Sample records for weakly nonlinear stability

  1. Nonlinear Instability of Hypersonic Flow past a Wedge

    NASA Technical Reports Server (NTRS)

    Seddougui, Sharon O.; Bassom, Andrew P.

    1991-01-01

    The nonlinear stability of a compressible flow past a wedge is investigated in the hypersonic limit. The analysis follows the ideas of a weakly nonlinear approach. Interest is focussed on Tollmien-Schlichting waves governed by a triple deck structure and it is found that the attached shock can profoundly affect the stability characteristics of the flow. In particular, it is shown that nonlinearity tends to have a stabilizing influence. The nonlinear evolution of the Tollmien-Schlichting mode is described in a number of asymptotic limits.

  2. The near optimality of the stabilizing control in a weakly nonlinear system with state-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Dmitriev, Mikhail G.; Makarov, Dmitry A.

    2016-08-01

    We carried out analysis of near optimality of one computationally effective nonlinear stabilizing control built for weakly nonlinear systems with coefficients depending on the state and the formal small parameter. First investigation of that problem was made in [M. G. Dmitriev, and D. A. Makarov, "The suboptimality of stabilizing regulator in a quasi-linear system with state-depended coefficients," in 2016 International Siberian Conference on Control and Communications (SIBCON) Proceedings, National Research University, Moscow, 2016]. In this paper, another optimal control and gain matrix representations were used and theoretical results analogous to cited work above were obtained. Also as in the cited work above the form of quality criterion on which this close-loop control is optimal was constructed.

  3. Simulation of Nonlinear Instabilities in an Attachment-Line Boundary Layer

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1996-01-01

    The linear and the nonlinear stability of disturbances that propagate along the attachment line of a three-dimensional boundary layer is considered. The spatially evolving disturbances in the boundary layer are computed by direct numerical simulation (DNS) of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced either by forcing at the in ow or by applying suction and blowing at the wall. Quasi-parallel linear stability theory and a nonparallel theory yield notably different stability characteristics for disturbances near the critical Reynolds number; the DNS results con rm the latter theory. Previously, a weakly nonlinear theory and computations revealed a high wave-number region of subcritical disturbance growth. More recent computations have failed to achieve this subcritical growth. The present computational results indicate the presence of subcritically growing disturbances; the results support the weakly nonlinear theory. Furthermore, an explanation is provided for the previous theoretical and computational discrepancy. In addition, the present results demonstrate that steady suction can be used to stabilize disturbances that otherwise grow subcritically along the attachment line.

  4. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates

    NASA Astrophysics Data System (ADS)

    Eshmatov, B. Kh.

    2007-03-01

    This paper describes the analyses of the nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates. The models are based on the Kirchhoff-Love (K.L.) hypothesis and Reissner-Mindlin (R.M.) generalized theory (with the incorporation of shear deformation and rotatory inertia) in geometrically nonlinear statements. It provides justification for the choice of the weakly singular Koltunov-Rzhanitsyn type kernel, with three rheological parameters. In addition, the implication of each relaxation kernel parameter has been studied. To solve problems of viscoelastic systems with weakly singular kernels of relaxation, a numerical method has been used, based on quadrature formulae. With a combination of the Bubnov-Galerkin and the presented method, problems of nonlinear vibrations and dynamic stability in viscoelastic orthotropic rectangular plates have been solved, according to the K.L. and R.M. hypotheses. A comparison of the results obtained via these theories is also presented. In all problems, the convergence of the Bubnov-Galerkin method has been investigated. The implications of material viscoelasticity on vibration and dynamic stability are presented graphically.

  5. Stability of matter-wave solitons in optical lattices

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Golam; Roy, S. K.; Talukdar, B.

    2010-08-01

    We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.

  6. A coupled electro-thermal Discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Homsi, L.; Geuzaine, C.; Noels, L.

    2017-11-01

    This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential equations of coupled electro-thermal problems. In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a Discontinuous Galerkin method. The existence and uniqueness of the weak form solution are proved. The numerical properties of the nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e. use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.

  7. Nonlinear interactions in mixing layers and compressible heated round jets. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Jarrah, Yousef Mohd

    1989-01-01

    The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. In the second part, the weakly nonlinear theory is extended to heated (or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbance is also studied by solving the initial value problem and then examining the behavior of the long-time solution.

  8. When linear stability does not exclude nonlinear instability

    DOE PAGES

    Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.

    2015-05-29

    We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less

  9. Bivariate spline solution of time dependent nonlinear PDE for a population density over irregular domains.

    PubMed

    Gutierrez, Juan B; Lai, Ming-Jun; Slavov, George

    2015-12-01

    We study a time dependent partial differential equation (PDE) which arises from classic models in ecology involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence analysis of the algorithm is presented. We present some simulations of population development over some irregular domains. Finally, we discuss applications in epidemiology and other ecological problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cross-Diffusion Driven Instability for a Lotka-Volterra Competitive Reaction-Diffusion System

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2008-04-01

    In this work we investigate the possibility of the pattern formation for a reaction-diffusion system with nonlinear diffusion terms. Through a linear stability analysis we find the conditions which allow a homogeneous steady state (stable for the kinetics) to become unstable through a Turing mechanism. In particular, we show how cross-diffusion effects are responsible for the initiation of spatial patterns. Finally, we find a Fisher amplitude equation which describes the weakly nonlinear dynamics of the system near the marginal stability.

  11. Nonlinear stability of Halley comethosheath with transverse plasma motion

    NASA Technical Reports Server (NTRS)

    Srivastava, Krishna M.; Tsurutani, Bruce T.

    1994-01-01

    Weakly nonlinear Magneto Hydrodynamic (MHD) stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.

  12. Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K_2ZnCl_4 salt solution

    DOE PAGES

    Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma; ...

    2017-01-01

    We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less

  13. Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K_2ZnCl_4 salt solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma

    We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less

  14. Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Vakakis, Alexander F.; Cetinkaya, Cetin

    1993-02-01

    The free oscillations of n-degree-of-freedom (DOF) nonlinear systems with cyclic symmetry and weak coupling between substructures are examined. An asymptotic methodology is used to detect localized nonsimilar normal modes, i.e., free periodic motions spatially confined to only a limited number of substructures of the cyclic system. It is shown that nonlinear mode localization occurs in the perfectly symmetric, weakly coupled structure, in contrast to linear mode localization, which exists only in the presence of substructure 'mistuning'. In addition to the localized modes, nonlocalized modes are also found in the weakly coupled system. The stability of the identified modes is investigated by means of an approximate two-timing averaging mothodology, and the general theory is applied to the case of a cyclic system with three-DOF. The theoretical results are then verified by direct numerical integrations of the equations of motion.

  15. Stability of discrete time recurrent neural networks and nonlinear optimization problems.

    PubMed

    Singh, Jayant; Barabanov, Nikita

    2016-02-01

    We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of these essentially nonlinear systems produce rather weak results. The method mentioned above is proved to be more powerful. It involves a multi-step procedure with maximization of special nonconvex functions over polytopes on every step. We derive conditions which guarantee an existence of at most one point of local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of neuron transfer functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nonlinear Wavelength Selection in Surface Faceting under Electromigration

    NASA Astrophysics Data System (ADS)

    Barakat, Fatima; Martens, Kirsten; Pierre-Louis, Olivier

    2012-08-01

    We report on the control of the faceting of crystal surfaces by means of surface electromigration. When electromigration reinforces the faceting instability, we find perpetual coarsening with a wavelength increasing as t1/2. For strongly stabilizing electromigration, the surface is stable. For weakly stabilizing electromigration, a cellular pattern is obtained, with a nonlinearly selected wavelength. The selection mechanism is not caused by an instability of steady states, as suggested by previous works in the literature. Instead, the dynamics is found to exhibit coarsening before reaching a continuous family of stable nonequilibrium steady states.

  17. Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques

    NASA Astrophysics Data System (ADS)

    Somov, Yevgeny

    2014-12-01

    Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov function method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.

  18. On the instability of a three-dimensional attachment-line boundary layer - Weakly nonlinear theory and a numerical approach

    NASA Technical Reports Server (NTRS)

    Hall, P.; Malik, M. R.

    1986-01-01

    The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier-Stokes equations for the attachment-line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.

  19. On the instability of a 3-dimensional attachment line boundary layer: Weakly nonlinear theory and a numerical approach

    NASA Technical Reports Server (NTRS)

    Hall, P.; Malik, M. R.

    1984-01-01

    The instability of a three dimensional attachment line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time dependent Navier-Stokes equations for the attachment line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment line boundary layer is also investigated.

  20. Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, Yevgeny, E-mail: e-somov@mail.ru

    Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov functionmore » method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.« less

  1. L(2) stability for weak solutions of the Navier-Stokes equations in R(3)

    NASA Astrophysics Data System (ADS)

    Secchi, P.

    1985-11-01

    We consider the motion of a viscous fluid filling the whole space R3, governed by the classical Navier-Stokes equations (1). Existence of global (in time) regular solutions for that system of non-linear partial differential equations is still an open problem. Up to now, the only available global existence theorem (other than for sufficiently small initial data) is that of weak (turbulent) solutions. From both the mathematical and the physical point of view, an interesting property is the stability of such weak solutions. We assume that v(t,x) is a solution, with initial datum vO(x). We suppose that the initial datum is perturbed and consider one weak solution u corresponding to the new initial velocity. Then we prove that, due to viscosity, the perturbed weak solution u approaches in a suitable norm the unperturbed one, as time goes to + infinity, without smallness assumptions on the initial perturbation.

  2. Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Brandão, Rodolfo; Dias, Eduardo O.; Miranda, José A.

    2018-03-01

    We present a weakly nonlinear theory for the development of fingering instabilities that arise at the interface between two immiscible viscous fluids flowing radially outward in a uniform three-dimensional (3D) porous medium. By employing a perturbative second-order mode-coupling scheme, we investigate the linear stability of the system as well as the emergence of intrinsically nonlinear finger branching events in this 3D environment. At the linear stage, we find several differences between the 3D radial fingering and its 2D counterpart (usual Saffman-Taylor flow in radial Hele-Shaw cells). These include the algebraic growth of disturbances and the existence of regions of absolute stability for finite values of viscosity contrast and capillary number in the 3D system. On the nonlinear level, our main focus is to get analytical insight into the physical mechanism resulting in the occurrence of finger tip-splitting phenomena. In this context, we show that the underlying mechanism leading to 3D tip splitting relies on the coupling between the fundamental interface modes and their first harmonics. However, we find that in three dimensions, in contrast to the usual 2D fingering structures normally encountered in radial Hele-Shaw flows, tip splitting into three branches can also be observed.

  3. On the nonlinear stability of the unsteady, viscous flow of an incompressible fluid in a curved pipe

    NASA Technical Reports Server (NTRS)

    Shortis, Trudi A.; Hall, Philip

    1995-01-01

    The stability of the flow of an incompressible, viscous fluid through a pipe of circular cross-section curved about a central axis is investigated in a weakly nonlinear regime. A sinusoidal pressure gradient with zero mean is imposed, acting along the pipe. A WKBJ perturbation solution is constructed, taking into account the need for an inner solution in the vicinity of the outer bend, which is obtained by identifying the saddle point of the Taylor number in the complex plane of the cross-sectional angle co-ordinate. The equation governing the nonlinear evolution of the leading order vortex amplitude is thus determined. The stability analysis of this flow to periodic disturbances leads to a partial differential system dependent on three variables, and since the differential operators in this system are periodic in time, Floquet theory may be applied to reduce this system to a coupled infinite system of ordinary differential equations, together with homogeneous uncoupled boundary conditions. The eigenvalues of this system are calculated numerically to predict a critical Taylor number consistent with the analysis of Papageorgiou. A discussion of how nonlinear effects alter the linear stability analysis is also given, and the nature of the instability determined.

  4. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  5. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  6. Weak variations of Lipschitz graphs and stability of phase boundaries

    NASA Astrophysics Data System (ADS)

    Grabovsky, Yury; Kucher, Vladislav A.; Truskinovsky, Lev

    2011-03-01

    In the case of Lipschitz extremals of vectorial variational problems, an important class of strong variations originates from smooth deformations of the corresponding non-smooth graphs. These seemingly singular variations, which can be viewed as combinations of weak inner and outer variations, produce directions of differentiability of the functional and lead to singularity-centered necessary conditions on strong local minima: an equality, arising from stationarity, and an inequality, implying configurational stability of the singularity set. To illustrate the underlying coupling between inner and outer variations, we study in detail the case of smooth surfaces of gradient discontinuity representing, for instance, martensitic phase boundaries in non-linear elasticity.

  7. Vortex-soliton complexes in coupled nonlinear Schrödinger equations with unequal dispersion coefficients.

    PubMed

    Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A

    2016-08-01

    We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.

  8. The effects of suction on the nonlinear stability of the three-dimensional boundary layer above a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Seddougui, Sharon O.

    1991-01-01

    There exist two types of stationary instability of the flow over a rotating disc corresponding to the upper branch, inviscid mode and the lower branch mode, which has a triple deck structure, of the neutral stability curve. A theoretical study of the linear problem and an account of the weakly nonlinear properties of the lower branch modes have been undertaken by Hall and MacKerrell respectively. Motivated by recent reports of experimental sightings of the lower branch mode and an examination of the role of suction on the linear stability properties of the flow here, the effects are studied of suction on the nonlinear disturbance described by MacKerrell. The additional analysis required in order to incorporate suction is relatively straightforward and enables the derivation of an amplitude equation which describes the evolution of the mode. For each value of the suction, a threshold value of the disturbance amplitude is obtained; modes of size greater than this threshold grow without limit as they develop away from the point of neutral stability.

  9. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  10. Propagation of electromagnetic soliton in a spin polarized current driven weak ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, V.; Kavitha, L.; Gopi, D.

    2017-11-01

    We investigate the nonlinear spin dynamics of a spin polarized current driven anisotropic ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction (DMI) under the influence of electromagnetic wave (EMW) propagating along the axis of the nanowire. The magnetization dynamics and electromagnetic wave propagation in the ferromagnetic nanowire with weak anti-symmetric interaction is governed by a coupled vector Landau-Lifshitz-Gilbert and Maxwell's equations. These coupled nonlinear vector equations are recasted into the extended derivative nonlinear Schrödinger (EDNLS) equation in the framework of reductive perturbation method. As it is well known, the modulational instability is a precursor for the emergence of localized envelope structures of various kinds, we compute the instability criteria for the weak ferromagnetic nanowire through linear stability analysis. Further, we invoke the homogeneous balance method to construct kink and anti-solitonic like electromagnetic (EM) soliton profiles for the EDNLS equation. We also explore the appreciable effect of the anti-symmetric weak interaction on the magnetization components of the propagating EM soliton. We find that the combination of spin-polarized current and the anti-symmetric DMI have a profound effect on the propagating EMW in a weak ferromagnetic nanowire. Thus, the anti-symmetric DMI in a spin polarized current driven ferromagnetic nanowire supports the lossless propagation of EM solitons, which may have potential applications in magnetic data storage devices.

  11. Corrections to the Eckhaus' stability criterion for one-dimensional stationary structures

    NASA Astrophysics Data System (ADS)

    Malomed, B. A.; Staroselsky, I. E.; Konstantinov, A. B.

    1989-01-01

    Two amendments to the well-known Eckhaus' stability criterion for small-amplitude non-linear structures generated by weak instability of a spatially uniform state of a non-equilibrium one-dimensional system against small perturbations with finite wavelengths are obtained. Firstly, we evaluate small corrections to the main Eckhaus' term which, on the contrary so that term, do not have a universal form. Comparison of those non-universal corrections with experimental or numerical results gives a possibility to select a more relevant form of an effective nonlinear evolution equation. In particular, the comparison with such results for convective rolls and Taylor vortices gives arguments in favor of the Swift-Hohenberg equation. Secondly, we derive an analog of the Eckhaus criterion for systems degenerate in the sense that in an expansion of their non-linear parts in powers of dynamical variables, the second and third degree terms are absent.

  12. Falling films on flexible inclines

    NASA Astrophysics Data System (ADS)

    Matar, O. K.; Craster, R. V.; Kumar, S.

    2007-11-01

    The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.

  13. Direct Simulation of Evolution and Control of Nonlinear Instabilities in Attachment-Line Boundary Layers

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    2004-01-01

    The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.

  14. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  15. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  16. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.

    PubMed

    Oliveira, Rafael M; Miranda, José A; Leandro, Eduardo S G

    2008-01-01

    The response of a ferrofluid droplet to a radial magnetic field is investigated, when the droplet is confined in a Hele-Shaw cell. We study how the stability properties of the interface and the shape of the emerging patterns react to the action of the magnetic field. At early linear stages, it is found that the radial field is destabilizing and determines the growth of fingering structures at the interface. In the weakly nonlinear regime, we have verified that the magnetic field favors the formation of peaked patterned structures that tend to become sharper and sharper as the magnitude of the magnetic effects is increased. A more detailed account of the pattern morphology is provided by the determination of nontrivial exact stationary solutions for the problem with finite surface tension. These solutions are obtained analytically and reveal the development of interesting polygon-shaped and starfishlike patterns. For sufficiently large applied fields or magnetic susceptibilities, pinch-off phenomena are detected, tending to occur near the fingertips. We have found that the morphological features obtained from the exact solutions are consistent with our linear and weakly nonlinear predictions. By contrasting the exact solutions for ferrofluids under radial field with those obtained for rotating Hele-Shaw flows with ordinary nonmagnetic fluids, we deduce that they coincide in the limit of very small susceptibilities.

  17. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.

    PubMed

    Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  18. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  19. Breathing pulses in singularly perturbed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Veerman, Frits

    2015-07-01

    The weakly nonlinear stability of pulses in general singularly perturbed reaction-diffusion systems near a Hopf bifurcation is determined using a centre manifold expansion. A general framework to obtain leading order expressions for the (Hopf) centre manifold expansion for scale separated, localised structures is presented. Using the scale separated structure of the underlying pulse, directly calculable expressions for the Hopf normal form coefficients are obtained in terms of solutions to classical Sturm-Liouville problems. The developed theory is used to establish the existence of breathing pulses in a slowly nonlinear Gierer-Meinhardt system, and is confirmed by direct numerical simulation.

  20. Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.

    PubMed

    Khrennikov, K; Wenz, J; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2015-05-15

    We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.

  1. The effect of an electric field on the morphological stability of the crystal-melt interface of a binary alloy. III - Weakly nonlinear theory

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.

    1990-01-01

    The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.

  2. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.

    PubMed

    Dias, Eduardo O; Lira, Sérgio A; Miranda, José A

    2015-08-01

    Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.

  3. Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.

    2014-12-01

    Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.

  4. Modulational instability in a PT-symmetric vector nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2016-12-01

    A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.

  5. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  6. Linear and nonlinear stability of the Blasius boundary layer

    NASA Technical Reports Server (NTRS)

    Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.

    1992-01-01

    Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.

  7. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao

    2018-01-01

    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

  8. The convergence rate of approximate solutions for nonlinear scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Nessyahu, Haim; Tadmor, Eitan

    1991-01-01

    The convergence rate is discussed of approximate solutions for the nonlinear scalar conservation law. The linear convergence theory is extended into a weak regime. The extension is based on the usual two ingredients of stability and consistency. On the one hand, the counterexamples show that one must strengthen the linearized L(sup 2)-stability requirement. It is assumed that the approximate solutions are Lip(sup +)-stable in the sense that they satisfy a one-sided Lipschitz condition, in agreement with Oleinik's E-condition for the entropy solution. On the other hand, the lack of smoothness requires to weaken the consistency requirement, which is measured in the Lip'-(semi)norm. It is proved for Lip(sup +)-stable approximate solutions, that their Lip'convergence rate to the entropy solution is of the same order as their Lip'-consistency. The Lip'-convergence rate is then converted into stronger L(sup p) convergence rate estimates.

  9. Stability analysis of shallow wake flows

    NASA Astrophysics Data System (ADS)

    Kolyshkin, A. A.; Ghidaoui, M. S.

    2003-11-01

    Experimentally observed periodic structures in shallow (i.e. bounded) wake flows are believed to appear as a result of hydrodynamic instability. Previously published studies used linear stability analysis under the rigid-lid assumption to investigate the onset of instability of wakes in shallow water flows. The objectives of this paper are: (i) to provide a preliminary assessment of the accuracy of the rigid-lid assumption; (ii) to investigate the influence of the shape of the base flow profile on the stability characteristics; (iii) to formulate the weakly nonlinear stability problem for shallow wake flows and show that the evolution of the instability is governed by the Ginzburg Landau equation; and (iv) to establish the connection between weakly nonlinear analysis and the observed flow patterns in shallow wake flows which are reported in the literature. It is found that the relative error in determining the critical value of the shallow wake stability parameter induced by the rigid-lid assumption is below 10% for the practical range of Froude number. In addition, it is shown that the shape of the velocity profile has a large influence on the stability characteristics of shallow wakes. Starting from the rigid-lid shallow-water equations and using the method of multiple scales, an amplitude evolution equation for the most unstable mode is derived. The resulting equation has complex coefficients and is of Ginzburg Landau type. An example calculation of the complex coefficients of the Ginzburg Landau equation confirms the existence of a finite equilibrium amplitude, where the unstable mode evolves with time into a limit-cycle oscillation. This is consistent with flow patterns observed by Ingram & Chu (1987), Chen & Jirka (1995), Balachandar et al. (1999), and Balachandar & Tachie (2001). Reasonable agreement is found between the saturation amplitude obtained from the Ginzburg Landau equation under some simplifying assumptions and the numerical data of Grubi[sbreve]ic et al. (1995). Such consistency provides further evidence that experimentally observed structures in shallow wake flows may be described by the nonlinear Ginzburg Landau equation. Previous works have found similar consistency between the Ginzburg Landau model and experimental data for the case of deep (i.e. unbounded) wake flows. However, it must be emphasized that much more information is required to confirm the appropriateness of the Ginzburg Landau equation in describing shallow wake flows.

  10. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less

  11. Fully nonlinear development of the most unstable goertler vortex in a three dimensional boundary layer

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Bassom, Andrew P.

    1992-01-01

    The nonlinear development is studied of the most unstable Gortler mode within a general 3-D boundary layer upon a suitably concave surface. The structure of this mode was first identified by Denier, Hall and Seddougui (1991) who demonstrated that the growth rate of this instability is O(G sup 3/5) where G is the Gortler number (taken to be large here), which is effectively a measure of the curvature of the surface. Previous researchers have described the fate of the most unstable mode within a 2-D boundary layer. Denier and Hall (1992) discussed the fully nonlinear development of the vortex in this case and showed that the nonlinearity causes a breakdown of the flow structure. The effect of crossflow and unsteadiness upon an infinitesimal unstable mode was elucidated by Bassom and Hall (1991). They demonstrated that crossflow tends to stabilize the most unstable Gortler mode, and for certain crossflow/frequency combinations the Gortler mode may be made neutrally stable. These vortex configurations naturally lend themselves to a weakly nonlinear stability analysis; work which is described in a previous article by the present author. Here we extend the ideas of Denier and Hall (1992) to the three-dimensional boundary layer problem. It is found that the numerical solution of the fully nonlinear equations is best conducted using a method which is essentially an adaption of that utilized by Denier and Hall (1992). The influence of crossflow and unsteadiness upon the breakdown of the flow is described.

  12. On the nonlinear trapping nature of undamped, coherent structures in collisionless plasmas and its impact on stability

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Mandal, Debraj; Sharma, Devendra

    2017-03-01

    An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit.

  13. Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle

    PubMed Central

    House, Clarissa M.; Sharma, M. D.; Okada, Kensuke; Hosken, David J.

    2016-01-01

    Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male–male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male–male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. PMID:27371390

  14. Simulation of Non-resonant Internal Kink Mode with Toroidal Rotation in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoyong

    2013-07-16

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q pro le and minimum q above but close to unity, are susceptible to an non-resonant (m, n ) = (1, 1) internal kink mode. This mode can saturate and persist and can induce a (2; 1) seed island for Neoclassical Tearing Mode (NTMs)1 . The mode can also lead to large energetic particle transport and signi cant broadening of beam-driven current. Motivated by these important e ects, we have carried out extensive nonlinear simulations of the mode with nite toroidal rotation using parameters and pro les of an NTSXmore » plasma with a weakly reversed shear pro le. The numerical results show that, at the experimental level, plasma rotation has little e ect on either equilibrium or linear stability. However, rotation can signi cantly inuence the nonlinear dynamics of the (1, 1) mode and the the induced (2, 1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at nite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the e ects of rotation are found to greatly suppress the (2, 1) magnetic island even at a low level.« less

  15. Weakly nonlinear dynamics of near-CJ detonation waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, J.B.; Klein, R.

    1993-01-01

    The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature aremore » running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.« less

  16. Weakly nonlinear dynamics of near-CJ detonation waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, J.B.; Klein, R.

    1993-02-01

    The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature aremore » running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.« less

  17. Spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data.

    PubMed

    Sayago, Ana; Asuero, Agustin G

    2006-09-14

    A bilogarithmic hyperbolic cosine method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data has been devised and applied to literature data. A weighting scheme, however, is necessary in order to take into account the transformation for linearization. The method may be considered a useful alternative to methods in which one variable is involved on both sides of the basic equation (i.e. Heller and Schwarzenbach, Likussar and Adsul and Ramanathan). Classical least squares lead in those instances to biased and approximate stability constants and limiting absorbance values. The advantages of the proposed method are: the method gives a clear indication of the existence of only one complex in solution, it is flexible enough to allow for weighting of measurements and the computation procedure yield the best value of logbeta11 and its limit of error. The agreement between the values obtained by applying the weighted hyperbolic cosine method and the non-linear regression (NLR) method is good, being in both cases the mean quadratic error at a minimum.

  18. Evidence of directional and stabilizing selection in contemporary humans.

    PubMed

    Sanjak, Jaleal S; Sidorenko, Julia; Robinson, Matthew R; Thornton, Kevin R; Visscher, Peter M

    2018-01-02

    Modern molecular genetic datasets, primarily collected to study the biology of human health and disease, can be used to directly measure the action of natural selection and reveal important features of contemporary human evolution. Here we leverage the UK Biobank data to test for the presence of linear and nonlinear natural selection in a contemporary population of the United Kingdom. We obtain phenotypic and genetic evidence consistent with the action of linear/directional selection. Phenotypic evidence suggests that stabilizing selection, which acts to reduce variance in the population without necessarily modifying the population mean, is widespread and relatively weak in comparison with estimates from other species.

  19. The influences of delay time on the stability of a market model with stochastic volatility

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time <τo and the same role for the case of the delay time >τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  20. Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions.

    PubMed

    Shpielberg, O; Akkermans, E

    2016-06-17

    A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

  1. Le Chatelier Principle for Out-of-Equilibrium and Boundary-Driven Systems: Application to Dynamical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Shpielberg, O.; Akkermans, E.

    2016-06-01

    A stability analysis is presented for boundary-driven and out-of-equilibrium systems in the framework of the hydrodynamic macroscopic fluctuation theory. A Hamiltonian description is proposed which allows us to thermodynamically interpret the additivity principle. A necessary and sufficient condition for the validity of the additivity principle is obtained as an extension of the Le Chatelier principle. These stability conditions result from a diagonal quadratic form obtained using the cumulant generating function. This approach allows us to provide a proof for the stability of the weakly asymmetric exclusion process and to reduce the search for stability to the solution of two coupled linear ordinary differential equations instead of nonlinear partial differential equations. Additional potential applications of these results are discussed in the realm of classical and quantum systems.

  2. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    PubMed

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  3. Small systems of Duffing oscillators and the Fermi-Pasta-Ulam-Tsingou system An examination of the possible reasons for the unusual stability of localized nonlinear excitations in these systems

    NASA Astrophysics Data System (ADS)

    Kashyap, Rahul; Westley, Alexandra; Sen, Surajit

    The Duffing oscillator, a nonlinear oscillator with a potential energy with both quadratic and cubic terms, is known to show highly chaotic solutions in certain regions of its parameter space. Here, we examine the behaviors of small chains of harmonically and anharmonically coupled Duffing oscillators and show that these chains exhibit localized nonlinear excitations (LNEs) similar to the ones seen in the Fermi-Pasta-Ulam-Tsingou (FPUT) system. These LNEs demonstrate properties such as long-time energy localization, high periodicity, and slow energy leaking which rapidly accelerates upon frequency matching with the adjacent particles all of which have been observed in the FPUT system. Furthermore, by examining bifurcation diagrams, we will show that many qualitative properties of this system during the transition from weakly to strongly nonlinear behavior depend directly upon the frequencies associated with the individual Duffing oscillators.

  4. Dynamics of an n = 1 explosive instability and its role in high-β disruptions

    NASA Astrophysics Data System (ADS)

    Aydemir, A. Y.; Park, B. H.; In, Y. K.

    2018-01-01

    Some low-n kink-ballooning modes not far from marginal stability are shown to exhibit a bifurcation between two very distinct nonlinear paths that depends sensitively on the background transport levels and linear perturbation amplitudes. The particular instability studied in this work is an n=1 mode dominated by an m/n=2/1 component. It is driven by a large pressure gradient in weak magnetic shear and can appear in various high- \

  5. Soret and Dufour effects on thermohaline convection in rotating fluids

    NASA Astrophysics Data System (ADS)

    Duba, C. T.; Shekar, M.; Narayana, M.; Sibanda, P.

    2016-07-01

    Using linear and weakly nonlinear stability theory, the effects of Soret and Dufour parameters are investigated on thermohaline convection in a horizontal layer of rotating fluid, specifically the ocean. Thermohaline circulation is important in mixing processes and contributes to heat and mass transports and hence the earth's climate. A general conception is that due to the smallness of the Soret and Dufour parameters their effect is negligible. However, it is shown here that the Soret parameter, salinity and rotation stabilise the system, whereas temperature destabilises it and the Dufour parameter has minimal effect on stationary convection. For oscillatory convection, the analysis is difficult as it shows that the Rayleigh number depends on six parameters, the Soret and Dufour parameters, the salinity Rayleigh number, the Lewis number, the Prandtl number, and the Taylor number. We demonstrate the interplay between these parameters and their effects on oscillatory convection in a graphical manner. Furthermore, we find that the Soret parameter enhances oscillatory convection whereas the Dufour parameter, salinity Rayleigh number, the Lewis number, and rotation delay instability. We believe that these results have not been elucidated in this way before for large-scale fluids. Furthermore, we investigate weakly nonlinear stability and the effect of cross diffusive terms on heat and mass transports. We show the existence of new solution bifurcations not previously identified in literature.

  6. Nonlinear instability and convection in a vertically vibrated granular bed

    NASA Astrophysics Data System (ADS)

    Shukla, Priyanka; Ansari, I. H.; van der Meer, D.; Lohse, Detlef; Alam, Meheboob

    2015-11-01

    The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis. Under a quasi-steady ansatz, the base state temperature decreases with increasing height away from from the vibrating plate, but the density profile consists of three distinct regions: (i) a collisional dilute layer at the bottom, (ii) a levitated dense layer at some intermediate height and (iii) a ballistic dilute layer at the top of the granular bed. For the nonlinear stability analysis, the nonlinearities up-to cubic order in perturbation amplitude are retained, leading to the Landau equation. The genesis of granular convection is shown to be tied to a supercritical pitchfork bifurcation from the Leidenfrost state. Near the bifurcation point the equilibrium amplitude is found to follow a square-root scaling law, Ae √{ ▵} , with the distance ▵ from bifurcation point. The strength of convection is maximal at some intermediate value of the shaking strength, with weaker convection both at weaker and stronger shaking. Our theory predicts a novel floating-convection state at very strong shaking.

  7. On the conditions for the onset of nonlinear chirping structures in NSTX

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai

    2015-11-01

    The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.

  8. The MHD Kelvin-Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows

    NASA Astrophysics Data System (ADS)

    Jones, T. W.; Gaalaas, Joseph B.; Ryu, Dongsu; Frank, Adam

    1997-06-01

    We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 21/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully three-dimensional calculations and to address two specific questions raised in earlier work: (1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 21/2 dimensions? (2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field? The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially two-dimensional. In Frank et al. we found that fields too weak to stabilize a linear perturbation may still be able to alter fundamentally the flow so that it evolves from the classical ``Cat's Eye'' vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the magnetic field plays the role of a catalyst, briefly storing energy and then returning it to the plasma during reconnection events that lead to dynamical alignment between magnetic field and flow vectors. In our new work we identify another transformation in the flow evolution for fields below a critical strength. That we found to be ~10% of the critical field needed for linear stabilization in the cases we studied. In this ``very weak field'' regime, the role of the magnetic field is to enhance the rate of energy dissipation within and around the Cat's Eye vortex, not to disrupt it. The presence of even a very weak field can add substantially to the rate at which flow kinetic energy is dissipated. In all of the cases we studied magnetic field amplification by stretching in the vortex is limited by tearing mode, ``fast'' reconnection events that isolate and then destroy magnetic flux islands within the vortex and relax the fields outside the vortex. If the magnetic tension developed prior to reconnection is comparable to Reynolds stresses in the flow, that flow is reorganized during reconnection. Otherwise, the primary influence on the plasma is generation of entropy. The effective expulsion of flux from the vortex is very similar to that shown by Weiss for passive fields in idealized vortices with large magnetic Reynolds numbers. We demonstrated that this expulsion cannot be interpreted as a direct consequence of steady, resistive diffusion, but must be seen as a consequence of unsteady fast reconnection.

  9. NIMROD Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Device (CTH)

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Pandya, M. D.; Hanson, J. D.; Mauer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    Nonlinear MHD simulations of low-q disruptions in the CTH are presented. CTH is a current carrying stellarator that is used to study the effects of 3D shaping. The application of 3D shaping stabilizes low-q disruptions in CTH. The amount of 3D shaping is controlled by adjusting the external rotational transform, and it is characterized by the ratio of the external rotational transform to the total transform: f =ιvac / ι . Disruptions are routinely observed during operation with weak shaping (f < 0.05). The frequency of disruptions decreases with increasing amounts of 3D shaping, and the disruptions are completely suppressed for f > 0.1 . Nonlinear simulations are performed using the NIMROD code to better understand how the shaping suppresses the disruptions. Comparisons of runs with weak (f = 0.04) and strong (f = 0.10) shaping are shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Numbers DE-FG02-03ER54692 and DE-FG02-00ER54610.

  10. On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation

    NASA Astrophysics Data System (ADS)

    Amadori, Debora; Ha, Seung-Yeal; Park, Jinyeong

    2017-01-01

    The Kuramoto model is a prototype phase model describing the synchronous behavior of weakly coupled limit-cycle oscillators. When the number of oscillators is sufficiently large, the dynamics of Kuramoto ensemble can be effectively approximated by the corresponding mean-field equation, namely "the Kuramoto-Sakaguchi (KS) equation". This KS equation is a kind of scalar conservation law with a nonlocal flux function due to the mean-field interactions among oscillators. In this paper, we provide a unique global solvability of bounded variation (BV) weak solutions to the kinetic KS equation for identical oscillators using the method of front-tracking in hyperbolic conservation laws. Moreover, we also show that our BV weak solutions satisfy local-in-time L1-stability with respect to BV-initial data. For the ensemble of identical Kuramoto oscillators, we explicitly construct an exponentially growing BV weak solution generated from BV perturbation of incoherent state for any positive coupling strength. This implies the nonlinear instability of incoherent state in a positive coupling strength regime. We provide several numerical examples and compare them with our analytical results.

  11. Homoclinic snaking in the discrete Swift-Hohenberg equation

    NASA Astrophysics Data System (ADS)

    Kusdiantara, R.; Susanto, H.

    2017-12-01

    We consider the discrete Swift-Hohenberg equation with cubic and quintic nonlinearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg equation using central finite differences. We investigate the discretization effect on the bifurcation behavior, where we identify three regions of the coupling parameter, i.e., strong, weak, and intermediate coupling. Within the regions, the discrete Swift-Hohenberg equation behaves either similarly or differently from the continuum limit. In the intermediate coupling region, multiple Maxwell points can occur for the periodic solutions and may cause irregular snaking and isolas. Numerical continuation is used to obtain and analyze localized and periodic solutions for each case. Theoretical analysis for the snaking and stability of the corresponding solutions is provided in the weak coupling region.

  12. Fluctuating interaction network and time-varying stability of a natural fish community

    NASA Astrophysics Data System (ADS)

    Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio

    2018-02-01

    Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.

  13. Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle.

    PubMed

    House, Clarissa M; Sharma, M D; Okada, Kensuke; Hosken, David J

    2016-10-01

    Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male-male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male-male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

  14. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations

    NASA Astrophysics Data System (ADS)

    Huck, Thierry; Vallis, Geoffrey K.

    2001-08-01

    What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of the ocean circulation in more realistic configurations, and the possibility of predicting potential oceanic modes, even weakly damped, that might be excited by stochastic atmospheric forcing or mesoscale ocean eddies.

  15. Nonlinear cross-field coupling on the route to broadband turbulence

    NASA Astrophysics Data System (ADS)

    Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.

    2013-10-01

    In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.

  16. Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime

    NASA Astrophysics Data System (ADS)

    Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying

    2018-03-01

    Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.

  17. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F.; State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083; Ye, W. H.

    2010-05-15

    In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces themore » nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1lambda. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.« less

  18. Detuned resonances of Tollmien-Schlichting waves in an airfoil boundary layer: Experiment, theory, and direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.

    2012-09-01

    Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the amplification factors in the frequency-detuned resonances can be even higher than in tuned cases, in spite of the strong base-flow non-self-similarity. An explanation of this unusual phenomenon is found based on the theoretical analysis and comparison of experimental, theoretical, and DNS data.

  19. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Wang, Ya-Guang

    2008-03-01

    Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.

  20. Stabilization of solitons under competing nonlinearities by external potentials

    NASA Astrophysics Data System (ADS)

    Zegadlo, Krzysztof B.; Wasak, Tomasz; Malomed, Boris A.; Karpierz, Miroslaw A.; Trippenbach, Marek

    2014-12-01

    We report results of the analysis for families of one-dimensional (1D) trapped solitons, created by competing self-focusing (SF) quintic and self-defocusing (SDF) cubic nonlinear terms. Two trapping potentials are considered, the harmonic-oscillator (HO) and delta-functional ones. The models apply to optical solitons in colloidal waveguides and other photonic media, and to matter-wave solitons in Bose-Einstein condensates loaded into a quasi-1D trap. For the HO potential, the results are obtained in an approximate form, using the variational and Thomas-Fermi approximations, and in a full numerical form, including the ground state and the first antisymmetric excited one. For the delta-functional attractive potential, the results are produced in a fully analytical form, and verified by means of numerical methods. Both exponentially localized solitons and weakly localized trapped modes are found for the delta-functional potential. The most essential conclusions concern the applicability of competing Vakhitov-Kolokolov (VK) and anti-VK criteria to the identification of the stability of solitons created under the action of the competing SF and SDF terms.

  1. Solitary waves with weak transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ur-Rehman, H.; Masood, W.; Siddiq, M.

    2008-12-15

    Using the quantum hydrodynamic model, quantum dust ion-acoustic solitary waves are investigated in the presence of weak transverse perturbations. The linear dispersion relation is obtained using the Fourier analysis. The two-dimensional (2D) propagation of small amplitude nonlinear waves is studied by deriving the Kadomtsev-Petviashvili (KP) equation. The traveling wave solution of the KP equation is obtained by employing the tanh method. By dint of this solution, the effects of quantum Bohm pressure and the dust concentration on the 2D solitary structure are studied. The effect of quantum Bohm potential on the stability of the KP soliton is also investigated. Themore » results are supported by the numerical analysis and the relevance of the present investigation in dense astrophysical environments is also pointed out.« less

  2. Experimental evidence of a bubble-merger regime for the Rayleigh-Taylor Instability at the ablation front

    NASA Astrophysics Data System (ADS)

    Casner, A.; Liberatore, S.; Masse, L.; Martinez, D.; Haan, S. W.; Kane, J.; Moore, A. S.; Seugling, R.; Farrell, M.; Giraldez, E.; Nikroo, A.; Smalyuk, V. A.; Remington, B. A.

    2016-05-01

    Under the Discovery Science program, the longer pulses and higher laser energies provided by the National Ignition Facility (NIF) have been harnessed to study, first time in indirect-drive, the highly nonlinear stage of the Rayleigh-Taylor Instability (RTI) at the ablation front. A planar plastic package with pre-imposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled gold radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil, a factor 3x larger than previously achieved on other laser facilities. As a consequence, we have measured the ablative RTI in transition from the weakly nonlinear stage up to the deep nonlinear stage for various initial conditions. A bubble merger regime has been observed and the ablative stabilization strength varied by changing the plastic dopant from iodine to germanium.

  3. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  4. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting.

    PubMed

    Liu, Biao; Wu, Ranchao; Chen, Liping

    2018-04-01

    Turing instability and pattern formation in a super cross-diffusion predator-prey system with Michaelis-Menten type predator harvesting are investigated. Stability of equilibrium points is first explored with or without super cross-diffusion. It is found that cross-diffusion could induce instability of equilibria. To further derive the conditions of Turing instability, the linear stability analysis is carried out. From theoretical analysis, note that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes by means of weakly nonlinear theory. Dynamical analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, the theoretical results are illustrated via numerical simulations. Copyright © 2018. Published by Elsevier Inc.

  5. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    NASA Astrophysics Data System (ADS)

    Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.

    2016-12-01

    In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  6. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.

  7. The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu

    We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standardmore » MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.« less

  8. Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer.

    PubMed

    Yang, Jiashi; Chen, Ziguang; Hu, Yuantai; Jiang, Shunong; Guo, Shaohua

    2007-04-01

    We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.

  9. Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow

    NASA Astrophysics Data System (ADS)

    Barker, Blake

    2014-10-01

    We present a rigorous numerical proof based on interval arithmetic computations categorizing the linearized and nonlinear stability of periodic viscous roll waves of the KdV-KS equation modeling weakly unstable flow of a thin fluid film on an incline in the small-amplitude KdV limit. The argument proceeds by verification of a stability condition derived by Bar-Nepomnyashchy and Johnson-Noble-Rodrigues-Zumbrun involving inner products of various elliptic functions arising through the KdV equation. One key point in the analysis is a bootstrap argument balancing the extremely poor sup norm bounds for these functions against the extremely good convergence properties for analytic interpolation in order to obtain a feasible computation time. Another is the way of handling analytic interpolation in several variables by a two-step process carving up the parameter space into manageable pieces for rigorous evaluation. These and other general aspects of the analysis should serve as blueprints for more general analyses of spectral stability.

  10. Ion acoustic solitary wave with weakly transverse perturbations in quantum electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.; Khan, S. A.; Department of Physics, COMSATS Institute of Information Technology, Islamabad

    2007-05-15

    The characteristics and stability of ion acoustic solitary wave with transverse perturbations are examined in ultracold quantum magnetospheric plasma consisting of electrons, positrons, and ions. Using the quantum hydrodynamic model, a dispersion relation in the linear regime, and the Kadomtsev-Petviashvili equation in the nonlinear regime are derived. The quantum corrections are studied through quantum statistics and diffraction effects. It is found that compressive solitary wave can propagate in this system. The quantum effects are also studied graphically for both linear and nonlinear profiles of ion acoustic wave. Using energy consideration method, conditions for existence of stable solitary waves are obtained.more » It is found that stable solitary waves depend on quantum corrections, positron concentration, and direction cosine of the wave vector k along the x axis.« less

  11. Magnetized black holes and nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  12. Fully- and weakly-nonlinear biperiodic traveling waves in shallow water

    NASA Astrophysics Data System (ADS)

    Hirakawa, Tomoaki; Okamura, Makoto

    2018-04-01

    We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.

  13. Marginal states in a cubic autocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B → 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A → B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.

  14. Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrödinger chain in the regime of homogeneous chaos.

    PubMed

    Basko, D M

    2014-02-01

    We study the discrete nonlinear Schröinger equation with weak disorder, focusing on the regime when the nonlinearity is, on the one hand, weak enough for the normal modes of the linear problem to remain well resolved but, on the other, strong enough for the dynamics of the normal mode amplitudes to be chaotic for almost all modes. We show that in this regime and in the limit of high temperature, the macroscopic density ρ satisfies the nonlinear diffusion equation with a density-dependent diffusion coefficient, D(ρ) = D(0)ρ(2). An explicit expression for D(0) is obtained in terms of the eigenfunctions and eigenvalues of the linear problem, which is then evaluated numerically. The role of the second conserved quantity (energy) in the transport is also quantitatively discussed.

  15. Matter-wave solitons in nonlinear optical lattices

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2005-10-01

    We introduce a dynamical model of a Bose-Einstein condensate based on the one-dimensional (1D) Gross-Pitaevskii equation (GPE) with a nonlinear optical lattice (NOL), which is represented by the cubic term whose coefficient is periodically modulated in the coordinate. The model describes a situation when the atomic scattering length is spatially modulated, via the optically controlled Feshbach resonance, in an optical lattice created by interference of two laser beams. Relatively narrow solitons supported by the NOL are predicted by means of the variational approximation (VA), and an averaging method is applied to broad solitons. A different feature is a minimum norm (number of atoms), N=Nmin , necessary for the existence of solitons. The VA predicts Nmin very accurately. Numerical results are chiefly presented for the NOL with the zero spatial average value of the nonlinearity coefficient. Solitons with values of the amplitude A larger than at N=Nmin are stable. Unstable solitons with smaller, but not too small, A rearrange themselves into persistent breathers. For still smaller A , the soliton slowly decays into radiation without forming a breather. Broad solitons with very small A are practically stable, as their decay is extremely slow. These broad solitons may freely move across the lattice, featuring quasielastic collisions. Narrow solitons, which are strongly pinned to the NOL, can easily form stable complexes. Finally, the weakly unstable low-amplitude solitons are stabilized if a cubic term with a constant coefficient, corresponding to weak attraction, is included in the GPE.

  16. Influence of unbalance on the nonlinear dynamical response and stability of flexible rotor-bearing systems

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Humphris, R. R.; Springer, H.

    1983-01-01

    In this paper, some of the effects of unbalance on the nonlinear response and stability of flexible rotor-bearing systems is presented from both a theoretical and experimental standpoint. In a linear system, operating above its stability threshold, the amplitude of motion grows exponentially with time and the orbits become unbounded. In an actual system, this is not necessarily the case. The actual amplitudes of motion may be bounded due to various nonlinear effects in the system. These nonlinear effects cause limit cycles of motion. Nonlinear effects are inherent in fluid film bearings and seals. Other contributors to nonlinear effects are shafts, couplings and foundations. In addition to affecting the threshold of stability, the nonlinear effects can cause jump phenomena to occur at not only the critical speeds, but also at stability onset or restabilization speeds.

  17. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGES

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  18. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam

    PubMed Central

    Thomsen, Jon Juel

    2016-01-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation. PMID:27118899

  19. Ionically Paired Layer-by-Layer Hydrogels: Water and Polyelectrolyte Uptake Controlled by Deposition Time

    DOE PAGES

    Selin, Victor; Ankner, John Francis; Sukhishvili, Svetlana

    2018-01-11

    Despite intense recent interest in weakly bound nonlinear (“exponential”) multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL) films composed of poly(methacrylic acid) (PMAA) and quaternized poly-2-(dimethylamino)ethyl methacrylate (QPC) on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR), and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR). The results suggestmore » that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness) and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.« less

  20. Ionically Paired Layer-by-Layer Hydrogels: Water and Polyelectrolyte Uptake Controlled by Deposition Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selin, Victor; Ankner, John Francis; Sukhishvili, Svetlana

    Despite intense recent interest in weakly bound nonlinear (“exponential”) multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL) films composed of poly(methacrylic acid) (PMAA) and quaternized poly-2-(dimethylamino)ethyl methacrylate (QPC) on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR), and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR). The results suggestmore » that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness) and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.« less

  1. The roll-up and merging of coherent structures in shallow mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. Y., E-mail: celmy@connect.ust.hk; Ghidaoui, M. S.; Kolyshkin, A. A.

    2016-09-15

    The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onsetmore » and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.« less

  2. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  3. Some effects of nonlinear variation in the directional-stability and damping-in-yawing derivatives on the lateral stability of an airplane

    NASA Technical Reports Server (NTRS)

    Sternfield, Leonard

    1951-01-01

    A theoretical investigation has been made to determine the effect of nonlinear stability derivatives on the lateral stability of an airplane. Motions were calculated on the assumption that the directional-stability and the damping-in-yawing derivatives are functions of the angle of sideslip. The application of the Laplace transform to the calculation of an airplane motion when certain types of nonlinear derivatives are present is described in detail. The types of nonlinearities assumed correspond to the condition in which the values of the directional-stability and damping-in-yawing derivatives are zero for small angle of sideslip.

  4. Rotating non-Boussinesq convection: oscillating hexagons

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim; Riecke, Hermann; Pesch, Werner

    2000-11-01

    Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.

  5. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: The Ultrafast Nonlinear Response of Air Molecules and its Effect on Femtosecond Laser Plasma Filaments in Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Hsin

    2012-10-01

    When exceeding the critical power Pcr, an intense laser pulse propagating in a gas collapses into one or multiple ``filaments,'' which can extend meters in length with weakly ionized plasma and local intensity ˜ 10^13 W/cm^2 radially confined in a diameter of < 100 μm [1]. While it has been generally accepted the nonlinear self-focusing of the laser pulse leading to beam collapse is stabilized by plasma generation [2], neither the field-induced nonlinearity nor the plasma generation had been directly measured. This uncertainty has given rise to recent controversy about whether plasma generation does indeed counteract the positive nonlinearity [3, 4]. For even a basic understanding of femtosecond filamentation and for applications, the focusing and defocusing mechanisms---nonlinear self-focusing and ionization---must be understood. By employing a single-shot, time-resolved technique based on spectral interferometry [5] to study the constituents of air, it is found that the rotational responses in O2 and N2 are the dominant nonlinear effect in filamentary propagation when the laser pulse duration is longer than ˜ 100fs. Furthermore, we find that the instantaneous nonlinearity scales linearly up to the ionization threshold [6], eliminating any possibility of an ionization-free negative stabilization [3] of filamentation. This is confirmed by space-resolved electron density measurements in meter-long filaments produced with different pulse durations, using optical interferometry with a grazing-incidence, ps-delayed probe [7].[4pt] [1] A. Braun et al., Opt. Lett. 20, 73 (1995).[0pt] [2] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).[0pt] [3] V. Loriot et al., Opt. Express 17, 13429 (2009).[0pt] [4] P. B'ejot et al., Phys. Rev. Lett. 104, 103903 (2010).[0pt] [5] Y.-H. Chen et al., Opt. Express 15, 7458 (2007); Opt. Express 15, 11341 (2007).[0pt] [6] J. K. Wahlstrand et al., Phys. Rev. Lett. 107, 103901 (2011).[0pt] [7] Y.-H. Chen et al., Phys. Rev. Lett. 105, 215005 (2010).

  6. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  7. On the stability of a time dependent boundary layer

    NASA Technical Reports Server (NTRS)

    Otto, S. R.

    1993-01-01

    The aim of this article is to determine the stability characteristics of a Rayleigh layer, which is known to occur when the fluid above a flat plate has a velocity imparted to it (parallel to the plate). This situation is intrinsically unsteady, however, as a first approximation we consider the instantaneous stability of the flow. The Orr-Sommerfeld equation is found to govern fixed downstream wavelength linear perturbations to the basic flow profile. By the solution of this equation, we can determine the Reynolds numbers at which the flow is neutrally stable; this quasisteady approach is only formally applicable for infinite Reynolds numbers. We shall consider the large Reynolds number limit of the original problem and use a three deck mentality to determine the form of the modes. The results of the two calculations are compared, and the linear large Reynolds number analysis is extended to consider the effect of weak nonlinearity in order to determine whether the system is subcritical or supercritical.

  8. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  9. Linear and weakly nonlinear aspects of free shear layer instability, roll-up, subharmonic interaction and wall influence

    NASA Technical Reports Server (NTRS)

    Cain, A. B.; Thompson, M. W.

    1986-01-01

    The growth of the momentum thickness and the modal disturbance energies are examined to study the nature and onset of nonlinearity in a temporally growing free shear layer. A shooting technique is used to find solutions to the linearized eigenvalue problem, and pseudospectral weakly nonlinear simulations of this flow are obtained for comparison. The roll-up of a fundamental disturbance follows linear theory predictions even with a 20 percent disturbance amplitude. A weak nonlinear interaction of the disturbance creates a finite-amplitude mean shear stress which dominates the growth of the layer momentum thickness, and the disturbance growth rate changes until the fundamental disturbance dominates. The fundamental then becomes an energy source for the harmonic, resulting in an increase in the growth rate of the subharmonic over the linear prediction even when the fundamental has no energy to give. Also considered are phase relations and the wall influence.

  10. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less

  11. Partial regularity of weak solutions to a PDE system with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Xu, Xiangsheng

    2018-04-01

    In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.

  12. Precession effects on a liquid planetary core

    NASA Astrophysics Data System (ADS)

    Liu, Min; Li, Li-Gang

    2018-02-01

    Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.

  13. Some theoretical aspects of boundary layer stability theory

    NASA Technical Reports Server (NTRS)

    Hall, Philip

    1990-01-01

    Increased understanding in recent years of boundary layer transition has been made possible by the development of strongly nonlinear stability theories. After some twenty or so years when nonlinear stability theory was restricted to the application of the Stuart-Watson method (or less formal amplitude expansion procedures), there now exist strongly nonlinear theories which can describe processes which have an 0(1) effect on the basic state. These strongly nonlinear theories and their possible role in pushing theoretical understanding of transition ever further into the nonlinear regime are discussed.

  14. Some Thoughts on Stability in Nonlinear Periodic Focusing Systems

    DOE R&D Accomplishments Database

    McMillan, E. M.

    1967-09-05

    A brief discussion is given of the long-term stability of particle motions through periodic focusing structures containing lumped nonlinear elements. A method is presented whereby one can specify the nonlinear elements in such a way as to generate a variety of structures in which the motion has long-term stability.

  15. Longtime dynamics of the PDE model for the motion toward light of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Taranets, R.; Chugunova, M.

    2018-03-01

    We study stationary solutions and longtime dynamics of the PDE model for cyanobacteria motion, which was recently proposed by Chavy-Waddy and Kolokolnikov (2016 Nonlinearity 29 3174). For different values of the parameter α, which controls the extent of the aggregate, we analyse a family of corresponding steady states and their stability (considering symmetric and non-symmetric cases separately). We derive the rate of convergence toward steady states, show existence of weak nonnegative solutions, and we also discover that the value α = 3 is a special case for this PDE model. Using numerical simulations we compare different regimes and illustrate convergence toward steady states.

  16. Linear and nonlinear stability characteristics of whistlers

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.

    1972-01-01

    Linear and nonlinear propagating characteristics of right-hand polarized, slow electromagnetic, magnetoplasma waves (whistlers) are discussed in terms of stability and dispersion. An analysis of the stability of whistlers propagating at an angle to the static magnetic field is presented. A new mechanism is derived for the onset of stimulated emissions, and modulational instability for nonlinear whistlers are discussed.

  17. Stability diagram for the forced Kuramoto model.

    PubMed

    Childs, Lauren M; Strogatz, Steven H

    2008-12-01

    We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.

  18. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1990-01-01

    A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.

  19. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.

    PubMed

    Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong

    2016-05-01

    In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.

  20. Nearly deterministic quantum Fredkin gate based on weak cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Wu, Yun-xiang; Zhu, Chang-hua; Pei, Chang-xing

    2016-09-01

    A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.

  1. Multi-Periodic Waves in Shallow Water

    DTIC Science & Technology

    1992-09-01

    models-the Kadomtsev - Petviashvili (KP) equation . The KP equation describes the evolu- tion of weakly nonlinear, weakly two-dimensional waves on water of...experimentally. The analytical model is a family of periodic solutions of the Kadomtsev -Petviashuili equation . The experiments demonstrate the accuracy... Petviashvili Equation (with Norman Schef- fner & Harvey Segur). Proceedings, Nonlinear Water Waves Workshop, University of Bristol. England, 1991. Resonant

  2. Applications of Nonlinear Control Using the State-Dependent Riccati Equation.

    DTIC Science & Technology

    1995-12-01

    method, and do not address noise rejection or robustness issues. xi Applications of Nonlinear Control Using the State-Dependent Riccati Equation I...construct a stabilizing nonlinear feedback controller. This method will be referred to as nonlinear quadratic regulation (NQR). The original intention...involves nding a state-dependent coe- cient (SDC) linear structure for which a stabilizing nonlinear feedback controller can be constructed. The

  3. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  4. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.

    PubMed

    Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N

    2013-07-01

    The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

  5. Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al2O3-EG colloidal suspension

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Rana, Puneet

    2016-04-01

    In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.

  6. Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal

    DOE PAGES

    Holod, I.; Lin, Z.; Taimourzadeh, S.; ...

    2016-10-03

    Vacuum resonant magnetic perturbations (RMP) applied to otherwise axisymmetric tokamak plasmas produce in general a combination of non-resonant effects that preserve closed flux surfaces (kink response) and resonant effects that introduce magnetic islands and/or stochasticity (tearing response). The effect of the plasma kink response on the linear stability and nonlinear transport of edge turbulence is studied using the gyrokinetic toroidal code GTC for a DIII-D plasma with applied n = 2 vacuum RMP. GTC simulations use the 3D equilibrium of DIII-D discharge 158103 (Nazikian et al 2015 Phys. Rev. Lett. 114 105002), which is provided by nonlinear ideal MHD VMECmore » equilibrium solver in order to include the effect of the plasma kink response to the external field but to exclude island formation at rational surfaces. Analysis using the GTC simulation results reveal no increase of growth rates for the electrostatic drift wave instability and for the electromagnetic kinetic-ballooning mode in the presence of the plasma kink response to the RMP. Moreover, nonlinear electrostatic simulations show that the effect of the 3D equilibrium on zonal flow damping is very weak and found to be insufficient to modify turbulent transport in the electrostatic turbulence.« less

  7. Study report on guidelines and test procedures for investigating stability of nonlinear cardiovascular control system models

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.

  8. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  9. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

  10. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less

  11. Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability

    NASA Astrophysics Data System (ADS)

    Schlutow, Mark; Klein, Rupert

    2017-04-01

    Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.

  12. Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka

    2018-06-01

    A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.

  13. The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.

    2018-02-01

    In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.

  14. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  15. Energetics of slope flows: linear and weakly nonlinear solutions of the extended Prandtl model

    NASA Astrophysics Data System (ADS)

    Güttler, Ivan; Marinović, Ivana; Večenaj, Željko; Grisogono, Branko

    2016-07-01

    The Prandtl model succinctly combines the 1D stationary boundary-layer dynamics and thermodynamics of simple anabatic and katabatic flows over uniformly inclined surfaces. It assumes a balance between the along-the-slope buoyancy component and adiabatic warming/cooling, and the turbulent mixing of momentum and heat. In this study, energetics of the Prandtl model is addressed in terms of the total energy (TE) concept. Furthermore, since the authors recently developed a weakly nonlinear version of the Prandtl model, the TE approach is also exercised on this extended model version, which includes an additional nonlinear term in the thermodynamic equation. Hence, interplay among diffusion, dissipation and temperature-wind interaction of the mean slope flow is further explored. The TE of the nonlinear Prandtl model is assessed in an ensemble of solutions where the Prandtl number, the slope angle and the nonlinearity parameter are perturbed. It is shown that nonlinear effects have the lowest impact on variability in the ensemble of solutions of the weakly nonlinear Prandtl model when compared to the other two governing parameters. The general behavior of the nonlinear solution is similar to the linear solution, except that the maximum of the along-the-slope wind speed in the nonlinear solution reduces for larger slopes. Also, the dominance of PE near the sloped surface, and the elevated maximum of KE in the linear and nonlinear energetics of the extended Prandtl model are found in the PASTEX-94 measurements. The corresponding level where KE>PE most likely marks the bottom of the sublayer subject to shear-driven instabilities. Finally, possible limitations of the weakly nonlinear solutions of the extended Prandtl model are raised. In linear solutions, the local storage of TE term is zero, reflecting the stationarity of solutions by definition. However, in nonlinear solutions, the diffusion, dissipation and interaction terms (where the height of the maximum interaction is proportional to the height of the low-level jet by the factor ≈4/9) do not balance and the local storage of TE attains non-zero values. In order to examine the issue of non-stationarity, the inclusion of velocity-pressure covariance in the momentum equation is suggested for future development of the extended Prandtl model.

  16. Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems

    NASA Astrophysics Data System (ADS)

    Lenka, Bichitra Kumar; Banerjee, Soumitro

    2018-03-01

    We discuss the asymptotic stability of autonomous linear and nonlinear fractional order systems where the state equations contain same or different fractional orders which lie between 0 and 2. First, we use the Laplace transform method to derive some sufficient conditions which ensure asymptotic stability of linear fractional order systems. Then by using the obtained results and linearization technique, a stability theorem is presented for autonomous nonlinear fractional order system. Finally, we design a control strategy for stabilization of autonomous nonlinear fractional order systems, and apply the results to the chaotic fractional order Lorenz system in order to verify its effectiveness.

  17. A weakly nonlinear theory for wave-vortex interactions in curved channel flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Erlebacher, Gordon; Zang, Thomas A.

    1992-01-01

    A weakly nonlinear theory is developed to study the interaction of Tollmien-Schlichting (TS) waves and Dean vortices in curved channel flow. The predictions obtained from the theory agree well with results obtained from direct numerical simulations of curved channel flow, especially for low amplitude disturbances. Some discrepancies in the results of a previous theory with direct numerical simulations are resolved.

  18. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

    PubMed

    Puzrin, Alexander M; Gray, Thomas E; Hill, Andrew J

    2015-03-08

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

  19. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides

    PubMed Central

    Puzrin, Alexander M.; Gray, Thomas E.; Hill, Andrew J.

    2015-01-01

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach—determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope. PMID:25792958

  20. Some Thoughts on Stability in Nonlinear Periodic Focusing Systems [Addendum

    DOE R&D Accomplishments Database

    McMillan, Edwin M.

    1968-03-29

    Addendum to September 5, 1967 report with the same title and with the abstract: A brief discussion is given of the long-term stability of particle motions through periodic focusing structures containing lumped nonlinear elements. A method is presented whereby one can specify the nonlinear elements in such a way as to generate a variety of structures in which the motion has long-term stability.

  1. Data driven discrete-time parsimonious identification of a nonlinear state-space model for a weakly nonlinear system with short data record

    NASA Astrophysics Data System (ADS)

    Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan

    2018-05-01

    Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.

  2. Structural Stability of Mathematical Models of National Economy

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar A.; Sultanov, Bahyt T.; Borovskiy, Yuriy V.; Adilov, Zheksenbek M.; Ashimov, Askar A.

    2011-12-01

    In the paper we test robustness of particular dynamic systems in a compact regions of a plane and a weak structural stability of one dynamic system of high order in a compact region of its phase space. The test was carried out based on the fundamental theory of dynamical systems on a plane and based on the conditions for weak structural stability of high order dynamic systems. A numerical algorithm for testing the weak structural stability of high order dynamic systems has been proposed. Based on this algorithm we assess the weak structural stability of one computable general equilibrium model.

  3. q Breathers in Finite Lattices: Nonlinearity and Weak Disorder

    NASA Astrophysics Data System (ADS)

    Ivanchenko, M. V.

    2009-05-01

    Nonlinearity and disorder are the recognized ingredients of the lattice vibrational dynamics, the factors that could be diminished, but never excluded. We generalize the concept of q breathers—periodic orbits in nonlinear lattices, exponentially localized in the linear mode space—to the case of weak disorder, taking the Fermi-Pasta-Ulan chain as an example. We show that these nonlinear vibrational modes remain exponentially localized near the central mode and stable, provided the disorder is sufficiently small. The instability threshold depends sensitively on a particular realization of disorder and can be modified by specifically designed impurities. Based on this sensitivity, an approach to controlling the energy flow between the modes is proposed. The relevance to other model lattices and experimental miniature arrays is discussed.

  4. Synthesizing Virtual Oscillators to Control Islanded Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Sinha, Mohit; Ainsworth, Nathan G.

    Virtual oscillator control (VOC) is a decentralized control strategy for islanded microgrids where inverters are regulated to emulate the dynamics of weakly nonlinear oscillators. Compared to droop control, which is only well defined in sinusoidal steady state, VOC is a time-domain controller that enables interconnected inverters to stabilize arbitrary initial conditions to a synchronized sinusoidal limit cycle. However, the nonlinear oscillators that are elemental to VOC cannot be designed with conventional linear-control design methods. We address this challenge by applying averaging- and perturbation-based nonlinear analysis methods to extract the sinusoidal steady-state and harmonic behavior of such oscillators. The averaged modelsmore » reveal conclusive links between real- and reactive-power outputs and the terminal-voltage dynamics. Similarly, the perturbation methods aid in quantifying higher order harmonics. The resultant models are then leveraged to formulate a design procedure for VOC such that the inverter satisfies standard ac performance specifications related to voltage regulation, frequency regulation, dynamic response, and harmonic content. Experimental results for a single-phase 750 VA, 120 V laboratory prototype demonstrate the validity of the design approach. They also demonstrate that droop laws are, in fact, embedded within the equilibria of the nonlinear-oscillator dynamics. This establishes the backward compatibility of VOC in that, while acting on time-domain waveforms, it subsumes droop control in sinusoidal steady state.« less

  5. Optimization-Based Robust Nonlinear Control

    DTIC Science & Technology

    2006-08-01

    ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in

  6. Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Richard J.

    2003-01-01

    Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.

  7. M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam

    2013-10-01

    Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.

  8. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the morphological number, as well as the amplitude. The critical amplitude, at which solutions loose periodicity, depends on a single combination of parameters independent of the morphological number that indicate that non-periodic growth is most commonly present for moderate disequilibrium parameters. The spatial distribution of the interface develops deepening roots at late times. Similar spatial distributions are also seen in the limit in which both the cellular and oscillatory modes are close to absolute stability, and the roots deepen with larger departures from the two absolute stability boundaries.

  9. A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    NASA Astrophysics Data System (ADS)

    Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.

    2011-05-01

    Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by modes around a maximal scale ˜ρilT/λmfp, where lT is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by our interest in the dynamics of galaxy cluster plasmas (which are used as the main astrophysical example), but its relevance to solar wind and accretion flow plasmas is also briefly discussed.

  10. Time and space analysis of turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Mordant, Nicolas; Aubourg, Quentin; Viboud, Samuel; Sommeria, Joel

    2016-11-01

    Wave turbulence is a statistical state made of a very large number of nonlinearly interacting waves. The Weak Turbulence Theory was developed to describe such a situation in the weakly nonlinear regime. Although, oceanic data tend to be compatible with the theory, laboratory data fail to fulfill the theoretical predictions. A space-time resolved measurement of the waves have proven to be especially fruitful to identify the mechanism at play in turbulence of gravity-capillary waves. We developed an image processing algorithm to measure the motion of the surface of water with both space and time resolution. We first seed the surface with slightly buoyant polystyrene particles and use 3 cameras to reconstruct the surface. Our stereoscopic algorithm is coupled to PIV so that to obtain both the surface deformation and the velocity of the water surface. Such a coupling is shown to improve the sensitivity of the measurement by one order of magnitude. We use this technique to probe the existence of weakly nonlinear turbulence excited by two small wedge wavemakers in a 13-m diameter wave flume. We observe a truly weakly nonlinear regime of isotropic wave turbulence. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 647018-WATU).

  11. Study on Nonlinear Lateral Parameter Bifurcation Characteristic of Soft Footbridge

    NASA Astrophysics Data System (ADS)

    Chen, Zhou; Deng, De-Yuan; Yan, Quan-Sheng; Lu, Jin-Zhong; Lu, Jian-Xin

    2018-03-01

    With the trend of large span in the development of footbridge, its nonlinear characteristic is more and more obvious. Bifurcation has a great influence on the nonstationary trivial solution and its boundary stability of nonlinear vibration. Based on the Millennium Bridge in London, this paper deduces its nonlinear transverse vibration equation. Also, the method of Galerkin and multi-scale method is used to obtain the judgment condition of nonstationary trivial stability. Based on the bifurcation theory, the influence of nonlinear behavior on nontrivial solution as well as its stability is studied in the paper under two situations, a 1 ‑ σ bifurcation and a 1 ‑ ζ2 bifurcation of parameter plane respectively.

  12. Connective stability of nonlinear matrix systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1974-01-01

    Consideration of stability under structural perturbations of free dynamic systems described by the differential equation dx/dt = A(t,x)x, where the matrix A(t,x) has time-varying nonlinear elements. The concept of 'connective stability' is introduced to study the structural properties of competitive-cooperative nonlinear matrix systems. It is shown that stability reliability in such systems is high and that they remain stable despite time-varying (including 'on-off') interaction among individual agents present in the system. The results obtained can be used to study stability aspects of mathematical models arising in as diverse fields as economics, biology, arms races, and transistor circuits.

  13. Stability of multiloop LQ regulators with nonlinearities. I - Regions of attraction. II - Regions of ultimate boundedness

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1986-01-01

    An investigation is conducted for the closed loop stability of linear time-invariant systems controlled by linear quadratic (LQ) regulators, in cases where nonlinearities exist in the control channels lying outside the stability sector in regions away from the origin. The estimate of the region of attraction thus obtained furnishes methods for the selection of performance function weights for more robust LQ designs. Attention is then given to the closed loop stability of linear time-invariant systems controlled by the LQ regulators when the nonlinearities in the loops escape the stability sector in a bounded region containing the origin.

  14. Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Chen, Dong; Zhao, Min; Liu, Weining; Zheng, Linjiang

    2018-07-01

    In this paper, the general nonlinear car-following model with multi-time delays is investigated in order to describe the reactions of vehicle to driving behavior. Platoon stability and string stability criteria are obtained for the general nonlinear car-following model. Burgers equation and Korteweg de Vries (KdV) equation and their solitary wave solutions are derived adopting the reductive perturbation method. We investigate the properties of typical optimal velocity model using both analytic and numerical methods, which estimates the impact of delays about the evolution of traffic congestion. The numerical results show that time delays in sensing relative movement is more sensitive to the stability of traffic flow than time delays in sensing host motion.

  15. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  16. Stability of strongly nonlinear normal modes

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoffrey; Rand, Richard

    2007-10-01

    It is shown that a transformation of time can allow the periodic solution of a strongly nonlinear oscillator to be written as a simple cosine function. This enables the stability of strongly nonlinear normal modes in multidegree of freedom systems to be investigated by standard procedures such as harmonic balance.

  17. Ion acoustic shock wave in collisional equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  18. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.

    PubMed

    Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F

    2014-11-21

    Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.

  19. The modulational instability for the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we study the modulational instability for the TDNLS equations derived by Hada (1993) and Brio, Hunter, and Johnson to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. We employ Whitham's averaged Lagrangian method to study the modulational instability. This complements studies of the modulational instability by Hada (1993) and Hollweg (1994), who did not use the averaged Lagrangian approach.

  20. Stabilization Approaches for Linear and Nonlinear Reduced Order Models

    NASA Astrophysics Data System (ADS)

    Rezaian, Elnaz; Wei, Mingjun

    2017-11-01

    It has been a major concern to establish reduced order models (ROMs) as reliable representatives of the dynamics inherent in high fidelity simulations, while fast computation is achieved. In practice it comes to stability and accuracy of ROMs. Given the inviscid nature of Euler equations it becomes more challenging to achieve stability, especially where moving discontinuities exist. Originally unstable linear and nonlinear ROMs are stabilized here by two approaches. First, a hybrid method is developed by integrating two different stabilization algorithms. At the same time, symmetry inner product is introduced in the generation of ROMs for its known robust behavior for compressible flows. Results have shown a notable improvement in computational efficiency and robustness compared to similar approaches. Second, a new stabilization algorithm is developed specifically for nonlinear ROMs. This method adopts Particle Swarm Optimization to enforce a bounded ROM response for minimum discrepancy between the high fidelity simulation and the ROM outputs. Promising results are obtained in its application on the nonlinear ROM of an inviscid fluid flow with discontinuities. Supported by ARL.

  1. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-Propelled Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ottander, John A.; Hall, Robert A.; Powers, J. F.

    2018-01-01

    A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.

  2. Nonlinear stability of the 1D Boltzmann equation in a periodic box

    NASA Astrophysics Data System (ADS)

    Wu, Kung-Chien

    2018-05-01

    We study the nonlinear stability of the Boltzmann equation in the 1D periodic box with size , where is the Knudsen number. The convergence rate is for small time region and exponential for large time region. Moreover, the exponential rate depends on the size of the domain (Knudsen number). This problem is highly nonlinear and hence we need more careful analysis to control the nonlinear term.

  3. Quasi-two-dimensional nonlinear evolution of helical magnetorotational instability in a magnetized Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.

    2018-01-01

    Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.

  4. Enhanced energy transport owing to nonlinear interface interaction

    PubMed Central

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2016-01-01

    It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363

  5. Nonlinear Blind Compensation for Array Signal Processing Application

    PubMed Central

    Ma, Hong; Jin, Jiang; Zhang, Hua

    2018-01-01

    Recently, nonlinear blind compensation technique has attracted growing attention in array signal processing application. However, due to the nonlinear distortion stemming from array receiver which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement, which will be more precise to estimate the parameters of target signals such as their two-dimensional directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear model parameters of any channel of RF front-end are extracted to synchronously compensate the nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array signal from a uniform circular array (UCA) is adopted to testify the validity of our approach. The real-world experimental results show that the SFDR of the receiver is enhanced, leading to a significant improvement of the 2-D DOAs estimation performance for weak target signals. And these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate the parameters of weak array signal in concomitance with strong jammers. PMID:29690571

  6. Further Results on Finite-Time Partial Stability and Stabilization. Applications to Nonlinear Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammazi, Chaker

    2009-03-05

    The paper gives Lyapunov type sufficient conditions for partial finite-time and asymptotic stability in which some state variables converge to zero while the rest converge to constant values that possibly depend on the initial conditions. The paper then presents partially asymptotically stabilizing controllers for many nonlinear control systems for which continuous asymptotically stabilizing (in the usual sense) controllers are known not to exist.

  7. Orbital stability of solitary waves for generalized Boussinesq equation with two nonlinear terms

    NASA Astrophysics Data System (ADS)

    Zhang, Weiguo; Li, Xiang; Li, Shaowei; Chen, Xu

    2018-06-01

    This paper investigates the orbital stability and instability of solitary waves for the generalized Boussinesq equation with two nonlinear terms. Firstly, according to the theory of Grillakis-Shatah-Strauss orbital stability, we present the general results to judge orbital stability of the solitary waves. Further, we deduce the explicit expression of discrimination d‧‧(c) to judge the stability of the two solitary waves, and give the stable wave speed interval. Moreover, we analyze the influence of the interaction between two nonlinear terms on the stable wave speed interval, and give the maximal stable range for the wave speed. Finally, some conclusions are given in this paper.

  8. Stability of Nonlinear Principal Components Analysis: An Empirical Study Using the Balanced Bootstrap

    ERIC Educational Resources Information Center

    Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J.

    2007-01-01

    Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…

  9. Nonlinear stability research on the hydraulic system of double-side rolling shear.

    PubMed

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  10. Nonlinear stability research on the hydraulic system of double-side rolling shear

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  11. Theoretical and Analog Studies of the Effects of Nonlinear Stability Derivatives on the Longitudinal Motions of an Aircraft in Response to Step Control Deflections and to the Influence of Proportional Automatic Control

    NASA Technical Reports Server (NTRS)

    Curfman, Howard J , Jr

    1955-01-01

    Through theoretical and analog results the effects of two nonlinear stability derivatives on the longitudinal motions of an aircraft have been investigated. Nonlinear functions of pitching-moment and lift coefficients with angle of attack were considered. Analog results of aircraft motions in response to step elevator deflections and to the action of the proportional control systems are presented. The occurrence of continuous hunting oscillations was predicted and demonstrated for the attitude stabilization system with proportional control for certain nonlinear pitching-moment variations and autopilot adjustments.

  12. Propagation of 3D internal gravity wave beams in a slowly varying stratification

    NASA Astrophysics Data System (ADS)

    Fan, Boyu; Akylas, T. R.

    2017-11-01

    The time-mean flows induced by internal gravity wave beams (IGWB) with 3D variations have been shown to have dramatic implications for long-term IGWB dynamics. While uniform stratifications are convenient both theoretically and in the laboratory, stratifications in the ocean can vary by more than an order of magnitude over the ocean depth. Here, in view of this fact, we study the propagation of a 3D IGWB in a slowly varying stratification. We assume that the stratification varies slowly relative to the local variations in the wave profile. In the 2D case, the IGWB bends in response to the changing stratification, but nonlinear effects are minor even in the finite amplitude regime. For a 3D IGWB, in addition to bending, we find that nonlinearity results in the transfer of energy from waves to a large-scale time-mean flow associated with the mean potential vorticity, similar to IGWB behavior in a uniform stratification. In a weakly nonlinear setting, we derive coupled evolution equations that govern this process. We also use these equations to determine the stability properties of 2D IGWB to 3D perturbations. These findings indicate that 3D effects may be relevant and possibly fundamental to IGWB dynamics in nature. Supported by NSF Grant DMS-1512925.

  13. Nonlinear development and secondary instability of Gortler vortices in hypersonic flows

    NASA Technical Reports Server (NTRS)

    Fu, Yibin B.; Hall, Philip

    1991-01-01

    In a hypersonic boundary layer over a wall of variable curvature, the region most susceptible to Goertler vortices is the temperature adjustment layer over which the basic state temperature decreases monotonically to its free stream value. Except for a special wall curvature distribution, the evolution of Goertler vortices trapped in the temperature adjustment layer will in general be strongly affected by the boundary layer growth through the O(M sup 3/2) curvature of the basic state, where M is the free stream Mach number. Only when the local wavenumber becomes as large as of order M sup 3/8, do nonparallel effects become negligible in the determination of stability properties. In the latter case, Goertler vortices will be trapped in a thin layer of O(epsilon sup 1/2) thickness which is embedded in the temperature adjustment layer; here epsilon is the inverse of the local wavenumber. A weakly nonlinear theory is presented in which the initial nonlinear development of Goertler vortices in the neighborhood of the neutral position is studied and two coupled evolution equations are derived. From these, it can be determined whether the vortices are decaying or growing depending on the sign of a constant which is related to wall curvature and the basic state temperature.

  14. Stability analysis of piecewise non-linear systems and its application to chaotic synchronisation with intermittent control

    NASA Astrophysics Data System (ADS)

    Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min

    2017-10-01

    This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.

  15. Mean state dependence of ENSO diversity resulting from an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Xie, Ruihuang; Jin, Fei-Fei; Mu, Mu

    2016-04-01

    ENSO diversity is referred to the event-to-event differences in the amplitude, longitudinal location of maximum sea surface temperature (SST) anomalies and evolutional mechanisms, as manifested in both observation data and climate model simulations. Previous studies argued that westerly wind burst (WWB) has strong influence on ENSO diversity. Here, we bring evidences, from a modified intermediate complexity Zebiak-Cane (ZC) coupled model, to illustrate that the ENSO diversity is also determined by the mean states. Stabilities of the linearized ZC model reveal that the mean state with weak (strong) wind stress and deep (shallow) thermocline prefers ENSO variation in the equitorial eastern (central) Pacific with a four-year (two-year) period. Weak wind stress and deep thermocline make the thermocline (TH) feedback the dominant contribution to the growth of ENSO SST anomalies, whereas the opposite mean state favors the zonal advective (ZA) feedback. Different leading dynamical SST-controller makes ENSO display its diversity. In a mean state that resembles the recent climate in the tropical Pacific, the four-year and two-year ENSO variations coexist with similar growth rate. Even without WWB forcing, the nonlinear integration results with adjusted parameters in this special mean state also present at least two types of El Niño, in which the maximum warming rates are contributed by either TH or ZA feedback. The consistency between linear and nonlinear model results indicates that the ENSO diversity is dependent on the mean states.

  16. Self-Organized Lattices of Nonlinear Optochemical Waves in Photopolymerizable Fluids: The Spontaneous Emergence of 3-D Order in a Weakly Correlated System.

    PubMed

    Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi

    2018-03-01

    Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws of optical interference can be explained through the soliton-like interactions of optochemical waves with nearest neighbors. Critically, this work casts fundamentally new insight into the collective behaviors of poorly correlated nonlinear waves in higher dimensions and provides a rare, accessible platform for further experimental studies of these previously unexplored behaviors. Furthermore, it defines a self-organization paradigm that, unlike conventional counterparts, could generate polymer microstructures with symmetries spanning all the Bravais lattices.

  17. Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2012-12-01

    The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.

  18. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  19. The application of SVR model in the improvement of QbD: a case study of the extraction of podophyllotoxin.

    PubMed

    Zhai, Chun-Hui; Xuan, Jian-Bang; Fan, Hai-Liu; Zhao, Teng-Fei; Jiang, Jian-Lan

    2018-05-03

    In order to make a further optimization of process design via increasing the stability of design space, we brought in the model of Support Vector Regression (SVR). In this work, the extraction of podophyllotoxin was researched as a case study based on Quality by Design (QbD). We compared the fitting effect of SVR and the most used quadratic polynomial model (QPM) in QbD, and an analysis was made between the two design spaces obtained by SVR and QPM. As a result, the SVR stayed ahead of QPM in prediction accuracy, the stability of model and the generalization ability. The introduction of SVR into QbD made the extraction process of podophyllotoxin well designed and easier to control. The better fitting effect of SVR improved the application effect of QbD and the universal applicability of SVR, especially for non-linear, complicated and weak-regularity problems, widened the application field of QbD.

  20. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  1. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    This research should lead to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle-of-attack aircraft such as the F18 (HARV). The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis and simulation is performed in some detail as well. Various models under investigation for different purposes are summarized in tabular form. Models and simulation for the longitudinal dynamics have been developed for all types except the nonlinear ordinary differential equation model. Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in alpha. The transient responses are compared where the desired alpha varies from 5 degrees to 60 degrees to 30 degrees and back to 5 degrees in all about 16 sec. Here, the horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 sec time constant.

  2. Three-dimensional instabilities of natural convection between two differentially heated vertical plates: Linear and nonlinear complementary approaches

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel

    2018-05-01

    The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.

  3. Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints.

    PubMed

    Fan, Bo; Yang, Qinmin; Tang, Xiaoyu; Sun, Youxian

    2018-06-01

    In this paper, a novel robust adaptive dynamic programming (RADP)-based control strategy is presented for the optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Our contribution includes a step forward beyond the usual optimal control result to show that the output of the plant is always within user-defined bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system, whose asymptotic stability guarantees both the asymptotic stability and the satisfaction of the output restriction of the original system. Furthermore, RADP algorithms are developed to solve the transformed nonlinear optimal control problem with completely unknown dynamics as well as a robust design to guarantee the stability of the closed-loop systems in the presence of unavailable internal dynamic state. Via small-gain theorem, asymptotic stability of the original and transformed nonlinear system is theoretically guaranteed. Finally, comparison results demonstrate the merits of the proposed control policy.

  4. Engineered Multifunctional Nanophotonic Materials for Ultrafast Optical Switching

    DTIC Science & Technology

    2012-11-02

    and Co3 + placed at tetrahedral and octahedral sites, respectively. Single -layer thin films of Co3O4 nanoparticles have large optical nonlinearity and...the first two methodologies in systems having weakly resonant structures, including 3-D and/or 1-D photonic crystal structures (i.e. nonlinear Bragg...Nonlinear optical transmission of lead phthalocyanine-doped nematic liquid crystal composites for multiscale nonlinear switching from nanosecond to

  5. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.

    2015-10-15

    The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less

  6. Nonlinear dynamics induced in a structure by seismic and environmental loading

    DOE PAGES

    Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe

    2016-07-26

    In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less

  7. Nonlinear dynamics induced in a structure by seismic and environmental loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueguen, Philippe; Johnson, Paul Allan; Roux, Philippe

    In this study,we show that under very weak dynamic and quasi-static deformation, that is orders of magnitude below the yield deformation of the equivalent stress strain curve (around 10 -3), the elastic parameters of a civil engineering structure (resonance frequency and damping) exhibit nonlinear softening and recovery. These observations bridge the gap between laboratory and seismic scales where elastic nonlinear behavior has been previously observed. Under weak seismic or atmospheric loading, modal frequencies are modified by around 1% and damping by more than 100% for strain levels between 10 -7 and 10 -4. These observations support the concept of universalmore » behavior of nonlinear elastic behavior in diverse systems, including granular materials and damaged solids that scale from millimeter dimensions to the scale of structures to fault dimensions in the Earth.« less

  8. Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems

    NASA Astrophysics Data System (ADS)

    Razzak, M. A.; Alam, M. Z.; Sharif, M. N.

    2018-03-01

    In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.

  9. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    PubMed

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  10. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2016-01-01

    We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.

  11. Chimera patterns in the Kuramoto-Battogtokh model

    NASA Astrophysics Data System (ADS)

    Smirnov, Lev; Osipov, Grigory; Pikovsky, Arkady

    2017-02-01

    Kuramoto and Battogtokh (2002 Nonlinear Phenom. Complex Syst. 5 380) discovered chimera states represented by stable coexisting synchrony and asynchrony domains in a lattice of coupled oscillators. After a reformulation in terms of a local order parameter, the problem can be reduced to partial differential equations. We find uniformly rotating, spatially periodic chimera patterns as solutions of a reversible ordinary differential equation, and demonstrate a plethora of such states. In the limit of neutral coupling they reduce to analytical solutions in the form of one- and two-point chimera patterns as well as localized chimera solitons. Patterns at weakly attracting coupling are characterized by virtue of a perturbative approach. Stability analysis reveals that only the simplest chimeras with one synchronous region are stable.

  12. Long-Time Behavior and Critical Limit of Subcritical SQG Equations in Scale-Invariant Sobolev Spaces

    NASA Astrophysics Data System (ADS)

    Coti Zelati, Michele

    2018-02-01

    We consider the subcritical SQG equation in its natural scale-invariant Sobolev space and prove the existence of a global attractor of optimal regularity. The proof is based on a new energy estimate in Sobolev spaces to bootstrap the regularity to the optimal level, derived by means of nonlinear lower bounds on the fractional Laplacian. This estimate appears to be new in the literature and allows a sharp use of the subcritical nature of the L^∞ bounds for this problem. As a by-product, we obtain attractors for weak solutions as well. Moreover, we study the critical limit of the attractors and prove their stability and upper semicontinuity with respect to the strength of the diffusion.

  13. Exploration of multiphoton entangled states by using weak nonlinearities

    PubMed Central

    He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons. PMID:26751044

  14. Detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field.

    PubMed

    Jiménez-Aquino, J I; Romero-Bastida, M

    2011-07-01

    The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.

  15. Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive.

    PubMed

    Richardson, Magnus J E

    2007-08-01

    Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative approaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models, receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the model parameters, but is an important determinant of neuronal response and network stability. For the linear integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solution, generalized analytical forms for the high-frequency response are provided. A special case is also identified--time-constant modulation--for which the response to an arbitrarily strong modulation can be calculated exactly.

  16. The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition

    NASA Astrophysics Data System (ADS)

    Chen, Shuhong; Tan, Zhong

    2007-11-01

    In this paper, we consider the nonlinear elliptic systems under controllable growth condition. We use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. We extend previous partial regularity results under the natural growth condition to the case of the controllable growth condition, and directly establishing the optimal Hölder exponent for the derivative of a weak solution.

  17. Perturbed invariant subspaces and approximate generalized functional variable separation solution for nonlinear diffusion-convection equations with weak source

    NASA Astrophysics Data System (ADS)

    Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng

    2018-03-01

    In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.

  18. Local control of globally competing patterns in coupled Swift-Hohenberg equations

    NASA Astrophysics Data System (ADS)

    Becker, Maximilian; Frenzel, Thomas; Niedermayer, Thomas; Reichelt, Sina; Mielke, Alexander; Bär, Markus

    2018-04-01

    We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift-Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left- and right-traveling waves. In particular, these complex Ginzburg-Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.

  19. Modulated amplitude waves in collisionally inhomogeneous Bose Einstein condensates

    NASA Astrophysics Data System (ADS)

    Porter, Mason A.; Kevrekidis, P. G.; Malomed, Boris A.; Frantzeskakis, D. J.

    2007-05-01

    We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length a subjected to a spatially periodic modulation, a=a(x)=a(x+L). This “collisionally inhomogeneous” BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of x. We transform this equation into a GP equation with a constant coefficient and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that “on-site” solutions, whose maxima correspond to maxima of a(x), are more robust and likely to be observed than their “off-site” counterparts.

  20. Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.

    PubMed

    Ryzhov, Eugene A

    2017-11-01

    The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.

  1. Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations

    NASA Astrophysics Data System (ADS)

    Kishor, Ram; Kushvah, Badam Singh

    2017-09-01

    For the study of nonlinear stability of a dynamical system, normalized Hamiltonian of the system is very important to discuss the dynamics in the vicinity of invariant objects. In general, it represents a nonlinear approximation to the dynamics, which is very helpful to obtain the information as regards a realistic solution of the problem. In the present study, normalization of the Hamiltonian and analysis of nonlinear stability in non-resonance case, in the Chermnykh-like problem under the influence of perturbations in the form of radiation pressure, oblateness, and a disc is performed. To describe nonlinear stability, initially, quadratic part of the Hamiltonian is normalized in the neighborhood of triangular equilibrium point and then higher order normalization is performed by computing the fourth order normalized Hamiltonian with the help of Lie transforms. In non-resonance case, nonlinear stability of the system is discussed using the Arnold-Moser theorem. Again, the effects of radiation pressure, oblateness and the presence of the disc are analyzed separately and it is observed that in the absence as well as presence of perturbation parameters, triangular equilibrium point is unstable in the nonlinear sense within the stability range 0<μ<μ1=\\bar{μc} due to failure of the Arnold-Moser theorem. However, perturbation parameters affect the values of μ at which D4=0, significantly. This study may help to analyze more generalized cases of the problem in the presence of some other types of perturbations such as P-R drag and solar wind drag. The results are limited to the regular symmetric disc but it can be extended in the future.

  2. Nonlinear stability analysis of Darcy’s flow with viscous heating

    PubMed Central

    Alves, Leonardo S. de B.; Barletta, Antonio

    2016-01-01

    The nonlinear stability of a rectangular porous channel saturated by a fluid is here investigated. The aspect ratio of the channel is assumed to be variable. The channel walls are considered impermeable and adiabatic except for the horizontal top which is assumed to be isothermal. The viscous dissipation is acting inside the channel as internal heat generator. A basic throughflow is imposed, and the nonlinear convective stability is investigated by means of the generalized integral transform technique. The neutral stability curve is compared with the one obtained by the linear stability analysis already present in the literature. The growth rate analysis of different unstable modes is performed. The Nusselt number is investigated for several supercritical configurations in order to better understand how the system behaves when conditions far away from neutral stability are considered. The patterns of the neutrally stable convective cells are also reported. Nonlinear simulations support the results obtained by means of the linear stability analysis, confirming that viscous dissipation alone is indeed capable of inducing mixed convection. Low Gebhart or high Péclet numbers lead to a transient overheating of the originally motionless fluid before it settles in its convective steady state. PMID:27279772

  3. Orbital stability and energy estimate of ground states of saturable nonlinear Schrödinger equations with intensity functions in R2

    NASA Astrophysics Data System (ADS)

    Lin, Tai-Chia; Wang, Xiaoming; Wang, Zhi-Qiang

    2017-10-01

    Conventionally, the existence and orbital stability of ground states of nonlinear Schrödinger (NLS) equations with power-law nonlinearity (subcritical case) can be proved by an argument using strict subadditivity of the ground state energy and the concentration compactness method of Cazenave and Lions [4]. However, for saturable nonlinearity, such an argument is not applicable because strict subadditivity of the ground state energy fails in this case. Here we use a convexity argument to prove the existence and orbital stability of ground states of NLS equations with saturable nonlinearity and intensity functions in R2. Besides, we derive the energy estimate of ground states of saturable NLS equations with intensity functions using the eigenvalue estimate of saturable NLS equations without intensity function.

  4. Stable scalable control of soliton propagation in broadband nonlinear optical waveguides

    NASA Astrophysics Data System (ADS)

    Peleg, Avner; Nguyen, Quan M.; Huynh, Toan T.

    2017-02-01

    We develop a method for achieving scalable transmission stabilization and switching of N colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in N-sequence transmission is described by a generalized N-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of M out of N soliton sequences. Numerical simulations for single-waveguide transmission with a system of N coupled nonlinear Schrödinger equations with 2 ≤ N ≤ 4 show excellent agreement with the predator-prey model's predictions and stable propagation over significantly larger distances compared with other broadband nonlinear single-waveguide systems. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated by the simulations. We discuss the reasons for the robustness and scalability of transmission stabilization and switching in waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss, and explain their advantages compared with other broadband nonlinear waveguides.

  5. Porous elastic system with nonlinear damping and sources terms

    NASA Astrophysics Data System (ADS)

    Freitas, Mirelson M.; Santos, M. L.; Langa, José A.

    2018-02-01

    We study the long-time behavior of porous-elastic system, focusing on the interplay between nonlinear damping and source terms. The sources may represent restoring forces, but may also be focusing thus potentially amplifying the total energy which is the primary scenario of interest. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. Under some restrictions on the parameters, we also prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the "good" part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin. We also prove the existence of a global attractor.

  6. Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.

    2016-06-01

    The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.

  7. Nonlinear Deformation and Stability of a Noncircular Cylindrical Shell Under Combined Loading with Bending and Twisting Moments

    NASA Astrophysics Data System (ADS)

    Belov, V. K.; Zheleznov, L. P.; Ognyanova, T. S.

    2018-03-01

    A previously developed technique is used to solve problems of strength and stability of discretely reinforced noncircular cylindrical shells made of a composite material with allowance for the moments and nonlinearity of their subcritical stress-strain state. Stability of a reinforced bay of the aircraft fuselage made of a composite material under combined loading with bending and twisting moments is studied. The effects of straining nonlinearity, stiffness of longitudinal ribs, and shell thickness on the critical loads that induce shell buckling are analyzed.

  8. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  9. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

    NASA Astrophysics Data System (ADS)

    Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

    2018-04-01

    The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

  10. Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows

    NASA Astrophysics Data System (ADS)

    Di Pietro, Daniele A.; Marche, Fabien

    2018-02-01

    In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

  11. The interaction between a propagating coastal vortex and topographic waves

    NASA Astrophysics Data System (ADS)

    Parry, Simon Wyn

    This thesis investigates the motion of a point vortex near coastal topography in a rotating frame of reference at constant latitude (f-plane) in the linear and weakly nonlinear limits. Topography is considered in the form of an infinitely long escarpment running parallel to a wall. The vortex motion and topographic waves are governed by the conservation of quasi-geostrophic potential vorticity in shallow water, from which a nonlinear system of equations is derived. First the linear limit is studied for three cases; a weak vortex on- and off-shelf and a weak vortex close to the wall. For the first two cases it is shown that to leading order the vortex motion is stationary and a solution for the topographic waves at the escarpment can be found in terms of Fourier integrals. For a weak vortex close to a wall, the leading order solution is a steadily propagating vortex with a topographic wavetrain at the step. Numerical results for the higher order interactions are also presented and explained in terms of conservation of momentum in the along-shore direction. For the second case a resonant interaction between the vortex and the waves occurs when the vortex speed is equal to the maximum group velocity of the waves and the linear response becomes unbounded at large times. Thus it becomes necessary to examine the weakly nonlinear near-resonant case. Using a long wave approximation a nonlinear evolution equation for the interface separating the two regions of differing relative potential vorticity is derived and has similar form to the BDA (Benjamin, Davies, Acrivos 1967) equation. Results for the leading order steadily propagating vortex and for the vortex-wave feedback problem are calculated numerically using spectral multi-step Adams methods.

  12. Cross-Diffusion Induced Turing Instability and Amplitude Equation for a Toxic-Phytoplankton-Zooplankton Model with Nonmonotonic Functional Response

    NASA Astrophysics Data System (ADS)

    Han, Renji; Dai, Binxiang

    2017-06-01

    The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.

  13. Control of three-dimensional waves on thin liquid films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Gomes, Susana; Pavliotis, Greg; Papageorgiou, Demetrios

    2017-11-01

    We consider a weakly nonlinear model for interfacial waves on three-dimensional thin films on inclined flat planes - the Kuramoto-Sivashinsky equation. The flow is driven by gravity, and is allowed to be overlying or hanging on the flat substrate. Blowing and suction controls are applied at the substrate surface. We explore the instability of the transverse modes for hanging arrangements, which are unbounded and grow exponentially. The structure of the equations allows us to construct optimal transverse controls analytically to prevent this transverse growth. We also may consider the influence of transverse modes on overlying film flows, these modes are damped out if uncontrolled. We also consider the more physical concept of point actuated controls which are modelled using Dirac delta functions. We first study the case of proportional control, where the actuation at a point depends on the local interface height alone. Here, we study the influence of control strength and number/location of actuators on the possible stabilization of the zero solution. We also consider the full feedback problem, which assumes that we can observe the full interface and allow communication between actuators. Using these controls we can obtain exponential stability where proportional controls fail, and stabilize non-trivial solutions.

  14. Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang

    2018-05-01

    Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.

  15. The estimation of nonlinearity in problems of the building of initial confidence regions for small bodies motion. (Russian Title: Оценивание нелинейности в задачах построения начальных доверительных областей движения малых тел)

    NASA Astrophysics Data System (ADS)

    Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.

    2011-07-01

    Simple and mathematically rigorous methods for calculating of nonlinearity coefficients are proposed. These coefficients allow us to make classification for the least squares problem as strongly or weakly nonlinear one. The advices are given on how to reduce a concrete estimation problem to weakly nonlinear one where a more efficient linear approach can be used.

  16. Existence and Stability of Viscoelastic Shock Profiles

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Lewicka, Marta; Zumbrun, Kevin

    2011-05-01

    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic-parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and nonclassical type shock profiles.

  17. A methodology for designing robust multivariable nonlinear control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Grunberg, D. B.

    1986-01-01

    A new methodology is described for the design of nonlinear dynamic controllers for nonlinear multivariable systems providing guarantees of closed-loop stability, performance, and robustness. The methodology is an extension of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) methodology for linear systems, thus hinging upon the idea of constructing an approximate inverse operator for the plant. A major feature of the methodology is a unification of both the state-space and input-output formulations. In addition, new results on stability theory, nonlinear state estimation, and optimal nonlinear regulator theory are presented, including the guaranteed global properties of the extended Kalman filter and optimal nonlinear regulators.

  18. Formation flying design and applications in weak stability boundary regions.

    PubMed

    Folta, David

    2004-05-01

    Weak stability regions serve as superior locations for interferomertric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observation efficiency. Designs of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of weak stability boundary solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in weak stability boundary regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numeric methods to attain constrained formation geometries and control their dynamical evolution. This paper presents a survey of formation missions in the weak stability boundary regions and a brief description of formation design using numerical and dynamical techniques.

  19. Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach.

    PubMed

    Petrović, Nikola Z; Aleksić, Najdan B; Belić, Milivoj

    2015-04-20

    We analyze the modulation stability of spatiotemporal solitary and traveling wave solutions to the multidimensional nonlinear Schrödinger equation and the Gross-Pitaevskii equation with variable coefficients that were obtained using Jacobi elliptic functions. For all the solutions we obtain either unconditional stability, or a conditional stability that can be furnished through the use of dispersion management.

  20. Marginal Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  1. Optimizing Synchronization Stability of the Kuramoto Model in Complex Networks and Power Grids

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wong, K. Y. Michael

    Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial systems. For the Kuramoto model on general weighted networks, the synchronization stability, measured by the dominant Lyapunov exponent at the steady state, is shown to have intricate and nonlinear dependence on the network topology and the dynamical parameters. Specifically, the dominant Lyapunov exponent corresponds to the algebraic connectivity of a meta-graph whose edge weight depends nonlinearly on the steady states. In this study, we utilize the cut-set space (DC) approximation to estimate the nonlinear steady state and simplify the calculation of the stability measure, based on which we further derive efficient algorithms to optimize the synchronization stability. The properties of the optimized networks and application in power grid stability are also discussed. This work is supported by a Grant from the Research Grant Council of Hong Kong (Grant Numbers 605813 and 16322616).

  2. Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability.

    PubMed

    Delcey, Lucie; Haraguss, Mariana

    2018-04-13

    We study the existence and the stability of periodic steady waves for a nonlinear model, the Lugiato-Lefever equation, arising in optics. Starting from a detailed description of the stability properties of constant solutions, we then focus on the periodic steady waves which bifurcate at the onset of Turing instability. Using a centre manifold reduction, we analyse these Turing bifurcations, and prove the existence of periodic steady waves. This approach also allows us to conclude on the nonlinear orbital stability of these waves for co-periodic perturbations, i.e. for periodic perturbations which have the same period as the wave. This stability result is completed by a spectral stability result for general bounded perturbations. In particular, this spectral analysis shows that instabilities are always due to co-periodic perturbations.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  3. LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi-Sugeno's form.

    PubMed

    Lam, H K; Leung, Frank H F

    2007-10-01

    This correspondence presents the stability analysis and performance design of the continuous-time fuzzy-model-based control systems. The idea of the nonparallel-distributed-compensation (non-PDC) control laws is extended to the continuous-time fuzzy-model-based control systems. A nonlinear controller with non-PDC control laws is proposed to stabilize the continuous-time nonlinear systems in Takagi-Sugeno's form. To produce the stability-analysis result, a parameter-dependent Lyapunov function (PDLF) is employed. However, two difficulties are usually encountered: 1) the time-derivative terms produced by the PDLF will complicate the stability analysis and 2) the stability conditions are not in the form of linear-matrix inequalities (LMIs) that aid the design of feedback gains. To tackle the first difficulty, the time-derivative terms are represented by some weighted-sum terms in some existing approaches, which will increase the number of stability conditions significantly. In view of the second difficulty, some positive-definitive terms are added in order to cast the stability conditions into LMIs. In this correspondence, the favorable properties of the membership functions and nonlinear control laws, which allow the introduction of some free matrices, are employed to alleviate the two difficulties while retaining the favorable properties of PDLF-based approach. LMI-based stability conditions are derived to ensure the system stability. Furthermore, based on a common scalar performance index, LMI-based performance conditions are derived to guarantee the system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.

  4. Phase slips in superconducting weak links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires andmore » slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.« less

  5. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  6. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.

    PubMed

    Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro

    2015-01-12

    One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

  7. Synthetic magnetism for photon fluids

    NASA Astrophysics Data System (ADS)

    Westerberg, N.; Maitland, C.; Faccio, D.; Wilson, K.; Öhberg, P.; Wright, E. M.

    2016-08-01

    We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.

  8. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    NASA Astrophysics Data System (ADS)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  9. Stability Analysis of Distributed Order Fractional Chen System

    PubMed Central

    Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.

    2013-01-01

    We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508

  10. Some problems of nonlinear waves in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1979-01-01

    An approximate technique for analyzing nonlinear waves in solid propellant rocket motors is presented which inexpensively provides accurate results up to amplitudes of ten percent. The connection with linear stability analysis is shown. The method is extended to third order in the amplitude of wave motion in order to study nonlinear stability, or triggering. Application of the approximate method to the behavior of pulses is described.

  11. Perturbations to trophic interactions and the stability of complex food webs

    PubMed Central

    O'Gorman, Eoin J.; Emmerson, Mark C.

    2009-01-01

    The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606

  12. Sharper Graph-Theoretical Conditions for the Stabilization of Complex Reaction Networks

    PubMed Central

    Knight, Daniel; Shinar, Guy; Feinberg, Martin

    2015-01-01

    Across the landscape of all possible chemical reaction networks there is a surprising degree of stable behavior, despite what might be substantial complexity and nonlinearity in the governing differential equations. At the same time there are reaction networks, in particular those that arise in biology, for which richer behavior is exhibited. Thus, it is of interest to understand network-structural features whose presence enforces dull, stable behavior and whose absence permits the dynamical richness that might be necessary for life. We present conditions on a network’s Species-Reaction Graph that ensure a high degree of stable behavior, so long as the kinetic rate functions satisfy certain weak and natural constraints. These graph-theoretical conditions are considerably more incisive than those reported earlier. PMID:25600138

  13. Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics.

    PubMed

    Li, Yongming; Sui, Shuai; Tong, Shaocheng

    2017-02-01

    This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.

  14. Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohandas, Gopakumar; Pessah, Martin E., E-mail: gopakumar@nbi.ku.dk, E-mail: mpessah@nbi.ku.dk

    The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of themore » Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.« less

  15. Weakly nonlinear convection induced by the sequestration of CO2 in a perfectly impervious geological formation

    NASA Astrophysics Data System (ADS)

    Vo, Liet; Hadji, Layachi

    2017-12-01

    Linear and weakly nonlinear stability analyses are performed to investigate the dissolution-driven convection induced by the sequestration of carbon dioxide in a perfectly impervious geological formation. We prescribe Neumann concentration boundary conditions at the rigid upper and lower walls that bound a fluid saturated porous layer of infinite horizontal extent. We envisage the physical situation wherein the top boundary is shut after a certain amount of positively buoyant super-critical carbon-dioxide has been injected. We model this situation by considering a Rayleigh-Taylor like base state consisting of carbon-rich heavy brine overlying a carbon-free layer and seek the critical thickness at which the top layer has acquired enough potential energy for fluid overturning to occur. We quantify the influence of carbon diffusion anisotropy, permeability dependence on depth and the presence of a first order chemical reaction between the carbon-rich brine and host mineralogy on the threshold instability conditions and associated flow patterns using classical normal modes approach and paper-and-pencil calculations. The critical Rayleigh number and corresponding wavenumber are found to be independent of the depth of the formation. The weakly nonlinear analysis is performed using long wavelength asymptotics, the validity of which is limited to small Damköhler numbers. We derive analytical expressions for the solute flux at the interface, the location of which corresponds to the minimum depth of the boundary layer at which instability sets in. We show that the interface acts like a sink leading to the formation of a self-organized exchange between descending carbon-rich brine and ascending carbon free brine. We delineate necessary conditions for the onset of the fingering pattern that is observed in laboratory and numerical experiments when the constant flux regime is attained. Using the derived interface flux conditions, we put forth differential equations for the time evolution and deformation of the interface as it migrates upward while the carbon dioxide is dissolving into the ambient brine. We solve for the terminal time when the interface reaches the top boundary thereby quantifying the time it takes for an initial amount of injected super-critical carbon dioxide to have completely dissolved within ambient brine thus signaling the start of the shutdown regime.

  16. Algebraic disturbances and their consequences in rotating channel flow transition

    NASA Astrophysics Data System (ADS)

    Jose, Sharath; Kuzhimparampil, Vishnu; Pier, Benoît.; Govindarajan, Rama

    2017-08-01

    It is now established that subcritical mechanisms play a crucial role in the transition to turbulence of nonrotating plane shear flows. The role of these mechanisms in rotating channel flow is examined here in the linear and nonlinear stages. Distinct patterns of behavior are found: the transient growth leading to nonlinearity at low rotation rates R o , a highly chaotic intermediate R o regime, a localized weak chaos at higher R o , and complete stabilization of transient disturbances at very high R o . At very low R o , the transient growth amplitudes are close to those for nonrotating flow, but Coriolis forces assert themselves by producing distinct asymmetry about the channel centreline. Nonlinear processes are then triggered, in a streak-breakdown mode of transition. The high R o regimes do not show these signatures; here the leading eigenmode emerges as dominant in the early stages. Elongated structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to reduce nonnormality in the linear operator, in an indirect manifestation of Taylor-Proudman effects. Although the critical Reynolds for exponential growth of instabilities is known to vary a lot with rotation rate, we show that the energy critical Reynolds number is insensitive to rotation rate. It is hoped that these findings will motivate experimental verification and examination of other rotating flows in this light.

  17. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  18. Connective stability of competitive equilibrium

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1975-01-01

    The purpose of this paper is to derive necessary and sufficient conditions for the connective stability of nonlinear matrix systems described by the equation x-dot = A(t, x) x, where the matrix A(t, x) has time-varying nonlinear elements. The results obtained can be used to study the stability of competitive equilibrium in fields as diverse as economics and engineering, model ecosystems, and the arms race.-

  19. Special discontinuities in nonlinearly elastic media

    NASA Astrophysics Data System (ADS)

    Chugainova, A. P.

    2017-06-01

    Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.

  20. Magnetically charged regular black hole in a model of nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Meng-Sen, E-mail: mengsenma@gmail.com

    2015-11-15

    We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which wemore » know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.« less

  1. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1993-01-01

    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.

  2. Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System

    PubMed Central

    Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés

    2016-01-01

    This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338

  3. Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.

    PubMed

    Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés

    2016-07-27

    This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks.

  4. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  5. Structural stability of nonlinear population dynamics.

    PubMed

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  6. Structural stability of nonlinear population dynamics

    NASA Astrophysics Data System (ADS)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  7. Nonlinear differential system applied of a mechanical plan model of the automotives used for the nonlinear stability analysis

    NASA Astrophysics Data System (ADS)

    Simniceanu, Loreta; Mihaela, Bogdan; Otat, Victor; Trotea, Mario

    2017-10-01

    This paper proposes a plan mechanical model for the vehicles with two axles, taking into account the lateral deflection of the tire. For this mechanical model are determined two mathematical models under the nonlinear differential equations systems form without taking into account the action of the driver and taking into account. The analysis of driver-vehicle system consists in the mathematical description of vehicle dynamics, coupled with the possibilities and limits of the human factor. Description seeks to emphasize the significant influence of the driver in handling and stability analyzes of vehicles and vehicle-driver system stability until the advent of skidding. These mathematical models are seen as very useful tools to analyzing the vehicles stability. The paper analyzes the influence of some parameters of the vehicle on its behavior in terms of stability of dynamic systems.

  8. Stability Metrics for Simulation and Flight-Software Assessment and Monitoring of Adaptive Control Assist Compensators

    NASA Technical Reports Server (NTRS)

    Hodel, A. S.; Whorton, Mark; Zhu, J. Jim

    2008-01-01

    Due to a need for improved reliability and performance in aerospace systems, there is increased interest in the use of adaptive control or other nonlinear, time-varying control designs in aerospace vehicles. While such techniques are built on Lyapunov stability theory, they lack an accompanying set of metrics for the assessment of stability margins such as the classical gain and phase margins used in linear time-invariant systems. Such metrics must both be physically meaningful and permit the user to draw conclusions in a straightforward fashion. We present in this paper a roadmap to the development of metrics appropriate to nonlinear, time-varying systems. We also present two case studies in which frozen-time gain and phase margins incorrectly predict stability or instability. We then present a multi-resolution analysis approach that permits on-line real-time stability assessment of nonlinear systems.

  9. Continuous uniformly finite time exact disturbance observer based control for fixed-time stabilization of nonlinear systems with mismatched disturbances

    PubMed Central

    Liu, Chongxin; Liu, Hang

    2017-01-01

    This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966

  10. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  11. Recovery of Spectrally Overlapping QPSK Signals Using a Nonlinear Optoelectronic Filter

    DTIC Science & Technology

    2017-03-19

    Spectrally Overlapping QPSK Signals Using a Nonlinear Optoelectronic Filter William Loh, Siva Yegnanarayanan, Kenneth E. Kolodziej, and Paul...recovery of a weak QPSK signal buried 35-dB beneath an interfering QPSK signal having an overlapping spectrum. This nonlinear optoelectronic filter ...from increased detection sensitivity. Here, we demonstrate an optoelectronic filter that enables the detection of a desired signal hidden beneath a

  12. Nonlocal interferometry with macroscopic coherent states and its application to quantum communications

    NASA Astrophysics Data System (ADS)

    Kirby, Brian

    Macroscopic quantum effects are of fundamental interest because they help us to understand the quantum-classical boundary, and may also have important practical applications in long-range quantum communications. Specifically we analyze a macroscopic generalization of the Franson interferometer, where violations of Bell's inequality can be observed using phase entangled coherent states created using weak nonlinearities. Furthermore we want to understand how these states, and other macroscopic quantum states, can be applied to secure quantum communications. We find that Bell's inequality can be violated at ranges of roughly 400 km in optical fiber when various unambiguous state discrimination techniques are applied. In addition Monte Carlo simulations suggest that quantum communications schemes based on macroscopic quantum states and random unitary transformations can be potentially secure at long distances. Lastly, we calculate the feasibility of creating the weak nonlinearity needed for the experimental realization of these proposals using metastable xenon in a high finesse cavity. This research suggests that quantum states created using macroscopic coherent states and weak nonlinearities may be a realistic path towards the realization of secure long-range quantum communications.

  13. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyuki, Y.

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation ofmore » Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.« less

  14. The numerical dynamic for highly nonlinear partial differential equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  15. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    NASA Astrophysics Data System (ADS)

    Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

    2012-12-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  16. Analysis on nonlinear optical properties of Cd (Zn) Se quantum dots synthesized using three different stabilizing agents

    NASA Astrophysics Data System (ADS)

    J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi

    2017-10-01

    Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.

  17. On a program manifold's stability of one contour automatic control systems

    NASA Astrophysics Data System (ADS)

    Zumatov, S. S.

    2017-12-01

    Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold's absolute stability of one contour automatic control systems are obtained. The Hurwitz's angle of absolute stability was determined. The sufficient conditions of program manifold's absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov's second method.

  18. Mobility of discrete multibreathers in the exciton dynamics of the Davydov model with saturable nonlinearities.

    PubMed

    Tchinang Tchameu, J D; Togueu Motcheyo, A B; Tchawoua, C

    2014-10-01

    We show that the state of amide-I excitations in proteins is modeled by the discrete nonlinear Schrödinger equation with saturable nonlinearities. This is done by extending the Davydov model to take into account the competition between local compression and local dilatation of the lattice, thus leading to the interplay between self-focusing and defocusing saturable nonlinearities. Site-centered (sc) mode and/or bond-centered mode like discrete multihump soliton (DMHS) solutions are found numerically and their stability is analyzed. As a result, we obtained the existence and stability diagrams for all observed types of sc DMHS solutions. We also note that the stability of sc DMHS solutions depends not only on the value of the interpeak separation but also on the number of peaks, while their counterpart having at least one intersite soliton is instable. A study of mobility is achieved and it appears that, depending on the higher-order saturable nonlinearity, DMHS-like mechanism for vibrational energy transport along the protein chain is possible.

  19. The effects of muscle weakness on degenerative spondylolisthesis: A finite element study.

    PubMed

    Zhu, Rui; Niu, Wen-Xin; Zeng, Zhi-Li; Tong, Jian-Hua; Zhen, Zhi-Wei; Zhou, Shuang; Yu, Yan; Cheng, Li-Ming

    2017-01-01

    Whether muscle weakness is a cause, or result, of degenerative spondylolisthesis is not currently well understood. Little biomechanical evidence is available to offer an explanation for the mechanism behind exercise therapy. Therefore, the aim of this study is to investigate the effects of back muscle weakness on degenerative spondylolisthesis and to tease out the biomechanical mechanism of exercise therapy. A nonlinear 3-D finite element model of L3-L5 was constructed. Forces representing global back muscles and global abdominal muscles, follower loads and an upper body weight were applied. The force of the global back muscles was reduced to 75%, 50% and 25% to simulate different degrees of back muscle weakness. An additional boundary condition which represented the loads from other muscles after exercise therapy was set up to keep the spine in a neutral standing position. Shear forces, intradiscal pressure, facet joint forces and von Mises equivalent stresses in the annuli were calculated. The intervertebral rotations of L3-L4 and L4-L5 were within the range of in vitro experimental data. The calculated intradiscal pressure of L4-L5 for standing was 0.57MPa, which is similar to previous in vivo data. With the back muscles were reduced to 75%, 50% and 25% force, the shear force moved increasingly in a ventral direction. Due to the additional stabilizing force and moment provided by boundary conditions, the shear force varied less than 15%. Reducing the force of global back muscles might lead to, or aggravate, degenerative spondylolisthesis with forward slipping from biomechanical point of view. Exercise therapy may improve the spinal biomechanical environment. However, the intrinsic correlation between back muscle weakness and degenerative spondylolisthesis needs more clinical in vivo study and biomechanical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A class of stabilizing controllers for flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.

    1995-01-01

    The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.

  1. Undular bore theory for the Gardner equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.

    2012-09-01

    We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.

  2. Solid-state lasers for coherent communication and remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    Work in the stabilization of monolithic Nd:YAG lasers and the application of these lasers to nonlinear optical frequency conversion is discussed. The intrinsic stability of semiconductor diode laser pumped solid state lasers has facilitated a number of demonstration in external resonant cavity harmonic generation and stable optical parametric oscillation. Relative laser frequency stabilization of 0.3 Hz was achieved, and absolute stability of a few hundred hertz is anticipated. The challenge is now to reproduce this frequency stability in the output of tunable nonlinear optical devices. Theoretical and experimental work toward this goal are continuing.

  3. Composite Structural Analysis of Flat-Back Shaped Blade for Multi-MW Class Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Hyun; Bang, Hyung-Joon; Shin, Hyung-Ki; Jang, Moon-Seok

    2014-06-01

    This paper provides an overview of failure mode estimation based on 3D structural finite element (FE) analysis of the flat-back shaped wind turbine blade. Buckling stability, fiber failure (FF), and inter-fiber failure (IFF) analyses were performed to account for delamination or matrix failure of composite materials and to predict the realistic behavior of the entire blade region. Puck's fracture criteria were used for IFF evaluation. Blade design loads applicable to multi-megawatt (MW) wind turbine systems were calculated according to the Germanischer Lloyd (GL) guideline and the International Electrotechnical Commission (IEC) 61400-1 standard, under Class IIA wind conditions. After the post-processing of final load results, a number of principal load cases were selected and converted into applied forces at the each section along the blade's radius of the FE model. Nonlinear static analyses were performed for laminate failure, FF, and IFF check. For buckling stability, linear eigenvalue analysis was performed. As a result, we were able to estimate the failure mode and locate the major weak point.

  4. Stationary states of extended nonlinear Schrödinger equation with a source

    NASA Astrophysics Data System (ADS)

    Borich, M. A.; Smagin, V. V.; Tankeev, A. P.

    2007-02-01

    Structure of nonlinear stationary states of the extended nonlinear Schrödinger equation (ENSE) with a source has been analyzed with allowance for both third-order and nonlinearity dispersion. A new class of particular solutions (solitary waves) of the ENSe has been obtained. The scenario of the destruction of these states under the effect of an external perturbation has been investigated analytically and numerically. The results obtained can be used to interpret experimental data on the weakly nonlinear dynamics of the magnetostatic envelope in heterophase ferromagnet-insulator-metal, metal-insulator-ferromagnet-insulator-metal, and other similar structures and upon the simulation of nonlinear processes in optical systems.

  5. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  6. Stabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in multiferroic BiFeO 3

    DOE PAGES

    Cooper, Valentino R.; Lee, Jun Hee; Krogel, Jaron T.; ...

    2015-08-06

    Multiferroic BiFeO 3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. Thus, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and Dzyaloshinskii-Moria interactions drives the stabilization of weak ferromagnetism. Furthermore,more » energetically competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism on and off under application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.« less

  7. Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.

  8. Weak gravitational lensing effects on the determination of Omega_mega_m and Omega_mega Lambda from SNeIa

    NASA Astrophysics Data System (ADS)

    Valageas, P.

    2000-02-01

    In this article we present an analytical calculation of the probability distribution of the magnification of distant sources due to weak gravitational lensing from non-linear scales. We use a realistic description of the non-linear density field, which has already been compared with numerical simulations of structure formation within hierarchical scenarios. Then, we can directly express the probability distribution P(mu ) of the magnification in terms of the probability distribution of the density contrast realized on non-linear scales (typical of galaxies) where the local slope of the initial linear power-spectrum is n=-2. We recover the behaviour seen by numerical simulations: P(mu ) peaks at a value slightly smaller than the mean < mu >=1 and it shows an extended large mu tail (as described in another article our predictions also show a good quantitative agreement with results from N-body simulations for a finite smoothing angle). Then, we study the effects of weak lensing on the derivation of the cosmological parameters from SNeIa. We show that the inaccuracy introduced by weak lensing is not negligible: {cal D}lta Omega_mega_m >~ 0.3 for two observations at z_s=0.5 and z_s=1. However, observations can unambiguously discriminate between Omega_mega_m =0.3 and Omega_mega_m =1. Moreover, in the case of a low-density universe one can clearly distinguish an open model from a flat cosmology (besides, the error decreases as the number of observ ed SNeIa increases). Since distant sources are more likely to be ``demagnified'' the most probable value of the observed density parameter Omega_mega_m is slightly smaller than its actual value. On the other hand, one may obtain some valuable information on the properties of the underlying non-linear density field from the measure of weak lensing distortions.

  9. Harmonic Phase Response of Nonlinear Radar Targets

    DTIC Science & Technology

    2015-10-01

    while allowing its harmonics to pass through. The weak harmonic responses are then amplified to allow for easier detection and measurement . 4...where the phase of the 2nd and 3rd harmonic of the received electromagnetic wave from nonlinear targets was measured and plotted against the frequency

  10. Turbulence of Weak Gravitational Waves in the Early Universe.

    PubMed

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  11. Stabilization and robustness of non-linear unity-feedback system - Factorization approach

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Kabuli, M. G.

    1988-01-01

    The paper is a self-contained discussion of a right factorization approach in the stability analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-posed unity-feedback system S1(P, C). It is shown that a well-posed stable feedback system S1(P, C) implies that P and C have right factorizations. In the case where C is stable, P has a normalized right-coprime factorization. The factorization approach is used in stabilization and simultaneous stabilization results.

  12. On the stability of lumps and wave collapse in water waves.

    PubMed

    Akylas, T R; Cho, Yeunwoo

    2008-08-13

    In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.

  13. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    NASA Astrophysics Data System (ADS)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  14. Weakly Nonlinear Description of Parametric Instabilities in Vibrating Flows

    NASA Technical Reports Server (NTRS)

    Knobloch, E.; Vega, J. M.

    1999-01-01

    This project focuses on the effects of weak dissipation on vibrational flows in microgravity and in particular on (a) the generation of mean flows through viscous effects and their reaction on the flows themselves, and (b) the effects of finite group velocity and dispersion on the resulting dynamics in large domains. The basic mechanism responsible for the generation of such flows is nonlinear and was identified by Schlichting [21] and Longuet-Higgins. However, only recently has it become possible to describe such flows self-consistently in terms of amplitude equations for the parametrically excited waves coupled to a mean flow equation. The derivation of these equations is nontrivial because the limit of zero viscosity is singular. This project focuses on various aspects of this singular problem (i.e., the limit C equivalent to (nu)((g)(h(exp 3)))exp -1/2 << 1,where nu is the kinematic viscosity and h is the liquid depth) in the weakly nonlinear regime. A number of distinct cases is identified depending on the values of the Bond number, the size of the nonlinear terms, distance above threshold and the length scales of interest. The theory provides a quantitative explanation of a number of experiments on the vibration modes of liquid bridges and related experiments on parametric excitation of capillary waves in containers of both small and large aspect ratio. The following is a summary of results obtained thus far.

  15. A conformal approach for the analysis of the non-linear stability of radiation cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk

    2013-01-15

    The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.

  16. Straightening of a wavy strip: An elastic-plastic contact problem including snap-through

    NASA Technical Reports Server (NTRS)

    Fischer, D. F.; Rammerstorfer, F. G.

    1980-01-01

    The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.

  17. Weak Links: Stabilizers of Complex Systems from Proteins to Social Networks

    NASA Astrophysics Data System (ADS)

    Csermely, Peter

    Why do women stabilize our societies? Why can we enjoy and understand Shakespeare? Why are fruitflies uniform? Why do omnivorous eating habits aid our survival? Why is Mona Lisa's smile beautiful? -- Is there any answer to these questions? This book shows that the statement: "weak links stabilize complex systems" holds the answers to all of the surprising questions above. The author (recipientof several distinguished science communication prizes) uses weak (low affinity, low probability) interactions as a thread to introduce a vast varietyof networks from proteins to ecosystems.

  18. Robust nonlinear control of vectored thrust aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, John C.; Murray, Richard; Morris, John

    1993-01-01

    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.

  19. Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Tong, Shaocheng; Li, Yongming

    2017-02-01

    This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.

  20. Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Lombardo, S.; Mulone, G.; Trovato, M.

    2008-06-01

    We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction-diffusion systems. A computable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model and a three-species model for the spatial spread of rabies among foxes.

  1. Spatial solitons and stability in the one-dimensional and the two-dimensional generalized nonlinear Schrödinger equation with fourth-order diffraction and parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Tiofack, C. G. L.; Ndzana, F., II; Mohamadou, A.; Kofane, T. C.

    2018-03-01

    We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.

  2. Defending the beauty of the Invariance Principle

    NASA Astrophysics Data System (ADS)

    Barkana, Itzhak

    2014-01-01

    Customary stability analysis methods for nonlinear nonautonomous systems seem to require a strict condition of uniform continuity. Although extensions of LaSalle's Invariance Principle to nonautonomous systems that mitigate this condition have been available for a long time, they have remained surprisingly unknown or open to misinterpretations. The large scope of the Principle might have misled the prospective users and its application to Control problems has been received with amazing yet clear uneasiness. Counterexamples have been used in order to claim that the Invariance Principle cannot be applied to nonlinear nonautonomous systems. Because the original formulation of the Invariance Principle still imposes conditions that are not necessarily needed, this paper presents a new Invariance Principle that further mitigates previous conditions and thus further expands the scope of stability analysis. A brief comparative review of various alternatives to stability analysis of nonautonomous nonlinear systems and their implications is also presented in order to illustrate that thorough analysis of same examples may actually confirm the efficiency of the Invariance Principle approach when dealing with stability of nonautonomous nonlinear systems problems that may look difficult or even unsolvable otherwise.

  3. Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Román; Frieman, Joshua A.

    1999-07-01

    We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.

  4. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  5. Enhancement of temporal contrast of high-power laser pulses in an anisotropic medium with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Kuz'mina, M. S.; Khazanov, E. A.

    2015-05-01

    We consider the methods for enhancing the temporal contrast of super-high-power laser pulses, based on the conversion of radiation polarisation in a medium with cubic nonlinearity. For a medium with weak birefringence and isotropic nonlinearity, we propose a new scheme to enhance the temporal contrast. For a medium with anisotropic nonlinearity, the efficiency of the temporal contrast optimisation is shown to depend not only on the spatial orientation of the crystal and B-integral, but also on the type of the crystal lattice symmetry.

  6. Three-axis stabilization of spacecraft using parameter-independent nonlinear quaternion feedback

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.

    1994-01-01

    This paper considers the problem of rigid spacecraft. A nonlinear control law which uses the feedback of the unit quaternion and the measured angular velocities is proposed and is shown to provide global asymptotic stability. The control law does not require the knowledge of the system parameters, and is therefore robust to modeling errors. The significance of the control law is that it can be used for large-angle maneuvers with guaranteed stability.

  7. Theoretical considerations of some nonlinear aspects of hypersonic panel flutter

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.

    1974-01-01

    A research project to analyze the effects of hypersonic nonlinear aerodynamic loading on panel flutter is reported. The test equipment and procedures for conducting the tests are explained. The effects of aerodynamic linearities on stability were evaluated by determining constant-initial-energy amplitude-sensitive stability boundaries and comparing them with the corresponding linear stability boundaries. An attempt to develop an alternative method of analysis for systems where amplitude-sensitive instability is possible is presented.

  8. Optical wave turbulence and the condensation of light

    NASA Astrophysics Data System (ADS)

    Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania

    2009-11-01

    In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.

  9. Stability analysis of a reinforced carbon carbon shell

    NASA Technical Reports Server (NTRS)

    Agan, W. E.; Jordan, B. M.

    1977-01-01

    This paper presents the development of a stability analysis for the nose cap of the NASA Space Shuttle Orbiter. Stability is evaluated by the differential stiffness analysis of the NASTRAN finite-element computer code, addressing those nonstandard characteristics in the nose cap such as nonuniform curvature, asymmetrical and nonuniform loads, support fixity, and various combinations of membrane and bending stresses. A full-sized nose cap, thinner than production, was statically tested and stability analyzed. The failing load level correlated to within 30%. The region and mode of buckling that occurred during test was accurately predicted by analysis. The criterion for predicting instability is based on the behavior of the nonlinear deflections. The deflections are nonlinear elastic in that the stresses are well within the elastic range of the material, but the geometry-load relationship produces nonlinear deflections. The load-deflection relationship is well defined by differential stiffness analysis up to the zero-slope portion of the curve, the point of neutral stability or where the shell 'snaps through' just prior to general instability.

  10. An extended car-following model to describe connected traffic dynamics under cyberattacks

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng

    2018-04-01

    In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.

  11. Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste

    2018-03-01

    Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

  12. Stabilization of the Peregrine soliton and Kuznetsov-Ma breathers by means of nonlinearity and dispersion management

    NASA Astrophysics Data System (ADS)

    Cuevas-Maraver, J.; Malomed, Boris A.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2018-04-01

    We demonstrate a possibility to make rogue waves (RWs) in the form of the Peregrine soliton (PS) and Kuznetsov-Ma breathers (KMBs) effectively stable objects, with the help of properly defined dispersion or nonlinearity management applied to the continuous-wave (CW) background supporting the RWs. In particular, it is found that either management scheme, if applied along the longitudinal coordinate, making the underlying nonlinear Schrödinger equation (NLSE) self-defocusing in the course of disappearance of the PS, indeed stabilizes the global solution with respect to the modulational instability of the background. In the process, additional excitations are generated, namely, dispersive shock waves and, in some cases, also a pair of slowly separating dark solitons. Further, the nonlinearity-management format, which makes the NLSE defocusing outside of a finite domain in the transverse direction, enables the stabilization of the KMBs, in the form of confined oscillating states. On the other hand, a nonlinearity-management format applied periodically along the propagation direction, creates expanding patterns featuring multiplication of KMBs through their cascading fission.

  13. Mach stem formation in reflection and focusing of weak shock acoustic pulses.

    PubMed

    Karzova, Maria M; Khokhlova, Vera A; Salze, Edouard; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10(-3) to 10(-2). Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.

  14. Kelvin-wave cascade in the vortex filament model

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Laurie, Jason

    2014-01-01

    The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.

  15. Detection of weak signals in memory thermal baths.

    PubMed

    Jiménez-Aquino, J I; Velasco, R M; Romero-Bastida, M

    2014-11-01

    The nonlinear relaxation time and the statistics of the first passage time distribution in connection with the quasideterministic approach are used to detect weak signals in the decay process of the unstable state of a Brownian particle embedded in memory thermal baths. The study is performed in the overdamped approximation of a generalized Langevin equation characterized by an exponential decay in the friction memory kernel. A detection criterion for each time scale is studied: The first one is referred to as the receiver output, which is given as a function of the nonlinear relaxation time, and the second one is related to the statistics of the first passage time distribution.

  16. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  17. Nonlinear dynamics near the stability margin in rotating pipe flow

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  18. Standard representation and unified stability analysis for dynamic artificial neural network models.

    PubMed

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  19. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.

    2015-05-15

    Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF lasermore » beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.« less

  20. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    NASA Astrophysics Data System (ADS)

    Coughlin, Mark F.; Fredberg, Jeffrey J.

    2013-12-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.

  1. Superdiffusive transport and energy localization in disordered granular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less

  2. Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach

    NASA Astrophysics Data System (ADS)

    Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.

    2015-10-01

    In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.

  3. Superdiffusive transport and energy localization in disordered granular crystals

    DOE PAGES

    Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.

    2016-02-12

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less

  4. Inverted Spring Pendulum Driven by a Periodic Force: Linear versus Nonlinear Analysis

    ERIC Educational Resources Information Center

    Arinstein, A.; Gitterman, M.

    2008-01-01

    We analyse the stability of the spring inverted pendulum with the vertical oscillations of the suspension point. An important factor in the stability analysis is the interaction between radial and oscillating modes. In addition to the small oscillations near the upper position, the nonlinearity of the problem leads to the appearance of limit-cycle…

  5. Stability for a class of difference equations

    NASA Astrophysics Data System (ADS)

    Muroya, Yoshiaki; Ishiwata, Emiko

    2009-06-01

    We consider the following non-autonomous and nonlinear difference equations with unbounded delays: where 0

  6. Weak interactions, omnivory and emergent food-web properties.

    PubMed

    Emmerson, Mark; Yearsley, Jon M

    2004-02-22

    Empirical studies have shown that, in real ecosystems, species-interaction strengths are generally skewed in their distribution towards weak interactions. Some theoretical work also suggests that weak interactions, especially in omnivorous links, are important for the local stability of a community at equilibrium. However, the majority of theoretical studies use uniform distributions of interaction strengths to generate artificial communities for study. We investigate the effects of the underlying interaction-strength distribution upon the return time, permanence and feasibility of simple Lotka-Volterra equilibrium communities. We show that a skew towards weak interactions promotes local and global stability only when omnivory is present. It is found that skewed interaction strengths are an emergent property of stable omnivorous communities, and that this skew towards weak interactions creates a dynamic constraint maintaining omnivory. Omnivory is more likely to occur when omnivorous interactions are skewed towards weak interactions. However, a skew towards weak interactions increases the return time to equilibrium, delays the recovery of ecosystems and hence decreases the stability of a community. When no skew is imposed, the set of stable omnivorous communities shows an emergent distribution of skewed interaction strengths. Our results apply to both local and global concepts of stability and are robust to the definition of a feasible community. These results are discussed in the light of empirical data and other theoretical studies, in conjunction with their broader implications for community assembly.

  7. Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.

    2013-01-01

    Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.

  8. Stabilization of unpaved shoulders on moderate and weak subgrade using geosynthetics : [technical summary].

    DOT National Transportation Integrated Search

    2016-01-01

    Geosynthetics have been used to improve the performance of roadways, especially when : weak subgrade soil exists. In this study, two types of geosynthetic products, geocell and : geogrid, were investigated for their application for stabilization of u...

  9. Unidimensional and Multidimensional Models for Item Response Theory.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    This paper provides an up-to-date review of the relationship between item response theory (IRT) and (nonlinear) common factor theory and draws out of this relationship some implications for current and future research in IRT. Nonlinear common factor analysis yields a natural embodiment of the weak principle of local independence in appropriate…

  10. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    NASA Astrophysics Data System (ADS)

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  11. Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.

  12. Nonlinearity measure and internal model control based linearization in anti-windup design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perev, Kamen

    2013-12-18

    This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequencymore » ranges.« less

  13. Bright-dark and dark-dark solitons in coupled nonlinear Schrödinger equation with P T -symmetric potentials

    NASA Astrophysics Data System (ADS)

    Nath, Debraj; Gao, Yali; Babu Mareeswaran, R.; Kanna, T.; Roy, Barnana

    2017-12-01

    We explore different nonlinear coherent structures, namely, bright-dark (BD) and dark-dark (DD) solitons in a coupled nonlinear Schrödinger/Gross-Pitaevskii equation with defocusing/repulsive nonlinearity coefficients featuring parity-time ( P T )-symmetric potentials. Especially, for two choices of P T -symmetric potentials, we obtain the exact solutions for BD and DD solitons. We perform the linear stability analysis of the obtained coherent structures. The results of this linear stability analysis are well corroborated by direct numerical simulation incorporating small random noise. It has been found that there exists a parameter regime which can support stable BD and DD solitons.

  14. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    NASA Astrophysics Data System (ADS)

    Dumeige, Yannick; Féron, Patrice

    2011-10-01

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processing or ternary optical logic applications.

  15. Stability properties of a general class of nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Gléria, I. M.; Figueiredo, A.; Rocha Filho, T. M.

    2001-05-01

    We establish sufficient conditions for the boundedness of the trajectories and the stability of the fixed points in a class of general nonlinear systems, the so-called quasi-polynomial vector fields, with the help of a natural embedding of such systems in a family of generalized Lotka-Volterra (LV) equations. A purely algebraic procedure is developed to determine such conditions. We apply our method to obtain new results for LV systems, by a reparametrization in time variable, and to study general nonlinear vector fields, originally far from the LV format.

  16. Amplification of nonlinear surface waves by wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblanc, Stephane

    2007-10-15

    A weakly nonlinear analysis is conducted to study the evolution of slowly varying wavepackets with small but finite amplitudes, that evolve at the interface between air and water under the effect of wind. In the inviscid assumption, wave envelopes are governed by cubic nonlinear Schroedinger or Davey-Stewartson equations forced by a linear term corresponding to Miles' mechanism of wave generation. Under fair wind, it is shown that Stokes waves grow exponentially and that Benjamin-Feir instability becomes explosive.

  17. Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback

    NASA Astrophysics Data System (ADS)

    Do, K. D.

    2018-05-01

    Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  18. Modelling nonlinearity in piezoceramic transducers: From equations to nonlinear equivalent circuits.

    PubMed

    Parenthoine, D; Tran-Huu-Hue, L-P; Haumesser, L; Vander Meulen, F; Lematre, M; Lethiecq, M

    2011-02-01

    Quadratic nonlinear equations of a piezoelectric element under the assumptions of 1D vibration and weak nonlinearity are derived by the perturbation theory. It is shown that the nonlinear response can be represented by controlled sources that are added to the classical hexapole used to model piezoelectric ultrasonic transducers. As a consequence, equivalent electrical circuits can be used to predict the nonlinear response of a transducer taking into account the acoustic loads on the rear and front faces. A generalisation of nonlinear equivalent electrical circuits to cases including passive layers and propagation media is then proposed. Experimental results, in terms of second harmonic generation, on a coupled resonator are compared to theoretical calculations from the proposed model. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Relativistic weak lensing from a fully non-linear cosmological density field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.B.; Bruni, M.; Wands, D., E-mail: thomas.daniel@ucy.ac.cy, E-mail: marco.bruni@port.ac.uk, E-mail: david.wands@port.ac.uk

    2015-09-01

    In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- andmore » B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.« less

  20. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    DTIC Science & Technology

    2016-04-01

    incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching architecture...Simulation Model, Quasi -Nonlinear, Piloted Simulation, Flight-Test Implications, System Identification, Off-Nominal Loading Extrapolation, Stability...incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching

  1. A novel single thruster control strategy for spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  2. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.

  3. Full analogue electronic realisation of the Hodgkin-Huxley neuronal dynamics in weak-inversion CMOS.

    PubMed

    Lazaridis, E; Drakakis, E M; Barahona, M

    2007-01-01

    This paper presents a non-linear analog synthesis path towards the modeling and full implementation of the Hodgkin-Huxley neuronal dynamics in silicon. The proposed circuits have been realized in weak-inversion CMOS technology and take advantage of both log-domain and translinear transistor-level techniques.

  4. Limits on amplification by Aharonov-Albert-Vaidman weak measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Tatsuhiko; Tanaka, Saki

    2011-12-15

    We analyze the amplification by the Aharonov-Albert-Vaidman weak quantum measurement on a Sagnac interferometer [Dixon et al., Phys. Rev. Lett. 102, 173601 (2009)] up to all orders of the coupling strength between the measured system and the measuring device. The amplifier transforms a small tilt of a mirror into a large transverse displacement of the laser beam. The conventional analysis has shown that the measured value is proportional to the weak value, so that the amplification can be made arbitrarily large in the cost of decreasing output laser intensity. It is shown that the measured displacement and the amplification factormore » are in fact not proportional to the weak value and rather vanish in the limit of infinitesimal output intensity. We derive the optimal overlap of the pre- and postselected states with which the amplification become maximum. We also show that the nonlinear effects begin to arise in the performed experiments so that any improvements in the experiment, typically with an amplification greater than 100, should require the nonlinear theory in translating the observed value to the original displacement.« less

  5. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances.

    PubMed

    Pashaei, Shabnam; Badamchizadeh, Mohammadali

    2016-07-01

    This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Acoustic instability driven by cosmic-ray streaming

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are separated by either laminar or turbulent jumps in which the thermal gas is subject to intense heating.

  7. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    NASA Astrophysics Data System (ADS)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  8. Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Tepichin Rodriguez, Eduardo; Sanchez Sanchez, Mauro

    2004-05-01

    Nonlinear optical wave packets with the second Painleve transcendent shape of envelope are revealed in Kerr media, manifesting weakly focusing cubic nonlinearity, square-law dispersion, and linear losses. When the state of nonlinear optical transmission is realized, two possible types of boundary conditions turn out to be satisfied for these wave packets. The propagation of initially unchirped optical wave packets under consideration could be supported by lossless medium in both normal and anomalous dispersion regimes. At the same time initially chirped optical waves with the second Painleve transcendent shape in low-loss medium and need matching the magnitude of optical losses by the dispersion and nonlinear properties of that medium.

  9. Influence of nonlinear detuning at plasma wavebreaking threshold on backward Raman compression of non-relativistic laser pulses

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.

    2018-06-01

    Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.

  10. Nonlinear Wave Process Hierarchies and the Cyclic Development of Quasi-Ordered Structures in Turbulent Shear Flows.

    DTIC Science & Technology

    1979-11-01

    can be evaluated semi- analitically in both the strongly nonlinear inner (critical layer) region and the weakly nonlinear outer region, reproduce the...experimental evidence of Ref. 8 (Figure 3, stage 3). Whereas the exact s~lutions of the Schridinger equation (Ref. 13) predict that an arbitrary smooth...peaks and valleys, different from the comon rate predicted by linear theory) arise suddenly and at surpris- ingly low disturbance levels [(u’/U 10-2] as

  11. Study of HV Dielectrics for High Frequency Operation in Linear & Nonlinear Transmission Lines & Simulation & Development of Hybrid Nonlinear Lines for RF Generation

    DTIC Science & Technology

    2015-08-27

    applied reverse voltage [8], [9]. In this report, the experimental results of a varactor diode NLTL built with 30 sections are presented. Besides, Spice ...capacitive line (NLCL) using commercial BT and PZT ceramic capacitors. Corresponding NLCL Spice simulation is provided for comparison with experimental...the output pulse. In special for PZT, Spice simulation of a line with respective linear capacitors illustrates its weak nonlinearity as the

  12. Study of HV Dielectrics for High Frequency Operation in Linear and Nonlinear Transmission Lines (NLTLs) and Simulation and Development of Hybrid Nonlinear Lines for RF Generation

    DTIC Science & Technology

    2016-01-27

    presented. Besides, Spice simulation provides an excellent way of studying the NLTL principle operation by comparing them with the experimental...high voltage nonlinear capacitive line (NLCL) using commercial BT and PZT ceramic capacitors. Corresponding NLCL Spice simulation is provided for...which causes a long tail on the output pulse. In special for PZT, Spice simulation of a line with respective linear capacitors illustrates its weak

  13. Regularity of Solutions of the Nonlinear Sigma Model with Gravitino

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao

    2018-02-01

    We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.

  14. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions, for both the physical and phenomenological models.

  15. A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS

  16. Theoretical Investigation of Light Transmission in a Slab Cavity via Kerr Nonlinearity of Carbon Nanotube Quantum Dot Nanostructure

    NASA Astrophysics Data System (ADS)

    Solookinejad, Gh.; Jabbari, M.; Sangachin, E. Ahmadi; Asadpour, S. H.

    2018-01-01

    In this paper, we discuss the transmission properties of weak probe laser field propagate through slab cavity with defect layer of carbon-nanotube quantum dot (CNT-QD) nanostructure. We show that due to spin-orbit coupling, the double electromagnetically induced transparency (EIT) windows appear and the giant Kerr nonlinearity of the intracavity medium can lead to manipulating of transmission coefficient of weak probe light. The thickness effect of defect layer medium has also been analyzed on transmission properties of probe laser field. Our proposed model may be useful for integrated photonics devices based on CNT-QD for applications in all-optical systems which require multiple EIT effect.

  17. Stability and time-domain analysis of the dispersive tristability in microresonators under modal coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumeige, Yannick; Feron, Patrice

    Coupled nonlinear resonators have potential applications for the integration of multistable photonic devices. The dynamic properties of two coupled-mode nonlinear microcavities made of Kerr material are studied by linear stability analysis. Using a suitable combination of the modal coupling rate and the frequency detuning, it is possible to obtain configurations where a hysteresis loop is included inside other bistable cycles. We show that a single resonator with two modes both linearly and nonlinearly coupled via the cross-Kerr effect can have a multistable behavior. This could be implemented in semiconductor nonlinear whispering-gallery-mode microresonators under modal coupling for all optical signal processingmore » or ternary optical logic applications.« less

  18. Two-dimensional solitons in conservative and parity-time-symmetric triple-core waveguides with cubic-quintic nonlinearity

    NASA Astrophysics Data System (ADS)

    Feijoo, David; Zezyulin, Dmitry A.; Konotop, Vladimir V.

    2015-12-01

    We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases. Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.

  19. Three-dimensional boundary layer stability and transition

    NASA Technical Reports Server (NTRS)

    Malik, M. R.; Li, F.

    1992-01-01

    Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.

  20. A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The Constrained Harmonic Balance Method, with application to disc brake squeal

    NASA Astrophysics Data System (ADS)

    Coudeyras, N.; Sinou, J.-J.; Nacivet, S.

    2009-01-01

    Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the stationary nonlinear system. The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are performed and the results are compared with a classical variable order solver integration algorithm. Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate the effects of the friction coefficient, piston pressure, nonlinear stiffness and structural damping.

  1. A-site stoichiometry and piezoelectric response in thin film PbZr 1-xTi xO 3

    DOE PAGES

    Marincel, Dan; Jesse, Stephen; Belianinov, Alex; ...

    2015-05-29

    Lead zirconate titanate (PZT) films with Zr/Ti ratios of 52/48 and 30/70 annealed at varying partial pressures of PbO within the perovskite phase field exhibited permittivities of 1150 and 600, respectively, with loss tangents of 0.02. Many of the functional properties, including the permittivity, piezoelectricity as indicated via the Rayleigh coefficients, and the aging rates were found to be weakly dependent of the lead content in the single phase field. Minor polarization electric field hysteresis loops and piezoelectric coefficient e 31,f values after a hot poling process suggest that the point defect helps stabilize the aligned domain states. Measurements ofmore » the local nonlinear response show an increased low response cluster size with decreasing PbO content, indicating that PbO deficiency acts to reduce domain wall motion where it is already low« less

  2. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    DOE PAGES

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    2016-01-14

    We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less

  3. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less

  4. Strongly localized dark modes in binary discrete media with cubic-quintic nonlinearity within the anti-continuum limit

    NASA Astrophysics Data System (ADS)

    Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.

    2017-12-01

    The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.

  5. Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm

    NASA Astrophysics Data System (ADS)

    Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.

  6. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  7. Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight

    NASA Technical Reports Server (NTRS)

    Friedmann, P.; Tong, P.

    1972-01-01

    Equations for large coupled flap-lag motion of hingeless elastic helicopter blades are consistently derived. Only torsionally-rigid blades excited by quasi-steady aerodynamic loads are considered. The nonlinear equations of motion in the time and space variables are reduced to a system of coupled nonlinear ordinary differential equations with periodic coefficients, using Galerkin's method for the space variables. The nonlinearities present in the equations are those arising from the inclusion of moderately large deflections in the inertia and aerodynamic loading terms. The resulting system of nonlinear equations has been solved, using an asymptotic expansion procedure in multiple time scales. The stability boundaries, amplitudes of nonlinear response, and conditions for existence of limit cycles are obtained analytically. Thus, the different roles played by the forcing function, parametric excitation, and nonlinear coupling in affecting the solution can be easily identified, and the basic physical mechanism of coupled flap-lag response becomes clear. The effect of forward flight is obtained with the requirement of trimmed flight at fixed values of the thrust coefficient.

  8. Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Desoer, C. A.

    1973-01-01

    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

  9. Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman Operator Theory

    DTIC Science & Technology

    2017-03-01

    calculus, applied mathematics, Director’s Research Initiative 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18... research of Svenkeson et al.4 Section 2 is Accomplishments and Section 3 is the Conclusion. 2. Accomplishments 2.1 Prescribed External Forcing To study ...ARL-TR-7959 MAR 2017 US Army Research Laboratory Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman

  10. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi

    2011-05-15

    Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less

  11. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  12. Experimental evaluation of HJB optimal controllers for the attitude dynamics of a multirotor aerial vehicle.

    PubMed

    Prado, Igor Afonso Acampora; Pereira, Mateus de Freitas Virgílio; de Castro, Davi Ferreira; Dos Santos, Davi Antônio; Balthazar, Jose Manoel

    2018-06-01

    The present paper is concerned with the design and experimental evaluation of optimal control laws for the nonlinear attitude dynamics of a multirotor aerial vehicle. Three design methods based on Hamilton-Jacobi-Bellman equation are taken into account. The first one is a linear control with guarantee of stability for nonlinear systems. The second and third are a nonlinear suboptimal control techniques. These techniques are based on an optimal control design approach that takes into account the nonlinearities present in the vehicle dynamics. The stability Proof of the closed-loop system is presented. The performance of the control system designed is evaluated via simulations and also via an experimental scheme using the Quanser 3-DOF Hover. The experiments show the effectiveness of the linear control method over the nonlinear strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Mathematical problems arising in interfacial electrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tseluiko, Dmitri

    In this work we consider the nonlinear stability of thin films in the presence of electric fields. We study a perfectly conducting thin film flow down an inclined plane in the presence of an electric field which is uniform in its undisturbed state, and normal to the plate at infinity. In addition, the effect of normal electric fields on films lying above, or hanging from, horizontal substrates is considered. Systematic asymptotic expansions are used to derive fully nonlinear long wave model equations for the scaled interface motion and corresponding flow fields. For the case of an inclined plane, higher order terms are need to be retained to regularize the problem in the sense that the long wave approximation remains valid for long times. For the case of a horizontal plane the fully nonlinear evolution equation which is derived at the leading order, is asymptotically correct and no regularization procedure is required. In both physical situations, the effect of the electric field is to introduce a non-local term which arises from the potential region above the liquid film, and enters through the electric Maxwell stresses at the interface. This term is always linearly destabilizing and produces growth rates proportional to the cubic power of the wavenumber - surface tension is included and provides a short wavelength cut-off, that is, all sufficiently short waves are linearly stable. For the case of film flow down an inclined plane, the fully nonlinear equation can produce singular solutions (for certain parameter values) after a finite time, even in the absence of an electric field. This difficulty is avoided at smaller amplitudes where the weakly nonlinear evolution is governed by an extension of the Kuramoto-Sivashinsky (KS) equation. Global existence and uniqueness results are proved, and refined estimates of the radius of the absorbing ball in L2 are obtained in terms of the parameters of the equations for a generalized class of modified KS equations. The established estimates are compared with numerical solutions of the equations which in turn suggest an optimal upper bound for the radius of the absorbing ball. A scaling argument is used to explain this, and a general conjecture is made based on extensive computations. We also carry out a complete study of the nonlinear behavior of competing physical mechanisms: long wave instability above a critical Reynolds number, short wave damping due to surface tension and intermediate growth due to the electric field. Through a combination of analysis and extensive numerical experiments, we elucidate parameter regimes that support non-uniform travelling waves, time-periodic travelling waves and complex nonlinear dynamics including chaotic interfacial oscillations. It is established that a sufficiently high electric field will drive the system to chaotic oscillations, even when the Reynolds number is smaller than the critical value below which the non-electrified problem is linearly stable. A particular case of this is Stokes flow, which is known to be stable for this class of problems (an analogous statement holds for horizontally supported films also). Our theoretical results indicate that such highly stable flows can be rendered unstable by using electric fields. This opens the way for possible heat and mass transfer applications which can benefit significantly from interfacial oscillations and interfacial turbulence. For the case of a horizontal plane, a weakly nonlinear theory is not possible due to the absence of the shear flow generated by the gravitational force along the plate when the latter is inclined. We study the fully nonlinear equation, which in this case is asymptotically correct and is obtained at the leading order. The model equation describes both overlying and hanging films - in the former case gravity is stabilizing while in the latter it is destabilizing. The numerical and theoretical analysis of the fully nonlinear evolution is complicated by the fact that the coefficients of the highest order terms (surface tension in this instance) are nonlinear. We implement a fully implicit two level numerical scheme and perform numerical experiments. We also prove global boundedness of positive periodic smooth solutions, using an appropriate energy functional. This global boundedness result is seen in all our numerical results. Through a combination of analysis and extensive numerical experiments we present evidence for global existence of positive smooth solutions. This means, in turn, that the film does not touch the wall in finite time but asymptotically at infinite time. Numerical solutions are presented to support such phenomena.

  14. A Modified Rodrigues Parameter-based Nonlinear Observer Design for Spacecraft Gyroscope Parameters Estimation

    NASA Astrophysics Data System (ADS)

    Yong, Kilyuk; Jo, Sujang; Bang, Hyochoong

    This paper presents a modified Rodrigues parameter (MRP)-based nonlinear observer design to estimate bias, scale factor and misalignment of gyroscope measurements. A Lyapunov stability analysis is carried out for the nonlinear observer. Simulation is performed and results are presented illustrating the performance of the proposed nonlinear observer under the condition of persistent excitation maneuver. In addition, a comparison between the nonlinear observer and alignment Kalman filter (AKF) is made to highlight favorable features of the nonlinear observer.

  15. The Weakly Nonlinear Magnetorotational Instability in a Local Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu

    2017-05-20

    The magnetorotational instability (MRI) is a fundamental process of accretion disk physics, but its saturation mechanism remains poorly understood despite considerable theoretical and computational effort. We present a multiple-scales analysis of the non-ideal MRI in the weakly nonlinear regime—that is, when the most unstable MRI mode has a growth rate asymptotically approaching zero from above. Here, we develop our theory in a local, Cartesian channel. Our results confirm the finding by Umurhan et al. that the perturbation amplitude follows a Ginzburg–Landau equation. We further find that the Ginzburg–Landau equation will arise for the local MRI system with shear-periodic boundary conditions,more » when the effects of ambipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity and vertical magnetic field demonstrates that, even when diffusive effects are important, the bulk flow saturates via the combined processes of reducing the background shear and rearranging and strengthening the background vertical magnetic field. We directly simulate the Ginzburg–Landau amplitude evolution for our system, and demonstrate the pattern formation our model predicts on long scales of length- and timescales. We compare the weakly nonlinear theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.« less

  16. Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework.

  17. Experimental quantification of nonlinear time scales in inertial wave rotating turbulence

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Salhov, Alon; Sharon, Eran

    2017-12-01

    We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.

  18. Nonlinear Development and Secondary Instability of Traveling Crossflow Vortices

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian; Chang, Chau-Lyan

    2014-01-01

    Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling crossflow modes is investigated as an alternate scenario for transition. Results show that, for the parameter range investigated herein, secondary instability of traveling crossflow modes becomes insignificant in relation to the secondary instability of the stationary modes when the relative initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by approximately two orders of magnitudes or more. Linear growth predictions based on the secondary instability theory are found to agree well with those based on PSE and DNS, with the most significant discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where the primary disturbance amplitudes are smaller in comparison to its peak amplitude. Nonlinear effects on secondary instability evolution is also investigated and found to be initially stabilizing, prior to breakdown.

  19. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  20. Synchronisation and stability in river metapopulation networks.

    PubMed

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  1. Assessment of Walking Stability of Elderly by Means of Nonlinear Time-Series Analysis and Simple Accelerometry

    NASA Astrophysics Data System (ADS)

    Ohtaki, Yasuaki; Arif, Muhammad; Suzuki, Akihiro; Fujita, Kazuki; Inooka, Hikaru; Nagatomi, Ryoichi; Tsuji, Ichiro

    This study presents an assessment of walking stability in elderly people, focusing on local dynamic stability of walking. Its main objectives were to propose a technique to quantify local dynamic stability using nonlinear time-series analyses and a portable instrument, and to investigate their reliability in revealing the efficacy of an exercise training intervention for elderly people for improvement of walking stability. The method measured three-dimensional acceleration of the upper body, and computation of Lyapunov exponents, thereby directly quantifying the local stability of the dynamic system. Straight level walking of young and elderly subjects was investigated in the experimental study. We compared Lyapunov exponents of young and the elderly subjects, and of groups before and after the exercise intervention. Experimental results demonstrated that the exercise intervention improved local dynamic stability of walking. The proposed method was useful in revealing effects and efficacies of the exercise intervention for elderly people.

  2. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    NASA Astrophysics Data System (ADS)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  3. Stabilization of Hypersonic Boundary Layers by Linear and Nonlinear Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2017-01-01

    The effect of stationary, finite-amplitude, linear and nonlinear optimal perturbations on the modal disturbance growth in a Mach 6 axisymmetric flow over a 7 deg. half-angle cone with 0:126 mm nose radius and 0:305 m length is investigated. The freestream parameters (M = 6, Re(exp 1) = 18 x 10(exp. 6) /m) are selected to match the flow conditions of a previous experiment in the VKI H3 hypersonic tunnel. Plane-marching parabolized stability equations are used in conjunction with a partial-differential equation based planar eigenvalue analysis to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode and first-mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone; however, subharmonic first-mode instabilities, which are destabilized by the presence of the streaks, do reach N = 6 near the end of the cone. The highest stabilization is observed at streak amplitudes of approximately 20 percent of the freestream velocity. Because the use of initial disturbance profiles based on linear optimal growth theory may yield suboptimal control in the context of nonlinear streaks, the computational predictions are extended to nonlinear optimal growth theory. Results show that by using nonlinearly optimal perturbation leads to slightly enhanced stabilization of plane Mack mode disturbances as well as reduced destabilization of subharmonic first-mode disturbances.

  4. Experimental Study of the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Jacobs, Jeffrey W.

    2002-01-01

    The Richtmyer-Meshkov instability of a low Atwood number, miscible, two-liquid system is investigated experimentally. The initially stratified fluids are contained within a rectangular tank mounted to a sled that rides on a vertical set of rails. The instability is generated by dropping the sled onto a coil spring, producing a nearly impulsive upward acceleration. The subsequent freefall that occurs as the container travels upward and then downward on the rails allows the instability to evolve in the absence of gravity. The interface separating the two liquids initially has a well-defined, sinusoidal perturbation that quickly inverts and then grows in amplitude after undergoing the impulsive acceleration. Disturbance amplitudes are measured and compared to theoretical predictions. Linear stability theory gives excellent agreement with the measured initial growth rate, a(sub 0), for single-mode perturbations with the predicted amplitudes differing by less than 10% from experimental measurements up to a nondimensional time ka(sub 0)t = 0.7, where k is the wavenumber. Linear stability theory also provides excellent agreement for the individual mode amplitudes of multi-mode initial perturbations up until the interface becomes multi-valued. Comparison with previously published weakly nonlinear single-mode models shows good agreement up to ka(sub 0)t = 3, while published nonlinear single-mode models provide good agreement up to ka(sub 0)t = 30. The effects of Reynolds number on the vortex core evolution and overall growth rate of the interface are also investigated. Measurements of the overall amplitude are found to be unaffected by the Reynolds number for the range of values studied here. However, experiments carried out at lower values of Reynolds numbers were found to have decreased vortex core rotation rates. In addition, an instability in the vortex cores is observed.

  5. Energy exchange dynamics of the discrete nonlinear Schrödinger equation lattice and intrinsic formation of strongly localized states

    NASA Astrophysics Data System (ADS)

    Hennig, D.

    1997-09-01

    We study the dynamics of excitation energy transfer along a lattice chain modeled by the discrete nonlinear Schrödinger (DNLS) equation. We prove that a segment carrying resonant motion can be decoupled from the remainder of the chain supporting quasiperiodic dynamics. The resonant segment from the extended chain is taken to be a four-site element, viz., a tetramer. First, we focus interest on the energy exchange dynamics along the tetramer viewed as two weakly coupled DNLS dimers. Hamiltonian methods are used to investigate the phase-space dynamics. We pay special attention to the role of the diffusion of the action variables inside resonance layers for the energy migration. When distributing the energy initially equally between the two dimers one observes a directed irreversible flow of energy from one dimer into the other assisted by action diffusion. Eventually on one dimer a stable self-trapped excitation of large amplitude forms at a single site while the other dimer exhibits equal energy partition over its two sites. Finally, we study the formation of localized structure on an extended DNLS lattice chain. In particular we explore the stability of the so-called even-parity and odd-parity localized modes, respectively, and explain their different stability properties by means of phase-space dynamics. The global instability of the even-parity mode is shown. For the excited even-parity mode a symmetry-breaking perturbation of the pattern leads to an intrinsic collapse of the even-parity mode to the odd-parity one. The latter remains stable with respect to symmetry-breaking perturbations. In this way we demonstrate that the favored stable localized states for the DNLS lattice chain correspond to one-site localized excitations.

  6. Predictive and Neural Predictive Control of Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.

  7. Nonlinear hydrodynamic stability and transition; Proceedings of the IUTAM Symposium, Nice, France, Sept. 3-7, 1990

    NASA Astrophysics Data System (ADS)

    Theoretical and experimental research on nonlinear hydrodynamic stability and transition is presented. Bifurcations, amplitude equations, pattern in experiments, and shear flows are considered. Particular attention is given to bifurcations of plane viscous fluid flow and transition to turbulence, chaotic traveling wave covection, chaotic behavior of parametrically excited surface waves in square geometry, amplitude analysis of the Swift-Hohenberg equation, traveling wave convection in finite containers, focus instability in axisymmetric Rayleigh-Benard convection, scaling and pattern formation in flowing sand, dynamical behavior of instabilities in spherical gap flows, and nonlinear short-wavelength Taylor vortices. Also discussed are stability of a flow past a two-dimensional grid, inertia wave breakdown in a precessing fluid, flow-induced instabilities in directional solidification, structure and dynamical properties of convection in binary fluid mixtures, and instability competition for convecting superfluid mixtures.

  8. Distributed Coordinated Control of Large-Scale Nonlinear Networks

    DOE PAGES

    Kundu, Soumya; Anghel, Marian

    2015-11-08

    We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less

  9. Stability of nonlinear waves and patterns and related topics

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-01

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  10. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary layers.

  11. Nonlinear theory for axisymmetric self-similar two-dimensional oscillations of electrons in cold plasma with constant proton background

    NASA Astrophysics Data System (ADS)

    Osherovich, V. A.; Fainberg, J.

    2018-01-01

    We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.

  12. The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Tian, Qiang

    2005-04-01

    The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.

  13. Magnetosonic shock wave in collisional pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Khan, Manoranjan, E-mail: mkhan.ju@gmail.com; Sikdar, Arnab, E-mail: arnabs.ju@gmail.com

    2016-06-15

    Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wavemore » exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  14. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    NASA Astrophysics Data System (ADS)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  15. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  16. Parachute dynamics and stability analysis. [using nonlinear differential equations of motion

    NASA Technical Reports Server (NTRS)

    Ibrahim, S. K.; Engdahl, R. A.

    1974-01-01

    The nonlinear differential equations of motion for a general parachute-riser-payload system are developed. The resulting math model is then applied for analyzing the descent dynamics and stability characteristics of both the drogue stabilization phase and the main descent phase of the space shuttle solid rocket booster (SRB) recovery system. The formulation of the problem is characterized by a minimum number of simplifying assumptions and full application of state-of-the-art parachute technology. The parachute suspension lines and the parachute risers can be modeled as elastic elements, and the whole system may be subjected to specified wind and gust profiles in order to assess their effects on the stability of the recovery system.

  17. Suppression of nonlinear oscillations in combustors with partial length acoustic liners

    NASA Technical Reports Server (NTRS)

    Espander, W. R.; Mitchell, C. E.; Baer, M. R.

    1975-01-01

    An analytical model is formulated for a three-dimensional nonlinear stability problem in a rocket motor combustion chamber. The chamber is modeled as a right circular cylinder with a short (multi-orifice) nozzle, and an acoustic linear covering an arbitrary portion of the cylindrical periphery. The combustion is concentrated at the injector and the gas flow field is characterized by a mean Mach number. The unsteady combustion processes are formulated using the Crocco time lag model. The resulting equations are solved using a Green's function method combined with numerical evaluation techniques. The influence of acoustic liners on the nonlinear waveforms is predicted. Nonlinear stability limits and regions where triggering is possible are also predicted for both lined and unlined combustors in terms of the combustion parameters.

  18. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    PubMed

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for subcritical transition due to TS waves.

  19. Lipschitz regularity results for nonlinear strictly elliptic equations and applications

    NASA Astrophysics Data System (ADS)

    Ley, Olivier; Nguyen, Vinh Duc

    2017-10-01

    Most of Lipschitz regularity results for nonlinear strictly elliptic equations are obtained for a suitable growth power of the nonlinearity with respect to the gradient variable (subquadratic for instance). For equations with superquadratic growth power in gradient, one usually uses weak Bernstein-type arguments which require regularity and/or convex-type assumptions on the gradient nonlinearity. In this article, we obtain new Lipschitz regularity results for a large class of nonlinear strictly elliptic equations with possibly arbitrary growth power of the Hamiltonian with respect to the gradient variable using some ideas coming from Ishii-Lions' method. We use these bounds to solve an ergodic problem and to study the regularity and the large time behavior of the solution of the evolution equation.

  20. Spacecraft Stabilization and Control for Capture of Non-Cooperative Space Objects

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Kelkar, Atul G.

    2014-01-01

    This paper addresses stabilization and control issues in autonomous capture and manipulation of non-cooperative space objects such as asteroids, space debris, and orbital spacecraft in need of servicing. Such objects are characterized by unknown mass-inertia properties, unknown rotational motion, and irregular shapes, which makes it a challenging control problem. The problem is further compounded by the presence of inherent nonlinearities, signi cant elastic modes with low damping, and parameter uncertainties in the spacecraft. Robust dissipativity-based control laws are presented and are shown to provide global asymptotic stability in spite of model uncertainties and nonlinearities. It is shown that robust stabilization can be accomplished via model-independent dissipativity-based controllers using thrusters alone, while stabilization with attitude and position control can be accomplished using thrusters and torque actuators.

  1. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    NASA Astrophysics Data System (ADS)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  2. Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.

    2017-10-01

    Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.

  3. Nonlinear modes of snap-through motions of a shallow arch

    NASA Astrophysics Data System (ADS)

    Breslavsky, I.; Avramov, K. V.; Mikhlin, Yu.; Kochurov, R.

    2008-03-01

    Nonlinear modes of snap-through motions of a shallow arch are analyzed. Dynamics of shallow arch is modeled by a two-degree-of-freedom system. Two nonlinear modes of this discrete system are treated. The methods of Ince algebraization and Hill determinants are used to study stability of nonlinear modes. The analytical results are compared with the data of the numerical simulations.

  4. Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations

    NASA Astrophysics Data System (ADS)

    Abbott, Stephen; Germaschewski, Kai

    2014-10-01

    Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.

  5. Unconditionally marginal stability of harmonic electron hole equilibria in current-driven plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2018-06-01

    Two forms of the linearized eigenvalue problem with respect to linear perturbations of a privileged cnoidal electron hole as a structural nonlinear equilibrium element are established. Whereas its integral form involves integrations along the characteristics or unperturbed particle orbits, the differential form has to cope with a differential operator of infinite order. Both are hence faced with difficulties to obtain a solution. A first successful attempt is, however, made by addressing a single harmonic wave as a nonlinear equilibrium structure. By this microscopic nonlinear approach, its marginal stability against linear perturbations in both linear stability regimes, the sub- and super-critical one, is shown independent of the mobility of ions and in favor with recent observations. Responsible for vanishing damping (growth) is the microscopic distortion of the resonant distribution function. The macroscopic form of the trapping nonlinearity—the 3/2 power term of the electrostatic potential in the density—which disappears in the monochromatic harmonic wave limit is consequently necessary for the occurrence of a nonlinear plasma instability in the sub-critical regime.

  6. Nonlinear waves in repulsive media supported by spatially localized parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Devassy, Lini; Jisha, Chandroth P.; Alberucci, Alessandro; Kuriakose, V. C.

    2017-06-01

    We study the existence, stability and dynamics of solitons in a PT-symmetric potential in the presence of a local defocusing nonlinearity. For the sake of concreteness, we refer to Bose-Einstein condensates, where defocusing nonlinearity stems from a repulsive inter-particle interaction. Two kinds of transverse profiles for the gain-loss mechanism, i.e., the imaginary part of the potential, are considered. Differently from the attractive inter-particle interaction, solitons exist only inside a narrow band of chemical potential and particle number. The existence region shrinks as the magnitude of the gain-loss is increased, with the soliton ceasing to exist above the linear exceptional point, that is, the point at which PT symmetry is broken. Using linear stability analysis together with full numerical simulations of the Gross-Pitaevskii equation, we show that solitons survive on temporal scales much longer than the diffusion time. For magnitude of gain-loss close to the exceptional point, stability depends on the transverse profile of the gain-loss mechanism and the magnitude of the nonlinear excitation.

  7. On the nonlinear interfacial instability of rotating core-annular flow

    NASA Technical Reports Server (NTRS)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  8. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  9. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    NASA Astrophysics Data System (ADS)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  10. Laser-absorption effect on pulse-compression under Ohmic and weak-relativistic ponderomotive nonlinearity in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2018-01-01

    The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.

  11. A Thermodynamic Theory of Solid Viscoelasticity. Part 3: Nonlinear Glassy Viscoelasticity, Stability Constraints, Specifications

    NASA Technical Reports Server (NTRS)

    Freed, Alan; Leonov, Arkady I.

    2002-01-01

    This paper, the last in the series, continues developing the nonlinear constitutive relations for non-isothermal, compressible, solid viscoelasticity. We initially discuss a single integral approach, more suitable for the glassy state of rubber-like materials, with basic functionals involved in the thermodynamic description for this type of viscoelasticity. Then we switch our attention to analyzing stability constraints, imposed on the general formulation of the nonlinear theory of solid viscoelasticity. Finally, we discuss specific (known from the literature or new) expressions for material functions that are involved in the constitutive formulations of both the rubber-like and glassy-like, complementary parts of the theory.

  12. Formulation of the aeroelastic stability and response problem of coupled rotor/support systems

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Friedmann, P.

    1979-01-01

    The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.

  13. Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2002-08-01

    We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.

  14. Controlling the stability of nonlinear optical modes via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun

    2018-02-01

    We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.

  15. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  16. Characteristics of nonlinear imaging of broadband laser stacked by chirped pulses

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; You, Kaiming; Chen, Liezun; Lu, Shizhuan; Dai, Zhiping; Ling, Xiaohui

    2014-11-01

    Nanosecond-level pulses of specific shape is usually generated by stacking chirped pulses for high-power inertial confinement fusion driver, in which nonlinear imaging of scatterers may damage precious optical elements. We present a numerical study of the characteristics of nonlinear imaging of scatterers in broadband laser stacked by chirped pulses to disclose the dependence of location and intensity of images on the parameters of the stacked pulse. It is shown that, for sub-nanosecond long sub-pulses with chirp or transform-limited sub-pulses, the time-mean intensity and location of images through normally dispersive and anomalously dispersive self-focusing medium slab are almost identical; While for picosecond-level short sub-pulses with chirp, the time-mean intensity of images for weak normal dispersion is slightly higher than that for weak anomalous dispersion through a thin nonlinear slab; the result is opposite to that for strong dispersion in a thick nonlinear slab; Furthermore, for given time delay between neighboring sub-pulses, the time-mean intensity of images varies periodically with chirp of the sub-pulse increasing; for a given pulse width of sub-pulse, the time-mean intensity of images decreases with the time delay between neighboring sub-pulses increasing; additionally, there is a little difference in the time-mean intensity of images of the laser stacked by different numbers of sub-pulses. Finally, the obtained results are also given physical explanations.

  17. Numerical study on inter-tidal transports in coastal seas

    NASA Astrophysics Data System (ADS)

    Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo

    2016-06-01

    Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.

  18. Solitonic characteristics of Airy beam nonlinear propagation

    NASA Astrophysics Data System (ADS)

    Bouchet, Thomas; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2018-05-01

    We analyze the nonlinear propagation of a one-dimensional Airy beam. Under nonlinear focusing conditions, the Airy beam splits into a weak accelerating structure and a beam that has been named an "off-shooting soliton." Experimental measurements and numerical results related to the off-shooting Airy beam are compared to soliton theoretical profiles and a good agreement is found in terms of transverse shape, width, and amplitude. We identify the different parameters to generate an Airy beam off-shooting soliton and demonstrate that its profile is also preserved through propagation over long distances.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessore, Nicolas; Metcalf, R. Benton; Winther, Hans A.

    A number of alternatives to general relativity exhibit gravitational screening in the non-linear regime of structure formation. We describe a set of algorithms that can produce weak lensing maps of large scale structure in such theories and can be used to generate mock surveys for cosmological analysis. By analysing a few basic statistics we indicate how these alternatives can be distinguished from general relativity with future weak lensing surveys.

  20. Rotation-induced nonlinear wavepackets in internal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less

  1. Transfer of dipolar gas through the discrete localized mode.

    PubMed

    Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui

    2013-12-01

    By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.

  2. Nonlinear Combustion Instability Prediction

    NASA Technical Reports Server (NTRS)

    Flandro, Gary

    2010-01-01

    The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

  3. Global stability of plane Couette flow beyond the energy stability limit

    NASA Astrophysics Data System (ADS)

    Fuentes, Federico; Goluskin, David

    2017-11-01

    This talk will present computations verifying that the laminar state of plane Couette flow is nonlinearly stable to all perturbations. The Reynolds numbers up to which this globally stability is verified are larger than those at which stability can be proven by the energy method, which is the typical method for demonstrating nonlinear stability of a fluid flow. This improvement is achieved by constructing Lyapunov functions that are more general than the energy. These functions are not restricted to being quadratic, and they are allowed to depend explicitly on the spectrum of the velocity field in the eigenbasis of the energy stability operator. The optimal choice of such a Lyapunov function is a convex optimization problem, and it can be constructed with computer assistance by solving a semidefinite program. This general method will be described in a companion talk by David Goluskin; the present talk focuses on its application to plane Couette flow.

  4. Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Shultz, Louis A.

    1994-01-01

    The goal of this research is to develop the transfer matrix method to treat nonlinear autonomous boundary value problems with multiple branches. The application is the complete nonlinear aeroelastic analysis of multiple-branched rotor blades. Once the development is complete, it can be incorporated into the existing transfer matrix analyses. There are several difficulties to be overcome in reaching this objective. The conventional transfer matrix method is limited in that it is applicable only to linear branch chain-like structures, but consideration of multiple branch modeling is important for bearingless rotors. Also, hingeless and bearingless rotor blade dynamic characteristics (particularly their aeroelasticity problems) are inherently nonlinear. The nonlinear equations of motion and the multiple-branched boundary value problem are treated together using a direct transfer matrix method. First, the formulation is applied to a nonlinear single-branch blade to validate the nonlinear portion of the formulation. The nonlinear system of equations is iteratively solved using a form of Newton-Raphson iteration scheme developed for differential equations of continuous systems. The formulation is then applied to determine the nonlinear steady state trim and aeroelastic stability of a rotor blade in hover with two branches at the root. A comprehensive computer program is developed and is used to obtain numerical results for the (1) free vibration, (2) nonlinearly deformed steady state, (3) free vibration about the nonlinearly deformed steady state, and (4) aeroelastic stability tasks. The numerical results obtained by the present method agree with results from other methods.

  5. Dynamical theory of stability for elastic rods with nonlinear curvature and twist

    NASA Technical Reports Server (NTRS)

    Wauer, J.

    1977-01-01

    Considering non-linear terms in the curvature as well as in the twist, the governing boundary value problem for lateral bending of elastic, transverse loaded rods is formulated by means of Hamilton's principle. Using the method of small vibrations, the associated linearized equations of stability are derived, which complete the currently accepted relations. The example of the simplest lateral bending problem illustrates the improved effect of the proposed equations.

  6. Numerical analysis of stiffened shells of revolution. Volume 1: Theory manual for STARS-2S, 2B, 2V digital computer programs

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.

    1973-01-01

    The theoretical analysis background for the STARS-2 (shell theory automated for rotational structures) program is presented. The theory involved in the axisymmetric nonlinear and unsymmetric linear static analyses, and the stability and vibrations (including critical rotation speed) analyses involving axisymmetric prestress are discussed. The theory for nonlinear static, stability, and vibrations analyses, involving shells with unsymmetric loadings are included.

  7. Estimation and Analysis of Nonlinear Stochastic Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Marcus, S. I.

    1975-01-01

    The algebraic and geometric structures of certain classes of nonlinear stochastic systems were exploited in order to obtain useful stability and estimation results. The class of bilinear stochastic systems (or linear systems with multiplicative noise) was discussed. The stochastic stability of bilinear systems driven by colored noise was considered. Approximate methods for obtaining sufficient conditions for the stochastic stability of bilinear systems evolving on general Lie groups were discussed. Two classes of estimation problems involving bilinear systems were considered. It was proved that, for systems described by certain types of Volterra series expansions or by certain bilinear equations evolving on nilpotent or solvable Lie groups, the optimal conditional mean estimator consists of a finite dimensional nonlinear set of equations. The theory of harmonic analysis was used to derive suboptimal estimators for bilinear systems driven by white noise which evolve on compact Lie groups or homogeneous spaces.

  8. On the Stability of Collocated Controllers in the Presence or Uncertain Nonlinearities and Other Perils

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1985-01-01

    Robustness properties are investigated for two types of controllers for large flexible space structures, which use collocated sensors and actuators. The first type is an attitude controller which uses negative definite feedback of measured attitude and rate, while the second type is a damping enhancement controller which uses only velocity (rate) feedback. It is proved that collocated attitude controllers preserve closed loop global asymptotic stability when linear actuator/sensor dynamics satisfying certain phase conditions are present, or monotonic increasing nonlinearities are present. For velocity feedback controllers, the global asymptotic stability is proved under much weaker conditions. In particular, they have 90 phase margin and can tolerate nonlinearities belonging to the (0,infinity) sector in the actuator/sensor characteristics. The results significantly enhance the viability of both types of collocated controllers, especially when the available information about the large space structure (LSS) parameters is inadequate or inaccurate.

  9. Stability of two-mode internal resonance in a nonlinear oscillator

    NASA Astrophysics Data System (ADS)

    Zanette, Damián H.

    2018-05-01

    We analyze the stability of synchronized periodic motion for two coupled oscillators, representing two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach, the system is studied in two situations: an open-loop configuration, where the excitation is an external force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their stability properties are substantially different. Emphasis is put on resonant oscillations, where energy transfer between the two coupled modes is maximized and, consequently, the strong interdependence between frequency and amplitude caused by nonlinearity is largely suppressed.

  10. Nonlinear multidimensional cosmological models with form fields: Stabilization of extra dimensions and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2003-08-01

    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.

  11. Numerical simulation of stability and stability control of high speed compressible rotating couette flow

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat; Hatay, Ferhat F.

    1993-01-01

    The nonlinear temporal evolution of disturbances in compressible flow between infinitely long, concentric cylinders is investigated through direct numerical simulations of the full, three-dimensional Navier-Stokes and energy equations. Counter-rotating cylinders separated by wide gaps are considered with supersonic velocities of the inner cylinder. Initially, the primary disturbance grows exponentially in accordance with linear stability theory. As the disturbances evolve, higher harmonics and subharmonics are generated in a cascading order eventually reaching a saturation state. Subsequent highly nonlinear stages of the evolution are governed by the interaction of the disturbance modes, particularly the axial subharmonics. Nonlinear evolution of the disturbance field is characterized by the formation of high-shear layers extending from the inner cylinder towards the center of the gap in the form of jets similar to the ejection events in transitional and turbulent wall-bounded shear flows.

  12. Finite time control for MIMO nonlinear system based on higher-order sliding mode.

    PubMed

    Liu, Xiangjie; Han, Yaozhen

    2014-11-01

    Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Stability of nonlinear waves and patterns and related topics.

    PubMed

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-13

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  14. Global solutions to physical vacuum problem of non-isentropic viscous gaseous stars and nonlinear asymptotic stability of stationary solutions

    NASA Astrophysics Data System (ADS)

    Hong, Guangyi; Luo, Tao; Zhu, Changjiang

    2018-07-01

    This paper is concerned with spherically symmetric motions of non-isentropic viscous gaseous stars with self-gravitation. When the stationary entropy S ‾ (x) is spherically symmetric and satisfies a suitable smallness condition, the existence and properties of the stationary solutions are obtained for 6/5 < γ < 2 with weaker constraints upon S ‾ (x) compared with the one in [26], where γ is the adiabatic exponent. The global existence of strong solutions capturing the physical vacuum singularity that the sound speed is C 1/2 -Hölder continuous across the vacuum boundary to a simplified system for non-isentropic viscous flow with self-gravitation and the nonlinear asymptotic stability of the stationary solution are proved when 4/3 < γ < 2 with the detailed convergence rates, motivated by the results and analysis of the nonlinear asymptotic stability of Lane-Emden solutions for isentropic flows in [29,30].

  15. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    NASA Astrophysics Data System (ADS)

    Kabalan, Mahmoud

    Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of study. This will enable future studies to save computational effort and produce the most accurate results according to the needs of the study being performed. Moreover, the effect of grid (line) impedance on the accuracy of droop control is explored using the 5th order model. Simulation results show that traditional droop control is valid up to R/X line impedance value of 2. Furthermore, the 3rd order nonlinear model improves the currently available inverter-infinite bus models by accounting for grid impedance, active power-frequency droop and reactive power-voltage droop. Results show the 3rd order model's ability to account for voltage and reactive power changes during a transient event. Finally, the large-signal Lyapunov-based stability analysis is completed for a 3 bus microgrid system (made up of 2 inverters and 1 linear load). The thesis provides a systematic state space large-signal nonlinear mathematical modeling method of inverter-based microgrids. The inverters include the dc-side dynamics associated with dc sources. The mathematical model is then used to estimate the domain of asymptotic stability of the 3 bus microgrid. The three bus microgrid system was used as a case study to highlight the design and optimization capability of a large-signal-based approach. The study explores the effect of system component sizing, load transient and generation variations on the asymptotic stability of the microgrid. Essentially, this advancement gives microgrid designers and engineers the ability to manipulate the domain of asymptotic stability depending on performance requirements. Especially important, this research was able to couple the domain of asymptotic stability of the ac microgrid with that of the dc side voltage source. Time domain simulations were used to demonstrate the mathematical nonlinear analysis results.

  16. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity

    NASA Astrophysics Data System (ADS)

    Varé, Thomas; Nouar, Chérif; Métivier, Christel

    2017-10-01

    Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

  17. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.

    PubMed

    Fisz, Jacek J

    2006-12-07

    The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.

  18. Interaction of Intense Lasers with Plasmas

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that a<<1, where a=eA/mc^2 is a dimensionless vector potential. This formalism borrows the diagrammatic techniques from quantum field theory, yet remains classical. This classical field theory, which treats cold plasma as a relativistic field interacting with the electromagnetic fields, introduces an artificial length scale which is smaller than any physically relevant spatial scale. By adopting a special (Arnowitt -Fickler) gauge, electromagnetic waves in a cold relativistic plasma are separated into "photons" and "plasmons" which are the relativistic extensions of electrostatic and electromagnetic waves in a cold stationary plasma. The field-theoretical formalism is applied to a variety of nonlinear problems including harmonic generation, parametric instabilities, and nonlinear corrections to the index of refraction. For the first time the rate of the second harmonic emission from a homogeneous plasma is calculated and its dependence on the polarization of the incident radiation is studied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field and to replacing the vacuum dispersion relation by the usual relativistic plasma dispersion relation. This renormalization procedure is then carried to higher order in epsilon=omega_sp{p} {2}a^2/[(1+a^2/2)^ {3/2}omega^2]. This yields the nonlinear modification of the index of refraction of a strong electromagnetic wave and the dispersion of a weak probe in the presence of the wave. In the second part of this thesis the stability of short laser pulses propagating through parabolic channels and the wake excitation of hollow plasma channels are studied. The stability of a channel guided short laser pulse propagation is analyzed for the first time. Perturbations to the laser pulse are shown to modify the ponderomotive pressure, which distorts the dielectric properties of the plasma channel. The channel perturbation then further distorts the laser pulse. A set of coupled mode equations is derived, and a matrix dispersion relation is obtained analytically. The ponderomotive excitation of wakefields in a hollow plasma channel by an intense laser pulse is studied analytically. An important finding is that the resonant absorption in the channel wall dissipates the accelerating wake, thereby introducing a finite quality factor of the hollow plasma channel and reducing the number of electron bunches that can be accelerated in the wake of a single laser pulse. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.).

  19. The role of vegetation in the stability of forested slopes

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Summary - Vegetation helps stabilize forested slopes by providing root strength and by modifying the saturated soil water regime. Plant roots can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In Mediterranean-type climates, having warm...

  20. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  1. Ultimate boundedness stability and controllability of hereditary systems

    NASA Technical Reports Server (NTRS)

    Chukwu, E. N.

    1979-01-01

    By generalizing the Liapunov-Yoshizawa techniques, necessary and sufficient conditions are given for uniform boundedness and uniform ultimate boundedness of a rather general class of nonlinear differential equations of neutral type. Among the applications treated by the methods are the Lienard equation of neutral type and hereditary systems of Lurie type. The absolute stability of this later equation is also investigated. A certain existence result of a solution of a neutral functional differential inclusion with two point boundary values is applied to study the exact function space controllability of a nonlinear neutral functional differential control system. A geometric growth condition is used to characterize both the function space and Euclidean controllability of another nonlinear delay system which has a compact and convex control set. This yields conditions under which perturbed nonlinear delay controllable systems are controllable.

  2. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  3. Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

    NASA Astrophysics Data System (ADS)

    Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui

    2018-05-01

    We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

  4. Nonlinear system controller design based on domain of attaction: An application to CELSS analysis and control

    NASA Technical Reports Server (NTRS)

    Babcock, P. S., IV

    1986-01-01

    Nonlinear system controller design based on the domain of attraction is presented. This is particularly suited to investigating Closed Ecological Life Support Systems (CELSS) models. In particular, the dynamic consequences of changes in the waste storage capacity and system mass, and how information is used for control in CELSS models are examined. The models' high dimensionality and nonlinear state equations make them difficult to analyze by any other technique. The domain of attraction is the region in initial conditions that tend toward an attractor and it is delineated by randomly selecting initial conditions from the region of state space being investigated. Error analysis is done by repeating the domain simulations with independent samples. A refinement of this region is the domain of performance which is the region of initial conditions meeting a performance criteria. In nonlinear systems, local stability does not insure stability over a larger region. The domain of attraction marks out this stability region; hence, it can be considered a measure of a nonlinear system's ability to recovery from state perturbations. Considering random perturbations, the minimum radius of the domain is a measure of the magnitude of perturbations for which recovery is guaranteed. Design of both linear and nonlinear controllers are shown. Three CELSS models, with 9 to 30 state variable, are presented. Measures of the domain of attraction are used to show the global behavior of these models under a variety of design and controller scenarios.

  5. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  6. On the nonlinear stability of mKdV breathers

    NASA Astrophysics Data System (ADS)

    Alejo, Miguel A.; Muñoz, Claudio

    2012-11-01

    Breather modes of the mKdV equation on the real line are known to be elastic under collisions with other breathers and solitons. This fact indicates very strong stability properties of breathers. In this communication we describe a rigorous, mathematical proof of the stability of breathers under a class of small perturbations. Our proof involves the existence of a nonlinear equation satisfied by all breather profiles, and a new Lyapunov functional which controls the dynamics of small perturbations and instability modes. In order to construct such a functional, we work in a subspace of the energy one. However, our proof introduces new ideas in order to attack the corresponding stability problem in the energy space. Some remarks about the sine-Gordon case are also considered.

  7. Nonlinear conductance in weakly disordered mesoscopic wires: Interaction and magnetic field asymmetry

    NASA Astrophysics Data System (ADS)

    Texier, Christophe; Mitscherling, Johannes

    2018-02-01

    We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and =0 ), where ETh=ℏ D /L2 is the Thouless energy of the wire and D the diffusion constant; the small dimensionless factor results from screening, i.e., cannot be obtained within a simple theory for noninteracting electrons. Electronic interactions are also responsible for an asymmetry under magnetic field reversal; the antisymmetric part of the nonlinear conductance (at high magnetic field) being much smaller than the symmetric one, rms (Ga)≃0.001 (gETh) -1 , where g ≫1 is the dimensionless (linear) conductance of the wire. In a weakly coherent wire (i.e., Lφ≪L , where Lφ is the phase coherence length), the nonlinear conductance is of the same order as the result G0 of a free electron calculation (although screening again strongly reduces the dimensionless prefactor); we get G ˜G0˜(Lφ/L ) 7 /2ETh-1 , while the antisymmetric part (at high magnetic field) now behaves as Ga˜(Lφ/L ) 11 /2(gETh) -1≪G . The effect of thermal fluctuations is studied: when the thermal length LT=√{ℏ D /kBT } is the smallest length scale, LT≪Lφ≪L , the free electron result G0˜(LT/L ) 3(Lφ/L ) 1 /2ETh-1 is negligible and the dominant contribution is provided by screening, G ˜(LT/L ) (Lφ/L ) 7 /2ETh-1 ; in this regime, the antisymmetric part is Ga˜(LT/L ) 2(Lφ/L ) 7 /2(gETh) -1 . All the precise dimensionless prefactors are obtained. Crossovers from zero to strong magnetic field regimes are also analyzed.

  8. Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes

    NASA Astrophysics Data System (ADS)

    Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.

    2014-07-01

    We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.

  9. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  10. On the stability of a rod adhering to a rigid surface: Shear-induced stable adhesion and the instability of peeling

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel; O'Reilly, Oliver M.; Williams, John A.

    2012-05-01

    Using variational methods, we establish conditions for the nonlinear stability of adhesive states between an elastica and a rigid halfspace. The treatment produces coupled criteria for adhesion and buckling instabilities by exploiting classical techniques from Legendre and Jacobi. Three examples that arise in a broad range of engineered systems, from microelectronics to biologically inspired fiber array adhesion, are used to illuminate the stability criteria. The first example illustrates buckling instabilities in adhered rods, while the second shows the instability of a peeling process and the third illustrates the stability of a shear-induced adhesion. The latter examples can also be used to explain how microfiber array adhesives can be activated by shearing and deactivated by peeling. The nonlinear stability criteria developed in this paper are also compared to other treatments.

  11. Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.

    2017-01-01

    The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonjung; Kovacic, Gregor; Cai, David

    Using the (1+1)D Majda-McLaughlin-Tabak model as an example, we present an extension of the wave turbulence (WT) theory to systems with strong nonlinearities. We demonstrate that nonlinear wave interactions renormalize the dynamics, leading to (i) a possible destruction of scaling structures in the bare wave systems and a drastic deformation of the resonant manifold even at weak nonlinearities, and (ii) creation of nonlinear resonance quartets in wave systems for which there would be no resonances as predicted by the linear dispersion relation. Finally, we derive an effective WT kinetic equation and show that our prediction of the renormalized Rayleigh-Jeans distributionmore » is in excellent agreement with the simulation of the full wave system in equilibrium.« less

  13. Variations of cosmic large-scale structure covariance matrices across parameter space

    NASA Astrophysics Data System (ADS)

    Reischke, Robert; Kiessling, Alina; Schäfer, Björn Malte

    2017-03-01

    The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the non-linear evolution of the cosmic web. As highly non-linear clustering to date has only been described by numerical N-body simulations in a reliable and sufficiently precise way, the necessary computational costs for estimating those covariances at different points in parameter space are tremendous. In this work, we describe the change of the matter covariance and the weak lensing covariance matrix as a function of cosmological parameters by constructing a suitable basis, where we model the contribution to the covariance from non-linear structure formation using Eulerian perturbation theory at third order. We show that our formalism is capable of dealing with large matrices and reproduces expected degeneracies and scaling with cosmological parameters in a reliable way. Comparing our analytical results to numerical simulations, we find that the method describes the variation of the covariance matrix found in the SUNGLASS weak lensing simulation pipeline within the errors at one-loop and tree-level for the spectrum and the trispectrum, respectively, for multipoles up to ℓ ≤ 1300. We show that it is possible to optimize the sampling of parameter space where numerical simulations should be carried out by minimizing interpolation errors and propose a corresponding method to distribute points in parameter space in an economical way.

  14. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  15. Evidence for self-refraction in a convergence zone: NPE (Nonlinear progressive wave equation) model results

    NASA Technical Reports Server (NTRS)

    Mcdonald, B. Edward; Plante, Daniel R.

    1989-01-01

    The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.

  16. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  17. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nielsen, Michael P.; Shi, Xingyuan; Dichtl, Paul; Maier, Stefan A.; Oulton, Rupert F.

    2017-12-01

    Efficient optical frequency mixing typically must accumulate over large interaction lengths because nonlinear responses in natural materials are inherently weak. This limits the efficiency of mixing processes owing to the requirement of phase matching. Here, we report efficient four-wave mixing (FWM) over micrometer-scale interaction lengths at telecommunications wavelengths on silicon. We used an integrated plasmonic gap waveguide that strongly confines light within a nonlinear organic polymer. The gap waveguide intensifies light by nanofocusing it to a mode cross-section of a few tens of nanometers, thus generating a nonlinear response so strong that efficient FWM accumulates over wavelength-scale distances. This technique opens up nonlinear optics to a regime of relaxed phase matching, with the possibility of compact, broadband, and efficient frequency mixing integrated with silicon photonics.

  18. Humidity-corrected Arrhenius equation: The reference condition approach.

    PubMed

    Naveršnik, Klemen; Jurečič, Rok

    2016-03-16

    Accelerated and stress stability data is often used to predict shelf life of pharmaceuticals. Temperature, combined with humidity accelerates chemical decomposition and the Arrhenius equation is used to extrapolate accelerated stability results to long-term stability. Statistical estimation of the humidity-corrected Arrhenius equation is not straightforward due to its non-linearity. A two stage nonlinear fitting approach is used in practice, followed by a prediction stage. We developed a single-stage statistical procedure, called the reference condition approach, which has better statistical properties (less collinearity, direct estimation of uncertainty, narrower prediction interval) and is significantly easier to use, compared to the existing approaches. Our statistical model was populated with data from a 35-day stress stability study on a laboratory batch of vitamin tablets and required mere 30 laboratory assay determinations. The stability prediction agreed well with the actual 24-month long term stability of the product. The approach has high potential to assist product formulation, specification setting and stability statements. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Tu(r)ning weakness to strength: Mechanomutable bioinspired materials

    DTIC Science & Technology

    2017-04-03

    into Strength,” Bio-inspired Materials, Potsdam, Germany March 2012 - “Nonlinear behaviour of silk minimizes damage and begets spider web robustness...atoms to structures – how spiders turn weakness into strength,” Society of Engineering Science Meeting, Atlanta, GA Keynote Lecture October 2012...Georgia Tech, October 19, 2015, Atlanta, GA October 2015 DISTRIBUTION A: Distribution approved for public release. 8 - "Multiscale materials by

  20. On a variational approach to some parameter estimation problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.

    1985-01-01

    Examples (1-D seismic, large flexible structures, bioturbation, nonlinear population dispersal) in which a variation setting can provide a convenient framework for convergence and stability arguments in parameter estimation problems are considered. Some of these examples are 1-D seismic, large flexible structures, bioturbation, and nonlinear population dispersal. Arguments for convergence and stability via a variational approach of least squares formulations of parameter estimation problems for partial differential equations is one aspect of the problem considered.

  1. A nonlinear SIR with stability

    NASA Astrophysics Data System (ADS)

    Trisilowati, Darti, I.; Fitri, S.

    2014-02-01

    The aim of this work is to develop a mathematical model of a nonlinear susceptible-infectious-removed (SIR) epidemic model with vaccination. We analyze the stability of the model by linearizing the model around the equilibrium point. Then, diphtheria data from East Java province is fitted to the model. From these estimated parameters, we investigate which parameters that play important role in the epidemic model. Some numerical simulations are given to illustrate the analytical results and the behavior of the model.

  2. On the Nonlinear Stability of a High-Speed, Axisymmetric Boundary Layer

    DTIC Science & Technology

    1991-03-01

    NASA Contractor Report 187538 IN ICASE Report No. 91-30 ICASE ON THE NONLINEAR STABILITY OF A HIGH-SPEED, AXISYMMETRIC BOUNDARY LAYER C. David Pruett... David Pruett National Research Council Associate Lian L. Ng Analytical Services and Materials Gordon Erlebacher t Senior Scientist, ICASE NASA Langley...Oct. 5, 1989. 29) Fetterman , D. E., Jr., "Preliminary Sizing and Performance of Aircraft", NASA TM-86357, July 1985. 30) Gaster, M., "A Note on the

  3. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.

  4. A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.

    PubMed

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2017-01-01

    This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.

    PubMed

    Jing, Yuan; Cleveland, Robin O

    2007-09-01

    A three-dimensional model of the forward propagation of nonlinear sound beams in inhomogeneous media, a generalized Khokhlov-Zabolotskaya-Kuznetsov equation, is described. The Texas time-domain code (which accounts for paraxial diffraction, nonlinearity, thermoviscous absorption, and absorption and dispersion associated with multiple relaxation processes) was extended to solve for the propagation of nonlinear beams for the case where all medium properties vary in space. The code was validated with measurements of the nonlinear acoustic field generated by a phased array transducer operating at 2.5 MHz in water. A nonuniform layer of gel was employed to create an inhomogeneous medium. There was good agreement between the code and measurements in capturing the shift in the pressure distribution of both the fundamental and second harmonic due to the gel layer. The results indicate that the numerical tool described here is appropriate for propagation of nonlinear sound beams through weakly inhomogeneous media.

  6. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  7. The development of a mixing layer under the action of weak streamwise vortices

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Mathew, Joseph

    1993-01-01

    The action of weak, streamwise vortices on a plane, incompressible, steady mixing layer is examined in the large Reynolds-number limit. The outer, inviscid region is bounded by a vortex sheet to which the viscous region is confined. It is shown that the local linear analysis becomes invalid at streamwise distances O(epsilon(sup -1)), where epsilon is much less than 1 is the cross flow amplitude, and a new nonlinear analysis is constructed for this region. Numerical solutions of the nonlinear problem show that the vortex sheet undergoes an O(1) change in position and that the solution is ultimately terminated by the appearance of a singularity. The corresponding viscous layer shows downstream thickening, but appears to remain well behaved up to the singular location.

  8. The development of a mixing layer under the action of weak streamwise vortices

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Mathew, Joseph

    1993-01-01

    The action of weak, streamwise vortices on a plane, incompressible, steady mixing layer is examined in the large Reynolds number limit. The outer, inviscid region is bounded by a vortex sheet to which the viscous region is confined. It is shown that the local linear analysis becomes invalid at streamwise distances O(epsilon sup -1), where (epsilon much less than 1) is the crossflow amplitude, and a new nonlinear analysis is constructed for this region. Numerical solutions of the nonlinear problem show that the vortex sheet undergoes an O(1) change in position and that the solution is ultimately terminated by a breakdown in the numerical procedure. The corresponding viscous layer shows downstream thickening, but appears to remain well behaved up to the terminal location.

  9. Two-dimensional nonlinear finite element analysis of well damage due to reservoir compaction, well-to-well interactions, and localization on weak layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Fredrich, J.T.; Bruno, M.S.

    1996-05-01

    In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements andmore » surface subsidence agree with field observations.« less

  10. Nonlinear Schrödinger equation and classical-field description of thermal radiation

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, Sergey A.

    2018-03-01

    It is shown that the thermal radiation can be described without quantization of energy in the framework of classical field theory using the nonlinear Schrödinger equation which is considered as a classical field equation. Planck's law for the spectral energy density of thermal radiation and the Einstein A-coefficient for spontaneous emission are derived without using the concept of the energy quanta. It is shown that the spectral energy density of thermal radiation is apparently not a universal function of frequency, as follows from the Planck's law, but depends weakly on the nature of atoms, while Planck's law is valid only as an approximation in the limit of weak excitation of atoms. Spin and relativistic effects are not considered in this paper.

  11. SKA weak lensing - III. Added value of multiwavelength synergies for the mitigation of systematics

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Harrison, Ian; Bonaldi, Anna; Brown, Michael L.

    2017-02-01

    In this third paper of a series on radio weak lensing for cosmology with the Square Kilometre Array, we scrutinize synergies between cosmic shear measurements in the radio and optical/near-infrared (IR) bands for mitigating systematic effects. We focus on three main classes of systematics: (I) experimental systematic errors in the observed shear; (II) signal contamination by intrinsic alignments and (III) systematic effects due to an incorrect modelling of non-linear scales. First, we show that a comprehensive, multiwavelength analysis provides a self-calibration method for experimental systematic effects, only implying <50 per cent increment on the errors on cosmological parameters. We also illustrate how the cross-correlation between radio and optical/near-IR surveys alone is able to remove residual systematics with variance as large as 10-5, I.e. the same order of magnitude of the cosmological signal. This also opens the possibility of using such a cross-correlation as a means to detect unknown experimental systematics. Secondly, we demonstrate that, thanks to polarization information, radio weak lensing surveys will be able to mitigate contamination by intrinsic alignments, in a way similar but fully complementary to available self-calibration methods based on position-shear correlations. Lastly, we illustrate how radio weak lensing experiments, reaching higher redshifts than those accessible to optical surveys, will probe dark energy and the growth of cosmic structures in regimes less contaminated by non-linearities in the matter perturbations. For instance, the higher redshift bins of radio catalogues peak at z ≃ 0.8-1, whereas their optical/near-IR counterparts are limited to z ≲ 0.5-0.7. This translates into having a cosmological signal 2-5 times less contaminated by non-linear perturbations.

  12. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test.

    PubMed

    Xue, Qiang; Wang, Ping; Li, Jiang-Shan; Zhang, Ting-Ting; Wang, Shan-Yong

    2017-01-01

    Long-term leaching behavior of contaminant from stabilization/solidification (S/S) treated waste stays unclear. For the purpose of studying long-term leaching behavior and leaching mechanism of lead from cement stabilized soil under different pH environment, semi-dynamic leaching test was extended to two years to investigate leaching behaviors of S/S treated lead contaminated soil. Effectiveness of S/S treatment in different scenarios was evaluated by leachability index (LX) and effective diffusion coefficient (D e ). In addition, the long-term leaching mechanism was investigated at different leaching periods. Results showed that no significant difference was observed among the values of the cumulative release of Pb, D e and LX in weakly alkaline and weakly acidic environment (pH value varied from 5.00 to 10.00), and all the controlling leaching mechanisms of the samples immersed in weakly alkaline and weakly acidic environments turned out to be diffusion. Strong acid environment would significantly affect the leaching behavior and leaching mechanism of lead from S/S monolith. The two-year variation of D e appeared to be time dependent, and D e values increased after the 210 th day in weakly alkaline and weakly acidic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators

    NASA Astrophysics Data System (ADS)

    Cho, Yumi

    2018-05-01

    We study nonlinear elliptic problems with nonstandard growth and ellipticity related to an N-function. We establish global Calderón-Zygmund estimates of the weak solutions in the framework of Orlicz spaces over bounded non-smooth domains. Moreover, we prove a global regularity result for asymptotically regular problems which are getting close to the regular problems considered, when the gradient variable goes to infinity.

  14. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  15. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based onmore » spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.« less

  17. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  18. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  19. String Stability of a Linear Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.

    2002-01-01

    String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.

  20. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    PubMed

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  1. Robust scalable stabilisability conditions for large-scale heterogeneous multi-agent systems with uncertain nonlinear interactions: towards a distributed computing architecture

    NASA Astrophysics Data System (ADS)

    Manfredi, Sabato

    2016-06-01

    Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.

  2. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    PubMed

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Localized states and their stability in an anharmonic medium with a nonlinear defect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerasimchuk, I. V., E-mail: igor.gera@gmail.com

    2015-10-15

    A comprehensive analysis of soliton states localized near a plane defect (a defect layer) possessing nonlinear properties is carried out within a quasiclassical approach for different signs of nonlinearity of the medium and different characters of interaction of elementary excitations of the medium with the defect. A quantum interpretation is given to these nonlinear localized modes as a bound state of a large number of elementary excitations. The domains of existence of such states are determined, and their properties are analyzed as a function of the character of interaction of elementary excitations between each other and with the defect. Amore » full analysis of the stability of all the localized states with respect to small perturbations of amplitude and phase is carried out analytically, and the frequency of small oscillations of the state localized on the defect is determined.« less

  4. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    PubMed

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control.

    PubMed

    Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid

    2017-03-01

    This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Composite Intelligent Learning Control of Strict-Feedback Systems With Disturbance.

    PubMed

    Xu, Bin; Sun, Fuchun

    2018-02-01

    This paper addresses the dynamic surface control of uncertain nonlinear systems on the basis of composite intelligent learning and disturbance observer in presence of unknown system nonlinearity and time-varying disturbance. The serial-parallel estimation model with intelligent approximation and disturbance estimation is built to obtain the prediction error and in this way the composite law for weights updating is constructed. The nonlinear disturbance observer is developed using intelligent approximation information while the disturbance estimation is guaranteed to converge to a bounded compact set. The highlight is that different from previous work directly toward asymptotic stability, the transparency of the intelligent approximation and disturbance estimation is included in the control scheme. The uniformly ultimate boundedness stability is analyzed via Lyapunov method. Through simulation verification, the composite intelligent learning with disturbance observer can efficiently estimate the effect caused by system nonlinearity and disturbance while the proposed approach obtains better performance with higher accuracy.

  7. Exact states in waveguides with periodically modulated nonlinearity

    NASA Astrophysics Data System (ADS)

    Ding, E.; Chan, H. N.; Chow, K. W.; Nakkeeran, K.; Malomed, B. A.

    2017-09-01

    We introduce a one-dimensional model based on the nonlinear Schrödinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi {dn} function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. A numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. The exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered. The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.

  8. Regions of attraction and ultimate boundedness for linear quadratic regulators with nonlinearities

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1984-01-01

    The closed-loop stability of multivariable linear time-invariant systems controlled by optimal linear quadratic (LQ) regulators is investigated for the case when the feedback loops have nonlinearities N(sigma) that violate the standard stability condition, sigma N(sigma) or = 0.5 sigma(2). The violations of the condition are assumed to occur either (1) for values of sigma away from the origin (sigma = 0) or (2) for values of sigma in a neighborhood of the origin. It is proved that there exists a region of attraction for case (1) and a region of ultimate boundedness for case (2), and estimates are obtained for these regions. The results provide methods for selecting the performance function parameters to design LQ regulators with better tolerance to nonlinearities. The results are demonstrated by application to the problem of attitude and vibration control of a large, flexible space antenna in the presence of actuator nonlinearities.

  9. Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2018-02-01

    Subject to an AC voltage, dielectric elastomers (DEs) behave as a nonlinear vibration, implying potential applications as soft dynamical actuators and robots. In this article, by utilizing the Lagrange's equation, a theoretical model is deduced to investigate the dynamic performances of DEs by considering three internal properties, including crosslinks, entanglements, and finite deformations of polymer chains. Numerical calculations are employed to describe the dynamic response, stability, periodicity, and resonance properties of DEs. It is observed that the frequency and nonlinearity of dynamic response are tuned by the internal properties of DEs. Phase paths and Poincaré maps are utilized to detect the stability and periodicity of the nonlinear vibrations of DEs, which demonstrate that transitions between aperiodic and quasi-periodic vibrations may occur when the three internal properties vary. The resonance of DEs involving the three internal properties of polymer chains is also investigated.

  10. MATLAB Stability and Control Toolbox Trim and Static Stability Module

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Crespo, Luis

    2012-01-01

    MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.

  11. Inference of directed climate networks: role of instability of causality estimation methods

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan

    2013-04-01

    Climate data are increasingly analyzed by complex network analysis methods, including graph-theoretical approaches [1]. For such analysis, links between localized nodes of climate network are typically quantified by some statistical measures of dependence (connectivity) between measured variables of interest. To obtain information on the directionality of the interactions in the networks, a wide range of methods exists. These can be broadly divided into linear and nonlinear methods, with some of the latter having the theoretical advantage of being model-free, and principally a generalization of the former [2]. However, as a trade-off, this generality comes together with lower accuracy - in particular if the system was close to linear. In an overall stationary system, this may potentially lead to higher variability in the nonlinear network estimates. Therefore, with the same control of false alarms, this may lead to lower sensitivity for detection of real changes in the network structure. These problems are discussed on the example of daily SAT and SLP data from the NCEP/NCAR reanalysis dataset. We first reduce the dimensionality of data using PCA with VARIMAX rotation to detect several dozens of components that together explain most of the data variability. We further construct directed climate networks applying a selection of most widely used methods - variants of linear Granger causality and conditional mutual information. Finally, we assess the stability of the detected directed climate networks by computing them in sliding time windows. To understand the origin of the observed instabilities and their range, we also apply the same procedure to two types of surrogate data: either with non-stationarity in network structure removed, or imposed in a controlled way. In general, the linear methods show stable results in terms of overall similarity of directed climate networks inferred. For instance, for different decades of SAT data, the Spearman correlation of edge weights in the networks is ~ 0.6. The networks constructed using nonlinear measures were in general less stable both in real data and stationarized surrogates. Interestingly, when the nonlinear method parameters are optimized with respect to temporal stability of the networks, the networks seem to converge close to those detected by linear Granger causality. This provides further evidence for the hypothesis of overall sparsity and weakness of nonlinear coupling in climate networks on this spatial and temporal scale [3] and sufficient support for the use of linear methods in this context, unless specific clearly detectable nonlinear phenomena are targeted. Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. [1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M. & Hwang, D. U.: Complex networks: Structure and dynamics, Physics Reports, 2006, 424, 175-308 [2] Barnett, L.; Barrett, A. B. & Seth, A. K.: Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables, Physical Review Letters, 2009, 103, 238701 [3] Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M.: Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity, submitted preprint (http://arxiv.org/abs/1211.6688)

  12. Nonlinear transient analysis of multi-mass flexible rotors - theory and applications

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1973-01-01

    The equations of motion necessary to compute the transient response of multi-mass flexible rotors are formulated to include unbalance, rotor acceleration, and flexible damped nonlinear bearing stations. A method of calculating the unbalance response of flexible rotors from a modified Myklestad-Prohl technique is discussed in connection with the method of solution for the transient response. Several special cases of simplified rotor-bearing systems are presented and analyzed for steady-state response, stability, and transient behavior. These simplified rotor models produce extensive design information necessary to insure stable performance to elastic mounted rotor-bearing systems under varying levels and forms of excitation. The nonlinear journal bearing force expressions derived from the short bearing approximation are utilized in the study of the stability and transient response of the floating bush squeeze damper support system. Both rigid and flexible rotor models are studied, and results indicate that the stability of flexible rotors supported by journal bearings can be greatly improved by the use of squeeze damper supports. Results from linearized stability studies of flexible rotors indicate that a tuned support system can greatly improve the performance of the units from the standpoint of unbalanced response and impact loading. Extensive stability and design charts may be readily produced for given rotor specifications by the computer codes presented in this analysis.

  13. On the stability, storage capacity, and design of nonlinear continuous neural networks

    NASA Technical Reports Server (NTRS)

    Guez, Allon; Protopopsecu, Vladimir; Barhen, Jacob

    1988-01-01

    The stability, capacity, and design of a nonlinear continuous neural network are analyzed. Sufficient conditions for existence and asymptotic stability of the network's equilibria are reduced to a set of piecewise-linear inequality relations that can be solved by a feedforward binary network, or by methods such as Fourier elimination. The stability and capacity of the network is characterized by the post synaptic firing rate function. An N-neuron network with sigmoidal firing function is shown to have up to 3N equilibrium points. This offers a higher capacity than the (0.1-0.2)N obtained in the binary Hopfield network. Moreover, it is shown that by a proper selection of the postsynaptic firing rate function, one can significantly extend the capacity storage of the network.

  14. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    NASA Astrophysics Data System (ADS)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and middle ear. These signals are used for diagnostic purposes, and therefore it is important to have an estimate the non-linear middle ear contribution to these emissions.

  15. Four-wave mixing in an asymmetric double quantum dot molecule

    NASA Astrophysics Data System (ADS)

    Kosionis, Spyridon G.

    2018-06-01

    The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.

  16. Dispersion in tidally averaged transport equation

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.

    1992-01-01

    A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature

  17. Optimal model of PDIG based microgrid and design of complementary stabilizer using ICA.

    PubMed

    Amini, R Mohammad; Safari, A; Ravadanegh, S Najafi

    2016-09-01

    The generalized Heffron-Phillips model (GHPM) for a microgrid containing a photovoltaic (PV)-diesel machine (DM)-induction motor (IM)-governor (GV) (PDIG) has been developed at the low voltage level. A GHPM is calculated by linearization method about a loading condition. An effective Maximum Power Point Tracking (MPPT) approach for PV network has been done using sliding mode control (SMC) to maximize output power. Additionally, to improve stability of microgrid for more penetration of renewable energy resources with nonlinear load, a complementary stabilizer has been presented. Imperialist competitive algorithm (ICA) is utilized to design of gains for the complementary stabilizer with the multiobjective function. The stability analysis of the PDIG system has been completed with eigenvalues analysis and nonlinear simulations. Robustness and validity of the proposed controllers on damping of electromechanical modes examine through time domain simulation under input mechanical torque disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Stabilization strategies of a general nonlinear car-following model with varying reaction-time delay of the drivers.

    PubMed

    Li, Shukai; Yang, Lixing; Gao, Ziyou; Li, Keping

    2014-11-01

    In this paper, the stabilization strategies of a general nonlinear car-following model with reaction-time delay of the drivers are investigated. The reaction-time delay of the driver is time varying and bounded. By using the Lyapunov stability theory, the sufficient condition for the existence of the state feedback control strategy for the stability of the car-following model is given in the form of linear matrix inequality, under which the traffic jam can be well suppressed with respect to the varying reaction-time delay. Moreover, by considering the external disturbance for the running cars, the robust state feedback control strategy is designed, which ensures robust stability and a smaller prescribed H∞ disturbance attenuation level for the traffic flow. Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    NASA Astrophysics Data System (ADS)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  20. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan

    2016-01-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less

  1. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacini, Benjamin Robert; Mayes, Randall L.; Roettgen, Daniel R

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less

  2. Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons

    NASA Astrophysics Data System (ADS)

    Midya, Bikashkali; Konotop, Vladimir V.

    2017-07-01

    We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.

  3. Traveling wave solution of driven nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-09-01

    The traveling solitary and cnoidal wave solutions of the one dimensional driven nonlinear Schrödinger equation with a generalized form of nonlinearity are presented in this paper. We examine the modulation of nonlinear solitary excitations in two known weakly nonlinear models of classic oscillators, namely, the Helmholtz and Duffing oscillators and envelope structure formations for different oscillator and driver parameters. It is shown that two distinct regimes of subcritical and supercritical modulations may occur for nonlinear excitations with propagation speeds v <√{4 F0 } and v >√{4 F0 } , respectively, in which F0 is the driver force strength. The envelope soliton and cnoidal waves in these regimes are observed to be fundamentally different. The effect of pseudoenergy on the structure of the modulated envelope excitations is studied in detail for both sub- and supercritical modulation types. The current model for traveling envelope excitations may be easily extended to pseudopotentials with full nonlinearity relevant to more realistic gases, fluids, and plasmas.

  4. Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime; Natali, Fábio M. Amorin

    2009-04-01

    In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation ut+5u4ux+u=0, and the critical nonlinear Schrödinger equation ivt+v+|v=0. The periodic travelling wave solutions obtained in our study tend to the classical solitary wave solutions in the infinite wavelength scenario. The stability approach is based on the theory developed by Angulo & Natali in [J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling wave solutions, SIAM J. Math. Anal. 40 (2008) 1123-1151] for positive periodic travelling wave solutions associated to dispersive evolution equations of Korteweg-de Vries type. The instability approach is based on an extension to the periodic setting of arguments found in Bona & Souganidis & Strauss [J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987) 395-412]. Regarding the critical Schrödinger equation stability/instability theories similar to the critical Korteweg-de Vries equation are obtained by using the classical Grillakis & Shatah & Strauss theory in [M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348; M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197]. The arguments presented in this investigation have prospects for the study of the stability of periodic travelling wave solutions of other nonlinear evolution equations.

  5. Lyapunov functions for a class of nonlinear systems using Caputo derivative

    NASA Astrophysics Data System (ADS)

    Fernandez-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. G.

    2017-02-01

    This paper presents an extension of recent results that allow proving the stability of Caputo nonlinear and time-varying systems, by means of the fractional order Lyapunov direct method, using quadratic Lyapunov functions. This article introduces a new way of building polynomial Lyapunov functions of any positive integer order as a way of determining the stability of a greater variety of systems when the order of the derivative is 0 < α < 1. Some examples are given to validate these results.

  6. Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Wang, Mingxin

    2018-06-01

    This paper concerns the reaction-diffusion systems modeling the population dynamics of two predators and one prey with nonlinear prey-taxis. We first investigate the global existence and boundedness of the unique classical solution for the general model. Then, we study the global stabilities of nonnegative spatially homogeneous equilibria for an explicit system with type I functional responses and density-dependent death rates for the predators and logistic growth for the prey. Moreover, the convergence rates are also established.

  7. Stability of standing wave for the fractional nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Peng, Congming; Shi, Qihong

    2018-01-01

    In this paper, we study the stability and instability of standing waves for the fractional nonlinear Schrödinger equation i∂tu = (-Δ)su - |u|2σu, where (t ,x ) ∈R × RN, 1/2

  8. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    PubMed

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).

  9. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  10. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    NASA Technical Reports Server (NTRS)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  11. Study of the (1 + 1) D Long Wavelength Steady States of the Bénard Problem For Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Zhou, Chengzhe; Troian, Sandra

    We investigate the stationary states of the (1 + 1) D equation ht +h3hxxx +h2γx (h) x = 0 for thin films of thickness h (x , t) where x is the spatial variable and t is time. The variable γ (h) , denotes the surface tension along the gas/liquid interface of the slender bilayer confined between two substrates enforcing thermal conduction within the gap. Equilibrium solutions include flat films, droplets, trenches/ridges and positive periodic steady states (PPSS), the latter conveniently parameterized by a generalized interfacial pressure and the global extremum in shape. We derive perturbative solutions describing PPSS shapes near the stability threshold including their minimal period, average height and free energy. Weakly nonlinear analysis confirms that flat films always undergo a supercritical unstable pitch-fork bifurcation. Globally, our numerical simulations indicate at most one non-trivial PPSS per given period and volume. The free energy of droplet states is also always lower than the relevant corresponding PPSS, suggesting that initial flat films tend to redistribute mass into droplet-like configurations. By solving the linearized eigenvalue problem, we also confirm the unstable nature of PPSS solutions far from the stability threshold.

  12. Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure

    NASA Astrophysics Data System (ADS)

    Huang, Xing-Rong; Jézéquel, Louis; Besset, Sébastien; Li, Lin; Sauvage, Olivier

    2018-01-01

    This paper describes a simple and fast numerical procedure to study the steady state responses of assembled structures with nonlinearities along continuous interfaces. The proposed strategy is based on a generalized nonlinear modal superposition approach supplemented by a double modal synthesis strategy. The reduced nonlinear modes are derived by combining a single nonlinear mode method with reduction techniques relying on branch modes. The modal parameters containing essential nonlinear information are determined and then employed to calculate the stationary responses of the nonlinear system subjected to various types of excitation. The advantages of the proposed nonlinear modal synthesis are mainly derived in three ways: (1) computational costs are considerably reduced, when analyzing large assembled systems with weak nonlinearities, through the use of reduced nonlinear modes; (2) based on the interpolation models of nonlinear modal parameters, the nonlinear modes introduced during the first step can be employed to analyze the same system under various external loads without having to reanalyze the entire system; and (3) the nonlinear effects can be investigated from a modal point of view by analyzing these nonlinear modal parameters. The proposed strategy is applied to an assembled system composed of plates and nonlinear rubber interfaces. Simulation results have proven the efficiency of this hybrid nonlinear modal synthesis, and the computation time has also been significantly reduced.

  13. Global Well-posedness of the Spatially Homogeneous Kolmogorov-Vicsek Model as a Gradient Flow

    NASA Astrophysics Data System (ADS)

    Figalli, Alessio; Kang, Moon-Jin; Morales, Javier

    2018-03-01

    We consider the so-called spatially homogenous Kolmogorov-Vicsek model, a non-linear Fokker-Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.

  14. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    NASA Astrophysics Data System (ADS)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  15. Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.

    PubMed

    Yin, Tai-Shuang; Lü, Xin-You; Wan, Liang-Liang; Bin, Shang-Wu; Wu, Ying

    2018-05-01

    We propose a scheme to significantly enhance the cross-Kerr (CK) nonlinearity between photons and phonons in a quadratically coupled optomechanical system (OMS) with two-photon driving. This CK nonlinear enhancement originates from the parametric-driving-induced squeezing and the underlying nonlinear optomechanical interaction. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a squeezed vacuum reservoir. As a result of this dramatic nonlinear enhancement and the suppressed noise, we demonstrate the feasibility of the quantum nondemolition measurement of the phonon number in an originally weak coupled OMS. In addition, the photon-phonon blockade phenomenon is also investigated in this regime, which allows for performing manipulations between photons and phonons. This Letter offers a promising route towards the potential application for the OMS in quantum information processing and quantum networks.

  16. L1-Based Approximations of PDEs and Applications

    DTIC Science & Technology

    2012-09-05

    the analysis of the Navier-Stokes equations. The early versions of artificial vis- cosities being overly dissipative, the interest for these technique ...Guermond, and B. Popov. Stability analysis of explicit en- tropy viscosity methods for non-linear scalar conservation equations. Math. Comp., 2012... methods for solv- ing mathematical models of nonlinear phenomena such as nonlinear conservation laws, surface/image/data reconstruction problems

  17. Nonlinear Light Dynamics in Multi-Core Structures

    DTIC Science & Technology

    2017-02-27

    be generated in continuous- discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous... discrete nonlinear system. Detailed theoretical analysis is presented of the existence and stability of the discrete -continuous light bullets using a very...and pulse compression using wave collapse (self-focusing) energy localisation dynamics in a continuous- discrete nonlinear system, as implemented in a

  18. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    PubMed

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  19. Enhanced nonlinear optical properties of L-arginine stabilized gold nanoparticles embedded in PVP polymer

    NASA Astrophysics Data System (ADS)

    Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G.

    2018-05-01

    Highly stable colloidal gold nanoparticles (GNPs) stabilised in l-arginine were synthesized and embedded in polyvinyl pyrrolidone (PVP) polymer matrix to fabricate thin films by spin coating method. Nonlinear optical response of GNP-PVP nanocomposite were investigated using single beam Z-scan technique using He-Ne laser beam in CW regime operated at 632.8 nm as an excitation source. The sign of nonlinear refractive index was found negative, which is of self-defocusing nature. The nonlinear optical parameters estimated for GNP-PVP nanocomposite and found values as large as n2≈(1.7 -3.1 ) ×10-4c m2W-1, β ≈(2.40 -4.69 ) ×10-5c m W-1 and χef f (3 )≈(2.30 -4.34 ) ×10-4e s u . The nonlinear refractive index, absorption coefficient and third order nonlinear susceptibility have found decreasing with the increase in the concentration of l-arginine. Localized surface plasmon resonance (LSPR) peaks show the blue shift. The average size of the GNPs is found reducing from 11 nm to 7.5 nm with the increase in the stabilizer concentration, as analysed by transmission electron microscopy. The XRD study reveals face-centred cubic (fcc) structure of GNPs. The huge nonlinearity is attributed to the thermo-optic phenomenon. The huge enhancement in third order nonlinear susceptibility and nonlinear refractive index indicates that this optical material possess a high potential for various optoelectronic devices applications.

  20. Entropy criteria applied to pattern selection in systems with free boundaries

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-10-01

    The steady state differential or integral equations which describe patterned dissipative structures, typically to be identified with first order phase transformation morphologies like isothermal pearlites, are invariably degenerate in one or more order parameters (the lamellar spacing in the pearlite case). It is often observed that a different pattern is attained at the steady state for each initial condition (the hysteresis or metastable case). Alternatively, boundary perturbations and internal fluctuations during transition up to, or at the steady state, destroy the path coherence. In this case a statistical ensemble of imperfect patterns often emerges which represents a fluctuating but recognizably patterned and unique average steady state. It is cases like cellular, lamellar pearlite, involving an assembly of individual cell patterns which are regularly perturbed by local fluctuation and growth processes, which concern us here. Such weakly fluctuating nonlinear steady state ensembles can be arranged in a thought experiment so as to evolve as subsystems linking two very large mass-energy reservoirs in isolation. Operating on this discontinuous thermodynamic ideal, Onsager’s principle of maximum path probability for isolated systems, which we interpret as a minimal time correlation function connecting subsystem and baths, identifies the stable steady state at a parametric minimum or maximum (or both) in the dissipation rate. This nonlinear principle is independent of the Principle of Minimum Dissipation which is applicable in the linear regime of irreversible thermodynamics. The statistical argument is equivalent to the weak requirement that the isolated system entropy as a function of time be differentiable to the second order despite the macroscopic pattern fluctuations which occur in the subsystem. This differentiability condition is taken for granted in classical stability theory based on the 2nd Law. The optimal principle as applied to isothermal and forced velocity pearlites (in this case maximal) possesses a Le Chatelier (perturbation) Principle which can be formulated exactly via Langer’s conjecture that “each lamella must grow in a direction which is perpendicular to the solidification front”. This is the first example of such an equivalence to be experimentally and theoretically recognized in nonlinear irreversible thermodynamics. A further application to binary solidification cells is reviewed. In this case the optimum in the dissipation is a minimum and the closure between theory and experiment is excellent. Other applications in thermal-hydraulics, biology, and solid state physics are briefy described.

Top