Sample records for weapons grade uranium

  1. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.

  2. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, A.

    2014-09-01

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF4 composition. The 235U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF4 with 235U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF4 with 235U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.

  3. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Indarta Kuncoro; Waris, A., E-mail: awaris@fi.itb.ac.id

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF{sub 4} composition. The {sup 235}U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF{sub 4} with {sup 235}U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF{sub 4}more » with {sup 235}U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.« less

  4. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the 233U isotope in the VVER reactors using thorium and heavy water

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.

  5. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  6. Laser and gas centrifuge enrichment

    NASA Astrophysics Data System (ADS)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  7. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE PAGES

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  8. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This article is a review of the agreement between the United States and two of the former Soviet republics to buy and convert weapons-grade uranium into reactor fuel. Under this 20 year agreement, the US Enrichment Corporation will buy 500 metric tons for a price of $11.9B. This will convert into 15,260 tons of low-enriched uranium.

  10. NNSA B-Roll: MOX Facility

    ScienceCinema

    None

    2017-12-09

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  11. NNSA B-Roll: MOX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  12. All About MOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-07-29

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  13. All About MOX

    ScienceCinema

    None

    2018-01-16

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  14. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  15. Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

    DTIC Science & Technology

    2010-06-04

    extensive use of photons, packets of energy with no rest mass and no electrical charge. Electromagnetic radiation consists of photons, and may be measured...bulk property, expressed as mass per unit volume. In general, the densest materials are those of high Z. These properties may be used to detect...SNM by detecting the time pattern of neutron generation. A subcritical mass of highly enriched uranium or weapons-grade plutonium can support a

  16. New Organic Scintillators for Neutron Detection

    DTIC Science & Technology

    2016-03-01

    highly enriched uranium and weapons grade plutonium. Neutrons and gamma rays are two signatures of these materials. Gamma ray detection techniques are...New Organic Scintillators for Neutron Detection Distribution Statement A. Approved for public release; distribution is unlimited. March...Title: New Organic Scintillators for Neutron Detection I. Abstract In this project, Radiation Monitoring Devices (RMD) proposes to develop novel

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, Jon; Hayes, Steven; Walters, L. C.

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less

  18. One perspective on stakeholder involvement at Hanford.

    PubMed

    Martin, Todd

    2011-11-01

    The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail.

  19. Evaluation of uranium transitions for isotopically-selective laser induced fluorescence with diode lasers (technical report for ST064)

    NASA Astrophysics Data System (ADS)

    Cannon, B. D.

    1993-10-01

    Isotopically-selective excitation of uranium atoms by diode lasers can be the basis for a portable instrument to perform uranium isotopic assays in the field. Such an instrument would improve the ability of on-site inspections to detect and deter nuclear proliferation. Published and unpublished spectroscopic data on atomic uranium were examined to identify candidate transitions for isotopically-selective laser excitation with diode lasers. Eleven candidate transitions were identified and evaluated for their potential usefulness for a portable uranium assay instrument. Eight of these transitions are suitable for laser induced fluorescence using different excitation and detection wavelengths, which will improve sensitivity and elemental selectivity. Data sheets on the 25 uranium transitions in the wavelength range 629 nm to 1,000 nm that originate in the ground or first excited states of neutral atomic uranium are included. Each data sheet provides the wavelength, upper and lower energy levels, angular momentum quantum numbers, U-235 isotope shift (relative to U-238, and high-resolution spectra of weapons-grade uranium (93% U-235 and 7% U-238).

  20. The Third Temple’s Holy of Holies: Israel’s Nuclear Weapons

    DTIC Science & Technology

    1999-09-01

    explored the Negev Desert for uranium deposits on orders from the Israeli Ministry of Defense. By 1950, they found low-grade deposits near Beersheba and...capable of delivering nuclear bombs.21 French experts secretly built the Israeli reactor underground at Dimona, in the Negev desert of southern Israel...near Beersheba. Hundreds of French engineers and technicians filled Beersheba, the biggest town in the Negev . Many of the same contractors who built

  1. Irans Nuclear Program: Tehrans Compliance with International Obligations

    DTIC Science & Technology

    2016-04-07

    ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear

  2. Irans Nuclear Program: Tehrans Compliance with International Obligations

    DTIC Science & Technology

    2016-03-03

    ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear

  3. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-12-09

    Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008...gave additional urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment...technology, which it mastered by the mid-1980s. Highly-enriched uranium (HEU) is one of two types of fissile material used in nuclear weapons; the other

  4. Limiting Regret: Building the Army We Will Need

    DTIC Science & Technology

    2015-08-18

    Recently, U.S. and Chinese experts have estimated that the North Koreans may be able to produce enough fissionable plutonium and uranium to build up...long-range missiles, but their recently revealed ability to separate uranium could give them the ability to build gun-assembled fission weapons similar...weapons programs and living up to their international obligations.” 36North Korea has had a uranium enrichment capacity since at least November 2010

  5. Iran’s Reemergence as a Major Player in Global Security

    DTIC Science & Technology

    2013-05-21

    economic sanctions levied against the Islamic Republic. Iran continues to deny International Atomic Energy Agency inspectors’ access to possible uranium ...build nuclear weapons.”55 Mr. Clapper went on to say that “Iran’s technical advancement, particularly in uranium enrichment, strengthens our assessment...will to do so.”56 During the briefing, he made clear that Iran is technically capable of producing enough highly enriched uranium for a weapon

  6. 241Am Ingrowth and Its Effect on Internal Dose

    DOE PAGES

    Konzen, Kevin

    2016-07-01

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons and reactor fuel. This work focuses on three typical plutonium mixtures, while observing the potential of 241Am ingrowth and its effect on internal dose. The term “ingrowth” is used to describe 241Am production due solely from the decay of 241Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for 241Am ingrowth unless the 241Pu quantity is specified. This work suggested that 241Am ingrowth be considered in bioassay analysis when theremore » is a potential of a 10% increase to the individual’s committed effective dose. It was determined that plutonium fuel mixtures, initially absent of 241Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 years; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. In conclusion, although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzen, Kevin

    Generally, plutonium has been manufactured to support commercial and military applications involving heat sources, weapons and reactor fuel. This work focuses on three typical plutonium mixtures, while observing the potential of 241Am ingrowth and its effect on internal dose. The term “ingrowth” is used to describe 241Am production due solely from the decay of 241Pu as part of a plutonium mixture, where it is initially absent or present in a smaller quantity. Dose calculation models do not account for 241Am ingrowth unless the 241Pu quantity is specified. This work suggested that 241Am ingrowth be considered in bioassay analysis when theremore » is a potential of a 10% increase to the individual’s committed effective dose. It was determined that plutonium fuel mixtures, initially absent of 241Am, would likely exceed 10% for typical reactor grade fuel aged less than 30 years; however, heat source grade and aged weapons grade fuel would normally fall below this threshold. In conclusion, although this work addresses typical plutonium mixtures following separation, it may be extended to irradiated commercial uranium fuel and is expected to be a concern in the recycling of spent fuel.« less

  8. In-line assay monitor for uranium hexafluoride

    DOEpatents

    Wallace, Steven A.

    1981-01-01

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  9. Estimates of radiological risk from depleted uranium weapons in war scenarios.

    PubMed

    Durante, Marco; Pugliese, Mariagabriella

    2002-01-01

    Several weapons used during the recent conflict in Yugoslavia contain depleted uranium, including missiles and armor-piercing incendiary rounds. Health concern is related to the use of these weapons, because of the heavy-metal toxicity and radioactivity of uranium. Although chemical toxicity is considered the more important source of health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict, and uranium munitions are a possible source of contamination in the environment. Actual measurements of radioactive contamination are needed to assess the risk. In this paper, a computer simulation is proposed to estimate radiological risk related to different exposure scenarios. Dose caused by inhalation of radioactive aerosols and ground contamination induced by Tomahawk missile impact are simulated using a Gaussian plume model (HOTSPOT code). Environmental contamination and committed dose to the population resident in contaminated areas are predicted by a food-web model (RESRAD code). Small values of committed effective dose equivalent appear to be associated with missile impacts (50-y CEDE < 5 mSv), or population exposure by water-independent pathways (50-y CEDE < 80 mSv). The greatest hazard is related to the water contamination in conditions of effective leaching of uranium in the groundwater (50-y CEDE < 400 mSv). Even in this worst case scenario, the chemical toxicity largely predominates over radiological risk. These computer simulations suggest that little radiological risk is associated to the use of depleted uranium weapons.

  10. The Task of Detecting Illicit Nuclear Material: Status and Challenges

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard

    2006-04-01

    In August 1994, police at the Munich airport intercepted a suitcase from Moscow with half a kilogram of nuclear-reactor fuel, of which 363 grams was weapons- grade plutonium. A few months later police seized 2.7 kilograms of highly enriched uranium from a former worker at a Russian nuclear institute and his accomplices in Prague. These are just two of 18 incidents involving the smuggling of weapons grade nuclear materials between 1993 and 2004 reported by the International Atomic Energy Agency. The consequences of a stolen or improvised nuclear device being exploded in a U.S. city would be world changing. The concern over the possibility of a nuclear weapon, or the material for a weapon or a radiological dispersion device, being smuggled across U.S. borders has led to the deployment of radiation detection equipment at the borders. Related efforts are occurring around the world. Radiation portal monitors are used as the main screening tool, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. Passive detection techniques combined with imaging, and possibly active techniques, are the current available tools for screening cargo for items of concern. There are a number of physics limitations to what is possible with each technology given the presence of naturally occurring radioactive materials, commercial sources, and medical radionuclides in the stream of commerce. There have been a number of lessons learned to date from the various efforts in the U.S. and internationally about the capability for interdicting illicit nuclear material.

  11. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  12. Uranium Conversion & Enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U 3O 8 yellowcake into UF 6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  13. RAND Review: Volume 29, Number 2, Summer 2005

    DTIC Science & Technology

    2005-01-01

    is problematic because al Qaeda "Protecting businesses against tinued reliance on martyrdom; and " franchises " its attacks to local the economic impact...enriching uranium. We’ve got a lot ofnatural answered, "you would fee! safer if you had nuclear uranium. It’s legal. We want to enrich Uranium.’ And weapons...is then safer . If Iran adds nuclear weapons to its civil war within Islam rather than a global war on ter- arsenal, they already have Israel to worry

  14. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    DTIC Science & Technology

    2014-01-03

    countries) for secret nuclear weapons facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium...declaration from North Korea for outside verification. 89 Barbara Opall -Rome and...that the China Guangfa Bank engaged in business with the DPRK’s arms dealer, Global Trading and Technology (a front for Korea Mining Development

  15. Superconducting RF Linacs Driving Subcritical Reactors for Profitable Disposition of Surplus Weapons-grade Plutonium

    NASA Astrophysics Data System (ADS)

    Cummings, Mary Anne; Johnson, Rolland

    Acceptable capital and operating costs of high-power proton accelerators suitable for profitable commercial electric-power and process-heat applications have been demonstrated. However, studies have pointed out that even a few hundred trips of an accelerator lasting a few seconds would lead to unacceptable thermal stresses as each trip causes fission to be turned off in solid fuel structures found in conventional reactors. The newest designs based on the GEM*STAR concept take such trips in stride by using molten-salt fuel, where fuel pin fatigue is not an issue. Other aspects of the GEM*STAR concept which address all historical reactor failures include an internal spallation neutron target and high temperature molten salt fuel with continuous purging of volatile radioactive fission products such that the reactor contains less than a critical mass and almost a million times fewer volatile radioactive fission products than conventional reactors. GEM*STAR is a reactor that without redesign will burn spent nuclear fuel, natural uranium, thorium, or surplus weapons material. It will operate without the need for a critical core, fuel enrichment, or reprocessing making it an excellent candidate for export. As a first application, the design for a pilot plant is described for the profitable disposition of surplus weapons-grade plutonium by using process heat to produce green diesel fuel for the Department of Defense (DOD) from natural gas and renewable carbon.

  16. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    DTIC Science & Technology

    2010-08-16

    nuclear weapons facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium enrichment) near...brief interruptions.”85 84 Barbara Opall -Rome and Vago Muradian, “Bush Privately Lauds...confiscated a rare metal used to produce alloy steel (called vanadium) being smuggled to North Korea. In the same month, China’s NHI Shenyang Mining

  17. The Manhattan Project; A very brief introduction to the physics of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2017-05-01

    The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.

  18. Depleted Uranium | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-01-12

    Depleted uranium is the material left after most of the highly radioactive uranium-235 is removed from uranium ore for nuclear power and weapons. DU is used for tank armor, armor-piercing bullets and as weights to help balance aircraft. DU is both a toxic chemical and radiation health hazard when inside the body.

  19. Detection Technology in the 21st Century: The Case of Nuclear Weapons of Mass Destruction

    DTIC Science & Technology

    2008-03-26

    Weapons of Mass Destruction FORMAT : Strategy Research Project DATE: 26 March 2008 WORD COUNT: 6,764 PAGES: 25 KEY TERMS: National Security, Deterrence...stocks remaining in Ukraine, Belarus, Uzbekistan, and other former Soviet and Eastern European states, and the unknown amounts of highly enriched uranium ...detect emissions from the decay of radioactive nuclides, which can occur naturally, such as uranium and thorium, or are manmade, such as plutonium

  20. Uranium and Thorium

    ERIC Educational Resources Information Center

    Finch, Warren I.

    1978-01-01

    The results of President Carter's policy on non-proliferation of nuclear weapons are expected to slow the growth rate in energy consumption, put the development of the breeder reactor in question, halt plans to reprocess and recycle uranium and plutonium, and expand facilities to supply enriched uranium. (Author/MA)

  1. 11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS WERE NUCLEAR WEAPONS SHIPPED TO THE ROCKY FLATS PLANT FROM THE NUCLEAR WEAPON STOCKPILE FOR RETIREMENT, TESTING, OR UPGRADING. FISSILE MATERIALS (PLUTONIUM, URANIUM, ETC.) AND RARE MATERIALS (BERYLLIUM) WERE RECOVERED FOR REUSE, AND THE REMAINDER WAS DISPOSED. (8/7/62) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  2. 42 CFR 82.5 - Definition of terms used in this part.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in this part. (a) Atomic weapons employer (AWE) means any entity, other than the United States, that... in the production of an atomic weapon, excluding uranium mining and milling; and, (2) is designated by the Secretary of Energy as an atomic weapons employer for purposes of EEOICPA. (b) Bioassay means...

  3. 42 CFR 82.5 - Definition of terms used in this part.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in this part. (a) Atomic weapons employer (AWE) means any entity, other than the United States, that... in the production of an atomic weapon, excluding uranium mining and milling; and, (2) is designated by the Secretary of Energy as an atomic weapons employer for purposes of EEOICPA. (b) Bioassay means...

  4. 42 CFR 82.5 - Definition of terms used in this part.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in this part. (a) Atomic weapons employer (AWE) means any entity, other than the United States, that... in the production of an atomic weapon, excluding uranium mining and milling; and, (2) is designated by the Secretary of Energy as an atomic weapons employer for purposes of EEOICPA. (b) Bioassay means...

  5. 3 CFR - Continuation of the National Emergency With Respect to the Risk of Nuclear Proliferation Created...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons-Usable Fissile Material... Proliferation Created by the Accumulation of Weapons-Usable Fissile Material in the Territory of the Russian... Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons, dated February 18, 1993, and related...

  6. 3 CFR - Continuation of the National Emergency With Respect to the Risk of Nuclear Proliferation Created...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons-usable Fissile Material... Proliferation Created by the Accumulation of Weapons-usable Fissile Material in the Territory of the Russian... Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons, dated February 18, 1993, and related...

  7. 3 CFR 13617 - Executive Order 13617 of June 25, 2012. Blocking Property of the Government of the Russian...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Extracted From Nuclear Weapons 13617 Order 13617 Presidential Documents Executive Orders Executive Order... to the Disposition of Highly Enriched Uranium Extracted From Nuclear Weapons By the authority vested... accumulation of a large volume of weapons-usable fissile material in the territory of the Russian Federation...

  8. 75 FR 34919 - Continuation of the National Emergency With Respect To the Risk of Nuclear Proliferation Created...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... To the Risk of Nuclear Proliferation Created By the Accumulation of Weapons-usable Fissile Material... Risk of Nuclear Proliferation Created By the Accumulation of Weapons-usable Fissile Material In the... Russian Federation Concerning the Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons...

  9. 77 FR 37261 - Continuation of the National Emergency With Respect to the Risk of Nuclear Proliferation Created...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emergency With Respect to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons... Extracted from Nuclear Weapons, dated February 18, 1993, and related contracts and agreements (collectively... derived from nuclear weapons to low enriched uranium for peaceful commercial purposes. The order invoked...

  10. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    NASA Astrophysics Data System (ADS)

    Blandinskiy, V. Yu.

    2014-12-01

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  11. 42 CFR 83.5 - Definitions of terms used in the procedures in this part.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...

  12. 42 CFR 83.5 - Definitions of terms used in the procedures in this part.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...

  13. 42 CFR 83.5 - Definitions of terms used in the procedures in this part.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...

  14. 42 CFR 83.5 - Definitions of terms used in the procedures in this part.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... under EEOICPA. (b) Atomic Weapons Employer (“AWE”) is a statutory term of EEOICPA which means any entity... that emitted radiation and was used in the production of an atomic weapon, excluding uranium mining and milling: and, (2) Is designated by the Secretary of Energy as an atomic weapons employer for purposes of...

  15. 77 FR 38457 - Blocking Property of the Government of the Russian Federation Relating to the Disposition of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... Extracted From Nuclear Weapons #0; #0; #0; Presidential Documents #0; #0; #0;#0;Federal Register / Vol. 77... Federation Relating to the Disposition of Highly Enriched Uranium Extracted From Nuclear Weapons By the... the accumulation of a large volume of weapons-usable fissile material in the territory of the Russian...

  16. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  17. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  18. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  19. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  20. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction processmore » was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.« less

  1. Testing three explanations of the emergence of weapon carrying in peer context: the roles of aggression, victimization, and the social network.

    PubMed

    Dijkstra, Jan Kornelis; Gest, Scott D; Lindenberg, Siegwart; Veenstra, René; Cillessen, Antonius H N

    2012-04-01

    To examine the relative contribution of weapon carrying of peers, aggression, and victimization to weapon carrying of male and female adolescents over time. Data were derived from a population-based sample of male (N = 224) and female (N = 244) adolescents followed from grade 10 (M age = 15.5) to grade 11 (M age = 16.5). Peer networks were derived from best friend nominations. Self-reports were used to assess weapon carrying. Aggression and victimization were assessed using both self- and peer-reports. Use of dynamic social network modeling (SIENA) allowed prediction of weapon carrying in grade 11 as a function of weapon carrying of befriended peers, aggression, and victimization in grade 10, while selection processes and structural network effects (reciprocity and transitivity) were controlled for. Peer influence processes accounted for changes in weapon carrying over time. Self-reported victimization decreased weapon carrying 1 year later. Peer-reported victimization increased the likelihood of weapon carrying, particularly for highly aggressive adolescents. Boys were more likely to carry weapons than girls, but the processes associated with weapon carrying did not differ for boys and girls. These findings revealed that, in this population-based sample, weapon carrying of best friends, as well as aggression, contributed to the proliferation of weapons in friendship networks, suggesting processes of peer contagion as well as individual vulnerability to weapon carrying. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  2. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.« less

  3. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2012-05-10

    2009. 143 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in...Program.” Some analysts argue that spent nuclear fuel is more vulnerable when being transported . 144 Martellini, 2008. Pakistan’s Nuclear Weapons...urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment technology, which it

  4. U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris.

    PubMed

    Eriksson, Mats; Lindahl, Patric; Roos, Per; Dahlgaard, Henning; Holm, Elis

    2008-07-01

    This study concerns an arctic marine environment that was contaminated by actinide elements after a nuclear accident in 1968, the so-called Thule accident In this study we have analyzed five isolated hot particles as well as sediment samples containing particles from the weapon material for the determination of the nuclear fingerprint of the accident. We report that the fissile material in the hydrogen weapons involved in the Thule accident was a mixture of highly enriched uranium and weapon-grade plutonium and that the main fissile material was 235U (about 4 times more than the mass of 239Pu). In the five hot particles examined, the measured uranium atomic ratio was 235U/238U = 1.02 +/- 0.16 and the Pu-isotopic ratios were as follows: 24Pu/239Pu = 0.0551 +/- 0.0008 (atom ratio), 238Pu/239+240Pu = 0.0161 +/- 0.0005 (activity ratio), 241Pu/239+240Pu = 0.87 +/- 0.12 (activity ratio), and 241Am/ 239+240Pu = 0.169 +/- 0.005 (activity ratio) (reference date 2001-10-01). From the activity ratios of 241Pu/241Am, we estimated the time of production of this weapon material to be from the late 1950s to the early 1960s. The results from reanalyzed bulk sediment samples showed the presence of more than one Pu source involved in the accident, confirming earlier studies. The 238Pu/239+240PU activity ratio and the 240Pu/ 239Pu atomic ratio were divided into at least two Pu-isotopic ratio groups. For both Pu-isotopic ratios, one ratio group had identical ratios as the five hot particles described above and for the other groups the Pu isotopic ratios were lower (238Pu/ 239+240PU activity ratio approximately 0.01 and the 240Pu/P239Pu atomic ratio 0.03). On the studied particles we observed that the U/Pu ratio decreased as a function of the time these particles were present in the sediment. We hypothesis that the decrease in the ratio is due to a preferential leaching of U relative to Pu from the particle matrix.

  5. 5. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM WAS CAST INTO SLABS OR INGOTS FROM WHICH WEAPONS COMPONENTS WERE FABRICATED. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  6. 4. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF THE FOUNDRY. IN THE FOUNDRY, ENRICHED URANIUM WAS CAST INTO SLABS OR INGOTS FROM WHICH WEAPONS COMPONENTS WERE FABRICATED. (5/17/62). - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  7. The Feasibility of Ending HEU Fuel Use in the U.S. Navy

    DOE PAGES

    Philippe, Sebastian; von Hippel, Frank

    2016-11-01

    We report that since September 11, 2001, the U.S. government has sought to remove weapons-useable highly enriched uranium (HEU) containing 20 percent or more uranium-235 from as many locations as possible because of concerns about the possibility of nuclear terrorism.

  8. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I [Dublin, CA

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  9. DOUBLE TRACKS Test Site interim corrective action plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarilymore » of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.« less

  10. The use of depleted uranium ammunition under contemporary international law: is there a need for a treaty-based ban on DU weapons?

    PubMed

    Borrmann, Robin

    2010-01-01

    This article examines whether the use of Depleted Uranium (DU) munitions can be considered illegal under current public international law. The analysis covers the law of arms control and focuses in particular on international humanitarian law. The article argues that DU ammunition cannot be addressed adequately under existing treaty based weapon bans, such as the Chemical Weapons Convention, due to the fact that DU does not meet the criteria required to trigger the applicability of those treaties. Furthermore, it is argued that continuing uncertainties regarding the effects of DU munitions impedes a reliable review of the legality of their use under various principles of international law, including the prohibition on employing indiscriminate weapons; the prohibition on weapons that are intended, or may be expected, to cause widespread, long-term and severe damage to the natural environment; and the prohibition on causing unnecessary suffering or superfluous injury. All of these principles require complete knowledge of the effects of the weapon in question. Nevertheless, the author argues that the same uncertainty places restrictions on the use of DU under the precautionary principle. The paper concludes with an examination of whether or not there is a need for--and if so whether there is a possibility of achieving--a Convention that comprehensively outlaws the use, transfer and stockpiling of DU weapons, as proposed by some non-governmental organisations (NGOs).

  11. 75 FR 28626 - Subcommittee on Procedures Review, Advisory Board on Radiation and Worker Health (ABRWH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...''), OTIB-0051 (``Effect of Threshold Energy and Angular Response of NTA Film on Missed Neutron Dose at the... Reconstruction During Residual Radioactivity Periods at Atomic Weapons Employer Facilities''), and TBD 6000 (``Site Profile for Atomic Weapons Employers that Worked Uranium and Thorium Metals''); and a continuation...

  12. 75 FR 58408 - Subcommittee on Procedures Review, Advisory Board on Radiation and Worker Health (ABRWH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Period''), OTIB-0051 (``Effect of Threshold Energy and Angular Response of NTA Film on Missed Neutron... During Residual Radioactivity Periods at Atomic Weapons Employer Facilities''), and TBD 6000 (``Site Profile for Atomic Weapons Employers that Worked Uranium and Thorium Metals''); and a continuation of the...

  13. The North Korean nuclear dilemma.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecker, Siegfried S.

    2004-01-01

    The current nuclear crisis, the second one in ten years, erupted when North Korea expelled international nuclear inspectors in December 2002, then withdrew from the Nuclear Nonproliferation Treaty (NPT), and claimed to be building more nuclear weapons with the plutonium extracted from the spent fuel rods heretofore stored under international inspection. These actions were triggered by a disagreement over U.S. assertions that North Korea had violated the Agreed Framework (which froze the plutonium path to nuclear weapons to end the first crisis in 1994) by clandestinely developing uranium enrichment capabilities providing an alternative path to nuclear weapons. With Stanford Universitymore » Professor John Lewis and three other Americans, I was allowed to visit the Yongbyon Nuclear Center on Jan. 8, 2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. On the basis of our visit, we were not able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. However, based on the capabilities we saw, we must assume that North Korea has the capability to produce a crude nuclear device. On the matter of uranium enrichment programs, our host categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' The denials were not convincing at the time and since then have proven to be quite hollow by the revelations of A.Q. Khan's nuclear black market activities. There is no easy solution to the nuclear crisis in North Korea. A military strike to eliminate the nuclear facilities was never very attractive and now has been overcome by events. The principal threat is posed by a stockpile of nuclear weapons and weapons-grade plutonium. We have no way of finding where either may be hidden. A diplomatic solution remains the only path forward, but it has proven elusive. All sides have proclaimed a nuclear weapons-free Korean Peninsula as the end goal. The U.S. Government has chosen to negotiate with North Korea by means of the six-party talks. It has very clearly outlined its position of insisting on complete, verifiable, irreversible dismantlement of all North Korean nuclear programs. North Korea has offered several versions of 're-freezing' its plutonium program while still denying a uranium enrichment program. It has insisted on simultaneous and reciprocal steps to a final solution. Regardless of which diplomatic path is chosen, the scientific challenges of eliminating the North Korean nuclear weapons programs (and its associated infrastructure) in a safe, secure, and verifiable manner are immense. The North Korean program is considerably more complex and developed than the fledgling Iraqi program of 1991 and Libyan program of 2004. It is more along the lines, but more complex than that of South Africa in the early 1990s. Actions taken or not taken by the North Koreans at their nuclear facilities during the course of the ongoing diplomatic discussions are key to whether or not the nuclear program can be eliminated safely and securely, and they will greatly influence the price tag for such operations. Moreover, they will determine whether or not one can verify complete elimination. Hence, cooperation of the North Koreans now and during the dismantlement and elimination stages is crucial. Technical discussions among specialists, perhaps within the framework of the working groups of the six-party talks, could be very productive in setting the stage for an effective, verifiable elimination of North Korea's nuclear weapons program.« less

  14. Determining Reactor Fuel Type from Continuous Antineutrino Monitoring

    NASA Astrophysics Data System (ADS)

    Jaffke, Patrick; Huber, Patrick

    2017-09-01

    We investigate the ability of an antineutrino detector to determine the fuel type of a reactor. A hypothetical 5-ton antineutrino detector is placed 25 m from the core and measures the spectral shape and rate of antineutrinos emitted by fission fragments in the core for a number of 90-d periods. Our results indicate that four major fuel types can be differentiated from the variation of fission fractions over the irradiation time with a true positive probability of detection at approximately 95%. In addition, we demonstrate that antineutrinos can identify the burnup at which weapons-grade mixed-oxide (MOX) fuel would be reduced to reactor-grade MOX, on average, providing assurance that plutonium-disposition goals are met. We also investigate removal scenarios where plutonium is purposefully diverted from a mixture of MOX and low-enriched uranium fuel. Finally, we discuss how our analysis is impacted by a spectral distortion around 6 MeV observed in the antineutrino spectrum measured from commercial power reactors.

  15. The Military Significance of Small Uranium Enrichment Facilities Fed with Low-Enrichment Uranium (Redacted)

    DTIC Science & Technology

    1969-12-01

    a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel

  16. PHYSICAL BENEFICATION OF LOW-GRADE URANIUM ORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, J.N.

    1958-07-30

    Investigations are presented of methods for the physi cal beneficiation of low-grade and other uranium ores. The investlgations which have been in progress since September 1952 cover work done on a variety of natural ores, as well as a certain amount of basic research on mixtures of synthetic or high-grade natural uranium minerais with various gangues. Methods of beneficlation investigated include flotation, wet and dry attroftioning, magnetic separation. electresiatie separation, and misceilaneous minor methods. A rapid, routine method oicolorimeiric determlnation of uranium was also developed in order to facilitaie analyzing of low-grade materials for uranium. This proeedure is presenied inmore » condensed form. (auth)« less

  17. A Graphical Examination of Uranium and Plutonium Fissility

    ERIC Educational Resources Information Center

    Reed, B. Cameron

    2008-01-01

    The issue of why only particular isotopes of uranium and plutonium are suitable for use in nuclear weapons is analyzed with the aid of graphs and semiquantitative discussions of parameters such as excitation energies, fission barriers, reaction cross-sections, and the role of processes such as [alpha]-decay and spontaneous fission. The goal is to…

  18. Active interrogation of highly enriched uranium

    NASA Astrophysics Data System (ADS)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is limited. These assays also rely on secondary characteristics of the material to be measured. A review of the nondestructive techniques with potential applications for nuclear weapons confirmatory measurements were evaluated with summaries of the pros and cons involved in implementing the methods at production type facilities.

  19. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are describedmore » as accurately as possible, given the current sources of data.« less

  20. Gulf States Strategic Vision to Face Iranian Nuclear Project

    DTIC Science & Technology

    2015-09-01

    STRATEGIC VISION TO FACE IRANIAN NUCLEAR PROJECT by Fawzan A. Alfawzan September 2015 Thesis Advisor: James Russell Second Reader: Anne...nuclear weapons at a high degree. Nuclear capabilities provided Iran with uranium enrichments abilities and nuclear weapons to enable the country to...IN SECURITY STUDIES (STRATEGIC STUDIES) from the NAVAL POSTGRADUATE SCHOOL September 2015 Approved by: James Russell Thesis

  1. Controlling Weapons-Grade Fissile Material

    ERIC Educational Resources Information Center

    Rotblat, J.

    1977-01-01

    Discusses the problems of controlling weapons-grade fissionable material. Projections of the growth of fission nuclear reactors indicates sufficient materials will be available to construct 300,000 atomic bombs each containing 10 kilograms of plutonium by 1990. (SL)

  2. Scope and verification of a Fissile Material (Cutoff) Treaty

    DOE PAGES

    von Hippel, Frank N.

    2014-01-01

    A Fissile Material Cutoff Treaty (FMCT) would ban the production of fissile material – in practice highly-enriched uranium and separated plutonium – for weapons. It has been supported by strong majorities in the United Nations. After it comes into force, newly produced fissile materials could only be produced under international – most likely International Atomic Energy Agency – monitoring. There are many non-weapon states that argue the treaty should also place under safeguards pre-existing stocks of fissile material in civilian use or declared excess for weapons so as to make nuclear-weapons reductions irreversible. Our paper discusses the scope of themore » FMCT, the ability to detect clandestine production and verification challenges in the nuclear-weapons states.« less

  3. Embedded Weapons-Grade Tungsten Alloy Shrapnel Rapidly Induces Metastatic High-Grade Rhabdomyosarcomas in F344 Rats

    PubMed Central

    Kalinich, John F.; Emond, Christy A.; Dalton, Thomas K.; Mog, Steven R.; Coleman, Gary D.; Kordell, Jessica E.; Miller, Alexandra C.; McClain, David E.

    2005-01-01

    Continuing concern regarding the potential health and environmental effects of depleted uranium and lead has resulted in many countries adding tungsten alloy (WA)-based munitions to their battlefield arsenals as replacements for these metals. Because the alloys used in many munitions are relatively recent additions to the list of militarily relevant metals, very little is known about the health effects of these metals after internalization as embedded shrapnel. Previous work in this laboratory developed a rodent model system that mimicked shrapnel loads seen in wounded personnel from the 1991 Persian Gulf War. In the present study, we used that system and male F344 rats, implanted intramuscularly with pellets (1 mm × 2 mm cylinders) of weapons-grade WA, to simulate shrapnel wounds. Rats were implanted with 4 (low dose) or 20 pellets (high dose) of WA. Tantalum (20 pellets) and nickel (20 pellets) served as negative and positive controls, respectively. The high-dose WA-implanted rats (n = 46) developed extremely aggressive tumors surrounding the pellets within 4–5 months after implantation. The low-dose WA-implanted rats (n = 46) and nickel-implanted rats (n = 36) also developed tumors surrounding the pellets but at a slower rate. Rats implanted with tantalum (n = 46), an inert control metal, did not develop tumors. Tumor yield was 100% in both the low- and high-dose WA groups. The tumors, characterized as high-grade pleomorphic rhabdomyosarcomas by histopathology and immunohistochemical examination, rapidly metastasized to the lung and necessitated euthanasia of the animal. Significant hematologic changes, indicative of polycythemia, were also observed in the high-dose WA-implanted rats. These changes were apparent as early as 1 month postimplantation in the high-dose WA rats, well before any overt signs of tumor development. These results point out the need for further studies investigating the health effects of tungsten and tungsten-based alloys. PMID:15929896

  4. Advanced Quantification of Plutonium Ionization Potential to Support Nuclear Forensic Evaluations by Resonance Ionization Mass Spectrometry

    DTIC Science & Technology

    2015-06-01

    Research Committee nm Nanometer Np Neptunium NPT Treaty of Non-proliferation of Nuclear Weapons ns Nanosecond ps Picosecond Pu Plutonium RIMS...discovery—credited also to Fritz Strassman— scientists realized these reactions also emitted secondary neutrons . These secondary neutrons could in...destructive capabilities of nuclear fission and atomic weapons . Figure 1. Uranium-235 Fission chain reaction, from [1

  5. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2012-06-26

    145 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial ...Pakistan’s Civil Nuclear Program.” Some analysts argue that spent nuclear fuel is more vulnerable when being transported . 146 Martellini, 2008. 147...produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment technology, which it mastered by the mid-1980s

  6. Uranium induces oxidative stress in lung epithelial cells

    PubMed Central

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.

    2009-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605

  7. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    NASA Astrophysics Data System (ADS)

    Myers, Astasia

    2011-06-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  8. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-04-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  9. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Jr., P. B.; Erickson, A. S.; Mayer, Michael F.

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method frommore » being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.« less

  10. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    DOE PAGES

    Rose, P. B.; Erickson, A. S.; Mayer, M.; ...

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method frommore » being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.« less

  11. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging

    PubMed Central

    Rose, P. B.; Erickson, A. S.; Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-01-01

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as “searching for a needle in a haystack” because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material’s areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications. PMID:27087555

  12. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    PubMed

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  13. Depleted uranium mobility across a weapons testing site: isotopic investigation of porewater, earthworms, and soils.

    PubMed

    Oliver, Ian W; Graham, Margaret C; MacKenzie, Angus B; Ellam, Robert M; Farmer, John G

    2008-12-15

    The mobility and bioavailability of depleted uranium (DU) in soils at a UK Ministry of Defence (UK MoD) weapons testing range were investigated. Soil and vegetation were collected near a test-firing position and at eight points along a transect line extending approximately 200 m down-slope, perpendicular to the firing line, toward a small stream. Earthworms and porewaters were subsequently separated from the soils and both total filtered porewater (<0.2 microm) and discrete size fractions (0.2 microm-100 kDa, 100-30 kDa, 30-3 kDa, and <3 kDa)obtainedvia centrifugal ultrafiltration were examined. Uranium concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for soils and ICP-mass spectrometry (MS) for earthworms and porewaters, while 235U:238U atom ratios were determined by multicollector (MC)-ICP-MS. Comparison of the porewater and earthworm isotopic values with those of the soil solids indicated that DU released into the environment during weapons test-firing operations was more labile and more bioavailable than naturally occurring U in the soils at the testing range. Importantly, DU was shown to be present in soil porewater even at a distance of approximately 185 m from the test-firing position and, along the extent of the transect was apparently associated with organic colloids.

  14. Francis Perrin's 1939 Analysis of Uranium Criticality

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2012-03-01

    In May 1939, French physicist Francis Perrin published the first numerical estimate of the fast-neutron critical mass of a uranium compound. While his estimate of about 40 metric tons (12 tons if tamped) pertained to uranium oxide of natural isotopic composition as opposed to the enriched uranium that would be required for a nuclear weapon, it is interesting to examine Perrin's physics and to explore the subsequent impact of his paper. In this presentation I will discuss Perrin's model, the likely provenance of his parameter values, and how his work compared to the approach taken by Robert Serber in his 1943 Los Alamos Primer.

  15. Deploying Nuclear Detection Systems: A Proposed Strategy for Combating Nuclear Terrorism

    DTIC Science & Technology

    2007-07-01

    lower cost than other gamma radiation detectors (if increased count rate is all one is looking for). Low cost makes plastic scintillation detectors...material, particularly enriched uranium and plutonium, the basic fuel for nuclear bombs. • Measures to strengthen international institutions to... uranium to specifications required for a nuclear weapon.1 This illicit shipment of centrifuges was part of an international nuclear materials

  16. Nuclear Weapons. National Nuclear Security Administration’s Plans for Its Uranium Processing Facility Should Better Reflect Funding Estimates and Technology Readiness

    DTIC Science & Technology

    2010-11-01

    metal. Recovery extraction centrifugal contactors A process that uses solvent to extract uranium for purposes of purification. Agile machining A...extraction centrifugal contactors 5 6 Yes 6 No Agile machining 5 5 No 6 No Chip management 5 6 Yes 6 No Special casting 3 6 Yes 6 No Source: GAO

  17. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-07-30

    Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 79...that Pakistan’s strategic nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs...that gave additional urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium

  18. The ``Nuclear Renaissance'' and the Spread of Nuclear Weapons

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin S.

    2007-05-01

    As interest grows around the world in nuclear power as an energy source that could help control greenhouse gas emissions, some have proclaimed the arrival of a ``nuclear renaissance.'' But can the increased risks of more nuclear power be managed? The political crisis surrounding Iran's pursuit of uranium enrichment has exposed weaknesses in the nuclear nonproliferation regime. Also, al Qaeda's declared interest in weapons of mass destruction raises the concern that terrorists could acquire nuclear weapons by stealing materials from poorly secured facilities. Growth of nuclear energy would require the construction of many additional uranium enrichment plants. And the generation of more spent nuclear fuel without a credible waste disposal strategy would increase political support for reprocessing, which separates large quantities of weapon-usable plutonium from spent fuel. There is little evidence that the various institutional arrangements and technical schemes proposed to mitigate the security risks of a major nuclear expansion would be effective. This talk will focus on the measures necessary to allow large-scale global growth of nuclear power without resulting in an unacceptably high risk of nuclear proliferation and nuclear terrorism, and will discuss the feasibility of such measures. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.2

  19. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-01

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of 235U. It operates in the open-cycle mode involving 233U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  20. Technical solutions to nonproliferation challenges

    NASA Astrophysics Data System (ADS)

    Satkowiak, Lawrence

    2014-05-01

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  1. Technical solutions to nonproliferation challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satkowiak, Lawrence

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversionmore » of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.« less

  2. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  3. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  4. Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, David R.

    2017-04-01

    Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.

  5. 24. VIEW OF THE SECOND FLOOR PLAN. ENRICHED URANIUM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF THE SECOND FLOOR PLAN. ENRICHED URANIUM AND STAINLESS STEEL WEAPONS COMPONENT PRODUCTION-RELATED ACTIVITIES OCCURRED PRIMARILY ON THE SECOND FLOOR. THE ORIGINAL DRAWING HAS BEEN ARCHIVED ON MICROFILM. THE DRAWING WAS REPRODUCED AT THE BEST QUALITY POSSIBLE. LETTERS AND NUMBERS IN THE CIRCLES INDICATE FOOTER AND/OR COLUMN LOCATIONS. - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  6. Trends in Bullying, Physical Fighting, and Weapon Carrying Among 6th- Through 10th-Grade Students From 1998 to 2010: Findings From a National Study

    PubMed Central

    Brooks-Russell, Ashley; Wang, Jing; Iannotti, Ronald J.

    2014-01-01

    Objectives. We examined trends from 1998 to 2010 in bullying, bullying victimization, physical fighting, and weapon carrying and variations by gender, grade level, and race/ethnicity among US adolescents. Methods. The Health Behavior in School-Aged Children surveys of nationally representative samples of students in grades 6 through 10 were completed in 1998 (n = 15 686), 2002 (n = 14 818), 2006 (n = 9229), and 2010 (n = 10 926). We assessed frequency of bullying behaviors, physical fighting, and weapon carrying as well as weapon type and subtypes of bullying. We conducted logistic regression analyses, accounting for the complex sampling design, to identify trends and variations by demographic factors. Results. Bullying perpetration, bullying victimization, and physical fighting declined from 1998 to 2010. Weapon carrying increased for White students only. Declines in bullying perpetration and victimization were greater for boys than for girls. Declines in bullying perpetration and physical fighting were greater for middle-school students than for high-school students. Conclusions. Declines in most violent behaviors are encouraging; however, lack of decline in weapon carrying merits further attention. PMID:24825213

  7. Low and Increasing Trajectories of Perpetration of Physical Dating Violence: 7-Year Associations with Suicidal Ideation, Weapons, and Substance Use.

    PubMed

    Orpinas, Pamela; Nahapetyan, Lusine; Truszczynski, Natalia

    2017-05-01

    Understanding the interrelation among problem behaviors and their change over time is fundamental for prevention research. The Healthy Teens Longitudinal Study followed a cohort of adolescents from Grades 6-12. Prior research identified two distinct trajectories of perpetration of physical dating violence: Low and Increasing. The purpose of this study was to examine whether adolescents in these two trajectories differed longitudinally on other problem behaviors: (1) suicidal ideation and attempts, (2) weapon-carrying and threats with a weapon, and (3) substance use, particularly alcohol and marijuana. The sample consisted of 588 randomly-selected students (52% males; 49% White, 36% Black, 12% Latino). Students completed a self-reported, computer-based survey each spring from Grades 6-12. To examine significant differences by perpetration of physical dating violence trajectory, we used Chi-square test and generalized estimating equations modeling. Across most grades, significantly more students in Increasing than in the Low trajectory reported suicidal ideation and attempts, carried a weapon, and threatened someone with a weapon. Adolescents in the Increasing trajectory also had higher trajectories of alcohol use, being drunk, and marijuana use than those in the Low trajectory. All differences were already significant in Grade 6. The difference in the rate of change between groups was not significant. This longitudinal study highlights that problem behaviors-physical dating violence, suicidal ideation and attempts, weapon carrying and threats, marijuana and alcohol use-cluster together as early as sixth grade and the clustering persists over time. The combination of these behaviors poses a great public health concern and highlight the need for early interventions.

  8. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    DTIC Science & Technology

    2012-11-07

    facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium enrichment) near Isfahan, reported the...Barbara Opall -Rome and Vago Muradian, “Bush Privately Lauds Israeli Attack on Syria,” Defense News, January 14, 2008; Paul Richter, “West Says N... Mining Development Trading Corporation).123 Also, in December 2009, Japan arrested two traders who exported expensive cosmetics from Japan to North

  9. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    DTIC Science & Technology

    2012-03-30

    from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium enrichment) near Isfahan, reported the Washington Post (December...Facilities,” China News Agency, September 3, 2007; Xinhua, September 4 and 6, 2007. 99 Barbara Opall -Rome and Vago Muradian, “Bush Privately Lauds...with the DPRK’s arms dealer, Global Trading and Technology (a front for Korea Mining Development Trading Corporation).119 Also, in December 2009

  10. Leo Szilard Lectureship Award Talk: Controlling and eliminating nuclear-weapon materials

    NASA Astrophysics Data System (ADS)

    von Hippel, Frank

    2010-02-01

    Fissile material -- in practice plutonium and highly enriched uranium (HEU) -- is the essential ingredient in nuclear weapons. Controlling and eliminating fissile material and the means of its production is therefore the common denominator for nuclear disarmament, nuclear non-proliferation and the prevention of nuclear terrorism. From a fundamentalist anti-nuclear-weapon perspective, the less fissile material there is and the fewer locations where it can be found, the safer a world we will have. A comprehensive fissile-material policy therefore would have the following elements: *Consolidation of all nuclear-weapon-usable materials at a minimum number of high-security sites; *A verified ban on the production of HEU and plutonium for weapons; *Minimization of non-weapon uses of HEU and plutonium; and *Elimination of all excess stocks of plutonium and HEU. There is activity on all these fronts but it is not comprehensive and not all aspects are being pursued vigorously or competently. It is therefore worthwhile to review the situation. )

  11. The Future Role and Need for Nuclear Weapons in the 21st Century

    DTIC Science & Technology

    2007-01-01

    program, the Manhattan Project : Einstein‘s letter to Roosevelt in 1939 regarding the use of the energy from uranium for bombs, ―the imaginary German...succeed, nuclear weapons were introduced by the US into our world in 1945. The Manhattan Project efforts produced four bombs within its first three...Proceedings‖ (Livermore, CA: Lawrence Livermore National Laboratory, 1991), 14. 6 Ibid. , 12. 7 ― Manhattan Project ,‖ MSN Encarta, 2, http://encarta

  12. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less

  13. URANIUM RECOVERY PROCESS

    DOEpatents

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  14. Statistical sampling of the distribution of uranium deposits using geologic/geographic clusters

    USGS Publications Warehouse

    Finch, W.I.; Grundy, W.D.; Pierson, C.T.

    1992-01-01

    The concept of geologic/geographic clusters was developed particularly to study grade and tonnage models for sandstone-type uranium deposits. A cluster is a grouping of mined as well as unmined uranium occurrences within an arbitrary area about 8 km across. A cluster is a statistical sample that will reflect accurately the distribution of uranium in large regions relative to various geologic and geographic features. The example of the Colorado Plateau Uranium Province reveals that only 3 percent of the total number of clusters is in the largest tonnage-size category, greater than 10,000 short tons U3O8, and that 80 percent of the clusters are hosted by Triassic and Jurassic rocks. The distributions of grade and tonnage for clusters in the Powder River Basin show a wide variation; the grade distribution is highly variable, reflecting a difference between roll-front deposits and concretionary deposits, and the Basin contains about half the number in the greater-than-10,000 tonnage-size class as does the Colorado Plateau, even though it is much smaller. The grade and tonnage models should prove useful in finding the richest and largest uranium deposits. ?? 1992 Oxford University Press.

  15. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    PubMed Central

    Bardack, Stephanie; Dalgard, Clifton L.; Kalinich, John F.; Kasper, Christine E.

    2014-01-01

    Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted. PMID:24619124

  16. Test Area C-80 Complex Final Range Environmental Assessment, Revision 1

    DTIC Science & Technology

    2009-08-14

    C-80 Complex include gaseous chemical materials from current use of ordnance, smokes, and flares, as well as depleted uranium on TA C-80B from...Smoke grenades (various) 430 Flares (various) 430 OS-4 smoke pot 430 C-80B 466 Fog oil 1,000 gallons Ictus nickel foreign weapon exploitation 20...2007b DU = depleted uranium ; ERP = Environmental Restoration Program; LUC = land use control; POI = point of interest A ffected E nvironm ent C hem

  17. North Korea’s Military Threat: Pyongyang’s Conventional Forces, Weapons of Mass Destruction, and Ballistic Missiles

    DTIC Science & Technology

    2007-04-01

    that some 40 percent of the populace serve in some military or paramilitary formation . In short, the DPRK is undoubtedly the “most militarized...reportedly supplied North Korea with “ uranium enrichment equipment and perhaps even warhead designs.”301 In the first decade of the 21st century...Taechon (construction frozen under the Agreed Framework), as well as uranium ore processing at Pyongsan and Pakchon.305 However, “it is impossible

  18. Experimental study on the measurement of uranium casting enrichment by time-dependent coincidence method

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Xiong; Li, Jian-Sheng; Gong, Jian; Zhu, Jian-Yu; Huang, Po

    2013-10-01

    Based on the time-dependent coincidence method, a preliminary experiment has been performed on uranium metal castings with similar quality (about 8-10 kg) and shape (hemispherical shell) in different enrichments using neutron from Cf fast fission chamber and timing DT accelerator. Groups of related parameters can be obtained by analyzing the features of time-dependent coincidence counts between source-detector and two detectors to characterize the fission signal. These parameters have high sensitivity to the enrichment, the sensitivity coefficient (defined as (ΔR/Δm)/R¯) can reach 19.3% per kg of 235U. We can distinguish uranium castings with different enrichments to hold nuclear weapon verification.

  19. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meetingmore » have been cataloged separately.« less

  20. FMDP reactor alternative summary report. Volume 1 - existing LWR alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, S.R.; Bevard, B.B.

    1996-10-07

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] are becoming surplus to national defense needs in both the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. This document summarizes the results of analysis concerned with existing light water reactor plutonium disposition alternatives.

  1. Nuclear pursuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  2. Policy and Technical Issues Facing a Fissile Material (Cutoff) Treaty

    DOE PAGES

    von Hippel, Frank; Mian, Zia

    2015-05-18

    We report the largest obstacle to creating nuclear weapons, starting with the ones that destroyed Hiroshima and Nagasaki, has been to make sufficient quantities of fissile materials – highly enriched uranium (HEU) and plutonium – to sustain an explosive fission chain reaction.1 Recognition of this fact has, for more than fifty years, underpinned both the support for and the opposition to adoption of an international treaty banning at a minimum the production of more fissile materials for nuclear weapons, commonly referred to as a fissile material cutoff treaty (FMCT).

  3. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies requiredmore » to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.« less

  4. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings, roads, and so on) during the Site closure efforts resulted in major changes to surface and shallow groundwater flow. Consistent with previous documentation of uranium operations and contamination, only very small amounts of highly enriched uranium are found in a small number of water samples, generally from the former Solar Ponds complex and central Industrial Area. Depleted uranium is more widely distributed at the site, and water samples exhibit the full range of depleted plus natural uranium mixtures. However, one third of the samples are found to contain only natural uranium, and three quarters of the samples are found to contain more than 90% natural uranium - substantial fractions given that the focus of these analyses was on evaluating potentially contaminated waters. Following site closure, uranium concentrations have increased at some locations, particularly for surface water samples. Overall, isotopic ratios at individual locations have been relatively consistent, indicating that the increases in concentrations are due to decreases in dilution flow following removal of impermeable surfaces and buildings.

  5. A simple model for the critical mass of a nuclear weapon

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2018-07-01

    A probability-based model for estimating the critical mass of a fissile isotope is developed. The model requires introducing some concepts from nuclear physics and incorporating some approximations, but gives results correct to about a factor of two for uranium-235 and plutonium-239.

  6. Grading Practices--Watching Out for Land Mines.

    ERIC Educational Resources Information Center

    Nottingham, Marv

    1988-01-01

    The A to F grading pattern is a highly subjective practice that demands great expertise and assumes a high degree of test validity. This article discusses the merits of extra credit assignments, homework, and "pop" quizzes; outlines defensible grading procedures; and discusses common grading problems, such as using grades as weapons. (MLH)

  7. Vanadium-uranium extraction from Wyoming vanadiferoud silicates. Report of investigations/1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, M.; Nichols, I.L.; Huiatt, J.L.

    1983-11-01

    The Bureau of Mines conducted laboratory studies on low-grade vanadiferous silicates from the Pumpkin Buttes and Nine Mile Lake deposits of Wyoming to examine techniques for extracting vanadium and uranium. Recovery from low-grade sources such as these could contribute to future vanadium production and reduce reliance on vanadium imports.

  8. Are Zeros Your Ultimate Weapon?

    ERIC Educational Resources Information Center

    Guskey, Thomas R.

    2004-01-01

    Grading is one of a teacher's greatest challenges and most important professional responsibilities. However, few teachers have any formal training in grading methods, and most teachers have limited knowledge about the effectiveness of various grading practices. As a consequence, when teachers develop their grading policies, they typically reflect…

  9. [Uranium exposure and cancer risk: a review of epidemiological studies].

    PubMed

    Tirmarche, M; Baysson, H; Telle-Lamberton, M

    2004-02-01

    At the end of 2000, certain diseases including leukemia were reported among soldiers who participated in the Balkan and in the Gulf wars. Depleted uranium used during these conflicts was considered as a possible cause. Its radiotoxicity is close to that of natural uranium. This paper reviews the epidemiological knowledge of uranium, the means of exposure and the associated risk of cancer. The only available epidemiological data concerns nuclear workers exposed to uranium. A review of the international literature is proposed by distinguishing between uranium miners and other workers of the nuclear industry. French studies are described in details. In ionizing radiation epidemiology, contamination by uranium is often cited as a risk factor, but the dose-effect relationship is rarely studied. Retrospective assessment of individual exposure is generally insufficient. Moreover, it is difficult to distinguish between uranium radiotoxicity, its chemical toxicity and the radiotoxicity of its progeny. A causal relation between lung cancer and radon exposure, a gas derived from the decay of uranium, has been demonstrated in epidemiological studies of miners. Among other nuclear workers exposed to uranium, there is a mortality deficit from all causes (healthy worker effect). No cancer site appears systematically in excess compared to the national population; very few studies describe a dose-response relationship. Only studies with a precise reconstruction of doses and sufficient numbers of workers will allow a better assessment of risks associated with uranium exposure at levels encountered in industry or during conflicts using depleted uranium weapons.

  10. Weapon Carrying Among Victims of Bullying.

    PubMed

    Pham, Tammy B; Schapiro, Lana E; John, Majnu; Adesman, Andrew

    2017-12-01

    To examine, in a large, nationally representative sample of high school students, the association between bullying victimization and carrying weapons to school and to determine to what extent past experience of 1, 2, or 3 additional indicators of peer aggression increases the likelihood of weapon carrying by victims of bullying (VoBs). National data from the 2015 Youth Risk Behavior Survey were analyzed for grades 9 to 12 ( N = 15 624). VoB groups were determined by self-report of being bullied at school and additional adverse experiences: fighting at school, being threatened or injured at school, and skipping school out of fear for one's safety. Weapon carrying was measured by a dichotomized (ie, ≥1 vs 0) report of carrying a gun, knife, or club on school property. VoB groups were compared with nonvictims with respect to weapon carrying by logistic regression adjusting for sex, grade, and race/ethnicity. When surveyed, 20.2% of students reported being a VoB in the past year, and 4.1% reported carrying a weapon to school in the past month. VoBs experiencing 1, 2, or 3 additional risk factors were successively more likely to carry weapons to school. The subset of VoBs who experienced all 3 additional adverse experiences were more likely to carry weapons to school compared with nonvictims (46.4% vs 2.5%, P < .001). Pediatricians should recognize that VoBs, especially those who have experienced 1 or more indicators of peer aggression in conjunction, are at substantially increased risk of weapon carrying. Copyright © 2017 by the American Academy of Pediatrics.

  11. Distribution of uranium in the Bisbee district, Cochise County, Arizona

    USGS Publications Warehouse

    Wallace, Stewart R.

    1956-01-01

    The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.

  12. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    DTIC Science & Technology

    2016-06-01

    of these three pillars, yet current detectors for fast neutrons from nuclear weapons materials are bulky, expensive, and have low efficiencies, well...passive fast neutron emissions. Similarly, isotopes present in weapons grade Plutonium (which is predominantly Pu-239), especially Pu-240, are... weapons material, and the propensity of the neutrons resulting from their fission to inelastically scatter, defines the interactions of interest

  13. Atoms for peace and the nonproliferation treaty: unintended consequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streeper, Charles Blamires

    2009-01-01

    In April 2009, President Obama revived nonproliferation and arms control efforts with a speech calling for the worldwide abolition of nuclear weapons. His speech correctly acknowledged the threat of nuclear terrorism and the vulnerabilities of the related unsecure nuclear materials. Unfortunately, the president did not mention and has not mentioned in any speech the threat posed by at-risk radiological materials. Nonproliferation efforts have a well documented history of focus on special nuclear materials (fissionable weapons usable materials or SNM), and other key materials (chemical and biological) and technologies for a Weapon of Mass Destruction (WMD). Such intense focus on WMDmore » related materials/technologies is essential for international safety and security and merit continued attention and funding. However, the perception that radioactive sealed sources (sources) are of less concern than WMD is unfortunate. These perceptions are based solely on the potentially enormous and tragic consequences associated with their deliberate or accidental misuse and proliferation concerns. However, there is a documented history of overemphasis on the nuclear threat at the expense of ignoring the far more likely and also devastating chemical and biological threats. The radiological threat should not be minimized or excluded from policy discussions and decisions on these far ranging scopes of threat to the international community. Sources have a long history of use; and a wider distribution worldwide than fissile materials. Pair this with their broad ranges in isotopes/activities along with scant national and international attention and mechanisms for their safe and secure management and it is not difficult to envision a deadly threat. Arguments that minimize or divert attention away from sources may have the effect of distracting necessary policy attention on preventing/mitigating a radiological dispersal event. The terrorist attacks on 9/11 should be a clear reminder of the inherent danger of diminishing or dismissing lower-level threats in exchange for enhanced focus on high priority special nuclear materials with the basis for this emphasis being solely on the magnitude of the consequences of a single event. Mitigating all possible or likely terrorist attacks is impossible; however, weaponized sources, in the form of a radiological dispersal device, have been a declared target material of Al-Qaida. Eisenhower's Atoms for Peace initiative promoted the spread of the paradoxical beneficial yet destructive properties of the atom. Typically, the focus of nonproliferation efforts focuses on the fissile materials associated with Weapons of Mass Destruction, with less emphasis on radioactive materials that could be used for a Weapon of Mass Disruption. Most nonproliferation policy discussion involves securing or preventing the diversion of weapons grade fissile materials (uranium (U) with concentration of over 90% of the isotope {sup 235}U (HEU) and plutonium with more than 90% of the isotope {sup 239}Pu), with scant attention given to the threat posed by a prolific quantity of sources spread worldwide. Further acerbating the problem of inattention, it appears that the momentum of the continued evolution in the beneficial applications of sources will only increase in the near future. Several expert studies have demonstrated on the potentially devastating economic, psychological and public health impacts of terrorist use of a radiological dispersal or radiation emitting device (ROD/RED) in a metropolis. The development of such a weapon, from the acquisition of the radioactive material to the technical knowledge needed to fashion it into an ROD, is many orders of magnitude easier than diverting enough fissile material for and fabrication/acquisition of a nuclear weapon. Unlike nuclear weapons, worldwide, there are many well documented accounts of accidental and purposeful diversions of radioactive materials from regulatory control. As of the end of 2008, the International Atomic Energy Agency's (IAEA) Illicit Trafficking Database had logged 1562 incidents, of which only 18 include weapons grade nuclear materials. As much as 66% of the radioactive material involved in these incidents was not recovered. Since 2004, there has been a 75% increase in incidents of unrecoverable material, much of which is labeled dangerous with potential for deterministic health affects if misused. This makes clear that a black market of illicit trade in sources exists. The incidents reported to the IAEA's database rely only on voluntary state reporting; therefore, the number of lost or stolen sources is expected to be much higher.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alicia L.

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navymore » while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.« less

  15. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    NASA Astrophysics Data System (ADS)

    Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike

    2017-10-01

    An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, J. S.; Goldstein, S. J.; Paviet, P.

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  17. OPTIMIZATION OF HETEROGENEOUS UTILIZATION OF THORIUM IN PWRS TO ENHANCE PROLIFERATION RESISTANCE AND REDUCE WASTE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TODOSOW,M.; KAZIMI,M.

    2004-08-01

    Issues affecting the implementation, public perception and acceptance of nuclear power include: proliferation, radioactive waste, safety, and economics. The thorium cycle directly addresses the proliferation and waste issues, but optimization studies of core design and fuel management are needed to ensure that it fits within acceptable safety and economic margins. Typical pressurized water reactors, although loaded with uranium fuel, produce 225 to 275 kg of plutonium per gigawatt-year of operation. Although the spent fuel is highly radioactive, it nevertheless offers a potential proliferation pathway because the plutonium is relatively easy to separate, amounts to many critical masses, and does notmore » present any significant intrinsic barrier to weapon assembly. Uranium 233, on the other hand, produced by the irradiation of thorium, although it too can be used in weapons, may be ''denatured'' by the addition of natural, depleted or low enriched uranium. Furthermore, it appears that the chemical behavior of thoria or thoria-urania fuel makes it a more stable medium for the geological disposal of the spent fuel. It is therefore particularly well suited for a once-through fuel cycle. The use of thorium as a fertile material in nuclear fuel has been of interest since the dawn of nuclear power technology due to its abundance and to potential neutronic advantages. Early projects include homogeneous mixtures of thorium and uranium oxides in the BORAX-IV, Indian Point I, and Elk River reactors, as well as heterogeneous mixtures in the Shippingport seed-blanket reactor. However these projects were developed under considerably different circumstances than those which prevail at present. The earlier applications preceded the current proscription, for non-proliferation purposes, of the use of uranium enriched to more than 20 w/o in {sup 235}U, and has in practice generally prohibited the use of uranium highly enriched in {sup 235}U. They were designed when the expected burnup of light water fuel was on the order of 25 MWD/kgU--about half the present day value--and when it was expected that the spent fuel would be recycled to recover its fissile content.« less

  18. A record of uranium-series transport at Nopal I, Sierra Pena Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories

    DOE PAGES

    Denton, J. S.; Goldstein, S. J.; Paviet, P.; ...

    2016-04-10

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  19. 10 CFR 75.4 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... uranium or enriching uranium in the isotope 235, zirconium tubes, heavy water or deuterium, nuclear-grade..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...

  20. Detection of uranium using laser-induced breakdown spectroscopy.

    PubMed

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.

  1. Stabilization and immobilization of military plutonium: A non-proliferation perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventhal, P.

    1996-05-01

    The Nuclear Control Institute welcomes this DOE-sponsored technical workshop on stabilization and immobilization of weapons plutonium (W Pu) because of the significant contribution it can make toward the ultimate non-proliferation objective of eliminating weapons-usable nuclear material, plutonium and highly enriched uranium (HEU), from world commerce. The risk of theft or diversion of these materials warrants concern, as only a few kilograms in the hands of terrorists or threshold states would give them the capability to build nuclear weapons. Military plutonium disposition questions cannot be addressed in isolation from civilian plutonium issues. The National Academy of Sciences has urged that {open_quotes}furthermore » steps should be taken to reduce the proliferation risks posed by all of the world`s plutonium stocks, military and civilian, separated and unseparated...{close_quotes}. This report discusses vitrification and a mixed oxide fuels option, and the effects of disposition choices on civilian plutonium fuel cycles.« less

  2. Uraniferous opal, Virgin Valley, Nevada: conditions of formation and implications for uranium exploration

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.

  3. Plutonium Bioassay Testing of U.S. Atmospheric Nuclear Test Participants and U.S. Occupation Forces of Hiroshima and Nagasaki, Japan

    DTIC Science & Technology

    2015-10-30

    with nuclear weapons testing or plutonium work. The results for the 100 atomic veterans were compared to those of the unexposed population, and...as a marker for significant internal intakes of other associated radionuclides in nuclear weapons debris due to its low natural background. However...isotope in weapons grade plutonium, is important from a health perspective, its presence within a given urine sample being analyzed by FTA can only

  4. Depleted and natural uranium: chemistry and toxicological effects.

    PubMed

    Craft, Elena; Abu-Qare, Aquel; Flaherty, Meghan; Garofolo, Melissa; Rincavage, Heather; Abou-Donia, Mohamed

    2004-01-01

    Depleted uranium (DU) is a by-product from the chemical enrichment of naturally occurring uranium. Natural uranium is comprised of three radioactive isotopes: (238)U, (235)U, and (234)U. This enrichment process reduces the radioactivity of DU to roughly 30% of that of natural uranium. Nonmilitary uses of DU include counterweights in airplanes, shields against radiation in medical radiotherapy units and transport of radioactive isotopes. DU has also been used during wartime in heavy tank armor, armor-piercing bullets, and missiles, due to its desirable chemical properties coupled with its decreased radioactivity. DU weapons are used unreservedly by the armed forces. Chemically and toxicologically, DU behaves similarly to natural uranium metal. Although the effects of DU on human health are not easily discerned, they may be produced by both its chemical and radiological properties. DU can be toxic to many bodily systems, as presented in this review. Most importantly, normal functioning of the kidney, brain, liver, and heart can be affected by DU exposure. Numerous other systems can also be affected by DU exposure, and these are also reviewed. Despite the prevalence of DU usage in many applications, limited data exist regarding the toxicological consequences on human health. This review focuses on the chemistry, pharmacokinetics, and toxicological effects of depleted and natural uranium on several systems in the mammalian body. A section on risk assessment concludes the review.

  5. Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph

    2016-10-01

    Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. TA-03-0035 Press Building – D&D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasenack, Marvin Leroy

    The Press Building was constructed in 1954 with 15,073 ft 2 of floor space. It was built to house a 5000 ton double action Lake Erie hydraulic press and a uranium casting area. Missions included uranium activities associated with the Nuclear Weapons and Rover Rocket programs. At the end of the Rover program, the building continued to support various uranium materials science projects until the building was placed into a cold and dark status in 2013 and then was demolished in 2017. The building interior, the press, and associated systems were radiological contaminated and disposed of as low level waste.more » The demolition of this building opened up valuable real estate in the TA-3 area for the future construction of an ~11,000 Sq. Ft. Biosafety Level 2 laboratory and office building. This building will support the ongoing Bioscience Division mission at the laboratory.« less

  7. Using Principal Component Analysis to Improve Fallout Characterization

    DTIC Science & Technology

    2017-03-23

    between actinide location and elemental composition in fallout from historic atmospheric nuclear weapons testing. Fifty spherical fallout samples were...mathematical approach to solving the complex system of elemental variables while establishing correlations to actinide incorporation within the fallout...1. The double hump curve for uranium-235 showing the effective fission yield by mass number for thermal neutrons. Reproduced with permission from

  8. 9. VIEW OF MILLING AND LATHE MACHINES, MILLING AND LATHE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF MILLING AND LATHE MACHINES, MILLING AND LATHE MACHINES WERE USED TO FORM COMPONENTS INTO THEIR FINAL SHAPE. IN THE FOUNDRY, ENRICHED URANIUM WAS CAST INTO SPHERICAL SHAPES OR INGOT FROM WHICH WEAPONS COMPONENTS WERE FABRICATED. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  9. Keeping Nuclear Materials Secure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    For 50 years, Los Alamos National Laboratory has been helping to keep nuclear materials secure. We do this by developing instruments and training inspectors that are deployed to other countries to make sure materials such as uranium are being used for peaceful purposes and not diverted for use in weapons. These measures are called “nuclear safeguards,” and they help make the world a safer place.

  10. The Permo-Triassic uranium deposits of Gondwanaland

    NASA Astrophysics Data System (ADS)

    le Roux, J. P.; Toens, P. D.

    The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.

  11. Applications of Elpasolites as a Multimode Radiation Sensor

    NASA Astrophysics Data System (ADS)

    Guckes, Amber

    This study consists of both computational and experimental investigations. The computational results enabled detector design selections and confirmed experimental results. The experimental results determined that the CLYC scintillation detector can be applied as a functional and field-deployable multimode radiation sensor. The computational study utilized MCNP6 code to investigate the response of CLYC to various incident radiations and to determine the feasibility of its application as a handheld multimode sensor and as a single-scintillator collimated directional detection system. These simulations include: • Characterization of the response of the CLYC scintillator to gamma-rays and neutrons; • Study of the isotopic enrichment of 7Li versus 6Li in the CLYC for optimal detection of both thermal neutrons and fast neutrons; • Analysis of collimator designs to determine the optimal collimator for the single CLYC sensor directional detection system to assay gamma rays and neutrons; Simulations of a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system with the optimized collimator to determine the feasibility of detecting nuclear materials that could be encountered during field operations. These nuclear materials include depleted uranium, natural uranium, low-enriched uranium, highly-enriched uranium, reactor-grade plutonium, and weapons-grade plutonium. The experimental study includes the design, construction, and testing of both a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system. Both were designed in the Inventor CAD software and based on results of the computational study to optimize its performance. The handheld CLYC multimode sensor is modular, scalable, low?power, and optimized for high count rates. Commercial?off?the?shelf components were used where possible in order to optimize size, increase robustness, and minimize cost. The handheld CLYC multimode sensor was successfully tested to confirm its ability for gamma-ray and neutron detection, and gamma?ray and neutron spectroscopy. The sensor utilizes wireless data transfer for possible radiation mapping and network?centric deployment. The handheld multimode sensor was tested by performing laboratory measurements with various gamma-ray sources and neutron sources. The single CLYC scintillator collimated directional detection system is portable, robust, and capable of source localization and identification. The collimator was designed based on the results of the computational study and is constructed with high density polyethylene (HDPE) and lead (Pb). The collimator design and construction allows for the directional detection of gamma rays and fast neutrons utilizing only one scintillator which is interchangeable. For this study, a CLYC-7 scintillator was used. The collimated directional detection system was tested by performing laboratory directional measurements with various gamma-ray sources, 252Cf and a 239PuBe source.

  12. Chemical treatment of low-grade uranium ores. Extraction of uranium from tricalcium phosphate; TRAITEMENT CHIMIQUE DES MINERAIS PAUVRES D'URANIUM. EXTRACTION DE L'URANIUM DU PHOSPHATE TRICALCIQUE (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mechelynck, Ph.

    1958-07-15

    After an examination of the different processes for the treatment of uranium minerals, it is concluded that the extraction of uranium by ion exchange is not applicable to hydrochloric acid solutions of phosphates. A sulfuric or phosphoric solution can be used. For solvent extraction of uranium, sulfuric or phosphoric solutions are the best, but hydrochloric solutions can be used. The cost of the solvents used would determine the cost of the operation. It is necessary, in the case of liquid-liquid extraction, to filter or decant the solution before extraction. (tr-auth)

  13. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid.

    PubMed

    Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal

    2016-08-05

    This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield

    DTIC Science & Technology

    2017-10-01

    ARL-RP-0618 ● OCT 2017 US Army Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the...Research Laboratory Towards Production of Additive Manufacturing Grade Metallic Powders on the Battlefield by Marc Pepi Weapons and...REPORT TYPE Reprint 3. DATES COVERED (From - To) June 2016–June 2017 4. TITLE AND SUBTITLE Towards Production of Additive Manufacturing Grade

  15. Weapon Carrying in Israeli Schools: The Contribution of Individual and School Factors

    ERIC Educational Resources Information Center

    Khoury-Kassabri, Mona; Astor, Ron Avi; Benbenishty, Rami

    2007-01-01

    The present study employed an ecological perspective to examine the relative predictive power of individual and school contextual factors on weapon carrying at school. The study is based on a nationally representative sample of 10,400 students in Grades 7 through 11 in 162 schools across Israel. Hierarchical logistic modeling examined the…

  16. Gender Differences in the Relative Impact of Physical and Relational Bullying on Adolescent Injury and Weapon Carrying

    ERIC Educational Resources Information Center

    Dukes, Richard L.; Stein, Judith A.; Zane, Jazmin I.

    2010-01-01

    Using structural equation modeling, concurrent associations were assessed among physical bullying, relational bullying, physical victimization, relational victimization, injury and weapon carrying using data from the population of 1300 adolescent girls and 1362 adolescent boys in grades 7-12 in a Colorado school district. For both genders, being a…

  17. Selected Indicators of Adolescent Violence & Safety at School.

    ERIC Educational Resources Information Center

    Mikow, Victoria A.

    Fights, weapons, and stolen or intentionally damaged property are common concerns of most schools in North Carolina. The results of this survey indicate that 27 percent of all 9th-12th grade students reported carrying a weapon (gun, knife, club) within the month prior to this survey. A significant percentage of students do not feel safe at school…

  18. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.

    PubMed

    Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A

    2014-08-01

    Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    PubMed

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  20. An Iranium bomb?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, D.

    1995-07-01

    This year, the nuclear proliferation spotlight has swung away from Iraq and North Korea, only to focus on Iran. Western intelligence agencies have assembled a substantial body of evidence suggesting that, although Iran signed the Nuclear Non-Proliferation Treaty (NPT), it is secretly pursuing a broad, organized effort to develop nuclear weapons. US officials say that Iran is attempting to acquire nuclear technologies that are not consistent with a strictly peaceful program. Intelligence agencies have detected procurement patterns that point to a weapons program. Iran has a multifaceted strategy to develop options to make nuclear weapons: Iran has sought, with limitedmore » success, to buy nuclear power and research facilities from many countries, particularly China and Russia; Iran has shopped quietly in many countries, particularly in Western and Eastern Europe, for a wide range of nuclear-related or dual-use nuclear items that might enable it to put together facilities to enrich uranium, separate plutonium, and make nuclear weapons. There is little public information about how effective this clandestine shopping has been or which countries have been contacted; There is no evidence that Iran has bought any fissile material - but not for wont of trying, and the matter continues to be scrutinized very closely.« less

  1. Nuclear Energy Policy

    DTIC Science & Technology

    2008-01-28

    2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage casks and then convey title to the Secretary of Energy...far more economical options for reducing fossil fuel use .15 (For more on federal incentives and the economics of nuclear power, see CRS Report RL33442...uranium enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons

  2. Study of the Dry Processing of Uranium Ores; ETUDE DES TRAITEMENTS DE MINERAIS D'URANIUM PAR VOIE SECHE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillet, H.

    1959-02-01

    A description is given of direct fluorination of preconcentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by lime to obtain either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial productmore » in a diffusion plant. (auth)« less

  3. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  4. Carrying a Weapon to School: The Influence of Youth Assets at Home and School

    ERIC Educational Resources Information Center

    Marsh, Shawn C.; Evans, William P.

    2007-01-01

    Eighth and tenth grade students (n= 1,619) reported on exposure to risk and protective assets in their day-to-day lives. The relationship between carrying a weapon to school and risk and protective factors in the home and school ecological domains was explored through logistic regression conducted separately by gender. Environmental control in the…

  5. Status and progress of the RERTR program in the year 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travelli, A.; Nuclear Engineering Division

    2003-01-01

    One of the most important events affecting the RERTR program during the past year was the decision by the U.S. Department of Energy to request the U.S. Congress to significantly increase RERTR program funding. This decision was prompted, at least in part, by the terrible events of September 11, 2001, and by a high-level U.S./Russian Joint Expert Group recommendation to immediately accelerate RERTR program activities in both countries, with the goal of converting all the world's research reactors to low-enriched fuel at the earliest possible time, and including both Soviet-designed and United States-designed research reactors. The U.S. Congress is expectedmore » to approve this request very soon, and the RERTR program has prepared itself well for the intense activities that the 'Accelerated RERTR Program' will require. Promising results have been obtained in the development of a fabrication process for monolithic LEU U-Mo fuel. Most existing and future research reactors could be converted to LEU with this fuel, which has a uranium density between 15.4 and 16.4 g/cm{sup 3} and yielded promising irradiation results in 2002. The most promising method hinges on producing the monolithic meat by cold-rolling a thin ingot produced by casting. The aluminum clad and the meat are bonded by friction stir welding and the cladding surface is finished by a light cold roll. This method can be applied to the production of miniplates and appears to be extendable to the production of full-size plates, possibly with intermediate anneals. Other methods planned for investigation include high temperature bonding and hot isostatic pressing. The progress achieved within the Russian RERTR program, both for the traditional tube-type elements and for the new 'universal' LEU U-Mo pin-type elements, promises to enable soon the conversion of many Russian-designed research and test reactors. Irradiation testing of both fuel types with LEU U-Mo dispersion fuels has begun. Detailed studies are in progress to define the feasibility of converting each Russian-designed research and test reactor to either fuel type. The plan for the Accelerated RERTR Program is structured to achieve LEU conversion of all HEU research reactors supplied by the United States and Russia during the next nine years. This effort will address, in addition to the fuel development and qualification, the analyses and performance/economic/safety evaluations needed to implement the conversions. In combination with this over-arching goal, the RERTR program plans to achieve at the earliest possible date qualification of LEU U-Mo dispersion fuels with uranium densities of 6 g/cm{sup 3} and 7 g/cm{sup 3}. Reactors currently using or planning to use LEU silicide fuel will rely on this fuel after termination of the FRRSNFA program, because it is acceptable to COGEMA for reprocessing. Qualification of LEU U-Mo dispersion fuels has suffered some unavoidable delays but, to accelerate it as much as possible, the RERTR program, the French CEA, and the Australian ANSTO have agreed to jointly pursue a two-element qualification test of LEU U-Mo dispersion fuel with uranium density of 7.0 g/cm{sup 3} to be performed in the Osiris reactor during 2004. The RERTR program also intends to eliminate all obstacles to the utilization of LEU in targets for isotope production, so that this important function can be performed without the need for weapons-grade materials. All of us, working together as we have for many years, can ensure that all these goals will be achieved. By promoting the efficiency and safety of research reactors while eliminating the traffic in weapons-grade uranium, we can prevent the possibility that some of this material might fall in the wrong hands. Few causes can be more deserving of our joint efforts.« less

  6. Preliminary study of favorability for uranium resources in Juab County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leedom, S.H.; Mitchell, T.P.

    1978-02-01

    The best potential for large, low-grade uranium deposits in Juab County is in the hydrothermally altered vitric tuffs of Pliocene age. The lateral extent of the altered tuffs may be determined by subsurface studies around the perimeter of the volcanic centers in the Thomas Range and the Honeycomb Hills. Because the ring-fracture zone associated with collapse of the Thomas caldera was a major control for hydrothermal uranium deposits, delineation of the northern and eastern positions of the ring-fracture zone is critical in defining favorable areas for uranium deposits. A small, medium-grade ore deposit in tuffaceous sand of Pliocene age atmore » the Yellow Chief mine in Dugway Dell is unique in origin, and the probability of discovering another deposit of this type is low. A deposit of this type may be present under alluvial cover in the northwestern Drum Mountains along the southern extension of the ring-fracture zone of the Thomas caldera. Festoonlike iron oxide structures and uranium deposition within permeable sandstone horizons indicate that the Yellow Chief deposit was formed by recent ground-water circulation. Granitic intrusive rocks in the Deep Creek Range and in Desert Mountain contain isolated epigenetic vein-type deposits. These rocks could be a source of arkosic sediments buried in adjacent valleys. The Pleistocene lacustrine sediments and playa lake brines may contain concentrations of uranium leached from uranium-rich rocks.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Michael M.

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a numbermore » of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.« less

  8. Uranium: Prices, rise, then fall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, T.C.

    Uranium prices hit eight-year highs in both market tiers,more » $$16.60/lb U{sub 3}O{sub 8} for non-former Soviet Union (FSU) origin and $$15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its {open_quotes}three-mine{close_quotes} policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada`s low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill.« less

  9. Microbial transformations of uranium in wastes and implication on its mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki,Y.; Nankawa, T.; Ozaki, T.

    2008-09-14

    Uranium exists in several chemical forms in mining and mill tailings and in nuclear and weapons production wastes. Under appropriate conditions, microorganisms can affect the stability and mobility of U in wastes by altering the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of U in solution and the bioavailability. Dissolution or immobilization of U is brought about by direct enzymatic action or indirect nonenzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of U have been extensively investigated, we have only limited information on the mechanismsmore » of microbial transformations of various chemical forms of U in the presence of electron donors and acceptors.« less

  10. SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

  11. 10 CFR 75.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to IAEA Safeguards) means the collection of environmental samples (e.g., air, water, vegetation, soil... uranium or enriching uranium in the isotope 235, zirconium tubes, heavy water or deuterium, nuclear-grade...); (3) A fuel fabrication plant; (4) An enrichment plant or isotope separation plant for the separation...

  12. Results of exploration at the Old Leyden coal mine, Jefferson County, Colorado

    USGS Publications Warehouse

    Gude, A.J.; McKeown, F.A.

    1953-01-01

    Six diamond core holes totaling 2, 201 feet were drilled by the. U, S. Bureau of Mines under contract to the U. S. Atomic Energy Commission at the Old Leyden coal mine, Jefferson County, Colo. The holes were spotted on the basis of geologic mapping by the U. S. Geological survey and were drilled to explore the lateral and downward extent of a uranium-bearing coal and the associated carnotite deposits in the adjacent sandstone° The data obtained from the diamond-core holes helped to explain the geology and structural control of the deposit. The uranium is most abundant in a coal bed that in places has been brecciated by shearing. and then altered to a hard, dense, and silicified rock. The uraniferous coal is in the nearly vertical beds of the Laramie formation of Upper Cretaceous age. Small lenticular bodies of uraniferous material, 50 feet long, 25 to 30 feet wide, and 2 to 4 feet thick, occur at intervals in the coal and silicified coal over a strike length of about 800 feet. These bodies contain 0.10 to 0.50 percent uranium. Data obtained from the drilling indicate a discontinuous radioactive zone between these higher-grade bodies; assays of samples from the cores range from 0.001 to 0.10 percent uranium. All drill holes were probed by Survey and A. E. C. logging equipment and showed anomalies where the core assayed more than 0.005 percent uranium. Material of ore grade--0.10 percent uranium--was found in one core; the rock in the other five holes was of lower grade. The presence of the radioactive zone in all holes suggests, however, that uranium is distributed irregularly in a southerly plunging deposit which is exposed in the adit, on the outcrop, and in other diamond-drill holes that were put down by the lessee.

  13. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  14. Physicochemical characterization of discrete weapons grade plutonium metal particles originating from the 1960 BOMARC incident

    NASA Astrophysics Data System (ADS)

    Bowen, James M.

    The goal of this research was to investigate the physicochemical properties of weapons grade plutonium particles originating from the 1960 BOMARC incident for the purpose of predicting their fate in the environment and to address radiation protection and nuclear security concerns. Methods were developed to locate and isolate the particles in order to characterize them. Physical, chemical, and radiological characterization was performed using a variety of techniques. And finally, the particles were subjected to a sequential extraction procedure, a series of increasingly aggressive reagents, to simulate an accelerated environmental exposure. A link between the morphology of the particles and their partitioning amongst environmental mechanisms was established.

  15. Characterization of U/Pu Particles Originating From the Nuclear Weapon Accidents at Palomares, Spain, 1966 And Thule, Greenland, 1968

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, O.C.; Salbu, B.; Janssens, K.

    2007-07-10

    Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low [239]Pu/[235]U (0.62-0.78) and [240]Pu/[239]Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-raymore » analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence ({micro}-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 {micro}m sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy ({micro}-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO[2] with the presence ofU[3][8]) and Pu ((III)/(IV), (V)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.« less

  16. THE FINAL DEMISE OF EAST TENNESSEE TECHNOLOGY PARK BUILDING K-33 Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-06-27

    Building K-33 was constructed in 1954 as the final section of the five-stage uranium enrichment cascade at the Oak Ridge Gaseous Diffusion Plant (ORGDP). The two original building (K-25 and K-27) were used to produce weapons grade highly enriched uranium (HEU). Building K-29, K-31, and K-33 were added to produce low enriched uranium (LEU) for nuclear power plant fuel. During ORGDP operations K-33 produced a peak enrichment of 2.5%. Thousands of tons of reactor tails fed into gaseous diffusion plants in the 1950s and early 1960s introducing some fission products and transuranics. Building K-33 was a two-story, 25-meters (82-feet) tallmore » structure with approximately 30 hectare (64 acres) of floor space. The Operations (first) Floor contained offices, change houses, feed vaporization rooms, and auxiliary equipment to support enrichment operations. The Cell (second) Floor contained the enrichment process equipment and was divided into eight process units (designated K-902-1 through K-902-8). Each unit contained ten cells, and each cell contained eight process stages (diffusers) for a total of 640 enrichment stages. 1985: LEU buildings were taken off-line after the anticipated demand for uranium enrichment failed to materialize. 1987: LEU buildings were placed in permanent shutdown. Process equipment were maintained in a shutdown state. 1997: DOE signed an Action Memorandum for equipment removal and decontamination of Buildings K-29, K-31, K-33; BNFL awarded contract to reindustrialize the buildings under the Three Buildings D&D and Recycle Project. 2002: Equipment removal complete and effort shifts to vacuuming, chemical cleaning, scabbling, etc. 2005: Decontamination efforts in K-33 cease. Building left with significant {sup 99}Tc contamination on metal structures and PCB contamination in concrete. Uranium, transuranics, and fission products also present on building shell. 2009: DOE targets Building K-33 for demolition. 2010: ORAU contracted to characterize Building K-33 for final disposition at the Environmental Management Waste Management Facility (EMWMF) in Oak Ridge. ORAU collected 439 samples from May and June. LATA Sharp started removing transite panels in September. 2011: LATA Sharp began demolition in January and expects the last waste shipment to EMWMF in September. Approximately 237,000 m{sup 3} (310,000 yd{sup 3}, bulked) of waste taken to EMWMF in 23,000 truckloads expected by project completion.« less

  17. Plutonium Decontamination of Uranium using CO2 Cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, M

    A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pitsmore » for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.« less

  18. Recent weapon carrying and substance use among United States Virgin Islands youth.

    PubMed

    Lloyd, J J; Delva, J; Arria, A M

    2000-08-01

    The objective of the present study was to estimate the strength of the associations between recent weapon carrying and alcohol, cigarette, and illicit drug use among US Virgin Islands (USVI) youth. Data from 1,124 students in Grades 7-12 were analyzed using the conditional form of multiple logistic regression. Compared with youth who did not carry a weapon. youth who carried a weapon were more likely to be male and recent cigarette, alcohol, and illicit drug users. After matching on school and controlling for age, sex, race, neigborhood characteristics, and affiliation with friends who use alcohol and illegal drugs, the associations with cigarette smoking and illicit drug use remained both moderate and statistically significant (odds ratio [OR] = 4.31, p < .001; OR = 2.99, p < .001, respectively). These findings identify a potentially high-risk population that could be targeted for interventions to reduce weapon carrying among youth.

  19. Effects of a youth substance use prevention program on stealing, fighting, and weapon use.

    PubMed

    Nieri, Tanya; Apkarian, Jacob; Kulis, Stephen; Marsiglia, Flavio Francisco

    2015-02-01

    Using a sample of sixth graders in 11 public schools in a large Southwestern city, this longitudinal study examined how a model substance use prevention program, keepin' it REAL, that was implemented in 7th grade, influenced three other problem behaviors (fighting, weapon use, stealing), measured in 8th grade. Using a non-equivalent control group design, we compared 259 students in the intervention to 322 students in a treatment-as-usual condition. At baseline, 37% of the sample reported fighting in the last 30 days; 31% reported stealing in the last 30 days, and 16% reported using a weapon in the last 30 days. Regression analyses adjusted for students nested in schools through multi-level modeling and for missing data through multiple imputation. We found that at posttest the rates of all three behaviors were lower in the intervention group than the control group at posttest: 35 versus 37% got into a fight in the last 30 days; 24 versus 31% stole something in the last 30 days; and 16 versus 25% used a weapon in the last 30 days. The program impact for fighting and stealing was not statistically significant and involved minimal effect sizes. The program impact for weapon use was not statistically significant but had an effect size comparable to that for other problem behavior interventions. Promoting positive development via life skills may be a key to broadening program impact.

  20. Effects of a youth substance use prevention program on stealing, fighting, and weapon use

    PubMed Central

    Nieri, Tanya; Apkarian, Jacob; Kulis, Stephen; Marsiglia, Flavio Francisco

    2014-01-01

    Using a sample of sixth graders in 11 public schools in a large Southwestern city, this longitudinal study examined how a model substance use prevention program, keepin’ it REAL, that was implemented in 7th grade, influenced three other problem behaviors (fighting, weapon use, stealing), measured in 8th grade. Using a non-equivalent control group design, we compared 259 students in the intervention to 322 students in a treatment-as-usual condition. At baseline, 37% of the sample reported fighting in the last 30 days; 31% reported stealing in the last 30 days, and 16% reported using a weapon in the last 30 days. Regression analyses adjusted for students nested in schools through multi-level modeling and for missing data through multiple imputation. We found that at posttest the rates of all three behaviors were lower in the intervention group than the control group at posttest: 35% versus 37% got into a fight in the last 30 days; 24% versus 31% stole something in the last 30 days; and 16% versus 25% used a weapon in the last 30 days. The program impact for fighting and stealing was not statistically significant and involved minimal effect sizes. The program impact for weapon use was not statistically significant but had an effect size comparable to that for other problem behavior interventions. Promoting positive development via life skills may be a key to broadening program impact. PMID:25352527

  1. Deposit model for volcanogenic uranium deposits

    USGS Publications Warehouse

    Breit, George N.; Hall, Susan M.

    2011-01-01

    The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.

  2. Routine inspection effort required for verification of a nuclear material production cutoff convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Fainberg, A.; Sanborn, J.

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less

  3. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.« less

  4. Nuclear programs in India and Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mian, Zia

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also formore » nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.« less

  5. Nuclear programs in India and Pakistan

    NASA Astrophysics Data System (ADS)

    Mian, Zia

    2014-05-01

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  6. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    PubMed Central

    Kyne, Dean; Bolin, Bob

    2016-01-01

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives. PMID:27420080

  7. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering. 2: Extension to additional facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.

    1996-12-31

    During 1995, collaborative Russian-US nuclear material protection, control, and accounting (MPC and A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has tens of thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment (Russian and US) and methods that enhanced the MPC and A at BFS through computerized accounting, nondestructive inventory verification measurements, personnelmore » identification and access control, physical inventory taking, physical protection, and video surveillance. The collaborative work with US Department of Energy national laboratories is now being extended. In 1996 additional tasks to improve MPC and A have been implemented at BFS, the Technological Laboratory for Fuel Fabrication (TLFF) the Central Storage Facility (CSF), and for the entire site. The TLFF reclads BFS uranium metal fuel disks (process operations and transfers of fissile material). The CSF contains many different types of nuclear material. MPC and A at these additional facilities will be integrated with that at BFS as a prototype site-wide approach. Additional site-wide tasks encompass communications and tamper-indicating devices. Finally, new storage alternatives are being implemented that will consolidate the more attractive nuclear materials in a better-protected nuclear island. The work this year represents not just the addition of new facilities and the site-wide approach, but the systematization of the MPC and A elements that are being implemented as a first step and the more comprehensive ones planned.« less

  8. A preliminary report on the rapid fluorimetric determination of uranium in low-grade ores

    USGS Publications Warehouse

    Grimaldi, F.S.; Levine, Harry

    1950-01-01

    A simple and very rapid fluorimetric procedure is described for the determination of uranium in low-grade shale and phosphate ores. The best working range is from 0.001 to about 0.04 percent U. The procedure employs batch extraction of uranium nitrate by ethyl acetate, using aluminum nitrate as the salting agent, prior to the visual fluorimetric estimation. The procedure is especially designed to save reagents; only 9.5 g of aluminum nitrate and 10 ml of ethyl acetate being used for one analysis. The solution of the sample by means of a fusion with NaOH-NaNO3 flux is rapid. After fusion the sample is immediately extracted without removing silica and other hydrolytic precipitates. Aluminum nitrate very effectively ties up fluoride and phosphate, thus eliminating steps required for their removal.

  9. Crystal Growth and Characterization of THO2 and UxTh1-xO2

    DTIC Science & Technology

    2013-03-01

    bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2

  10. Are We Doing Enough to Prevent a Nuclear Terrorist Attack?

    DTIC Science & Technology

    2013-03-01

    grams of Cesium-137 which they suspected was smuggled to Turkey from Russia through Georgia.18 Of more interest are the reported cases of smuggling...required to assemble a nuclear weapon.19 However, this does not necessarily tell the entire story . For instance, according to a Czech police 11...investigation of a 1994 seizure in Prague of 2.7 kilograms of Russian -origin highly enriched uranium (HEU),20 smugglers claimed they could deliver

  11. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. Several topical reports are being prepared on the materials and processes required for the LIFE engine. Specific materials of interest include: (1) Baseline TRISO Fuel (TRISO); (2) Inert Matrix Fuel (IMF) & Other Alternative Solid Fuels; (3) Beryllium (Be) & Molten Lead Blankets (Pb/PbLi); (4) Molten Salt Coolants (FLIBE/FLiNaBe/FLiNaK); (5) Molten Salt Fuels (UF4 + FLIBE/FLiNaBe); (6) Cladding Materials for Fuel & Beryllium; (7) ODS FM Steel (ODS); (8) Solid First Wall (SFW); and (9) Solid-State Tritium Storage (Hydrides).« less

  12. Far Field Modeling Methods For Characterizing Surface Detonations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, A.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed particle samples collected during experiments that were designed to replicate tests of nuclear weapons components that involve detonation of high explosives (HE). SRNL collected the particle samples in the HE debris cloud using innovative rocket propelled samplers. SRNL used scanning electronic microscopy to determine the elemental constituents of the particles and their size distributions. Depleted uranium composed about 7% of the particle contents. SRNL used the particle size distributions and elemental composition to perform transport calculations that indicate in many terrains and atmospheric conditions the uranium bearing particles will be transported long distances downwind.more » This research established that HE tests specific to nuclear proliferation should be detectable at long downwind distances by sampling airborne particles created by the test detonations.« less

  13. Preliminary study of uranium favorability of the Boulder batholith, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castor, S.B.; Robins, J.W.

    1978-01-01

    The Boulder batholith of southwestern Montana is a composite Late Cretaceous intrusive mass, mostly composed of quartz monzonite and granodiorite. This study was not restricted to the plutonic rocks; it also includes younger rocks that overlie the batholith, and older rocks that it intrudes. The Boulder batholith area has good overall potential for economic uranium deposits, because its geology is similar to that of areas that contain economic deposits elsewhere in the world, and because at least 35 uranium occurrences of several different types are present. Potential is greatest for the occurrence of small uranium deposits in chalcedony veins andmore » base-metal sulfide veins. Three areas may be favorable for large, low-grade deposits consisting of a number of closely spaced chalcedony veins and enriched wall rock; the Mooney claims, the Boulder area, and the Clancy area. In addition, there is a good possibility of by-product uranium production from phosphatic black shales in the project area. The potential for uranium deposits in breccia masses that cut prebatholith rocks, in manganese-quartz veins near Butte, and in a shear zone that cuts Tertiary rhyolite near Helena cannot be determined on the basis of available information. Low-grade, disseminated, primary uranium concentrations similar to porphyry deposits proposed by Armstrong (1974) may exist in the Boulder batholith, but the primary uranium content of most batholith rocks is low. The geologic environment adjacent to the Boulder batholith is similar in places to that at the Midnite mine in Washington. Some igneous rocks in the project area contain more than 10 ppM U/sub 3/O/sub 8/, and some metasedimentary rocks near the batholith contain reductants such as sulfides and carbonaceous material.« less

  14. Radon emanation from low-grade uranium ore.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2013-12-01

    Estimation of radon emanation in uranium mines is given top priority to minimize the risk of inhalation exposure due to short-lived radon progeny. This paper describes the radon emanation studies conducted in the laboratory as well as inside an operating underground uranium mine at Jaduguda, India. Some of the important parameters, such as grade/(226)Ra activity, moisture content, bulk density, porosity and emanation fraction of ore, governing the migration of radon through the ore were determined. Emanation from the ore samples in terms of emanation rate and emanation fraction was measured in the laboratory under airtight condition in glass jar. The in situ radon emanation rate inside the mine was measured from drill holes made in the ore body. The in situ(222)Rn emanation rate from the mine walls varied in the range of 0.22-51.84 × 10(-3) Bq m(-2) s(-1) with the geometric mean of 8.68 × 10(-3) Bq m(-2) s(-1). A significant positive linear correlation (r = 0.99, p < 0.001) between in situ(222)Rn emanation rate and the ore grade was observed. The emanation fraction of the ore samples, which varied in the range of 0.004-0.089 with mean value of 0.025 ± 0.02, showed poor correlation with ore grade and porosity. Empirical relationships between radon emanation rate and the ore grade/(226)Ra were also established for quick prediction of radon emanation rate from the ore body. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 222Rn emanation from uranium-glazed ceramics.

    PubMed

    Biagioni, R N; Sheets, R W

    2001-02-01

    Orange-red uranium-glazed dinnerware was found to emanate 222Rn to produce an average of less than 0.1 Bq 222Rn decay per piece, which should have no associated health risks. Comparison of 222Rn emanation to 226Ra in glazes (measured by alpha spectrometry) indicated inefficient emanation (<5%) of 222Rn, consistent with the low radon levels observed and with the presence of 222Rn progeny in glazes. These studies also showed that reagent grade uranium compounds may emanate measurable 222Rn.

  16. Biogeochemical prospecting for uranium with conifers: results from the Midnite Mine area, Washington

    USGS Publications Warehouse

    Nash, J. Thomas; Ward, Frederick Norville

    1977-01-01

    The ash of needles, cones, and duff from Ponderosa pine (Pinus ponderosa Laws) growing near uranium deposits of the Midnite mine, Stevens County, Wash., contain as much as 200 parts per million (ppm) uranium. Needle samples containing more than 10 ppm uranium define zones that correlate well with known uranium deposits or dumps. Dispersion is as much as 300 m but generally is less. Background is about 1 ppm. Tree roots are judged to be sampling ore, low-grade uranium halo, or ground water to a depth of about 15 m. Uptake of uranium by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) needles appears to be about the same as by Ponderosa pine needles. Cones and duff are generally enriched in uranium relate to needles. Needles, cones, and duff are recommended as easily collected, uncomplicated sample media for geochemical surveys. Samples can be analyzed by standard methods and total cost per sample kept to about $6.

  17. Radioactive source materials in Los Estados Unidos de Venezuela

    USGS Publications Warehouse

    Wyant, Donald G.; Sharp, William N.; Rodriguez, Carlos Ponte

    1953-01-01

    This report summarizes the data available on radioactive source materials in Los Estados Unidos de Venezuela accumulated by geologists of the Direccions Tecnica de Geolgia and antecedent agencies prior to June 1951, and the writers from June to November 1951. The investigation comprised preliminary study, field examination, office studies, and the preparation of this report, in which the areas and localities examined are described in detail, the uranium potentialities of Venezuela are summarized, and recommendations are made. Preliminary study was made to select areas and rock types that were known or reported to be radioactive or that geologic experience suggests would be favorable host for uranium deposits, In the office, a study of gamma-ray well logs was started as one means of amassing general radiometric data and of rapidly scanning many of ye rocks in northern Venezuela; gamma-ray logs from about 140 representative wells were examined and their peaks of gamma intensity evaluated; in addition samples were analyzed radiometrically, and petrographically. Radiometic reconnaissance was made in the field during about 3 months of 1951, or about 12 areas, including over 100 localities in the State of Miranda, Carabobo, Yaracuy, Falcon, Lara, Trujillo, Zulia, Merida, Tachira, Bolivar, and Territory Delta Amacuro. During the course of the investigation, both in the filed and office, information was given about geology of uranium deposits, and in techniques used in prospecting and analysis. All studies and this report are designed to supplement and to strengthen the Direccion Tecnica de Geologias's program of investigation of radioactive source in Venezuela now in progress. The uranium potentialities of Los Estados de Venezuela are excellent for large, low-grade deposits of uraniferous phospahtic shales containing from 0.002 to 0.027 percent uranium; fair, for small or moderate-sized, low-grade placer deposits of thorium, rare-earth, and uranium minerals; poor, for high-grade hydrothermal pitchblende deposits; and highly possible for small, medium- to high-grade despots of carnotite-or copper-uranium bearing sandstone. Recommendations for the Venezuelan uranium program include 1) the systematic collection of a mass general radiometric data by examining sample collections, expanding the gamma-ray program, encouraging the use of Geiger counter by field geologists, and by enlisting the aid of the general public; 2) , the examination of specific areas or localities, chosen on the basis of geologic favorability from the results of the amassing of data, or obtained by hints and rumors; 3), the organization of a unit within the Direccion Tecnica de Geologica to direct, collection, and collate metric data. It is emphasized that to be most fruitful the program requires the application of sounds and imaginative geologic theory.

  18. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1/sup 0/ x 2/sup 0/ Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous materialmore » and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age.« less

  19. Bedrock Prime: How Can the United States Best Address the Need to Achieve Dominance within the Subterranean Domain?

    DTIC Science & Technology

    2012-12-14

    monolithic construction (formed from a single piece of hard material) and made of a high-strength alloy. The use of monolithic construction eliminates...is the class of sub-caliber solid depleted uranium or tungsten “darts” that are conveyed by a sabot during gun launching. Current penetrating...and deeper fortifications which are largely immune to the current United States weapons inventory. Advanced construction and design techniques

  20. 2. VIEW LOOKING NORTHEAST AT BUILDING 444 UNDER CONSTRUCTION. BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW LOOKING NORTHEAST AT BUILDING 444 UNDER CONSTRUCTION. BUILDING 444 WAS THE PRIMARY NON-PLUTONIUM MANUFACTURING FACILITY AT THE ROCKY FLATS PLANT. MANUFACTURING PROCESSES COMPLETED IN THIS BUILDING WERE USED TO FABRICATE WEAPONS COMPONENTS AND ASSEMBLIES FOR A VARIETY OF MATERIALS, INCLUDING DEPLETED URANIUM, BERYLLIUM, STAINLESS STEEL, ALUMINUM, AND VANADIUM. (4/25/52) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  1. Shifting Focus: Assessing the Role of U.S. Army Special Forces in the Counterproliferation of Weapons of Mass Destruction

    DTIC Science & Technology

    2014-06-01

    4 The Japanese cult Aum Shinrikyo desired a capability so much that they purchased a ranch in Western Australia in order to mine uranium and even...Security, eds. James A. Russell and James J. Wirtz (New York: Routledge, 2008), 164. 9 interdict suspected proliferation activities would meet...Proliferation Efforts,” in Globalization and WMD Proliferation: Terrorism, Transnational Networks, and International Security, eds. James A. Russell

  2. Was Nazi Germany on the Road to an Atomic Bomb after all?

    NASA Astrophysics Data System (ADS)

    Lustig, Harry

    2006-04-01

    The story of Germany's efforts to develop a nuclear weapon during World War II is a much written about and contentious subject. However there has been agreement on one thing: by the end of the War the Germans had not achieved and were nowhere near to building a bomb. The dispute therefore has been about why Germany did not succeed. Now, from Germany, comes a challenge to this truth, in the provocative book Hitlers Bombe by Rainer Karlsch. The bombshell in Hitler's Bombe is the assertion that German scientists developed and tested a primitive fission and fusion nuclear weapon in March 1945. Karlsch bases this claim on testimony of witnesses in 1962, previously secret Russian documents, and the results of soil tests carried out in 2004 and 2005. However the physics is very murky and it seems out of the question that Germany had enough Uranium 235 or produced any Plutonium for a bomb. Hitlers Bombe also makes other, better documented and more credible revisionist assertions. These include the claim that the Nazis did continue to try to build a bomb after 1942 and that not Werner Heisenberg, but Kurt Diebner and Walther Gerlach were then the leaders of the German Uranium project. Karlsch's book therefore deserves more attention from physicists and historians than it has received in the United States.

  3. Neutronics calculations on the impact of burnable poisons to safety and non-proliferation aspects of inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Pistner, C.; Liebert, W.; Fujara, F.

    2006-06-01

    Inert matrix fuels (IMF) with plutonium may play a significant role to dispose of stockpiles of separated plutonium from military or civilian origin. For reasons of reactivity control of such fuels, burnable poisons (BP) will have to be used. The impact of different possible BP candidates (B, Eu, Er and Gd) on the achievable burnup as well as on safety and non-proliferation aspects of IMF are analyzed. To this end, cell burnup calculations have been performed and burnup dependent reactivity coefficients (boron worth, fuel temperature and moderator void coefficient) were calculated. All BP candidates were analyzed for one initial BP concentration and a range of different initial plutonium-concentrations (0.4-1.0 g cm-3) for reactor-grade plutonium isotopic composition as well as for weapon-grade plutonium. For the two most promising BP candidates (Er and Gd), a range of different BP concentrations was investigated to study the impact of BP concentration on fuel burnup. A set of reference fuels was identified to compare the performance of uranium-fuels, MOX and IMF with respect to (1) the fraction of initial plutonium being burned, (2) the remaining absolute plutonium concentration in the spent fuel and (3) the shift in the isotopic composition of the remaining plutonium leading to differences in the heat and neutron rate produced. In the case of IMF, the remaining Pu in spent fuel is unattractive for a would be proliferator. This underlines the attractiveness of an IMF approach for disposal of Pu from a non-proliferation perspective.

  4. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities. Annual Report 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegalski, Steven R.; Buchholz, Bruce A.

    2011-08-24

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner.

  5. Nominations for the 2017 NNSA Pollution Prevention Awards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; Ballesteros Rodriguez, Sonia; Lopez, Lorraine Bonds

    In the field of nuclear forensics, one of the biggest challenges is to dissolve postdetonation debris for analysis. Debris generated after a nuclear detonation is a glassy material that is difficult to dissolve with chemicals. Traditionally, concentrated nitric acid, hydrofluoric acid, or sulfuric acid are employed during the dissolution. These acids, due to their corrosive nature, are not suitable for in-field/on-site sample preparations. Uranium oxides are commonly present in nuclear fuel processing plants and nuclear research facilities. In uranium oxides, the level of uranium isotope enrichment is a sensitive indicator for nuclear nonproliferation and is monitored closely by the Internationalmore » Atomic Energy Agency (IAEA) to ensure there is no misuse of nuclear material or technology for nuclear weapons. During an IAEA on-site inspection at a facility, environmental surface swipe samples are collected and transported to the IAEA headquarters or network of analytical laboratories for further processing. Uranium oxide particles collected on the swipe medium are typically dissolved with inorganic acids and are then analyzed for uranium isotopic compositions. To improve the responsiveness of on-site inspections, in-field detection techniques have been recently explored. However, in-field analysis is bottlenecked by time-consuming and hazardous dissolution procedures, as corrosive inorganic acids must be used. Corrosive chemicals are difficult to use in the field due to personnel safety considerations, and the transportation of such chemicals is highly regulated. It was therefore necessary to develop fast uranium oxide dissolution methods using less hazardous chemicals in support of the rapid infield detection of anomalies in declared nuclear processes.« less

  6. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    PubMed

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  7. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  8. Gender differences in the relative impact of physical and relational bullying on adolescent injury and weapon carrying.

    PubMed

    Dukes, Richard L; Stein, Judith A; Zane, Jazmin I

    2010-12-01

    Using structural equation modeling, concurrent associations were assessed among physical bullying, relational bullying, physical victimization, relational victimization, injury and weapon carrying using data from the population of 1300 adolescent girls and 1362 adolescent boys in grades 7-12 in a Colorado school district. For both genders, being a relational bully was a significantly stronger predictor of weapon carrying than being a physical bully, and both bullying types were significant predictors of more weapon carrying. For both genders, being a victim of physical bullying, a victim of relational bullying, or being a relational bully significantly predicted more injury. In latent means comparisons, adolescent girls reported more relational victimization and adolescent boys reported more physical bullying and victimization, more weapon carrying, and more injury. The relative strength of relational bullying on weapon carrying, and the health-related consequences of bullying on interpersonal violence and injury support concerted efforts in schools to mitigate these behaviors. Attention to differences related to age and gender also is indicated in the design of bullying mitigation programs. Copyright © 2010 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  9. U.S. Foreign Aid to Israel

    DTIC Science & Technology

    2012-03-12

    since the late 1990s. In 2008, the United States authorized Israel to receive the GBU - 39 Small Diameter Bomb, a 250-pound class weapon that can...report, the GBU-28 and GBU - 39 may not have sufficient strike capacity to damage Iranian underground nuclear targets such as the Fordow uranium enrichment...27 DSCA’s notification to Congress of the GBU - 39 is available at http://www.dsca.mil/PressReleases/36-b/2008/ Israel_08-82.pdf. 28 “ANALYSIS-Iran

  10. Bioenvironmental Engineer’s Guide to Ionizing Radiation

    DTIC Science & Technology

    2005-10-01

    mercury x-rays 186 (4 % ) - y Ra -226 radon x-rays Luminous Products, Neutron (tl/2: 1600 y) Alpha photons from daughters: Sources (w/ Be ) Rn-222, Po...Radioisotope Thermoelectric (t1,2: 88 y) Generators Pu-239 Alpha uranium x-rays Nuclear Weapons, Neutron (t1 /2: 2.4 x 104 y) Sources (w/ Be ...Calibration Am-241 .60 (36 %) - Static Eliminators, Chemical (h2: 432 y) Alpha n Agent Detectors, Neutron neptunium x-rays Sources (w/ Be ) 11 October 2005

  11. Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Velichkin, V. I.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Tagirov, B. R.

    2010-08-01

    The production of enriched uranium used in nuclear weapons and fuel for atomic power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually increases by 35-40 kt. To date, more than 1.6 Mt DU has accumulated in the world. The main DU mass is stored as environ-mentally hazardous uranium hexafluoride (UF6), which is highly volatile and soluble in water with the formation of hydrofluoric acid. To ensure safe UF6 storage, it is necessary to convert this compound in chemically stable phases. The industrial reprocessing of UF6 into U3O8 and HF implemented in France is highly expensive. We substantiate the expediency of long-term storage of depleted uranium hexafluoride in underground repositories localized in limestone. On the basis of geochemical data and thermodynamic calculations, we show that interaction in the steel container-UF6-limestone-groundwater system gives rise to the development of a slightly alkaline reductive medium favorable for chemical reaction with formation of uraninite (UO2) and fluorite (CaF2). The proposed engineering solution not only ensures safe DU storage but also makes it possible to produce uraninite, which can be utilized, if necessary, in fast-neutron reactors. In the course of further investigations aimed at safe maintenance of DU, it is necessary to study the kinetics of conversion of UF6 into stable phases, involving laboratory and field experiments.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamboj, Sunita; Durham, Lisa A.

    A post-remediation radiological dose assessment was conducted for the Formerly Utilized Sites Remedial Action Program (FUSRAP) Linde Site by using the measured residual concentrations of the radionuclides of concern following the completion of the soils remedial action. The site’s FUSRAP-related contaminants of concern (COCs) are radionuclides associated with uranium processing activities conducted by the Manhattan Engineer District (MED) in support of the Nation’s early atomic energy and weapons program and include radium-226 (Ra-226), thorium-230 (Th-230), and total uranium (Utotal). Remedial actions to address Linde Site soils and structures were conducted in accordance with the Record of Decision for the Lindemore » Site, Tonawanda, New York (ROD) (USACE 2000a). In the ROD, the U.S. Army Corps of Engineers (USACE) determined that the cleanup standards found in Title 40, Part 192 of the Code of Federal Regulations (40 CFR Part 192), the standards for cleanup of uranium mill sites designated under the Uranium Mill Tailings Radiation Control Act (UMTRCA), and the Nuclear Regulatory Commission (NRC) standards for decommissioning of licensed uranium and thorium mills, found in 10 CFR Part 40, Appendix A, Criterion 6(6), are Applicable or Relevant and Appropriate Requirements (ARARs) for cleanup of MED-related contamination at the Linde Site. The major elements of this remedy will involve excavation of the soils with COCs above soil cleanup levels and placement of clean materials to meet the other criteria of 40 CFR Part 192.« less

  13. The Iran Nuclear Crisis: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagan, Scott

    2007-05-07

    Will Iran develop nuclear weapons capabilities and what effects would such capabilities have on international peace and security? Despite two recent U.N. Security Council resolutions sanctioning Iran for its nuclear activities, the government in Tehran continues to press ahead with efforts to expand its uranium enrichment program to industrial scale. But both the Tehran regime and the Iranian people remain divided on the nuclear question, creating opportunities for a negotiated settlement. It is essential for US security that the Iranian program be contained, for nuclear weapons in Iran would increase risks of regional instability, terrorist use, and further proliferation. Themore » U.S. and its negotiating partners have already missed a number of potential opportunities for a diplomatic breakthrough, but the right mix of incentives designed to address the reasons driving Iran’s nuclear program could still succeed in producing an acceptable outcome.« less

  14. A Moratorium in Name Only

    ERIC Educational Resources Information Center

    Daleus, Lennart

    1975-01-01

    A nationwide debate occurred in Sweden concerning their nuclear power program. The debate centered on safety, waste management, and use of weapons-grade material. Parliament voted for nuclear power despite negative public opinion. (MR)

  15. Exploration for uranium-vanadium deposits by the U.S. Geological Survey in the Club Mesa area, Uravan district, Montrose County, Colorado

    USGS Publications Warehouse

    Boardman, R.L.; Litsey, L.R.; Bowers, H.E.

    1958-01-01

    Club Mesa is one of the most productive areas for uranium-vanadium ore in southwestern Colorago. The average grade of this ore has ranged from about 0.25 to 1.50 percent U3O8 and 1.5 to 5.0 percent V2O5.

  16. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits

    NASA Astrophysics Data System (ADS)

    Uvarova, Yulia A.; Kyser, T. Kurt; Geagea, Majdi Lahd; Chipley, Don

    2014-12-01

    Variations in 238U/235U and 234U/238U ratios were measured in uranium minerals from a spectrum of uranium deposit types, as well as diagenetic phosphates in uranium-rich basins and peraluminous rhyolites and associated autunite mineralisation from Macusani Meseta, Peru. Mean δ238U values of uranium minerals relative to NBL CRM 112-A are 0.02‰ for metasomatic deposits, 0.16‰ for intrusive, 0.18‰ for calcrete, 0.18‰ for volcanic, 0.29‰ for quartz-pebble conglomerate, 0.29‰ for sandstone-hosted, 0.44‰ for unconformity-type, and 0.56‰ for vein, with a total range in δ238U values from -0.30‰ to 1.52‰. Uranium mineralisation associated with igneous systems, including low-temperature calcretes that are sourced from U-rich minerals in igneous systems, have low δ238U values of ca. 0.1‰, near those of their igneous sources, whereas uranium minerals in basin-hosted deposits have higher and more variable values. High-grade unconformity-related deposits have δ238U values around 0.2‰, whereas lower grade unconformity-type deposits in the Athabasca, Kombolgie and Otish basins have higher δ238U values. The δ234U values for most samples are around 0‰, in secular equilibrium, but some samples have δ234U values much lower or higher than 0‰ associated with addition or removal of 234U during the past 2.5 Ma. These δ238U and δ234U values suggest that there are at least two different mechanisms responsible for 238U/235U and 234U/238U variations. The 234U/238U disequilibria ratios indicate recent fluid interaction with the uranium minerals and preferential migration of 234U. Fractionation between 235U and 238U is a result of nuclear-field effects with enrichment of 238U in the reduced insoluble species (mostly UO2) and 235U in oxidised mobile species as uranyl ion, UO22+, and its complexes. Therefore, isotopic fractionation effects should be reflected in 238U/235U ratios in uranium ore minerals formed either by reduction of uranium to UO2 or chemical precipitation in the form of U6+ minerals. The δ238U values of uranium ore minerals from a variety of deposits are controlled by the isotopic signature of the uranium source, the efficiency of uranium reduction in the case of UO2 systems, and the degree to which uranium was previously removed from the fluid, with less influence from temperature of ore formation and later alteration of the ore. Uranium isotopes are potentially superb tracers of redox in natural systems.

  17. A Clear Success for International Transport of Plutonium and MOX Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blachet, L.; Jacot, P.; Bariteau, J.P.

    2006-07-01

    An Agreement between the United States and Russia to eliminate 68 metric tons of surplus weapons-grade plutonium provided the basis for the United States government and its agency, the Department of Energy (DOE), to enter into contracts with industry leaders to fabricate mixed oxide (MOX) fuels (a blend of uranium oxide and plutonium oxide) for use in existing domestic commercial reactors. DOE contracted with Duke, COGEMA, Stone and Webster (DCS), a limited liability company comprised of Duke Energy, COGEMA Inc. and Stone and Webster to design a Mixed Oxide Fuel Fabrication Facility (MFFF) which would be built and operated atmore » the DOE Savannah River Site (SRS) near Aiken, South Carolina. During this same time frame, DOE commissioned fabrication and irradiation of lead test assemblies in one of the Mission Reactors to assist in obtaining NRC approval for batch implementation of MOX fuel prior to the operations phase of the MFFF facility. On February 2001, DOE directed DCS to initiate a pre-decisional investigation to determine means to obtain lead assemblies including all international options for manufacturing MOX fuels. This lead to implementation of the EUROFAB project and work was initiated in earnest on EUROFAB by DCS on November 7, 2003. (authors)« less

  18. Uranium content and leachable fraction of fluorspars

    USGS Publications Warehouse

    Landa, E.R.; Councell, T.B.

    2000-01-01

    Much attention in the radiological health community has recently focused on the management and regulation of naturally occurring radioactive materials. Although uranium-bearing minerals are present in a variety of fluorspar deposits, their potential consideration as naturally occurring radioactive materials has received only limited recognition. The uranium content of 28 samples of acid- and cryolite-grade (>97% CaF2) fluorspar from the National Defense Stockpile was found to range from 120 to 24,200 ??g kg-1, with a mean of 2,145 ??g kg-1. As a point of comparison, the average concentration of uranium in the upper crust of the earth is about 2,500 ??g kg-1. Leachability of this uranium was assessed by means of the Toxicity Characteristic Leaching Procedure (TCLP). The TCLP extractable fraction ranged from 1 to 98%, with a mean of 24% of the total uranium. The typically low concentrations of uranium seen in these materials probably reflects the removal of uranium-bearing mineral phases during the beneficiation of the crude fluorspar ore to achieve industrial specifications. Future NORM studies should examine crude fluorspar ores and flotation tailings.

  19. Uranium deposits in Grant County, New Mexico

    USGS Publications Warehouse

    Granger, Harry C.; Bauer, Herman L.; Lovering, Tom G.; Gillerman, Elliot

    1952-01-01

    The known uranium deposits of Grant county, N. Mex., are principally in the White Signal and Black Hawk districts. Both districts are within a northwesterly-trending belt of pre-Cambrian rocks, composed chiefly of granite with included gneisses, schists, and quartzites. Younger dikes and stocks intrude the pre-Cambrian complex. The White Signal district is on the southeast flanks of the Burro Mountains; the Black Hawk district is about 18 miles northwest of the town of White Signal. In the White Signal district the seconday uranium phosphates--autunite and torbernite--occur as fracture coatings and disseminations in oxidized parts of quartz-pyrite veins, and in the adjacent mafic dikes and granites; uraniferous limonite is common locally. Most of the known uraniferous deposits are less that 50 feet in their greatest dimension. The most promising deposits in the district are on the Merry Widow and Blue Jay claims. The richest sample taken from the Merry Widow mine contained more than 2 percent uranium and a sample from the Blue Jay property contained as much as 0.11 percent; samples from the other properties were of lower grade. In the Black Hawk district pitchblende is associated with nickel, silver, and cobalt minerals in fissure veins. The most promising properties in the Black Hawk district are the Black Hawk, Alhambra, and Rose mines. No uranium analyses from this district were available in 1951. There are no known minable reserves of uranium ore in either district, although there is some vein material at the Merry Widow mine of ore grade, if a market were available in the region.

  20. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOEpatents

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  1. Depleted Uranium Toxicity, Accumulation, and Uptake in Cynodon dactylon (Bermuda) and Aristida purpurea (Purple Threeawn).

    PubMed

    Butler, Afrachanna D; Wynter, Michelle; Medina, Victor F; Bednar, Anthony J

    2016-06-01

    Yuma Proving Grounds (YPG) in western Arizona is a testing range where Depleted uranium (DU) penetrators have been historically fired. A portion of the fired DU penetrators are being managed under controlled conditions by leaving them in place. The widespread use of DU in armor-penetrating weapons has raised environmental and human health concerns. The present study is focused on the onsite management approach and on the potential interactions with plants local to YPG. A 30 day study was conducted to assess the toxicity of DU corrosion products (e.g., schoepite and meta-schoepite) in two grass species that are native to YPG, Bermuda (Cynodon dactylon) and Purple Threeawn (Aristida purpurea). In addition, the ability for plants to uptake DU was studied. The results of this study show a much lower threshold for biomass toxicity and higher plant concentrations, particularly in the roots than shoots, compared to previous studies.

  2. Reassessing the Effects of Early Adolescent Alcohol Use on Later Antisocial Behavior: A Longitudinal Study of Students in Victoria, Australia and Washington State, United States

    PubMed Central

    Hemphill, Sheryl A.; Heerde, Jessica A.; Scholes-Balog, Kirsty E.; Smith, Rachel; Herrenkohl, Todd I.; Toumbourou, John W.; Catalano, Richard F.

    2013-01-01

    The effect of early adolescent alcohol use on antisocial behavior was examined at one- and two-year follow-up in Washington, United States and Victoria, Australia. Each state used the same methods to survey statewide representative samples of students (N = 1,858, 52% female) in 2002 (Grade 7 [G7]), 2003 (Grade 8 [G8]), and 2004 (Grade 9 [G9]). Rates of lifetime, current, frequent, and heavy episodic alcohol use were higher in Victoria than Washington State, whereas rates of five antisocial behaviors were generally comparable across states. After controlling for established risk factors, few associations between alcohol use and antisocial behavior remained, except that G7 current use predicted G8 police arrests and stealing and G9 carrying a weapon and stealing; G7 heavy episodic use predicted G8 and G9 police arrests; and G7 lifetime use predicted G9 carrying a weapon. Hence, risk factors other than alcohol were stronger predictors of antisocial behaviors. PMID:25132702

  3. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

  5. KSC-04PD-1654

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At the ribbon cutting for the Enhanced Firing Range on Schwartz Rd. at Kennedy Space Center, Dave Saleeba (left with weapon) and Center Director Jim Kennedy (right, with weapon) practice firing on the new range. Saleeba is assistant administrator with the Office of Security Management and Safeguards at NASA Headquarters and was a guest speaker at the ceremony. NASAs Federal Law Enforcement Training Academys firing range has been upgraded to include a rifle-grade shoot house, a portable, tactical shoot-back trailer for cover and concealment drills, automated running targets and a new classroom facility. They are added to the existing three firearms ranges, pistol-grade shoot house, obstacle course and rappel tower. NASAs Security Management and Safeguards Office funded the enhancements in order to improve ability to train the KSC security force and to support local, state and federal law enforcement agencies in Homeland Security.

  6. High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.

    The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less

  7. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Actinide Waste Forms and Radiation Effects

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Weber, W. J.

    Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and

  9. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    PubMed

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.

  10. Effects of depleted uranium on the health and survival of Ceriodaphnia dubia and Hyalella azteca

    USGS Publications Warehouse

    Kuhne, W.W.; Caldwell, C.A.; Gould, W.R.; Fresquez, P.R.; Finger, S.

    2002-01-01

    Depleted uranium (DU) has been used as a substitute for the fissionable enriched uranium component of atomic weapons tested at Los Alamos National Laboratory (LANL) (Los Alamos, NM, USA) since the early 1950s, resulting in considerable concentrations of DU in the soils within the test sites. Although the movement of DU into major aquatic systems has been shown to be minimal, there are many small-order ephemeral streams and areas of standing water in canyons throughout LANL that may be affected by inputs of DU via runoff, erosion, and leaching. Ninety-six-hour acute and 7-d chronic toxicity assays were conducted to measure the toxicity of DU on survival and reproduction of Ceriodaphnia dubia. A 14-d water-only assay was conducted to measure survival and growth of Hyalella azteca. The estimated median lethal concentration (LC50) to produce 50% mortality of the test population for the 96-h Ceriodaphnia dubia assay was 10.50 mg/L. Reproductive effects occurred at a lowest-observable-effect concentration ???3.91 mg/L with a no-observable-effect concentration of 1.97 mg/L. The estimated 14-d LC50 for the Hyalella azteca assay was 1.52 mg/L No significant relationship was detected between growth and DU concentrations. Concentrations at which toxicity effects were observed in this study for both invertebrates exceeded concentrations of total uranium observed in runoff from LANL lands. Thus, it is likely that current runoff levels of uranium do not pose a threat to these types of aquatic invertebrates.

  11. Modeling of the dispersion of depleted uranium aerosol.

    PubMed

    Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M

    2003-04-01

    Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models.

  12. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozin, Vladimir

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded SNM samples with portable neutron sources suitable for field applications.« less

  13. Predictors of Weapon-Related Behaviors among African American, Latino, and White Youth.

    PubMed

    Shetgiri, Rashmi; Boots, Denise Paquette; Lin, Hua; Cheng, Tina L

    2016-04-01

    To identify risk and protective factors for weapon involvement among African American, Latino, and white adolescents. The National Longitudinal Study of Adolescent to Adult Health is a nationally representative survey of 7th-12th grade students. Predictors at wave 1 and outcome at wave 2 were analyzed. Data were collected in the mid-1990s, when rates of violent crime had been declining. The outcome was a dichotomous measure of weapon-involvement in the past year, created using 3 items (weapon-carrying, pulled gun/knife, shot/stabbed someone). Bivariate and multilevel logistic regression analyses examined associations of individual, peer, family, and community characteristics with weapon involvement; stratified analyses were conducted with African American, Latino, and white subsamples. Emotional distress and substance use were risk factors for all groups. Violence exposure and peer delinquency were risk factors for whites and African Americans. Gun availability in the home was associated with weapon involvement for African Americans only. High educational aspirations were protective for African Americans and Latinos, but higher family connectedness was protective for Latinos only. Interventions to prevent weapon-related behaviors among African American, Latino, and white adolescents may benefit from addressing emotional distress and substance use. Risk and protective factors vary by race/ethnicity after adjusting for individual, peer, family, and community characteristics. Addressing violence exposure, minimizing the influence of delinquent peers, promoting educational aspirations, and enhancing family connectedness could guide tailoring of violence prevention interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Predictors of Weapon-Related Behaviors Among African-American, Latino, and White Youth

    PubMed Central

    Shetgiri, Rashmi; Boots, Denise Paquette; Lin, Hua; Cheng, Tina L.

    2016-01-01

    Objective To identify risk and protective factors for weapon involvement among African-American, Latino, and white adolescents. Study design The National Longitudinal Study of Adolescent to Adult Health is a nationally-representative survey of 7th–12th grade students. Predictors at Wave 1 and outcome at Wave 2 were analyzed. Data were collected in the mid-1990s, when rates of violent crime had been declining. The outcome was a dichotomous measure of weapon-involvement in the past year, created using 3 items (weapon-carrying, pulled gun/knife, shot/stabbed someone). Bivariate and multilevel logistic regression analyses examined associations of individual, peer, family, and community characteristics with weapon involvement; stratified analyses were conducted with African-American, Latino, and white subsamples. Results Emotional distress and substance use were risk factors for all groups. Violence exposure and peer delinquency were risk factors for whites and African Americans. Gun availability in the home was associated with weapon involvement for African Americans only. High educational aspirations were protective for African Americans and Latinos, but higher family connectedness was protective for Latinos only. Conclusions Interventions to prevent weapon-related behaviors among African American, Latino, and white adolescents may benefit from addressing emotional distress and substance use. Risk and protective factors vary by race/ethnicity after adjusting for individual, peer, family, and community characteristics. Addressing violence exposure, minimizing the influence of delinquent peers, promoting educational aspirations, and enhancing family connectedness could guide tailoring of violence prevention interventions. PMID:26778260

  15. Nuclear Proliferation in the Middle East: Implications for the Superpowers,

    DTIC Science & Technology

    1982-01-01

    when Israeli nuclear scientists began extracting low grade uranium from phosphate deposits in the Negev Desert. With the encouragement of Chaim... Negev -and concomitantly assisted in de- signing the research facilities associated with the reactor. By the time the reactor went critical in 1964, a...deposits in the Negev . Since the early 1970s, an esti- mated 40-50 tons of uranium oxide has been produced annually.1 6 In addition, unconfirmed

  16. Virgin Valley opal district, Humboldt County, Nevada

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  17. Global threat reduction initiative Russian nuclear material removal progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, Kelly; Bolshinsky, Igor

    2008-07-15

    In December 1999 representatives from the United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) started discussing a program to return to Russia Soviet- or Russian-supplied highly enriched uranium (HEU) fuel stored at the Russian-designed research reactors outside Russia. Trilateral discussions among the United States, Russian Federation, and the International Atomic Energy Agency (IAEA) have identified more than 20 research reactors in 17 countries that have Soviet- or Russian-supplied HEU fuel. The Global Threat Reduction Initiative's Russian Research Reactor Fuel Return Program is an important aspect of the U.S. Government's commitment to cooperate with the other nationsmore » to prevent the proliferation of nuclear weapons and weapons-usable proliferation-attractive nuclear materials. To date, 496 kilograms of Russian-origin HEU have been shipped to Russia from Serbia, Latvia, Libya, Uzbekistan, Romania, Bulgaria, Poland, Germany, and the Czech Republic. The pilot spent fuel shipment from Uzbekistan to Russia was completed in April 2006. (author)« less

  18. Technical approaches to reducing the threat of nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Priedhorsky, William C.

    2005-04-01

    The threat of a nuclear attack on the United States by terrorists using a smuggled weapon is now considered more likely than an attack by a nuclear-armed ballistic missle. Consequently it is important to understand what can be done to detect and intercept a nuclear weapon being smuggled into the United States. A significant quantity of smuggled nuclear material has been intercepted already, but science and technology have so far contributed little to its interception. The critical special nuclear materials, plutonium and highly enriched uranium, are only weakly radioactive and detection of their radioactivity is limited both by atmospheric attenuation and by competition with natural backgrounds. Although many schemes for long-range detection of radioactivity have been proposed, none so far appears feasible. Detection of nuclear radiation can be improved using new technologies and sensing systems, but it will still be possible only at relatively small distances. Consequently the best approach to containing dangerous nuclear materials is at their sources; containment within lengthy borders and large areas is extremely difficult.

  19. Occurrences of uranium at Clinton, Hunterdon County, New Jersey

    USGS Publications Warehouse

    McKeown, F.A.; Klemic, H.; Choquette, P.W.

    1954-01-01

    An occurrence of uranium at Clinton, Hunterdon County, N. J. was first brought to the attention of the U.S. Geological Survey when Mr. Thomas L. Eak of Avenel, N. J. submitted to the Survey a sample containing 0.068 percent uranium. Subsequent examinations of the area around Clinton indicated that detailed mapping and study were warranted. The uranium occurrences at Clinton are in or associated with fault zones in the Kittatinny limestone of Cambro-Ordovician age. The limestone generally light gray, thick bedded, and dolomitic; chert is common but not abundant. Regionally and locally, faults are the most significant structural features. The local faults at Clinton are the loci for most of the uranium. The largest fault can be traced for about 700 feet and is radioactive everywhere it crops out. Samples from this fault contain as much as 0.038 percent uranium; the average content is about 0.010 percent uranium. Uranium also occurs disseminated in two 4-inch layers of black feldspathic dolomite and in several zones of residual soil derived from the Kittatinny limestone. The black layers contain as much as 0.046 percent uranium and can be traced only about 20 feet along strike. They are cut by a small fault that is also radioactive. The radioactive soil zones are roughly elongated parallel to bedding. Soil from them contains up to 0.008 percent uranium. The uranium occurrences are best explained by a supergene origin. The sampling, mapping, and radioactivity testing of uranium occurrences at Clinton indicate they are too low grade to be of current economic interest.

  20. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.; Pitts, M.; Ludowise, J.D.

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removesmore » outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)« less

  1. Geological and geochronological evidence for the effect of Paleogene and Miocene uplift of the Northern Ordos Basin on the formation of the Dongsheng uranium district, China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Yi, Chao; Dong, Qian; Cai, Yu-Qi; Liu, Hong-Xu

    2018-02-01

    The Dongsheng uranium district, located in the northern part of the Ordos Basin, contains the largest known sandstone-hosted uranium deposit in China. This district contains (from west to east) the Daying, Nalinggou, and Dongsheng uranium deposits that host tens of thousands of metric tonnes of estimated recoverable uranium resources at an average grade of 0.05% U. These uranium orebodies are generally hosted by the lower member of the Zhiluo Formation and are dominantly roll or tabular in shape. The uranium deposits in this district formed during two stages of mineralization (as evidenced by U-Pb dating) that occurred at 65-60 and 25 Ma. Both stages generated coffinite, pitchblende, anatase, pyrite, and quartz, with or without sericite, chlorite, calcite, fluorite, and hematite. The post-Late Cretaceous uplift of the Northern Ordos Basin exposed the northern margins of the Zhiluo Formation within the Hetao depression at 65-60 Ma, introducing groundwater into the formation and generating the first stage of uranium mineralization. The Oligocene (∼25 Ma) uplift of this northern margin exposed either the entirety of the southern flank of the Hetao depression or only the clastic sedimentary part of this region, causing a second gravitational influx of groundwater into the Zhiluo Formation and forming the second stage of uranium mineralization.

  2. On depleted uranium: gulf war and Balkan syndrome.

    PubMed

    Duraković, A

    2001-04-01

    The complex clinical symptomatology of chronic illnesses, commonly described as Gulf War Syndrome, remains a poorly understood disease entity with diversified theories of its etiology and pathogenesis. Several causative factors have been postulated, with a particular emphasis on low level chemical warfare agents, oil fires, multiple vaccines, desert sand (Al-Eskan disease), botulism, Aspergillus flavus, Mycoplasma, aflatoxins, and others, contributing to the broad scope of clinical manifestations. Among several hundred thousand veterans deployed in the Operation Desert Storm, 15-20% have reported sick and about 25,000 died. Depleted uranium (DU), a low-level radioactive waste product of the enrichment of natural uranium with U-235 for the reactor fuel or nuclear weapons, has been considered a possible causative agent in the genesis of Gulf War Syndrome. It was used in the Gulf and Balkan wars as an armor-penetrating ammunition. In the operation Desert Storm, over 350 metric tons of DU was used, with an estimate of 3-6 million grams released in the atmosphere. Internal contamination with inhaled DU has been demonstrated by the elevated excretion of uranium isotopes in the urine of the exposed veterans 10 years after the Gulf war and causes concern because of its chemical and radiological toxicity and mutagenic and carcinogenic properties. Polarized views of different interest groups maintain an area of sustained controversy more in the environment of the public media than in the scientific community, partly for the reason of being less than sufficiently addressed by a meaningful objective interdisciplinary research.

  3. Geology of the Midnite uranium mine area, Washington: maps, description, and interpretation

    USGS Publications Warehouse

    Nash, J. Thomas

    1977-01-01

    Bedrock geology of about 12 km2 near the Midnite mine has been mapped at the surface, in mine exposures, and from drilling, at scales from 1:600 to 1:12,000 and is presented here at 1:12,000 to provide description of the setting of uranium deposits. Oldest rocks in the area are metapelitic and metacarbonate rocks of the Precambrian (Y) Togo Formation. The chief host for uranium deposits is graphitic and pyritic mica phyllite and muscovite schist. Ore also occurs in calc-silicate hornfels and marble at the western edge of a calcareous section about 1,150 m thick. Calcareous rocks of the Togo are probably older than the pelitic as they are interpreted to be near the axis of a broad anticline. The composition and structural position of the calcareous unit suggests correlation with less metamorphosed carbonate-bearing rocks of the Lower Wallace Formation, Belt Supergroup, about 200 km to the east. Basic sills intrusive into the Togo have been metamorphosed to amphibolite. Unmetamorphosed rocks in the mine area are Cretaceous(?) and Eocene igneous rocks. Porphyritic quartz monzonite of Cretaceous age, part of the Loon Lake batholith, is exposed over one third of the mine area. It underlies the roof pendant of Precambrian rocks in which the Midnite mine occurs at depths of generally less than 300 m. The pluton is a two-mica granite and exhibits pegmatitic and aplitic textural features indicative of water saturation and pressure quenching. Eocene intrusive and extrusive rocks in the area provide evidence that the Eocene surface was only a short distance above the present uranium deposits. Speculative hypotheses are presented for penesyngenetic, hydrothermal, and supergene modes of uranium emplacement. The Precambrian Stratigraphy, similar in age and pre-metamorphic lithology to that of rocks hosting large uranium deposits in Saskatchewan and Northern Territory, Australia, suggests the possibility of uranium accumulation along with diagenetic pyrite in carbonaceous muds in a marine shelf environment. This hypothesis is not favored by the author because there is no evidence for stratabound uranium such as high regional radioactivity in the Togo. A hydrothermal mode of uranium emplacement is supported by the close apparent ages of mineralization and plutonism, and by petrology of the pluton. I speculate that uranium may have become enriched in postmagmatic fluids at the top of the pluton, possibly by hydrothermal leaching of soluble uranium associated with magnetite, and diffused outward into metasedimentary wall rocks to create an aureole about 100 m thick containing about 100 ppm uranium. Chemistry of the hydrothermal process is not understood, but uranium does not appear to have been transported by an oxidizing fluid, and the fluid did not produce veining and alteration comparable to that of base-metal sulfide deposits. Uranium in the low-grade protore is believed to have been redistributed into permeable zones in the Tertiary to create ore grades. Geologic and isotopic ages of uranium mineralization, and the small volume of porphyritic quartz monzonite available for leaching, are not supportive of supergene emplacement of uranium.

  4. Hybrid Interferometric/Dispersive Atomic Spectroscopy For Nuclear Materials Analysis

    NASA Astrophysics Data System (ADS)

    Morgan, Phyllis K.

    Laser-induced breakdown spectroscopy (LIBS) is an optical emission spectroscopy technique that holds promise for detection and rapid analysis of elements relevant for nuclear safeguards and nonproliferation, including the measurement of isotope ratios. One important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.437 nm U II line). Measuring uranium enrichment is important in nuclear nonproliferation and safeguards because the uranium highly enriched in the 235U isotope can be used to construct nuclear weapons. High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. A hybrid interferometric/dispersive spectrometer prototype, which consists of an inexpensive, compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, was assembled for making high-resolution measurements of nuclear materials in a laboratory setting. To more fully take advantage of this low-cost, compact hybrid spectrometer, a mathematical reconstruction technique was developed to accurately reconstruct relative line strengths from complex spectral patterns with high resolution. Measurement of the mercury 313.1555/313.1844 nm doublet from a mercury-argon lamp yielded a spectral line intensity ratio of 0.682, which agrees well with an independent measurement by an echelle spectrometer and previously reported values. The hybrid instrument was used in LIBS measurements and achieved the resolution needed for isotopic selectivity of LIBS of uranium in ambient air. The samples used were a natural uranium foil (0.7% of 235U) and a uranium foil highly enriched in 235U to 93%. Both samples were provided by the Penn State University's Breazeale Nuclear Reactor. The enrichment of the uranium foils was verified using a high-purity germanium detector and dedicated software for multi-group spectral analysis. Uranium spectral line widths of ˜10 pm were measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium at that wavelength. The 424.167 nm isotope shift (˜6 pm), limited by spectral broadening, was only partially resolved but still discernible. This instrument and reconstruction method could enable the design of significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting nuclear safeguards, treaty verification, nuclear forensics, and a variety of other spectroscopic applications.

  5. The aluminum phosphate zone in the Peace River area, land-pebble phosphate field, Florida

    USGS Publications Warehouse

    Cathcart, James B.

    1953-01-01

    The Peace River area, comprising T. 30 and 31 S., R. 24 and 25 E., contains a thicker and more persistent aluminum phosphate zone, and one that is higher in P2O5 and uranium content than is known elsewhere in the land-pebble phosphate district. This report has been prepared to bring together all of the information on the aluminum phosphate zone in the area where the first plant to treat this material will probably be located. The area may be divided into three physiographic units, (1) the ridge, (2) the flatwoods, and (3) the valley. Maps showing distribution and grade of the aluminum phosphate zone indicate that the zone is thin or absent in the ridge unit, thickest and most persistent, and of the best grade in P2O5 and uranium in the flatwoods unit, and absent or very low in grade in the valley unit. Maps of thickness and of chemical composition show that even in favorable areas there are places where the aluminum phosphate zone is missing or of questionable economic importance. The distribution maps also show that areas of high P2O5 and high uranium content coincide closely. Areas containing thick aluminum phosphate material usually have high uranium and P2O5 contents. It is estimated that an average of 13,000 tons per day of aluminum phosphate material might be mined from this area. This figure is based on the probable amount of time, per year, that mining would be in favorable ground. When all mines in the area are in favorable ground, the tonnage per day might be about 23,000 tons. Tonnages of aluminum phosphate material have been computed for about 36 percent of the area of T. 30 S., R. 25 E., and for 18 percent of the area of T. 31 S., R. 25 E. The total inferred tonnage is about 150,000,000 short tons, with an average grade of 0.012 percent U3O8.

  6. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at themore » labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.« less

  7. Neutron-induced fission cross section measurements for uranium isotopes 236U and 234U at LANSCE

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2013-04-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard 235U foil is converted into a fission cross section ratio. In addition to previously measured data new measurements include 236U data which is being analyzed, and 234U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. Obtained data are presented in comparison with existing evaluations and previous data.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, J; Wall, D; Parker, E

    This paper presents the latest information on one of the Accelerated Highly Enriched Uranium (HEU) Disposition initiatives that resulted from the May 2002 Summit meeting between Presidents George W. Bush and Vladimir V. Putin. These initiatives are meant to strengthen nuclear nonproliferation objectives by accelerating the disposition of nuclear weapons-useable materials. The HEU Transparency Implementation Program (TIP), within the National Nuclear Security Administration (NNSA) is working to implement one of the selected initiatives that would purchase excess Russian HEU (93% 235U) for use as fuel in U.S. research reactors over the next ten years. This will parallel efforts to convertmore » the reactors' fuel core from HEU to low enriched uranium (LEU) material, where feasible. The paper will examine important aspects associated with the U.S. research reactor HEU purchase. In particular: (1) the establishment of specifications for the Russian HEU, and (2) transportation safeguard considerations for moving the HEU from the Mayak Production Facility in Ozersk, Russia, to the Y-12 National Security Complex in Oak Ridge, TN.« less

  9. Spectral Induced Polarization Response of Biofilm Formation in Hanford Vadose Zone Sediment

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Katsenovich, Y.; Lee, B.; Whitman, D.

    2017-12-01

    As a result of the U.S. Nuclear weapons program during the second world war and the cold war, there now exists a significant amount of uranium contamination at the U.S. Department of Energy Hanford site located in Washington state. In-situ immobilization of mobile uranium via injections of a soluble sodium tripolyphosphate amendment may prove effective in the formation of insoluble uranyl phosphate mineral, autunite. However, the injected polyphosphate undergoes hydrolysis in aqueous solutions to form orthophosphate, which serves as a readily available nutrient for the various microorganisms in the sediment. Sediment-filled column experiments conducted under saturated oxygen restricted conditions using geophysical Spectral Induced Polarization technique have shown the impact of microbes on the dissolution of autunite, a calcium uranyl phosphate mineral. Spectral Induced Polarization may be an effective way to track changes indicative of bacterial activities on the surrounding environment. This method can be a cost-effective alternative to the drilling of boreholes at a field scale.

  10. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less

  11. Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.

    Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.

  12. Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material

    DOE PAGES

    Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.; ...

    2015-10-01

    Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.

  13. Quantitative NDA measurements of advanced reprocessing product materials containing uranium, neptunium, plutonium, and americium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden

    The ability of inspection agencies and facility operators to measure powders containing several actinides is increasingly necessary as new reprocessing techniques and fuel forms are being developed. These powders are difficult to measure with nondestructive assay (NDA) techniques because neutrons emitted from induced and spontaneous fission of different nuclides are very similar. A neutron multiplicity technique based on first principle methods was developed to measure these powders by exploiting isotope-specific nuclear properties, such as the energy-dependent fission cross sections and the neutron induced fission neutron multiplicity. This technique was tested through extensive simulations using the Monte Carlo N-Particle eXtended (MCNPX) code and by one measurement campaign using the Active Well Coincidence Counter (AWCC) and two measurement campaigns using the Epithermal Neutron Multiplicity Counter (ENMC) with various (alpha,n) sources and actinide materials. Four potential applications of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4) weapons verification in arms control agreements. This technique still has several challenges which need to be overcome, the largest of these being the challenge of having high-precision active and passive measurements to produce results with acceptably small uncertainties.

  14. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  15. Critical Need for Plutonium and Uranium Isotopic Standards with Lower Uncertainties

    DOE PAGES

    Mathew, Kattathu Joseph; Stanley, Floyd E.; Thomas, Mariam R.; ...

    2016-09-23

    Certified reference materials (CRMs) traceable to national and international safeguards database are a critical prerequisite for ensuring that nuclear measurement systems are free of systematic biases. CRMs are used to validate measurement processes associated with nuclear analytical laboratories. Diverse areas related to nuclear safeguards are impacted by the quality of the CRM standards available to analytical laboratories. These include: nuclear forensics, radio-chronometry, national and international safeguards, stockpile stewardship, nuclear weapons infrastructure and nonproliferation, fuel fabrication, waste processing, radiation protection, and environmental monitoring. For the past three decades the nuclear community is confronted with the strange situation that improvements in measurementmore » data quality resulting from the improved accuracy and precision achievable with modern multi-collector mass spectrometers could not be fully exploited due to large uncertainties associated with CRMs available from New Brunswick Laboratory (NBL) that are used for instrument calibration and measurement control. Similar conditions prevail for both plutonium and uranium isotopic standards and for impurity element standards in uranium matrices. Herein, the current status of U and Pu isotopic standards available from NBL is reviewed. Critical areas requiring improvement in the quality of the nuclear standards to enable the U. S. and international safeguards community to utilize the full potential of modern multi-collector mass spectrometer instruments are highlighted.« less

  16. Recent aspects of uranium toxicology in medical geology.

    PubMed

    Bjørklund, Geir; Albert Christophersen, Olav; Chirumbolo, Salvatore; Selinus, Olle; Aaseth, Jan

    2017-07-01

    Uranium (U) is a chemo-toxic, radiotoxic and even a carcinogenic element. Due to its radioactivity, the effects of U on humans health have been extensively investigated. Prolonged U exposure may cause kidney disease and cancer. The geological distribution of U radionuclides is still a great concern for human health. Uranium in groundwater, frequently used as drinking water, and general environmental pollution with U raise concerns about the potential public health problem in several areas of Asia. The particular paleo-geological hallmark of India and other Southern Asiatic regions enhances the risk of U pollution in rural and urban communities. This paper highlights different health and environmental aspects of U as well as uptake and intake. It discusses levels of U in soil and water and the related health issues. Also described are different issues of U pollution, such as U and fertilizers, occupational exposure in miners, use and hazards of U in weapons (depleted U), U and plutonium as catalysts in the reaction between DNA and H 2 O 2, and recycling of U from groundwater to surface soils in irrigation. For use in medical geology and U research, large databases and data warehouses are currently available in Europe and the United States. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Critical Need for Plutonium and Uranium Isotopic Standards with Lower Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, Kattathu Joseph; Stanley, Floyd E.; Thomas, Mariam R.

    Certified reference materials (CRMs) traceable to national and international safeguards database are a critical prerequisite for ensuring that nuclear measurement systems are free of systematic biases. CRMs are used to validate measurement processes associated with nuclear analytical laboratories. Diverse areas related to nuclear safeguards are impacted by the quality of the CRM standards available to analytical laboratories. These include: nuclear forensics, radio-chronometry, national and international safeguards, stockpile stewardship, nuclear weapons infrastructure and nonproliferation, fuel fabrication, waste processing, radiation protection, and environmental monitoring. For the past three decades the nuclear community is confronted with the strange situation that improvements in measurementmore » data quality resulting from the improved accuracy and precision achievable with modern multi-collector mass spectrometers could not be fully exploited due to large uncertainties associated with CRMs available from New Brunswick Laboratory (NBL) that are used for instrument calibration and measurement control. Similar conditions prevail for both plutonium and uranium isotopic standards and for impurity element standards in uranium matrices. Herein, the current status of U and Pu isotopic standards available from NBL is reviewed. Critical areas requiring improvement in the quality of the nuclear standards to enable the U. S. and international safeguards community to utilize the full potential of modern multi-collector mass spectrometer instruments are highlighted.« less

  18. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    USGS Publications Warehouse

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  19. Aerial radiometric and magnetic reconnaissance survey of Baltimore, Washington, and Richmond Quadrangles: Washington Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-09-01

    The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Washington Quadrangle, Maryland and Virginia, are presentd. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed six uranium anomalies worthy of field checking as possible prospects. Four (1, 2, 7, and 8) are located over sediments that may have long-range future potential for low-grade sedimentary uranium deposits. In particular, anomalies 1 and 8 are related to a unit (Triassic New Oxford Formation) known to contain uranium occurrences in Pennsylvania. One anomaly (3) may be associatedmore » with vein-type mineralization in augen gneiss, and one (12) may be caused by vein-type or hydrothermal uranium associated with a north-south striking fault at the boundary between the Appalachian Highlands and the Coastal Plain physiographic provinces.« less

  20. A Physicist Looks at the Terrorist Threat

    NASA Astrophysics Data System (ADS)

    Muller, Richard

    2009-05-01

    Many people fear a terrorist nuclear device, smuggled into the United States, as the one weapon that could surpass the destruction and impact of 9-11. I'll review the design of nuclear weapons, with emphasis on the kinds that can be developed by rogue nations, terrorist groups, and high-school students. Saddam, prior to the first gulf war, was developing a uranium bomb, similar to the one that destroyed Hiroshima. His calutrons (named after my university) were destroyed by the United Nations. The North Korean nuclear weapon was, like the U.S. bomb used on Nagasaki, based on plutonium. Its test released the energy equivalent of about 400 tons of TNT. Although some people have speculated that they were attempting to build a small bomb, it is far more likely that this weapon was a fizzle, with less than 1 percent of the plutonium exploded. In contrast, the energy released from burning jet fuel at the 9-11 World Trade Center attack was the equivalent of 900 tons of TNT for each plane -- over twice that of the North Korean Nuke. The damage came from the fact that gasoline delivers 10 kilocalories per gram, about 15 times the energy of an equal weight of TNT. It is this huge energy per gram that also accounts for our addiction to gasoline; per gram, high performance lithium-ion computer batteries carry only 1 percent as much energy. A dirty bomb (radiological weapon) is also unattractive to terrorists because of the threhold effect: doses less than 100 rem produce no radiation illness and will leave no dead bodies at the scene. That may be why al Qaeda instructed Jose Padilla to abandon his plans for a dirty bomb attack in Chicago, and to try a fossil fuel attack (natural gas) instead. I will argue that the biggest terrorist threat is the conventional low-tech one, such as an airplane attack on a crowded stadium using the explosive fuel that they can legally buy at the corner station.

  1. A top-down assessment of energy, water and land use in uranium mining, milling, and refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Schneider; B. Carlsen; E. Tavrides

    2013-11-01

    Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, watermore » and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.« less

  2. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits, Texas Coastal Plain, USA

    USGS Publications Warehouse

    Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark

    2017-01-01

    The coincidence of a number of geologic and climatic factors combined to create conditions favorable for the development of mineable concentrations of uranium hosted by Eocene through Pliocene sandstones in the Texas Coastal Plain. Here 254 uranium occurrences, including 169 deposits, 73 prospects, 6 showings and 4 anomalies, have been identified. About 80 million pounds of U3O8 have been produced and about 60 million pounds of identified producible U3O8 remain in place. The development of economic roll-type uranium deposits requires a source, large-scale transport of uranium in groundwater, and deposition in reducing zones within a sedimentary sequence. The weight of the evidence supports a source from thick sequences of volcanic ash and volcaniclastic sediment derived mostly from the Trans-Pecos volcanic field and Sierra Madre Occidental that lie west of the region. The thickest accumulations of source material were deposited and preserved south and west of the San Marcos arch in the Catahoula Formation. By the early Oligocene, a formerly uniformly subtropical climate along the Gulf Coast transitioned to a zoned climate in which the southwestern portion of Texas Coastal Plain was dry, and the eastern portion humid. The more arid climate in the southwestern area supported weathering of volcanic ash source rocks during pedogenesis and early diagenesis, concentration of uranium in groundwater and movement through host sediments. During the middle Tertiary Era, abundant clastic sediments were deposited in thick sequences by bed-load dominated fluvial systems in long-lived channel complexes that provided transmissive conduits favoring transport of uranium-rich groundwater. Groundwater transported uranium through permeable sandstones that were hydrologically connected with source rocks, commonly across formation boundaries driven by isostatic loading and eustatic sea level changes. Uranium roll fronts formed as a result of the interaction of uranium-rich groundwater with either (1) organic-rich debris adjacent to large long-lived fluvial channels and barrier–bar sequences or (2) extrinsic reductants entrained in formation water or discrete gas that migrated into host units via faults and along the flanks of salt domes and shale diapirs. The southwestern portion of the region, the Rio Grande embayment, contains all the necessary factors required for roll-type uranium deposits. However, the eastern portion of the region, the Houston embayment, is challenged by a humid environment and a lack of source rock and transmissive units, which may combine to preclude the deposition of economic deposits. A grade and tonnage model for the Texas Coastal Plain shows that the Texas deposits represent a lower tonnage subset of roll-type deposits that occur around the world, and required aggregation of production centers into deposits based on geologic interpretation for the purpose of conducting a quantitative mineral resource assessment.

  3. Intense X-ray machine for penetrating radiography

    NASA Astrophysics Data System (ADS)

    Lucht, Roy A.; Eckhouse, Shimon

    Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, G.; Liu, C.; Si, S.

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis ofmore » reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)« less

  5. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  6. Self-harm and suicide attempts among high-risk, urban youth in the U.S.: shared and unique risk and protective factors.

    PubMed

    Swahn, Monica H; Ali, Bina; Bossarte, Robert M; Van Dulmen, Manfred; Crosby, Alex; Jones, Angela C; Schinka, Katherine C

    2012-01-01

    The extent to which self-harm and suicidal behavior overlap in community samples of vulnerable youth is not well known. Secondary analyses were conducted of the "linkages study" (N = 4,131), a cross-sectional survey of students enrolled in grades 7, 9, 11/12 in a high-risk community in the U.S. in 2004. Analyses were conducted to determine the risk and protective factors (i.e., academic grades, binge drinking, illicit drug use, weapon carrying, child maltreatment, social support, depression, impulsivity, self-efficacy, parental support, and parental monitoring) associated with both self-harm and suicide attempt. Findings show that 7.5% of participants reported both self-harm and suicide attempt, 2.2% of participants reported suicide attempt only, and 12.4% of participants reported self-harm only. Shared risk factors for co-occurring self-harm and suicide attempt include depression, binge drinking, weapon carrying, child maltreatment, and impulsivity. There were also important differences by sex, grade level, and race/ethnicity that should be considered for future research. The findings show that there is significant overlap in the modifiable risk factors associated with self-harm and suicide attempt that can be targeted for future research and prevention strategies.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk,A.; Rosenthal,M.; Efremov, G. V.

    Multilateral mechanisms for the fuel cycle are seen as a potentially important way to create an industrial infrastructure that will support a renaissance and at the same time not contribute to the risk of nuclear proliferation. In this way, international nuclear fuel cycle centers for enrichment can help to provide an assurance of supply of nuclear fuel that will reduce the likelihood that individual states will pursue this sensitive technology, which can be used to produce nuclear material directly usable nuclear weapons. Multinational participation in such mechanisms can also potentially promote transparency, build confidence, and make the implementation of IAEAmore » safeguards more effective or more efficient. At the same time, it is important to ensure that there is no dissemination of sensitive technology. The Russian Federation has taken a lead role in this area by establishing an International Uranium Enrichment Center (IUEC) for the provision of enrichment services at its uranium enrichment plant located at the Angarsk Electrolysis Chemical Complex (AECC). This paper describes how the IUEe is organized, who its members are, and the steps that it has taken both to provide an assured supply of nuclear fuel and to ensure protection of sensitive technology. It also describes the relationship between the IUEC and the IAEA and steps that remain to be taken to enhance its assurance of supply. Using the IUEC as a starting point for discussion, the paper also explores more generally the ways in which features of such fuel cycle centers with multinational participation can have an impact on safeguards arrangements, transparency, and confidence-building. Issues include possible lAEA safeguards arrangements or other links to the IAEA that might be established at such fuel cycle centers, impact of location in a nuclear weapon state, and the transition by the IAEA to State Level safeguards approaches.« less

  8. DETERMINING THE INFECTIOUS DOSE-50 FOR WEAPONS-GRADE ANTHRAX IN RHESUS MONKEYS USING A BIOLOGICALLY-BASED MODEL

    EPA Science Inventory

    One of the significant discoveries following the bioterrorist episodes beginning in October 2001 was that a modified form of Bacillus anthracis (Ames strain) was the causative agent. Physical alteration of the inoculum had occurred; the electrostatic charge had been removed and t...

  9. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    PubMed

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromfield, C.S.; Grauch, R.I.; Otton, J.K.

    The Richfield Quadrangle in west-central Utah was evaluated to identify areas favorable for the occurrence of uranium deposits known or likely to contain 100 tons of uranium with an average grade of not less than 100 ppM U/sub 3/O/sub 8/. Geologic reconnaissance was made of all known environments thought to be favorable for uranium deposits, and a representative selection of uranium occurrences reported in the literature was visited. Geochemical analyses from rock and limited water samples were used in the evaluation. Preliminary and incomplete aeroradiometric data and hydrogeochemical and stream-sediment analyses arrived too late in the program to be field-checkedmore » or to be adequately analyzed for this report. Two areas favorable for uranium deposits were delineated: (1) volcanogenic deposits (class 500 to 599) in association with Miocene Mount Belknap rhyolite, and acidic plutons in the Marysvale Volcanic Field in the Antelope Range and Tushar Mountains; and (2) volcanogenic (class 500 to 599) and/or magmatic hydrothermal deposits (class 330) associated with Miocene high-silica high-alkali rhyolite tuffs, flows, and hypabyssal intrusives in volcanic or subvolcanic environments in the southern Wah Wah Mountains.« less

  11. Reconnaissance of uranium and copper deposits in parts of New Mexico, Colorado, Utah, Idaho, and Wyoming

    USGS Publications Warehouse

    Gott, Garland B.; Erickson, Ralph L.

    1952-01-01

    Because of the common association of uranium and copper in several of the commercial uranium deposits in the Colorado Plateau Province, a reconnaissance was made of several known deposits of copper disseminated through sandstone to determine whether they might be a source of uranium. In order to obtain more information regarding the relationship between copper, uranium and carbonaceous materials, some of the uraniferious asphaltrite deposits in the Shinarump conglomerate along the west flank of the San Rafael Swell were also investigated briefly. During this reconnaissance 18 deposits were examined in New Mexico, eight in Utah, two in Idaho, and one each in Wyoming and Colorado. No uranium deposits of commercial grade are associated with the copper deposits that were examined. The uraniferous asphaltites in the Shinarump conglomerate of Triassic age on the west flank of the San Rafael Swell, however, are promising from the standpoint of commercial uranium production. Spectrographic analyses of crude oil, asphalt, and bituminous shales show a rather consistent suite of trace metals including vanadium, nickel, copper, cobalt, chromium, lead zinc, and molybdenum. The similarity of the metal assemblage, including uranium of the San Rafael Swell asphaltites, to the metal assemblage in crude oil and other bituminous materials suggests that these metals were concentrated in the asphaltites from petroleum. However, the hypothesis that uranium minerals were already present before the hydrocarbons were introduced and that some sort of replacement or uranium minerals by carbon compounds was effected after the petroleum migrated into the uranium deposit should not be disregarded. The widespread association of uranium with asphaltic material suggests that it also may have been concentrated by some agency connected with the formation of petroleum. The problem of the association of uranium and other trace metals with hydrocarbons should be studied further both in the field and in the laboratory.

  12. Plutonium

    NASA Astrophysics Data System (ADS)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  13. U-Sries Disequilibra in Soils, Pena Blanca Natural Analog, Chihuahua, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. French; E. Anthony; P. Goodell

    2006-03-16

    The Nopal I uranium deposit located in the Sierra Pena Blanca, Mexico. The deposit was mined in the early 1980s, and ore was stockpiled close by. This stockpile area was cleared and is now referred to as the Prior High Grade Stockpile (PHGS). Some of the high-grade boulders from the site rolled downhill when it was cleared in the 1990s. For this study soil samples were collected from the alluvium surrounding and underlying one of these boulders. A bulk sample of the boulder was also collected. Because the Prior High Grade Stockpile had no ore prior to the 1980s amore » maximum residence time for the boulder is about 25 years, this also means that the soil was at background as well. The purpose of this study is to characterize the transport of uranium series radionuclides from ore to the soil. Transport is characterized by determining the activities of individual radionuclides and daughter to parent ratios. Isotopes of the uranium series decay chain detected include {sup 210}Pb, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 214}Pb, and {sup 214}Bi. Peak areas for each isotope are determined using gamma-ray spectroscopy with a Canberra Ge (Li) detector and GENIE 2000 software. The boulder sample is close to secular equilibrium when compared to the standard BL-5 (Beaver Lodge Uraninite from Canada). Results for the soils, however, indicate that some daughter/parent pairs are in secular disequilibrium. These daughter/parent (D/P) ratios include {sup 230}Th/{sup 234}U, which is greater than unity, {sup 226}Ra/{sup 230}Th, which is also greater than unity, and {sup 210}Pb/{sup 214}Bi, which is less than unity. The gamma-ray spectrum for organic material lacks {sup 230}Th peaks, but contains {sup 234}U and {sup 226}Ra, indicating that plants preferentially incorporate {sup 226}Ra. Our results, combined with previous studies require multistage history of mobilization of the uranium series radionuclides. Earlier studies at the ore zone could limit the time span for mobilization only to a few thousand years. The contribution of this study is that the short residence time of the ore at the Prior High Grade Stockpile requires a time span for mobilization of 20-30 years.« less

  14. Optical and Electronic Transport Properties of Luminescent Semiconductors, Amorphous Materials and Metastable Solids.

    DTIC Science & Technology

    1979-02-26

    Williams, Electronic States of Semiconductors with Graded Periodic Inhomogeneities, Phys. Rev. Eli, 2200 (1975) . 7. P. DiBona and R. Ewing, ESR of...Fellow) - K. Daghir, Ph.D. (1974) (IBM) P. DiBona , M.S. (1967), Ph.D. (1974) (U.S. Navy, Surface Weapons Research Laboratory) D. Hoover (current

  15. A fast semi-quantitative method for Plutonium determination in an alpine firn/ice core

    NASA Astrophysics Data System (ADS)

    Gabrieli, J.; Cozzi, G.; Vallelonga, P.; Schwikowski, M.; Sigl, M.; Boutron, C.; Barbante, C.

    2009-04-01

    Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Plutonium, unlike uranium, is essentially anthropogenic and it was first produced and isolated in 1940 by deuteron bombardment of uranium in the cyclotron of Berkeley University. It exists in five main isotopes, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, derived from civilian and military sources (weapons production and detonation, nuclear reactors, nuclear accidents). In the environment, 239Pu is the most abundant isotope. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l.), dating from 1945 to 1991. The239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an ICP-SFMS (Thermo Element2) equipped with a desolvation system (APEX). 238UH+ interferences were negligible for U concentrations lower than 50 ppt as verified both in spiked fresh snow and pre-1940 ice samples. The shape of 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak starts in 1954/55 to 1958 and includes the first testing period which reached a maximum in 1958. Despite a temporary halt in testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the sign of the "Limited Test Ban Treaty" between USA and URSS in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975) is characterized by irregular Pu profiles with smaller peaks (about 20-30% compared to the 1964 peak) which could be due to French and Chinese tests. Comparison with the Pu profiles obtained from the Col du Dome and Belukha ice cores by AMS (Accelerator Mass Spectrometry) shows very good agreement. Considering the semi-quantitative method and the analytical uncertainty, the results are also quantitatively comparable. However, the Pu concentrations at Colle Gnifetti are normally 2-3 times greater than in Col du Dome. This could be explained by different air mass transport or, more likely, different accumulation rates at each site.

  16. Search for uranium in western United States

    USGS Publications Warehouse

    McKelvey, Vincent Ellis

    1953-01-01

    The search for uranium in the United States is one of the most intensive ever made for any metal during our history. The number of prospectors and miners involved is difficult to estimate but some measure of the size of the effort is indicated by the fact that about 500 geologists are employed by government and industry in the work--more than the total number of geologists engaged in the study of all other minerals together except oil. The largest part of the effort has been concentrated in the western states. No single deposit of major importance by world standards has been discovered but the search has led to the discovery of important minable deposits of carnotite and related minerals on the Colorado Plateau; of large, low grade deposits of uranium in phosphates in the northwestern states and in lignites in the Dakotas, Wyoming, Idaho and New Mexico; and of many new and some promising occurrences of uranium in carnotite-like deposits and in vein deposits. Despite the fact that a large number of the districts considered favorable for the occurrence of uranium have already been examined, the outlook for future discoveries is bright, particularly for uranium in vein and in carnotite-like deposits in the Rocky Mountain States.

  17. Optimizing the separation performance of a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Wood, H. G.

    1997-11-01

    Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.

  18. Environmental and health consequences of depleted uranium use in the 1991 Gulf War.

    PubMed

    Bem, Henryk; Bou-Rabee, Firyal

    2004-03-01

    Depleted uranium (DU) is a by-product of the 235U radionuclide enrichment processes for nuclear reactors or nuclear weapons. DU in the metallic form has high density and hardness as well as pyrophoric properties, which makes it superior to the classical tungsten armour-piercing munitions. Military use of DU has been recently a subject of considerable concern, not only to radioecologists but also public opinion in terms of possible health hazards arising from its radioactivity and chemical toxicity. In this review, the results of uranium content measurements in different environmental samples performed by authors in Kuwait after Gulf War are presented with discussion concerning possible environmental and health effects for the local population. It was found that uranium concentration in the surface soil samples ranged from 0.3 to 2.5 microg g(-1) with an average value of 1.1 microg g(-1), much lower than world average value of 2.8 microg g(-1). The solid fallout samples showed similar concentrations varied from 0.3 to 1.7 microg g(-1) (average 1.47 microg g(-1)). Only the average concentration of U in solid particulate matter in surface air equal to 0.24 ng g(-1) was higher than the usually observed values of approximately 0.1 ng g(-1) but it was caused by the high dust concentration in the air in that region. Calculated on the basis of these measurements, the exposure to uranium for the Kuwait and southern Iraq population does not differ from the world average estimation. Therefore, the widely spread information in newspapers and Internet (see for example: [CADU NEWS, 2003. http://www.cadu.org.uk/news/index.htm (3-13)]) concerning dramatic health deterioration for Iraqi citizens should not be linked directly with their exposure to DU after the Gulf War.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, J. A.; Feldman, E. E.; Wilson, E. H.

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains themore » results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo (U-10Mo).« less

  20. Uranium and other contaminants in hair from the parents of children with congenital anomalies in Fallujah, Iraq

    PubMed Central

    2011-01-01

    Background Recent reports have drawn attention to increases in congenital birth anomalies and cancer in Fallujah Iraq blamed on teratogenic, genetic and genomic stress thought to result from depleted Uranium contamination following the battles in the town in 2004. Contamination of the parents of the children and of the environment by Uranium and other elements was investigated using Inductively Coupled Plasma Mass Spectrometry. Hair samples from 25 fathers and mothers of children diagnosed with congenital anomalies were analysed for Uranium and 51 other elements. Mean ages of the parents was: fathers 29.6 (SD 6.2); mothers: 27.3 (SD 6.8). For a sub-group of 6 women, long locks of hair were analysed for Uranium along the length of the hair to obtain information about historic exposures. Samples of soil and water were also analysed and Uranium isotope ratios determined. Results Levels of Ca, Mg, Co, Fe, Mn, V, Zn, Sr, Al, Ba, Bi, Ga, Pb, Hg, Pd and U (for mothers only) were significantly higher than published mean levels in an uncontaminated population in Sweden. In high excess were Ca, Mg, Sr, Al, Bi and Hg. Of these only Hg can be considered as a possible cause of congenital anomaly. Mean levels for Uranium were 0.16 ppm (SD: 0.11) range 0.02 to 0.4, higher in mothers (0.18 ppm SD 0.09) than fathers (0.11 ppm; SD 0.13). The highly unusual non-normal Fallujah distribution mean was significantly higher than literature results for a control population Southern Israel (0.062 ppm) and a non-parametric test (Mann Whitney-Wilcoxon) gave p = 0.016 for this comparison of the distribution. Mean levels in Fallujah were also much higher than the mean of measurements reported from Japan, Brazil, Sweden and Slovenia (0.04 ppm SD 0.02). Soil samples show low concentrations with a mean of 0.76 ppm (SD 0.42) and range 0.1-1.5 ppm; (N = 18). However it may be consistent with levels in drinking water (2.28 μgL-1) which had similar levels to water from wells (2.72 μgL-1) and the river Euphrates (2.24 μgL-1). In a separate study of a sub group of mothers with long hair to investigate historic Uranium excretion the results suggested that levels were much higher in the past. Uranium traces detected in the soil samples and the hair showed slightly enriched isotopic signatures for hair U238/U235 = (135.16 SD 1.45) compared with the natural ratio of 137.88. Soil sample Uranium isotope ratios were determined after extraction and concentration of the Uranium by ion exchange. Results showed statistically significant presence of enriched Uranium with a mean of 129 with SD5.9 (for this determination, the natural Uranium 95% CI was 132.1 < Ratio < 144.1). Conclusions Whilst caution must be exercised about ruling out other possibilities, because none of the elements found in excess are reported to cause congenital diseases and cancer except Uranium, these findings suggest the enriched Uranium exposure is either a primary cause or related to the cause of the congenital anomaly and cancer increases. Questions are thus raised about the characteristics and composition of weapons now being deployed in modern battlefields PMID:21888647

  1. Using the Theory of Planned Behavior to Predict Aggression and Weapons Carrying In Urban African American Early Adolescent Youth

    PubMed Central

    Finigan-Carr, Nadine M.; Cheng, Tina L.; Gielen, Andrea; Haynie, Denise L.; Simons-Morton, Bruce

    2015-01-01

    Aggressive and weapons carrying behaviors are indicative of youth violence. The Theory of Planned Behavior (Ajzen, 1991) is used in the current analysis to improve our understanding of violence-related behaviors. We examine the influence of perceived behavioral control (self-control and decision making) as a part of the overall framework for understanding the risk and protective factors for aggressive behaviors and weapons carrying. As the baseline assessment of an intervention trial, survey data were collected on 452 sixth grade students (50% girls; 96.6% African American; mean age 12.0) from urban middle schools. 18.4% carried a weapon in the prior 12 months with boys more likely to carry a weapon than girls (22.5% vs. 14.2%, p=0.02). 78.4% of youth reported aggressive behaviors with no significant differences found between girls (81.3%) and boys (75.5%). In logistic regression models, having peers who engage in problem behaviors was found to be a significant risk factor. Youth with peers who engaged in numerous problem behaviors were 5 times more likely to be aggressive than those who reported little or no peer problem behaviors. Teens who reported that their parents opposed aggression (OR: 0.76; CI: 0.66, 0.88) and who used self-control strategies (OR: 0.59; CI: 0.39, 0.87) were found to report less aggressive behaviors. For weapons carrying, being a girl (OR: 0.56; CI: 0.32, 0.97) and self-control (OR: 0.52; CI: 0.29, 0.92) were protective factors. This study demonstrated that the TPB may provide a useful framework for the development of violence prevention programs. PMID:25228369

  2. Involvement of school students in fights with weapons: prevalence and associated factors in Brazil.

    PubMed

    Melo, Alice Cristina Medeiros; Garcia, Leila Posenato

    2016-09-22

    Violence, as well as other behaviors, is often intensified during adolescence and early adulthood. The objective of this study is estimate the prevalence of Brazilian school students involvement in fights with weapons and to analyze the associated factors. This is a cross-sectional study using data from the National School Student Health Survey conducted in 2012 with 9 th grade elementary school students attending 2842 schools in all 27 Brazilian Federative Units. The outcome studied was involvement in fights with firearms and/or cold weapons in the 30 days prior to the interview. Poisson regression was used to estimate the prevalence ratios and 95 % confidence intervals (95 % CI). The analyses were stratified by sex. Fifty seven thousand and eighty nine female students and 52,015 male students were included; the prevalence of their involvement in fights with weapons was 7.2 (95 % CI 6.9-7.5) and 13.8 (95 % CI 13.4-14.3), respectively. In the adjusted analysis the factors associated with male student involvement in fights with weapons were: being older, working, having smoked a cigarette, consumed alcoholic beverages and illicit drugs recently, insomnia, not having any close friends, skipping classes without parental supervision, having suffered aggression from a family member, reporting feeling unsafe on the way to or from school and/or at school. The same associated factors were found among female students in addition to not living with their father and/or mother and having suffered bullying. There was no association with type of school in either sex. Involvement in fights with weapons was greater among older male students. Health-risk behaviors, mental health characteristics, parental supervision and context of violence also showed association with the outcomes.

  3. Studying How Plants Defend Themselves: A Chemical Weapon Produced by Chilli Fruit

    ERIC Educational Resources Information Center

    Nantawanit, Nantawan; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2011-01-01

    Students often prefer to study animals rather than plants, because they see plants as passive, less interesting organisms. This paper proposes a simple hands-on laboratory exercise for high-school students (grade 12) to arouse their interest in learning about plants and to demonstrate to them that plants are active organisms capable of defending…

  4. WEAPONS-GRADE ANTHRAX: DETERMINING THE ID-50 (INHALATION) IN RHESUS MONKEYS USING A BIOLOGICALLY-BASED MODEL FOR USE IN HUMAN RISK ASSESSMENT

    EPA Science Inventory

    One of the significant discoveries following the bioterrorist attacks of October 2001 was that a modified form of Bacillus anthracis (Ames strain) was the causative agent. Physical alteration of the inoculum had occurred; the electrostatic charge had been altered and the resultin...

  5. Optimizing the Sustainment of U.S. Army Weapon Systems

    DTIC Science & Technology

    2016-03-17

    Current Military Rank/Civilian Grade ................................................................................ 33 Figure 9: Education Level...across the military services from lows experienced in the wake of fiscal year 2013 sequestration when only 2 Army non-missioned brigade combat teams...committee notes that recovery from these ebbs in readiness has taken time, with most military services reporting a return to pre-sequester levels of

  6. The National School Safety Center's Report on School Associated Violent Deaths

    ERIC Educational Resources Information Center

    National School Safety Center (NJ1), 2010

    2010-01-01

    A school-associated violent death is any homicide, suicide, or weapons-related violent death in the United States in which the fatal injury occurred: (1) on the property of a functioning public, private or parochial elementary or secondary school, Kindergarten through grade 12, (including alternative schools); (2) on the way to or from regular…

  7. Geologic report on the San Rafael Swell Drilling Project, San Rafael Swell, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bluhm, C.T.; Rundle, J.G.

    1981-08-01

    Twenty-two holes totaling 34,874 feet (10,629.6 meters) were rotary and core drilled on the northern and western flanks of the San Rafael Swell to test fluvial-lacustrine sequences of the Morrison Formation and the lower part of the Chinle Formation. The objective of the project was to obtain subsurface data so that improved uranium resource estimates could be determined for the area. Although the Brushy Basin and the Salt Wash Members of the Morrison Formation are not considered favorable in this area for the occurrence of significant uranium deposits, uranium minerals were encountered in several of the holes. Some spotty ormore » very low-grade mineralization was also encountered in the White Star Trunk area. The lower part of the Chinle Formation is considered to be favorable for potentially significant uranium deposits along the west flank of the San Rafael Swell. One hole (SR-202) east of Ferron, Utah, intersected uranium, silver, molybdenum, and copper mineralization. More exploratory drilling in the vicinity of this hole is recommended. As a result of the study of many geochemical analyses and a careful determination of the lithology shown by drilling, a sabkha environment is suggested for the concentration of uranium, zinc, iron, lead, copper, silver, and perhaps other elements in parts of the Moody Canyon Member of the Moenkopi Formation.« less

  8. 10. AERIAL VIEW LOOKING NORTHWEST AT THE 400AREA COMPLEX. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW LOOKING NORTHWEST AT THE 400-AREA COMPLEX. THIS AREA OF THE PLANT MANUFACTURED NON-PLUTONIUM WEAPONS COMPONENTS FROM BERYLLIUM, DEPLETED URANIUM, AND STAINLESS STEEL. THE 400 - AREA ALSO INCLUDED A FACILITY FOR THE MODIFICATION OF SAFE SECURE TRANSPORT VEHICLES FOR SPECIAL NUCLEAR MATERIALS BEING SHIPPED TO AND FROM THE SITE. BUILDING 444, IN THE UPPER RIGHT EDGE OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT A. THE LARGE BUILDING IN THE TOP OF THE PHOTOGRAPH IS BUILDING 460, BUILT AS A STATE-OF-THE-ART STAINLESS STEEL MANUFACTURING FACILITY (6/27/95). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  9. Research Spotlight: Potential pathways of radioactive contaminants to surface waters

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2011-02-01

    From the 1940s to the end of the Cold War, the U.S. Department of Energy maintained production facilities for manufacturing nuclear weapons along the Columbia River north of Richland, Wash. Known as the Hanford Site, the Rhode Island-sized area contains more than 53 million gallons of radioactive waste and is the location of a massive environmental cleanup. Of particular concern is that when the facility was active, fluids containing 33-59 tons of uranium were discharged into the shallow subsurface aquifer underneath Hanford. Studies suggest that this pollution is pervasively moving with the groundwater in the direction of the Columbia River. (Water Resources Research, doi:10.1029/2010WR009110, 2010)

  10. Atomic Bomb: The Story of the Manhattan Project; How nuclear physics became a global geopolitical game-changer

    NASA Astrophysics Data System (ADS)

    Reed, Bruce Cameron

    2015-06-01

    This volume, prepared by an acknowledged expert on the Manhattan Project, gives a concise, fast-paced account of all major aspects of the project at a level accessible to an undergraduate college or advanced high-school student familiar with some basic concepts of energy, atomic structure, and isotopes. The text describes the underlying scientific discoveries that made nuclear weapons possible, how the project was organized, the daunting challenges faced and overcome in obtaining fissile uranium and plutonium, and in designing workable bombs, the dramatic Trinity test carried out in the desert of southern New Mexico in July 1945, and the bombings of Hiroshima and Nagasaki.

  11. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    USGS Publications Warehouse

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures), permits use of geologic features on 1:500,000 to 1:100,000 scale maps. Geochemical databases for volcanic rocks are postulated to be more effective than databases for stream sediments or surface radioactivity, both of which tend to be inconsistent because of variable leaching of uranium from soils. Based on empirical associations, spatial associations with areas of wet paleoclimate, adjacent oil and gas fields, or evaporite beds are deemed positive. Most difficult to estimate is the location of depositional traps and reduction zones, in part because they are mere points at regional scale. Grade and tonnage data are reviewed and discussed for 32 deposits in the world. Experience of mining engineers and geologists in Asia suggests that tonnages could be higher than presently known in the Western Hemisphere. Geological analysis, and new data from Asia, suggest a typical or median deposit tonnage of about 5,000 tonnes U3O8, and an optimistic forecast of discoveries in the range of 5,000 to 20,000 tonnes U3O8. The likely grade of undiscovered deposits could be about 0.15 percent U3O8 , based on both western and eastern examples. Volcanic terrane is under-explored, relative to other kinds of uranium deposits, and is considered a favorable frontier area for new discoveries.

  12. The Role of Sociability Self-Concept in the Relationship between Exposure to and Concern about Aggression in Middle School

    ERIC Educational Resources Information Center

    Miller, Janice Williams

    2013-01-01

    This study examined middle grades students' sociability self-concept and their perceptions about feeling safe at school. Participants' (N = 420) exposure to school aggression and concern about the potential for violence at school were measured across four critical areas: fighting, bullying, stealing, and seeing weapons. Results indicated a limited…

  13. Exposure to Violence and Sexual Risk among Early Adolescents in Urban Middle Schools

    ERIC Educational Resources Information Center

    Coyle, Karin K.; Guinosso, Stephanie A.; Glassman, Jill R.; Anderson, Pamela M.; Wilson, Helen W.

    2017-01-01

    This article examines the relationship between exposure to violence, fear of exposure to violence, and sexual risk among a sample of urban middle school youth. The sample included 911 seventh-grade students who completed self-report surveys. Approximately 20% of the sample reported at least one direct threat or injury with a weapon in the past 3…

  14. With Speech as My Weapon: Emma Goldman and the First Amendment. A Unit of Study for Grades 8-12.

    ERIC Educational Resources Information Center

    Falk, Candace; Cole, Stephen; Thomas, Sally

    This supplementary teaching unit provides students with the opportunity to explore freedom of expression by focusing on Emma Goldman (1869-1940), a major figure in the history of American radicalism and feminism. In a period when the expression of controversial ideas was dangerous, Goldman insisted on her right to challenge conventions. She…

  15. The Authoritative Parenting Index: predicting health risk behaviors among children and adolescents.

    PubMed

    Jackson, C; Henriksen, L; Foshee, V A

    1998-06-01

    Public health research demonstrates increasing interest in mobilizing parental influence to prevent health risk behaviors among children and adolescents. This research focuses on authoritative parenting, which previous studies suggest can prevent health risk behaviors among youth. To evaluate the reliability and validity of a new survey measure of authoritative parenting, data from studies of (1) substance use in a sample of 1,236 fourth- and sixth-grade students; (2) weapon carrying and interpersonal violence in a sample of 1,490 ninth- and tenth-grade students, and (3) anger, alienation, and conflict resolution in a sample of 224 seventh- and eighth-grade students were analyzed. The Authoritative Parenting Index had a factor structure consistent with a theoretical model of the construct; had acceptable reliability; showed grade, sex, and ethnic differences consistent with other studies; and identified parenting types that varied as hypothesized with multiple indicators of social competence and health risk behaviors among children and adolescents.

  16. Reconnaissance of radioactive rocks of Maine

    USGS Publications Warehouse

    Nelson, John M.; Narten, Perry F.

    1951-01-01

    The state of Maine was traversed with car-mounted Geiger-Mueller equipment in the late summer of 1948 and the radioactivity of approximately 4,600 miles of road was logged. All samples were analyzed, both in the field by comparing the radioactivity of each sample to the radioactivity of a stranded measured with a simple scaling modification of a portable counter, and in the Geological Survey’s Trace Elements Section Washington Laboratory. Differences between both types of analyses were negligible. The maximum equivalent uranium content of the most radioactive rocks thus analyzed was 0.008 percent. A 1,400-square-mile abnormally radioactive province in southwestern Maine was outlined. The outcrop data obtained from car traversing are evaluated statistically. Cumulative frequency distribution curves are drawn to show the distribution of outcrops at various levels of radioactivity, and straight-line extensions are made to show to maximum probable grade for various rock types and areas in Maine. A maximum grade of 0.055 percent equivalent uranium is thus predicted for the entire state. This prediction necessarily is a broad generalization because large areas of Main are inaccessible for car traversing. A concept of evaluation of an area for possible mineral deposits is proposed on the basis of lithology, and observed and indicated ranges in grade.

  17. Possession of weapon and school violence among adolescents and their association with history of traumatic brain injury, substance use and mental health issues.

    PubMed

    Ilie, Gabriela; Mann, Robert E; Boak, Angela; Hamilton, Hayley A; Rehm, Jürgen; Cusimano, Michael D

    2017-02-01

    Assessment of the association between illegal possession of weapon and assault on school property among adolescents with and without a history of traumatic brain injury (TBI) while assessing risk factors for these outcomes. Data were derived from the Centre for Addiction and Mental Health's 2013 Ontario Student Drug Use and Health Survey completed by students in grades 7-12 (ages 11-20). In this sample of 5478 adolescents, 6.1% (95% CI: 5.0, 7.4) reported carrying a weapon (e.g., gun or knife) on school property, 10.8% (95% CI: 9.5, 12.3) were engaged in a physical fight and 6.4% (95% CI: 5.4, 7.6) reported having beat up or hurt someone on purpose at school, during last year. Youth who reported carrying a weapon, who were engaged in a physical fight and those who assaulted peers on school property during last year had statistically significantly higher odds of reporting a history of TBIs, being male, in first years of high-school, scored positive for elevated psychological distress, and were current regular alcohol (weapon possession only) and cannabis users. Previously it was thought that alcohol and drugs were the main contributors to school violence. Here we show that history of TBIs is yet another significant predictor of violence at school among adolescents. The results suggest that school vigilance and combined violence and TBI prevention, treatment and rehabilitation programs in this population are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Preliminary report on uranium deposits in the Miller Hill area, Carbon County, Wyoming

    USGS Publications Warehouse

    Love, J.D.

    1953-01-01

    A sequence of radioactive rocks of Miocene (?) age, the Browns Park formation, in the Miller Hill area of southern Wyoming is more than 1,000 feet thick. The formation crops out in an area of approximately 600 square miles, and consists of a basal conglomerate, tuffs, tuffaceous limy sandstones, and thin persistent radioactive algal limestones. Uranium is concentrated in both algal limestones and in tuffaceous limy sandstones. The uranium is believed to have been deposited. at least in part with the sediments, rather than to have come in at a later date. The highest uranium values were found in a widespread algal limestone bed, which contains as much as 0. 15 percent uranium. Values of 0.01 percent uranium or more were obtained from 8 samples taken from approximately 220 feet of stratigraphic section in the Browns Park formation. This is the first reported occurrence of limestone source rock from Wyoming that has been found to contain a commercial grade of uranium. The economic possibilities of the area have not been determined adequately and no estimates of tonnage are warranted at the present time. An airborne radiometric survey was made by the Geophysics Branch of the Geological Survey, of the west half of the area, recommended by the writer for investigation. Ground check of all anomalies reported at that time showed that they were in localities where the background radiation was much higher than average. Additional localities with high background radiation were found on the ground in the area east of that which was flown.

  19. The American atom: A documentary history of nuclear policies from the discovery of fission to the present

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.C.; Cantelon, P.L.

    1984-01-01

    In selecting these historical documents the authors have applied three general tests: first, does the document help tell the story of the development of American nuclear policy in a nontechnical way; second, is the source primary rather than secondary, written by an actor in the drama rather than by a member of the audience; third, does the document provide coverage of the major chapters in the story. The Manhattan Project was America's $2 billion secret project to build an atomic bomb. Many documents associated with the project have come to light only in recent years. In Section II they usemore » the letters of J. Robert Oppenheimer and the recently declassified minutes of policy committees to tell the story of how the bomb was designed and built and how the decision was made to drop the first uranium and plutonium devices on the Japanese cities of Hiroshima and Nagasaki in 1945. How did a weapon of war become the key to a peacetime industry. In considering atomic energy after World War II, they focus in Section III on the legislative enabling acts that established the Atomic Energy Commission, the short-lived dream of international control of nuclear weapons under the Baruch Plan, and the ''atoms for peace'' program of President Dwight D. Eisenhower. By 1954 the highly classified work on nuclear weapons paralleled a new development of nuclear energy and power reactors. Knowledge was shared with both private industry and other countries. The fruits of this program are considered in the later section on nuclear power.« less

  20. Uranium mineralization and unconformities: how do they correlate? - A look beyond the classic unconformity-type deposit model?

    NASA Astrophysics Data System (ADS)

    Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.

    2010-05-01

    Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.

  1. Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-30

    As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID,more » is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study wasmore » based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.« less

  3. Geology and uranium deposits of the Cochetopa and Marshall Pass districts, Saguache and Gunnison counties, Colorado

    USGS Publications Warehouse

    Olson, Jerry C.

    1988-01-01

    The Cochetopa and Marshall Pass uranium districts are in Saguache and Gunnison Counties, south-central Colorado. Geologic mapping of both districts has shown that their structural history and geologic relationships have a bearing on the distribution and origin of their uranium deposits. In both districts, the principal uranium deposits are situated at the intersection of major faults with Tertiary erosion surfaces. These surfaces were buried by early Tertiary siliceous tuffs-- a likely source of the uranium. That uranium deposits are related to such unconformities in various parts of the world has been suggested by many other authors. The purpose of this study is to understand the geology of the two districts and to define a genetic model for uranium deposits that may be useful in the discovery and evaluation of uranium deposits in these and other similar geologic settings. The Cochetopa and Marshall Pass uranium districts produced nearly 1,200 metric tons of uranium oxide from 1956 to 1963. Several workings at the Los Ochos mine in the Cochetopa district, and the Pitch mine in the Marshall Pass district, accounted for about 97 percent of this production, but numerous other occurrences of uranium are known in the two districts. As a result of exploration of the Pitch deposit in the 1970's, a large open-pit mining operation began in 1978. Proterozoic rocks in both districts comprise metavolcanic, metasedimentary, and igneous units. Granitic rocks, predominantly quartz monzonitic in composition, occupy large areas. In the northwestern part of the Cochetopa district, metavolcanic and related metasedimentary rocks are of low grade (lower amphibolite facies). In the Marshall Pass district, layered metamorphic rocks are predominantly metasedimentary and are of higher (sillimanite subfacies) grade than the Cochetopa rocks. Paleozoic sedimentary rocks in the Marshall Pass district range from Late Cambrian to Pennsylvanian in age and are 700 m thick. The Paleozoic rocks include, from oldest to youngest, the Sawatch Quartzite, Manitou Dolomite, Harding Quartzite, Fremont Dolomite, Parting Formation and Dyer Dolomite of the Chaffee Group, Leadville Dolomite, and Belden Formation. In the Cochetopa district, Paleozoic rocks are absent. Mesozoic sedimentary rocks overlie the Precambrian rocks in the Cochetopa district and comprise the Junction Creek Sandstone, Morrison Formation, Dakota Sandstone, and Mancos Shale. In the Marshall Pass district, Mesozoic rocks are absent and were presumably removed by pre-Tertiary erosion. Tertiary volcanic rocks were deposited on an irregular surface of unconformity; they blanketed both districts but have been eroded, away from much of the area. They include silicic ash flows as well as andesitic lava flows and breccias. In the Marshall Pass district, a 20to 20D-m thickness of waterlaid tuff of early Tertiary age indicates the former presence of a lake over much of the district. In the Cochetopa district, faults have a predominantly east-west trend, and the major Los Ochos fault shows displacement during Laramide time. In the Marshall Pass district, the Chester fault is a major north-trending reverse fault along which Proterozoic rocks have been thrust westward over Paleozoic and Proterozoic rocks. Displacement on the Chester fault was almost entirely of Laramide age. Both faults and old erosion surfaces or unconformities are important in the origin of uranium deposits because of their influence on the movement and localization of ore-forming solutions. In the Cochetopa district, all the known uranium occurrences crop out within 100 m of the inferred position of the unconformity surface beneath the Tertiary volcanic rocks. Much of the district was part of the drainage of an ancestral Cochetopa Creek. The principal uranium deposit, at the Los Ochos mine, is localized along the Los Ochos fault and is near the bottom of the paleovalley where the paleovalley crosses the fault. This

  4. The Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-10-01

    The Manhattan Project was the United States Army’s program to develop and deploy nuclear weapons during World War II. In these devices, which are known popularly as ‘atomic bombs’, energy is released not by a chemical explosion but by the much more violent process of fission of nuclei of heavy elements via a neutron-mediated chain-reaction. Three years after taking on this project in mid-1942, the Army’s Manhattan Engineer District produced three nuclear bombs of two different designs. Two of these devices were fueled with the 239 isotope of the synthetic element plutonium, while the third employed the rare 235 isotope of uranium. One of the plutonium devices, code-named Trinity, was detonated in a test in southern New Mexico on 16 July 1945; this was the world’s first nuclear explosion. Three weeks later, on 6 August, the uranium bomb, Little Boy, was dropped on the Japanese city of Hiroshima. On 9 August the second plutonium device, Fat Man, was dropped on Nagasaki. Together, the two bombings killed over 100 000 people and were at least partially responsible for the Japanese government’s 14 August decision to surrender. This article surveys, at an undergraduate level, the science and history of the Manhattan Project.

  5. Einsteinium

    NASA Astrophysics Data System (ADS)

    Haire, Richard G.

    The discovery of einsteinium, element 99, came about during the analyses of nuclear products produced in and then recovered from test debris following a thermonuclear explosion (weapon test device, ‘Mike', November 1952) at Eniwetok Atoll in the Pacific Ocean. The uranium present in this device was subjected to a very intense neutron flux (integrated fluence of about 1024neutrons) in an extremely short time frame (few nanoseconds), which allowed a large number of multiple neutron captures with a minimal degree of decay of the products formed. Nuclei were formed with usually high neutron/proton ratios (very ‘heavy' uranium isotopes), which then rapidly beta-decayed into new, transuranium isotopes through element 100. Scientists from several U.S. Government laboratories separated and analyzed extensively the debris samplings in the following weeks. From these investigations came the discovery and identification of einsteinium and fermium. The first element was named in honor of Albert Einstein, and assigned the symbol, E (later changed to the current symbol, Es). Additional details and discussions about the discovery of this element and the scientists involved are given in several references (Thompson et al., 1954; Ghiorso et al., 1955; Fields et al., 1956; Hyde et al., 1964; Seaborg and Loveland, 1990).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Joan F.

    The US Department of Energy’s (DOE’s) Oak Ridge Reservation (ORR) is located in Roane and Anderson counties in East Tennessee, about 40 km (25 miles) from Knoxville. ORR is one of DOE’s most unique and complex sites. It encompasses three major facilities and thousands of employees that perform every mission in the DOE portfolio—energy research, environmental restoration, national security, nuclear fuel supply, reindustrialization, science education, basic and applied research in areas important to US security, and technology transfer. ORR was established in the early 1940s as part of the Manhattan Project for the purposes of enriching uranium and pioneering methodsmore » for producing and separating plutonium. Today, scientists at the Oak Ridge National Laboratory (ORNL), DOE’s largest multipurpose national laboratory, conduct world-leading research in advanced materials, alternative fuels, climate change, and supercomputing. The Y-12 National Security Complex (Y-12 or Y-12 Complex) is vital to maintaining the safety, security, and effectiveness of the US nuclear weapons stockpile and reducing the global threat posed by nuclear proliferation and terrorism. The East Tennessee Technology Park (ETTP), a former uranium enrichment complex, is being transitioned to a clean, revitalized industrial park.« less

  7. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    PubMed

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  8. Mineral Deposits and Mineral Potential of the China Lake Complex of the Naval Weapons Center, China Lake, California

    DTIC Science & Technology

    1983-12-01

    Tucker and R. J. Sampson. 16 A field check of the area confirmed many of the physical aspects of the property as reported, but the tungsten grades...iron, mercury, perlite, pumice, aggregate, evaporites, travertine, and diatomite . Geothermal and water-producing strata were also investigated. The...Prospect ( Diatomite ) (N-1602) ..... ... 436 Evaporites .......... ....................... .436 Bonanza Group (N-1502) ..... ............... ... 436

  9. Who Should Control Nuclear Technology? A Curriculum Unit for Contemporary U.S. and World History, Grades 9-12.

    ERIC Educational Resources Information Center

    Zimney, Michelle; Boston, Jane

    Since the end of World War II and the onset of the "new age," nuclear technology has remained high on the world's agenda as questions regarding sovereignty and the balance of power, control of the development and spread of nuclear weapons, non-military uses for nuclear technology, and nuclear safety are debated among and within nations.…

  10. "Our Issues, Our People--Math as Our Weapon": Critical Mathematics in a Chicago Neighborhood High School

    ERIC Educational Resources Information Center

    Gutstein, Eric

    2016-01-01

    This article provides an example of, and lessons from, teaching and learning critical mathematics in a Chicago public neighborhood high school with a social justice focus. It is based on a qualitative study of my untracked, 12th-grade mathematics class, a full-year enactment of mathematics for social and racial justice. Students were Black and…

  11. Attenuation and Transport Mechanisms of Depleted Uranium in Groundwater at Lawrence Livermore National Laboratory Site 300

    NASA Astrophysics Data System (ADS)

    Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.

    2015-12-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675707.

  12. Overview of Phosphate-Based Remediation Technologies At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Thompson, K. M.; Fruchter, J. S.

    2009-12-01

    Phosphate-based technologies have been tested to sequester strontium-90 and uranium at the Hanford Site, part of the U.S. Department of Energy's (DOE)nuclear weapons complex that encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach) where localized groundwater plumes upwell into the river. Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed onto sediment beneath liquid waste disposal sites, and onto sediment that extends beneath the near-shore riverbed, remains a continuing contaminant source for impacting groundwater and the Columbia River. Initial remediation efforts using a pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-N Area hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. DOE is also evaluating the efficacy of using polyphosphate to reduce uranium concentrations in the groundwater with the goal of meeting drinking water standards (30 μg/L). This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long-term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. These remedial technologies are being developed by Pacific Northwest National Laboratory. CH2M Hill Plateau Remediation Company is implementing the technologies in the field, with support from the Laboratory. An overview of the technologies and results to date are presented.

  13. Implications of Fast Reactor Transuranic Conversion Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

    2010-11-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to floatmore » while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.« less

  14. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  15. HOW OLD IS IT? - 241PU/241AM NUCLEAR FORENSIC CHRONOLOGY REFERENCE MATERIALS

    PubMed Central

    Fitzgerald, Ryan; Inn, Kenneth G.W.; Horgan, Christopher

    2018-01-01

    One material attribute for nuclear forensics is material age. 241Pu is almost always present in uranium- and plutonium-based nuclear weapons, which pose the greatest threat to our security. The in-growth of 241Am due to the decay of 241Pu provides an excellent chronometer of the material. A well-characterized 241Pu/241Am standard is needed to validate measurement capability, as a basis for between-laboratory comparability, and as material for verifying laboratory performance. This effort verifies the certification of a 38 year old 241Pu Standard Reference Material (SRM4340) through alpha-gamma anticoincidence counting, and also establishes the separation date to two weeks of the documented date. PMID:29720779

  16. Einstein, Ethics and the Atomic Bomb

    NASA Astrophysics Data System (ADS)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  17. A moral history of the evolution of a caste of workers.

    PubMed Central

    Samuels, S W

    1996-01-01

    Using a dialectic method of philosophic inquiry, the actual ethical, legal, and social situation associated with genetic testing of beryllium-exposed workers in Department of Energy nuclear weapons facilities for markers of chronic beryllium disease is described. The cultural evolution of a caste system in a similar situation, and its social and biological implications, among uranium miners in the Erz Gebirge of Central Europe and on the Colorado Plateau of the United States, marked by suicide and lung disease, including cancer, is also described. The historically persistent social disease resulting from these situations. The Masada Syndrome, named from an analogous situation in biblical times, is characterized. Cultural intervention, a necessary condition for the ethical progression of the Human Genome Project, is outlined. PMID:8933047

  18. Using the theory of planned behavior to predict aggression and weapons carrying in urban African American early adolescent youth.

    PubMed

    Finigan-Carr, Nadine M; Cheng, Tina L; Gielen, Andrea; Haynie, Denise L; Simons-Morton, Bruce

    2015-04-01

    Aggressive and weapons carrying behaviors are indicative of youth violence. The theory of planned behavior is used in the current analysis to improve our understanding of violence-related behaviors. We examine the influence of perceived behavioral control (self-control and decision making) as a part of the overall framework for understanding the risk and protective factors for aggressive behaviors and weapons carrying. As the baseline assessment of an intervention trial, survey data were collected on 452 sixth-grade students (50% girls; 96.6% African American; mean age 12.0 years) from urban middle schools. A total of 18.4% carried a weapon in the prior 12 months, with boys more likely to carry a weapon than girls (22.5% vs. 14.2%, p = .02). Of the youth, 78.4% reported aggressive behaviors with no significant differences found between girls (81.3%) and boys (75.5%). In logistic regression models, having peers who engage in problem behaviors was found to be a significant risk factor. Youth with peers who engaged in numerous problem behaviors were five times more likely to be aggressive than those who reported little or no peer problem behaviors. Teens who reported that their parents opposed aggression (odds ratio [OR] = 0.76; confidence interval [CI] = 0.66, 0.88) and who used self-control strategies (OR = 0.59; CI = 0.39, 0.87) were found to report less aggressive behaviors. For weapons carrying, being a girl (OR = 0.56; CI = 0.32, 0.97) and self-control (OR = 0.52; CI = 0.29, 0.92) were protective factors. This study demonstrated that the theory of planned behavior may provide a useful framework for the development of violence prevention programs. Practitioners should consider integrating strategies for developing healthy relationships and improving self-control. © 2014 Society for Public Health Education.

  19. Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore.

    PubMed

    Zakrzewska-Koltuniewicz, Grażyna; Herdzik-Koniecko, Irena; Cojocaru, Corneliu; Chajduk, Ewelina

    2014-06-30

    The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P=5 bar, T=120 °C and t=90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The UK Government's global partnership programme - Its achievements over the past five years and challenges ahead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, Alan

    2007-07-01

    Through the Global Partnership the UK continues to make a significant contribution to improve national and global security. Over the past year the UK has continued to implement a wide range of projects across the breadth of its Global Partnership Programme. As well as ensuring the Programme is robust and capable of dealing with new challenges, the UK has cooperated with other donor countries to help them progress projects associated with submarine dismantling, scientist redirection, enhancing nuclear security and Chemical Weapons Destruction. The Global Partnership, although only five years old, has already achieved a great deal. Some 23 states, plusmore » the European Union, are now working closer together under the Global Partnership, and collectively have enhanced global regional and national security by reducing the availability of Weapons of Mass Destruction (WMD) materials and expertise to both states of concern and terrorists. Considerable progress has already been made in, for example: - Improving the security of fissile materials, dangerous biological agents and chemical weapons stocks; - Reducing the number of sites containing radioactive materials; - Working towards closure of reactors still producing weapon-grade plutonium; - Improving nuclear safety to reduce the risks of further, Chernobyl style accidents; - Constructing facilities for destroying Chemical Weapons stocks, and starting actual destruction; - Providing sustainable employment for former WMD scientists to reduce the risk that their expertise will be misused by states or terrorists. By contributing to many of these activities, the UK has helped to make the world safer. This paper reports on the UK's practical and sustainable contribution to the Global Partnership and identifies a number of challenges that remain if it is to have a wider impact on reducing the threats from WMD material. (authors)« less

  1. Identifying children at risk for being bullies in the United States.

    PubMed

    Shetgiri, Rashmi; Lin, Hua; Flores, Glenn

    2012-01-01

    To identify risk factors associated with the greatest and lowest prevalence of bullying perpetration among U.S. children. Using the 2001-2002 Health Behavior in School-Aged Children, a nationally representative survey of U.S. children in 6th-10th grades, bivariate analyses were conducted to identify factors associated with any (once or twice or more), moderate (two to three times/month or more), and frequent (weekly or more) bullying. Stepwise multivariable analyses identified risk factors associated with bullying. Recursive partitioning analysis (RPA) identified risk factors which, in combination, identify students with the highest and lowest bullying prevalence. The prevalence of any bullying in the 13,710 students was 37.3%, moderate bullying was 12.6%, and frequent bullying was 6.6%. Characteristics associated with bullying were similar in the multivariable analyses and RPA clusters. In RPA, the highest prevalence of any bullying (67%) accrued in children with a combination of fighting and weapon-carrying. Students who carry weapons, smoke, and drink alcohol more than 5 to 6 days/week were at greatest risk for moderate bullying (61%). Those who carry weapons, smoke, have more than one alcoholic drink per day, have above-average academic performance, moderate/high family affluence, and feel irritable or bad-tempered daily were at greatest risk for frequent bullying (68%). Risk clusters for any, moderate, and frequent bullying differ. Children who fight and carry weapons are at greatest risk of any bullying. Weapon-carrying, smoking, and alcohol use are included in the greatest risk clusters for moderate and frequent bullying. Risk-group categories may be useful to providers in identifying children at the greatest risk for bullying and in targeting interventions. Copyright © 2012 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  2. Identifying Children At Risk for Being Bullies in the US

    PubMed Central

    Shetgiri, Rashmi; Lin, Hua; Flores, Glenn

    2012-01-01

    Objective To identify risk factors associated with the highest and lowest prevalence of bullying perpetration among US children. Methods Using the 2001–2002 Health Behavior in School-Aged Children, a nationally-representative survey of US children in 6th–10th grades, bivariate analyses were conducted to identify factors associated with any (≥ once or twice), moderate (≥ two-three times/month), and frequent (≥ weekly) bullying. Stepwise multivariable analyses identified risk factors associated with bullying. Recursive partitioning analysis (RPA) identified risk factors which, in combination, identify students with the highest and lowest bullying prevalence. Results The prevalence of any bullying in the 13,710 students was 37.3%, moderate bullying was 12.6%, and frequent bullying was 6.6%. Characteristics associated with bullying were similar in the multivariable analyses and RPA clusters. In RPA, the highest prevalence of any bullying (67%) accrued in children with a combination of fighting and weapon-carrying. Students who carry weapons, smoke, and drink alcohol more than 5–6 days weekly were at highest risk for moderate bullying (61%). Those who carry weapons, smoke, drink > once daily, have above-average academic performance, moderate/high family affluence, and feel irritable or bad-tempered daily were at highest risk for frequent bullying (68%). Conclusions Risk clusters for any, moderate, and frequent bullying differ. Children who fight and carry weapons are at highest risk of any bullying. Weapon-carrying, smoking, and alcohol use are included in the highest risk clusters for moderate and frequent bullying. Risk-group categories may be useful to providers in identifying children at highest risks for bullying and in targeting interventions. PMID:22989731

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Mariemore » Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.« less

  4. Calorimetry of low mass Pu239 items

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremers, Teresa L; Sampson, Thomas E

    2010-01-01

    Calorimetric assay has the reputation of providing the highest precision and accuracy of all nondestructive assay measurements. Unfortunately, non-destructive assay practitioners and measurement consumers often extend, inappropriately, the high precision and accuracy of calorimetric assay to very low mass items. One purpose of this document is to present more realistic expectations for the random uncertainties associated with calorimetric assay for weapons grade plutonium items with masses of 200 grams or less.

  5. Program manager: The Journal of the Defense Systems Management College. Volume 14, Number 2, March-April 1985,

    DTIC Science & Technology

    1985-04-01

    author and ProgramRationale, approach and results of Manager, and forward two copies of the reprinted - 10 to reduce spiraling weapon material to the...Technologies ADVAL STRUCTURAL 5 DESIGN/ MATERIALS P’rogram Nlam.4er 4 .’ . I...reading grade sciecnce and mathematics achieved on vanced technological societies, yet it is els It iwver tor somei rninorit\\’ groups,. national tests

  6. Upward movement of plutonium to surface sediments during an 11-year field study.

    PubMed

    Kaplan, D I; Demirkanli, D I; Molz, F J; Beals, D M; Cadieux, J R; Halverson, J E

    2010-05-01

    An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The (240)Pu/(239)Pu and (242)Pu/(239)Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Radiochemical determination of 237NP in soil samples contaminated with weapon grade plutonium

    NASA Astrophysics Data System (ADS)

    Antón, M. P.; Espinosa, A.; Aragón, A.

    2006-01-01

    The Palomares terrestrial ecosystem (Spain) constitutes a natural laboratory to study transuranics. This scenario is partially contaminated with weapon-grade plutonium since the burnout and fragmentation of two thermonuclear bombs accidentally dropped in 1966. While performing radiometric measurements in the field, the possible presence of 237Np was observed through its 29 keV gamma emission. To accomplish a detailed characterization of the source term in the contaminated area using the isotopic ratios Pu-Am-Np, the radiochemical isolation and quantification by alpha spectrometry of 237Np was initiated. The selected radiochemical procedure involves separation of Np from Am, U and Pu with ionic resins, given that in soil samples from Palomares 239+240Pu levels are several orders of magnitude higher than 237Np. Then neptunium is isolated using TEVA organic resins. After electrodeposition, quantification is performed by alpha spectrometry. Different tests were done with blank solutions spiked with 236Pu and 237Np, solutions resulting from the total dissolution of radioactive particles and soil samples. Results indicate that the optimal sequential radionuclide separation order is Pu-Np, with decontamination percentages obtained with the ionic resins ranging from 98% to 100%. Also, the addition of NaNO2 has proved to be necessary, acting as a stabilizer of Pu-Np valences.

  8. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    The Nopal I uranium deposit is located at Pena Blanca in Chihuahua, Mexico. Mining of high-grade uranium ore occurred in the early 1980s, with the ore stockpiled nearby. The stockpile was mostly cleared in the 1990s; however, some of the high-grade boulders have remained there, creating localized sources of radioactivity for a period of 25-30 years. This provides a unique opportunity to study radionuclide transport, because the study area did not have any uranium contamination predating the stockpile in the 1980s. One high-grade boulder was selected for study based upon its shape, location, and high activity. The presumed drip-line off of the boulder was marked, samples from the boulder surface were taken, and then the boulder was moved several feet away. Soil samples were taken from directly beneath the boulder, around the drip-line, and down slope. Eight of these samples were collected in a vertical profile directly beneath the boulder. Visible flakes of boulder material were removed from the surficial soil samples, because they would have higher concentrations of U-series radionuclides and cause the activities in the soil samples to be excessively high. The vertical sampling profile used 2-inch thicknesses for each sample. The soil samples were packaged into thin plastic containers to minimize the attenuation and to standardize sample geometry, and then they were analyzed by gamma-ray spectroscopy with a Ge(Li) detector for Th-234, Pa-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, and Pb-210. The raw counts were corrected for self-attenuation and normalized using BL-5, a uranium standard from Beaverlodge, Saskatchewan. BL-5 allowed the counts obtained on the Ge(Li) to be referenced to a known concentration or activity, which was then applied to the soil unknowns for a reliable calculation of their concentrations. Gamma ray spectra of five soil samples from the vertical profile exhibit decreasing activities with increasing depth for the selected radionuclides. Independent multi-element analyses of three samples by ICP-MS show decreasing uranium concentration with depth as well. The transport of the radionuclides is evaluated using STANMOD, a Windows-based software package for evaluating solute transport in porous media using analytical solutions of the advection-dispersion solute transport equation. The package allows various one-dimensional, advection-dispersion parameters to be determined by fitting mathematical solutions of theoretical transport models to observed data. The results are promising for future work on the release rate of radionuclides from the boulder, the dominant mode of transport (e.g., particulate or dissolution), and the movement of radionuclides through porous media. The measured subsurface transport rates provide modelers with a model validation dataset.

  9. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variationsmore » among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  10. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  11. IMPROVED TECHNNOLOGY TO PREVENT ILLICIT TRAFFICKING IN NUCLEAR MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J H

    2005-07-20

    The proliferation of nuclear, chemical, and biological weapons (collectively known as weapons of mass destruction, or WMD) and the potential acquisition and use of WMD against the world by terrorists are extremely serious threats to international security. These threats are complex and interrelated. There are myriad routes to weapons of mass destruction--many different starting materials, material sources, and production processes. There are many possible proliferators--threshold countries, rogue states, state-sponsored or transnational terrorists groups, domestic terrorists, and even international crime organizations. Motives for acquiring and using WMD are similarly wide ranging--from a desire to change the regional power balance, deny accessmore » to a strategic area, or alter international policy to extortion, revenge, or hate. Because of the complexity of this threat landscape, no single program, technology, or capability--no silver bullet--can solve the WMD proliferation and terrorism problem. An integrated program is needed that addresses the WMD proliferation and terrorism problem from end to end, from prevention to detection, reversal, and response, while avoiding surprise at all stages, with different activities directed specifically at different types of WMD and proliferators. Radiation detection technologies are an important tool in the prevention of proliferation. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. The radiation properties of nuclear materials, particularly highly enriched uranium (HEU), make the detection of smuggled nuclear materials technically difficult. A number of efforts are under way to devise improved detector materials and instruments and to identify novel signatures that could be detected. Key applications of this work include monitoring for radioactive materials at choke points, searching for nuclear materials, and developing instruments for response personnel.« less

  12. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE PAGES

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; ...

    2016-05-18

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  13. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    NASA Astrophysics Data System (ADS)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  14. Moscow meltdown: Can Russia survive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, J.E.

    Western intelligence analysts and policy makers should pay closer attention to the centrifugal forces in Russia for two primary reasons: nuclear weapons are located in some of the most volatile regions, and central control of the armed forces is eroding. If Russia were to fragment, thousands of weapons and tons of fissile materials would be dispersed to new states with little safeguards infrastructure and little experience in controlling borders, a situation potentially far more dangerous than the breakup of the Soviet Union. Nuclear research, production, maintenance, and dismantlement facilities, plus uranium enrichment and plutonium separation facilities, could be inherited bymore » new, unstable states. Further devolution of political authority could loosen control over sensitive exports and increase the risk of terrorist acquisition of fissile materials. This article discusses the confusion over the legitimacy of the physical and political boundaries of the Russian Federation; then, the economic incentives for regionalism in Russia; next, the main ethnic groups in Russia and the roots of ethnic nationalism in the Russian Federation. It then discusses political disarray in the center and in the regions, and the lack of unity among order-enforcing entities; focuses in somewhat more detail on the Volga-Ural region, where there is a concentration of nuclear weapons and facilities, and which is especially volatile politically. These factors taken together call into question Russia's viability as a state. In post-communist Russia, chaos has replaced order; license has replaced terror. Order-enforcing entities are eviscerated or in conflict. Neither economic shock therapy nor Group of Seven funds can help with these problems; Russia will not be a state until new unifying institutions are created, whether they are democratic or authoritarian.« less

  15. Alpha emitting radionuclides in drainage from Quinta do Bispo and Cunha Baixa uranium mines (Portugal) and associated radiotoxicological risk.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Faria, Isabel

    2009-11-01

    Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.

  16. Preliminary report on the White Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Benson, William E.; Trites, Albert F.; Beroni, Ernest P.; Feeger, John A.

    1952-01-01

    The White Canyon area, in the central part of San Juan County, Utah, consists of approximately two 15-minute quadrangles. Approximately 75 square miles have been mapped by the Geological Survey on a scale of 1 inch equals 1 mile, using a combined aerial photography-plane table method. Structure contours were drawn on top of the Organ Rock member of the Cutler formation. Parts of the Gonway and North Point claims, 1/4 mile east of the Happy Jack mine, were mapped in detail. The principal objectives of the investigations were: (1) to establish ore guides; (2) to select areas favorable for exploration; and (3) to map the general geology and to determine the regional relationships of the uranium deposits. The White Canyon area is comprised of sedimentary rocks of Carboniferous to Jurassic age, more than 2,000 feet thick, having a regional dip of 1° to 2° SW. The nearest igneous rocks are in the Henry Mountains about 7 miles west of the northern part of the area; The Shinarump conglomerate of the late Triassic age, the principal ore horizon in the White Canyon area, consists of lenticular beds of sandstone, conglomeratic sandstone, conglomerate, clay, and siltstone. The Shinarump conglomerate, absent in places, is as much as 75 feet thick. The sandstones locally contain molds of logs and fragments of altered volcanic ash. Some of the logs have been replaced by copper and uranium minerals and iron oxides. The clay and siltstone underlie and are interbedded with the sandstone, and are most common in channels that cut into the underlying Moenkopi formation. The Shinarump conglomerate contains reworked Moenkopi siltstone fragments, clay balls, carbonized wood, and pebbles of quarts, quartzite, and chert. Jointing is prominent in the Western part of the mapped area. The three most prominent joint trends are due east, N. 65°-75° W., and N. 65°-75° E. All joints have vertical dips. The red beds are bleached along some joints, especially those that trend N. 65°-75° W. All uranium ore produced has been from the lower part of the Shinarump conglomerate, where it commonly occurs with copper as disseminations and fracture coatings in sandstone. Uranium and copper minerals also occur in low-grade disseminated deposits in the lower Chinle and in the Moenkopi formation and in veins cutting these formations. Although some uranium deposits occur in Chinarump channels and scours, copper and uranium minerals along fractures suggest that channel control may be secondary. Logs and clay balls apparently have exerted some chemical influences for deposition. The uranium occurs as the oxide in some deposits, and as secondary hydrous sulfates, phosphates, oxides, and silicates in these and several other deposits. Charcoal, iron and manganese oxides, and veinlets of hydrocarbon are abnormally radioactive in most of the deposits. Base-metal sulfides are commonly found inside the oxidized zone. Secondary copper minerals include the hydrous sulfates and carbonate. Gangue minerals include quarts, clay minerals, and manganese oxides, dickite (?), calcite, gypsum, pyrite, and chalcedony (?). Principal wall-rock alteration appears to have been silicification, clay alteration, and bleaching. Most of the shipped ore has contained more than 0.3 percent uranium. The ore also contains copper, commonly in grades lower than 1.0 percent. Criteria believed to be most useful for prospecting for concealed uranium deposits are (1) visible uranium minerals; (2) sulfide minerals; (3) secondary copper minerals; (4) dickite (?); (5) hydrocarbons; and (6) bleaching and alteration of the Moenkopi formation.

  17. Uranium in the Mayoworth area, Johnson County, Wyoming - a preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1954-01-01

    The uranium mineral, metatyuyamunite, occurs in the basal limestone of the Sundance formation of late Jurassic age along the east flank of the Bighorn Mountains, about 2 miles southwest of the abandoned Mayoworth post office. This occurrence is of particular interest because it is the first uranium mineralization reported from a marine limestone in Wyoming. The discovery uranium claims were filed in July 1953, by J.S. Masek, Dan Oglesby, and Jack Emery of Casper, Wyo. Subsequent reconnaissance investigations have been made by private individuals and geologists of the U.S. Geological Survey and Atomic Energy Commission. The metatyuyamunite is concentrated in a hard gray oolitic limestone that forms the basal bed of the Sundance formation. A selected sample of limestone from a fresh face in the northernmost deposit known at the time of the field examination contained 0.70 percent equivalent uranium and 0.71 percent uranium. Eight samples of the limestone taken at the sample place by the Atomic Energy Commission contained from 0.007 to 0.22 percent uranium. A chip sample from the weathered outcrop at the top of this limestone half a mile to the southeast contained 0.17 percent equivalent uranium and 0.030 percent uranium. A dinosaur bone from the middle part of the Morrison formation contained 0.044 percent equivalent uranium and 0.004 percent uranium. metatyuyamunite forms a conspicuous yellow coating along fracture planes cutting the oolitic limestone and has also replaced many of the oolites within the solid limestone and has also replaced many of the oolites within the solid limestone even where fractures are not present. Many radioactive spots in the basal limestone of the Sundance formation were examined in a reconnaissance fashion along the outcrop for a distance of half a mile south of the initial discovery. Samples were taken for analysis only at the northern and southern margins of this interval. Outcrops farther north and south were not studied. There are not sufficient data to make even rough estimates of tonnage and grade of the occurrences. The extent of the limestone, the approximate boundaries of the area of above-normal radioactivity, and the possibilities of other radioactive zones have not been thoroughly investigated. Although dinosaur bones in the Morrison formation were radioactive wherever they were tested, no significant amount of radioactivity was observed in rocks adjacent to the bones.

  18. Exploding the myths about the fast breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  19. Heterogeneity Effects in Plutonium Contaminated Soil

    DTIC Science & Technology

    2009-03-01

    masses up to one kilogram once the ratio of Americium - 241 (Am- 241 ) and plutonium concentrations was established (Rademacher, 2001). Alpha...with a sample number and tared weight with a non-smearing marker. A standard control was then set using a point source of Americium - 241 on an aluminum...During the fire the weapons grade plutonium (Pu- 239, Pu-240, and Pu- 241 ) ignited and was released into the surrounding area, due to both

  20. A Novel Concept for the Rapid Deployment of Electric Power Cables. Phase 1.

    DTIC Science & Technology

    1987-04-30

    cable toward the tactical position that requires power. The approach effectively neutralisasl both man-made and naturally occurring deployment...guided system with a reputation for extreme accuracy, it is anticipated that the cable can be delivered to a user located within a 1000 foot range...thus readily available, because it is an effective and reliable weapon system. The system has been up-graded several times which indicates that its

  1. Germany's Failure to Achieve an Atomic Bomb in World War II: Bad Science,Good Intentions or Neither?

    NASA Astrophysics Data System (ADS)

    Lustig, Harry

    2004-05-01

    This is a progress report on a project to find a definitive answer to the disputed question why the Germans did not succeed in building an atomic bomb. The most extreme answers among those that have been put forward are, on the one hand, that Werner Heisenberg did not understand the difference between a nuclear reactor and a bomb and, on the other, that German scientists dragged their feet because they wanted to deny this weapon of mass destruction to Hitler. From an examination of a number of the German scientific reports on their Uranium Project and of other sources, it seems evident that any early idea of a bomb being a run-away reactor was soon replaced by the realization that a bomb required fast neutrons and close to pure uranium 235. As for the hypothesis that the scruples of German scientists played a significant role in preventing a German atomic bomb, the available records appear to negate that explanation as well. Rather, the minuscule resources devoted to the project, the lack of German industrial capacity, the poorly organized and decentralized organization of the research, and the modus operandi of researchers, including Heisenberg, of simultaneously pursuing other interests, doomed the prospect of getting a bomb.

  2. Synchrotron X-ray characterization of mackinawite and uraninite relevant to bio-remediation of groundwater contaminated with uranium

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Hyun, S.; Hayes, K. F.

    2010-12-01

    Uranium (U) originating from mining operations for weapon manufacturing and nuclear energy production is a significant radionuclide contaminant in groundwater local to uranium mining, uranium milling, and uranium mill tailing (UMT) storage sites. In the USA, the Department of Energy (DOE) is currently overseeing approximately 24 Uranium Mill Tailing Remediation Action (UMTRA) sites which have collectively processed over 27 million tons of uranium ore1,2. In-Situ microbial bio-reduction of the highly mobile U6+ ion into the dramatically less mobile U4+ ion has been demonstrated as an effective remedial process to inhibit uranium migration in the aqueous phase3. The resistance of this process to oxidization and possible remobilization of U when bioremediation stops (and oxidants such as oxygen from the air or nitrate in water diffuse into the formation) in the long term is not known. UMTRA site studies3 have shown that iron sulfide solids are produced by sulfate reducing bacteria (SRB) during U bioremediation, and some forms of these iron sulfide solids are known to be effective oxidant scavengers, potentially protecting against re-oxidation and thus remobilization of U. This work is investigating the role of iron sulfide solids in the long-term immobilization of reduced U compounds after bioremediation is completed in groundwater local to UMTRA sites. Re-oxidation tests are being performed in packed media columns loaded with both FeS and U solids. High quality mackinawite (FeS), and uraninite (UO2) have been synthesized in our laboratory via a wet chemistry approach. These synthetic materials are expected to mimic the naturally occurring and biogenic materials present in biologically stimulated UMTRA sites. In order to establish the initial conditions of the prepared experimental columns and to compare synthetic and biogenic FeS and UO2, these synthesized materials have been characterized with synchrotron radiation at the Stanford Synchrotron Radiation Lightsource using synchrotron x-ray powder diffraction (SXRD) and extended x-ray absorption fine structure (EXAFS). SXRD data were collected and analyzed with profile fitting to determine lattice parameters and crystallite size for comparison with published values for both biogenic and synthetic materials. This is particularly of interest for UO2, as there is very little information on particle size and lattice parameters for synthetic UO2 in the literature. Profile fitting of the SXRD data for FeS gives lattice parameters of a = b = 3.668 and a mean crystallite size of 5 to 8 nm. Both of these values are in good agreement with published values. For fresh UO2, lattice parameters were determined as a = b = c = 5.4 nm for both freshly synthesized and aged (3 months) UO2 and particle size was determined to be 3.5 nm for fresh UO2 and 5.83 nm for aged UO2. This suggests a growth mechanism for crystallites over time, and an inferred decrease in reactivity.

  3. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Freshley, Mark D.; Last, George V.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.« less

  4. Deep liquid-chromatographic purification of uranium extract from technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, V.; Dvoeglazov, K; Podrezova, L.

    The recycling of uranium in the nuclear fuel cycle requires the removal of a number of radioactive and stable impurities like {sup 99}Tc from spent fuels. In order to improve the grade of uranium extract purification from technetium the method of liquid chromatography and the apparatus for its performance have been developed. Process of technetium extraction and concentrating in aqueous solution containing reducing agent has been studied on simulated solutions (U-Tc-HNO{sub 3}-30% TBP-isoparM). The dynamic tests of the method have been carried out on the laboratory unit. Solution of diformyl-hydrazine in nitric acid was used as a stationary phase. Silicamore » gel with specific surface of 186 m{sup 2}/g was used as a carrier of the stationary phase. It is shown that the volume of purified extract increases as the solution temperature increases, concentration of reducing agent increases and extract flow rate decreases. It is established that the technetium content in uranium by this method could achieve a value below 0.3 ppm. Some variants of overload and composition of the stationary phase containing the extracted technetium have been offered and tested. It is defined that the method provides reduction of processing medium-active wastes by more than 10 times during finish refining process. (authors)« less

  5. An Assessment of the Detection of Highly Enriched Uranium and its Use in an Improvised Nuclear Device using the Monte Carlo Computer Code MCNP-5

    NASA Astrophysics Data System (ADS)

    Cochran, Thomas

    2007-04-01

    In 2002 and again in 2003, an investigative journalist unit at ABC News transported a 6.8 kilogram metallic slug of depleted uranium (DU) via shipping container from Istanbul, Turkey to Brooklyn, NY and from Jakarta, Indonesia to Long Beach, CA. Targeted inspection of these shipping containers by Department of Homeland Security (DHS) personnel, included the use of gamma-ray imaging, portal monitors and hand-held radiation detectors, did not uncover the hidden DU. Monte Carlo analysis of the gamma-ray intensity and spectrum of a DU slug and one consisting of highly-enriched uranium (HEU) showed that DU was a proper surrogate for testing the ability of DHS to detect the illicit transport of HEU. Our analysis using MCNP-5 illustrated the ease of fully shielding an HEU sample to avoid detection. The assembly of an Improvised Nuclear Device (IND) -- a crude atomic bomb -- from sub-critical pieces of HEU metal was then examined via Monte Carlo criticality calculations. Nuclear explosive yields of such an IND as a function of the speed of assembly of the sub-critical HEU components were derived. A comparison was made between the more rapid assembly of sub-critical pieces of HEU in the ``Little Boy'' (Hiroshima) weapon's gun barrel and gravity assembly (i.e., dropping one sub-critical piece of HEU on another from a specified height). Based on the difficulty of detection of HEU and the straightforward construction of an IND utilizing HEU, current U.S. government policy must be modified to more urgently prioritize elimination of and securing the global inventories of HEU.

  6. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    PubMed

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have had much larger influence on radionuclide air concentrations and deposition than previously anticipated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-12-01

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demandmore » when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and PGDP are believed to have been returned to the shipping site or disposed of as waste on the Oak Ridge Reservation. No evidence of Y-12 Complex processing of this material was identified in the historical records reviewed by the Project Team.« less

  8. The Effects of Rare Earth Doping on Gallium Nitride Thin Films

    DTIC Science & Technology

    2011-09-01

    MAW Molar mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Microscopic nuclear cross...container) is ∼ 770 nm−2 s−1 [8]. When compared to an unmoderated, unshielded hypothetical mass of 5 kg of 94% enriched 239Pu (weapons grade) at a...emission of a doubly-ionized helium atom ( 4 2He 2+ ) , or alpha particle, as A ZX −→ A-4Z-2Y + 42He2+ + Q , (4) where A represents the atomic mass or the

  9. High Rate Lithium-Thionyl Chloride Battery Development for Undersea Weapon Propulsion Applications. Revised.

    DTIC Science & Technology

    1978-08-23

    dislodged only a fraction of the SAB. According to FMI, thinner, more open grades of vitreous carbon paper would permit higher loading of SAB...bonded carbon fiber, porous silver and porous nickel cathodes were dis- charged in test cells. All polarized immediately below 2. 7 volts at 52 mA/cm2...Increased electrolyte molarity delivered a modest increase in run time but resulted -_ in somewhat lower load voltage plateaus. - As before, carbon fiber

  10. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOEpatents

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  11. Introduction to Pits and Weapons Systems (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutoniummore » is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.« less

  12. Radiostrontium accumulation in animal bones: development of a radiochemical method by ultra low-level liquid scintillation counting for its quantification.

    PubMed

    Iammarino, Marco; Dell'Oro, Daniela; Bortone, Nicola; Mangiacotti, Michele; Chiaravalle, Antonio Eugenio

    2018-03-31

    Strontium-90 (90Sr) is a fission product, resulting from the use of uranium and plutonium in nuclear reactors and weapons. Consequently, it may be found in the environment as a consequence of nuclear fallouts, nuclear weapon testing, and not correct waste management. When present in the environment, strontium-90 may be taken into animal body by drinking water, eating food, or breathing air. The primary health effects are bone tumors and tumors of the blood-cell forming organs, due to beta particles emitted by both 90Sr and yttrium-90 (90Y). Moreover, another health concern is represented by inhibition of calcification and bone deformities in animals. Actually, radiometric methods for the determination of 90Sr in animal bones are lacking. This article describers a radiochemical method for the determination of 90Sr in animal bones, by ultra low-level liquid scintillation counting. The method precision and trueness have been demonstrated through validation tests (CV% = 12.4%; mean recovery = 98.4%). Detection limit and decision threshold corresponding to 8 and 3 mBecquerel (Bq) kg-1, respectively, represent another strong point of this analytical procedure. This new radiochemical method permits the selective extraction of 90Sr, without interferences, and it is suitable for radiocontamination surveillance programs, and it is also an improvement with respect to food safety controls.

  13. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volant, Emmanuelle; Garnier, Cedric

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise andmore » its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of a future national storage facility for irradiated graphite waste. Then, the paper recalls communication events and official visits hosted in Pierrelatte and Marcoule, following a formal invitation from the French President Mr. Nicolas Sarkozy. These visits, which were organized in order to illustrate the irreversibility of these dismantling operations, allowed visitors to discovers places that used to be former highly classified areas. Three official visits were organized in 2008 and 2009 for representatives of the Conference on Disarmament Member States, non-governmental experts and journalists. All participants visited the dismantled uranium enrichment plant in Pierrelatte, the G2 reactor and the UP1 plant in Marcoule. The visits were successful and visitors were especially impressed by the G2 reactor and its massive industrial architecture, symbolic of the early ages of nuclear history. In late 2010, this feedback convinced CEA Military Application Directorate (CEA DAM) that a permanent showroom could be installed inside the reactor, making it possible to preserve the cultural value of this historical landmark, and to continue its ongoing effort of communication and outreach. The paper explains the design of this concept: the museography project with a professional designer, the communication material conception and the features of such an original place. (authors)« less

  14. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1954-01-01

    The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.

  15. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1953-01-01

    The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.

  16. Vapor-Phase Infrared Spectral Study of Weapons-Grade O-Ethyl S-2(diisopropylamino)ethyl methylphosphonothiolate (VX)

    DTIC Science & Technology

    2012-05-01

    instrument was equipped with deuterated triglycine sulfide and mercury-cadmium-telluride ( HgCdTe ) detectors and was capable of obtaining spectra with...helium-neon [HeNe] laser zero-crossing frequency) using the HgCdTe detector . Absorbance spectra of the vapor effluent were computed using background...weak [a = 0.00021 (umol/mol) ’m ’, which gave a prediction of A ~ 0.001] and close to the detector cutoff (root mean square [RMS] noise = 0.0002 A

  17. Security Police Officer Utilization Field, AFSCs 8111, 8116, 8121, and 8124.

    DTIC Science & Technology

    1981-06-01

    STATEMENT A M C Approved for public release 82 0 4 26Distribution Unlimited C=DCC=D= APS 8 1 X CECI I CODING INSTRUCTIONS -- -- -" Print the booklet copy...m == NAME (Last, First, Middle Initial) DATE OF BIRTH SEX YR NO DAY (MALE -"(11-34) (3s-5- rayo (41) PRESENT GRADE: SOCIAL SECURITY ACCOUNT NUMBER...Branch - 11. OIC Missile Support Branch - __m 12. OIC Weapons Systems Security , 4 8 CODE 99 X ~.t ! AFS 81XX -mmm -C - . .’ .9 - =, BACKGROUND

  18. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  19. Olympic Dam copper-uranium-gold deposit, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalor, J.H.

    1986-07-01

    The Olympic Dam copper-uranium-gold deposit was discovered in July 1975. It is located 650 km north-northwest of Adelaide on Roxby Downs Station in South Australia. The first diamond drill hole, RD1, intersected 38 m of 1.05% copper. A further eight holes were drilled with only marginal encouragement to November 1976, when RD10 cored 170 m of 2.12% copper and 0.06% of uranium oxide, thus confirming an economic discovery. The discovery of Olympic Dam is an excellent example applying broad-scale, scientifically based conceptual studies to area selection. Exploration management supported its exploration scientists in testing their ideas with stratigraphic drilling. Geologicmore » modeling, supported by geophysical interpretations and tectonic studies, was used to site the first hole. The discovery also illustrates the persistence required in mineral exploration. The deposit appears to be a new type of stratabound sediment-hosted ore. It has an areal extent exceeding 20 km/sup 2/ with vertical thicknesses of mineralization up to 350 m. It is estimated to contain more than 2000 million MT of mineralized material with an average grade of 1.6% copper, 0.06% uranium oxide, and 0.6 g/MT gold. The deposit occurs in middle Proterozoic basement beneath 350 m of unmineralized, flat upper Proterozoic sediments. The sediments comprising the local basement sequence are predominantly sedimentary breccias controlled by a northwest-trending graben.« less

  20. Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, Richard K.; Rytuba, James J.

    1979-01-01

    Volcaniclastic sediments deposited in the moat of the collapsed McDermitt caldera complex have been altered chiefly to zeolites and potassium feldspar. The original rhyolitic and peralkaline ash-flow tuffs are included in conglomerates at the caldera rims and grade into a lacustrine series near the center of the collapse. The tuffs show a lateral zeolitic alteration from almost fresh glass to clinoptilolite, clinoptilolite-mordenite, and erionite; to analcime-potassium feldspar; and finally to potassium feldspar. Vertical zonation is in approximately the same order. Clay minerals in associated mudstones, on the other hand, show little lateral variation but a distinct vertical zonation, having a basal dioctahedral smectite, a medial trioctahedral smectite, and an upper dioctahedral smectite. The medial trioctahedral smectite is enriched in lithium (as much as 6,800 ppm Li). Hydrothermal alteration of the volcaniclastic sediments, forming both mercury and uranium deposits, caused a distinct zeolite and clay-mineral zonation within the general lateral zonation. The center of alteration is generally potassium feldspar, commonly associated with alunite. Potassium feldspar grades laterally and vertically to either clinoptilolite or clinoptilolite-mordenite, generally associated with gypsum. This zone then grades vertically and laterally into fresh glass. The clay minerals are a dioctahedral smectite, a mixed-layer clay mineral, and a 7-A clay mineral. The mixed-layer and 7-A clay minerals are associated with the potassium feldspar-alunite zone of alteration, and the dioctahedral smectite is associated with clinoptilolite. This mineralogical zonation may be an exploration guide for mercury and uranium mineralization in the caldera complex environment.

  1. Adverse Childhood Experiences and School-Based Victimization and Perpetration.

    PubMed

    Forster, Myriam; Gower, Amy L; McMorris, Barbara J; Borowsky, Iris W

    2017-01-01

    Retrospective studies using adult self-report data have demonstrated that adverse childhood experiences (ACEs) increase risk of violence perpetration and victimization. However, research examining the associations between adolescent reports of ACE and school violence involvement is sparse. The present study examines the relationship between adolescent reported ACE and multiple types of on-campus violence (bringing a weapon to campus, being threatened with a weapon, bullying, fighting, vandalism) for boys and girls as well as the risk of membership in victim, perpetrator, and victim-perpetrator groups. The analytic sample was comprised of ninth graders who participated in the 2013 Minnesota Student Survey ( n ~ 37,000). Multinomial logistic regression models calculated the risk of membership for victim only, perpetrator only, and victim-perpetrator subgroups, relative to no violence involvement, for students with ACE as compared with those with no ACE. Separate logistic regression models assessed the association between cumulative ACE and school-based violence, adjusting for age, ethnicity, family structure, poverty status, internalizing symptoms, and school district size. Nearly 30% of students were exposed to at least one ACE. Students with ACE represent 19% of no violence, 38% of victim only, 40% of perpetrator only, and 63% of victim-perpetrator groups. There was a strong, graded relationship between ACE and the probability of school-based victimization: physical bullying for boys but not girls, being threatened with a weapon, and theft or property destruction ( ps < .001) and perpetration: bullying and bringing a weapon to campus ( ps < .001), with boys especially vulnerable to the negative effects of cumulative ACE. We recommend that schools systematically screen for ACE, particularly among younger adolescents involved in victimization and perpetration, and develop the infrastructure to increase access to trauma-informed intervention services. Future research priorities and implications are discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Schanfein

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxidemore » (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).« less

  3. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, testmore » and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.« less

  4. Applications of Capstone depleted uranium aerosol risk data to military combat risk management.

    PubMed

    Daxon, Eric G; Parkhurst, Mary Ann; Melanson, Mark A; Roszell, Laurie E

    2009-03-01

    Risks to personnel engaged in military operations include not only the threat of enemy firepower but also risks from exposure to other hazards such as radiation. Combatant commanders of the U.S. Army carefully weigh risks of casualties before implementing battlefield actions using an established paradigm that takes these risks into consideration. As a result of the inclusion of depleted uranium (DU) anti-armor ammunition in the conventional (non-nuclear) weapons arsenal, the potential for exposure to DU aerosols and its associated chemical and radiological effects becomes an element of the commanders' risk assessment. The Capstone DU Aerosol Study measured the range of likely DU oxide aerosol concentrations created inside a combat vehicle perforated with a DU munition, and the Capstone Human Health Risk Assessment (HHRA) estimated the associated doses and calculated risks. This paper focuses on the development of a scientific approach to adapt the risks from DU's non-uniform dose distribution within the body using the current U.S. Department of Defense radiation risk management approach. The approach developed equates the Radiation Exposure Status categories to the estimated radiological risks of DU and makes use of the Capstone-developed Renal Effects Group as a measure of chemical risk from DU intake. Recommendations are provided for modifying Army guidance and policy in order to better encompass the potential risks from DU aerosol inhalation during military operations.

  5. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled untilmore » consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.« less

  6. Characterization of Aluminum Honeycomb and Experimentation for Model Development and Validation, Volume I: Discovery and Characterization Experiments for High-Density Aluminum Honeycomb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang; Korellis, John S.; Lee, Kenneth L.

    2006-08-01

    Honeycomb is a structure that consists of two-dimensional regular arrays of open cells. High-density aluminum honeycomb has been used in weapon assemblies to mitigate shock and protect payload because of its excellent crush properties. In order to use honeycomb efficiently and to certify the payload is protected by the honeycomb under various loading conditions, a validated honeycomb crush model is required and the mechanical properties of the honeycombs need to be fully characterized. Volume I of this report documents an experimental study of the crush behavior of high-density honeycombs. Two sets of honeycombs were included in this investigation: commercial grademore » for initial exploratory experiments, and weapon grade, which satisfied B61 specifications. This investigation also includes developing proper experimental methods for crush characterization, conducting discovery experiments to explore crush behaviors for model improvement, and identifying experimental and material uncertainties.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volpe, Tristan A.

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits?more » My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the United States. By clarifying when countries are able to leverage steps towards the bomb for international political gain, my work advances our understanding of proliferation and coercive diplomacy.« less

  8. Challenges associated with the behaviour of radioactive particles in the environment.

    PubMed

    Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos

    2018-06-01

    A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position paper summarizes new knowledge on key sources that have contributed to particle releases, including particle characteristics based on advanced techniques, with emphasis on particle weathering processes as well as on heterogeneities in biological samples to evaluate potential uptake and retention of radioactive particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Variations in Pu isotopic composition in soils from the Spitsbergen (Norway): Three potential pollution sources of the Arctic region.

    PubMed

    Łokas, E; Anczkiewicz, R; Kierepko, R; Mietelski, J W

    2017-07-01

    Although the polar regions have not been industrialised, numerous contaminants originating from human activity are detectable in the Arctic environment. This study reports evidence of 240 Pu/ 239 Pu atomic ratios in the tundra and initial soils from different parts of west and central Spitsbergen and recognizes possible environmental inputs of non-global fallout Pu. The average atomic ratio of 240 Pu/ 239 Pu equal to 0.179 (ranging between 0.129 and 0.201) in tundra soils are comparable to the characteristic ratio for global fallout (0.180). However, the 240 Pu/ 239 Pu atomic ratios in the initial soils from proglacial zone of glaciers change within wide range between 0.1281 and 0.234 with the mean value of 0.169. By combining alpha and mass spectrometry, the three-sources model was used to identify the Pu sources in initial soils. Our study indicated that the main source of Pu is nuclear tests and that a second source with lower Pu ratio may come from weapons grade Pu (unexploded weapons grade Pu ie. material from bomb which didn't undergo nuclear explosions for example for security tests). Additionally, we found samples with high 238 Pu/ 239+240 Pu activity ratios and with typical global fallout 240 Pu/ 239 Pu atomic ratios, which are associated with separate sources of pure 238 Pu from the SNAP-9A satellite burn up in the atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    USGS Publications Warehouse

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these that deposited pitchblende.

  11. Mineral and energy resources of the BLM Roswell Resource Area, east-central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.

    1992-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and associated gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-valley-type (MVT) lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called "Pecos diamonds" and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, COa, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, dinosaur remains, and clays. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver- tellurium veins, and thorium-rare earth veins. Museum-quality quartz crystals in Lincoln County were formed in association with intrusive rocks in the Lincoln County porphyry belt. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and minor silver, uranium occurrences, as well as important industrial commodities, including caliche, limestone and dolomite, and aggregate (sand). Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  12. Mineral and energy resources of the Roswell Resource Area, East-Central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.; Donatich, Alessandro J.

    1995-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial commodities include caliche, limestone and dolomite, and aggregate. Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  13. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Robin

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have beenmore » successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting sorbent should prove economically feasible, as well as providing an overall net energy gain.« less

  14. Isotopic signatures: An important tool in today`s world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokop, D.J.; Efurd, D.W.; Benjamin, T.M.

    1995-12-01

    High-sensitivity/high-accuracy actinide measurement techniques developed to support weapons diagnostic capabilities at the Los Alamos National Laboratory are now being used for environmental monitoring. The measurement techniques used are Thermal Ionization Mass Spectrometry (TIMS), Alpha Spectrometry(AS), and High Resolution Gamma Spectrometry(HRGS). These techniques are used to address a wide variety of actinide inventory issues: Environmental surveillance, site characterizations, food chain member determination, sedimentary records of activities, and treaty compliance concerns. As little as 10 femtograms of plutonium can be detected in samples and isotopic signatures determined on samples containing sub-100 femtogram amounts. Uranium, present in all environmental samples, can generally yieldmore » isotopic signatures of anthropogenic origin when present at the 40 picogam/gram level. Solid samples (soils, sediments, fauna, and tissue) can range from a few particles to several kilograms in size. Water samples can range from a few milliliters to as much as 200 liters.« less

  15. Status of Iran's nuclear program and negotiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, David

    2014-05-09

    Iran's nuclear program poses immense challenges to international security. Its gas centrifuge program has grown dramatically in the last several years, bringing Iran close to a point where it could produce highly enriched uranium in secret or declared gas centrifuge plants before its breakout would be discovered and stopped. To reduce the risk posed by Iran's nuclear program, the P5+1 have negotiated with Iran short term limits on the most dangerous aspects of its nuclear programs and is negotiating long-term arrangements that can provide assurance that Iran will not build nuclear weapons. These long-term arrangements need to include a farmore » more limited and transparent Iranian nuclear program. In advance of arriving at a long-term arrangement, the IAEA will need to resolve its concerns about the alleged past and possibly on-going military dimensions of Iran's nuclear program.« less

  16. Uranium favorability of the San Rafael Swell area, east-central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickle, D G; Jones, C A; Gallagher, G L

    1977-10-01

    The San Rafael Swell project area in east-central Utah is approximately 3,000 sq mi and includes the San Rafael Swell anticline and the northern part of the Waterpocket Fold monocline at Capitol Reef. Rocks in the area are predominantly sedimentary rocks of Pennsylvanian through Cretaceous age. Important deposits of uranium in the project area are restricted to two formations, the Chinle (Triassic) and Morrison (Jurassic) Formations. A third formation, the White Rim Sandstone (Permian), was also studied because of reported exploration activity. The White Rim Sandstone is considered generally unfavorable on the basis of lithologic characteristics, distance from a possiblemore » source of uranium, lack of apparent mineralization, and the scarcity of anomalies on gamma-ray logs or in rock, water, and stream-sediment samples. The lower Chinle from the Moss Back Member down to the base of the formation is favorable because it is a known producer. New areas for exploration are all subsurface. Both Salt Wash and Brushy Basin Members of the Morrison Formation are favorable. The Salt Wash Member is favorable because it is a known producer. The Brushy Basin Member is favorable as a low-grade resource.« less

  17. Progress report on geologic studies of the Ranger orebodies, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J.T.; Frishman, David

    1982-01-01

    The Ranger No. 1 and No. 3 orebodies contain about 124,000 tonnes U3O8 in highly chloritized metasediments of the lower Proterozoic Cahill Formation within about 500 m of the projected sub-Kombolgie Formation unconformity. In both orebodies, oxidized and reduced uranium minerals occur chiefly in quartzose schists that have highly variable amounts of muscovite, sericite, and chlorite. The effects of several periods of alteration are pervasive in the vicinity of orebodies where biotite and garnet are altered to chlorite, and feldspars to white mica or chlorite. Oxidized uranium minerals, associated with earthy iron oxides, occur from the surface to a depth of about 60 m. Below the oxidized zone, uranium occurs chiefly as uraninite and pitchblende disseminated through thick sections of quartz-chlorite-muscovite schist and has no apparent association with graphite or sulfides. In fact, graphite is rare and sulfides are generally low in abundance (<0.5 percent). Higher ore grades occur in disrupted zones a few centimeters thick and in some quartz-chlorite vein-like zones of uncertain origin. Uranium correlates strongly with chlorite, but not all of the many ages of chlorite have associated uranium. At least five textural varieties of chlorite are present and represent at least 3 ages. Preliminary microprobe analyses suggest that Mg-Fe-Al contents are relatively uniform. Apatite commonly occurs with chlorite. Uranium is not common in carbonate rocks and seems to occur only in disrupted zones that have chlorite alteration. Chloritization and silicification are more widespread and intense in the No. 1 orebody than in the No. 3. In both orebodies, hematite occurs tens to hundreds of meters below the weathered zone, in both altered and largely unaltered rocks, with and without uranium. The structure of the orebodies is outwardly simple, particularly in No. 3; dips are less than 40? on most lithologic contacts. The No. 1 orebody is in a basin-like structure about 400 m wide that probably formed in part by progressive removal of carbonate rocks that are as much as 200 m thick adjacent to the No. 1 orebody and below the No. 3 orebody. Quartz-chlorite breccias have formed in the zone of carbonate thinning; uranium is spotty and low grade in these breccias. Chloritized and uraniferous broken and sheared zones, a few centimeters to a few meters thick, have an unknown attitude but must have small displacement. Blocks of altered Kombolgie sandstone are downfaulted into the No. 3 orebody and locally contain reduced uranium minerals. One or more shear zones 5-30 m thick of crushed and smeared fine to coarse rock fragments occur below the orebodies, and other low-angle shears probably occur in the orebodies. The shear zone dips about 40 o and displacement on it is not known. The footwall rocks generally are less retrograded than those in the hanging wall (orebody) and consist of quartz-biotite-feldspar schists and gneisses flanking the Nanambu Complex. A few scattered fractures in the footwall sequence contain pitchblende of unknown age and origin. Major element chemical analyses confirm the lithologic observations of large changes in composition during multiple stages of alteration. Granitic dikes and pelitic schists have gained Fe and Mg and lost Si, Ca, Na, and K during chloritization. Marbles have gained Si, Al, Fe, and P, and lost Mg, Ca, and K during jasperoid-chlorite alteration. Total net chemical gains and losses in the Ranger No. 1 orebody were huge: equal to about 37 percent of the mass of the ore-bearing rock that will be mined. There were net gains in Si and P and net losses in Al, Fe, Mg, Ca, K, and Na. The geologic age(s) of uranium emplacement are obscure because there are few age criteria. Reduced uranium minerals are younger than 1.8-b.y.-old granite dikes, and some occur locally in 1.65-b.y.-old Kombolgie Formation. Diabase dikes (age not known) are thoroughly chloritized and contain sparse ore minerals. Oxidized ura

  18. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.

    PubMed

    Edwards, Geoffrey W R; Priest, Nicholas D

    2014-11-01

    The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low as 1 mSv. In addition, if this method is extended so that Pu is also measured, then the combined amount of Pu and Pu is sufficiently high in the thorium-plutonium fuel that a committed effective dose of 1 mSv would be measurable. However, the fraction of Pu and Pu in the other two fuels is sufficiently low that a 1 mSv dose would remain below the detection limit using this technique. Thus new methods, such as fecal measurements of Pu (or other alpha emitters), will be required to measure exposure to these new fuels.

  19. Uranium mining in Portugal: a review of the environmental legacies of the largest mines and environmental and human health impacts.

    PubMed

    Pereira, R; Barbosa, S; Carvalho, F P

    2014-04-01

    The history of uranium mining in Portugal during almost one century has followed international demand peaks of both radium and uranium, which in turn were driven by medical, military, and civil applications. Nowadays, following price drop in the 1980s, mining activities decreased and ceased in 2001. The current challenge is to deal with environmental legacies left by old uranium mines, mainly located in Viseu and Guarda districts. In 2001, based on several radiological surveys carried out, the Portuguese government assumed the remediation costs of abandoned mine areas for environmental safety and public health protection. Detailed environmental and public health risk assessments were performed under the scope of studies both requested by the government and by funded research projects. It was found that the existing risks, due to radiological and chemical exposures to metals and radionuclide's, were particularly high at the old milling facilities and mines where in situ and heap leaching of low-grade ore occurred. The different studies, involving both humans and non-human species from different trophic levels, demonstrated the existence of effects at different levels of biological organization (molecular, cellular, tissues, individuals, and populations) and on ecosystem services. To mitigate the risks, the environmental rehabilitation works at the Urgeiriça mine complex are almost complete, while at Cunha Baixa mine, they are presently in progress. These works and environmental improvements achieved and expected are described herein.

  20. Dewatering of the Jenkins open pit uranium mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straskraba, V.; Kissinger, L.E.

    Mining of low grade uranium sandstones in the Jenkins open pit mine in the Shirley Basin, Wyoming was troubled by slope failures and wet conditions in the pit. Since the mine was expanding toward a river, the possibility of drainage from this river into the mine raised serious concern during the mine planning. A baseline hydrogeologic study was performed and dewatering measures were designed with the help of a numerical mathematical model. A combination of dewatering wells installed from the surface around the perimeter of the pit and horizontal drains in areas of high slope failure potential substantially improved themore » mining conditions and slope stability. This procedure consequently led to the successful ore recovery from the highly saturated sandstone strata. The development of drawdown during the dewatering of two separated aquifers in the overburden was close to that predicted by the model.« less

  1. Occurrence of Uranium and 222Radon in Glacial and Bedrock Aquifers in the Northern United States, 1993-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Flanagan, Sarah M.; Morrow, William S.

    2007-01-01

    Water-quality data collected from 1,426 wells during 1993-2003 as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program were evaluated to characterize the water quality in glacial and bedrock aquifers of the northern United States. One of the goals of the NAWQA program is to synthesize data from individual studies across the United States to gain regional- and national-scale information about the behavior of contaminants. This study focused on the regional occurrence and distribution of uranium and 222radon in ground water in the glacial aquifer system of the United States as well as in the Cambrian-Ordovician and the New York and New England crystalline aquifer systems that underlie the glacial aquifer system. The occurrence of uranium and 222radon in ground water has long been a concern throughout the United States. In the glacial aquifers, as well as the Cambrian-Ordovician and the New York and New England crystalline aquifer systems of the United States, concentrations of uranium and 222radon were highly variable. High concentrations of uranium and 222radon affect ground water used for drinking water and for agriculture. A combination of information or data on (1) national-scale ground-water regions, (2) regional-scale glacial depositional models, (3) regional-scale geology, and (4) national-scale terrestrial gamma-ray emissions were used to confirm and(or) refine the regions used in the analysis of the water-chemistry data. Significant differences in the occurrence of uranium and 222radon, based primarily on geologic information were observed and used in this report. In general, uranium was highest in the Columbia Plateau glacial, West-Central glacial, and the New York and New England crystalline aquifer groups (75th percentile concentrations of 22.3, 7.7, and 2.9 micrograms per liter (ug/L), respectively). In the Columbia Plateau glacial and the West-Central glacial aquifer groups, more than 10 percent of wells sampled had concentrations of uranium that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level of 30 ug/L; in the New York and New England crystalline aquifer group, 4 percent exceeded 30 ug/L. Ground-water samples with high concentrations of uranium were commonly linked to geologic sources rich in uranium. In eight of nine aquifer groups defined for this study, concentrations of uranium correlated significantly with concentrations of sulfate in ground water (Spearman's rho = 0.20 to 0.56; p < 0.05). In the Columbia Plateau, glacial aquifers were derived in part from basaltic lava flows, some felsic volcanic rocks, and some paleo-lake bed materials that may be rich in uranium. In the Columbia Plateau and West-Central glacial aquifer groups, uranium correlated with total dissolved solids, bicarbonate, boron, lithium, selenium, and strontium. In the West-Central glacial aquifer group, rocks such as Cretaceous marine shales, which are abundant in uranium, probably contribute to the high concentrations in ground water; in the southern part of this group, which extends into Nebraska, the glacial or glacial-related sediment may be interbedded with uranium-rich materials that originated to the north and west and in the Rocky Mountains. In New England, crystalline bedrock that is granitic, such as two-mica granites, as well as other high-grade metamorphic rocks, has abundant uranium that is soluble in the predominantly oxic to sub-oxic geochemical conditions. This appears to contribute to high uranium concentrations in ground water. The highest 222radon concentrations were present in samples from wells completed in the New York and New England crystalline aquifer group; the median value (2,122 picocurries per liter (pCi/L)) was about 10 times the median values of all other aquifer groups. More than 25 percent of the samples from the New York and New England crystalline aquifer group wells had 222radon concentrations that exceeded the USEPA Alternative

  2. Natural radionuclide and plutonium content in Black Sea bottom sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strezov, A.; Stoilova, T.; Yordanova, I.

    1996-01-01

    The content of uranium, thorium, radium, lead, polonium, and plutonium in bottom sediments and algae from two locations at the Bulgarian Black Sea coast have been determined. Some parent:progeny ratios for evaluation of the geochemical behavior of the nuclides have been estimated as well. The extractable and total uranium and thorium are determined by two separate radiochemical procedures to differentiate the more soluble chemical forms of the elements and to estimate the potential hazard for the biosphere and for humans. No distinct seasonal variation as well as no significant change in total and extractable uranium (also for {sup 226}Ra) contentmore » is observed. The same is valid for extractable thorium while the total thorium content in the first two seasons is slightly higher. Our data show that {sup 210}Po content is accumulated more in the sediments than {sup 210}Pb, and the evaluated disequilibria suggest that the two radionuclides belong to more recent sediment layers deposited in the slime samples compared to the silt ones for the different seasons. The obtained values for plutonium are in the lower limits of the data cited in literature, which is quite clear as there are no plutonium discharge facilities at the Bulgarian Black Sea coast. The obtained values for the activity ratio {sup 238}Pu: {sup 239+240}Pu are higher for Bjala sediments compared to those of Kaliakra. The ratio values are out of the variation range for the global contamination with weapon tests fallout plutonium which is probably due to Chernobyl accident contribution. The dependence of natural radionuclide content on the sediment type as well as the variation of nuclide accumulation for two types of algae in two sampling locations for five consecutive seasons is evaluated. No serious contamination with natural radionuclides in the algae is observed. 38 refs., 6 figs., 7 tabs.« less

  3. Microbial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments

    PubMed Central

    Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.

    2014-01-01

    Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4 3−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration. PMID:24950228

  4. Investigation into the Feasibility of Highly Enriched Uranium Detection by External Neutron Stimulation (Expanded Study)

    DTIC Science & Technology

    2006-05-01

    26 1.10.1 Radiation Isotope Detector Operation ...... 27 1.10.2 HEU Counts in Radioisotope with 1 kg HEU.. 27 1.10.3 Radiation Isotope ...REACTOR GRADE PLUTONIUM ........... 173 10.2 GAMMA EMITTING ISOTOPES IN CARGO MATERIAL ............. 177 10.3 MCNP ANALYSIS OF GAMMA TRANSPORT FROM A...experiment at USNA using a germanium detector .......................... 31 1-13 Counts in the radiation isotope detector versus counting time for 1

  5. Leaching under Oxygen Pressure with Carbonate Solution Reduction by Hydrogen; LIXIVIATION OXYDANTE DES PECHBLENDES ET PRECIPITATION DE L'URANIUM PAR L'HYDROGENE. APPLICATION AUX MINERAIS PAUVRES FRANCAIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaceanu, J.C.; Coussemant, F.; Mouret, P.

    1959-10-31

    A study was made of the basic characteristics of the leaching with carbonate solution under oxygen pressure and of the catalytic hydrogen reduction of low-grade French ores. Pure U/sub 3/O/sub 8/ was used in the investigations on leaching. The effects of oxygen pressure, temperature, initial surface of the oxide, surfuce during the course of the reaction, and concentration of the carbonate solution were determined. It was shown that the heterogeneous reactions involve a constant surface and two steps. A pilot plant experiment was made on a number of low-grade French ores. With ores the leaching is not sensitive to oxygenmore » pressure. Dilute solutions of sodium uranyl carbonate are obtained from the leaching. The uranium can be precipitated as an oxide of a lower valent state by catalytic reduction with hydrogen. The study of this step was made on pure solutions of sodium uranyl carbonate in the presence of nickel and platinum catalysts. The reaction is strongly modified by the presence of even low concentrations of sodium bicarbonate. The reaction velocity increases with hydrogen pressure up to 5 atm, but then becomes independent of the pressure. The precipitation is accelerated by an increase in temperature. (J.S.R.)« less

  6. The future of Yellowcake: a global assessment of uranium resources and mining.

    PubMed

    Mudd, Gavin M

    2014-02-15

    Uranium (U) mining remains controversial in many parts of the world, especially in a post-Fukushima context, and often in areas with significant U resources. Although nuclear proponents point to the relatively low carbon intensity of nuclear power compared to fossil fuels, opponents argue that this will be eroded in the future as ore grades decline and energy and greenhouse gas emissions (GGEs) intensity increases as a result. Invariably both sides fail to make use of the increasingly available data reported by some U mines through sustainability reporting - allowing a comprehensive assessment of recent trends in the energy and GGE intensity of U production, as well as combining this with reported mineral resources to allow more comprehensive modelling of future energy and GGEs intensity. In this study, detailed data sets are compiled on reported U resources by deposit type, as well as mine production, energy and GGE intensity. Some important aspects included are the relationship between ore grade, deposit type and recovery, which are crucial in future projections of U mining. Overall, the paper demonstrates that there are extensive U resources known to meet potential short to medium term demand, although the future of U mining remains uncertain due to the doubt about the future of nuclear power as well as a range of complex social, environmental, economic and some site-specific technical issues. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Applications of Capstone Depleted Uranium Aerosol Risk Data to Military Combat Risk Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daxon, Eric G.; Parkhurst, MaryAnn; Melanson, Mark A.

    2009-03-01

    Risks to personnel engaged in military operations include not only the threat of enemy firepower but also risks from exposure to other hazards such as radiation. Combatant commanders of the U. S. Army carefully weigh risks of casualties before implementing battlefield actions using an established paradigm that take these risks into consideration. As a result of the inclusion of depleted uranium (DU) anti-armor ammunition in the conventional (non-nuclear) weapons arsenal, the potential for exposure to DU aerosols and its associated chemical and radiological effects becomes an element of the commanders’ risk assessment. The Capstone DU Aerosol Study measured the rangemore » of likely DU oxide aerosol concentrations created inside a combat vehicle perforated with a DU munition, and the Capstone Human Health Risk Assessment (HHRA) estimated the associated doses and calculated risks. This paper focuses on the development of a scientific approach to adapt the risks from DU’s non uniform dose distribution within the body using the current U.S. Department of Defense (DoD) radiation risk management approach. The approach developed equates the Radiation Exposure Status (RES) categories to the estimated radiological risks of DU and makes use of the Capstone-developed Renal Effects Group (REG) as a measure of chemical risk from DU intake. Recommendations are provided for modifying Army guidance and policy in order to better encompass the potential risks from DU aerosol inhalation during military operations.« less

  8. Uranium interaction with soil minerals in the presence of co-contaminants: Case Study- subsurface sediments at or below the water table

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartman, Brandy N.; Qafoku, Nikolla

    2016-03-09

    Uranium (U) contaminated subsurface systems are common on a global scale mainly because of its essential role in the production of plutonium for nuclear weapons and other nuclear energy and research activities. Studying the behavior and fate of U in these systems is challenging because of heterogeneities of different types (i.e., physical, chemical and mineralogical) and a complex network of often time-dependent hydrological, biological and chemical reactions and processes that occur sequentially or simultaneously, affecting and/or controlling U mobility. A U contaminated site, i.e., the Integrated Field Research Challenge site in Rifle, CO, USA (a former U mill site) ismore » the focus of this discussion. The overall objectives of this chapter are to 1) provide an overview of the contamination levels (U and other co-contaminants) at this field site; 2) review and discuss different aspects of mineral-U contaminant interactions in reduced and oxidized environments, and in the presence of co-contaminants; 3) present results from a systematic macroscopic, microscopic, and spectroscopic study as an example of the current research efforts and the state-of-knowledge in this important research area; and 4) offer insightful conclusive remarks and future research needs about reactions and processes that control U and other contaminants’ fate and behavior under hydraulically saturated conditions. The implications and applications presented in this chapter are valid for U contaminated sites across the world.« less

  9. Safe disposal of surplus plutonium

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  10. Uraniferous Phosphates: Resource, Security Risk, or Contaminant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMone, D.V.; Goodell, Ph.C.; Gibbs, S.G.

    2008-07-01

    The escalation of the price of uranium (U) yellow cake (summer high = $130/0.454 kg (lb) has called into question the continuing availability of sufficient stockpiles and ores to process. As was developed during the years following World War II, the establishment and maintenance of a strategic inventory is a reasonable consideration for today. Therefore, it becomes critical to look at potential secondary resources beyond the classical ore suites now being utilized. The most economically viable future secondary source seems to be the byproducts of the beneficiation of phosphoric acids derived from phosphate ores. Phosphorous (P) is an essential nutrientmore » for plants; its deficiency can result in highly restrictive limitations in crop productivity. Acidic soils in tropical and subtropical regions of the world are often P deficient with high P-sorption (fixation) capacities. To correct this deficiency, efficient water-soluble P fertilizers are required. The use of raw phosphate rocks not only adds phosphate but also its contained contaminants, including uranium to the treated land. Another immediate difficulty is phosphogypsum, the standard byproduct of simple extraction. It, for practical purposes, has been selectively classified as TENORM by regulators. The imposition of these standards presents major current and future disposal and re-utilization problems. Therefore, establishing an economically viable system that allows for uranium byproduct extraction from phosphoric acids is desirable. Such a system would be dependent on yellow cake base price stability, reserve estimates, political conditions, nation-state commitment, and dependence on nuclear energy. The accumulation of yellow cake from the additional extraction process provides a valuable commodity and allows the end acid to be a more environmentally acceptable product. The phosphogypsum already accumulated, as well as that which is in process, will not make a viable component for a radiation disposal devise (RDD). Concern for weapon proliferation by rogue nation states from the byproduct production of yellowcake is an unlikely scenario. To extract the fissile U-235 (0.07%) isotope from the yellowcake (99.3%) requires the erection of a costly major gaseous diffusion or a cascading centrifuge facility. Such a facility would be extremely difficult to mask. Therefore, from a diminished security risk and positive economic and environmental viewpoints, the utilization of a phosphoric acid beneficiation process extracting uranium is desirable. (authors)« less

  11. Radionuclide Concentrations in Terrestrial Vegetation and Soil Samples On and Around the Hanford Site, 1971 Through 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Mary Ann; Poston, Ted M.; Fritz, Brad G.

    2011-07-29

    Environmental monitoring is conducted on the U.S. Department of Energy (DOE) Hanford Site to comply with DOE Orders and federal and state regulations. Major objectives of the monitoring are to characterize contaminant levels in the environment and to determine site contributions to the contaminant inventory. This report focuses on surface soil and perennial vegetation samples collected between 1971 and 2008 as part of the Pacific Northwest National Laboratory Surface Environmental Surveillance Project performed under contract to DOE. Areas sampled under this program are located on the Hanford Site but outside facility boundaries and on public lands surrounding the Hanford Site.more » Additional samples were collected during the past 8 years under DOE projects that evaluated parcels of land for radiological release. These data were included because the same sampling methodology and analytical laboratory were used for the projects. The spatial and temporal trends of six radionuclides collected over a 38-year period were evaluated. The radionuclides----cobalt-60, cesium-137, strontium-90, plutonium-238, plutonium-239/240, and uranium (reported either as uranium-238 or total uranium)----were selected because they persist in the environment and are still being monitored routinely and reported in Hanford Site environmental reports. All these radionuclides were associated with plutonium production and waste management of activities occurring on the site. Other sources include fallout from atmospheric testing of nuclear weapons, which ended in 1980, and the Chernobyl explosion in 1986. Uranium is also a natural component of the soil. This assessment of soil and vegetation data provides important information on the distribution of radionuclides in areas adjacent to industrial areas, established perimeter locations and buffer areas, and more offsite nearby and distant locations. The concentrations reflect a tendency for detection of some radionuclides close to where they were utilized onsite, but as one moves to unindustrialized areas on the site, surrounding buffer areas and perimeter location into the more distant sites, concentrations of these radionuclides approach background and cannot be distinguished from fallout activity. More importantly, concentrations in soil and vegetation samples did not exceed environmental benchmark concentrations, and associated exposure to human and ecological receptors were well below levels that are demonstratively hazardous to human health and the environment.« less

  12. Geology of the Ralston Buttes district, Jefferson County, Colorado: a preliminary report

    USGS Publications Warehouse

    Sheridan, Douglas M.; Maxwell, Charles H.; Albee, Arden L.; Van Horn, Richard

    1956-01-01

    The Ralston Buttes district in Jefferson County is one of the most significant new uranium districts located east of the Continental Divide in Colorado. The district is east of the Colorado Front Range mineral belt, along the east front of the range. From November 1953 through October 1956, about 10,000 tons of uranium ore, much of which was high-grade pitchblende-bearing vein material, was shipped from the district. The ore occurs in deposits that range in size from bodies containing less than 50 tons to ore shoots containing over 1,000 tons. The only other mining activity in the area has been a sporadic production of beryl, feldspar, and scrap mica from Precambrian pegmatites, and quarrying of dimension stone, limestone, and clay from sedimentary rocks. Most of the Ralston Buttes district consists of complexly folded Precambrian metamorphic and igneous rocks - gneiss, schist, quartzite, amphibolite, and granodiorite. Paleozoic and Mesozoic sedimentary rocks crop out in the northeastern part of the district. These rocks are cut by northwesterly-trending fault systems of Laramide age and by small bodies of intrusive rocks that are Tertiary in age. The typical uranium deposits in the district are hydrothermal veins occupying openings in Laramide fault breccias or related fractures that cut the Precambrian rocks. Pitchblende and lesser amounts of secondary uranium minerals are associated with sparse base-mental sulfides in a gangue of carbonate minerals, potash feldspar, and, more rarely, quartz. Less common types of deposits consist of pitchblende and secondary uranium minerals that occupy fractures cutting pegmatites and quartz veins. The uranium deposits are concentrated in two areas, the Ralston Creek area and the Golden Gate Canyon area. The deposits in the Ralston Creek area are located along the Rogers fault system, and the deposits in the Golden Gate Canyon area are along the Hurricane Hill fault system. Two geologic factors were important to the localization of the uranium deposits: (1) favorable structural environment and (2) favorable host rocks. The deposits in each of the two major areas are located where a northwesterly-trending Laramide fault system splits into a complex network of faults. Also, most of the deposits appear to be localized where the faults cut Precambrian rocks rich in hornblende, biotite, or garnet and biotite. The ore controls recognized in this relatively new uranium district may have wider application in areas of similar geology elsewhere in the Front Range.

  13. Progress report on the Happy Jack mine, Which Canyon area, San Juan county, Utah

    USGS Publications Warehouse

    Trites, Albert F.; Chew, Randall T.

    1954-01-01

    The Happy Jack mine is in the White Canyon area, San Juan county, Utah. Production is from high-grade uranium deposits in the Shinarump conglomerate of the Triassic age. In this area the Shinarump beds range from about 16 to 40 feet in thickness and the lower part of these beds fills an east-trending channel this is note than 750 feet wide and 10 feet deep. The Shinarump conglomerate consists of beds of coarse- to fine-grained quartzose sandstone, conglomerate, siltstone, and claystone. Carbonized wood is abundant in these beds, and in the field it was classified as mineral charcoal and coal. Intra-Shinarump channels, cross-stratification, current lineation, and slumping and compaction structures have been recognized in the mine. Steeply dipping fractures have dominant trends in four directions -- N 65°W, N 60°E, N 85°E, and due north. Uranium occurs as bedded deposits, as replacement bodies in accumulations of "trash", and as replacements of larger fragments of wood. An "ore shoot" is formed where the three types of uranium deposits occur together; these ore shoots appear to be elongate masses with sharp boundaries. Uranium minerals include uraninite, sooty pitchblende(?), and the sulfate--betazippeite, johannite, and uranopilite. Associated with the uraninite are the sulfide minerals covellite, bornite, chalcopyritw, and pyrite. Galena and sphalerite have been found in close association with uranium minerals. The gaunge minerals include: limonite and hematite present in most of the sandstone beds throughout the deposit, jarosite that impregnates much of the sandstone in the outer parts of the mine workings, gypsum that fills many of the fractures, and barite that impregnates the sandstone in at least one part of the mine. Secondary copper minerals, mainly copper sulfates, occur throughout the mine, but most abundant near the adits in the outermost 30 feet of the workings. The minerals comprising the bulk of the country rock include quartz, feldspar, and clay minerals. The amount of uranium minerals deposited in a sandstone bed is believed to have been determined by the position of the bed in the channel, the permeability of the sandstone in the bed, and the amount of carbonized wood and plant remains within the bed. The beds considered most favorable for uranium deposition contain an abundance of claystone and siltstone both as matrix filling and as fragments and pebbles. Suggested exploration guides from uranium ore bodies include the following: (1) interbedded siltstone lenses, (2) claystone and siltstone cement and pabbles, (3) concentrations of "trash", (4) covelllite and bornite, (5) chalcopyrite, and (6) carbonized wood.

  14. Distribution of calcretes and gypcretes in southwestern United States and their uranium favorability, based on a study of deposits in Western Australia and South West Africa (Namibia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, D.; Merifield, P.M.; Orme, A.R.

    Calcrete, dolocrete, and gypcrete carnotite are abundant in western Australia and Namib Desert, although only a few are of ore grade. The geology of these deposits are described. A genetic classification of calcretes emphasizing uranium favorability was developed, based on the distinction between pedogenic and nonpedogenic processes. Similarities between western Australia and South West Africa give support for the conclusions that lateral transport of U in groundwater is essential to ore deposition and that bedrock barriers or constrictions which narrow the channel of subsurface flow or force the water close to the land surface, greatly favor the formation of uraniferousmore » calcretes. Criteria for uranium favorability deduced from the Australian and South West African studies were applied in a preliminary way to the southern Basin and Range Province of U.S. The procedure is to search for areas in which nonpedogenic calcrete or gypcrete may have developed. A caliche distribution map was compiled from soil survey and field data. Many areas were visited and some of the more interesting are described briefly, including parts of Clark County, Nevada, with occurrences of carnotite in calcrete. (DLC)« less

  15. 19. VIEW LOOKING NORTH AT BUILDING 81 (881) UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW LOOKING NORTH AT BUILDING 81 (881) UNDER CONSTRUCTION IN 1952. THIS BUILDING IS A THREE-STORY REINFORCED CONCRETE AND STEEL BUILDING CONSTRUCTED BELOW GROUND. ITS ROOF IS FLUSH WITH THE FINISH GRADE ALONG THE NORTH AND MOST OF THE EAST AND WEST SIDES. THE BUILDING CONTAINED ENRICHED URANIUM AND STAINLESS STEEL OPERATIONS, AS WELL AS GENERAL ACCOUNTING, COMPUTER AND INFORMATION SYSTEMS, AND RECORD MANAGEMENT (3/2/52). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  16. Economic Outlook for Radiometric Selection of Ores; POSSIBILITES OUVERTES EN MATIERE ECONOMIQUE PAR SELECTION RADIOMETRIQUE DES MINERAIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Formery, P.; Ziegler, V.

    1959-10-31

    The radiometric grading of uranium ores is analyzed. The cut-off is defined, and its parameters are derived. Cut-off above ground and underground are statistically interpreted. An evaluation is made of the combined effects of both kinds of cut-off made in succession. The corrections to be made to the radiometric apparatus used are determined. Application of the theory of cutoff to the evaluation of reserves is discussed. (J.S.R.)

  17. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  18. SUMMARY TECHNICAL REPORT ON FEED MATERIALS FOR THE PERIOD APRIL 1, 1959 TO JUNE 30, 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, J.W. ed.

    1959-07-20

    Anaconda Acld, Kermac, Moab, Rifle, and Texas Zinc uranium concentrates were evaluated (the laboratory portlon of feed material evaluation). Laboratory equilibrium tests and Pilot Plant 2-inch-column extraction tests demonstrated effective distribution of uranium into a TBPkerosene solvent from aqueous phases containing as little as 0.5N HNO/sub 3/ and varying amounts of added metal nitrates (NaNO/sub 3/). The concentration of assoclated nitric acid in dilute aqueous nitric acld solutions was determined after values were obtained for the equillbrium constant for the reaction of tri-n-butyl phosphate with associated nitric acid and for the equilibrium distribution constant for the partition of associated nitricmore » acld into tri-n-butyl phosphate. Optimum partition of uranium into tri-n-butyl phosphate was realized in the laboratory by using an aqueous uranyl nitrate solution containing sufficient hydrogen ions to promote extraction and a low concentration of associated nitric acid. An Ohmart system for controlling the uranium profile in the A'' extractlon column was installed on Refinery pulse columns. Use of this system improved control but did not stop all column upsets. The effect of 13 to l89 ppm sodium contaminatlon upon hydrofluorination conversion of teraperature at the site of the reaction. Uranyl sulfate was shown to undergo an enantiotroplc transitlon at 755 deg C and to decompose to U/sub 3/O/sub 8/ in an atmosphere of oxygen sulfur dioxide, which gases are evolved during decoraposition. Decontamination of sodium, calcium, nickel, magnesium, gadolinium, and dysprosium was achieved in a laboratory investigatlon of the ADU process. UO/sub 2/ produced by reductions programmed from 700 to ll00 deg F was hydrofluorinated at programmed temperatures of 550 to 1100 deg F and isothermally at ll00 deg F. Good conversion was obtained for material whose source was ADU calcined at 1200 deg F. Uranium derbles were classified by the present method of derby grading and were then examined for slag coverage, slag volume, and slag weight. There was a high degree of overlap of these parameters for adjacent grades. A hydraulic separator for separatlng uranlum from magnesium and magnesium fluorlde was fabrlcated. Excellent separatlon was obtained for +l6 mesh material. A hydrochloric acid dissolution- UF/sub 4/ precipitation process for routing scrap materials to the reductlon-to- metal step was examined. The purification obtained was noted, and process conditions were varied to determine their effect upon UF/sub 4/ density, UF/sub 4/ purity and precipitation time. Three types of uranium scrap were subjected to the HCl dissolution-aqueous precipitation Winlo process to determine the purification achieved. Green salt made from dolomitlc bomb liner residues was found to be grossly contaminated. Acceptable green salt was raade from pickle liquor treated with formaldehyde and from pickle liquor plus black oxide. Nominal 80% yields were obtained in the recovery of magnesium metal by reaction of calcium carblde with magnesium fluoride slag and in the recovery of HF by the reactlon of sulfuric acid wlth magnesium fluoride slag. A sample holder for use in quantitative preferred orientation studies was fabricated. The holder, designed to fit a North American Philips Gonionweter, will accommodate specimens up to l 13/16 inches in diameter and incorporates a precision ball bearing. A satisfactory technique was developed for the analysis of uranium metal for traces of fluoride. A direct flame photometric method is glven for the determination of magnesium in uranium ore concentrates. No chemical separation step is required, except for high-iron-content ores. (auth)« less

  19. What views and uses of radiation sources in the 21st century?

    PubMed

    Blix, H

    2001-04-01

    Considering that in 1899 neither biotechnology nor the electronic revolution were foreseen, some humility might be advisable when one looks into the crystal ball for the future role of radiation sources. In the past 50 years, nuclear medicine, nuclear weapons, and nuclear power have had a huge impact in the world. In the next 50 years, nuclear weapons may be phased out, nuclear power revived, and nuclear medicine may continue, especially for diagnostic purposes. Conflicts between great powers and blocks will no longer be about territorial or ideological domination but about trade, finance, information, and the environment and the weapons used will not be bombs but investments, credits, and control of information. Nuclear power-still based on fission-will be relaunched and get more uses, e.g., to propel ships, to produce heat for industry and for space heating, and perhaps to desalinate water. The public will be more at ease with radiation as it is better educated, as nuclear safety continuously improves and new types of nuclear power plants emerge, as waste sites fail to cause any problems, and as no other energy source is found to deliver so much energy at reasonable cost with negligible impact on climate and environment. One kilogram of oil corresponds to 4 kWh of electricity. One kilogram of uranium fuel corresponds to 50,000 kWh, and 1 kg of plutonium 6,000,000 kWh! In nuclear medicine, radiation may give way to other treatments as the understanding of cancer advances. On the other hand, the extreme ease with which sources of radiation can be identified is unmatched and likely to make them useful tools as tracers and markers in medicine-and other fields-for a long time. For certain uses--perhaps food irradiation--radiation sources, such as cobalt, may be replaced by accelerators which may be switched on and off at will. As more sources are used, registration and control of them must be made very effective around the whole world. Very high natural emissions of radon will continue to call for cautionary measures, but many other nonradiating substances will be identified as hazardous to health and call for vigorous intervention.

  20. Prevalence and correlates of street racing among Ontario high school students.

    PubMed

    Vingilis, Evelyn; Smart, Reginald G; Mann, Robert E; Paglia-Boak, Angela; Stoduto, Gina; Adlaf, Edward M

    2011-10-01

    This study examined the prevalence and correlates of street racing among adolescents derived from the 2009 Ontario Student Drug Use and Health Survey (OSDUHS), an epidemiological survey of students in Ontario, Canada. The key response variable, self-reported street racing in past year, was examined in relation to grade level, rural/urban, school marks, cannabis use, drinking and driving, cannabis use and driving, and property, physical, drugs, and weapons delinquencies. All survey estimates were weighted, and variance and statistical tests were corrected for the complex sampling design. Of the 3053 9th- to 12th-graders (66% response rate), 5.6 percent of high-schoolers (an estimated 42,000 in the province) and (20.4% of grade 11 and 12 students with an advanced-level or full license) reported driving a car, truck, or sport utility vehicle (SUV) in a street race in the 12 months before the survey. Logistic regression analysis of the advanced-level or fully licensed students in grades 11 and 12 found that males compared to females and students in grade 11 compared to students in grade 12 had significantly higher adjusted odds of street racing. Supportive of problem behavior theory, students who reported property and drug delinquencies compared to students not engaging in these delinquencies also had significantly higher adjusted odds of street racing. This first population-based study in North America suggested that the prevalence of street racing at 1 in 5 of advanced or fully licensed high-schoolers in grades 11 and 12 poses significant public health concerns, especially related to the potential for unintentional injury.

  1. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  2. Active Detection of Shielded Special Nuclear Material in the Presence of Variable High Backgrounds Using a Mixed Photon-Neutron Source

    NASA Astrophysics Data System (ADS)

    Martin, Philip N.; Clemett, Ceri D.; Hill, Cassie; O'Malley, John; Campbell, Ben

    This paper describes and compares two approaches to the analysis of active interrogation data containing high photon backgrounds associated with mixed photon-neutron source flash active interrogation. Results from liquid scintillation detectors (EJ301/EJ309) fielded at the Naval Research Laboratory (NRL), in collaboration with the Atomic Weapons Establishment (AWE), using the NRL Mercury Inductive Voltage Adder (IVA) operating in both a photon and mixed photon-neutron mode at a Depleted Uranium (DU) target are presented. The standard approach applying a Figure of Merit (FOM) consisting of background sigma above background is compared with an approach looking to fit only the time-decaying photon signal with standard delayed photon emission from ∼10-MeV end-point-energy Bremsstrahlung photofission of DU. Examples where each approach does well and less well are presented together with a discussion of the relative limitations of both approaches to the type of mixed photon-neutron flash active interrogation being considered.

  3. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  4. Mass and abundance 236U sensitivities at CIRCE

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; De Cesare, N.; D'Onofrio, A.; Fifield, L. K.; Gialanella, L.; Terrasi, F.

    2015-10-01

    The actinides (e.g. 236U and xPu isotopes) are present in environmental samples at the ultra trace level since atmospheric tests of NWs (Nuclear Weapons) performed in the past, deliberate dumping of nuclear waste, nuclear fuel reprocessing, on a large scale and operation of NPPs (Nuclear Power Plants) on a small scale have led to the release of a wide range of radioactive nuclides in the environment. Their detection requires the most sensitive AMS (Accelerator Mass Spectrometry) techniques and at the Center for Isotopic Research on Cultural and Environmental heritage (CIRCE) in Caserta, Italy, an upgraded actinide AMS system, based on a 3-MV pelletron tandem accelerator, has been operated. In this paper the progress made in order to push the 236U mass sensitivity and 236U/238U isotopic ratio down to the natural levels is reported. A uranium contamination mass of about 0.05 μg and a 236U/238U isotopic ratio sensitivities at the level of 3.2 × 10-13 are presently achievable.

  5. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less

  6. Preparation of plutonium-bearing ceramics via mechanically activated precursor

    NASA Astrophysics Data System (ADS)

    Chizhevskaya, S. V.; Stefanovsky, S. V.

    2000-07-01

    The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.

  7. Plutonium release from the 903 pad at Rocky Flats.

    PubMed

    Mongan, T R; Ripple, S R; Winges, K D

    1996-10-01

    The Colorado Department of Public Health and Environment (CDH) sponsored a study to reconstruct contaminant doses to the public from operations at the Rocky Flats nuclear weapons plant. This analysis of the accidental release of plutonium from the area known as the 903 Pad is part of the CDH study. In the 1950's and 1960's, 55-gallon drums of waste oil contaminated with plutonium, and uranium were stored outdoors at the 903 Pad. The drums corroded, leaking contaminated oil onto soil subsequently carried off-site by the wind. The plutonium release is estimated using environmental data from the 1960's and 1970's and an atmospheric transport model for fugitive dust. The best estimate of total plutonium release to areas beyond plant-owned property is about 0.26 TBq (7 Ci). Off-site airborne concentrations and deposition of plutonium are estimated for dose calculation purposes. The best estimate of the highest predicted off-site effective dose is approximately 72 microSv (7.2 mrem).

  8. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, William

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less

  9. The state of nuclear forensics

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Tumey, Scott J.

    2013-01-01

    Nuclear terrorism has been identified as one of the most serious security threats facing the world today. Many countries, including the United States, have incorporated nuclear forensic analysis as a component of their strategy to prevent nuclear terrorism. Nuclear forensics involves the laboratory analysis of seized illicit nuclear materials or debris from a nuclear detonation to identify the origins of the material or weapon. Over the years, a number of forensic signatures have been developed to improve the confidence with which forensic analysts can draw conclusions. These signatures are validated and new signatures are discovered through research and development programs and in round-robin exercises among nuclear forensic laboratories. The recent Nuclear Smuggling International Technical Working Group Third Round Robin Exercise and an on-going program focused on attribution of uranium ore concentrate provide prime examples of the current state of nuclear forensics. These case studies will be examined and the opportunities for accelerator mass spectrometry to play a role in nuclear forensics will be discussed.

  10. Special Analysis: 2017-001 Disposal of Drums Containing Enriched Uranium in Pit 38 at Technical Area 54, Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdsell, Kay Hanson; Stauffer, Philip H.; French, Sean B.

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 atmore » Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrao, Alcidio.; Araujo, Jose Adroaldo de; Franca Junior, J.M.

    This paper describes a technique for the production of nuclear grade ammonium diuranate (ADU) using uranyl sulfate solutions obtained as eluate from the ion exchange (strong cationic resin) purification of uranium, by precipitation with NH{sub 3} gas. The precipitation of ADU by direct introduction of NH{sub 3} gas into acid uranyl sulfate solution has as consequence a high coprecipitation of sulfate ion, reaching ratios as high as 10 to 14% SO{sub 4}/ADU. To overcome this serious inconvenience, the reverse order of addition of reagents was studied, the ADU precipitation being done in such a way that the pH of themore » mixture was kept higher than 6 during the whole precipitation. This modification, in conjunction with the adjustment of other precipitation parameters, like temperature, precipitation time, aging time, concentration of uranium in uranyl sulfate and pH, allowed a sucessful precipitation of ADU with low sulfate content. The technique was applied at pilot plant scale, using batch and continuous precipitation, in both cases the obtained ADU was low in sulfate.« less

  12. A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium.

    PubMed

    Handley-Sidhu, Stephanie; Keith-Roach, Miranda J; Lloyd, Jonathan R; Vaughan, David J

    2010-11-01

    Depleted uranium (DU) is a by-product of nuclear fuel enrichment and is used in antitank penetrators due to its high density, self-sharpening, and pyrophoric properties. Military activities have left a legacy of DU waste in terrestrial and marine environments, and there have been only limited attempts to clean up affected environments. Ten years ago, very little information was available on the dispersion of DU as penetrators hit their targets or the fate of DU penetrators left behind in environmental systems. However, the marked increase in research since then has improved our knowledge of the environmental impact of firing DU and the factors that control the corrosion of DU and its subsequent migration through the environment. In this paper, the literature is reviewed and consolidated to provide a detailed overview of the current understanding of the environmental behaviour of DU and to highlight areas that need further consideration. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. SANTA LUCIA WILDERNESS, AND GARCIA MOUNTAIN, BLACK MOUNTAIN, LA PANZA, MACHESNA MOUNTAIN, LOS MACHOS HILLS, BIG ROCKS, AND STANLEY MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, E.O.; Lebedev, V.A.; Kuznetsov, Yu.N.

    Zheleznogorsk is situated near the territorial center -- Krasnoyarsk on the Yenisei river. Mining and chemical complex is the main industrial enterprise of the town, which has been constructed for generation and used for isolation of weapons-grade plutonium. Heat supply to the chemical complex and town at the moment is largely provided by nuclear co-generation plant (NCGP) on the basis of the ADEh-2 dual-purpose reactor, generating 430 Gcal/h of heat and, partially, by coal backup peak-load boiler houses. NCGP also provides 73% of electric power consumed. In line with agreements between Russia and USA on strategic arms reduction and phasingmore » out of weapons-grade plutonium production, decommissioning of the ADEh-2 reactor by 2000 is planned. Thus, a problem arises relative to compensation for electric and thermal power generation for the needs of the town and industrial enterprises, which is now supplied by the reactor. A nuclear power plant constructed on the same site as a substituting power source should be considered as the most practical option. Basic requirements to the reactor of substituting nuclear power plant are as follows. It is to be a new generation reactor on the basis of verified technologies, having an operating prototype optimal for underground siting and permitting utmost utilization of the available mining workings and those being disengaged. NCGP with the reactor is to be constructed in the time period required and is to become competitive with other possible power sources. Analysis has shown that the VK-300 simplified vessel-type boiling reactor meets the requirements made in the maximum extent. Its design is based on the experience of the VK-50 reactor operation for a period of 30 years in Dimitrovgrad (Russia) and allows for experience in the development of the SBWR type reactors. The design of the reactor is discussed.« less

  15. The effect of gun control laws on hospital admissions for children in the United States.

    PubMed

    Tashiro, Jun; Lane, Rebecca S; Blass, Lawrence W; Perez, Eduardo A; Sola, Juan E

    2016-10-01

    Gun control laws vary greatly between states within the United States. We hypothesized that states with strict gun laws have lower mortality and resource utilization rates from pediatric firearms-related injury admissions. Kids' Inpatient Database (1997-2012) was searched for accidental (E922), self-inflicted (E955), assault (E965), legal intervention-related (E970), or undetermined circumstance (E985) firearm injuries. Patients were younger than 20 years and admitted for their injuries. Case incidence trends were examined for the study period. Propensity score-matched analyses were performed using 38 covariates to compare outcomes between states with strict or lenient gun control laws. Overall, 38,424 cases were identified, with an overall mortality of 7%. Firearm injuries were most commonly assault (64%), followed by accidental (25%), undetermined circumstance (7%), or self-inflicted (3%). A small minority involved military-grade weapons (0.2%). Most cases occurred in lenient gun control states (48%), followed by strict (47%) and neutral (6%).On 1:1 propensity score-matched analysis, in-hospital mortality by case was higher in lenient (7.5%) versus strict (6.5%) states, p = 0.013. Lenient states had a proportionally higher rate of accidental (31%) and self-inflicted injury (4%) versus strict states (17% and 1.6%, respectively), p < 0.001. Assault-related injuries were proportionally lower in lenient (54%) versus strict (75%) states, p < 0.001. Military-grade weapons were more common in lenient (0.4%) versus strict (0.1%) states, p = 0.001. These findings highlight the importance of legislative measures and their role in injury prevention, as firearm injuries are entirely avoidable mechanisms of injury. Lenient gun control contributes not only to worse outcomes per case, but also to a more significant and detrimental impact on public health. Epidemiologic study, level III.

  16. Finite element analysis of space debris removal by high-power lasers

    NASA Astrophysics Data System (ADS)

    Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming

    2015-08-01

    With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.

  17. Flexible weapons architecture design

    NASA Astrophysics Data System (ADS)

    Pyant, William C., III

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.

  18. Proliferation of nuclear weapons: opportunities for control and abolition.

    PubMed

    Sidel, Victor W; Levy, Barry S

    2007-09-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. "Horizontal" proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. "Vertical" proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation--and ultimately abolishing nuclear weapons--involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large.

  19. Dissolution Kinetics of Meta-Torbernite under Circum-neutral to Alkaline Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; McNamara, Bruce K.; Bacon, Diana H.

    2009-12-21

    Autunite group minerals have been identified in contaminated sediments as the long-term controlling phase of uranium. Meta-torbernite, has been identified in subsurface environments which were subjected to co-contaminant disposal practices from past nuclear weapons and fuel operations. Under these conditions the mobility of uranium in subsurface pore waters is limited by the rate of meta-torbernite dissolution; however, there are no known investigations which report the dissolution behavior of meta-torbernite. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to 1) quantify the effect of temperature (23 - 90oC) and pH (6 -10) on meta-torbernitemore » dissolution, 2) compare the dissolution of meta-torbernite to other autunite-group minerals, and 3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100X over the pH interval of 6 to 10 (eta = 0.59 ± 0.07), irrespective of temperature. The power law coefficient for meta-torbernite, eta = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, eta = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m-2 sec-1) = -4.7 x 10-13 + 4.1 x 10-10 [PO43-].« less

  20. Concentrations of selected radionuclides and their spatial distribution in marine sediments from the northwestern Gulf, Kuwait.

    PubMed

    Uddin, Saif; Behbehani, Montaha

    2018-02-01

    This study focuses on creating a baseline for 40 K, 210 Pb, 137 Cs, 90 Sr, 226 Ra, 228 Ra, 238 U, 235 U, 234 U, 239+240 Pu and 238 Pu in marine sediments in the northwestern Gulf. The respective measured concentration ranges were 386-489, 32.3-48.8, 1.5-2.9, 4.53-5.42, 18.3-23.1, 18.8-23.0, 22.3-30.5, 0.99-1.33, 25.6-34.8, 0.30-0.93, and 0.0008-0.00018Bqkg -1 . The levels of these radionuclides are generally comparable to values reported for other marine waters in the northern hemisphere. The 137 Cs activity in the Gulf sediments offshore Kuwait is an order of magnitude lower compared to sediments from northeastern Iran. Other than that finding, no hot spots were observed in sediments adjacent to power and desalination plants, oil and gas industrial activities or wastewater treatment facilities. These data will serve as a baseline to gauge possible future inputs of radionuclides in the northern Gulf. The calculated average ratio of 235 U/ 238 U activity in the area is in agreement with the reported figure of the natural uranium ratio, suggesting the absence of depleted uranium (DU) at all the stations. The low concentration of 239+240 Pu suggests that there is no significant source of plutonium except that from atmospheric fallout from weapon testing and possible dry deposition via long-range dust transport. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides amore » set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.« less

  2. Youths carrying a weapon or using a weapon in a fight: what makes the difference?

    PubMed

    Thurnherr, Judit; Michaud, Pierre-André; Berchtold, André; Akré, Christina; Suris, Joan-Carles

    2009-04-01

    The objective of this study was to characterize weapon-carrying adolescents and to assess whether weapon carriers differ from weapon users. Data were drawn from a cross-sectional school-based survey of 7548 adolescents aged 16-20 years in Switzerland. Youths carrying a weapon were compared with those who do not. Subsequently, weapon carriers were divided into those who had used it in a fight and those who had not. Individual, family, school and social factors were analyzed using bivariate and stepwise multivariate analysis. For both genders, delinquent behavior and being victim of physical violence were associated with weapon carrying. For males, quarreling while intoxicated, being an apprentice, being sensation seekers, having a tattoo, having a poor relationship with parents and practicing unsafe sex were also related to weapon carrying. Compared with weapon carriers, female weapon users were more likely to be regular smokers. Male weapon users were foreign born, urban and apprentices; had poor school connectedness; practiced unsafe sex and quarreled while intoxicated. Carrying a weapon is a relatively frequent behavior among youths in Switzerland and a sizeable proportion of weapon carriers have used it in a fight. Weapon carrying should be part of the clinical assessment and preventive counseling of adolescents. Preventive programs specific for at-risk youth groups need to be developed.

  3. Youths Carrying a Weapon or Using a Weapon in a Fight: What Makes the Difference?

    ERIC Educational Resources Information Center

    Thurnherr, Judit; Michaud, Pierre-Andre; Berchtold, Andre; Akre, Christina; Suris, Joan-Carles

    2009-01-01

    The objective of this study was to characterize weapon-carrying adolescents and to assess whether weapon carriers differ from weapon users. Data were drawn from a cross-sectional school-based survey of 7548 adolescents aged 16-20 years in Switzerland. Youths carrying a weapon were compared with those who do not. Subsequently, weapon carriers were…

  4. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Preserving Nuclear Grade Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, Bob

    2008-02-05

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most don’t really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding themore » ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)« less

  6. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Science.gov Websites

    Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security

  7. Improving proliferation resistance of high breeding gain generation 4 reactors using blankets composed of light water reactor waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellesen, C.; Grape, S.; Haakanson, A.

    2013-07-01

    Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)

  8. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  9. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  10. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  11. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  12. 32 CFR 234.10 - Weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Weapons. 234.10 Section 234.10 National Defense... PENTAGON RESERVATION § 234.10 Weapons. (a) Except as otherwise authorized under this section, the following are prohibited: (1) Possessing a weapon. (2) Carrying a weapon. (3) Using a weapon. (b) This section...

  13. Physics overview of AVLIS

    NASA Astrophysics Data System (ADS)

    Solarz, R. W.

    1985-02-01

    Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.

  14. Mechanisms controlling lateral and vertical porewater migration of depleted uranium (DU) at two UK weapons testing sites.

    PubMed

    Graham, Margaret C; Oliver, Ian W; MacKenzie, Angus B; Ellam, Robert M; Farmer, John G

    2011-04-15

    Uranium associations with colloidal and truly dissolved soil porewater components from two Ministry of Defence Firing Ranges in the UK were investigated. Porewater samples from 2-cm depth intervals for three soil cores from each of the Dundrennan and Eskmeals ranges were fractionated using centrifugal ultrafiltration (UF) and gel electrophoresis (GE). Soil porewaters from a transect running downslope from the Dundrennan firing area towards a stream (Dunrod Burn) were examined similarly. Uranium concentrations and isotopic composition were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Multi-Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS), respectively. The soils at Dundrennan were Fe- and Al-rich clay-loam soils whilst at Eskmeals, they were Fe- and Al-poor sandy soils; both, however, had similar organic matter contents due to the presence of a near-surface peaty layer at Eskmeals. These compositional features influenced the porewater composition and indeed the associations of U (and DU). In general, at Dundrennan, U was split between large (100kDa-0.2μm) and small (3-30kDa) organic colloids whilst at Eskmeals, U was mainly in the small colloidal and truly dissolved fractions. Especially below 10cm depth, association with large Fe/Al/organic colloids was considered to be a precursor to the removal of U from the Dundrennan porewaters to the solid phase. In contrast, the association of U with small organic colloids was largely responsible for inhibiting attenuation in the Eskmeals soils. Lateral migration of U (and DU) through near-surface Dundrennan soils will involve both large and small colloids but, at depth, transport of the smaller amounts of U remaining in the porewaters may involve large colloids only. For one of the Dundrennan cores the importance of redox-related processes for the re-mobilisation of DU was also indicated as Mn(IV) reduction resulted in the release of both Mn(II) and U(VI) into the truly dissolved phase. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. 3 CFR - Continuation of the National Emergency With Respect to the Proliferation of Weapons of Mass...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to the Proliferation of Weapons of Mass Destruction Presidential Documents Other Presidential... Proliferation of Weapons of Mass Destruction On November 14, 1994, by Executive Order 12938, the President... chemical weapons (weapons of mass destruction) and the means of delivering such weapons. On July 28, 1998...

  16. [Chemical weapons and chemical terrorism].

    PubMed

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  17. Proliferation of Nuclear Weapons: Opportunities for Control and Abolition

    PubMed Central

    Sidel, Victor W.; Levy, Barry S.

    2007-01-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. “Horizontal” proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. “Vertical” proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation—and ultimately abolishing nuclear weapons—involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large. PMID:17666690

  18. Bugs and gas: Agreements banning chemical and biological weapons

    NASA Astrophysics Data System (ADS)

    Mikulak, Robert P.

    2017-11-01

    The use of chemical or biological weapons, whether by a State or terrorists, continues to be a serious security concern. Both types of weapons are prohibited by multilateral treaties that have very broad membership, but both the Biological Weapons Convention and the Chemical Weapons Convention are facing major challenges. In particular, the continued use of chemical weapons in the Syrian civil war by government forces risks eroding the norm against the use of such weapons. This paper briefly explore the recent history of efforts to constrain chemical and biological weapons and outlines challenges for the future.

  19. Perceived popularity of adolescents who use weapons in violence and adolescents who only carry weapons.

    PubMed

    Wallace, Lacey N

    2017-01-01

    Prior research has found that persistently delinquent youth or more violent youth were less popular than their less delinquent peers (Young, 2013). However, recent research has also found that weapon carrying is associated with being more popular in adolescence (Dijkstra et al., 2010). The present paper examines the perceived popularity of adolescents who carry weapons in comparison to those who both carry and use weapons in acts of violence or threatened violence. Data consist of two waves from the National Longitudinal Study of Adolescent to Adult Health. Analyses use OLS regression with lagged predictors. This paper found no differences in number of friends between weapon carriers and weapon users. However, among both male and female gang members, those who did not use or carry weapons (abstainers) named significantly fewer friends than weapon users. Among females, weapon abstainers both named and were named by significantly more people than weapon users. These differences were not observed for males. Implications of these results and directions for future research are discussed.

  20. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  1. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  2. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  3. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  4. 36 CFR 2.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Weapons, traps and nets. 2.4... PROTECTION, PUBLIC USE AND RECREATION § 2.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in... prohibited: (i) Possessing a weapon, trap or net (ii) Carrying a weapon, trap or net (iii) Using a weapon...

  5. The weapons effect.

    PubMed

    Benjamin, Arlin James; Bushman, Brad J

    2018-02-01

    In some societies, weapons are plentiful and highly visible. This review examines recent trends in research on the weapons effect, which is the finding that the mere presence of weapons can prime people to behave aggressively. The General Aggression Model provides a theoretical framework to explain why the weapons effect occurs. This model postulates that exposure to weapons increases aggressive thoughts and hostile appraisals, thus explaining why weapons facilitate aggressive behavior. Data from meta-analytic reviews are consistent with the General Aggression Model. These findings have important practical as well as theoretical implications. They suggest that the link between weapons and aggression is very strong in semantic memory, and that merely seeing a weapon can make people more aggressive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mineral resource potential map of the Sugarloaf Roadless Area, San Bernardino County, California

    USGS Publications Warehouse

    Powell, Robert E.; Matti, Jonathan C.; Cox, Brett F.; Oliver, Howard W.; Wagini, Alexander; Campbell, Harry W.

    1983-01-01

    Geologic, geochemical, and geophysical investigations and a survey of mines and prospects indicate that the Sugaloaf Roadless Area contains subeconomic graphite and magnesian marble resources. Parts of the area have a low potential for the occurrence of additional low-grade graphite resources, but there is no potential for additional magnesian marble resources within the roadless area. Sand, gravel, and construction stone other than carbonate rocks are found in the roadless area, but similar or better quality materials are abundant and more accessible outside the area. The roadless area has no identified energy mineral resources, but parts of the area have a low to moderate potential for low-grade uranium resources. There are no identified metallic mineral resources within the area, and there is no evidence of a potential for the occurrence of such resources. No previously unknown mineral occurrence was located during this study.

  7. Manganese biomining: A review.

    PubMed

    Das, A P; Sukla, L B; Pradhan, N; Nayak, S

    2011-08-01

    Biomining comprises of processing and extraction of metal from their ores and concentrates using microbial techniques. Currently this is used by the mining industry to extract copper, uranium and gold from low grade ores but not for low grade manganese ore in industrial scale. The study of microbial genomes, metabolites and regulatory pathways provide novel insights to the metabolism of bioleaching microorganisms and their synergistic action during bioleaching operations. This will promote understanding of the universal regulatory responses that the biomining microbial community uses to adapt to their changing environment leading to high metal recovery. Possibility exists of findings ways to imitate the entire process during industrial manganese biomining endeavor. This paper reviews the current status of manganese biomining research operations around the world, identifies factors that drive the selection of biomining as a processing technology, describes challenges in exploiting these innovations, and concludes with a discussion of Mn biomining's future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Plutonium Isotopes (239-241Pu) Dissolved in Pacific Ocean Waters Detected by Accelerator Mass Spectrometry: No Effects of the Fukushima Accident Observed.

    PubMed

    Hain, Karin; Faestermann, Thomas; Fimiani, Leticia; Golser, Robin; Gómez-Guzmán, José Manuel; Korschinek, Gunther; Kortmann, Florian; Lierse von Gostomski, Christoph; Ludwig, Peter; Steier, Peter; Tazoe, Hirofumi; Yamada, Masatoshi

    2017-02-21

    The concentration of plutonium (Pu) and the isotopic ratios of 240 Pu to 239 Pu and 241 Pu to 239 Pu were determined by accelerator mass spectrometry (AMS) in Pacific Ocean water samples (20 L each) collected in late 2012. The isotopic Pu ratios are important indicators of different contamination sources and were used to identify a possible release of Pu into the ocean by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. In particular, 241 Pu is a well-suited indicator for a recent entry of Pu because 241 Pu from fallout of nuclear weapon testings has already significantly decayed. A total of 10 ocean water samples were prepared at the Radiochemie München of the TUM and analyzed at the Vienna Environmental Research Laboratory (VERA). Several samples showed a slightly elevated 240 Pu/ 239 Pu ratio of up to 0.22 ± 0.02 compared to global fallout ( 240 Pu/ 239 Pu = 0.180 ± 0.007), whereas all measured 241 Pu-to- 239 Pu ratios were consistent with nuclear weapon fallout ( 241 Pu/ 239 Pu < 2.4 × 10 -3 ), which means that no impact from the Fukushima accident was detected. From the average 241 Pu-to- 239 Pu ratio of 8 -2 +3 ×10 -4 at a sampling station located at a distance of 39.6 km to FDNPP, the 1-σ upper limit for the FDNPP contribution to the 239 Pu inventory in the water column was estimated to be 0.2%. Pu, with the signature of weapon-grade Pu was found in a single sample collected around 770 km off the west coast of the United States.

  9. Correlates of weapon carrying in school among adolescents in three countries.

    PubMed

    Stickley, Andrew; Koyanagi, Ai; Koposov, Roman; Blatný, Marek; Hrdlička, Michal; Schwab-Stone, Mary; Ruchkin, Vladislav

    2015-01-01

    To determine the factors associated with weapon carrying in school among Czech, Russian, and US adolescents. Logistic regression was used to analyze data drawn from the Social and Health Assessment (SAHA). Violent behavior (perpetration / victimization) was linked to adolescent weapon carrying in all countries. Substance use was associated with weapon carrying among boys in all countries. Greater parental warmth reduced the odds for weapon carrying among Czech and Russian adolescents. Associating with delinquent peers was important for weapon carrying only among US adolescents. Factors associated with weapon carrying in school vary among countries although violent behavior and substance use may be associated with weapon carrying across countries.

  10. Analyses of battle casualties by weapon type aboard U.S. Navy warships.

    PubMed

    Blood, C G

    1992-03-01

    The number of casualties was determined for 513 incidents involving U.S. Navy warships sunk or damaged during World War II. Ship type and weapon were significant factors in determining the numbers of wounded and killed. Multiple weapon attacks and kamikazes yielded more wounded in action than other weapon types. Multiple weapons and torpedos resulted in a higher incidence of killed in action than other weapons. Penetrating wounds and burns were the most prominent injury types. Kamikaze attacks yielded significantly more burns than incidents involving bombs, gunfire, torpedos, mines, and multiple weapons. Mine explosions were responsible for more strains, sprains, and dislocations than the other weapon types.

  11. Weapon carrying and psychopathic-like features in a population-based sample of Finnish adolescents.

    PubMed

    Saukkonen, Suvi; Laajasalo, Taina; Jokela, Markus; Kivivuori, Janne; Salmi, Venla; Aronen, Eeva T

    2016-02-01

    We investigated the prevalence of juvenile weapon carrying and psychosocial and personality-related risk factors for carrying different types of weapons in a nationally representative, population-based sample of Finnish adolescents. Specifically, we aimed to investigate psychopathic-like personality features as a risk factor for weapon carrying. The participants were 15-16-year-old adolescents from the Finnish self-report delinquency study (n = 4855). Four different groups were formed based on self-reported weapon carrying: no weapon carrying, carrying knife, gun or other weapon. The associations between psychosocial factors, psychopathic-like features and weapon carrying were examined with multinomial logistic regression analysis. 9% of the participants had carried a weapon in the past 12 months. Adolescents with a history of delinquency, victimization and antisocial friends were more likely to carry weapons in general; however, delinquency and victimization were most strongly related to gun carrying, while perceived peer delinquency (antisocial friends) was most strongly related to carrying a knife. Better academic performance was associated with a reduced likelihood of carrying a gun and knife, while feeling secure correlated with a reduced likelihood of gun carrying only. Psychopathic-like features were related to a higher likelihood of weapon carrying, even after adjusting for other risk factors. The findings of the study suggest that adolescents carrying a weapon have a large cluster of problems in their lives, which may vary based on the type of weapon carried. Furthermore, psychopathic-like features strongly relate to a higher risk of carrying a weapon.

  12. Perceived popularity of adolescents who use weapons in violence and adolescents who only carry weapons

    PubMed Central

    Wallace, Lacey N.

    2017-01-01

    Prior research has found that persistently delinquent youth or more violent youth were less popular than their less delinquent peers (Young, 2013). However, recent research has also found that weapon carrying is associated with being more popular in adolescence (Dijkstra et al., 2010). The present paper examines the perceived popularity of adolescents who carry weapons in comparison to those who both carry and use weapons in acts of violence or threatened violence. Data consist of two waves from the National Longitudinal Study of Adolescent to Adult Health. Analyses use OLS regression with lagged predictors. This paper found no differences in number of friends between weapon carriers and weapon users. However, among both male and female gang members, those who did not use or carry weapons (abstainers) named significantly fewer friends than weapon users. Among females, weapon abstainers both named and were named by significantly more people than weapon users. These differences were not observed for males. Implications of these results and directions for future research are discussed. PMID:29104446

  13. Air gun wounding and current UK laws controlling air weapons.

    PubMed

    Bruce-Chwatt, Robert Michael

    2010-04-01

    Air weapons whether rifles or pistols are, potentially, lethal weapons. The UK legislation is complex and yet little known to the public. Hunting with air weapons and the laws controlling those animals that are permitted to be shot with air weapons is even more labyrinthine due to the legal power limitations on the possession of air weapons. Still relatively freely available by mail order or on the Internet, an increasing number of deaths have been reported from the misuse of air weapons or accidental discharges. Ammunition for air weapons has become increasingly sophisticated, effective and therefore increasingly dangerous if misused, though freely available being a mere projectile without a concomitant cartridge containing a propellant and an initiator.

  14. Effects of Weapons on Aggressive Thoughts, Angry Feelings, Hostile Appraisals, and Aggressive Behavior: A Meta-Analytic Review of the Weapons Effect Literature.

    PubMed

    Benjamin, Arlin J; Kepes, Sven; Bushman, Brad J

    2017-09-01

    Guns are associated with aggression. A landmark 1967 study showed that simply seeing a gun can increase aggression-called the "weapons effect." This meta-analysis integrates the findings of weapons effect studies conducted from 1967 to 2017. It includes 162 effect-size estimates from 78 independent studies involving 7,668 participants. The theoretical framework used to explain the weapons effect was the General Aggression Model (GAM), which proposes three routes to aggression-cognitive, affective, and arousal. The GAM also proposes that hostile appraisals can facilitate aggression. As predicted by the GAM, the mere presence of weapons increased aggressive thoughts, hostile appraisals, and aggression, suggesting a cognitive route from weapons to aggression. Weapons did not significantly increase angry feelings. Only one study tested the effects of weapons on arousal. These findings also contribute to the debate about social priming by showing that incidental exposure to a stimulus (weapon) can affect subsequent related behavior (aggression).

  15. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  16. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  17. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  18. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  19. 32 CFR 552.104 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552... RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Firearms and Weapons § 552.104 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives or other devices defined in...

  20. 77 FR 59891 - Proposed Information Collection; Comment Request; Chemical Weapons Convention Declaration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Request; Chemical Weapons Convention Declaration and Report Handbook and Forms AGENCY: Bureau of Industry.... Abstract The Chemical Weapons Convention Implementation Act of 1998 and Commerce Chemical Weapons... Chemical Weapons Convention (CWC), an international arms control treaty. II. Method of Collection Submitted...

  1. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.

    2014-01-01

    Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions are the locally endemic Tusayan flameflower Phemeranthus validulus, the long-legged bat Myotis volans, and the Arizona bat Myotis occultus. The most common vertebrate species identified at the mine site included the Mexican spadefoot toad Spea multiplicata, plateau fence lizard Sceloporus tristichus, violetgreen swallow Tachycineta thalassina, pygmy nuthatch Sitta pygmaea, purple martin Progne subis, western bluebird Sialia mexicana, deermouse Peromyscus maniculatus, valley pocket gopher Thomomys bottae, cliff chipmunk Tamias dorsalis, black-tailed jackrabbit Lepus californicus, mule deer Odocoileus hemionus, and elk Cervus canadensis. A limited number of the most common species were collected for contaminant analysis to establish baseline contaminant and radiological concentrations prior to ore extraction. These empirical baseline data will help validate contaminant exposure pathways and potential threats from contaminant exposures to ecological receptors. Resource managers will also be able to use these data to determine the extent to which local species are exposed to chemical and radiation contamination once the mine is operational and producing ore. More broadly, these data could inform resource management decisions on mitigating chemical and radiation exposure of biota at high-grade uranium breccia pipes throughout the Grand Canyon watershed.

  2. Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas

    USGS Publications Warehouse

    Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

    1979-01-01

    Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory drilling programs. The sporadic occurrence of these deposits makes it desirable to develop borehole geophysical techniques that will help to define the depositional environments of the uranium ore, which is characterized by geochemical changes near the uranium deposits. Geochemical changes are accompanied by changes in the physical characteristics of the rocks that can be detected with borehole geophysical tools. This study is concerned with a uranium deposit within the Jackson Group that is located just east of Karnes City, Tex. Five holes were drilled on this property to obtain borehole geophysical data and cores. The cores were analyzed for mineralogic and electrical properties. The borehole geophysical information at this property included induced polarization, resistivity, gamma-gamma density, neutron-neutron, gamma-ray, caliper, and single-point-resistance logs. Between-hole resistivity and induced polarization measurements were made between hole pairs across the ore deposit and off the ore deposit.

  3. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  4. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  5. 3 CFR - Continuation of the National Emergency With Respect to Weapons of Mass Destruction

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to Weapons of Mass Destruction Presidential Documents Other Presidential Documents Notice of November 9, 2011 Continuation of the National Emergency With Respect to Weapons of Mass Destruction On... United States posed by the proliferation of nuclear, biological, and chemical weapons (weapons of mass...

  6. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  7. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  8. 3 CFR - Continuation of the National Emergency With Respect to Weapons of Mass Destruction

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to Weapons of Mass Destruction Presidential Documents Other Presidential Documents Notice of November 1, 2012 Continuation of the National Emergency With Respect to Weapons of Mass Destruction On... United States posed by the proliferation of nuclear, biological, and chemical weapons (weapons of mass...

  9. 48 CFR 217.173 - Multiyear contracts for weapon systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... weapon systems. 217.173 Section 217.173 Federal Acquisition Regulations System DEFENSE ACQUISITION... Mulityear Contracting 217.173 Multiyear contracts for weapon systems. As authorized by 10 U.S.C. 2306b(h... contract for— (a) A weapon system and associated items, services, and logistics support for a weapon system...

  10. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  11. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  12. 14 CFR 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... weapons, explosives, or other dangerous materials. 1204.1005 Section 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... or causing to be introduced, or using firearms or other dangerous weapons, explosives or other...

  13. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  14. 32 CFR 552.130 - Disposition of confiscated/seized weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Disposition of confiscated/seized weapons. 552..., Ammunition and Other Dangerous Weapons on Fort Gordon § 552.130 Disposition of confiscated/seized weapons. All weapons, ammunition, explosives, or other devices defined in this subpart, that are confiscated...

  15. Nuclear Weapons: Comprehensive Test Ban Treaty

    DTIC Science & Technology

    2007-07-12

    done. Critics raised concerns about the implications of these policies for testing and new weapons. At present, Congress addresses nuclear weapon...future, but there are no plans to do so.’”7 Critics expressed concern about the implications of these policies for testing and new weapons. A statement by...opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”8 Another critic felt that

  16. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  17. Active Interrogation of Depleted Uranium Using a Single Pulse, High-Intensity Photon and Mixed Photon-Neutron Source

    NASA Astrophysics Data System (ADS)

    Clemett, Ceri D.; Martin, Philip N.; Hill, Cassie; Threadgold, James R.; Maddock, Robert C.; Campbell, Ben; O'Malley, John; Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.; Zier, Jacob C.; Jackson, Stuart L.; Commisso, Robert J.; Schumer, Joseph W.

    2015-04-01

    Active interrogation is a method used to enhance the likelihood of detection of shielded special nuclear material (SNM); an external source of radiation is used to interrogate a target and to stimulate fission within any SNM present. Radiation produced by the fission process can be detected and used to infer the presence of the SNM. The Atomic Weapons Establishment (AWE) and the Naval Research Laboratory (NRL) have carried out a joint experimental study into the use of single pulse, high-intensity sources of bremsstrahlung x-rays and D(γb, n)H photoneutrons in an active interrogation system. The source was operated in both x-ray-only and mixed x-ray/photoneutron modes, and was used to irradiate a depleted uranium (DU) target which was enclosed by up to 150 g·cm - 2 of steel shielding. Resulting radiation signatures were measured by a suite of over 80 detectors and the data used to characterise detectable fission signatures as a function of the areal mass of the shielding. This paper describes the work carried out and discusses data collected with 3He proportional counters, NaI(Tl) scintillators and Eljen EJ-309 liquid scintillators. Results with the x-ray-only source demonstrate detection ( > 3\\sigmab) of the DU target through a minimum of 113 g·cm - 2 of steel, dropping to 85 g·cm- 2 when using a mixed x-ray/photoneutron source. The 3He proportional counters demonstrate detection ( > 3\\sigmab) of the DU target through the maximum 149. 7 g·cm - 2 steel shielding deployed for both photon and mixed x-ray/photoneutron sources.

  18. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  19. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment,more » Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.« less

  20. An alternative for cost-effective remediation of depleted uranium (DU) at certain environmental restoration sites.

    PubMed

    Miller, M; Galloway, B; VanDerpoel, G; Johnson, E; Copland, J; Salazar, M

    2000-02-01

    Numerous sites in the United States and around the world are contaminated with depleted uranium (DU) in various forms. A prevalent form is fragmented DU originating from various scientific tests involving high explosives and DU during weapon development programs, at firing practice ranges, or war theaters where DU was used in armor-piercing projectiles. The contamination at these sites is typically very heterogeneous, with discreet, visually identifiable DU fragments mixed with native soil. That is, the bulk-averaged DU activity is quite low, while specific DU fragments, which are distinct from the soil matrix, have much higher specific activity. DU is best known as a dark, black metal that is nearly twice as dense as lead, but DU in the environment readily weathers (oxidizes) to a distinctive bright yellow color that is readily visible. While the specific activity (amount of radioactivity per mass of soil) of DU is relatively low and presents only a minor radiological hazard, the fact that it is radioactive and visually identifiable makes it desirable to remove the DU "contamination" from the environment. The typical approach to conducting this DU remediation is to use radiation detection instruments to identify the contaminant and separate it from the adjacent soil, packaging it for disposal as radioactive waste. This process can be performed manually or by specialized, automated equipment. Alternatively, in certain situations a more cost-effective approach might be simple mechanical or gravimetric separation of the DU fragments from the host soil matrix. At SNL/NM, both the automated and simple mechanical approaches have recently been employed. This paper discusses the pros/cons of the two approaches.

  1. GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.

    2007-02-26

    In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants includedmore » strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for effectively remediating the residual waste that threatens the environment.« less

  2. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    PubMed

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten microsamples varied in the range from 0.0073 (corresponding to the natural uranium isotopic composition) to 0.023 (corresponding to initial 235U enrichment in reactor fuel). An inverse correlation was observed between the 236U/238U and 235U/238U isotope ratios, except in the case of one sample with natural uranium. The heterogeneity of the uranium isotope composition is attributed to the different burn-up grades of uranium in the fuel rods from which the microsamples originated.

  3. 15 CFR 742.18 - Chemical Weapons Convention (CWC or Convention).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Chemical Weapons Convention (CWC or... REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.18 Chemical Weapons Convention (CWC or Convention). States... Use of Chemical Weapons and on Their Destruction, also known as the Chemical Weapons Convention (CWC...

  4. 36 CFR 1002.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Weapons, traps and nets. 1002... AND RECREATION § 1002.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in this section, the following are prohibited: (i) Possessing a weapon, trap or net. (ii) Carrying a weapon, trap or...

  5. 3 CFR - Continuation of Emergency With Respect to Weapons of Mass Destruction

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 3 The President 1 2011-01-01 2011-01-01 false Continuation of Emergency With Respect to Weapons of... Continuation of Emergency With Respect to Weapons of Mass Destruction On November 14, 1994, by Executive Order... of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of...

  6. 32 CFR 552.122 - Personnel not authorized to possess or retain personal weapons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... personal weapons. 552.122 Section 552.122 National Defense Department of Defense (Continued) DEPARTMENT OF... authorized to possess or retain personal weapons. (a) Possession, retention or storage of personal weapons or... enforcement officer authorized to carry the weapon under state or federal law, while on Fort Lewis or a sub...

  7. 32 CFR 552.124 - Transportation of privately owned weapons and ammunition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Transportation of privately owned weapons and... owned weapons and ammunition. (a) Privately owned firearms and ammunition will be transported in the following manner: (1) Weapons, other than weapons being transported into Fort Lewis for the first time, may...

  8. 32 CFR 552.124 - Transportation of privately owned weapons and ammunition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 3 2012-07-01 2009-07-01 true Transportation of privately owned weapons and... owned weapons and ammunition. (a) Privately owned firearms and ammunition will be transported in the following manner: (1) Weapons, other than weapons being transported into Fort Lewis for the first time, may...

  9. 32 CFR 552.124 - Transportation of privately owned weapons and ammunition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 3 2014-07-01 2014-07-01 false Transportation of privately owned weapons and... owned weapons and ammunition. (a) Privately owned firearms and ammunition will be transported in the following manner: (1) Weapons, other than weapons being transported into Fort Lewis for the first time, may...

  10. 3 CFR - Continuation of Emergency With Respect to Weapons of Mass Destruction

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Continuation of Emergency With Respect to Weapons of... Continuation of Emergency With Respect to Weapons of Mass Destruction On November 14, 1994, by Executive Order... of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of...

  11. 14 CFR § 1204.1005 - Unauthorized introduction of firearms or weapons, explosives, or other dangerous materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... weapons, explosives, or other dangerous materials. § 1204.1005 Section § 1204.1005 Aeronautics and Space... Weapons or Dangerous Materials § 1204.1005 Unauthorized introduction of firearms or weapons, explosives... description of the consequences for unauthorized introduction of firearms or weapons, explosives, or other...

  12. 32 CFR 552.124 - Transportation of privately owned weapons and ammunition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Transportation of privately owned weapons and... owned weapons and ammunition. (a) Privately owned firearms and ammunition will be transported in the following manner: (1) Weapons, other than weapons being transported into Fort Lewis for the first time, may...

  13. 36 CFR 1002.4 - Weapons, traps and nets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Weapons, traps and nets. 1002... AND RECREATION § 1002.4 Weapons, traps and nets. (a)(1) Except as otherwise provided in this section, the following are prohibited: (i) Possessing a weapon, trap or net. (ii) Carrying a weapon, trap or...

  14. 32 CFR 552.122 - Personnel not authorized to possess or retain personal weapons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... personal weapons. 552.122 Section 552.122 National Defense Department of Defense (Continued) DEPARTMENT OF... authorized to possess or retain personal weapons. (a) Possession, retention or storage of personal weapons or... enforcement officer authorized to carry the weapon under state or federal law, while on Fort Lewis or a sub...

  15. 32 CFR 552.122 - Personnel not authorized to possess or retain personal weapons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... personal weapons. 552.122 Section 552.122 National Defense Department of Defense (Continued) DEPARTMENT OF... authorized to possess or retain personal weapons. (a) Possession, retention or storage of personal weapons or... enforcement officer authorized to carry the weapon under state or federal law, while on Fort Lewis or a sub...

  16. 32 CFR 552.124 - Transportation of privately owned weapons and ammunition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Transportation of privately owned weapons and... owned weapons and ammunition. (a) Privately owned firearms and ammunition will be transported in the following manner: (1) Weapons, other than weapons being transported into Fort Lewis for the first time, may...

  17. 76 FR 30280 - Public Meeting To Discuss the Proposed Rule on Enhanced Weapons, Firearms Background Checks, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Proposed Rule on Enhanced Weapons, Firearms Background Checks, and Security Event Notifications AGENCY... the proposed enhanced weapons rule, the two draft regulatory guides, and the draft weapons safety.... No formal comments on the proposed enhanced weapons rule or the draft guidance documents will be...

  18. 15 CFR 742.18 - Chemical Weapons Convention (CWC or Convention).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Chemical Weapons Convention (CWC or... REGULATIONS CONTROL POLICY-CCL BASED CONTROLS § 742.18 Chemical Weapons Convention (CWC or Convention). States... Use of Chemical Weapons and on Their Destruction, also known as the Chemical Weapons Convention (CWC...

  19. 76 FR 6087 - Draft Weapons Safety Assessment on the Use of Enhanced Weapons; Notice of Availability and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... holders, and other stakeholders on a draft guidance document entitled ``Weapons Safety Assessment'' (WSA... weapons under the NRC's proposed rule titled ``Enhanced Weapons, Firearms Background Checks, and Security.... You should not include any site-specific security information in your comments. Federal rulemaking Web...

  20. 76 FR 70317 - Continuation of the National Emergency With Respect to Weapons of Mass Destruction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... proliferation of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of...--Continuation of the National Emergency With Respect to Weapons of Mass Destruction #0; #0; #0; Presidential... the National Emergency With Respect to Weapons of Mass Destruction On November 14, 1994, by Executive...

Top