lattice relaxation behavior, separated by a narrow transition temperature region. From 4.2 K, T1 in the compounds decreased strongly as the temperature was raised, a behavior expected for second-order Raman processes [K. M. Kopinga, A. M. C. Tinus, W. J. M. de Jonge, and G. C. de Vries, Phys. Rev. B 36, 5398 (1987)]. At the transition temperature region the decrease of T1 ceased, and T1 began to increase weakly and quasilinearly to 300 K. In the three 1D compounds, the transition regions occurred well below temperatures corresponding to 1D exchange interaction strengths in CHAC (˜70 K), CHAB (˜55 K), and TMCuC (˜30 K), and also above the compounds' 3D ordering temperatures (˜1.5 K and below). We noted a correlation between the T1 transition temperatures and temperatures at which spin dimensionality ``crossovers'' are observed in magnetic susceptibilities, going from Heisenberg to non-Heisenberg behavior as the temperature is decreased. The latter occur at approximately 10 K in CHAC. TMCuC, which has the most isotropic J tensor of these compounds and also the lowest weak-strong T1 transition, does not show a spin dimensionality crossover in susceptibility down to 2 K, but based on our NMR results one would be expected at or below this temperature. Further theoretical work appears to be necessary in order to elucidate the role of magnons and solitons in the transition behavior of the temperature dependence of T1.

  9. Interaction-induced conducting-non-conducting transition of ultra-cold atoms in one-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Chien, Chih-Chun; Gruss, Daniel; Di Ventra, Massimiliano; Zwolak, Michael

    2013-06-01

    The study of time-dependent, many-body transport phenomena is increasingly within reach of ultra-cold atom experiments. We show that the introduction of spatially inhomogeneous interactions, e.g., generated by optically controlled collisions, induce negative differential conductance in the transport of atoms in one-dimensional optical lattices. Specifically, we simulate the dynamics of interacting fermionic atoms via a micro-canonical transport formalism within both a mean-field and a higher-order approximation, as well as with a time-dependent density-matrix renormalization group (DMRG). For weakly repulsive interactions, a quasi-steady-state atomic current develops that is similar to the situation occurring for electronic systems subject to an external voltage bias. At the mean-field level, we find that this atomic current is robust against the details of how the interaction is switched on. Further, a conducting-non-conducting transition exists when the interaction imbalance exceeds some threshold from both our approximate and time-dependent DMRG simulations. This transition is preceded by the atomic equivalent of negative differential conductivity observed in transport across solid-state structures.

  10. Two-dimensional solitons in dipolar Bose-Einstein condensates with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jiang, Xunda; Fan, Zhiwei; Chen, Zhaopin; Pang, Wei; Li, Yongyao; Malomed, Boris A.

    2016-02-01

    We report families of two-dimensional (2D) composite solitons in spinor dipolar Bose-Einstein condensates, with two localized components linearly mixed by the spin-orbit coupling (SOC), and the intrinsic nonlinearity represented by the dipole-dipole interaction (DDI) between atomic magnetic moments polarized in plane by an external magnetic field. Recently, stable solitons were predicted in the form of semivortices (composites built of coupled fundamental and vortical components) in the 2D system combining the SOC and contact attractive interactions. Replacing the latter by the anisotropic long-range DDI, we demonstrate that, for a fixed norm of the soliton, the system supports a continuous family of stable spatially asymmetric vortex solitons (AVSs), parameterized by an offset of the pivot of the vortical component relative to its fundamental counterpart. The offset is limited by a certain maximum value, while the energy of the AVS practically does not depend on the offset. At small values of the norm, the vortex solitons are subject to a weak oscillatory instability. In the present system, with the Galilean invariance broken by the SOC, the composite solitons are set in motion by a kick the strength of which exceeds a certain depinning value. The kicked solitons feature a negative effective mass, drifting along a spiral trajectory opposite to the direction of the kick. A critical angular velocity, up to which the semivortices may follow rotation of the polarizing magnetic field, is found too.

  11. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  12. Pair Interaction of Dislocations in Two-Dimensional Crystals

    NASA Astrophysics Data System (ADS)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.

    2005-10-01

    The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.

  13. Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compounds-synthesis, X-Ray studies and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machura, B., E-mail: basia@ich.us.edu.pl; Switlicka, A.; Zwolinski, P.

    2013-01-15

    Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH){sub 4}Hg(SCN){sub 4}]{sub n} (1) [Cu(indH){sub 4}Hg(SCN){sub 4}]{sub n} (2) and [Cu(ampy){sub 2}Hg(SCN){sub 4}]{sub n} (3), have one-dimensional coordination structure. Two compounds [Cu(pzH){sub 2}Hg(SCN){sub 4}]{sub n} (4) and [Cu(abzimH)Hg(SCN){sub 4}]{sub n} (5) form two-dimensional nets, whereas the complexes [Cu(pyCN){sub 2}Hg(SCN){sub 4}]{sub n} (6) and [Cu(pyCH(OH)(OMe)){sub 2}Hg(SCN){sub 4}]{sub n} (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the threemore » dimensional net. In 2 the N-H Bullet Bullet Bullet S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H Bullet Bullet Bullet N and N-H Bullet Bullet Bullet S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H Bullet Bullet Bullet N hydrogen bonds to the three dimensional net. - Graphical abstract: Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compound-synthesis,X-Ray studies and magnetic properties. Highlights: Black-Right-Pointing-Pointer Novel heterobimetallic Cu/Hg coordination polymers were synthesised. Black-Right-Pointing-Pointer The multidimensional structures have been proved by single X-ray analysIs. Black-Right-Pointing-Pointer A variation in the crystalline architectures was observed depending on auxiliary ligands. Black-Right-Pointing-Pointer Magnetic measurements indicate weak exchange interaction between Cu(II) in the crystal lattices below 10 K.« less

  14. Influence of Dzyaloshinskii-Moriya interaction and ballistic spin transport in the two and three-dimensional Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-06-01

    We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.

  15. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    PubMed

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  < J L and possess chiral magnon edge modes.

  16. Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals

    PubMed Central

    Ackerman, Paul J.; van de Lagemaat, Jao; Smalyukh, Ivan I.

    2015-01-01

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains that exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields. PMID:25607778

  17. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    NASA Astrophysics Data System (ADS)

    Luo, Qianqian; Han, Ying; Lin, Hechun; Zhang, Yuanyuan; Duan, Chungang; Peng, Hui

    2017-03-01

    One dimensional coordination polymer Gd[(SO4)(NO3)(C2H6SO)2] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO42- ions to generate a 1-D chain, and all oxygen atoms in SO42- groups are connected to three nearest Gd atoms in μ3:η1:η1:η2 fashion. Gd, S and N from SO42- and NO3- are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with -ΔSm=28.8 J Kg-1 K-1 for ΔH=7 T.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less

  19. Three dimensional δf simulations of beams in the SSC

    NASA Astrophysics Data System (ADS)

    Koga, J.; Tajima, T.; Machida, S.

    1993-12-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  20. THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Roux, J. A.

    Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales.more » In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.« less

  1. Effect of perforation on flow past a conic cylinder at \\varvec{Re} = 100 : wavy vortex and sign laws

    NASA Astrophysics Data System (ADS)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2018-04-01

    In order to find the intrinsic physical mechanism of the original Kármán vortex wavily distorted across the span due to the introduction of three-dimensional (3-D) geometric disturbances, a flow past a peak-perforated conic shroud is numerically simulated at a Reynolds number of 100. Based on previous work by Meiburg and Lasheras (1988), the streamwise and vertical interactions with spanwise vortices are introduced and analyzed. Then vortex-shedding patterns in the near wake for different flow regimes are reinspected and illustrated from the view of these two interactions. Generally, in regime I, spanwise vortices are a little distorted due to the weak interaction. Then in regime II, spanwise vortices, even though curved obviously, are still shed synchronously with moderate streamwise and vertical interactions. But in regime III, violently wavy spanwise vortices in some vortex-shedding patterns, typically an Ω -type vortex, are mainly attributed to the strong vertical interactions, while other cases, such as multiple vortex-shedding patterns in sub-regime III-D, are resulted from complex streamwise and vertical interactions. A special phenomenon, spacial distribution of streamwise and vertical components of vorticity with specific signs in the near wake, is analyzed based on two models of streamwise and vertical vortices in explaining physical reasons of top and bottom shear layers wavily varied across the span. Then these two models and above two interactions are unified. Finally two sign laws are summarized: the first sign law for streamwise and vertical components of vorticity is positive in the upper shear layer, but negative in the lower shear layer, while the second sign law for three vorticity components is always negative in the wake.

  2. Density functional theory versus quantum Monte Carlo simulations of Fermi gases in the optical-lattice arena★

    NASA Astrophysics Data System (ADS)

    Pilati, Sebastiano; Zintchenko, Ilia; Troyer, Matthias; Ancilotto, Francesco

    2018-04-01

    We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices (OLs) computed via density functional theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional OLs, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep OLs. We also consider a three-dimensional OL at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2018-90021-1.

  3. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  4. Various topological Mott insulators and topological bulk charge pumping in strongly-interacting boson system in one-dimensional superlattice

    NASA Astrophysics Data System (ADS)

    Kuno, Yoshihito; Shimizu, Keita; Ichinose, Ikuo

    2017-12-01

    In this paper, we study a one-dimensional boson system in a superlattice potential. This system is experimentally feasible by using ultracold atomic gases, and attracts much attention these days. It is expected that the system has a topological phase called a topological Mott insulator (TMI). We show that in strongly-interacting cases, the competition between the superlattice potential and the on-site interaction leads to various TMIs with a non-vanishing integer Chern number. Compared to the hard-core case, the soft-core boson system exhibits rich phase diagrams including various non-trivial TMIs. By using the exact diagonalization, we obtain detailed bulk-global phase diagrams including the TMIs with high Chern numbers and also various non-topological phases. We also show that in adiabatic experimental setups, the strongly-interacting bosonic TMIs exhibit the topological particle transfer, i.e., the topological charge pumping phenomenon, similarly to weakly-interacting systems. The various TMIs are characterized by topological charge pumping as it is closely related to the Chern number, and therefore the Chern number is to be observed in feasible experiments.

  5. Lump and lump-soliton solutions to the (2+1) -dimensional Ito equation

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Yun; Ma, Wen-Xiu; Qin, Zhenyun

    2017-06-01

    Based on the Hirota bilinear form of the (2+1) -dimensional Ito equation, one class of lump solutions and two classes of interaction solutions between lumps and line solitons are generated through analysis and symbolic computations with Maple. Analyticity is naturally guaranteed for the presented lump and interaction solutions, and the interaction solutions reduce to lumps (or line solitons) while the hyperbolic-cosine (or the quadratic function) disappears. Three-dimensional plots and contour plots are made for two specific examples of the resulting interaction solutions.

  6. Steady-state turbulence with a narrow inertial range

    NASA Technical Reports Server (NTRS)

    Weatherall, J. C.; Nicholson, D. R.; Goldman, M. V.

    1983-01-01

    Coupled two-dimensional wave equations are solved on a computer to model Langmuir wave turbulence excited by a weak electron beam. The model includes wave growth due to beam-plasma interaction, and dissipation by Landau damping. The inertial range is limited to a relatively small number of modes such as could occur when the ratio of masses between the negative and positive ions is larger than in a hydrogen plasma, or when there is damping in long wavelength Langmuir waves. A steady state is found consisting of quasistable, collapsed wave packets. The effects of different beam parameters and the assumed narrow inertial range are considered. The results may be relevant to plasma turbulence observed in connection with type III solar bursts.

  7. Weak lasing in one-dimensional polariton superlattices.

    PubMed

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G; Altshuler, Boris L; Kavokin, Alexey V; Chen, Zhanghai

    2015-03-31

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton-polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating.

  8. Collective modes across the soliton-droplet crossover in binary Bose mixtures

    NASA Astrophysics Data System (ADS)

    Cappellaro, Alberto; Macrı, Tommaso; Salasnich, Luca

    2018-05-01

    We study the collective modes of a binary Bose mixture across the soliton to droplet crossover in a quasi-one-dimensional waveguide with a beyond-mean-field equation of state and a variational Gaussian ansatz for the scalar bosonic field of the corresponding effective action. We observe a sharp difference in the collective modes in the two regimes. Within the soliton regime, modes vary smoothly upon the variation of particle number or interaction strength. On the droplet side, collective modes are inhibited by the emission of particles. This mechanism turns out to be dominant for a wide range of particle numbers and interactions. In a small window of particle number range and for intermediate interactions, we find that monopole frequency is likely to be observed. We focus on the spin-dipole modes for the case of equal intraspecies interactions and equal equilibrium particle numbers in the presence of a weak longitudinal confinement. We find that such modes might be unobservable in the real-time dynamics close to the equilibrium as their frequency is higher than the particle emission spectrum by at least one order of magnitude in the droplet phase. Our results are relevant for experiments with two-component Bose-Einstein condensates for which we provide realistic parameters.

  9. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry breaking remains unknown, we believe this indicates a new many-body electronic phase in two-dimensionally doped silicon and germanium with a half-filled impurity band. We acknowledge financial support from Department of Science and Technology, Government of India, and Australia-India Strategic Research Fund (AISRF).

  10. UV-active plasmons in alkali and alkaline-earth intercalated graphene

    NASA Astrophysics Data System (ADS)

    Despoja, V.; Marušić, L.

    2018-05-01

    The interband π and π +σ plasmons in pristine graphene and the Dirac plasmon in doped graphene are not applicable, since they are broad or weak, and weakly couple to an external longitudinal or electromagnetic probe. Therefore, the ab initio density functional theory is used to demonstrate that the chemical doping of the graphene by the alkali or alkaline-earth atoms dramatically changes the poor graphene excitation spectrum in the ultraviolet frequency range (4-10 eV). Four prominent modes are detected. Two of them are the intralayer plasmons with square-root dispersion, characteristic of the two-dimensional modes. The remaining two are the interlayer plasmons, very strong in the long-wavelength limit but damped for larger wave vectors. The optical absorption calculations show that the interlayer plasmons are both optically active, which makes these materials suitable for small-organic-molecule sensing. This is particularly intriguing because the optically active two-dimensional plasmons have not been detected in other materials.

  11. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  12. Correlation Between Transperineal 3-Dimensional Ultrasound Measurements of Levator Hiatus and Female Sexual Function.

    PubMed

    Aydin, Serdar; Bakar, Rabia Zehra; Arioğlu Aydin, Çağri; Ateş, Seda

    The aim of this study is to investigate the association of sexual functions with levator hiatus biometry measurements and levator ani muscle defect. In 62 heterosexual, sexually active premenopausal women without pelvic floor disorders or urinary incontinence, 3-dimensional transperineal ultrasound imaging was used. Two 3-dimensional volumes were recorded, one at rest and one on Valsalva maneuver. Levator biometry measurements and levator defect were evaluated in an axial plane. Sexual function was assessed by a validated questionnaire, Female Sexual Function Index (FSFI). The primary outcome measure was correlation of sexual functions with the levator hiatus area, transverse and anteroposterior diameters, levator ani muscle thickness, vaginal length, and changes in measurements with Valsalva and levator defect. Forty-two women (67.7%) had low total FSFI scores (<26.55). Levator defect rates were similar in female sexual dysfunction (7/42, 16.7%) and women without female sexual dysfunction (5/20, 25%). The FSFI was negatively and weakly correlated with Δhiatal anteroposterior diameter (r = -0.33, P < 0.009) in the study population. There was a weak and inverse correlation between Δhiatal anteroposterior diameter and arousal (r = -0.35, P < 0.002), desire (r = -0.38, P < 0.001), and orgasm (r = -0.33, P < 0.007). Pain and lubrication did not correlate with any measurement. Hiatal area and diameters at rest are not related to sexual functions. Changes in anteroposterior diameter of the levator hiatus during Valsalva, which may be a sign of pelvic floor laxity or levator muscle weakness, are weakly associated with sexual functions, particularly desire, arousal, and orgasm domains.

  13. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  14. Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zou, L.; Zheng, X.; Wang, B.

    2018-05-01

    The interaction of a weak shock wave with a heavy elliptic gas cylinder is investigated by solving the Eulerian equations in two-dimensional Cartesian coordinates. An interface-capturing algorithm based on the γ -model and the finite volume weighed essential non-oscillatory scheme is employed to trace the motion of the discontinuous interface. Three gas pairs with different Atwood numbers ranging from 0.21 to 0.91 are considered, including carbon dioxide cylinder in air (air-CO_2 ), sulfur hexafluoride cylinder in air (air-SF_6 ), and krypton cylinder in helium (He-Kr). For each gas pair, the elliptic cylinder aspect ratio ranging from 1/4 to 4 is defined as the ratio of streamwise axis length to spanwise axis length. Special attention is given to the aspect ratio effects on wave patterns and circulation. With decreasing aspect ratio, the wave patterns in the interaction are summarized as transmitted shock reflection, regular interaction, and transmitted shock splitting. Based on the scaling law model of Samtaney and Zabusky (J Fluid Mech 269:45-78, 1994), a theoretical approach is developed for predicting the circulation at the time when the fastest shock wave reaches the leeward pole of the gas cylinder (i.e., the primary deposited circulation). For both prolate (i.e., the minor axis of the ellipse is along the streamwise direction) and oblate (i.e., the minor axis of the ellipse is along the spanwise direction) cases, the proposed approach is found to estimate the primary deposited circulation favorably.

  15. Regularity of Solutions of the Nonlinear Sigma Model with Gravitino

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao

    2018-02-01

    We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.

  16. Detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field.

    PubMed

    Jiménez-Aquino, J I; Romero-Bastida, M

    2011-07-01

    The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.

  17. Global existence of the three-dimensional viscous quantum magnetohydrodynamic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianwei, E-mail: yangjianwei@ncwu.edu.cn; Ju, Qiangchang, E-mail: qiangchang-ju@yahoo.com

    2014-08-15

    The global-in-time existence of weak solutions to the viscous quantum Magnetohydrodynamic equations in a three-dimensional torus with large data is proved. The global existence of weak solutions to the viscous quantum Magnetohydrodynamic equations is shown by using the Faedo-Galerkin method and weak compactness techniques.

  18. Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons

    NASA Astrophysics Data System (ADS)

    Naidon, Pascal

    2018-04-01

    The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.

  19. On the dynamics of a shock-bubble interaction

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Karni, Smadar

    1994-01-01

    We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogenity. Such interactions have been studied experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating through random media enhance mixing. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions of acoustic fronts at the bubble interface. Specifically, we have reproduced two of the experiments performed by Haas and Sturtevant : M(sub s) = 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are modelled using the two-dimensional, compressible Euler equations for a two component fluid (air-helium or air-Refrigerant 22). Although simulations of shock wave phenomena are now fairly commonplace, they are mostly restricted to single component flows. Unfortunately, multi-component extensions of successful single component schemes often suffer from spurious oscillations which are generated at material interfaces. Here we avoid such problems by employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophisticated adaptive mesh refinement algorithm which enables extremely high resolution simulations to be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate mechanisms that were observed experimentally (e.g., transitions from regular to irregular refraction, cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation, etc.), and we can now present an updated description for the dynamics of a shock-bubble interaction.

  20. Observation of the fractional quantum Hall effect in graphene.

    PubMed

    Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip

    2009-11-12

    When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.

  1. Synthesis, structures and fluorescent properties of two novel lanthanide [Ln = Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylate and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ni, Liang; yao, Jia

    2012-09-01

    Two structurally diverse coordination polymers [Ce2(m-BDC)2(m-HBDC)2(MOPIP)2·3/2H2O]n (1) and [Pr2(m-BDC)3(MOPIP)2·H2O]n(2) have been synthesized by hydrothermal reaction of lanthanide chloride with mixed ligands benzene-1,3-dicarboxylic acid and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (MOPIP). The crystal structures of the complexes are zipper-like chains of octacoordinate Ln3+ ions, in which Ln3+ ions are bridged in different coordination modes by m-BDC2+ and decorated by MOPIP ligands. These chains are further assembled into three-dimensional supramolecular framework by π⋯π stacking and hydrogen bonding interactions. The fluorescent property and thermal stability were also investigated. Additionally, Natural bond orbital (NBO) analysis of complex 2 shows a weak covalent interaction between the coordinated atoms and Pr3+ ions.

  2. Three species one-dimensional kinetic model for weakly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P.

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting setmore » of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.« less

  3. Cocrystallization of adamantane-1,3-dicarboxylic acid and 4,4'-bipyridine.

    PubMed

    Pan, Yue; Li, Kunhao; Bi, Wenhua; Li, Jing

    2008-02-01

    The cocrystallization of adamantane-1,3-dicarboxylic acid (adc) and 4,4'-bipyridine (4,4'-bpy) yields a unique 1:1 cocrystal, C(12)H(16)O(4).C(10)H(8)N(2), in the C2/c space group, with half of each molecule in the asymmetric unit. The mid-point of the central C-C bond of the 4,4'-bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O-H...N hydrogen bonds [O...N = 2.6801 (17) A] and the weaker of which are C-H...O hydrogen bonds [C...O = 3.367 (2) A]. Alternate adc and 4,4'-bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through pi-pi interactions along the c axis to generate two-dimensional layers. These layers are neatly packed into a stable crystalline three-dimensional form via weak C-H...O hydrogen bonds [C...O = 3.2744 (19) A] and van der Waals attractions.

  4. Extrinsic curvature, geometric optics, and lamellar order on curved substrates

    NASA Astrophysics Data System (ADS)

    Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo

    2009-11-01

    When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.

  5. Wave-vortex interactions in the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Bühler, Oliver

    2014-02-01

    This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  6. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    PubMed

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  7. The magnetic ground state and relationship to Kitaev physics in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab

    The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.

  8. Extraordinary epitaxial alignment of graphene islands on Au(111)

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph M.; Starodub, Elena; Walter, Andrew L.; Nie, Shu; Bostwick, Aaron; Bartelt, Norman C.; Thürmer, Konrad; Rotenberg, Eli; McCarty, Kevin F.; Dubon, Oscar D.

    2012-05-01

    Pristine, single-crystalline graphene displays a unique collection of remarkable electronic properties that arise from its two-dimensional, honeycomb structure. Using in situ low-energy electron microscopy, we show that when deposited on the (111) surface of Au carbon forms such a structure. The resulting monolayer, epitaxial film is formed by the coalescence of dendritic graphene islands that nucleate at a high density. Over 95% of these islands can be identically aligned with respect to each other and to the Au substrate. Remarkably, the dominant island orientation is not the better lattice-matched 30° rotated orientation but instead one in which the graphene [01] and Au [011] in-plane directions are parallel. The epitaxial graphene film is only weakly coupled to the Au surface, which maintains its reconstruction under the slightly p-type doped graphene. The linear electronic dispersion characteristic of free-standing graphene is retained regardless of orientation. That a weakly interacting, non-lattice matched substrate is able to lock graphene into a particular orientation is surprising. This ability, however, makes Au(111) a promising substrate for the growth of single crystalline graphene films.

  9. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  10. Convergence Time and Phase Transition in a Non-monotonic Family of Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ramos, A. D.; Leite, A.

    2017-08-01

    In dynamical systems, some of the most important questions are related to phase transitions and convergence time. We consider a one-dimensional probabilistic cellular automaton where their components assume two possible states, zero and one, and interact with their two nearest neighbors at each time step. Under the local interaction, if the component is in the same state as its two neighbors, it does not change its state. In the other cases, a component in state zero turns into a one with probability α , and a component in state one turns into a zero with probability 1-β . For certain values of α and β , we show that the process will always converge weakly to δ 0, the measure concentrated on the configuration where all the components are zeros. Moreover, the mean time of this convergence is finite, and we describe an upper bound in this case, which is a linear function of the initial distribution. We also demonstrate an application of our results to the percolation PCA. Finally, we use mean-field approximation and Monte Carlo simulations to show coexistence of three distinct behaviours for some values of parameters α and β.

  11. Structural, spectral and magnetic studies of two Co(II)-N-heterocyclic diphosphonates based on multinuclear units

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Ma, Kui-Rong; Zhang, Yu; Kan, Yu-He; Li, Rong-Qing; Hu, Hua-You

    2016-01-01

    Two examples of Co(II)-N-heterocyclic coordination polymers based on 1-hydroxyethylidenediphosphonic acid (H5L = CH3C(OH)(PO3H2)2), namely 0.5(H3NCH2CH2NH3)·[Co6(Cl2)(H3L)2(H2L)(HL)(2,2‧-bipy)6] 1 and 2(NH4)·[Co3(HL)2(H2O)2(phen)2]·2(H2O) 2, have been solvothermally obtained by introducing the second ligands 2,2‧-bipyridine/1,10-phenanthroline (2,2‧-bipy/phen) and characterized by powder X-ray diffraction (PXRD), elemental analysis, IR, TG-DSC. The single-crystal X-ray diffractions show that compound 1 possesses a 0-D structure with hexa-nuclear cluster [Co6(O-P-O)8] built through single/double O-P-O bridges and compound 2 displays a 1-D ladder-like chain structure with magnetic topology building blocks [Co4(O-P-O)4]n. Then H-bonding and π-π stacking interactions further expand the two low-dimensional structures into three-dimensional supramolecular frameworks. Fluorescent measurements reveal that both the maximum emission peaks of 1-2 are centered at 423 nm, mainly deriving from intraligand π*-π transition state of N-heterocyclic ligand 2,2‧-bipy/phen, respectively. Magnetism data indicate that 1 exhibits antiferromagnetic behavior within hexa-nuclear Co(II) clusters, while 2 shows weak ferromagnetic interactions in 1-D topology Co(II)-chain, showing promising potential as magnetic materials.

  12. Low eigenvalues of the entanglement Hamiltonian, localization length, and rare regions in one-dimensional disordered interacting systems

    NASA Astrophysics Data System (ADS)

    Berkovits, Richard

    2018-03-01

    The properties of the low-lying eigenvalues of the entanglement Hamiltonian and their relation to the localization length of a disordered interacting one-dimensional many-particle system are studied. The average of the first entanglement Hamiltonian level spacing is proportional to the ground-state localization length and shows the same dependence on the disorder and interaction strength as the localization length. This is the result of the fact that entanglement is limited to distances of order of the localization length. The distribution of the first entanglement level spacing shows a Gaussian-type behavior as expected for level spacings much larger than the disorder broadening. For weakly disordered systems (localization length larger than sample length), the distribution shows an additional peak at low-level spacings. This stems from rare regions in some samples which exhibit metalliclike behavior of large entanglement and large particle-number fluctuations. These intermediate microemulsion metallic regions embedded in the insulating phase are discussed.

  13. On Substrate for Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Bauschlicher, Charles W., Jr.; Partridge, Harry; Saini, Subhash (Technical Monitor)

    1998-01-01

    A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. However, the two requirements conflict. For excellent electronic isolation, we may seek adatom confinement via van der Waals interaction without chemical bonding to the substrate atoms, but the confinement turns out to be very weak and hence unsatisfactory. An alternative chemical bonding scheme with excellent structural strength is examined, but even fundamental adatom chain properties such as whether chains are semiconducting or metallic are strongly influenced by the nature of the chemical bonding, and electronic isolation is not always achieved. Conditions for obtaining semiconducting chains with well-localized surface-modes, leading to good isolation, are clarified and discussed.

  14. Crystal structures of two bis-(iodo-meth-yl)benzene derivatives: similarities and differences in the crystal packing.

    PubMed

    McAdam, C John; Hanton, Lyall R; Moratti, Stephen C; Simpson, Jim

    2015-12-01

    The isomeric derivatives 1,2-bis-(iodo-meth-yl)benzene, (I), and 1,3-bis-(iodo-meth-yl)benzene (II), both C8H8I2, were prepared by metathesis from their di-bromo analogues. The ortho-derivative, (I), lies about a crystallographic twofold axis that bis-ects the C-C bond between the two iodo-methyl substituents. The packing in (I) relies solely on C-H⋯I hydrogen bonds supported by weak parallel slipped π-π stacking inter-actions [inter-centroid distance = 4.0569 (11) Å, inter-planar distance = 3.3789 (8) Å and slippage = 2.245 Å]. While C-H⋯I hydrogen bonds are also found in the packing of (II), type II, I⋯I halogen bonds [I⋯I = 3.8662 (2) Å] and C-H⋯π contacts feature prominently in stabilizing the three-dimensional structure.

  15. Strongly Interacting Fermi Gases In Two Dimensions

    DTIC Science & Technology

    2012-01-03

    Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting...atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice . Decreasing the dimensionality leads to the...opening of a gap in radiofrequency spectra, even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the measured binding energy

  16. Theory and Experiment Analysis of Two-Dimensional Acousto-Optic Interaction.

    DTIC Science & Technology

    1995-01-03

    The universal coupled wave equation of two dimensional acousto optic effect has been deduced and the solution of normal Raman-Hath acousto optic diffraction...was derived from it. The theory was compared with the experimental results of a two dimensional acousto optic device consisting of two one dimensional modulators. The experiment results agree with the theory. (AN)

  17. Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses

    NASA Astrophysics Data System (ADS)

    Korb, J.-P.; Xu, Shu; Jonas, J.

    1993-02-01

    A theory of dipolar relaxation by translational diffusion of a nonwetting liquid confined in model porous media is presented. We obtain expressions of the rates of spin-lattice relaxation 1/T1, spin-spin relaxation 1/T2, and spin-lattice relaxation in the rotating frame 1/T1ρ, which depend on the average pore size d. The frequency variations of these rates are intermediate between the two-dimensional and three-dimensional results. At small frequency they vary logarithmically for small d and tend progressively to a constant with increasing d. For small pore sizes we obtain quadratic confinement dependences of these rates (∝1/d2), at variance with the linear (∝1/d) relation coming from the biphasic fast exchange model usually applied for a wetting liquid in porous media. We apply such a theory to the 1H NMR relaxation of methylcyclohexane liquid in sol-gel porous silica glasses with a narrow pore-size distribution. The experiments confirm the theoretical predictions for very weak interacting solvent in porous silica glasses of pore sizes varying in the range of 18.4-87.2 Å and in the bulk. At the limit of small pores, the logarithmic frequency dependencies of 1/T1ρ and 1/T1 observed over several decades of frequency are interpreted with a model of unbounded two-dimensional diffusion in a layered geometry. The leveling off of the 1/T1ρ low-frequency dependence is interpreted in terms of the bounded two-dimensional diffusion due to the finite length L of the pores. An estimate of a finite size of L=100 Å is in excellent agreement with the experimental results of the transmission electron microscopy study of platinium-carbon replicated xerogels.

  18. A gel as an array of channels.

    PubMed

    Zimm, B H

    1996-06-01

    We consider the theory of charged point molecules ('probes') being pulled by an electric field through a two-dimensional net of channels that represents a piece of gel. Associated with the position in the net is a free energy of interaction between the probe and the net; this free energy fluctuates randomly with the position of the probe in the net. The free energy is intended to represent weak interactions between the probe and the gel, such as entropy associated with the restriction of the freedom of motion of the probe by the gel, or electrostatic interactions between the probe and charges fixed to the gel. The free energy can be thought of as a surface with the appearance of a rough, hilly landscape spread over the net; the roughness is measured by the standard deviation of the free-energy distribution. Two variations of the model are examined: (1) the net is assumed to have all channels open, or (2) only channels parallel to the electric field are open and all the cross-connecting channels are closed. Model (1) is more realistic but presents a two-dimensional mathematical problem which can only be solved by slow iteration methods, while model (2) is less realistic but presents a one-dimensional problem that can be reduced to simple quadratures and is easy to solve by numerical integration. In both models the mobility of the probe decreases as the roughness parameter is increased, but the effect is larger in the less realistic model (2) if the same free-energy surface is used in both. The mobility in model (2) is reduced both by high points in the rough surface ('bumps') and by low points ('traps'), while in model (1) only the traps are effective, since the probes can flow around the bumps through the cross channels. The mobility in model (2) can be made to agree with model (1) simply by cutting off the bumps of the surface. Thus the simple model (2) can be used in place of the more realistic model (1) that is more difficult to compute.

  19. Classification of symmetry-protected phases for interacting fermions in two dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Bi, Zhen; You, Yi-Zhuang; Gu, Zheng-Cheng

    2018-05-01

    Recently, it has been established that two-dimensional bosonic symmetry-protected topological (SPT) phases with on-site unitary symmetry G can be completely classified by the group cohomology H3( G ,U (1 ) ) . Later, group supercohomology was proposed as a partial classification for SPT phases of interacting fermions. In this work, we revisit this problem based on the algebraic theory of symmetry and defects in two-dimensional topological phases. We reproduce the partial classifications given by group supercohomology, and we also show that with an additional H1(G ,Z2) structure, a complete classification of SPT phases for two-dimensional interacting fermion systems with a total symmetry group G ×Z2f is obtained. We also discuss the classification of interacting fermionic SPT phases protected by time-reversal symmetry.

  20. Experimental study of two-dimensional quantum Wigner solid in zero magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jian; Pfeiffer, L. N.; West, K. W.

    2014-03-31

    At temperatures T → 0, strongly interacting two-dimensional (2D) electron systems manifest characteristic insulating behaviors that are key for understanding the nature of the ground state in light of the interplay between disorder and electron-electron interaction. In contrast to the hopping conductance demonstrated in the insulating side of the metal-to-insulator transition, the ultra-high quality 2D systems exhibit nonactivated T-dependence of the conductivity even for dilute carrier concentrations down to 7×10{sup 8} cm{sup −2}. The apparent metal-to-insulator transition (MIT) occurs for a large r{sub s} value around 40 for which a Wigner Crystalllization is expected. The magnetoresistance for a series ofmore » carrier densities in the vicinity of the transition exhibits a characteristic sign change in weak perpendicular magnetic field. Within the Wigner Crystallization regime (with r{sub s} > 40), we report an experimental observation of a characteristic nonlinear threshold behavior from a high-resolution dc dynamical response as an evidence for aWigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under an increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. Moreover, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to quantum processes.« less

  1. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  2. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  3. Fierz Convergence Criterion: A Controlled Approach to Strongly Interacting Systems with Small Embedded Clusters.

    PubMed

    Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier

    2017-10-20

    We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.

  4. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.

  5. Supramolecular features of 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino]-2,3-dihydroquinazolin-4(1H)-ones: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Mandal, Arkalekha; Patel, Bhisma K.

    2018-03-01

    The molecular structures of two isomeric 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino] substituted 2,3-dihydroquinazolin-4(1H)-ones have been determined via single crystal XRD. Both isomers contain chloro substitutions on each of the phenyl rings and as a result a broad spectrum of halogen mediated weak interactions are viable in their crystal structures. The crystal packing of these compounds is stabilized by strong N-H⋯O hydrogen bond and various weak, non-classical hydrogen bonds acting synergistically. Both the molecules contain a chiral center and the weak interactions observed in them are either chiral self-discriminatory or chiral self-recognizing in nature. The weak interactions and spectral features of the compounds have been studied through experimental as well as computational methods including DFT, MEP, NBO and Hiresfeld surface analyses. In addition, the effect of different weak interactions to dictate either chiral self-recognition or self-discrimination in crystal packing has been elucidated.

  6. Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Hui; Tian, Bo; Guo, Yong-Jiang; Li, Hui-Min

    2018-03-01

    Under investigation in this paper is a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves. Via the symbolic computation, Bell polynomials and Hirota method, the Bäcklund transformation, Lax pair, bilinear forms, one- and two-soliton solutions are derived. Propagation and interaction for the solitons are illustrated: Amplitudes and shapes of the one soliton keep invariant during the propagation, which implies that the transport of the energy is stable for the (2+1)-dimensional water waves; and inelastic interactions between the two solitons are discussed. Elastic interactions between the two parabolic-, cubic- and periodic-type solitons are displayed, where the solitonic amplitudes and shapes remain unchanged except for certain phase shifts. However, inelastically, amplitudes of the two solitons have a linear superposition after each interaction which is called as a soliton resonance phenomenon.

  7. Effects of interactions on the generalized Hong–Ou–Mandel effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertjerenken, B.; Kevrekidis, P. G.

    2015-04-11

    We numerically investigate the influence of interactions on the generalized Hong–Ou–Mandel (HOM) effect for bosonic particles in a (quasi-)one-dimensional set-up with weak harmonic confinement and show results for the cases of N = 2, N = 3 and N = 4 bosons interacting with a beam splitter, whose role is played by a δ-barrier. In particular, we focus on the effect of attractive interactions and compare the results with the repulsive case, as well as with the analytically available results for the non-interacting case (that we use as a benchmark). In addition, we observe a fermionization effect both for growingmore » repulsive and attractive interactions, i.e., the dip in the HOM coincidence count is progressively smeared out, for increasing interaction strengths. The role of input asymmetries is also explored.« less

  8. Spin canting in a Dy-based single-chain magnet with dominant next-nearest-neighbor antiferromagnetic interactions

    NASA Astrophysics Data System (ADS)

    Bernot, K.; Luzon, J.; Caneschi, A.; Gatteschi, D.; Sessoli, R.; Bogani, L.; Vindigni, A.; Rettori, A.; Pini, M. G.

    2009-04-01

    We investigate theoretically and experimentally the static magnetic properties of single crystals of the molecular-based single-chain magnet of formula [Dy(hfac)3NIT(C6H4OPh)]∞ comprising alternating Dy3+ and organic radicals. The magnetic molar susceptibility χM displays a strong angular variation for sample rotations around two directions perpendicular to the chain axis. A peculiar inversion between maxima and minima in the angular dependence of χM occurs on increasing temperature. Using information regarding the monomeric building block as well as an ab initio estimation of the magnetic anisotropy of the Dy3+ ion, this “anisotropy-inversion” phenomenon can be assigned to weak one-dimensional ferromagnetism along the chain axis. This indicates that antiferromagnetic next-nearest-neighbor interactions between Dy3+ ions dominate, despite the large Dy-Dy separation, over the nearest-neighbor interactions between the radicals and the Dy3+ ions. Measurements of the field dependence of the magnetization, both along and perpendicularly to the chain, and of the angular dependence of χM in a strong magnetic field confirm such an interpretation. Transfer-matrix simulations of the experimental measurements are performed using a classical one-dimensional spin model with antiferromagnetic Heisenberg exchange interaction and noncollinear uniaxial single-ion anisotropies favoring a canted antiferromagnetic spin arrangement, with a net magnetic moment along the chain axis. The fine agreement obtained with experimental data provides estimates of the Hamiltonian parameters, essential for further study of the dynamics of rare-earth-based molecular chains.

  9. Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.

  10. Experimental studies of hypersonic shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.

    1992-01-01

    Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the unsteadiness in the surface pressure was reduced compared to the flat-plate case.

  11. Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1957-06-01

    Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)

  12. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers.

    PubMed

    Wu, Jiang; Zhao, Chao; Hu, Rundong; Lin, Weifeng; Wang, Qiuming; Zhao, Jun; Bilinovich, Stephanie M; Leeper, Thomas C; Li, Lingyan; Cheung, Harry M; Chen, Shengfu; Zheng, Jie

    2014-02-01

    Protein-polymer interactions are of great interest in a wide range of scientific and technological applications. Neutral poly(ethylene glycol) (PEG) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA) are two well-known nonfouling materials that exhibit strong surface resistance to proteins. However, it still remains unclear or unexplored how PEG and pSBMA interact with proteins in solution. In this work, we examine the interactions between two model proteins (bovine serum albumin and lysozyme) and two typical antifouling polymers of PEG and pSBMA in aqueous solution using fluorescence spectroscopy, atomic force microscopy and nuclear magnetic resonance. The effect of protein:polymer mass ratios on the interactions is also examined. Collective data clearly demonstrate the existence of weak hydrophobic interactions between PEG and proteins, while there are no detectable interactions between pSBMA and proteins. The elimination of protein interaction with pSBMA could be due to an enhanced surface hydration of zwitterionic groups in pSBMA. New evidence is given to demonstrate the interactions between PEG and proteins, which are often neglected in the literature because the PEG-protein interactions are weak and reversible, as well as the structural change caused by hydrophobic interaction. This work provides a better fundamental understanding of the intrinsic structure-activity relationship of polymers underlying polymer-protein interactions, which are important for designing new biomaterials for biosensor, medical diagnostics and drug delivery applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. One-dimensional optical wave turbulence: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    2012-05-01

    We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

  14. Fabrication of type I collagen microcarrier using a microfluidic 3D T-junction device and its application for the quantitative analysis of cell-ECM interactions.

    PubMed

    Yoon, Junghyo; Kim, Jaehoon; Jeong, Hyo Eun; Sudo, Ryo; Park, Myung-Jin; Chung, Seok

    2016-08-26

    We presented a new quantitative analysis for cell and extracellular matrix (ECM) interactions, using cell-coated ECM hydrogel microbeads (hydrobeads) made of type I collagen. The hydrobeads can carry cells as three-dimensional spheroidal forms with an ECM inside, facilitating a direct interaction between the cells and ECM. The cells on hydrobeads do not have a hypoxic core, which opens the possibility for using as a cell microcarrier for bottom-up tissue reconstitution. This technique can utilize various types of cells, even MDA-MB-231 cells, which have weak cell-cell interactions and do not form spheroids in conventional spheroid culture methods. Morphological indices of the cell-coated hydrobead visually present cell-ECM interactions in a quantitative manner.

  15. Meta-atom cluster acoustic metamaterial with broadband negative effective mass density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huaijun; Zhai, Shilong; Ding, Changlin

    2014-02-07

    We design a resonant meta-atom cluster, via which a two-dimensional (2D) acoustic metamaterial (AM) with broadband negative effective mass density from 1560 Hz to 5580 Hz is fabricated. Experimental results confirm that there is only weak interaction among the meta-atoms in the cluster. And then the meta-atoms in the cluster independently resonate, resulting in the cluster becoming equivalent to a broadband resonance unit. Extracted effective refractive indices from reflection and transmission measurements of the 2D AM appear to be negative from 1500 Hz to 5480 Hz. The broadband negative refraction has also been demonstrated by our further experiments. We expectmore » that this meta-atom cluster AM will significantly contribute to the design of broadband negative effective mass density AM.« less

  16. Ultrafast Doublon Dynamics in Photoexcited 1 T -TaS2

    NASA Astrophysics Data System (ADS)

    Ligges, M.; Avigo, I.; Golež, D.; Strand, H. U. R.; Beyazit, Y.; Hanff, K.; Diekmann, F.; Stojchevska, L.; Kalläne, M.; Zhou, P.; Rossnagel, K.; Eckstein, M.; Werner, P.; Bovensiepen, U.

    2018-04-01

    Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1 T -Ta S2 , we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping ℏ/J ≈14 fs . Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal-insulator transition suggests a way to modify doublon relaxation on the few-femtosecond timescale.

  17. Methyl 2-methyl-4-(oxiran-2-ylmeth-oxy)-2H-1,2-benzothia-zine-3-carboxyl-ate 1,1-dioxide.

    PubMed

    Ahmad, Matloob; Siddiqui, Hamid Latif; Zia-Ur-Rehman, Muhammad; Elsegood, Mark R J; Weaver, George W

    2010-01-09

    In the title compound, C(14)H(15)NO(6)S, the thia-zine ring adopts a distorted half-chair conformation. The structure displays several cooperative weak inter-molecular C-H⋯O hydrogen-bonding inter-actions, giving rise to a two-dimensional sheet packing motif. The CH(2) group in the meth-oxy linker to the oxirane ring, and the CH group in that ring, exhibit twofold positional disorder. The three-membered oxirane ring is twisted approximately perpendicular with respect to thia-zine ring (dihedral angle = 60/86° for the major/minor disorder components). 1,2-Benzothia-zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis.

  18. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Webb, James L.; Hart, Lewis S.; Wolverson, Daniel; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.

    2017-09-01

    The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two-dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few-, and single-layer forms of ReS2 is of particular interest, due to its comparatively weak interplanar interaction. However, the degree of interlayer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS2 using high-resolution angle-resolved photoemission spectroscopy. We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 me ) than along them (1.6 me ). An appreciable interplane interaction results in an experimentally measured difference of ≈100 -200 meV between the valence band maxima at the Z point (0,0,1/2 ) and the Γ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at Γ , implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the nature of the band gap in this material.

  19. Theory of coherent van der Waals matter.

    PubMed

    Kulić, Igor M; Kulić, Miodrag L

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R(-6)), in contrast to the usually weak vdW three-body effects (∝R(-9)). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  20. Theory of coherent van der Waals matter

    NASA Astrophysics Data System (ADS)

    Kulić, Igor M.; Kulić, Miodrag L.

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R-6) , in contrast to the usually weak vdW three-body effects (∝R-9 ). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  1. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe₂ nanostructures.

    PubMed

    Bradley, Aaron J; Ugeda, Miguel M; da Jornada, Felipe H; Qiu, Diana Y; Ruan, Wei; Zhang, Yi; Wickenburg, Sebastian; Riss, Alexander; Lu, Jiong; Mo, Sung-Kwan; Hussain, Zahid; Shen, Zhi-Xun; Louie, Steven G; Crommie, Michael F

    2015-04-08

    Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures and helps to clarify how their electronic properties might be tuned in future 2D nanodevices.

  2. Static black hole solutions with a self-interacting conformally coupled scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotti, Gustavo; Gleiser, Reinaldo J.; Martinez, Cristian

    2008-05-15

    We study static, spherically symmetric black hole solutions of the Einstein equations with a positive cosmological constant and a conformally coupled self-interacting scalar field. Exact solutions for this model found by Martinez, Troncoso, and Zanelli were subsequently shown to be unstable under linear gravitational perturbations, with modes that diverge arbitrarily fast. We find that the moduli space of static, spherically symmetric solutions that have a regular horizon--and satisfy the weak and dominant energy conditions outside the horizon--is a singular subset of a two-dimensional space parametrized by the horizon radius and the value of the scalar field at the horizon. Themore » singularity of this space of solutions provides an explanation for the instability of the Martinez, Troncoso, and Zanelli spacetimes and leads to the conclusion that, if we include stability as a criterion, there are no physically acceptable black hole solutions for this system that contain a cosmological horizon in the exterior of its event horizon.« less

  3. Solvothermal synthesis and structure of coordination polymers of Nd(III) and Dy(III) with rigid isophthalic acid derivatives and flexible adipic acid

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Kumar, Manesh; Yawer, Mohd; Sheikh, Haq Nawaz

    2017-12-01

    Two new coordination polymers (CPs) with the formula [Nd(hip)(adip) 0.5(H2O)2]n.nH2O (1) and [Dy(aip)(adip)0.5(H2O)2]n.nH2O (2) were synthesized by self-assembly of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)], [5-aminoisophthalic acid (H2aip)] and flexible [adipic acid (H2adip)] linkers under solvothermal conditions. The CPs 1 &2 crystallize in monoclinic C2/c space group. Both the CPs have 1D linear ladder shaped extension with the linkages having the backbone of hip2-, aip2- and adip2- ligands. The 1D linear ladder chains generate three dimensional (3D) supramolecular frameworks via significant π-π and hydrogen bonding interactions. The CP 2 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CP 2 also exhibit weak ferromagnetic interactions at low temperatures.

  4. High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.

    PubMed

    Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D

    2018-02-27

    The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.

  5. The Kadomtsev-Petviashvili equation under rapid forcing

    NASA Astrophysics Data System (ADS)

    Moroz, Irene M.

    1997-06-01

    We consider the initial value problem for the forced Kadomtsev-Petviashvili equation (KP) when the forcing is assumed to be fast compared to the evolution of the unforced equation. This suggests the introduction of two time scales. Solutions to the forced KP are sought by expanding the dependent variable in powers of a small parameter, which is inversely related to the forcing time scale. The unforced system describes weakly nonlinear, weakly dispersive, weakly two-dimensional wave propagation and is studied in two forms, depending upon whether gravity dominates surface tension or vice versa. We focus on the effect that the forcing has on the one-lump solution to the KPI equation (where surface tension dominates) and on the one- and two-line soliton solutions to the KPII equation (when gravity dominates). Solutions to second order in the expansion are computed analytically for some specific choices of the forcing function, which are related to the choice of initial data.

  6. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  7. CP Violation, Neutral Currents, and Weak Equivalence

    DOE R&D Accomplishments Database

    Fitch, V. L.

    1972-03-23

    Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.

  8. Synthesis, crystal structure, and magnetic properties of a two-fold interpenetrated diamondoid open framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Cheng, Fu-Yin; Chiang, Ming-Hsi, E-mail: mhchiang@chem.sinica.edu.tw

    2016-10-15

    Self-assembly of an enlarged angular pyridinecarboxylate ligand and cobalt(II) acetate under mild conditions afforded a three-dimensional open-framework coordination polymer, [Co{sub 2}(μ-H{sub 2}O)(pyca-43){sub 4}]{sub n} (1, Hpyca-43=(E)−3-((pyridin-4-yl)methyleneamino)benzoic acid). The molecular structure of 1 has rationalized to be a porous two-fold interpenetrated diamondoid-like network, with dinuclear Co{sub 2}(μ-H{sub 2}O)(O{sub 2}C){sub 4}N{sub 4} clusters as tetrahedral secondary building units (SBUs), possessing highly solvent accessible volume of approximately 53.0%. Least-squares fit of the magnetic susceptibility data (20–300 K) of 1 yields Curie constant C=6.15 cm{sup 3} mol{sup –1} K and Weiss constant θ=–11.6 K. Every Co{sub 2} subunit within the network is magnetically insulatedmore » to other dimers. The magnetic exchange parameter between Co(II) centers is estimated to −0.72 cm{sup –1}, suggesting a weak antiferromagnetic interaction. The g{sub av} value of 4.65 from fitting to the Lines model indicates that the decrease of the χ{sub M}T value upon cooling is dominated by depopulation of the excited Kramer's states to the effective ground singlet. In addition, the thermal stability and adsorption properties of 1 are also reported. - Graphical abstract: This work has synthesized and structurally characterized a porous two-fold interpenetrated diamondoid-like network, which possesses highly solvent accessible volume of approximately 53.0% and shows a weak antiferromagnetic interaction between the Co(II) centers.« less

  9. Architecture of the hydrophobic and hydrophilic layers as found from crystal structure analysis of N-benzyl-N,N-dimethylalkylammonium bromides.

    PubMed

    Hodorowicz, Maciej; Stadnicka, Katarzyna; Czapkiewicz, Jan

    2005-10-01

    The molecular and crystal structures of N-benzyl-N,N-dimethylalkylammonium bromides monohydrates with chain length n=8-10 have been determined. The crystals are isostructural with the N-benzyl-N,N-dimethyldodecylammonium bromide monohydrate. The structures consist of alternated hydrophobic and hydrophilic layers perpendicular to [001]. The attraction between N+ of the cation head-groups and Br- anions is achieved through weak C_H...Br interactions. The water molecules incorporated into ionic layers are donors for two O_H...Br hydrogen bonds and serve as the acceptors in two weak interactions of C_H...O type. The methylene chains, with the slightly curved general shape, have the extended all-trans conformation. The mutual packing of the chains in the hydrophobic layers is governed by weak C_H...pi interactions.

  10. Numerical Study of a Three Dimensional Interaction between two bow Shock Waves and the Aerodynamic Heating on a Wedge Shaped Nose Cone

    NASA Astrophysics Data System (ADS)

    Wu, N.; Wang, J. H.; Shen, L.

    2017-03-01

    This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.

  11. An interaction algorithm for prediction of mean and fluctuating velocities in two-dimensional aerodynamic wake flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1980-01-01

    A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.

  12. Weak lasing in one-dimensional polariton superlattices

    PubMed Central

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G.; Altshuler, Boris L.; Kavokin, Alexey V.; Chen, Zhanghai

    2015-01-01

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain—a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton–polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating. PMID:25787253

  13. Spinons and holons for the one-dimensional three-band Hubbard models of high-temperature superconductors.

    PubMed Central

    Tahir-Kheli, J; Goddard, W A

    1993-01-01

    The one-dimensional three-band Hubbard Hamiltonian is shown to be equivalent to an effective Hamiltonian that has independent spinon and holon quasiparticle excitations plus a weak coupling of the two. The spinon description includes both copper sites and oxygen hole sites leading to a one-dimensional antiferromagnet incommensurate with the copper lattice. The holons are spinless noninteracting fermions in a simple cosine band. Because the oxygen sites are in the Hamiltonian, the quasiparticles are much simpler than in the exact solution of the t-J model for 2t = +/- J. If a similar description is correct for two dimensions, then the holons will attract in a p-wave potential. PMID:11607436

  14. Quantum controlled-Z gate for weakly interacting qubits

    NASA Astrophysics Data System (ADS)

    Mičuda, Michal; Stárek, Robert; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim; Fiurášek, Jaromír

    2015-08-01

    We propose and experimentally demonstrate a scheme for the implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before and after the interqubit interaction, one of the qubits is coherently coupled to an auxiliary quantum system, and finally it is projected back onto qubit subspace. We experimentally verify the practical feasibility of this technique by using a linear optical setup with weak interferometric coupling between single-photon qubits. Our procedure is universally applicable to a wide range of physical platforms including hybrid systems such as atomic clouds or optomechanical oscillators coupled to light.

  15. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-04-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  16. Rotating states of self-propelling particles in two dimensions.

    PubMed

    Chen, Hsuan-Yi; Leung, Kwan-Tai

    2006-05-01

    We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.

  17. Self-Assembly and Electrostriction of Arrays and Chains of Hopfion Particles in Chiral Liquid Crystals

    DOE PAGES

    Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.

    2015-01-21

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less

  18. Equilibrium phases of dipolar lattice bosons in the presence of random diagonal disorder

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Safavi-Naini, A.; Capogrosso-Sansone, B.

    2018-01-01

    Ultracold gases offer an unprecedented opportunity to engineer disorder and interactions in a controlled manner. In an effort to understand the interplay between disorder, dipolar interactions, and quantum degeneracy, we study two-dimensional hard-core dipolar lattice bosons in the presence of on-site bound disorder. Our results are based on large-scale path-integral quantum Monte Carlo simulations by the worm algorithm. We study the ground-state phase diagram at a fixed half-integer filling factor for which the clean system is either a superfluid at a lower dipolar interaction strength or a checkerboard solid at a larger dipolar interaction strength. We find that, even for weak dipolar interactions, superfluidity is destroyed in favor of a Bose glass at a relatively low disorder strength. Interestingly, in the presence of disorder, superfluidity persists for values of the dipolar interaction strength for which the clean system is a checkerboard solid. At a fixed disorder strength, as the dipolar interaction is increased, superfluidity is destroyed in favor of a Bose glass. As the interaction is further increased, the system eventually develops extended checkerboard patterns in the density distribution. Due to the presence of disorder, though, grain boundaries and defects, responsible for a finite residual compressibility, are present in the density distribution. Finally, we study the robustness of the superfluid phase against thermal fluctuations.

  19. Non-equilibrium dynamics of artificial quantum matter

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash

    The rapid progress of the field of ultracold atoms during the past two decades has set new milestones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical models. Two of such models which have witnessed significant experimental and theoretical attention are (1) the two-component Fermi gas with resonant s-wave interactions, and (2) the single-component Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium collective dynamics of these systems using the general framework of quantum kinetic theory. We present a concise review of the utilized mathematical methods in the first two chapters, including the Schwinger-Keldysh formalism of non-equilibrium quantum fields, two-particle irreducible (2PI) effective actions and the framework of quantum kinetic theory. We study the collective dynamics of the dipolar Fermi gas in a quasi-two-dimensional optical trap in chapter 3 and provide a detailed account of its dynamical crossover from the collisionless to the hydrodynamical regime. Chapter 4 is devoted to studying the dynamics of the attractive Fermi gas in the normal phase. Starting from the self-consistent T-matrix (pairing fluctuation) approximation, we systematically derive a set of quantum kinetic equations and show that they provide a globally valid description of the dynamics of the attractive Fermi gas, ranging from the weak-coupling Fermi liquid phase to the intermediate non-Fermi liquid pairing pseudogap regime and finally the strong-coupling Bose liquid phase. The shortcomings of the self-consistent T-matrix approximation in two spatial dimensions are discussed along with a proposal to overcome its unphysical behaviors. The developed kinetic formalism is finally utilized to reproduce and interpret the findings of a recent experiment done on the collective dynamics of trapped two-dimensional ultracold gases.

  20. Ordering nanoparticles with polymer brushes

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-01

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.

  1. On some structure-turbulence interaction problems

    NASA Technical Reports Server (NTRS)

    Maekawa, S.; Lin, Y. K.

    1976-01-01

    The interactions between a turbulent flow structure; responding to its excitation were studied. The turbulence was typical of those associated with a boundary layer, having a cross-spectral density indicative of convection and statistical decay. A number of structural models were considered. Among the one-dimensional models were an unsupported infinite beam and a periodically supported infinite beam. The fuselage construction of an aircraft was then considered. For the two-dimensional case a simple membrane was used to illustrate the type of formulation applicable to most two-dimensional structures. Both the one-dimensional and two-dimensional structures studied were backed by a cavity filled with an initially quiescent fluid to simulate the acoustic environment when the structure forms one side of a cabin of a sea vessel or aircraft.

  2. Large Deviations for Stochastic Models of Two-Dimensional Second Grade Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Jianliang, E-mail: zhaijl@ustc.edu.cn; Zhang, Tusheng, E-mail: Tusheng.Zhang@manchester.ac.uk

    2017-06-15

    In this paper, we establish a large deviation principle for stochastic models of incompressible second grade fluids. The weak convergence method introduced by Budhiraja and Dupuis (Probab Math Statist 20:39–61, 2000) plays an important role.

  3. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region

    PubMed Central

    BORAZJANI, IMAN; SOTIROPOULOS, FOTIS

    2009-01-01

    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant mechanism the front cylinder vibration amplitude is larger than that of the rear cylinder. The reversing of this trend above a threshold reduced velocity is associated with the onset of the gap flow. The important role of the gap flow is further illustrated via a series of simulations for the 2-DOF system. We show that when the gap-flow mechanism is triggered, the 2-DOF system can develop and sustain large VIV amplitudes comparable to those observed in the corresponding (same reduced velocity) 1-DOF system. For sufficiently high reduced velocities, however, the two cylinders in the 2-DOF system approach each other, thus significantly reducing the size of the gap region. In such cases the gap flow is entirely eliminated, and the two cylinders vibrate together as a single body with vibration amplitudes up to 50% lower than the amplitudes of the corresponding 1-DOF in which the gap flow is active. Three-dimensional simulations are also carried out to examine the adequacy of two-dimensional simulations for describing the dynamic response of the tandem system at Re = 200. It is shown that even though the wake transitions to a weakly three-dimensional state when the gap flow is active, the three-dimensional modes are too weak to affect the dynamic response of the system, which is found to be identical to that obtained from the two-dimensional computations. PMID:19693281

  4. Structural and magnetic characterization of the one-dimensional S = 5/2 antiferromagnetic chain system SrMn(VO 4)(OH)

    DOE PAGES

    Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; ...

    2016-06-06

    The descloizite-type compound, SrMn(VO 4)(OH), was synthesized as large single crystals (1-2mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P2 12 12 1 (no. 19), Z = 4. The structure exhibits a one-dimensional feature, with [MnO 4] chains propagating along the a-axis which are interconnected by VO 4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant ofmore » J/k B = 9.97(3) K between nearest Mn neighbors and a canted antiferromagnetic behavior below T N = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P2 1 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. Lastly, the presence of the Dzyaloshinskii Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.« less

  5. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    PubMed

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  6. Interaction of a supersonic particle with a three-dimensional complex plasma

    NASA Astrophysics Data System (ADS)

    Zaehringer, E.; Schwabe, M.; Zhdanov, S.; Mohr, D. P.; Knapek, C. A.; Huber, P.; Semenov, I. L.; Thomas, H. M.

    2018-03-01

    The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new "Zyflex" chamber during microgravity conditions. A supersonic probe particle excited a Mach cone with Mach number M ≈ 1.5-2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to the calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.

  7. Lax pair, conservation laws and solitons for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation governing an α-helical protein

    NASA Astrophysics Data System (ADS)

    Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong

    2015-11-01

    Energy transfer through a (2+1)-dimensional α-helical protein can be described by a (2+1)-dimensional fourth-order nonlinear Schrödinger equation. For such an equation, a Lax pair and the infinitely-many conservation laws are derived. Using an auxiliary function and a bilinear formulation, we get the one-, two-, three- and N-soliton solutions via the Hirota method. The soliton velocity is linearly related to the lattice parameter γ, while the soliton' direction and amplitude do not depend on γ. Interactions between the two solitons are elastic, while those among the three solitons are pairwise elastic. Oblique, head-on and overtaking interactions between the two solitons are displayed. Oblique interaction among the three solitons and interactions among the two parallel solitons and a single one are presented as well.

  8. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  9. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  10. Super Yang Mills, matrix models and geometric transitions

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2005-03-01

    I explain two applications of the relationship between four-dimensional N=1 supersymmetric gauge theories, zero-dimensional gauged matrix models, and geometric transitions in string theory. The first is related to the spectrum of BPS domain walls or BPS branes. It is shown that one can smoothly interpolate between a D-brane state, whose weak coupling tension scales as N˜1/g, and a closed string solitonic state, whose weak coupling tension scales as N˜1/gs2. This is part of a larger theory of N=1 quantum parameter spaces. The second is a new purely geometric approach to sum exactly over planar diagrams in zero dimension. It is an example of open/closed string duality. To cite this article: F. Ferrari, C. R. Physique 6 (2005).

  11. Effect of interactions for one-dimensional asymmetric exclusion processes under periodic and bath-adapted coupling environment

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar

    2018-04-01

    Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.

  12. Quench dynamics of one-dimensional interacting bosons in a disordered potential: elastic dephasing and critical speeding-up of thermalization.

    PubMed

    Tavora, Marco; Rosch, Achim; Mitra, Aditi

    2014-07-04

    The dynamics of interacting bosons in one dimension following the sudden switching on of a weak disordered potential is investigated. On time scales before quasiparticles scatter (prethermalized regime), the dephasing from random elastic forward scattering causes all correlations to decay exponentially fast, but the system remains far from thermal equilibrium. For longer times, the combined effect of disorder and interactions gives rise to inelastic scattering and to thermalization. A novel quantum kinetic equation accounting for both disorder and interactions is employed to study the dynamics. Thermalization turns out to be most effective close to the superfluid-Bose-glass critical point where nonlinearities become more and more important. The numerically obtained thermalization times are found to agree well with analytic estimates.

  13. Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model

    NASA Astrophysics Data System (ADS)

    Blender, R.; Wouters, J.; Lucarini, V.

    2013-07-01

    For the discrete model suggested by Lorenz in 1996, a one-dimensional long-wave approximation with nonlinear excitation and diffusion is derived. The model is energy conserving but non-Hamiltonian. In a low-order truncation, weak external forcing of the zonal mean flow induces avalanchelike breather solutions which cause reversal of the mean flow by a wave-mean flow interaction. The mechanism is an outburst-recharge process similar to avalanches in a sandpile model.

  14. Vorticity filaments in two-dimensional turbulence: creation, stability and effect

    NASA Astrophysics Data System (ADS)

    Kevlahan, N. K.-R.; Farge, M.

    1997-09-01

    Vorticity filaments are characteristic structures of two-dimensional turbulence. The formation, persistence and effect of vorticity filaments are examined using a high-resolution direct numerical simulation (DNS) of the merging of two positive Gaussian vortices pushed together by a weaker negative vortex. Many intense spiral vorticity filaments are created during this interaction and it is shown using a wavelet packet decomposition that, as has been suggested, the coherent vortex stabilizes the filaments. This result is confirmed by a linear stability analysis at the edge of the vortex and by a calculation of the straining induced by the spiral structure of the filament in the vortex core. The time-averaged energy spectra for simulations using hyper-viscosity and Newtonian viscosity have slopes of [minus sign]3 and [minus sign]4 respectively. Apart from a much higher effective Reynolds number (which accounts for the difference in energy spectra), the hyper-viscous simulation has the same dynamics as the Newtonian viscosity simulation. A wavelet packet decomposition of the hyper-viscous simulation reveals that after the merger the energy spectra of the filamentary and coherent parts of the vorticity field have slopes of [minus sign]2 and [minus sign]6 respectively. An asymptotic analysis and DNS for weak external strain shows that a circular filament at a distance R from the vortex centre always reduces the deformation of a Lamb's (Gaussian) vortex in the region r[gt-or-equal, slanted]R. In the region r

  15. n→π* Non-Covalent Interaction is Weak but Strong in Action

    NASA Astrophysics Data System (ADS)

    Singh, Santosh Kumar; Das, Aloke

    2017-06-01

    n→π* interaction is a newly discovered non-covalent interaction which involves delocalization of lone pair (n) electrons of an electronegative atom into π* orbital of a carbonyl group or an aromatic ring. It is widely observed in materials, biomolecules (protein, DNA, RNA), amino acids, neurotransmitter and drugs. However, due to its weak strength and counterintuitive nature its existence is debatable. Such weak interactions are often masked by solvent effects in condense phase or physiological conditions thereby, making it difficult to prove the presence of such weak interactions. Therefore, we have used isolated gas phase spectroscopy in combination with quantum chemical calculations to study n→π* interaction in several molecules where, our molecular systems are free from solvent effects or any external forces. Herein I will be discussing two of the molecular systems (phenyl formate and salicin) where, we have observed the significance of n→π* interaction in determining the conformational specificity of the molecules. We have proved the existence of n→π* interaction for the first time through IR spectroscopy by probing the carbonyl stretching frequency of phenyl formate. Our study is further pursued on a drug named salicin where, we have observed that its conformational preferences is ruled by n→π* interaction even though a strong hydrogen bonding interaction is present in the molecule. Our results show that n→π* interaction, in spite of its weak strength, should not be overlooked as it existence can play an important role in governing the structures of molecules like other strong non-covalent interactions do.

  16. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.

    2011-01-15

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less

  17. Cold spray nozzle mach number limitation

    NASA Astrophysics Data System (ADS)

    Jodoin, B.

    2002-12-01

    The classic one-dimensional isentropic flow approach is used along with a two-dimensional axisymmetric numerical model to show that the exit Mach number of a cold spray nozzle should be limited due to two factors. To show this, the two-dimensional model is validated with experimental data. Although both models show that the stagnation temperature is an important limiting factor, the one-dimensional approach fails to show how important the shock-particle interactions are at limiting the nozzle Mach number. It is concluded that for an air nozzle spraying solid powder particles, the nozzle Mach number should be set between 1.5 and 3 to limit the negative effects of the high stagnation temperature and of the shock-particle interactions.

  18. Development and application of computational aerothermodynamics flowfield computer codes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1993-01-01

    Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.

  19. Partially composite particle physics with and without supersymmetry

    NASA Astrophysics Data System (ADS)

    Kramer, Thomas A.

    Theories in which the Standard Model fields are partially compositeness provide elegant and phenomenologically viable solutions to the Hierarchy Problem. In this thesis we will study types of models from two different perspectives. We first derive an effective field theory describing the interactions of the Standard Models fields with their lightest composite partners based on two weakly coupled sectors. Technically, via the AdS/CFT correspondence, our model is dual to a highly deconstructed theory with a single warped extra-dimension. This two sector theory provides a simplified approach to the phenomenology of this important class of theories. We then use this effective field theoretic approach to study models with weak scale accidental supersymmetry. Particularly, we will investigate the possibility that the Standard Model Higgs field is a member of a composite supersymmetric sector interacting weakly with the known Standard Model fields.

  20. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  1. Weak decays of heavy hadrons into dynamically generated resonances

    DOE PAGES

    Oset, Eulogio; Liang, Wei -Hong; Bayar, Melahat; ...

    2016-01-28

    In this study, we present a review of recent works on weak decay of heavy mesons and baryons with two mesons, or a meson and a baryon, interacting strongly in the final state. The aim is to learn about the interaction of hadrons and how some particular resonances are produced in the reactions. It is shown that these reactions have peculiar features and act as filters for some quantum numbers which allow to identify easily some resonances and learn about their nature. The combination of basic elements of the weak interaction with the framework of the chiral unitary approach allowmore » for an interpretation of results of many reactions and add a novel information to different aspects of the hadron interaction and the properties of dynamically generated resonances.« less

  2. Anatomy of the magnetic catalysis by renormalization-group method

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Itakura, Kazunori; Ozaki, Sho

    2017-12-01

    We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger-Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu-Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.

  3. 1-(2,4-Di-nitro-phen-yl)-2-[(E)-(3,4,5-tri-meth-oxy-benzyl-idene)]hydrazine.

    PubMed

    Chantrapromma, Suchada; Ruanwas, Pumsak; Boonnak, Nawong; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-02-01

    Mol-ecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-meth-oxy groups of the 3,4,5-tri-meth-oxy-benzene moiety lie in the plane of the attached ring [Cmeth-yl-O-C-C torsion angles -0.1 (4)° and -3.7 (3)°] while the para-meth-oxy substituent lies out of the plane [Cmeth-yl-O-C-C, -86.0 (3)°]. An intra-molecular N-H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, mol-ecules are linked by weak C-H⋯O inter-actions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by π-π stacking inter-actions between the nitro and meth-oxy substituted aromatic rings with a centroid-centroid separation of 3.9420 (13) Å. C-H⋯π contacts further stabilize the two-dimensional network.

  4. Supramolecular organization and chiral resolution of p-terphenyl-m-dicarbonitrile on the Ag(111) surface.

    PubMed

    Marschall, Matthias; Reichert, Joachim; Seufert, Knud; Auwärter, Willi; Klappenberger, Florian; Weber-Bargioni, Alexander; Klyatskaya, Svetlana; Zoppellaro, Giorgio; Nefedov, Alexei; Strunskus, Thomas; Wöll, Christof; Ruben, Mario; Barth, Johannes V

    2010-05-17

    The supramolecular organization and layer formation of the non-linear, prochiral molecule [1, 1';4',1'']-terphenyl-3,3"-dicarbonitrile adsorbed on the Ag(111) surface is investigated by scanning tunneling microscopy (STM) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon two-dimensional confinement the molecules are deconvoluted in three stereoisomers, that is, two mirror-symmetric trans- and one cis-species. STM measurements reveal large and regular islands following room temperature deposition, whereby NEXAFS confirms a flat adsorption geometry with the electronic pi-system parallel to the surface plane. The ordering within the expressed supramolecular arrays reflects a substrate templating effect, steric constraints and the operation of weak lateral interactions mainly originating from the carbonitrile endgroups. High-resolution data at room temperature reveal enantiormorphic characteristics of the molecular packing schemes in different domains of the arrays, indicative of chiral resolution during the 2D molecular self-assembly process. At submonolayer coverage supramolecular islands coexist with a disordered fluid phase of highly mobile molecules. Following thermal quenching (down to 6 K) we find extended supramolecular ribbons stabilised again by attractive and directional noncovalent interactions, the formation of which reflects a chiral resolution of trans-species.

  5. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioslowski, Jerzy

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits.more » In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.« less

  6. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  7. Two dimensional nonplanar evolution of electrostatic shock waves in pair-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2012-01-15

    Electrostatic waves in a two dimensional nonplanar geometry are studied in an unmagnetized, dissipative pair-ion plasma in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The nonplanar Kadomtsev-Petviashvili-Burgers (KPB) as well as the Burgers Kadomtsev-Petviashvili (Burgers KP) equations are derived using the small amplitude expansion method and the range of applicability of both the equations are discussed. The system under consideration is observed to admit compressive rarefactive shocks. The present study may have relevance to understand the formation of twomore » dimensional nonplanar electrostatic shocks in laboratory plasmas.« less

  8. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower than those considered in all the experiments to date. The RCS of a vortex happens to peak at the frequency (about 49 MHz) where atmospheric radars (known as ST radars) operate and so the present prediction could be verified in the future. Finally , we suggest that hot engine exhaust could increase RCE by 40 db and reveal vortex circulation, provided its mixing with the surroundings is prevented in the laminarising flow of the vortices.

  9. Asymmetric three-dimensional topography over mantle plumes.

    PubMed

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  10. Topological insulating phases from two-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Araújo, Miguel A. N.

    2016-10-01

    Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.

  11. Temperature dependences of the time of electron-electron interactions in two-dimensional heterojunction

    NASA Astrophysics Data System (ADS)

    Bukhenskyy, K. V.; Dubois, A. B.; Kucheryavyy, S. I.; Mashnina, S. N.; Safoshkin, A. S.; Baukov, A. A.; Shchigorev, E. Yu

    2017-12-01

    The article discusses the joint solution of the Schrödinger and Poisson equations for two-dimensional semiconductor heterojunction. The application of a triangular potential of well approximation for the calculation of the electron-electron interaction is offered in the paper. The influence of the parameters of the selected approximation was analyzed.

  12. Self-Organized Lattices of Nonlinear Optochemical Waves in Photopolymerizable Fluids: The Spontaneous Emergence of 3-D Order in a Weakly Correlated System.

    PubMed

    Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi

    2018-03-01

    Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws of optical interference can be explained through the soliton-like interactions of optochemical waves with nearest neighbors. Critically, this work casts fundamentally new insight into the collective behaviors of poorly correlated nonlinear waves in higher dimensions and provides a rare, accessible platform for further experimental studies of these previously unexplored behaviors. Furthermore, it defines a self-organization paradigm that, unlike conventional counterparts, could generate polymer microstructures with symmetries spanning all the Bravais lattices.

  13. Critical current of SF-NFS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Soloviev, I. I.; Klenov, N. V.; Bakursky, S. V.; Kupriyanov, M. Yu.; Golubov, A. A.

    2015-02-01

    The properties of SF-NFS sandwiches composed of two superconducting (S) electrodes separated by a weak-link region formed by a normal-metal (N) step with the thickness d N situated on the top of a lower S electrode and a ferromagnetic (F) layer with the thickness d F deposited onto the step and the remaining free surface of the lower electrode have been studied theoretically. It has been shown in the approximation of linearized semiclassical Usadel equations that the two-dimensional problem in the weak-link region can be reduced to two one-dimensional problems in its SFS and SNFS segments. The spatial distributions of the critical current density J c in the segments as a function of the layer thickness d F have been calculated. The dependences of the critical current I c of the structure on the magnitude of the magnetization vector M of the ferromagnetic layer have been found for various directions of the magnetization within the junction plane. It has been shown that these dependences are affected considerably by both the orientation of M and the spatial distribution of J c.

  14. Simulation of a Moving Elastic Beam Using Hamilton’s Weak Principle

    DTIC Science & Technology

    2006-03-01

    versions were limited to two-dimensional systems with open tree configurations (where a cut in any component separates the system in half) [48]. This...whose com- ponents experienced large angular rotations (turbomachinery, camshafts , flywheels, etc.). More complex systems required the simultaneous

  15. Scalable quantum information processing with atomic ensembles and flying photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Feng; Yu Yafei; Feng Mang

    2009-10-15

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could muchmore » relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.« less

  16. Finite element analysis of low speed viscous and inviscid aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1977-01-01

    A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.

  17. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  18. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.

    PubMed

    Tran, Toan Trong; Wang, Danqing; Xu, Zai-Quan; Yang, Ankun; Toth, Milos; Odom, Teri W; Aharonovich, Igor

    2017-04-12

    Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

  19. Light propagation in nanorod arrays

    NASA Astrophysics Data System (ADS)

    Rahachou, A. I.; Zozoulenko, I. V.

    2007-03-01

    We study the propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as the weak influence of their fluctuating diameter. For TM modes we outline the importance of the skin effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.

  20. Self-Assembly of Supramolecular Aggregates Based on Sector- and Cone-Shaped Dendrons and Bolaamphiphiles

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    Using a number of classes of such sector-shaped macromolecules as derivatives of 2,3,4- and 3,4,5- tri(dodecyloxy)benzenesulfonic acid and dendrimers based on gallic acid as an example, the main stages in the formation of supramolecular ensembles are considered: the formation of individual supramolecular aggregates due to the weak noncovalent interactions of mesogenic groups, and the subsequent ordering within these aggregates, which lowers the free energy of a system. Supramolecular aggregates are in turn organized into two- or three-dimensional supramolecular lattices. It is shown that the shape of the supramolecular aggregates and its change along with temperature are functions of the chemical structure of the mesogenic group (resulting in the controlled design of complex self-organizing systems with a given response to external stimuli).

  1. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    NASA Astrophysics Data System (ADS)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  2. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    PubMed

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  3. Statistics of transmission eigenvalues in two-dimensional quantum cavities: Ballistic versus stochastic scattering

    NASA Astrophysics Data System (ADS)

    Rotter, Stefan; Aigner, Florian; Burgdörfer, Joachim

    2007-03-01

    We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavities, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic limit, respectively.

  4. Elastic interaction among transition metals in one-dimensional spin-crossover solids

    NASA Astrophysics Data System (ADS)

    Boukheddaden, K.; Miyashita, S.; Nishino, M.

    2007-03-01

    We present an exact examination of a one-dimensional (1D) spin-phonon model describing the thermodynamical properties of spin-crossover (SC) solids. This model has the advantage of giving a physical mechanism for the interaction between the SC units. The origin of the interaction comes from the fact that the elastic constant of the spring linking two atoms depends on their electronic states. This leads to local variation of the elastic constant. Up to now, all the statistical studies of this model have been performed in the frame of the mean-field (MF) approach, which is not adequate to describe 1D systems with short-range interactions. An alternative method, based on the variational approach and taking into account the short-range correlations between neighboring molecules, was also suggested, but it consists in an extension of the previous MF approximation. Here, we solve exactly this Hamiltonian in the frame of classical statistical mechanics using the transfer-matrix technique. The temperature dependence of the high spin fraction and that of the total energy are obtained analytically. Our results clearly show that there is a clear tendency to a sharp transition when we tune the elastic constants adequately, which indicates that first-order phase transition takes place at higher dimensions. In addition, we demonstrate the existence of an interesting isomorphism between the present model and Ising model under effective interaction and effective ligand field energy, in which both depend linearly on temperature and both come from the phonon contribution. We have also studied the effect of the pressure (the tension) on the thermodynamical properties of the high spin (HS) fraction and have found a nontrivial pressure effect that while for weak tension values, the low spin state is stabilized for the pressure above a threshold value, it enhances the interaction between the HS states. Finally, we have also introduced elastic interactions between the chains. Treating exactly (in mean field) the intrachain (interchain) contributions, we found that our model leads us to obtain first-order spin transitions when both short- and long-range interactions are ferroelastic. We show also that competing (antiferroelastic short-range and ferroelastic long-range) interactions between spin-state ions reproduce qualitatively the two-step-like spin-crossover transitions.

  5. Vortex scaling ranges in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Burgess, B. H.; Dritschel, D. G.; Scott, R. K.

    2017-11-01

    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

  6. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets

    NASA Astrophysics Data System (ADS)

    Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2017-07-01

    We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

  7. Stratification, segregation, and mixing of granular materials in quasi-two-dimensional bounded heaps.

    PubMed

    Fan, Yi; Boukerkour, Youcef; Blanc, Thibault; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M

    2012-11-01

    Segregation and mixing of granular mixtures during heap formation has important consequences in industry and agriculture. This research investigates three different final particle configurations of bidisperse granular mixtures--stratified, segregated and mixed--during filling of quasi-two-dimensional silos. We consider a large number and wide range of control parameters, including particle size ratio, flow rate, system size, and heap rise velocity. The boundary between stratified and unstratified states is primarily controlled by the two-dimensional flow rate, with the critical flow rate for the transition depending weakly on particle size ratio and flowing layer length. In contrast, the transition from segregated to mixed states is controlled by the rise velocity of the heap, a control parameter not previously considered. The critical rise velocity for the transition depends strongly on the particle size ratio.

  8. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 1; Analysis and Results

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.

  9. Cooperativity of anion⋯π and π⋯π interactions regulates the self-assembly of a series of carbene proligands: Towards quantitative analysis of intermolecular interactions with Hirshfeld surface

    NASA Astrophysics Data System (ADS)

    Samanta, Tapastaru; Dey, Lingaraj; Dinda, Joydev; Chattopadhyay, Shyamal Kumar; Seth, Saikat Kumar

    2014-06-01

    The cooperative effect of weak non-covalent forces between anions and electron deficient aromatics by π⋯π stacking of a series of carbene proligands (1-3) have been thoroughly explored by crystallographic studies. Structural analysis revealed that the anion⋯π and π⋯π interactions along with intermolecular hydrogen bonding mutually cooperate to facilitate the assembling of the supramolecular framework. The π⋯π and corresponding anion⋯π interactions have been investigated in the title carbene proligands despite their association with counter ions. The presence of the anion in the vicinity of the π-system leads to the formation of anion⋯π/π⋯π/π⋯anion network for an inductive stabilization of the assemblies. To assess the dimensionality of the supramolecular framework consolidated by cooperative anion⋯π/π⋯π interactions and hydrogen bonding, different substituent effects in the carbene backbone have been considered to tune these interactions. These facts show that the supramolecular framework based on these cooperative weak forces may be robust enough for application in molecular recognition. The investigation of close intermolecular interactions between the molecules via Hirshfeld surface analyses is presented in order to reveal subtle differences and similarities in the crystal structures. The decomposition of the fingerprint plot area provides a percentage of each intermolecular interaction, allowing for a quantified analysis of close contacts within each crystal.

  10. The Dimensionality and Correlates of Flow in Human-Computer Interactions.

    ERIC Educational Resources Information Center

    Webster, Jane; And Others

    1993-01-01

    Defines playfulness in human-computer interactions in terms of flow theory and explores the dimensionality of the flow concept. Two studies are reported that investigated the factor structure and correlates of flow in human-computer interactions: one examined MBA students using Lotus 1-2-3 spreadsheet software, and one examined employees using…

  11. Analysis of transitional separation bubbles on infinite swept wings

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1986-01-01

    A previously developed two-dimensional local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation), has been extended for the calculation of transitional separation bubbles over infinite swept wings. As part of this effort, Roberts' empirical correlation, which is interpreted as a separated flow empirical extension of Mack's stability theory for attached flows, has been incorporated into the ALESEP procedure for the prediction of the transition location within the separation bubble. In addition, the viscous procedure used in the ALESEP techniques has been modified to allow for wall suction. A series of two-dimensional calculations is presented as a verification of the prediction capability of the interaction techniques with the Roberts' transition model. Numerical tests have shown that this two-dimensional natural transition correlation may also be applied to transitional separation bubbles over infinite swept wings. Results of the interaction procedure are compared with Horton's detailed experimental data for separated flow over a swept plate which demonstrates the accuracy of the present technique. Wall suction has been applied to a similar interaction calculation to demonstrate its effect on the separation bubble. The principal conclusion of this paper is that the prediction of transitional separation bubbles over two-dimensional or infinite swept geometries is now possible using the present interacting boundary layer approach.

  12. On the interaction of small and large eddies in two dimensional turbulent flows

    NASA Technical Reports Server (NTRS)

    Foias, C.; ate work.

    1987-01-01

    Some results concerning the interaction of small and large eddies to two dimensional turbulent flows are presented. It is shown that the amplitude of small structures decays exponentially to a small value, and from this is inferred a simplified interaction law of small and large eddies. Beside their intrinsic interest for the understanding of the physics of turbulence, these results lead to new numerical schemes to be studied in a separate work.

  13. Rotationally adiabatic pair interactions of para- and ortho-hydrogen with the halogen molecules F2, Cl2, and Br2.

    PubMed

    Berg, Matthias; Accardi, Antonio; Paulus, Beate; Schmidt, Burkhard

    2014-08-21

    The present work is concerned with the weak interactions between hydrogen and halogen molecules, i.e., the interactions of pairs H2-X2 with X = F, Cl, Br, which are dominated by dispersion and quadrupole-quadrupole forces. The global minimum of the four-dimensional (4D) coupled cluster with singles and doubles and perturbative triples (CCSD(T)) pair potentials is always a T shaped structure where H2 acts as the hat of the T, with well depths (De) of 1.3, 2.4, and 3.1 kJ/mol for F2, Cl2, and Br2, respectively. MP2/AVQZ results, in reasonable agreement with CCSD(T) results extrapolated to the basis set limit, are used for detailed scans of the potentials. Due to the large difference in the rotational constants of the monomers, in the adiabatic approximation, one can solve the rotational Schrödinger equation for H2 in the potential of the X2 molecule. This yields effective two-dimensional rotationally adiabatic potential energy surfaces where pH2 and oH2 are point-like particles. These potentials for the H2-X2 complexes have global and local minima for effective linear and T-shaped complexes, respectively, which are separated by 0.4-1.0 kJ/mol, where oH2 binds stronger than pH2 to X2, due to higher alignment to minima structures of the 4D-pair potential. Further, we provide fits of an analytical function to the rotationally adiabatic potentials.

  14. Engineered long-range interactions on a 2D array of trapped ions

    NASA Astrophysics Data System (ADS)

    Britton, Joseph W.; Sawyer, Brian C.; Bollinger, John J.; Freericks, James K.

    2014-03-01

    Ising interactions are one paradigm used to model quantum magnetism in condensed matter systems. At NIST Boulder we confine and Doppler laser cool hundreds of 9Be+ ions in a Penning trap. The valence electron of each ion behaves as an ideal spin-1/2 particle and, in the limit of weak radial confinement relative to axial confinement, the ions naturally form a two-dimensional triangular lattice. A variable-range anti-ferromagnetic Ising interaction is engineered with a spin-dependent optical dipole force (ODF) through spin-dependent excitation of collective modes of ion motion. We have also exploited this spin-dependent force to perform spectroscopy and thermometry of the normal modes of the trapped ion crystal. The high spin-count and long-range spin-spin couplings achievable in the NIST Penning trap brings within reach simulation of computationally intractable problems in quantum magnetism. Examples include modeling quantum magnetic phase transitions and propagation of spin correlations resulting from a quantum quench. The Penning system may also be amenable to observation of spin-liquid behavior thought to arise in systems where the underlying lattice structure can frustrate long-range ordering. Supported by DARPA OLE and NIST.

  15. Effect of non-classical current paths in networks of 1-dimensional wires

    NASA Astrophysics Data System (ADS)

    Echternach, P. M.; Mikhalchuk, A. G.; Bozler, H. M.; Gershenson, M. E.; Bogdanov, A. L.; Nilsson, B.

    1996-04-01

    At low temperatures, the quantum corrections to the resistance due to weak localization and electron-electron interaction are affected by the shape and topology of samples. We observed these effects in the resistance of 2D percolation networks made from 1D wires and in a series of long 1D wires with regularly spaced side branches. Branches outside the classical current path strongly reduce the quantum corrections to the resistance and these reductions become a measure of the quantum lengths.

  16. A scaling law for the mixing efficiency in weakly rotating unforced stratified turbulence in the atmosphere and the oceans based on the slowing down of energy transfer to the small scales because of waves

    NASA Astrophysics Data System (ADS)

    Pouquet, A.; Marino, R.; Rosenberg, D. L.; Herbert, C.

    2017-12-01

    We present a simple model for the scaling properties of the flux Richardson number R_f (the ratio of buoyancy flux B to total momentum flux B/[B+ɛ_V]) in weakly rotating unforced stratified flows characterized by their Rossby, Froude and Reynolds numbers Ro, Fr and Re. The model is based on: (i) quasi-equipartition between kinetic and potential modes, because of gravity waves and statistical equilibria; (ii) sub-dominant vertical velocity compared to the rms value of the velocity, U, due to the dominance of two-dimensional modes and the incompressibility condition; and (iii) slowing-down and weakening of the energy transfer to small scales due to eddy-wave interactions in a weak-turbulence temporal framework where the transfer time τ_{transf} is lengthened by the inverse Froude number, namely τ_{transf}=τ_{NL}^2/τ_{w}, τ_{NL}=L/U and τ_{w}=1/N being respectively the eddy turn-over time and the wave (Brunt Vaissala) period, with L a charaacteristic scale. Three regimes in Fr, as for stratified flows, are observed using a large data base: dominant waves, eddy-wave interactions and strong turbulence. In terms of the turbulence intensity (or buoyancy Reynolds number) R_I=ɛ_V/[νN^2], with ν the viscosity and ɛ_V the kinetic energy dissipation rate, these regimes are delimited by R_I˜0.1 and R_I˜280. In the intermediate regime, the phenomenology predicts and the numerical data confirms that a linear growth in Fr is obtained for the effective kinetic energy transfer when compared to its dimensional evaluation U^3/L. Defining the mixing efficiency as Γ_f=R_f/[1-R_f], the model allows for the prediction of the scaling Γ_f˜R_I^{-1/2}, observed previously at high Froude number, but which we also find for the intermediate regime. Thus, Γ_f is not constant, contrary to the classical Osborn model, as also found in several studies without rotation. As turbulence strengthens, smaller buoyancy fluxes point to a decoupling of the velocity and temperature fluctuations, the latter becoming passive and independent of U, and one can recover the same R_I^{-1/2} scaling in the strong turbulence regime as well.

  17. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    DTIC Science & Technology

    2016-06-15

    with end-functionalized polymers . First, an end-functionalized polymer with conjugated end-molecule, pyrene, is successfully employed to boron... polymers . First, an end-functionalized polymer with conjugated end-molecule, pyrenes, is successfully employed to boron nitride nanosheets (BNNS), and...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY

  18. Flow Interactions of Two- and Three-Dimensional Networked Bio-Inspired Control Elements in an In-Line Arrangement.

    PubMed

    Kurt, Melike; Moored, Keith

    2018-04-19

    We present experiments that examine the modes of interaction, the collective performance and the role of three-dimensionality in two pitching propulsors in an in-line arrangement. Both two-dimensional foils and three-dimensional rectangular wings of $AR = 2$ are examined. \\kwm{In contrast to previous work, two interaction modes distinguished as the coherent and branched wake modes are not observed to be directly linked to the propulsive efficiency, although they are linked to peak thrust performance and minimum power consumption as previously described \\cite[]{boschitsch2014propulsive}.} \\kwm{In fact, in closely-spaced propulsors peak propulsive efficiency of the follower occurs near its minimum power and this condition \\kwm{ reveals a} branched wake mode. Alternatively, for propulsors spaced far apart peak propulsive efficiency of the follower occurs near its peak thrust and this condition \\kwm{reveals a} coherent wake mode.} By examining the collective performance, it is discovered that there is an optimal spacing between the propulsors to maximize the collective efficiency. For two-dimensional foils the optimal spacing of $X^* = 0.75$ and the synchrony of $\\phi = 2\\pi /3$ leads to a collective efficiency and thrust enhancement of 50\\% and 32\\%, respectively, as compared to two isolated foils. In comparison, for $AR = 2$ wings the optimal spacing of $X^* = 0.25$ and the synchrony of $\\phi = 7\\pi /6$ leads to a collective efficiency and thrust enhancement of 30\\% and 22\\%, respectively. In addition, at the optimal conditions the collective lateral force coefficients in both the two- and three-dimensional cases are negligible, while operating off these conditions can lead to non-negligible lateral forces. Finally, the peak efficiency of the collective and the follower are shown to have opposite trends with increasing spacing in two- and three-dimensional flows. This is correlated to the breakdown of the impinging vortex on the follower wing in three-dimensions. These results can aid in the design of networked bio-inspired control elements that through integrated sensing can synchronize to three-dimensional flow interactions. © 2018 IOP Publishing Ltd.

  19. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  20. Simulation of plasma double-layer structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2 dimensional particle in cell method. The investigation of planar double layers indicates that these one dimensional potential structures are susceptible to periodic disruption by instabilities in the low potential plasmas. Only a slight increase in the double layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two dimensional double layers also exhibit cyclical instability. A morphological invariance in two dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron beam excited electrostatic electron cyclotron waves and (ion beam driven) solitary waves are present in the plasmas adjacent to the double layers.

  1. Pair aligning improved motility of Quincke rollers.

    PubMed

    Lu, Shi Qing; Zhang, Bing Yue; Zhang, Zhi Chao; Shi, Yan; Zhang, Tian Hui

    2018-06-06

    Density-dependent speed is studied in a two-dimensional active colloid in which the colloidal particles are propelled by an external electric field via a Quincke rotation. Above the critcal electric field, dense dynamic clusters form spotaneously, in which the particles are highly aligned in velocity and move much faster than isolated units. Detailed observations on pair collision reveal that the alignment of velocity is induced by the long-ranged hydrodynamic interactions and the improvement of speed in the clusters arises from pair aligning in which two particles are closely paired and rotate synchronically. In the aligning state, the short-range in-plane dipole-dipole attraction enhances the rotation torque and gives rises to a larger rolling speed. The pair aligning becomes difficult and unstable at high electric field where the normal dipole-dipole repulsion becomes dominant. As a consequence, the dependence of speed on density becomes weak increasingly upon the increase of the electric field. This result offers an interpretation for the discrepancy between our and previous observations on Quincke rollers.

  2. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  3. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Huaming; Yang, Bo; Mao, Xianglei

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  4. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE PAGES

    Hou, Huaming; Yang, Bo; Mao, Xianglei; ...

    2018-05-10

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  5. Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime.

    PubMed

    Palacino-González, Elisa; Gelin, Maxim F; Domcke, Wolfgang

    2017-12-13

    We present a theoretical description of double-pump femtosecond single-molecule signals with fluorescence detection. We simulate these signals in the weak-field regime for a model mimicking a chromophore with a Franck-Condon-active vibrational mode. We establish several signatures of these signals which are characteristic for the weak-field regime. The signatures include the quenching of vibrational beatings by electronic dephasing and a pronounced tilt of the phase-time profiles in the two-dimensional (2D) maps. We study how environment-induced slow modulations of the electronic dephasing and relevant chromophore parameters (electronic energy, orientation, vibrational frequency and relative shift of the potential energy surfaces) affect the signals.

  6. The dimension split element-free Galerkin method for three-dimensional potential problems

    NASA Astrophysics Data System (ADS)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-06-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  7. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    PubMed

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  8. SU(N ) fermions in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Laird, E. K.; Shi, Z.-Y.; Parish, M. M.; Levinsen, J.

    2017-09-01

    We conduct a theoretical study of SU (N ) fermions confined by a one-dimensional harmonic potential. First, we introduce a numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU (N ) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz—derived for a Heisenberg SU(2) spin chain—is extendable to these N -component systems. Lastly, we consider balanced SU (N ) Fermi gases that have an equal number of particles in each spin state for N =2 ,3 ,4 . In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N -component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.

  9. Trapped one-dimensional ideal Fermi gas with a single impurity

    NASA Astrophysics Data System (ADS)

    Astrakharchik, G. E.; Brouzos, I.

    2013-08-01

    Ground-state properties of a single impurity in a one-dimensional Fermi gas are investigated in uniform and trapped geometries. The energy of a trapped system is obtained (i) by generalizing the McGuire expression from a uniform to trapped system (ii) within the local density approximation (iii) using the perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that there is a closed formula based on the exact solution of the homogeneous case which provides a precise estimation for the energy of a trapped system even for a small number of fermions and arbitrary coupling constant of the impurity. Using this expression, we analyze energy contributions from kinetic, interaction, and potential components, as well as spatial properties such as the system size and the pair-correlation function. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.

  10. A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation.

    PubMed

    Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S

    2010-11-01

    A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.

  11. Ordering nanoparticles with polymer brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  12. Enhanced energy transport owing to nonlinear interface interaction

    PubMed Central

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-01-01

    It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363

  13. Ordering nanoparticles with polymer brushes

    DOE PAGES

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-08

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  14. Search for a Scalar Component in the Weak Interaction

    NASA Astrophysics Data System (ADS)

    Zakoucky, Dalibor; Baczyk, Pavel; Ban, Gilles; Beck, Marcus; Breitenfeldt, Martin; Couratin, Claire; Fabian, Xavier; Finlay, Paul; Flechard, Xavier; Friedag, Peter; Glück, Ferenc; Herlert, Alexander; Knecht, Andreas; Kozlov, Valentin; Lienard, Etienne; Porobic, Tomica; Soti, Gergelj; Tandecki, Michael; Vangorp, Simon; Weinheimer, Christian; Wursten, Elise; Severijns, Nathal

    Weak interactions are described by the Standard Model which uses the basic assumption of a pure "V(ector)-A(xial vector)" character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β-decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β-decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed.

  15. Using an innovative multiple regression procedure in a cancer population (Part 1): detecting and probing relationships of common interacting symptoms (pain, fatigue/weakness, sleep problems) as a strategy to discover influential symptom pairs and clusters.

    PubMed

    Francoeur, Richard B

    2015-01-01

    The majority of patients with advanced cancer experience symptom pairs or clusters among pain, fatigue, and insomnia. Improved methods are needed to detect and interpret interactions among symptoms or diesease markers to reveal influential pairs or clusters. In prior work, I developed and validated sequential residual centering (SRC), a method that improves the sensitivity of multiple regression to detect interactions among predictors, by conditioning for multicollinearity (shared variation) among interactions and component predictors. Using a hypothetical three-way interaction among pain, fatigue, and sleep to predict depressive affect, I derive and explain SRC multiple regression. Subsequently, I estimate raw and SRC multiple regressions using real data for these symptoms from 268 palliative radiation outpatients. Unlike raw regression, SRC reveals that the three-way interaction (pain × fatigue/weakness × sleep problems) is statistically significant. In follow-up analyses, the relationship between pain and depressive affect is aggravated (magnified) within two partial ranges: 1) complete-to-some control over fatigue/weakness when there is complete control over sleep problems (ie, a subset of the pain-fatigue/weakness symptom pair), and 2) no control over fatigue/weakness when there is some-to-no control over sleep problems (ie, a subset of the pain-fatigue/weakness-sleep problems symptom cluster). Otherwise, the relationship weakens (buffering) as control over fatigue/weakness or sleep problems diminishes. By reducing the standard error, SRC unmasks a three-way interaction comprising a symptom pair and cluster. Low-to-moderate levels of the moderator variable for fatigue/weakness magnify the relationship between pain and depressive affect. However, when the comoderator variable for sleep problems accompanies fatigue/weakness, only frequent or unrelenting levels of both symptoms magnify the relationship. These findings suggest that a countervailing mechanism involving depressive affect could account for the effectiveness of a cognitive behavioral intervention to reduce the severity of a pain, fatigue, and sleep disturbance cluster in a previous randomized trial.

  16. Effect of Cosmological Neutrinos on Discrimination Between the Two Enantiomers of a Chiral Molecule

    NASA Astrophysics Data System (ADS)

    Bargueño, Pedro; Gonzalo, Isabel

    2006-04-01

    In the framework of an extraterrestrial origin of biological homochirality, universal mechanisms are of particular interest. In this sense we consider the weak parity-violating neutrino-electron interaction through weak charged currents W ± between the relic flux of cosmological neutrinos and the electrons of a chiral molecule. We use the known theoretical result of the split in energy of the two helicity sates of an electron in the cosmic neutrino bath, due to weak charged currents. In the case that electrons of a chiral molecule are submitted to a helicoidal potential due to the nuclear conformation, these electrons have opposite helicities for the two enantiomers of the molecule and consequently the mentioned neutrino-electron interaction would produce a splitting in energy between the two enantiomers. An estimation of this energy for the case of a single electron yields a small value of the order of 10-26 eV. This value results amplified by the contribution of all the molecular electrons having helicity and other possible mechanisms.

  17. (2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model

    NASA Astrophysics Data System (ADS)

    Hoseinzadeh, S.; Rezaei-Aghdam, A.

    2018-06-01

    We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.

  18. Duality of Weak and Strong Scatterer in Luttinger Liquid Coupled to Massless Bosons

    NASA Astrophysics Data System (ADS)

    Galda, Alexey; Yurkevich, Igor; Yevtushenko, Oleg; Lerner, Igor

    2013-03-01

    We study electronic transport in a Luttinger liquid (LL) with an embedded impurity, which is either a weak scatterer (WS) or a weak link (WL), when interacting electrons are coupled to one-dimensional massless bosons (e.g., acoustic phonons). The additional coupling competes with Coulomb interaction changing scaling exponents of various correlation functions. The impurity strength λ and the tunneling amplitude t in the WS and WL limits scale at low energies ɛ as: λ (ɛ) ~λ0ɛ Δws - 1 and t (ɛ) ~t0ɛ Δwl - 1 , correspondingly. We find that the duality relation between the scaling dimensions established for the standard LL, ΔwsΔwl = 1 , holds in the presence of the additional coupling for an arbitrary fixed strength of boson scattering from the impurity. As a result, at low temperatures the system remains either an ideal insulator or an ideal metal, regardless of the scattering strength. However, in the case when electron and boson scattering from the impurity are correlated, the system has a rich phase diagram that includes a metal-insulator transition at some intermediate values of the scattering. Leverhulme grant RPG-380, DFG through SFB TR-12, DoE Office of Science under the Contract No. DEAC02-06CH11357

  19. Dynamic properties of molecular motors in burnt-bridge models

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim N.; Morozov, Alexander Yu; Pronina, Ekaterina; Kolomeisky, Anatoly B.

    2007-08-01

    Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic 'burnt-bridge' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed ('burned') with probability p, providing a bias in the motion of the molecular motor. We present a theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, under general conditions. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links or for very low burning probabilities which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.

  20. Guided-mode interactions in thin films with surface corrugation

    NASA Astrophysics Data System (ADS)

    Seshadri, S. R.

    1994-12-01

    The guided modes in a thin-film planar dielectric waveguide sandwiched between a cover and a substrate (two different dielectrics) are considered. The interface between the cover and the film has a smooth corrugation in the longitudinal direction. For weak corrugations, the guided-mode interactions are investigated using the expansion in terms of ideal normal modes. A corresponding treament is given for the not-so-weak corrugations using the expansion in terms of local normal modes. The coupling coefficients are evaluated and reduced to simple forms. The theories are specialized for the treatment of contradirectional coupling between two guided modes taking place selectively in the neighborhood of the Bragg frequency. The coupled-mode equations governing the contradirectional interaction obtained from the local normal mode expansion procedure, in the limit of weak periodic corrugations, are identical to those deduced directly using the ideal normal mode expansion technique. The treatments for both the transverse electric and the transvers magnetic modes are included.

  1. Exciton-Polariton Dynamics of a Monolayer Semiconductor Coupled to a Microcavity

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.; Cain, Jeffrey D.; Dravid, Vinayak P.

    Strong light-matter interactions, evidenced by exciton-polariton states, have been observed in the two-dimensional limit with monolayer transition metal dichalcogenides (TMDs) embedded in a microcavity. Because of the valley degree of freedom in monolayer TMDs, these hybrid light-matter states can exhibit valley polarization as in a bare monolayer, with strongly-coupled dynamics determined by the relative rates of exciton relaxation and intervalley scattering, which can be highly modified in on-resonant cavities. Here, we test this intuitive picture of the polarized exciton-polariton dynamics with monolayer MoS2 coupled to detuned cavities. Upper and lower polariton branches exhibit distinct decay rates indicative of different cavity dynamics. As with on-resonant, strongly-coupled exciton-polaritons, the weakly-coupled regime causes exciton-polariton valley polarization to persist at room temperature, demonstrating that dynamics of valley-polarized excitations can be controlled by engineering light-matter interactions. This work is supported by the U.S. Department of Energy (BES DE-SC0012130) and the National Science Foundation MRSEC program (DMR-1121262). N.P.S. is an Alfred P. Sloan Research Fellow.

  2. Impact of environment on dynamics of exciton complexes in a WS2 monolayer

    NASA Astrophysics Data System (ADS)

    Jakubczyk, Tomasz; Nogajewski, Karol; Molas, Maciej R.; Bartos, Miroslav; Langbein, Wolfgang; Potemski, Marek; Kasprzak, Jacek

    2018-07-01

    Scientific curiosity to uncover original optical properties and functionalities of atomically thin semiconductors, stemming from unusual Coulomb interactions in the two-dimensional geometry and multi-valley band structure, drives the research on monolayers of transition metal dichalcogenides (TMDs). While recent works ascertained the exotic energetic schemes of exciton complexes in TMDs, we here infer their unusual coherent dynamics occurring on subpicosecond time scale. The dynamics is largely affected by the disorder landscape on the submicron scale, thus can be uncovered using four-wave mixing in the frequency domain, which enables microscopic investigations and imaging. Focusing on a WS2 monolayer, we observe that exciton coherence is lost primarily due to interaction with phonons and relaxation processes towards optically dark excitonic states. Notably, when temperature is low and disorder weak, excitons large coherence volume results in enhanced oscillator strength, allowing to reach the regime of radiatively limited dephasing. Additionally, we observe long valley coherence for the negatively charged exciton complex. We therefore elucidate the crucial role of exciton environment in the TMDs on its dynamics and show that revealed mechanisms are ubiquitous within this family.

  3. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1987-01-01

    Unsteady rotor wake interactions with the empenage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and amount of vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies has been developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interaction of a rotor wake with the flow about a 4:1 elliptic cylinder at 45-deg incidence was calculated for a Reynolds number of 3000.

  4. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    PubMed Central

    Andersen, Tonni Grube; Nintemann, Sebastian J.; Marek, Magdalena; Halkier, Barbara A.; Schulz, Alexander; Burow, Meike

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently of the investigated interactions and thus alleviate these issues. We incorporated our reporters into the widely used split ubiquitin-, bimolecular fluorescence complementation (BiFC)- and Förster resonance energy transfer (FRET)- based methods and investigated different protein-protein interactions in yeast and plants. We demonstrate the functionality of this concept by the analysis of weakly interacting proteins from specialized metabolism in the model plant Arabidopsis thaliana. Our results illustrate that chemically induced dimerization can function as a built-in control for split-based systems that is easily implemented and allows for direct evaluation of functionality. PMID:27282591

  5. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  6. Vortex properties of two-dimensional superconducting Pb films.

    PubMed

    Ning, Y X; Song, C L; Wang, Y L; Chen, Xi; Jia, J F; Xue, Q K; Ma, X C

    2010-02-17

    Using low temperature scanning tunnelling microscopy/spectroscopy (STM/STS) we have investigated the vortex behaviours of two-dimensional superconducting Pb films at different thicknesses. STS at the vortex core shows an evolution of electronic states with film thickness. Transition from the clean limit to the dirty limit of superconductivity is identified, which can be ascribed to the decreased electronic mean free path induced by stronger scattering from the disordered interface at smaller thicknesses. A magnetic field dependent vortex core size is observed even for such a low- κ superconductor. The weak pinning induced by surface defects leads to the formation of a distorted hexagonal vortex lattice.

  7. Particle model for nonlocal heat transport in fusion plasmas.

    PubMed

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  8. (2+1) -dimensional stable spatial Raman solitons

    NASA Astrophysics Data System (ADS)

    Shverdin, M. Y.; Yavuz, D. D.; Walker, D. R.

    2004-03-01

    We analyze the formation, propagation, and interaction of stable two-frequency (2+1) -dimensional solitons, formed in a Raman media driven near maximum molecular coherence. The propagating light is trapped in the two transverse dimensions.

  9. Two-dimensional melting of colloids with long-range attractive interactions.

    PubMed

    Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa

    2017-02-22

    The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.

  10. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    PubMed

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  11. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics

    NASA Astrophysics Data System (ADS)

    Dai, Xiongping; Tang, Xinjia

    2017-11-01

    Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.

  12. Perception of health from facial cues

    PubMed Central

    Henderson, Audrey J.; Holzleitner, Iris J.; Talamas, Sean N.

    2016-01-01

    Impressions of health are integral to social interactions, yet poorly understood. A review of the literature reveals multiple facial characteristics that potentially act as cues to health judgements. The cues vary in their stability across time: structural shape cues including symmetry and sexual dimorphism alter slowly across the lifespan and have been found to have weak links to actual health, but show inconsistent effects on perceived health. Facial adiposity changes over a medium time course and is associated with both perceived and actual health. Skin colour alters over a short time and has strong effects on perceived health, yet links to health outcomes have barely been evaluated. Reviewing suggested an additional influence of demeanour as a perceptual cue to health. We, therefore, investigated the association of health judgements with multiple facial cues measured objectively from two-dimensional and three-dimensional facial images. We found evidence for independent contributions of face shape and skin colour cues to perceived health. Our empirical findings: (i) reinforce the role of skin yellowness; (ii) demonstrate the utility of global face shape measures of adiposity; and (iii) emphasize the role of affect in facial images with nominally neutral expression in impressions of health. PMID:27069057

  13. Temperature-triggered reversible dielectric and nonlinear optical switch based on the one-dimensional organic-inorganic hybrid phase transition compound [C6H11NH3]2CdCl4.

    PubMed

    Liao, Wei-Qiang; Ye, Heng-Yun; Fu, Da-Wei; Li, Peng-Fei; Chen, Li-Zhuang; Zhang, Yi

    2014-10-20

    The one-dimensional organic-inorganic hybrid compound bis(cyclohexylammonium) tetrachlorocadmate(II) (1), in which the adjacent infinite [CdCl4]n(-) chains are connected to each other though Cd···Cl weak interactions to form perovskite-type layers of corner-sharing CdCl6 octahedra separated by cyclohexylammonium cation bilayers, was synthesized. It undergoes two successive structural phase transitions, at 215 and 367 K, which were confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric and second harmonic generation (SHG) measurements. A precise structural analysis discloses that the phase transition at 215 K is induced by the disorder-order transition of cyclohexylammonium cations, while the phase transition at 367 K derives from changes in the relative location of Cd atoms. Emphatically, both the dielectric constant and SHG intensity of 1 show a striking change between low and high states at around 367 K, which reveals that 1 might be considered as a potential dielectric and nonlinear optical (NLO) switch with high-temperature response characterization, excellent reversibility, and obvious change of states.

  14. Nonlinear conductance in weakly disordered mesoscopic wires: Interaction and magnetic field asymmetry

    NASA Astrophysics Data System (ADS)

    Texier, Christophe; Mitscherling, Johannes

    2018-02-01

    We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and =0 ), where ETh=ℏ D /L2 is the Thouless energy of the wire and D the diffusion constant; the small dimensionless factor results from screening, i.e., cannot be obtained within a simple theory for noninteracting electrons. Electronic interactions are also responsible for an asymmetry under magnetic field reversal; the antisymmetric part of the nonlinear conductance (at high magnetic field) being much smaller than the symmetric one, rms (Ga)≃0.001 (gETh) -1 , where g ≫1 is the dimensionless (linear) conductance of the wire. In a weakly coherent wire (i.e., Lφ≪L , where Lφ is the phase coherence length), the nonlinear conductance is of the same order as the result G0 of a free electron calculation (although screening again strongly reduces the dimensionless prefactor); we get G ˜G0˜(Lφ/L ) 7 /2ETh-1 , while the antisymmetric part (at high magnetic field) now behaves as Ga˜(Lφ/L ) 11 /2(gETh) -1≪G . The effect of thermal fluctuations is studied: when the thermal length LT=√{ℏ D /kBT } is the smallest length scale, LT≪Lφ≪L , the free electron result G0˜(LT/L ) 3(Lφ/L ) 1 /2ETh-1 is negligible and the dominant contribution is provided by screening, G ˜(LT/L ) (Lφ/L ) 7 /2ETh-1 ; in this regime, the antisymmetric part is Ga˜(LT/L ) 2(Lφ/L ) 7 /2(gETh) -1 . All the precise dimensionless prefactors are obtained. Crossovers from zero to strong magnetic field regimes are also analyzed.

  15. An improved exceedance theory for combined random stresses

    NASA Technical Reports Server (NTRS)

    Lester, H. C.

    1974-01-01

    An extension is presented of Rice's classic solution for the exceedances of a constant level by a single random process to its counterpart for an n-dimensional vector process. An interaction boundary, analogous to the constant level considered by Rice for the one-dimensional case, is assumed in the form of a hypersurface. The theory for the numbers of boundary exceedances is developed by using a joint statistical approach which fully accounts for all cross-correlation effects. An exact expression is derived for the n-dimensional exceedance density function, which is valid for an arbitrary interaction boundary. For application to biaxial states of combined random stress, the general theory is reduced to the two-dimensional case. An elliptical stress interaction boundary is assumed and the exact expression for the density function is presented. The equations are expressed in a format which facilitates calculating the exceedances by numerically evaluating a line integral. The behavior of the density function for the two-dimensional case is briefly discussed.

  16. Kelvin-wave cascade in the vortex filament model

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Laurie, Jason

    2014-01-01

    The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.

  17. Collision efficiency of water in the unimolecular reaction CH4 (+H2O) ⇆ CH3 + H (+H2O): one-dimensional and two-dimensional solutions of the low-pressure-limit master equation.

    PubMed

    Jasper, Ahren W; Miller, James A; Klippenstein, Stephen J

    2013-11-27

    The low-pressure-limit unimolecular decomposition of methane, CH4 (+M) ⇆ CH3 + H (+M), is characterized via low-order moments of the total energy, E, and angular momentum, J, transferred due to collisions. The low-order moments are calculated using ensembles of classical trajectories, with new direct dynamics results for M = H2O and new results for M = O2 compared with previous results for several typical atomic (M = He, Ne, Ar, Kr) and diatomic (M = H2 and N2) bath gases and one polyatomic bath gas, M = CH4. The calculated moments are used to parametrize three different models of the energy transfer function, from which low-pressure-limit rate coefficients for dissociation, k0, are calculated. Both one-dimensional and two-dimensional collisional energy transfer models are considered. The collision efficiency for M = H2O relative to the other bath gases (defined as the ratio of low-pressure limit rate coefficients) is found to depend on temperature, with, e.g., k0(H2O)/k0(Ar) = 7 at 2000 K but only 3 at 300 K. We also consider the rotational collision efficiency of the various baths. Water is the only bath gas found to fully equilibrate rotations, and only at temperatures below 1000 K. At elevated temperatures, the kinetic effect of "weak-collider-in-J" collisions is found to be small. At room temperature, however, the use of an explicitly two-dimensional master equation model that includes weak-collider-in-J effects predicts smaller rate coefficients by 50% relative to the use of a statistical model for rotations. The accuracies of several methods for predicting relative collision efficiencies that do not require solving the master equation and that are based on the calculated low-order moments are tested. Troe's weak collider efficiency, βc, includes the effect of saturation of collision outcomes above threshold and accurately predicts the relative collision efficiencies of the nine baths. Finally, a brief discussion is presented of mechanistic details of the energy transfer process, as inferred from the trajectories.

  18. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  19. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2016-08-01

    We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.

  20. 4-Benzyl-4-ethyl-morpholin-1-ium hexa-fluoro-phosphate.

    PubMed

    Yang, Fang; Zang, Hongjun; Cheng, Bowen; Xu, Xianlin; Ren, Yuanlin

    2012-03-01

    The asymmetric unit of the title compound, C(13)H(20)NO(+)·PF(6) (-), contains two cations, one complete anion and two half hexa-fluoro-phosphate anions having crystallographically imposed twofold rotation symmetry. In the cations, the morpholine rings are in a chair conformation. In the crystal, ions are linked by weak C-H⋯F hydrogen bonds into a three-dimensional network.

  1. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  2. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection.

    PubMed

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-08-28

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application.

  3. Non-Gaussian information from weak lensing data via deep learning

    NASA Astrophysics Data System (ADS)

    Gupta, Arushi; Matilla, José Manuel Zorrilla; Hsu, Daniel; Haiman, Zoltán

    2018-05-01

    Weak lensing maps contain information beyond two-point statistics on small scales. Much recent work has tried to extract this information through a range of different observables or via nonlinear transformations of the lensing field. Here we train and apply a two-dimensional convolutional neural network to simulated noiseless lensing maps covering 96 different cosmological models over a range of {Ωm,σ8} . Using the area of the confidence contour in the {Ωm,σ8} plane as a figure of merit, derived from simulated convergence maps smoothed on a scale of 1.0 arcmin, we show that the neural network yields ≈5 × tighter constraints than the power spectrum, and ≈4 × tighter than the lensing peaks. Such gains illustrate the extent to which weak lensing data encode cosmological information not accessible to the power spectrum or even other, non-Gaussian statistics such as lensing peaks.

  4. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  5. Magneto-photoconductivity of three dimensional topological insulator bismuth telluride

    NASA Astrophysics Data System (ADS)

    Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2018-03-01

    Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.

  6. Band Formation and Ocean-Surface Interaction on Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Howell, Samuel M.; Pappalardo, Robert T.

    2018-05-01

    Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bougamont, M.; Christoffersen, P.; Price, S. F.

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  8. Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures.

    PubMed

    Gamucci, A; Spirito, D; Carrega, M; Karmakar, B; Lombardo, A; Bruna, M; Pfeiffer, L N; West, K W; Ferrari, A C; Polini, M; Pellegrini, V

    2014-12-19

    Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies. Here we report a new class of heterostructures comprising a single-layer (or bilayer) graphene in close proximity to a quantum well created in GaAs and supporting a high-mobility two-dimensional electron gas. In our devices, graphene is naturally hole-doped, thereby allowing for the investigation of electron-hole interactions. We focus on the Coulomb drag transport measurements, which are sensitive to many-body effects, and find that the Coulomb drag resistivity significantly increases for temperatures <5-10 K. The low-temperature data follow a logarithmic law, therefore displaying a notable departure from the ordinary quadratic temperature dependence expected in a weakly correlated Fermi-liquid. This anomalous behaviour is consistent with the onset of strong interlayer correlations. Our heterostructures represent a new platform for the creation of coherent circuits and topologically protected quantum bits.

  9. Acoustically Generated Flows in Flexural Plate Wave Sensors: a Multifield Analysis

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin; Farouk, Bakhtier

    2011-11-01

    Acoustically excited flows in a microchannel flexural plate wave device are explored numerically with a coupled solid-fluid mechanics model. The device can be exploited to integrate micropumps with microfluidic chips. A comprehensive understanding of the device requires the development of coupled two or three-dimensional fluid structure interactive (FSI) models. The channel walls are composed of layers of ZnO, Si3N4 and Al. An isothermal equation of state for the fluid (water) is employed. The flexural motions of the channel walls and the resulting flowfields are solved simultaneously. A parametric analysis is performed by varying the values of the driving frequency, voltage of the electrical signal and the channel height. The time averaged axial velocity is found to be proportional to the square of the wave amplitude. The present approach is superior to the method of successive approximations where the solid-liquid coupling is weak.

  10. Orphenadrinium picrate picric acid.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B P; Yathirajan, H S; Narayana, B

    2010-02-24

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl-phen-yl)phenyl-meth-oxy]ethanaminium picrate picric acid, C(18)H(24)NO(+)·C(6)H(2)N(3)O(7) (-)·C(6)H(3)N(3)O(7), contains one orphenadrinium cation, one picrate anion and one picric acid mol-ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra-molecular O-H⋯O hydrogen bond in the picric acid mol-ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol-ecules are connected by strong inter-molecular N-H⋯O hydrogen bonds, π⋯π inter-actions between the benzene rings of cations and anions [centroid-centroid distance = 3.5603 (9) Å] and weak C-H⋯O hydrogen bonds, forming a three-dimensional network.

  11. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae

    2016-04-27

    The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics.

  12. Stably Stratified Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Mahrt, L.

    2014-01-01

    Atmospheric boundary layers with weak stratification are relatively well described by similarity theory and numerical models for stationary horizontally homogeneous conditions. With common strong stratification, similarity theory becomes unreliable. The turbulence structure and interactions with the mean flow and small-scale nonturbulent motions assume a variety of scenarios. The turbulence is intermittent and may no longer fully satisfy the usual conditions for the definition of turbulence. Nonturbulent motions include wave-like motions and solitary modes, two-dimensional vortical modes, microfronts, intermittent drainage flows, and a host of more complex structures. The main source of turbulence may not be at the surface, but rather may result from shear above the surface inversion. The turbulence is typically not in equilibrium with the nonturbulent motions, sometimes preventing the formation of an inertial subrange. New observational and analysis techniques are expected to advance our understanding of the very stable boundary layer.

  13. Electrons in Flatland

    NASA Astrophysics Data System (ADS)

    MacDonald, Allan

    2007-04-01

    Like the classical squares and triangles in Edwin Abbott's 19th century social satire and science fiction novel Flatland, electrons and other quantum particles behave differently when confined to a two-dimensional world. Condensed matter physicists have been intrigued and regularly suprised by two-dimensional electron systems since they were first studied in semiconductor field-effect-transistor devices over forty years ago. I will discuss some important milestones in the study of two-dimensional electrn systems, from the discoveries of the integer and fractional quantum Hall effects in the 1980's to recent quantum Hall effect work on quasiparticles with non-Abelian quantum statistics. Special attention will be given to a new electronic Flatland that has risen to prominence recently, graphene, which consists of a single sheet of carbon atoms in a honeycomb lattice arrangement. Graphene provides a realization of two-dimensional massless Dirac fermions which interact via nearly instantaneous Coulomb interactions. Early research on graphene has demonstrated yet again that Flatland exceeds expectations.

  14. Electron-phonon interaction in efficient perovskite blue emitters

    NASA Astrophysics Data System (ADS)

    Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.

    2018-06-01

    Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.

  15. Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material

    NASA Astrophysics Data System (ADS)

    Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.

    2018-04-01

    Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.

  16. Molecular ping-pong Game of Life on a two-dimensional DNA origami array.

    PubMed

    Jonoska, N; Seeman, N C

    2015-07-28

    We propose a design for programmed molecular interactions that continuously change molecular arrangements in a predesigned manner. We introduce a model where environmental control through laser illumination allows platform attachment/detachment oscillations between two floating molecular species. The platform is a two-dimensional DNA origami array of tiles decorated with strands that provide both, the floating molecular tiles to attach and to pass communicating signals to neighbouring array tiles. In particular, we show how algorithmic molecular interactions can control cyclic molecular arrangements by exhibiting a system that can simulate the dynamics similar to two-dimensional cellular automata on a DNA origami array platform. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    NASA Technical Reports Server (NTRS)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  18. Syntheses, crystal structures, and properties of four coordination polymers based on mixed multi-N donor and polycarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong

    2018-02-01

    Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.

  19. Ewald sums for Yukawa potentials in quasi-two-dimensional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazars, Martial

    2007-02-07

    In this article, the author derive Ewald sums for Yukawa potential for three-dimensional systems with two-dimensional periodicity. This sums are derived from the Ewald sums for Yukawa potentials with three-dimensional periodicity [G. Salin and J.-M. Caillol, J. Chem. Phys.113, 10459 (2000)] by using the method proposed by Parry for the Coulomb interactions [D. E. Parry, Surf. Sci.49, 433 (1975); 54, 195 (1976)].

  20. Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

    NASA Astrophysics Data System (ADS)

    Barfknecht, R. E.; Foerster, A.; Zinner, N. T.

    2018-05-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.

  1. The construction of open Gd(III) metal-organic frameworks based on methanetriacetic acid: new objects with an old ligand.

    PubMed

    Cañadillas-Delgado, Laura; Martín, Tomás; Fabelo, Oscar; Pasán, Jorge; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2010-04-06

    The preparation, X-ray crystallography and magnetic investigation of the first examples of methanetriacetate (mta)-containing lanthanide(III) complexes of formulae [Gd(mta)(H(2)O)(3)](n)4 n H(2)O (1) [Gd(mta)(H(2)O)(3)](n)2 n H(2)O (2) and [Gd(2)(mta)(2)(H(2)O)(2)](n)2 n H(2)O (3) are described herein. This tripodal ligand promotes the formation of 6(3) networks; thus 1 consists of a honeycomb structure, whereas in 2 two of these layers are condensed to form a rare five-connected two-dimensional (4(8)6(2)) network. Compound 3 can be seen as an aggregation of 6(3) layers leading to a three-dimensional (6,6)-connected binodal (4(12)6(3))(4(9)6(6))-nia net, in which the gadolinium(III) ions and the mta ligands act as octahedral and as trigonal prismatic nodes, respectively. The magnetic properties of 1-3 were investigated in the temperature range 1.9-300 K. A close fit to the Curie law (1) and weak either antiferro- [J=-0.0063(1) cm(-1) (2)] or ferromagnetic [J=+0.0264(6) cm(-1) (3)] interactions between the Gd(III) ions are observed; the different exchange pathways involved [extended tris-bidentate mta (1) and mu-O(1);kappa(2)O(1),O(2) (2 and 3) plus single syn-syn carboxylate-mta (3)] accounting for these magnetic features. The nature and magnitude of the magnetic interactions, between the Gd(III) ions in 1-3, agree with the small amount of data existing in the literature for these kind of bridges.

  2. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.

    PubMed

    Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng

    2015-12-21

    The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.

  3. Quantum-interference transport through surface layers of indium-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong

    2013-06-01

    We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a ‘core-shell-like structure’ in individual IZO NWs, where an outer shell of thickness t (≃15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (

  4. Quantum-interference transport through surface layers of indium-doped ZnO nanowires.

    PubMed

    Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong

    2013-06-21

    We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a 'core-shell-like structure' in individual IZO NWs, where an outer shell of thickness t (~15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (

  5. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  6. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.

    PubMed

    Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia

    2018-03-26

    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.

  7. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  8. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Computational study of the interaction between a shock and a near-wall vortex using a weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Zhifeng; Maekawa, Hiroshi

    2014-02-01

    The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.

  10. Lobster eye X-ray optics: Data processing from two 1D modules

    NASA Astrophysics Data System (ADS)

    Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Hudec, R.

    2017-07-01

    The X-ray imaging is usually done by Wolter I telescopes. They are suitable for imaging of a small part of the sky, not for all-sky monitoring. This monitoring could be done by a Lobster eye optics which can theoretically have a field of view up to 360 deg. All sky monitoring system enables a quick identification of source and its direction. This paper describes the possibility of using two independent one-dimensional Lobster Eye modules for this purpose instead of Wolter I and their post-processing into an 2D image. This arrangement allows scanning with less energy loss compared to Wolter I or two-dimensional Lobster Eye optics. It is most suitable especially for very weak sources.

  11. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.

    PubMed

    Misra, R D K; Depan, D; Shah, J

    2013-08-21

    The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.

  12. Epitaxial hexagonal boron nitride on Ir(111): A work function template

    NASA Astrophysics Data System (ADS)

    Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K.; Demonchaux, Thomas; Seitsonen, Ari P.; Liljeroth, Peter

    2014-06-01

    Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir(111) surface results in the formation of a moiré superstructure with a periodicity of ˜29 Å and a corrugation of ˜0.4 Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ˜0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.

  13. Searching for effective forces in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Puckett, James G.; Kelley, Douglas H.; Ouellette, Nicholas T.

    2014-04-01

    Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.

  14. Using an innovative multiple regression procedure in a cancer population (Part 1): detecting and probing relationships of common interacting symptoms (pain, fatigue/weakness, sleep problems) as a strategy to discover influential symptom pairs and clusters

    PubMed Central

    Francoeur, Richard B

    2015-01-01

    Background The majority of patients with advanced cancer experience symptom pairs or clusters among pain, fatigue, and insomnia. Improved methods are needed to detect and interpret interactions among symptoms or diesease markers to reveal influential pairs or clusters. In prior work, I developed and validated sequential residual centering (SRC), a method that improves the sensitivity of multiple regression to detect interactions among predictors, by conditioning for multicollinearity (shared variation) among interactions and component predictors. Materials and methods Using a hypothetical three-way interaction among pain, fatigue, and sleep to predict depressive affect, I derive and explain SRC multiple regression. Subsequently, I estimate raw and SRC multiple regressions using real data for these symptoms from 268 palliative radiation outpatients. Results Unlike raw regression, SRC reveals that the three-way interaction (pain × fatigue/weakness × sleep problems) is statistically significant. In follow-up analyses, the relationship between pain and depressive affect is aggravated (magnified) within two partial ranges: 1) complete-to-some control over fatigue/weakness when there is complete control over sleep problems (ie, a subset of the pain–fatigue/weakness symptom pair), and 2) no control over fatigue/weakness when there is some-to-no control over sleep problems (ie, a subset of the pain–fatigue/weakness–sleep problems symptom cluster). Otherwise, the relationship weakens (buffering) as control over fatigue/weakness or sleep problems diminishes. Conclusion By reducing the standard error, SRC unmasks a three-way interaction comprising a symptom pair and cluster. Low-to-moderate levels of the moderator variable for fatigue/weakness magnify the relationship between pain and depressive affect. However, when the comoderator variable for sleep problems accompanies fatigue/weakness, only frequent or unrelenting levels of both symptoms magnify the relationship. These findings suggest that a countervailing mechanism involving depressive affect could account for the effectiveness of a cognitive behavioral intervention to reduce the severity of a pain, fatigue, and sleep disturbance cluster in a previous randomized trial. PMID:25565865

  15. Neutron Measurements and the Weak Nucleon-Nucleon Interaction

    PubMed Central

    Snow, W. M.

    2005-01-01

    The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120

  16. Numerical simulation and analysis of the flow in a two-staged axial fan

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.

    2016-05-01

    In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.

  17. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O;κ3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    PubMed

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  18. Symmetry breaking motion of a vortex pair in a driven cavity

    NASA Astrophysics Data System (ADS)

    McHugh, John; Osman, Kahar; Farias, Jason

    2002-11-01

    The two-dimensional driven cavity problem with an anti-symmetric sinusoidal forcing has been found to exhibit a subcritical symmetry breaking bifurcation (Farias and McHugh, Phys. Fluids, 2002). Equilibrium solutions are either a symmetric vortex pair or an asymmetric motion. The asymmetric motion is an asymmetric vortex pair at low Reynolds numbers, but merges into a three vortex motion at higher Reynolds numbers. The asymmetric solution is obtained by initiating the flow with a single vortex centered in the domain. Symmetric motion is obtained with no initial vortex, or weak initial vortex. The steady three-vortex motion occurs at a Reynolds number of approximately 3000, where the symmetric vortex pair has already gone through a Hopf bifurcation. Further two-dimensional results show that forcing with two full oscillations across the top of the cavity results in two steady vortex motions, depending on initial conditions. Three-dimensional results have even more steady solutions. The results are computational and theoretical.

  19. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D.

    2017-06-01

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s -wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as CuxBi2Se3 , is discussed.

  20. Secondary interactions in thallium(I) coordination, [Tl 2(DBM) 2] n, DBM - = 1,3-diphenylpropane-1,3-dionate (dibenzoylmethanide)

    NASA Astrophysics Data System (ADS)

    Askarinejad, Azadeh; Morsali, Ali; Zhu, Long-Guan

    2006-05-01

    The Tl I complex of 1,3-diphenylpropane-1,3-dionate (dibenzoylmethanide, DBM -), [Tl 2(DBM) 2] n, has been synthesized and characterized. The single-crystal X-ray data show there are two different Tl environments. One type of Tl-atom in the TlO 4C 6Tl 2 environment is twelve-coordinated, with two weak Tl⋯Tl and hexahapto ( η) interactions, TlC 6. The other type of Tl-atom in the TlO 4C 2Tl 2 units is eight-coordinated, with two weak Tl⋯Tl and dihapto ( η) interactions, TlC 2. The dimeric units [Tl 2(DBM) 2] linked through Tl⋯Tl and polyhapto interactions, TlC 6 and TlC 2, and produce the 1D polymeric chains. Comparison with the analogous Pb(II) compound indicates that Tl I may also act as both a Lewis acid and a Lewis base.

Top