Sample records for wearable computing platform

  1. A Software Development Platform for Wearable Medical Applications.

    PubMed

    Zhang, Ruikai; Lin, Wei

    2015-10-01

    Wearable medical devices have become a leading trend in healthcare industry. Microcontrollers are computers on a chip with sufficient processing power and preferred embedded computing units in those devices. We have developed a software platform specifically for the design of the wearable medical applications with a small code footprint on the microcontrollers. It is supported by the open source real time operating system FreeRTOS and supplemented with a set of standard APIs for the architectural specific hardware interfaces on the microcontrollers for data acquisition and wireless communication. We modified the tick counter routine in FreeRTOS to include a real time soft clock. When combined with the multitasking features in the FreeRTOS, the platform offers the quick development of wearable applications and easy porting of the application code to different microprocessors. Test results have demonstrated that the application software developed using this platform are highly efficient in CPU usage while maintaining a small code foot print to accommodate the limited memory space in microcontrollers.

  2. A Wearable Mobile Sensor Platform to Assist Fruit Grading

    PubMed Central

    Aroca, Rafael V.; Gomes, Rafael B.; Dantas, Rummennigue R.; Calbo, Adonai G.; Gonçalves, Luiz M. G.

    2013-01-01

    Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people's attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits. PMID:23666134

  3. Challenges and considerations for the design and production of a purpose-optimized body-worn wrist-watch computer

    NASA Astrophysics Data System (ADS)

    Narayanaswami, Chandra; Raghunath, Mandayam T.

    2004-09-01

    We outline a collection of technological challenges in the design of wearable computers with a focus on one of the most desirable form-factors, the wrist watch. We describe our experience with building three generations of wrist watch computers. We built these research prototypes as platforms to investigate the fundamental limitations of wearable computing. Results of our investigations are presented in the form of challenges that have been overcome and those that still remain.

  4. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.

  5. A wearable computing platform for developing cloud-based machine learning models for health monitoring applications.

    PubMed

    Patel, Shyamal; McGinnis, Ryan S; Silva, Ikaro; DiCristofaro, Steve; Mahadevan, Nikhil; Jortberg, Elise; Franco, Jaime; Martin, Albert; Lust, Joseph; Raj, Milan; McGrane, Bryan; DePetrillo, Paolo; Aranyosi, A J; Ceruolo, Melissa; Pindado, Jesus; Ghaffari, Roozbeh

    2016-08-01

    Wearable sensors have the potential to enable clinical-grade ambulatory health monitoring outside the clinic. Technological advances have enabled development of devices that can measure vital signs with great precision and significant progress has been made towards extracting clinically meaningful information from these devices in research studies. However, translating measurement accuracies achieved in the controlled settings such as the lab and clinic to unconstrained environments such as the home remains a challenge. In this paper, we present a novel wearable computing platform for unobtrusive collection of labeled datasets and a new paradigm for continuous development, deployment and evaluation of machine learning models to ensure robust model performance as we transition from the lab to home. Using this system, we train activity classification models across two studies and track changes in model performance as we go from constrained to unconstrained settings.

  6. A Semantic Big Data Platform for Integrating Heterogeneous Wearable Data in Healthcare.

    PubMed

    Mezghani, Emna; Exposito, Ernesto; Drira, Khalil; Da Silveira, Marcos; Pruski, Cédric

    2015-12-01

    Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.

  7. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.

    PubMed

    Ravi, Daniele; Wong, Charence; Lo, Benny; Yang, Guang-Zhong

    2017-01-01

    The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. While deep learning has been successful in implementations that utilize high-performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learned from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain preprocessing is used before the data are passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.

  8. Sensible organizations: technology and methodology for automatically measuring organizational behavior.

    PubMed

    Olguin Olguin, Daniel; Waber, Benjamin N; Kim, Taemie; Mohan, Akshay; Ara, Koji; Pentland, Alex

    2009-02-01

    We present the design, implementation, and deployment of a wearable computing platform for measuring and analyzing human behavior in organizational settings. We propose the use of wearable electronic badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels in order to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. By using on-body sensors in large groups of people for extended periods of time in naturalistic settings, we have been able to identify, measure, and quantify social interactions, group behavior, and organizational dynamics. We deployed this wearable computing platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements, we were able to predict employees' self-assessments of job satisfaction and their own perceptions of group interaction quality by combining data collected with our platform and e-mail communication data. In particular, the total amount of communication was predictive of both of these assessments, and betweenness in the social network exhibited a high negative correlation with group interaction satisfaction. We also found that physical proximity and e-mail exchange had a negative correlation of r = -0.55 (p 0.01), which has far-reaching implications for past and future research on social networks.

  9. A Systematic Review of Wearable Systems for Cancer Detection: Current State and Challenges.

    PubMed

    Ray, Partha Pratim; Dash, Dinesh; De, Debashis

    2017-10-02

    Rapid growth of sensor and computing platforms have introduced the wearable systems. In recent years, wearable systems have led to new applications across all medical fields. The aim of this review is to present current state-of-the-art approach in the field of wearable system based cancer detection and identify key challenges that resist it from clinical adoption. A total of 472 records were screened and 11 were finally included in this study. Two types of records were studied in this context that includes 45% research articles and 55% manufactured products. The review was performed per PRISMA guidelines where considerations was given to records that were published or reported between 2009 and 2017. The identified records included 4 cancer detecting wearable systems such as breast cancer (36.3%), skin cancer (36.3%), prostate cancer (18.1%), and multi-type cancer (9%). Most works involved sensor based smart systems comprising of microcontroller, Bluetooth module, and smart phone. Few demonstrated Ultra-Wide Band (i.e. UWB) antenna based wearable systems. Skin cancer detecting wearable systems were most comprehensible ones. The current works are gradually progressing with seamless integration of sensory units along with smart networking. However, they lack in cloud computing and long-range communication paradigms. Artificial intelligence and machine learning are key ports that need to be attached with current wearable systems. Further, clinical inertia, lack of awareness, and high cost are altogether pulling back the actual growth of such system. It is well comprehended that upon sincere orientation of all identified challenges, wearable systems would emerge as vital alternative to futuristic cancer detection.

  10. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays.

    PubMed

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A; Wetzstein, Gordon

    2017-02-28

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  11. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    NASA Astrophysics Data System (ADS)

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A.; Wetzstein, Gordon

    2017-02-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  12. Posture and activity recognition and energy expenditure prediction in a wearable platform.

    PubMed

    Sazonova, Nadezhda; Browning, Raymond; Melanson, Edward; Sazonov, Edward

    2014-01-01

    The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here we describe use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time prediction and display of time spent in various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we introduce new algorithms that require substantially less computational power. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a four-hour stay in a room calorimeter. Use of Multinomial Logistic Discrimination (MLD) for posture and activity classification resulted in an accuracy comparable to that of Support Vector Machines (SVM) (90% vs. 95%-98%) while reducing the running time by a factor of 190 and reducing the memory requirement by a factor of 104. Per minute EE estimation using activity-specific models resulted in an accurate EE prediction (RMSE of 0.53 METs vs. RMSE of 0.69 METs using previously reported SVM-branched models). These results demonstrate successful implementation of real-time physical activity monitoring and EE prediction system on a wearable platform.

  13. Natural Tasking of Robots Based on Human Interaction Cues

    DTIC Science & Technology

    2005-06-01

    MIT. • Matthew Marjanovic , researcher, ITA Software. • Brian Scasselatti, Assistant Professor of Computer Science, Yale. • Matthew Williamson...2004. 25 [74] Charlie C. Kemp. Shoes as a platform for vision. 7th IEEE International Symposium on Wearable Computers, 2004. [75] Matthew Marjanovic ...meso: Simulated muscles for a humanoid robot. Presentation for Humanoid Robotics Group, MIT AI Lab, August 2001. [76] Matthew J. Marjanovic . Teaching

  14. Mining Personal Data Using Smartphones and Wearable Devices: A Survey

    PubMed Central

    Rehman, Muhammad Habib ur; Liew, Chee Sun; Wah, Teh Ying; Shuja, Junaid; Daghighi, Babak

    2015-01-01

    The staggering growth in smartphone and wearable device use has led to a massive scale generation of personal (user-specific) data. To explore, analyze, and extract useful information and knowledge from the deluge of personal data, one has to leverage these devices as the data-mining platforms in ubiquitous, pervasive, and big data environments. This study presents the personal ecosystem where all computational resources, communication facilities, storage and knowledge management systems are available in user proximity. An extensive review on recent literature has been conducted and a detailed taxonomy is presented. The performance evaluation metrics and their empirical evidences are sorted out in this paper. Finally, we have highlighted some future research directions and potentially emerging application areas for personal data mining using smartphones and wearable devices. PMID:25688592

  15. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    PubMed Central

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Wetzstein, Gordon

    2017-01-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one. PMID:28193871

  16. Gait Partitioning Methods: A Systematic Review

    PubMed Central

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  17. Gait Partitioning Methods: A Systematic Review.

    PubMed

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-06

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  18. Posture and activity recognition and energy expenditure estimation in a wearable platform.

    PubMed

    Sazonov, Edward; Hegde, Nagaraj; Browning, Raymond C; Melanson, Edward L; Sazonova, Nadezhda A

    2015-07-01

    The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here, we describe the use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time recognition of various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we compare the use of support vector machines (SVM), multinomial logistic discrimination (MLD), and multilayer perceptrons (MLP) for posture and activity classification followed by activity-branched EE estimation. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a 4-h stay in a room calorimeter. MLD and MLP demonstrated activity classification accuracy virtually identical to SVM (∼ 95%) while reducing the running time and the memory requirements by a factor of >10 3. Comparison of per-minute EE estimation using activity-branched models resulted in accurate EE prediction (RMSE = 0.78 kcal/min for SVM and MLD activity classification, 0.77 kcal/min for MLP versus RMSE of 0.75 kcal/min for manual annotation). These results suggest that low-power computational algorithms can be successfully used for real-time physical activity monitoring and EE estimation on a wearable platform.

  19. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    PubMed

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.

  20. Towards a flexible middleware for context-aware pervasive and wearable systems.

    PubMed

    Muro, Marco; Amoretti, Michele; Zanichelli, Francesco; Conte, Gianni

    2012-11-01

    Ambient intelligence and wearable computing call for innovative hardware and software technologies, including a highly capable, flexible and efficient middleware, allowing for the reuse of existing pervasive applications when developing new ones. In the considered application domain, middleware should also support self-management, interoperability among different platforms, efficient communications, and context awareness. In the on-going "everything is networked" scenario scalability appears as a very important issue, for which the peer-to-peer (P2P) paradigm emerges as an appealing solution for connecting software components in an overlay network, allowing for efficient and balanced data distribution mechanisms. In this paper, we illustrate how all these concepts can be placed into a theoretical tool, called networked autonomic machine (NAM), implemented into a NAM-based middleware, and evaluated against practical problems of pervasive computing.

  1. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    PubMed Central

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  2. Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    PubMed Central

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation. PMID:18604301

  3. Ubiquitous computing for remote cardiac patient monitoring: a survey.

    PubMed

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.

  4. Wearable and flexible electronics for continuous molecular monitoring.

    PubMed

    Yang, Yiran; Gao, Wei

    2018-04-03

    Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.

  5. The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients

    PubMed Central

    Slade Shantz, Jesse Alan; Veillette, Christian J. H.

    2014-01-01

    Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors have made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive, and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wearable technologies are discussed and a conceptual framework for understanding the potential of wearable technology to revolutionize surgical practice are presented. PMID:25593963

  6. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  7. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  8. Modification and fixed-point analysis of a Kalman filter for orientation estimation based on 9D inertial measurement unit data.

    PubMed

    Brückner, Hans-Peter; Spindeldreier, Christian; Blume, Holger

    2013-01-01

    A common approach for high accuracy sensor fusion based on 9D inertial measurement unit data is Kalman filtering. State of the art floating-point filter algorithms differ in their computational complexity nevertheless, real-time operation on a low-power microcontroller at high sampling rates is not possible. This work presents algorithmic modifications to reduce the computational demands of a two-step minimum order Kalman filter. Furthermore, the required bit-width of a fixed-point filter version is explored. For evaluation real-world data captured using an Xsens MTx inertial sensor is used. Changes in computational latency and orientation estimation accuracy due to the proposed algorithmic modifications and fixed-point number representation are evaluated in detail on a variety of processing platforms enabling on-board processing on wearable sensor platforms.

  9. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2016-06-01

    Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. System perspectives for mobile platform design in m-Health

    NASA Astrophysics Data System (ADS)

    Roveda, Janet M.; Fink, Wolfgang

    2016-05-01

    Advances in integrated circuit technologies have led to the integration of medical sensor front ends with data processing circuits, i.e., mobile platform design for wearable sensors. We discuss design methodologies for wearable sensor nodes and their applications in m-Health. From the user perspective, flexibility, comfort, appearance, fashion, ease-of-use, and visibility are key form factors. From the technology development point of view, high accuracy, low power consumption, and high signal to noise ratio are desirable features. From the embedded software design standpoint, real time data analysis algorithms, application and database interfaces are the critical components to create successful wearable sensor-based products.

  11. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    PubMed

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Wearable 3D measurement

    NASA Astrophysics Data System (ADS)

    Manabe, Yoshitsugu; Imura, Masataka; Tsuchiya, Masanobu; Yasumuro, Yoshihiro; Chihara, Kunihiro

    2003-01-01

    Wearable 3D measurement realizes to acquire 3D information of an objects or an environment using a wearable computer. Recently, we can send voice and sound as well as pictures by mobile phone in Japan. Moreover it will become easy to capture and send data of short movie by it. On the other hand, the computers become compact and high performance. And it can easy connect to Internet by wireless LAN. Near future, we can use the wearable computer always and everywhere. So we will be able to send the three-dimensional data that is measured by wearable computer as a next new data. This paper proposes the measurement method and system of three-dimensional data of an object with the using of wearable computer. This method uses slit light projection for 3D measurement and user"s motion instead of scanning system.

  13. HuMOVE: a low-invasive wearable monitoring platform in sexual medicine.

    PubMed

    Ciuti, Gastone; Nardi, Matteo; Valdastri, Pietro; Menciassi, Arianna; Basile Fasolo, Ciro; Dario, Paolo

    2014-10-01

    To investigate an accelerometer-based wearable system, named Human Movement (HuMOVE) platform, designed to enable quantitative and continuous measurement of sexual performance with minimal invasiveness and inconvenience for users. Design, implementation, and development of HuMOVE, a wearable platform equipped with an accelerometer sensor for monitoring inertial parameters for sexual performance assessment and diagnosis, were performed. The system enables quantitative measurement of movement parameters during sexual intercourse, meeting the requirements of wearability, data storage, sampling rate, and interfacing methods, which are fundamental for human sexual intercourse performance analysis. HuMOVE was validated through characterization using a controlled experimental test bench and evaluated in a human model during simulated sexual intercourse conditions. HuMOVE demonstrated to be a robust and quantitative monitoring platform and a reliable candidate for sexual performance evaluation and diagnosis. Characterization analysis on the controlled experimental test bench demonstrated an accurate correlation between the HuMOVE system and data from a reference displacement sensor. Experimental tests in the human model during simulated intercourse conditions confirmed the accuracy of the sexual performance evaluation platform and the effectiveness of the selected and derived parameters. The obtained outcomes also established the project expectations in terms of usability and comfort, evidenced by the questionnaires that highlighted the low invasiveness and acceptance of the device. To the best of our knowledge, HuMOVE platform is the first device for human sexual performance analysis compatible with sexual intercourse; the system has the potential to be a helpful tool for physicians to accurately classify sexual disorders, such as premature or delayed ejaculation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Methylxanthine Drug Monitoring with Wearable Sweat Sensors.

    PubMed

    Tai, Li-Chia; Gao, Wei; Chao, Minghan; Bariya, Mallika; Ngo, Quynh P; Shahpar, Ziba; Nyein, Hnin Y Y; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Wu, Eric; Fahad, Hossain M; Lien, Der-Hsien; Ota, Hiroki; Cho, Gyoujin; Javey, Ali

    2018-06-01

    Drug monitoring plays crucial roles in doping control and precision medicine. It helps physicians tailor drug dosage for optimal benefits, track patients' compliance to prescriptions, and understand the complex pharmacokinetics of drugs. Conventional drug tests rely on invasive blood draws. While urine and sweat are attractive alternative biofluids, the state-of-the-art methods require separate sample collection and processing steps and fail to provide real-time information. Here, a wearable platform equipped with an electrochemical differential pulse voltammetry sensing module for drug monitoring is presented. A methylxanthine drug, caffeine, is selected to demonstrate the platform's functionalities. Sweat caffeine levels are monitored under various conditions, such as drug doses and measurement time after drug intake. Elevated sweat caffeine levels upon increasing dosage and confirmable caffeine physiological trends are observed. This work leverages a wearable sweat sensing platform toward noninvasive and continuous point-of-care drug monitoring and management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Investigations of fluid-strain interaction using Plate Boundary Observatory borehole data

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey Michael

    Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy a system consumes the more accurate will be. We explore how finding the transitions between human activities is able to reduce the energy consumption of such systems without reducing much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect transitions, and explore how choices of sensor, feature calculations, and parameters concerning time segmentation affect the accuracy of this method. We discovered an approximate 5X increase in energy efficiency could be achieved with only a 5% decrease in accuracy. We also address how a system's sleep mode, in which the processor enters a low-power state and sensors are turned off, affects a wearable computing platform that does activity recognition. We discuss the energy trade-offs in each stage of the activity recognition process. We find that careful analysis of these parameters can result in great increases in energy efficiency if small compromises in overall accuracy can be tolerated. We call this the ``Great Compromise.'' We found a 6X increase in efficiency with a 7% decrease in accuracy. We then consider how wireless transmission of data affects the overall energy efficiency of a wearable computing platform. We find that design decisions such as feature calculations and grouping size have a great impact on the energy consumption of the system because of the amount of data that is stored and transmitted. For example, storing and transmitting vector-based features such as FFT or DCT do not compress the signal and would use more energy than storing and transmitting the raw signal. The effect of grouping size on energy consumption depends on the feature. For scalar features energy consumption is proportional in the inverse of grouping size, so it's reduced as grouping size goes up. For features that depend on the grouping size, such as FFT, energy increases with the logarithm of grouping size, so energy consumption increases slowly as grouping size increases. We find that compressing data through activity classification and transition detection significantly reduces energy consumption and that the energy consumed for the classification overhead is negligible compared to the energy savings from data compression. We provide mathematical models of energy usage and data generation, and test our ideas using a mobile computing platform, the Texas Instruments Chronos watch.

  16. Applying a Wearable Voice-Activated Computer to Instructional Applications in Clean Room Environments

    NASA Technical Reports Server (NTRS)

    Graves, Corey A.; Lupisella, Mark L.

    2004-01-01

    The use of wearable computing technology in restrictive environments related to space applications offers promise in a number of domains. The clean room environment is one such domain in which hands-free, heads-up, wearable computing is particularly attractive for education and training because of the nature of clean room work We have developed and tested a Wearable Voice-Activated Computing (WEVAC) system based on clean room applications. Results of this initial proof-of-concept work indicate that there is a strong potential for WEVAC to enhance clean room activities.

  17. The Museum Wearable: Real-Time Sensor-Driven Understanding of Visitors' Interests for Personalized Visually-Augmented Museum Experiences.

    ERIC Educational Resources Information Center

    Sparacino, Flavia

    This paper describes the museum wearable: a wearable computer that orchestrates an audiovisual narration as a function of the visitors' interests gathered from their physical path in the museum and length of stops. The wearable consists of a lightweight and small computer that people carry inside a shoulder pack. It offers an audiovisual…

  18. Enabling breakthroughs in Parkinson’s disease with wearable technologies and big data analytics

    PubMed Central

    Cohen, Shahar; Martig, Adria K.

    2016-01-01

    Parkinson’s disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson’s Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson’s Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies. PMID:28293596

  19. Enabling breakthroughs in Parkinson's disease with wearable technologies and big data analytics.

    PubMed

    Cohen, Shahar; Bataille, Lauren R; Martig, Adria K

    2016-01-01

    Parkinson's disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson's Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson's Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies.

  20. Freestanding, Fiber-Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring.

    PubMed

    Trung, Tran Quang; Le, Hoang Sinh; Dang, Thi My Linh; Ju, Sanghyun; Park, Sang Yoon; Lee, Nae-Eung

    2018-06-01

    Fiber-based sensors integrated on textiles or clothing systems are required for the next generation of wearable electronic platforms. Fiber-based physical sensors are developed, but the development of fiber-based temperature sensors is still limited. Herein, a new approach to develop wearable temperature sensors that use freestanding single reduction graphene oxide (rGO) fiber is proposed. A freestanding and wearable temperature-responsive rGO fiber with tunable thermal index is obtained using simple wet spinning and a controlled graphene oxide reduction time. The freestanding fiber-based temperature sensor shows high responsivity, fast response time (7 s), and good recovery time (20 s) to temperature. It also maintains its response under an applied mechanical deformation. The fiber device fabricated by means of a simple process is easily integrated into fabric such as socks or undershirts and can be worn by a person to monitor the temperature of the environment and skin temperature without interference during movement and various activities. These results demonstrate that the freestanding fiber-based temperature sensor has great potential for fiber-based wearable electronic platforms. It is also promising for applications in healthcare and biomedical monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A wellness software platform with smart wearable devices and the demonstration report for personal wellness management

    NASA Astrophysics Data System (ADS)

    Kang, Won-Seok; Son, Chang-Sik; Lee, Sangho; Choi, Rock-Hyun; Ha, Yeong-Mi

    2017-07-01

    In this paper, we introduce a wellness software platform, called WellnessHumanCare, is a semi-automatic wellness management software platform which has the functions of complex wellness data acquisition(mental, physical and environmental one) with smart wearable devices, complex wellness condition analysis, private-aware online/offline recommendation, real-time monitoring apps (Smartphone-based, Web-based) and so on and we has demonstrated a wellness management service with 79 participants (experimental group: 39, control group: 40) who has worked at experimental group (H Corp.) and control group (K Corp.), Korea and 3 months in order to show the efficiency of the WellnessHumanCare.

  2. Inheriting the Learner's View: A Google Glass-Based Wearable Computing Platform for Improving Surgical Trainee Performance.

    PubMed

    Brewer, Zachary E; Fann, Hutchinson C; Ogden, W David; Burdon, Thomas A; Sheikh, Ahmad Y

    2016-01-01

    It is speculated that, in operative environments, real-time visualization of the trainee's viewpoint by the instructor may improve performance and teaching efficacy. We hypothesized that introduction of a wearable surgical visualization system allowing the instructor to visualize otherwise "blind" areas in the operative field could improve trainee performance in a simulated operative setting. A total of 11 surgery residents (4 in general surgery training and 7 in an integrated 6-year cardiothoracic surgery program) participated in the study. Google (Mountain View, CA) Glass hardware running proprietary software from CrowdOptic (San Francisco, CA) was utilized for creation of the wearable surgical visualization system. Both the learner and trainer wore the system, and video was streamed from the learner's system in real time to the trainer, who directed the learner to place needles in a simulated operative field. Subjects placed a total of 5 needles in each of 4 quadrants. A composite error score was calculated based on the accuracy of needle placement in relation to the intended needle trajectories as described by the trainer. Time to task completion (TTC) was also measured and participants completed an exit questionnaire. All residents completed the protocol tasks and the survey. Introduction of the wearable surgical visualization system did not affect mean time to task completion (278 ± 50 vs. 282 ± 69 seconds, p = NS). However, mean composite error score fell significantly once the wearable system was deployed (18 ± 5 vs. 15 ± 4, p < 0.05), demonstrating improved accuracy of needle placement. Most of the participants deemed the device unobtrusive, easy to operate, and useful for communication and instruction. This study suggests that wearable surgical visualization systems allowing for adoption of the learner's perspective may be a useful educational adjunct in the training of surgeons. Further evaluations of the efficacy of wearable technology in the operating room environment are warranted. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. Wearable sensors for health monitoring

    NASA Astrophysics Data System (ADS)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  4. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform.

    PubMed

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P; Fahad, Hossain M; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W

    2017-05-02

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.

  5. Experimental evaluations of wearable ECG monitor.

    PubMed

    Ha, Kiryong; Kim, Youngsung; Jung, Junyoung; Lee, Jeunwoo

    2008-01-01

    Healthcare industry is changing with ubiquitous computing environment and wearable ECG measurement is one of the most popular approaches in this healthcare industry. Reliability and performance of healthcare device is fundamental issue for widespread adoptions, and interdisciplinary perspectives of wearable ECG monitor make this more difficult. In this paper, we propose evaluation criteria considering characteristic of both ECG measurement and ubiquitous computing. With our wearable ECG monitors, various levels of experimental analysis are performed based on evaluation strategy.

  6. A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors.

    PubMed

    Chen, Bor-Rong; Patel, Shyamal; Buckley, Thomas; Rednic, Ramona; McClure, Douglas J; Shih, Ludy; Tarsy, Daniel; Welsh, Matt; Bonato, Paolo

    2011-03-01

    This letter introduces MercuryLive, a platform to enable home monitoring of patients with Parkinson's disease (PD) using wearable sensors. MercuryLive contains three tiers: a resource-aware data collection engine that relies upon wearable sensors, web services for live streaming and storage of sensor data, and a web-based graphical user interface client with video conferencing capability. Besides, the platform has the capability of analyzing sensor (i.e., accelerometer) data to reliably estimate clinical scores capturing the severity of tremor, bradykinesia, and dyskinesia. Testing results showed an average data latency of less than 400 ms and video latency of about 200 ms with video frame rate of about 13 frames/s when 800 kb/s of bandwidth were available and we used a 40% video compression, and data feature upload requiring 1 min of extra time following a 10 min interactive session. These results indicate that the proposed platform is suitable to monitor patients with PD to facilitate the titration of medications in the late stages of the disease.

  7. Combination of Wearable Multi-Biosensor Platform and Resonance Frequency Training for Stress Management of the Unemployed Population

    PubMed Central

    Wu, Wanqing; Gil, Yeongjoon; Lee, Jungtae

    2012-01-01

    Currently considerable research is being directed toward developing methodologies for controlling emotion or releasing stress. An applied branch of the basic field of psychophysiology, known as biofeedback, has been developed to fulfill clinical and non-clinical needs related to such control. Wearable medical devices have permitted unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. With the global recession, unemployment has become one of the most serious social problems; therefore, the combination of biofeedback techniques with wearable technology for stress management of unemployed population is undoubtedly meaningful. This article describes a wearable biofeedback system based on combining integrated multi-biosensor platform with resonance frequency training (RFT) biofeedback strategy for stress management of unemployed population. Compared to commercial system, in situ experiments with multiple subjects indicated that our biofeedback system was discreet, easy to wear, and capable of offering ambulatory RFT biofeedback.Moreover, the comparative studies on the altered autonomic nervous system (ANS) modulation before and after three week RFT biofeedback training was performed in unemployed population with the aid of our wearable biofeedback system. The achieved results suggested that RFT biofeedback in combination with wearable technology was capable of significantly increasingoverall HRV, which indicated by decreasing sympathetic activities, increasing parasympathetic activities, and increasing ANS synchronization. After 3-week RFT-based respiration training, the ANS's regulating function and coping ability of unemployed population have doubled, and tended toward a dynamic balance. PMID:23201994

  8. Computation offloading for real-time health-monitoring devices.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Tuan Le; Hosseini, Anahita; Sarrafzadeh, Majid

    2016-08-01

    Among the major challenges in the development of real-time wearable health monitoring systems is to optimize battery life. One of the major techniques with which this objective can be achieved is computation offloading, in which portions of computation can be partitioned between the device and other resources such as a server or cloud. In this paper, we describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data between the wearable device and mobile application as a function of desired classification accuracy.

  9. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE PAGES

    Emaminejad, Sam; Gao, Wei; Wu, Eric; ...

    2017-04-17

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  10. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    PubMed Central

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A.; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P.; Fahad, Hossain M.; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W.

    2017-01-01

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals’ health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications. PMID:28416667

  11. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emaminejad, Sam; Gao, Wei; Wu, Eric

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  12. Improving the Capture and Re-Use of Data with Wearable Computers

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Fating, Curtis C.; Green, Daniel; Powers, Edward I. (Technical Monitor)

    2001-01-01

    At the Goddard Space Flight Center, members of the Real-Time Software Engineering Branch are developing a wearable, wireless, voice-activated computer for use in a wide range of crosscutting space applications that would benefit from having instant Internet, network, and computer access with complete mobility and hands-free operations. These applications can be applied across many fields and disciplines including spacecraft fabrication, integration and testing (including environmental testing), and astronaut on-orbit control and monitoring of experiments with ground based experimenters. To satisfy the needs of NASA customers, this wearable computer needs to be connected to a wireless network, to transmit and receive real-time video over the network, and to receive updated documents via the Internet or NASA servers. The voice-activated computer, with a unique vocabulary, will allow the users to access documentation in a hands free environment and interact in real-time with remote users. We will discuss wearable computer development, hardware and software issues, wireless network limitations, video/audio solutions and difficulties in language development.

  13. Dynamic Computation Offloading for Low-Power Wearable Health Monitoring Systems.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Mortazavi, Bobak; Alshurafa, Nabil; Sarrafzadeh, Majid

    2017-03-01

    The objective of this paper is to describe and evaluate an algorithm to reduce power usage and increase battery lifetime for wearable health-monitoring devices. We describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data processing between the wearable device and mobile application as a function of desired classification accuracy. By making the correct offloading decision based on current system parameters, we show that we are able to reduce system power by as much as 20%. We demonstrate that computation offloading can be applied to real-time monitoring systems, and yields significant power savings. Making correct offloading decisions for health monitoring devices can extend battery life and improve adherence.

  14. Field Programmable Gate Array (FPGA) Respiratory Monitoring System Using a Flow Microsensor and an Accelerometer

    NASA Astrophysics Data System (ADS)

    Mellal, Idir; Laghrouche, Mourad; Bui, Hung Tien

    2017-04-01

    This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS) flow sensor and an IMU (Inertial Measurement Unit) accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network) to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer) algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.

  15. Toward a Fault Tolerant Architecture for Vital Medical-Based Wearable Computing.

    PubMed

    Abdali-Mohammadi, Fardin; Bajalan, Vahid; Fathi, Abdolhossein

    2015-12-01

    Advancements in computers and electronic technologies have led to the emergence of a new generation of efficient small intelligent systems. The products of such technologies might include Smartphones and wearable devices, which have attracted the attention of medical applications. These products are used less in critical medical applications because of their resource constraint and failure sensitivity. This is due to the fact that without safety considerations, small-integrated hardware will endanger patients' lives. Therefore, proposing some principals is required to construct wearable systems in healthcare so that the existing concerns are dealt with. Accordingly, this paper proposes an architecture for constructing wearable systems in critical medical applications. The proposed architecture is a three-tier one, supporting data flow from body sensors to cloud. The tiers of this architecture include wearable computers, mobile computing, and mobile cloud computing. One of the features of this architecture is its high possible fault tolerance due to the nature of its components. Moreover, the required protocols are presented to coordinate the components of this architecture. Finally, the reliability of this architecture is assessed by simulating the architecture and its components, and other aspects of the proposed architecture are discussed.

  16. First-in-Man Computed Tomography-Guided Percutaneous Revascularization of Coronary Chronic Total Occlusion Using a Wearable Computer: Proof of Concept.

    PubMed

    Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Szpak, Marcin; Staruch, Adam D; Kepka, Cezary; Witkowski, Adam

    2016-06-01

    We report a case of successful computed tomography-guided percutaneous revascularization of a chronically occluded right coronary artery using a wearable, hands-free computer with a head-mounted display worn by interventional cardiologists in the catheterization laboratory. The projection of 3-dimensional computed tomographic reconstructions onto the screen of virtual reality glass allowed the operators to clearly visualize the distal coronary vessel, and verify the direction of the guide wire advancement relative to the course of the occluded vessel segment. This case provides proof of concept that wearable computers can improve operator comfort and procedure efficiency in interventional cardiology. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. Solution-Processed Metal Coating to Nonwoven Fabrics for Wearable Rechargeable Batteries.

    PubMed

    Lee, Kyulin; Choi, Jin Hyeok; Lee, Hye Moon; Kim, Ki Jae; Choi, Jang Wook

    2017-12-27

    Wearable rechargeable batteries require electrode platforms that can withstand various physical motions, such as bending, folding, and twisting. To this end, conductive textiles and paper have been highlighted, as their porous structures can accommodate the stress built during various physical motions. However, fabrics with plain weaves or knit structures have been mostly adopted without exploration of nonwoven counterparts. Also, the integration of conductive materials, such as carbon or metal nanomaterials, to achieve sufficient conductivity as current collectors is not well-aligned with large-scale processing in terms of cost and quality control. Here, the superiority of nonwoven fabrics is reported in electrochemical performance and bending capability compared to currently dominant woven counterparts, due to smooth morphology near the fiber intersections and the homogeneous distribution of fibers. Moreover, solution-processed electroless deposition of aluminum and nickel-copper composite is adopted for cathodes and anodes, respectively, demonstrating the large-scale feasibility of conductive nonwoven platforms for wearable rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The social comfort of wearable technology and gestural interaction.

    PubMed

    Dunne, Lucy E; Profita, Halley; Zeagler, Clint; Clawson, James; Gilliland, Scott; Do, Ellen Yi-Luen; Budd, Jim

    2014-01-01

    The "wearability" of wearable technology addresses the factors that affect the degree of comfort the wearer experiences while wearing a device, including physical, psychological, and social aspects. While the physical and psychological aspects of wearing technology have been investigated since early in the development of the field of wearable computing, the social aspects of wearability have been less fully-explored. As wearable technology becomes increasingly common on the commercial market, social wearability is becoming an ever-more-important variable contributing to the success or failure of new products. Here we present an analysis of social aspects of wearability within the context of the greater understanding of wearability in wearable technology, and focus on selected theoretical frameworks for understanding how wearable products are perceived and evaluated in a social context. Qualitative results from a study of social acceptability of on-body interactions are presented as a case study of social wearability.

  19. Wearable Platform for Real-time Monitoring of Sodium in Sweat.

    PubMed

    McCaul, Margaret; Porter, Adam; Barrett, Ruairi; White, Paddy; Stroiescu, Florien; Wallace, Gordon; Diamond, Dermot

    2018-06-19

    A fully integrated and wearable platform for harvesting and analysing sweat sodium concentration in real time during exercise has been developed and tested. The platform was largely produced using 3D printing, which greatly simplifies fabrication and operation compared to previous versions generated with traditional production techniques. The 3D printed platform doubles the capacity of the sample storage reservoir to about 1.3 ml, reduces the assembly time and provides simple and precise component alignment and contact of the integrated solid-state ion-selective and reference electrodes with the sorbent material. The sampling flowrate in the device can be controlled by introducing threads to enhance wicking of sweat from the skin, across the electrodes to the storage area. The platform was characterised in the lab and in exercise trials over a period of about 60 minutes continuous monitoring. Sweat sodium concentration was found to rise initially to approximately 17 mM and decline gradually over the period of the trial to about 11-12 mM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Wearable Learning Tools.

    ERIC Educational Resources Information Center

    Bowskill, Jerry; Dyer, Nick

    1999-01-01

    Describes wearable computers, or information and communication technology devices that are designed to be mobile. Discusses how such technologies can enhance computer-mediated communications, focusing on collaborative working for learning. Describes an experimental system, MetaPark, which explores communications, data retrieval and recording, and…

  1. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.

    PubMed

    Altini, Marco; Del Din, Silvia; Patel, Shyamal; Schachter, Steven; Penders, Julien; Bonato, Paolo

    2011-01-01

    Monitoring patients' physiological signals during their daily activities in the home environment is one of the challenge of the health care. New ultra-low-power wireless technologies could help to achieve this goal. In this paper we present a low-power, multi-modal, wearable sensor platform for the simultaneous recording of activity and physiological data. First we provide a description of the wearable sensor platform, and its characteristics with respect to power consumption. Second we present the preliminary results of the comparison between our sensors and a reference system, on healthy subjects, to test the reliability of the detected physiological (electrocardiogram and respiration) and electromyography signals.

  2. iCalm: wearable sensor and network architecture for wirelessly communicating and logging autonomic activity.

    PubMed

    Fletcher, Richard Ribon; Dobson, Kelly; Goodwin, Matthew S; Eydgahi, Hoda; Wilder-Smith, Oliver; Fernholz, David; Kuboyama, Yuta; Hedman, Elliott Bruce; Poh, Ming-Zher; Picard, Rosalind W

    2010-03-01

    Widespread use of affective sensing in healthcare applications has been limited due to several practical factors, such as lack of comfortable wearable sensors, lack of wireless standards, and lack of low-power affordable hardware. In this paper, we present a new low-cost, low-power wireless sensor platform implemented using the IEEE 802.15.4 wireless standard, and describe the design of compact wearable sensors for long-term measurement of electrodermal activity, temperature, motor activity, and photoplethysmography. We also illustrate the use of this new technology for continuous long-term monitoring of autonomic nervous system and motion data from active infants, children, and adults. We describe several new applications enabled by this system, discuss two specific wearable designs for the wrist and foot, and present sample data.

  3. Space and Ground Trades for Human Exploration and Wearable Computing

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark; Donohue, John; Mandl, Dan; Ly, Vuong; Graves, Corey; Heimerdinger, Dan; Studor, George; Saiz, John; DeLaune, Paul; Clancey, William

    2006-01-01

    Human exploration of the Moon and Mars will present unique trade study challenges as ground system elements shift to planetary bodies and perhaps eventually to the bodies of human explorers in the form of wearable computing technologies. This presentation will highlight some of the key space and ground trade issues that will face the Exploration Initiative as NASA begins designing systems for the sustained human exploration of the Moon and Mars, with an emphasis on wearable computing. We will present some preliminary test results and scenarios that demonstrate how wearable computing might affect the trade space noted below. We will first present some background on wearable computing and its utility to NASA's Exploration Initiative. Next, we will discuss three broad architectural themes, some key ground and space trade issues within those themes and how they relate to wearable computing. Lastly, we will present some preliminary test results and suggest guidance for proceeding in the assessment and creation of a value-added role for wearable computing in the Exploration Initiative. The three broad ground-space architectural trade themes we will discuss are: 1. Functional Shift and Distribution: To what extent, if any, should traditional ground system functionality be shifted to, and distributed among, the Earth, Moon/Mars, and the human. explorer? 2. Situational Awareness and Autonomy: How much situational awareness (e.g. environmental conditions, biometrics, etc.) and autonomy is required and desired, and where should these capabilities reside? 3. Functional Redundancy: What functions (e.g. command, control, analysis) should exist simultaneously on Earth, the Moon/Mars, and the human explorer? These three themes can serve as the axes of a three-dimensional trade space, within which architectural solutions reside. We will show how wearable computers can fit into this trade space and what the possible implications could be for the rest of the ground and space architecture(s). We intend this to be an example of explorer-centric thinking in a fully integrated explorer paradigm, where integrated explorer refers to a human explorer having instant access to all relevant data, knowledge of the environment, science models, health and safety-related events, and other tools and information via wearable computing technologies. The trade study approach will include involvement from the relevant stakeholders (Constellation Systems, CCCI, EVA Project Office, Astronaut office, Mission Operations, Space Life Sciences, etc.) to develop operations concepts (and/or operations scenarios) from which a basic high-level set of requirements could be extracted. This set of requirements could serve as a foundation (along with stakeholder buy-in) that would help define the trade space and assist in identifying candidate technologies for further study and evolution to higher-level technology readiness levels.

  4. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors

    NASA Astrophysics Data System (ADS)

    Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B.

    2016-09-01

    The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer patterns are deposited into the fabric by screen printing processes, thus allowing the device to actually “disappear” into it. We demonstrate the reliability of the proposed textile OECTs as a platform for developing chemical sensors capable to detect in real-time various redox active molecules (adrenaline, dopamine and ascorbic acid), by assessing their performance in two different experimental contexts: i) ideal operation conditions (i.e. totally dipped in an electrolyte solution); ii) real-life operation conditions (i.e. by sequentially adding few drops of electrolyte solution onto only one side of the textile sensor). The OECTs response has also been measured in artificial sweat, assessing how these sensors can be reliably used for the detection of biomarkers in body fluids. Finally, the very low operating potentials (<1 V) and absorbed power (~10-4 W) make the here described textile OECTs very appealing for portable and wearable applications.

  5. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors

    PubMed Central

    Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B.

    2016-01-01

    The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer patterns are deposited into the fabric by screen printing processes, thus allowing the device to actually “disappear” into it. We demonstrate the reliability of the proposed textile OECTs as a platform for developing chemical sensors capable to detect in real-time various redox active molecules (adrenaline, dopamine and ascorbic acid), by assessing their performance in two different experimental contexts: i) ideal operation conditions (i.e. totally dipped in an electrolyte solution); ii) real-life operation conditions (i.e. by sequentially adding few drops of electrolyte solution onto only one side of the textile sensor). The OECTs response has also been measured in artificial sweat, assessing how these sensors can be reliably used for the detection of biomarkers in body fluids. Finally, the very low operating potentials (<1 V) and absorbed power (~10−4 W) make the here described textile OECTs very appealing for portable and wearable applications. PMID:27667396

  6. Compressive sensing scalp EEG signals: implementations and practical performance.

    PubMed

    Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther

    2012-11-01

    Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.

  7. Increasing fall risk awareness using wearables: A fall risk awareness protocol.

    PubMed

    Danielsen, Asbjørn; Olofsen, Hans; Bremdal, Bernt Arild

    2016-10-01

    Each year about a third of elderly aged 65 or older experience a fall. Many of these falls may have been avoided if fall risk assessment and prevention tools where available in a daily living situation. We identify what kind of information is relevant for doing fall risk assessment and prevention using wearable sensors in a daily living environment by investigating current research, distinguishing between prospective and context-aware fall risk assessment and prevention. Based on our findings, we propose a fall risk awareness protocol as a fall prevention tool integrating both wearables and ambient sensing technology into a single platform. Copyright © 2016. Published by Elsevier Inc.

  8. The World through Glass: Developing Novel Methods with Wearable Computing for Urban Videographic Research

    ERIC Educational Resources Information Center

    Paterson, Mark; Glass, Michael R.

    2015-01-01

    Google Glass was deployed in an Urban Studies field course to gather videographic data for team-based student research projects. We evaluate the potential for wearable computing technology such as Glass, in combination with other mobile computing devices, to enhance reflexive research skills, and videography in particular, during field research.…

  9. E-Textile Antennas for Space Environments

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  10. A Systematic Review of Wearable Patient Monitoring Systems - Current Challenges and Opportunities for Clinical Adoption.

    PubMed

    Baig, Mirza Mansoor; GholamHosseini, Hamid; Moqeem, Aasia A; Mirza, Farhaan; Lindén, Maria

    2017-07-01

    The aim of this review is to investigate barriers and challenges of wearable patient monitoring (WPM) solutions adopted by clinicians in acute, as well as in community, care settings. Currently, healthcare providers are coping with ever-growing healthcare challenges including an ageing population, chronic diseases, the cost of hospitalization, and the risk of medical errors. WPM systems are a potential solution for addressing some of these challenges by enabling advanced sensors, wearable technology, and secure and effective communication platforms between the clinicians and patients. A total of 791 articles were screened and 20 were selected for this review. The most common publication venue was conference proceedings (13, 54%). This review only considered recent studies published between 2015 and 2017. The identified studies involved chronic conditions (6, 30%), rehabilitation (7, 35%), cardiovascular diseases (4, 20%), falls (2, 10%) and mental health (1, 5%). Most studies focussed on the system aspects of WPM solutions including advanced sensors, wireless data collection, communication platform and clinical usability based on a specific area or disease. The current studies are progressing with localized sensor-software integration to solve a specific use-case/health area using non-scalable and 'silo' solutions. There is further work required regarding interoperability and clinical acceptance challenges. The advancement of wearable technology and possibilities of using machine learning and artificial intelligence in healthcare is a concept that has been investigated by many studies. We believe future patient monitoring and medical treatments will build upon efficient and affordable solutions of wearable technology.

  11. Thimble microscope system

    NASA Astrophysics Data System (ADS)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  12. Wearable Fall Detector using Integrated Sensors and Energy Devices

    NASA Astrophysics Data System (ADS)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  13. Wearable Fall Detector using Integrated Sensors and Energy Devices.

    PubMed

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-24

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  14. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  15. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    PubMed

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  16. Wearable Technology in Medicine: Machine-to-Machine (M2M) Communication in Distributed Systems.

    PubMed

    Schmucker, Michael; Yildirim, Kemal; Igel, Christoph; Haag, Martin

    2016-01-01

    Smart wearables are capable of supporting physicians during various processes in medical emergencies. Nevertheless, it is almost impossible to operate several computers without neglecting a patient's treatment. Thus, it is necessary to set up a distributed network consisting of two or more computers to exchange data or initiate remote procedure calls (RPC). If it is not possible to create flawless connections between those devices, it is not possible to transfer medically relevant data to the most suitable device, as well as to control a device with another one. This paper shows how wearables can be paired and what problems occur when trying to pair several wearables. Furthermore, it is described as to what interesting scenarios are possible in the context of emergency medicine/paramedicine.

  17. On the security of consumer wearable devices in the Internet of Things.

    PubMed

    Tahir, Hasan; Tahir, Ruhma; McDonald-Maier, Klaus

    2018-01-01

    Miniaturization of computer hardware and the demand for network capable devices has resulted in the emergence of a new class of technology called wearable computing. Wearable devices have many purposes like lifestyle support, health monitoring, fitness monitoring, entertainment, industrial uses, and gaming. Wearable devices are hurriedly being marketed in an attempt to capture an emerging market. Owing to this, some devices do not adequately address the need for security. To enable virtualization and connectivity wearable devices sense and transmit data, therefore it is essential that the device, its data and the user are protected. In this paper the use of novel Integrated Circuit Metric (ICMetric) technology for the provision of security in wearable devices has been suggested. ICMetric technology uses the features of a device to generate an identification which is then used for the provision of cryptographic services. This paper explores how a device ICMetric can be generated by using the accelerometer and gyroscope sensor. Since wearable devices often operate in a group setting the work also focuses on generating a group identification which is then used to deliver services like authentication, confidentiality, secure admission and symmetric key generation. Experiment and simulation results prove that the scheme offers high levels of security without compromising on resource demands.

  18. On the security of consumer wearable devices in the Internet of Things

    PubMed Central

    Tahir, Hasan; Tahir, Ruhma; McDonald-Maier, Klaus

    2018-01-01

    Miniaturization of computer hardware and the demand for network capable devices has resulted in the emergence of a new class of technology called wearable computing. Wearable devices have many purposes like lifestyle support, health monitoring, fitness monitoring, entertainment, industrial uses, and gaming. Wearable devices are hurriedly being marketed in an attempt to capture an emerging market. Owing to this, some devices do not adequately address the need for security. To enable virtualization and connectivity wearable devices sense and transmit data, therefore it is essential that the device, its data and the user are protected. In this paper the use of novel Integrated Circuit Metric (ICMetric) technology for the provision of security in wearable devices has been suggested. ICMetric technology uses the features of a device to generate an identification which is then used for the provision of cryptographic services. This paper explores how a device ICMetric can be generated by using the accelerometer and gyroscope sensor. Since wearable devices often operate in a group setting the work also focuses on generating a group identification which is then used to deliver services like authentication, confidentiality, secure admission and symmetric key generation. Experiment and simulation results prove that the scheme offers high levels of security without compromising on resource demands. PMID:29668756

  19. CCS_WHMS: A Congestion Control Scheme for Wearable Health Management System.

    PubMed

    Kafi, Mohamed Amine; Ben Othman, Jalel; Bagaa, Miloud; Badache, Nadjib

    2015-12-01

    Wearable computing is becoming a more and more attracting field in the last years thanks to the miniaturisation of electronic devices. Wearable healthcare monitoring systems (WHMS) as an important client of wearable computing technology has gained a lot. Indeed, the wearable sensors and their surrounding healthcare applications bring a lot of benefits to patients, elderly people and medical staff, so facilitating their daily life quality. But from a research point of view, there is still work to accomplish in order to overcome the gap between hardware and software parts. In this paper, we target the problem of congestion control when all these healthcare sensed data have to reach the destination in a reliable manner that avoids repetitive transmission which wastes precious energy or leads to loss of important information in emergency cases, too. We propose a congestion control scheme CCS_WHMS that ensures efficient and fair data delivery while used in the body wearable system part or in the multi-hop inter bodies wearable ones to get the destination. As the congestion detection paradigm is very important in the control process, we do experimental tests to compare between state of the art congestion detection methods, using MICAz motes, in order to choose the appropriate one for our scheme.

  20. Biofeedback

    MedlinePlus

    ... and when it's active to help you learn how to control your stress response. The information from each session can then be stored to your computer or mobile device. Wearable devices. One type of wearable device ...

  1. Eyes of Things.

    PubMed

    Deniz, Oscar; Vallez, Noelia; Espinosa-Aranda, Jose L; Rico-Saavedra, Jose M; Parra-Patino, Javier; Bueno, Gloria; Moloney, David; Dehghani, Alireza; Dunne, Aubrey; Pagani, Alain; Krauss, Stephan; Reiser, Ruben; Waeny, Martin; Sorci, Matteo; Llewellynn, Tim; Fedorczak, Christian; Larmoire, Thierry; Herbst, Marco; Seirafi, Andre; Seirafi, Kasra

    2017-05-21

    Embedded systems control and monitor a great deal of our reality. While some "classic" features are intrinsically necessary, such as low power consumption, rugged operating ranges, fast response and low cost, these systems have evolved in the last few years to emphasize connectivity functions, thus contributing to the Internet of Things paradigm. A myriad of sensing/computing devices are being attached to everyday objects, each able to send and receive data and to act as a unique node in the Internet. Apart from the obvious necessity to process at least some data at the edge (to increase security and reduce power consumption and latency), a major breakthrough will arguably come when such devices are endowed with some level of autonomous "intelligence". Intelligent computing aims to solve problems for which no efficient exact algorithm can exist or for which we cannot conceive an exact algorithm. Central to such intelligence is Computer Vision (CV), i.e., extracting meaning from images and video. While not everything needs CV, visual information is the richest source of information about the real world: people, places and things. The possibilities of embedded CV are endless if we consider new applications and technologies, such as deep learning, drones, home robotics, intelligent surveillance, intelligent toys, wearable cameras, etc. This paper describes the Eyes of Things (EoT) platform, a versatile computer vision platform tackling those challenges and opportunities.

  2. Eyes of Things

    PubMed Central

    Deniz, Oscar; Vallez, Noelia; Espinosa-Aranda, Jose L.; Rico-Saavedra, Jose M.; Parra-Patino, Javier; Bueno, Gloria; Moloney, David; Dehghani, Alireza; Dunne, Aubrey; Pagani, Alain; Krauss, Stephan; Reiser, Ruben; Waeny, Martin; Sorci, Matteo; Llewellynn, Tim; Fedorczak, Christian; Larmoire, Thierry; Herbst, Marco; Seirafi, Andre; Seirafi, Kasra

    2017-01-01

    Embedded systems control and monitor a great deal of our reality. While some “classic” features are intrinsically necessary, such as low power consumption, rugged operating ranges, fast response and low cost, these systems have evolved in the last few years to emphasize connectivity functions, thus contributing to the Internet of Things paradigm. A myriad of sensing/computing devices are being attached to everyday objects, each able to send and receive data and to act as a unique node in the Internet. Apart from the obvious necessity to process at least some data at the edge (to increase security and reduce power consumption and latency), a major breakthrough will arguably come when such devices are endowed with some level of autonomous “intelligence”. Intelligent computing aims to solve problems for which no efficient exact algorithm can exist or for which we cannot conceive an exact algorithm. Central to such intelligence is Computer Vision (CV), i.e., extracting meaning from images and video. While not everything needs CV, visual information is the richest source of information about the real world: people, places and things. The possibilities of embedded CV are endless if we consider new applications and technologies, such as deep learning, drones, home robotics, intelligent surveillance, intelligent toys, wearable cameras, etc. This paper describes the Eyes of Things (EoT) platform, a versatile computer vision platform tackling those challenges and opportunities. PMID:28531141

  3. Using Wearable Computers in Shuttle Processing: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.; Correa, Daisy; Groh-Hammond, Marcia

    2001-01-01

    Shuttle processing operations are performed following prescribed instructions compiled in a Work Authorization Document (WAD). Until very recently, WADs were printed so that they could be properly executed, including the buy off of each and every step by the appropriate authorizing agent. However, with the development of EPICs, Maximo, and PeopleSoft applications, some of these documents are now available in electronic format; hence, it is possible for technicians and engineers to access them on line and buy off the steps electronically. To take full advantage of these developments, technicians need access to such documents at the point of job execution. Body wearable computers present an opportunity to develop a WAD delivery system that enables access while preserving technician's mobility, safety levels, and quality of work done. The primary objectives of this project were to determine if body wearable computers are a feasible delivery system for WADs. More specifically, identify and recommend specific brands of body wearable computers readily available on the market. Thus, this effort has field-tested this technology in two areas of shuttle processing, and it has examined the usability of the technology. Results of two field tests and a Human Factors Usability Test are presented. Section 2 provides a description of the body wearable computer technology. Section 3 presents the test at the Space Shuttle Main Engine (SSME) Shop. Section 4 presents the results of the integration test at the Solid Rocket Boosters Assembly and Refurbishing Facility (SRBARF). Section 5 presents the results of the usability test done at the Operations Support Building (OSB).

  4. Wearable Fall Detector using Integrated Sensors and Energy Devices

    PubMed Central

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-01-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare. PMID:26597423

  5. Designing I*CATch: A Multipurpose, Education-Friendly Construction Kit for Physical and Wearable Computing

    ERIC Educational Resources Information Center

    Ngai, Grace; Chan, Stephen C. F.; Leong, Hong Va; Ng, Vincent T. Y.

    2013-01-01

    This article presents the design and development of i*CATch, a construction kit for physical and wearable computing that was designed to be scalable, plug-and-play, and to provide support for iterative and exploratory learning. It consists of a standardized construction interface that can be adapted for a wide range of soft textiles or electronic…

  6. Glasses-type wearable computer displays: usability considerations examined with a 3D glasses case study.

    PubMed

    Chang, Joonho; Moon, Seung Ki; Jung, Kihyo; Kim, Wonmo; Parkinson, Matthew; Freivalds, Andris; Simpson, Timothy W; Baik, Seon Pill

    2018-05-01

    This study presents usability considerations and solutions for the design of glasses-type wearable computer displays and examines their effectiveness in a case study. Design countermeasures were investigated by a four-step design process: (1) preliminary design analysis; (2) design idea generation; (3) final design selection; and (4) virtual fitting trial. Three design interventions were devised from the design process: (1) weight balance to reduce pressure concentrated on the nose, (2) compliant temples to accommodate diverse head sizes and (3) a hanger mechanism to help spectacle users hang their wearable display on their eye glasses. To investigate their effectiveness, in the case study, the novel 3D glasses adopting the three interventions were compared with two existing 3D glasses in terms of neck muscle fatigue and subjective discomfort rating. While neck muscle fatigue was not significantly different among the three glasses (p = 0.467), the novel glasses had significantly smaller discomfort ratings (p = 0.009). Relevance to Industry: A four-step design process identified usability considerations and solutions for the design of glasses-type wearable computer displays. A novel 3D glasses was proposed through the process and its effectiveness was validated. The results identify design considerations and opportunities relevant to the emerging wearable display industry.

  7. Feasibility and safety of augmented-reality glass for computed tomography-assisted percutaneous revascularization of coronary chronic total occlusion: A single center prospective pilot study.

    PubMed

    Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Staruch, Adam D; Kepka, Cezary; Rokicki, Jakub K; Sieradzki, Bartosz; Witkowski, Adam

    2017-11-01

    Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) may be facilitated by projection of coronary computed tomography angiography (CTA) datasets in the catheterization laboratory. There is no data on the feasibility and safety outcomes of CTA-assisted CTO PCI using a wearable augmented-reality glass. A total of 15 patients scheduled for elective antegrade CTO intervention were prospectively enrolled and underwent preprocedural coronary CTA. Three-dimensional and curved multiplanar CT reconstructions were transmitted to a head-mounted hands-free computer worn by interventional cardiologists during CTO PCI to provide additional information on CTO tortuosity and calcification. The results of CTO PCI using a wearable computer were compared with a time-matched prospective angiographic registry of 59 patients undergoing antegrade CTO PCI without a wearable computer. Operators' satisfaction was assessed by a 5-point Likert scale. Mean age was 64 ± 8 years and the mean J-CTO score was 2.1 ± 0.9 in the CTA-assisted group. The voice-activated co-registration and review of CTA images in a wearable computer during CTO PCI were feasible and highly rated by PCI operators (4.7/5 points). There were no major adverse cardiovascular events. Compared with standard CTO PCI, CTA-assisted recanalization of CTO using a wearable computer showed more frequent selection of the first-choice stiff wire (0% vs 40%, p < 0.001) and lower contrast exposure (166 ± 52 vs 134 ± 43 ml, p = 0.03). Overall CTO success rates and safety outcomes remained similar between both groups. CTA-assisted CTO PCI using an augmented-reality glass is feasible and safe, and might reduce the resources required for the interventional treatment of CTO. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  8. Advancing from offline to online activity recognition with wearable sensors.

    PubMed

    Ermes, Miikka; Parkka, Juha; Cluitmans, Luc

    2008-01-01

    Activity recognition with wearable sensors could motivate people to perform a variety of different sports and other physical exercises. We have earlier developed algorithms for offline analysis of activity data collected with wearable sensors. In this paper, we present our current progress in advancing the platform for the existing algorithms to an online version, onto a PDA. Acceleration data are obtained from wireless motion bands which send the 3D raw acceleration signals via a Bluetooth link to the PDA which then performs the data collection, feature extraction and activity classification. As a proof-of-concept, the online activity system was tested with three subjects. All of them performed at least 5 minutes of each of the following activities: lying, sitting, standing, walking, running and cycling with an exercise bike. The average second-by-second classification accuracies for the subjects were 99%, 97%, and 82 %. These results suggest that earlier developed offline analysis methods for the acceleration data obtained from wearable sensors can be successfully implemented in an online activity recognition application.

  9. Google glass: a driver distraction cause or cure?

    PubMed

    Sawyer, Ben D; Finomore, Victor S; Calvo, Andres A; Hancock, P A

    2014-11-01

    We assess the driving distraction potential of texting with Google Glass (Glass), a mobile wearable platform capable of receiving and sending short-message-service and other messaging formats. A known roadway danger, texting while driving has been targeted by legislation and widely banned. Supporters of Glass claim the head-mounted wearable computer is designed to deliver information without concurrent distraction. Existing literature supports the supposition that design decisions incorporated in Glass might facilitate messaging for drivers. We asked drivers in a simulator to drive and use either Glass or a smartphone-based messaging interface, then interrupted them with an emergency brake event. Both the response event and subsequent recovery were analyzed. Glass-delivered messages served to moderate but did not eliminate distracting cognitive demands. A potential passive cost to drivers merely wearing Glass was also observed. Messaging using either device impaired driving as compared to driving without multitasking. Glass in not a panacea as some supporters claim, but it does point the way to design interventions that effect reduced load in multitasking. Discussions of these identified benefits are framed within the potential of new in-vehicle systems that bring both novel forms of distraction and tools for mitigation into the driver's seat.

  10. Consumer Sleep Technologies: A Review of the Landscape.

    PubMed

    Ko, Ping-Ru T; Kientz, Julie A; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A; Watson, Nathaniel F

    2015-12-15

    To review sleep related consumer technologies, including mobile electronic device "apps," wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included "sleep technology," "sleep app," and "sleep monitoring." Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. © 2015 American Academy of Sleep Medicine.

  11. Wearables in Medicine.

    PubMed

    Yetisen, Ali K; Martinez-Hurtado, Juan Leonardo; Ünal, Barış; Khademhosseini, Ali; Butt, Haider

    2018-06-11

    Wearables as medical technologies are becoming an integral part of personal analytics, measuring physical status, recording physiological parameters, or informing schedule for medication. These continuously evolving technology platforms do not only promise to help people pursue a healthier life style, but also provide continuous medical data for actively tracking metabolic status, diagnosis, and treatment. Advances in the miniaturization of flexible electronics, electrochemical biosensors, microfluidics, and artificial intelligence algorithms have led to wearable devices that can generate real-time medical data within the Internet of things. These flexible devices can be configured to make conformal contact with epidermal, ocular, intracochlear, and dental interfaces to collect biochemical or electrophysiological signals. This article discusses consumer trends in wearable electronics, commercial and emerging devices, and fabrication methods. It also reviews real-time monitoring of vital signs using biosensors, stimuli-responsive materials for drug delivery, and closed-loop theranostic systems. It covers future challenges in augmented, virtual, and mixed reality, communication modes, energy management, displays, conformity, and data safety. The development of patient-oriented wearable technologies and their incorporation in randomized clinical trials will facilitate the design of safe and effective approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Wireless inertial measurement unit with GPS (WIMU-GPS)--wearable monitoring platform for ecological assessment of lifespace and mobility in aging and disease.

    PubMed

    Boissy, Patrick; Brière, Simon; Hamel, Mathieu; Jog, Mandar; Speechley, Mark; Karelis, Antony; Frank, James; Vincent, Claude; Edwards, Rodrick; Duval, Christian

    2011-01-01

    This paper proposes an innovative ambulatory mobility and activity monitoring approach based on a wearable datalogging platform that combines inertial sensing with GPS tracking to assess the lifespace and mobility profile of individuals in their home and community environments. The components, I/O architecture, sensors and functions of the WIMU-GPS are presented. Outcome variables that can be measured with it are described and illustrated. Data on the power usage, operating autonomy of the WIMU-GPS and the GPS tracking performances and time to first fix of the unit are presented. The study of lifespace and mobility with the WIMU-GPS can potentially provide unique insights into intrapersonal and environmental factors contributing to mobility restriction. On-going studies are underway to establish the validity and reliability of the WIMU-GPS in characterizing the lifespace and mobility profile of older adults.

  13. A wearable navigation display can improve attentiveness to the surgical field.

    PubMed

    Stewart, James; Billinghurst, Mark

    2016-06-01

    Surgical navigation is typically shown on a computer display that is distant from the patient, making it difficult for the surgeon to watch the patient while performing a guided task. We investigate whether a light-weight, untracked, wearable display (such as Google Glass, which has the same size and weight as corrective glasses) can improve attentiveness to the surgical field in a simulated surgical task. Three displays were tested: a computer monitor; a peripheral display above the eye; and a through-the-lens display in front of the eye. Twelve subjects performed a task to position and orient a tracked tool on a plastic femur. Both wearable displays were tested on the dominant and non-dominant eyes of each subject. Attentiveness during the task was measured by the time taken to respond to randomly illuminated LEDs on the femur. Attentiveness was improved with the wearable displays at the cost of a decrease in accuracy. The through-the-lens display performed better than the peripheral display. The peripheral display performed better when on the dominant eye, while the through-the-lens display performed better when on the non-dominant eye. Attentiveness to the surgical field can be improved with the use of a light-weight, untracked, wearable display. A through-the-lens display performs better than a peripheral display, and both perform better than a computer monitor. Eye dominance should be considered when positioning the display.

  14. WearETE: A Scalable Wearable E-Textile Triboelectric Energy Harvesting System for Human Motion Scavenging

    PubMed Central

    Li, Xian

    2017-01-01

    In this paper, we report the design, experimental validation and application of a scalable, wearable e-textile triboelectric energy harvesting (WearETE) system for scavenging energy from activities of daily living. The WearETE system features ultra-low-cost material and manufacturing methods, high accessibility, and high feasibility for powering wearable sensors and electronics. The foam and e-textile are used as the two active tribomaterials for energy harvester design with the consideration of flexibility and wearability. A calibration platform is also developed to quantify the input mechanical power and power efficiency. The performance of the WearETE system for human motion scavenging is validated and calibrated through experiments. The results show that the wearable triboelectric energy harvester can generate over 70 V output voltage which is capable of powering over 52 LEDs simultaneously with a 9 × 9 cm2 area. A larger version is able to lighten 190 LEDs during contact-separation process. The WearETE system can generate a maximum power of 4.8113 mW from hand clapping movements under the frequency of 4 Hz. The average power efficiency can be up to 24.94%. The output power harvested by the WearETE system during slow walking is 7.5248 µW. The results show the possibility of powering wearable electronics during human motion. PMID:29149035

  15. Patient Perceptions of Wearable Face-Mounted Computing Technology and the Effect on the Doctor-Patient Relationship

    PubMed Central

    Press, Valerie G.; Meltzer, David O.; Arora, Vineet M.

    2016-01-01

    Summary Summary Background Wearable face-mounted computers such as Google Glass™, Microsoft HoloLens™, and Oculus’ Rift®, are increasingly being tested in hospital care. These devices challenge social etiquette, raise privacy issues, and may disrupt the intimacy of the doctor patient relationship. We aimed to determine patients’ perception of and their privacy concerns with an archetype of wearable face-mounted computer devices, Google Glass. Methods Hospitalized inpatients were asked about their familiarity with Glass, how comfortable they would be and if they would be concerned about privacy if their physician wore Glass, if the use of Glass would affect their trust in their physician, and if they would want their physician to wear Glass if it improved their care. Results Most (73%) respondents were unfamiliar with Glass, though 64% would be comfortable if their doctor wore Glass. Under half (46%) of respondents were concerned about privacy with the use of Glass. Seventy-six percent (76%) of respondents stated their doctor wearing Glass would not affect their trust in their doctor. Patients concerned about their privacy were less likely to trust their doctor if their doctor wore Glass (17% vs. 0%, p<0.01). Sixty-five percent (65%) of respondents would want their doctor to wear Glass if it improved their care. Conclusion Most patients appear open to and would want their doctor to use face-mounted wearable computers such as Glass, even when unfamiliar with this technology. While some patients expressed concerns about privacy, patients were much less concerned about wearable technologies affecting the trust they have in their physician. PMID:27730249

  16. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches.

    PubMed

    Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael

    2015-09-08

    As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.

  17. Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches

    PubMed Central

    Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael

    2015-01-01

    As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras. PMID:26370997

  18. Concussion Assessment With Smartglasses: Validation Study of Balance Measurement Toward a Lightweight, Multimodal, Field-Ready Platform

    PubMed Central

    Salisbury, Joseph P; Keshav, Neha U; Sossong, Anthony D

    2018-01-01

    Background Lightweight and portable devices that objectively measure concussion-related impairments could improve injury detection and critical decision-making in contact sports and the military, where brain injuries commonly occur but remain underreported. Current standard assessments often rely heavily on subjective methods such as symptom self-reporting. Head-mounted wearables, such as smartglasses, provide an emerging platform for consideration that could deliver the range of assessments necessary to develop a rapid and objective screen for brain injury. Standing balance assessment, one parameter that may inform a concussion diagnosis, could theoretically be performed quantitatively using current off-the-shelf smartglasses with an internal accelerometer. However, the validity of balance measurement using smartglasses has not been investigated. Objective This study aimed to perform preliminary validation of a smartglasses-based balance accelerometer measure (BAM) compared with the well-described and characterized waist-based BAM. Methods Forty-two healthy individuals (26 male, 16 female; mean age 23.8 [SD 5.2] years) participated in the study. Following the BAM protocol, each subject performed 2 trials of 6 balance stances while accelerometer and gyroscope data were recorded from smartglasses (Glass Explorer Edition). Test-retest reliability and correlation were determined relative to waist-based BAM as used in the National Institutes of Health’s Standing Balance Toolbox. Results Balance measurements obtained using a head-mounted wearable were highly correlated with those obtained through a waist-mounted accelerometer (Spearman rho, ρ=.85). Test-retest reliability was high (intraclass correlation coefficient, ICC2,1=0.85, 95% CI 0.81-0.88) and in good agreement with waist balance measurements (ICC2,1=0.84, 95% CI 0.80-0.88). Considering the normalized path length magnitude across all 3 axes improved interdevice correlation (ρ=.90) while maintaining test-retest reliability (ICC2,1=0.87, 95% CI 0.83-0.90). All subjects successfully completed the study, demonstrating the feasibility of using a head-mounted wearable to assess balance in a healthy population. Conclusions Balance measurements derived from the smartglasses-based accelerometer were consistent with those obtained using a waist-mounted accelerometer. Additional research is necessary to determine to what extent smartglasses-based accelerometry measures can detect balance dysfunction associated with concussion. However, given the potential for smartglasses to perform additional concussion-related assessments in an integrated, wearable platform, continued development and validation of a smartglasses-based balance assessment is warranted. This approach could lead to a wearable platform for real-time assessment of concussion-related impairments that could be further augmented with telemedicine capabilities to integrate professional clinical guidance. Smartglasses may be superior to fully immersive virtual reality headsets for this application, given their lighter weight and reduced likelihood of potential safety concerns. PMID:29362210

  19. Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices.

    PubMed

    Ponce, Brent A; Menendez, Mariano E; Oladeji, Lasun O; Fryberger, Charles T; Dantuluri, Phani K

    2014-11-01

    The authors describe the first surgical case adopting the combination of real-time augmented reality and wearable computing devices such as Google Glass (Google Inc, Mountain View, California). A 66-year-old man presented to their institution for a total shoulder replacement after 5 years of progressive right shoulder pain and decreased range of motion. Throughout the surgical procedure, Google Glass was integrated with the Virtual Interactive Presence and Augmented Reality system (University of Alabama at Birmingham, Birmingham, Alabama), enabling the local surgeon to interact with the remote surgeon within the local surgical field. Surgery was well tolerated by the patient and early surgical results were encouraging, with an improvement of shoulder pain and greater range of motion. The combination of real-time augmented reality and wearable computing devices such as Google Glass holds much promise in the field of surgery. Copyright 2014, SLACK Incorporated.

  20. Wearable EEG via lossless compression.

    PubMed

    Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2016-08-01

    This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.

  1. Development and evaluation of an ambulatory stress monitor based on wearable sensors.

    PubMed

    Choi, Jongyoon; Ahmed, Beena; Gutierrez-Osuna, Ricardo

    2012-03-01

    Chronic stress is endemic to modern society. However, as it is unfeasible for physicians to continuously monitor stress levels, its diagnosis is nontrivial. Wireless body sensor networks offer opportunities to ubiquitously detect and monitor mental stress levels, enabling improved diagnosis, and early treatment. This article describes the development of a wearable sensor platform to monitor a number of physiological correlates of mental stress. We discuss tradeoffs in both system design and sensor selection to balance information content and wearability. Using experimental signals collected from the wearable sensor, we describe a selected number of physiological features that show good correlation with mental stress. In particular, we propose a new spectral feature that estimates the balance of the autonomic nervous system by combining information from the power spectral density of respiration and heart rate variability. We validate the effectiveness of our approach on a binary discrimination problem when subjects are placed under two psychophysiological conditions: mental stress and relaxation. When used in a logistic regression model, our feature set is able to discriminate between these two mental states with a success rate of 81% across subjects. © 2012 IEEE

  2. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin

    2016-11-22

    Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

  3. Wearable computer technology for dismounted applications

    NASA Astrophysics Data System (ADS)

    Daniels, Reginald

    2010-04-01

    Small computing devices which rival the compact size of traditional personal digital assistants (PDA) have recently established a market niche. These computing devices are small enough to be considered unobtrusive for humans to wear. The computing devices are also powerful enough to run full multi-tasking general purpose operating systems. This paper will explore the wearable computer information system for dismounted applications recently fielded for ground-based US Air Force use. The environments that the information systems are used in will be reviewed, as well as a description of the net-centric, ground-based warrior. The paper will conclude with a discussion regarding the importance of intuitive, usable, and unobtrusive operator interfaces for dismounted operators.

  4. Evaluation of a Smartphone Platform as a Wireless Interface Between Tongue Drive System and Electric-Powered Wheelchairs

    PubMed Central

    Kim, Jeonghee; Huo, Xueliang; Minocha, Julia; Holbrook, Jaimee; Laumann, Anne; Ghovanloo, Maysam

    2013-01-01

    Tongue drive system (TDS) is a new wireless assistive technology (AT) for the mobility impaired population. It provides users with the ability to drive powered wheelchairs (PWC) and access computers using their unconstrained tongue motion. Migration of the TDS processing unit and user interface platform from a bulky personal computer to a smartphone (iPhone) has significantly facilitated its usage by turning it into a true wireless and wearable AT. After implementation of the necessary interfacing hardware and software to allow the smartphone to act as a bridge between the TDS and PWC, the wheelchair navigation performance and associated learning was evaluated in nine able-bodied subjects in five sessions over a 5-week period. Subjects wore magnetic tongue studs over the duration of the study and drove the PWC in an obstacle course with their tongue using three different navigation strategies; namely unlatched, latched, and semiproportional. Qualitative aspects of using the TDS–iPhone–PWC interface were also evaluated via a five-point Likert scale questionnaire. Subjects showed more than 20% improvement in the overall completion time between the first and second sessions, and maintained a modest improvement of ~9% per session over the following three sessions. PMID:22531737

  5. Designing a wearable navigation system for image-guided cancer resection surgery

    PubMed Central

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2015-01-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159

  6. Designing a wearable navigation system for image-guided cancer resection surgery.

    PubMed

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  7. Assessing the physical loading of wearable computers.

    PubMed

    Knight, James F; Baber, Chris

    2007-03-01

    Wearable computers enable workers to interact with computer equipment in situations where previously they were unable. Attaching a computer to the body though has an unknown physical effect. This paper reports a methodology for addressing this, by assessing postural effects and the effect of added weight. Using the example of arm-mounted computers (AMCs), the paper shows that adopting a posture to interact with an AMC generates fatiguing levels of stress and a load of 0.54 kg results in increased level of stress and increased rate of fatigue. The paper shows that, due to poor postures adopted when wearing and interacting with computers and the weight of the device attached to the body, one possible outcome for prolonged exposure is the development of musculoskeletal disorders.

  8. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  9. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    PubMed Central

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-01-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine. PMID:26928456

  10. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Rossi, Camilla Baj; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  11. Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators.

    PubMed

    Zhang, Yu Shrike; Busignani, Fabio; Ribas, João; Aleman, Julio; Rodrigues, Talles Nascimento; Shaegh, Seyed Ali Mousavi; Massa, Solange; Baj Rossi, Camilla; Taurino, Irene; Shin, Su-Ryon; Calzone, Giovanni; Amaratunga, Givan Mark; Chambers, Douglas Leon; Jabari, Saman; Niu, Yuxi; Manoharan, Vijayan; Dokmeci, Mehmet Remzi; Carrara, Sandro; Demarchi, Danilo; Khademhosseini, Ali

    2016-03-01

    Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.

  12. Nano-enabled sensors, electronics and energy source on polymer, paper and thread substrates

    NASA Astrophysics Data System (ADS)

    Mostafalu, Pooria

    Over the past decades, design and development of portable devices for monitoring of biomarkers especially for at risk patients is receiving considerable attention. These devices are either single use diagnostic platforms, wearable on body or on fabric, or they are implanted close to the tissue and organ that it monitors and cures. Sensors, energy sources, and data acquisition devices are the main components of a such monitoring platform. Sensors collect the information using bio-recognition tools such as enzymes and antibodies. Then, the transducers (electrodes, fluorophore, etc) convert it to the appropriate format, for instance electrical and optical signals. After that, data acquisition system amplifies and digitizes the signal and transfers the data to the recording instruments for further processing. Moreover, energy sources are necessary for powering the sensors and electronics. In wearable and implantable applications, these devices need to be flexible, light weight and biocompatible, and their performance should be similar to their rigid counterparts. In this dissertation we address these requirement for wearable and implantable devices. We showed integrated sensors, electronics, and energy sources on flexible polymers, paper, and thread. These devices provide many advantages for monitoring of the physiological condition of a patient and treatment accordingly. Real-time capability of the platform was enabled using wireless telemetry. One of the major innovations of this dissertation is the use of thread as a substrate for making medical diagnostic devices. While conventional substrates (glass, silicon, polyimide, PDMS etc) hold great promise for making wearable and implantable devices, their overall structure and form has remained essentially two dimensional, limiting their function to tissue surfaces such as skin. However, the ability to integrate functional components such as sensors, actuators, and electronics in a way that they penetrate multiple layers of tissues in a 3D topology would be a significant surgical advance. We have devised an integrated thread-based diagnostic (TDD) system with the ability to measure physical (strain and temperature) and chemical (pH and glucose) markers in the body in vivo. Such device was made from threads, which have been widely used in the apparel industry and is readily available as a low-cost biocompatible material.

  13. A Wearable Home BCI system: preliminary results with SSVEP protocol.

    PubMed

    Piccini, Luca; Parini, Sergio; Maggi, Luca; Andreoni, Giuseppe

    2005-01-01

    This paper presents and discusses the realization and the performances of a wearable system for EEG-based BCI applications. The system (called Kimera) consists of a two-layer hardware architecture (the wireless acquisition and transmission board based on a Bluetooth ® ARM chip, and a low power miniaturized biosignal acquisition analog front end) together with a software suite (called Bellerophonte) for the Graphic User Interface management, protocol execution, data recording, transmission and processing. The implemented BCI system was based on the SSVEP protocol, applied to a two state selection by using standards display/monitor with a couple of high efficiency LEDs. The frequency features of the signal were computed and used in the intention detection. The BCI algorithm is based on a supervised classifier implemented through a multi-class Canonical Discriminant Analysis (CDA) with a continuous realtime feedback based on the mahalanobis distance parameter. Five healthy subjects participated in the first phase for a preliminary device validation. The obtained results are very interesting and promising, being lined out to the most recent performance reported in literature with a significant improvement both in system and in classification capabilities. The user-friendliness and low cost of the Kimera& Bellerophonte platform make it suitable for the development of home BCI applications.

  14. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.

  15. Use of a prototype pulse oximeter for time series analysis of heart rate variability

    NASA Astrophysics Data System (ADS)

    González, Erika; López, Jehú; Hautefeuille, Mathieu; Velázquez, Víctor; Del Moral, Jésica

    2015-05-01

    This work presents the development of a low cost pulse oximeter prototype consisting of pulsed red and infrared commercial LEDs and a broad spectral photodetector used to register time series of heart rate and oxygen saturation of blood. This platform, besides providing these values, like any other pulse oximeter, processes the signals to compute a power spectrum analysis of the patient heart rate variability in real time and, additionally, the device allows access to all raw and analyzed data if databases construction is required or another kind of further analysis is desired. Since the prototype is capable of acquiring data for long periods of time, it is suitable for collecting data in real life activities, enabling the development of future wearable applications.

  16. The Feasibility of Wearables in an Enterprise Environment and Their Impact on IT Security

    NASA Technical Reports Server (NTRS)

    Scotti, Vincent, Jr.

    2015-01-01

    This paper is intended to explore the usability and feasibility of wearables in an enterprise environment and their impact on IT Security. In this day and age, with the advent of the Internet of Things, we must explore all the new technology emerging from the minds of the new inventors. This means exploring the use of wearables in regards to their benefits, limitations, and the new challenges they pose to securing computer networks in the Federal environment. We will explore the design of the wearables, the interfaces needed to connect them, and what it will take to connect personal devices in the Federal enterprise network environment. We will provide an overview of the wearable design, concerns of ensuring the confidentiality, integrity, and availability of information and the challenges faced by those doing so. We will also review the implications and limitations of the policies governing wearable technology and the physical efforts to enforce them.

  17. Plug-and-play web-based visualization of mobile air monitoring data

    EPA Science Inventory

    The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data r...

  18. Wireless chest wearable vital sign monitoring platform for hypertension.

    PubMed

    Janjua, G; Guldenring, D; Finlay, D; McLaughlin, J

    2017-07-01

    Hypertension, a silent killer, is the biggest challenge of the 21 st century in public health agencies worldwide [1]. World Health Organization (WHO) statistic shows that the mortality rate of hypertension is 9.4 million per year and causes 55.3% of total deaths in cardiovascular (CV) patients [2]. Early detection and prevention of hypertension can significantly reduce the CV mortality. We are presenting a wireless chest wearable vital sign monitoring platform. It measures Electrocardiogram (ECG), Photoplethsmogram (PPG) and Ballistocardiogram (BCG) signals and sends data over Bluetooth low energy (BLE) to mobile phone-acts as a gateway. A custom android application relays the data to thingspeak server where MATLAB based offline analysis estimates the blood pressure. A server reacts on the health of subject to friends & family on the social media - twitter. The chest provides a natural position for the sensor to capture legitimate signals for hypertension condition. We have done a clinical technical evaluation of prototypes on 11 normotensive subjects, 9 males 2 females.

  19. Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers.

    PubMed

    Liu, Xiyuan; Lillehoj, Peter B

    2017-12-15

    Electrochemical sensors are an attractive platform for analytical measurements due to their high sensitivity, portability and fast response time. These attributes also make electrochemical sensors well suited for wearable applications which require excellent flexibility and durability. Towards this end, we have developed a robust electrochemical sensor on gauze via a unique embroidery fabrication process for quantitative measurements of wound biomarkers. For proof of principle, this biosensor was used to detect uric acid, a biomarker for wound severity and healing, in simulated wound fluid which exhibits high specificity, good linearly from 0 to 800µM, and excellent reproducibility. Continuous sensing of uric acid was also performed using this biosensor which reveals that it can generate consistent and accurate measurements for up to 7h. Experiments to evaluate the robustness of the embroidered gauze sensor demonstrate that it offers excellent resilience against mechanical stress and deformation, making it a promising wearable platform for assessing and monitoring wound status in situ. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.

    PubMed

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R L C; Mercier, Patrick P; Wang, Joseph

    2015-12-15

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics

    PubMed Central

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R.; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R.L.C.; Mercier, Patrick P.; Wang, Joseph

    2016-01-01

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications. PMID:26276541

  2. Computational Sensing of Staphylococcus aureus on Contact Lenses Using 3D Imaging of Curved Surfaces and Machine Learning.

    PubMed

    Veli, Muhammed; Ozcan, Aydogan

    2018-03-27

    We present a cost-effective and portable platform based on contact lenses for noninvasively detecting Staphylococcus aureus, which is part of the human ocular microbiome and resides on the cornea and conjunctiva. Using S. aureus-specific antibodies and a surface chemistry protocol that is compatible with human tears, contact lenses are designed to specifically capture S. aureus. After the bacteria capture on the lens and right before its imaging, the captured bacteria are tagged with surface-functionalized polystyrene microparticles. These microbeads provide sufficient signal-to-noise ratio for the quantification of the captured bacteria on the contact lens, without any fluorescent labels, by 3D imaging of the curved surface of each lens using only one hologram taken with a lens-free on-chip microscope. After the 3D surface of the contact lens is computationally reconstructed using rotational field transformations and holographic digital focusing, a machine learning algorithm is employed to automatically count the number of beads on the lens surface, revealing the count of the captured bacteria. To demonstrate its proof-of-concept, we created a field-portable and cost-effective holographic microscope, which weighs 77 g, controlled by a laptop. Using daily contact lenses that are spiked with bacteria, we demonstrated that this computational sensing platform provides a detection limit of ∼16 bacteria/μL. This contact-lens-based wearable sensor can be broadly applicable to detect various bacteria, viruses, and analytes in tears using a cost-effective and portable computational imager that might be used even at home by consumers.

  3. Concussion Assessment With Smartglasses: Validation Study of Balance Measurement Toward a Lightweight, Multimodal, Field-Ready Platform.

    PubMed

    Salisbury, Joseph P; Keshav, Neha U; Sossong, Anthony D; Sahin, Ned T

    2018-01-23

    Lightweight and portable devices that objectively measure concussion-related impairments could improve injury detection and critical decision-making in contact sports and the military, where brain injuries commonly occur but remain underreported. Current standard assessments often rely heavily on subjective methods such as symptom self-reporting. Head-mounted wearables, such as smartglasses, provide an emerging platform for consideration that could deliver the range of assessments necessary to develop a rapid and objective screen for brain injury. Standing balance assessment, one parameter that may inform a concussion diagnosis, could theoretically be performed quantitatively using current off-the-shelf smartglasses with an internal accelerometer. However, the validity of balance measurement using smartglasses has not been investigated. This study aimed to perform preliminary validation of a smartglasses-based balance accelerometer measure (BAM) compared with the well-described and characterized waist-based BAM. Forty-two healthy individuals (26 male, 16 female; mean age 23.8 [SD 5.2] years) participated in the study. Following the BAM protocol, each subject performed 2 trials of 6 balance stances while accelerometer and gyroscope data were recorded from smartglasses (Glass Explorer Edition). Test-retest reliability and correlation were determined relative to waist-based BAM as used in the National Institutes of Health's Standing Balance Toolbox. Balance measurements obtained using a head-mounted wearable were highly correlated with those obtained through a waist-mounted accelerometer (Spearman rho, ρ=.85). Test-retest reliability was high (intraclass correlation coefficient, ICC 2,1 =0.85, 95% CI 0.81-0.88) and in good agreement with waist balance measurements (ICC 2,1 =0.84, 95% CI 0.80-0.88). Considering the normalized path length magnitude across all 3 axes improved interdevice correlation (ρ=.90) while maintaining test-retest reliability (ICC 2,1 =0.87, 95% CI 0.83-0.90). All subjects successfully completed the study, demonstrating the feasibility of using a head-mounted wearable to assess balance in a healthy population. Balance measurements derived from the smartglasses-based accelerometer were consistent with those obtained using a waist-mounted accelerometer. Additional research is necessary to determine to what extent smartglasses-based accelerometry measures can detect balance dysfunction associated with concussion. However, given the potential for smartglasses to perform additional concussion-related assessments in an integrated, wearable platform, continued development and validation of a smartglasses-based balance assessment is warranted. This approach could lead to a wearable platform for real-time assessment of concussion-related impairments that could be further augmented with telemedicine capabilities to integrate professional clinical guidance. Smartglasses may be superior to fully immersive virtual reality headsets for this application, given their lighter weight and reduced likelihood of potential safety concerns. ©Joseph P Salisbury, Neha U Keshav, Anthony D Sossong, Ned T Sahin. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.01.2018.

  4. How wearable technologies will impact the future of health care.

    PubMed

    Barnard, Rick; Shea, J Timothy

    2004-01-01

    After four hundred years of delivering health care in hospitals, industrialized countries are now shifting towards treating patients at the "point of need". This trend will likely accelerate demand for, and adoption of, wearable computing and smart fabric and interactive textile (SFIT) solutions. These healthcare solutions will be designed to provide real-time vital and diagnostic information to health care providers, patients, and related stakeholders in such a manner as to improve quality of care, reduce the cost of care, and allow patients greater control over their own health. The current market size for wearable computing and SFIT solutions is modest; however, the future outlook is extremely strong. Venture Development Corporation, a technology market research and strategy firm, was founded in 1971. Over the years, VDC has developed and implemented a unique and highly successful methodology for forecasting and analyzing highly dynamic technology markets. VDC has extensive experience in providing multi-client and proprietary analysis in the electronic components, advanced materials, and mobile computing markets.

  5. Personal customizing exercise with a wearable measurement and control unit.

    PubMed

    Wang, Zhihui; Kiryu, Tohru; Tamura, Naoki

    2005-06-28

    Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment.

  6. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  7. Design and Implementation of Foot-Mounted Inertial Sensor Based Wearable Electronic Device for Game Play Application.

    PubMed

    Zhou, Qifan; Zhang, Hai; Lari, Zahra; Liu, Zhenbo; El-Sheimy, Naser

    2016-10-21

    Wearable electronic devices have experienced increasing development with the advances in the semiconductor industry and have received more attention during the last decades. This paper presents the development and implementation of a novel inertial sensor-based foot-mounted wearable electronic device for a brand new application: game playing. The main objective of the introduced system is to monitor and identify the human foot stepping direction in real time, and coordinate these motions to control the player operation in games. This proposed system extends the utilized field of currently available wearable devices and introduces a convenient and portable medium to perform exercise in a more compelling way in the near future. This paper provides an overview of the previously-developed system platforms, introduces the main idea behind this novel application, and describes the implemented human foot moving direction identification algorithm. Practical experiment results demonstrate that the proposed system is capable of recognizing five foot motions, jump, step left, step right, step forward, and step backward, and has achieved an over 97% accuracy performance for different users. The functionality of the system for real-time application has also been verified through the practical experiments.

  8. Design and Implementation of Foot-Mounted Inertial Sensor Based Wearable Electronic Device for Game Play Application

    PubMed Central

    Zhou, Qifan; Zhang, Hai; Lari, Zahra; Liu, Zhenbo; El-Sheimy, Naser

    2016-01-01

    Wearable electronic devices have experienced increasing development with the advances in the semiconductor industry and have received more attention during the last decades. This paper presents the development and implementation of a novel inertial sensor-based foot-mounted wearable electronic device for a brand new application: game playing. The main objective of the introduced system is to monitor and identify the human foot stepping direction in real time, and coordinate these motions to control the player operation in games. This proposed system extends the utilized field of currently available wearable devices and introduces a convenient and portable medium to perform exercise in a more compelling way in the near future. This paper provides an overview of the previously-developed system platforms, introduces the main idea behind this novel application, and describes the implemented human foot moving direction identification algorithm. Practical experiment results demonstrate that the proposed system is capable of recognizing five foot motions, jump, step left, step right, step forward, and step backward, and has achieved an over 97% accuracy performance for different users. The functionality of the system for real-time application has also been verified through the practical experiments. PMID:27775673

  9. An Exploratory Study on a Chest-Worn Computer for Evaluation of Diet, Physical Activity and Lifestyle

    PubMed Central

    Sun, Mingui; Burke, Lora E.; Baranowski, Thomas; Fernstrom, John D.; Zhang, Hong; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Yue, Yaofeng; Li, Zhen; Nie, Jie; Sclabassi, Robert J.; Mao, Zhi-Hong; Jia, Wenyan

    2015-01-01

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smartphones and tablets. As “always-on” miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer designed as a personalized, attractive, and convenient chest pin in a circular shape. It contains a powerful microprocessor, numerous electronic sensors, and wireless communication links. We describe its design concepts, electronic hardware, data processing algorithms, and its applications to the evaluation of diet, physical activity and lifestyle in the study of obesity and other chronic diseases. PMID:25708374

  10. An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle.

    PubMed

    Sun, Mingui; Burke, Lora E; Baranowski, Thomas; Fernstrom, John D; Zhang, Hong; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Yue, Yaofeng; Li, Zhen; Nie, Jie; Sclabassi, Robert J; Mao, Zhi-Hong; Jia, Wenyan

    2015-01-01

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smart-phones and tablets. As "always-on" miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we present our development of eButton, a wearable computer designed as a personalized, attractive, and convenient chest pin in a circular shape. It contains a powerful microprocessor, numerous electronic sensors, and wireless communication links. We describe its design concepts, electronic hardware, data processing algorithms, and its applications to the evaluation of diet, physical activity and lifestyle in the study of obesity and other chronic diseases.

  11. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

    PubMed

    Shull, Peter B; Damian, Dana D

    2015-07-20

    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

  12. Open source platform for collaborative construction of wearable sensor datasets for human motion analysis and an application for gait analysis.

    PubMed

    Llamas, César; González, Manuel A; Hernández, Carmen; Vegas, Jesús

    2016-10-01

    Nearly every practical improvement in modeling human motion is well founded in a properly designed collection of data or datasets. These datasets must be made publicly available for the community could validate and accept them. It is reasonable to concede that a collective, guided enterprise could serve to devise solid and substantial datasets, as a result of a collaborative effort, in the same sense as the open software community does. In this way datasets could be complemented, extended and expanded in size with, for example, more individuals, samples and human actions. For this to be possible some commitments must be made by the collaborators, being one of them sharing the same data acquisition platform. In this paper, we offer an affordable open source hardware and software platform based on inertial wearable sensors in a way that several groups could cooperate in the construction of datasets through common software suitable for collaboration. Some experimental results about the throughput of the overall system are reported showing the feasibility of acquiring data from up to 6 sensors with a sampling frequency no less than 118Hz. Also, a proof-of-concept dataset is provided comprising sampled data from 12 subjects suitable for gait analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Clinical validation of the CHRONIOUS wearable system in patients with chronic disease.

    PubMed

    Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I

    2013-01-01

    The CHRONIOUS system defines a powerful and easy to use framework which has been designed to provide services to clinicians and their patients suffering from chronic diseases. The system is composed of a wearable shirt that integrate several body sensors, a portable smart device and a central sub-system that is responsible for the long term storage of the collected patient's data. A multi-parametric expert system is developed for the analysis of the collected data using intelligent algorithms and complex techniques. Apart for the vital signals, dietary habits, drug intake, activity data, environmental and biochemical parameters are recorded. The CHRONIOUS platform is validated through clinical trials in several medical centers and patient's home environments recruiting patients suffering from Chronic Obstructive pulmonary disease (COPD) and Chronic Kidney Disease (CKD) diseases. The clinical trials contribute in improving the system's accuracy, while Pulmonologists and Nephrologists experts utilized the CHRONIOUS platform to evaluate its efficiency and performance. The results of the utilization of the system were very encouraging. The CHRONIOUS system has been proven to be a well-validated real-time patient monitoring and supervision platform, providing a useful tool for the clinician and the patient that would contribute to the more effective management of chronic diseases.

  14. Wearable Textile Platform for Assessing Stroke Patient Treatment in Daily Life Conditions

    PubMed Central

    Lorussi, Federico; Carbonaro, Nicola; De Rossi, Danilo; Paradiso, Rita; Veltink, Peter; Tognetti, Alessandro

    2016-01-01

    Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351) evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes. The device was conceived in modular form and consists of a separate shirt, trousers, glove, and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects. PMID:27047939

  15. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    PubMed

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  16. Personal customizing exercise with a wearable measurement and control unit

    PubMed Central

    Wang, Zhihui; Kiryu, Tohru; Tamura, Naoki

    2005-01-01

    Background Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. Methods The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. Results We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. Conclusion The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment. PMID:15982425

  17. Mobile health: the power of wearables, sensors, and apps to transform clinical trials.

    PubMed

    Munos, Bernard; Baker, Pamela C; Bot, Brian M; Crouthamel, Michelle; de Vries, Glen; Ferguson, Ian; Hixson, John D; Malek, Linda A; Mastrototaro, John J; Misra, Veena; Ozcan, Aydogan; Sacks, Leonard; Wang, Pei

    2016-07-01

    Mobile technology has become a ubiquitous part of everyday life, and the practical utility of mobile devices for improving human health is only now being realized. Wireless medical sensors, or mobile biosensors, are one such technology that is allowing the accumulation of real-time biometric data that may hold valuable clues for treating even some of the most devastating human diseases. From wearable gadgets to sophisticated implantable medical devices, the information retrieved from mobile technology has the potential to revolutionize how clinical research is conducted and how disease therapies are delivered in the coming years. Encompassing the fields of science and engineering, analytics, health care, business, and government, this report explores the promise that wearable biosensors, along with integrated mobile apps, hold for improving the quality of patient care and clinical outcomes. The discussion focuses on groundbreaking device innovation, data optimization and validation, commercial platform integration, clinical implementation and regulation, and the broad societal implications of using mobile health technologies. © 2016 New York Academy of Sciences.

  18. Stretchable, porous, and conductive energy textiles.

    PubMed

    Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi

    2010-02-10

    Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.

  19. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.

    PubMed

    Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques

    2011-01-01

    This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.

  20. An Emerging Era in the Management of Parkinson's Disease: Wearable Technologies and the Internet of Things.

    PubMed

    Pasluosta, Cristian F; Gassner, Heiko; Winkler, Juergen; Klucken, Jochen; Eskofier, Bjoern M

    2015-11-01

    Current challenges demand a profound restructuration of the global healthcare system. A more efficient system is required to cope with the growing world population and increased life expectancy, which is associated with a marked prevalence of chronic neurological disorders such as Parkinson's disease (PD). One possible approach to meet this demand is a laterally distributed platform such as the Internet of Things (IoT). Real-time motion metrics in PD could be obtained virtually in any scenario by placing lightweight wearable sensors in the patient's clothes and connecting them to a medical database through mobile devices such as cell phones or tablets. Technologies exist to collect huge amounts of patient data not only during regular medical visits but also at home during activities of daily life. These data could be fed into intelligent algorithms to first discriminate relevant threatening conditions, adjust medications based on online obtained physical deficits, and facilitate strategies to modify disease progression. A major impact of this approach lies in its efficiency, by maximizing resources and drastically improving the patient experience. The patient participates actively in disease management via combined objective device- and self-assessment and by sharing information within both medical and peer groups. Here, we review and discuss the existing wearable technologies and the Internet-of-Things concept applied to PD, with an emphasis on how this technological platform may lead to a shift in paradigm in terms of diagnostics and treatment.

  1. Exploring Architectural Details Through a Wearable Egocentric Vision Device

    PubMed Central

    Alletto, Stefano; Abati, Davide; Serra, Giuseppe; Cucchiara, Rita

    2016-01-01

    Augmented user experiences in the cultural heritage domain are in increasing demand by the new digital native tourists of 21st century. In this paper, we propose a novel solution that aims at assisting the visitor during an outdoor tour of a cultural site using the unique first person perspective of wearable cameras. In particular, the approach exploits computer vision techniques to retrieve the details by proposing a robust descriptor based on the covariance of local features. Using a lightweight wearable board, the solution can localize the user with respect to the 3D point cloud of the historical landmark and provide him with information about the details at which he is currently looking. Experimental results validate the method both in terms of accuracy and computational effort. Furthermore, user evaluation based on real-world experiments shows that the proposal is deemed effective in enriching a cultural experience. PMID:26901197

  2. Exploring Architectural Details Through a Wearable Egocentric Vision Device.

    PubMed

    Alletto, Stefano; Abati, Davide; Serra, Giuseppe; Cucchiara, Rita

    2016-02-17

    Augmented user experiences in the cultural heritage domain are in increasing demand by the new digital native tourists of 21st century. In this paper, we propose a novel solution that aims at assisting the visitor during an outdoor tour of a cultural site using the unique first person perspective of wearable cameras. In particular, the approach exploits computer vision techniques to retrieve the details by proposing a robust descriptor based on the covariance of local features. Using a lightweight wearable board, the solution can localize the user with respect to the 3D point cloud of the historical landmark and provide him with information about the details at which he is currently looking. Experimental results validate the method both in terms of accuracy and computational effort. Furthermore, user evaluation based on real-world experiments shows that the proposal is deemed effective in enriching a cultural experience.

  3. Future Reality: How Emerging Technologies Will Change Language Itself.

    PubMed

    Perlin, Ken

    2016-01-01

    Just as notebook computers once freed us to take our computers with us, smartphones freed us to walk around with computers in our pockets, and wearables will soon free us from needing to hold a screen at all. Today, as high-quality virtual and augmented reality begins to become available at consumer prices, the "screen" will soon be all around us. But the largest long-term impact here may not merely be one of form factor, but rather one of language itself. Once wearables become small enough, cheap enough, and therefore ubiquitous enough to be accepted as part of our everyday reality, our use of language will evolve in important ways.

  4. Modeling a Wireless Network for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Yaprak, Ece; Lamouri, Saad

    2000-01-01

    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.

  5. Consumer Sleep Technologies: A Review of the Landscape

    PubMed Central

    Ko, Ping-Ru T.; Kientz, Julie A.; Choe, Eun Kyoung; Kay, Matthew; Landis, Carol A.; Watson, Nathaniel F.

    2015-01-01

    Objective: To review sleep related consumer technologies, including mobile electronic device “apps,” wearable devices, and other technologies. Validation and methodological transparency, the effect on clinical sleep medicine, and various social, legal, and ethical issues are discussed. Methods: We reviewed publications from the digital libraries of the Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and PubMed; publications from consumer technology websites; and mobile device app marketplaces. Search terms included “sleep technology,” “sleep app,” and “sleep monitoring.” Results: Consumer sleep technologies are categorized by delivery platform including mobile device apps (integrated with a mobile operating system and utilizing mobile device functions such as the camera or microphone), wearable devices (on the body or attached to clothing), embedded devices (integrated into furniture or other fixtures in the native sleep environment), accessory appliances, and conventional desktop/website resources. Their primary goals include facilitation of sleep induction or wakening, self-guided sleep assessment, entertainment, social connection, information sharing, and sleep education. Conclusions: Consumer sleep technologies are changing the landscape of sleep health and clinical sleep medicine. These technologies have the potential to both improve and impair collective and individual sleep health depending on method of implementation. Citation: Ko PR, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF. Consumer sleep technologies: a review of the landscape. J Clin Sleep Med 2015;11(12):1455–1461. PMID:26156958

  6. Synchronous wearable wireless body sensor network composed of autonomous textile nodes.

    PubMed

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-10-09

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.

  7. Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes

    PubMed Central

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-01-01

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808

  8. Wearable Electronics and Smart Textiles: A Critical Review

    PubMed Central

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-01-01

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy. PMID:25004153

  9. Wearable electronics and smart textiles: a critical review.

    PubMed

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-07-07

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

  10. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG.

    PubMed

    Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai

    2017-03-01

    The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver's brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety.

  11. Real-Time Geospatial Data Viewer (RETIGO): Web-Based Tool for Researchers and Citizen Scientists to Explore their Air Measurements

    EPA Science Inventory

    The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data re...

  12. ARTutor--An Augmented Reality Platform for Interactive Distance Learning

    ERIC Educational Resources Information Center

    Lytridis, Chris; Tsinakos, Avgoustos; Kazanidis, Ioannis

    2018-01-01

    Augmented Reality (AR) has been used in various contexts in recent years in order to enhance user experiences in mobile and wearable devices. Various studies have shown the utility of AR, especially in the field of education, where it has been observed that learning results are improved. However, such applications require specialized teams of…

  13. Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD.

    PubMed

    Fletcher, Richard Ribón; Tam, Sharon; Omojola, Olufemi; Redemske, Richard; Kwan, Joyce

    2011-01-01

    We present a wearable sensor platform designed for monitoring and studying autonomic nervous system (ANS) activity for the purpose of mental health treatment and interventions. The mobile sensor system consists of a sensor band worn on the ankle that continuously monitors electrodermal activity (EDA), 3-axis acceleration, and temperature. A custom-designed ECG heart monitor worn on the chest is also used as an optional part of the system. The EDA signal from the ankle bands provides a measure sympathetic nervous system activity and used to detect arousal events. The optional ECG data can be used to improve the sensor classification algorithm and provide a measure of emotional "valence." Both types of sensor bands contain a Bluetooth radio that enables communication with the patient's mobile phone. When a specific arousal event is detected, the phone automatically presents therapeutic and empathetic messages to the patient in the tradition of Cognitive Behavioral Therapy (CBT). As an example of clinical use, we describe how the system is currently being used in an ongoing study for patients with drug-addiction and post-traumatic stress disorder (PTSD).

  14. Research and development of smart wearable health applications: the challenge ahead.

    PubMed

    Lymberis, Andreas

    2004-01-01

    Continuous monitoring of physiological and physical parameters is necessary for the assessment and management of personal health status. It can significantly contribute to the reduction of healthcare cost by avoiding unnecessary hospitalisations and ensuring that those who need urgent care get it sooner. In conjunction with cost-effective telemedicine platforms, ubiquitous health monitoring can significantly contribute to the enhancement of disease prevention and early diagnosis, disease management, treatment and home rehabilitation. Latest developments in the area of micro and nanotechnologies, information processing and wireless communication offer, today, the possibility for minimally (or non) invasive biomedical measurement but also wearable sensing, processing and data communication. Although the systems are being developed to satisfy specific user needs, a number of common critical issues have to be tackled to achieve reliable and acceptable smart health wearable applications e.g. biomedical sensors, user interface, clinical validation, data security and confidentiality, scenarios of use, decision support, user acceptance and business models. Major technological achievements have been realised the last few years. Cutting edge development combining functional clothing and integrated electronics open a new research area and possibilities for body sensing and communicating health parameters. This paper reviews the current status of research and development on smart wearable health systems and applications and discusses the outstanding issues and future challenges.

  15. Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.

    PubMed

    Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph

    2018-04-01

    Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. [Design and Application of High-risk Pregnancy Monitoring & Warning Internet Platform Based on Internet of Things].

    PubMed

    Lu, Heqing; Zhang, Xiaofeng; Li, Bin

    2017-09-30

    Through illustrating the designing of high-risk pregnancy maternal-fetal monitoring system based on the internet of things, this paper introduced the specific application of using wearable medical devices to provide maternal-fetal mobile medical services. With the help of big data and cloud obstetrics platform, the monitoring and warning network was further improved, the level-to-level administration of high-risk pregnancy was realized, the level of perinatal health care was enhanced and the risk of critical emergency of pregnancy decreased.

  17. Wearable Therapy - Detecting Information from Wearables and Mobiles that are Relevant to Clinical and Self-directed Therapy.

    PubMed

    Arnrich, Bert; Ersoy, Cem; Mayora, Oscar; Dey, Anind; Berthouze, Nadia; Kunze, Kai

    2017-01-09

    This accompanying editorial provides a brief introduction into the focus theme "Wearable Therapy". The focus theme "Wearable Therapy" aims to present contributions which target wearable and mobile technologies to support clinical and self-directed therapy. A call for papers was announced to all participants of the "9th International Conference on Pervasive Computing Technologies for Healthcare" and was published in November 2015. A peer review process was conducted to select the papers for the focus theme. Six papers were selected to be included in this focus theme. The paper topics cover a broad range including an approach to build a health informatics research program, a comprehensive literature review of self-quantification for health self-management, methods for affective state detection of informal care givers, social-aware handling of falls, smart shoes for supporting self-directed therapy of alcohol addicts, and reference information model for pervasive health systems. More empirical evidence is needed that confirms sustainable effects of employing wearable and mobile technology for clinical and self-directed therapy. Inconsistencies between different conceptual approaches need to be revealed in order to enable more systematic investigations and comparisons.

  18. Ubiquitous Versus One-to-One

    ERIC Educational Resources Information Center

    McAnear, Anita

    2006-01-01

    When we planned the editorial calendar with the topic ubiquitous computing, we were thinking of ubiquitous computing as the one-to-one ratio of computers to students and teachers and 24/7 access to electronic resources. At the time, we were aware that ubiquitous computing in the computer science field had more to do with wearable computers. Our…

  19. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.

    PubMed

    Kim, Jeonghyun; Salvatore, Giovanni A; Araki, Hitoshi; Chiarelli, Antonio M; Xie, Zhaoqian; Banks, Anthony; Sheng, Xing; Liu, Yuhao; Lee, Jung Woo; Jang, Kyung-In; Heo, Seung Yun; Cho, Kyoungyeon; Luo, Hongying; Zimmerman, Benjamin; Kim, Joonhee; Yan, Lingqing; Feng, Xue; Xu, Sheng; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Paik, Ungyu; Rogers, John A

    2016-08-01

    Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have "skin-like" properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics.

  20. NASA Wearable Technology CLUSTER 2013-2014 Report

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Dunne, Lucy; Zeagler, Clint; Martin, Tom; Pailes-Friedman, Rebecca

    2014-01-01

    Wearable technology has the potential to revolutionize the way humans interact with one another, with information, and with the electronic systems that surround them. This change can already be seen in the dramatic increase in the availability and use of wearable health and activity monitors. These devices continuously monitor the wearer using on-­-body sensors and wireless communication. They provide feedback that can be used to improve physical health and performance. Smart watches and head mounted displays are also receiving a great deal of commercial attention, providing immediate access to information via graphical displays, as well as additional sensing features. For the purposes of the Wearable Technology CLUSTER, wearable technology is broadly defined as any electronic sensing, human interfaces, computing, or communication that is mounted on the body. Current commercially available wearable devices primarily house electronics in rigid packaging to provide protection from flexing, moisture, and other contaminants. NASA mentors are interested in this approach, but are also interested in direct integration of electronics into clothing to enable more comfortable systems. For human spaceflight, wearable technology holds a great deal of promise for significantly improving safety, efficiency, autonomy, and research capacity for the crew in space and support personnel on the ground. Specific capabilities of interest include: Continuous biomedical monitoring for research and detection of health problems. Environmental monitoring for individual exposure assessments and alarms. Activity monitoring for responsive robotics and environments. Multi-modal caution and warning using tactile, auditory, and visual alarms. Wireless, hands-free, on-demand voice communication. Mobile, on-demand access to space vehicle and robotic displays and controls. Many technical challenges must be overcome to realize these wearable technology applications. For example, to make a wearable device that is both functional and comfortable for long duration wear, developers must strive to reduce electronic mass and volume while also addressing constraints imposed by the body attachment method. Depending on the application, the device must be placed in a location that the user can see and reach, and that provides the appropriate access to air and the wearer's skin. Limited power is available from body-­-worn batteries and heat must be managed to prevent discomfort. If the clothing is to be washed, there are additional durability and washability hurdles that traditional electronics are not designed to address. Finally, each specific capability has unique technical challenges that will likely require unique solutions. In addition to the technical challenges, development of wearable devices is made more difficult by the diversity of skills required and the historic lack of collaboration across domains. Wearable technology development requires expertise in textiles engineering, apparel design, software and computer engineering, electronic design and manufacturing, human factors engineering, and application-­-specific fields such as acoustics, medical devices, and sensing. Knowledge from each of these domains must be integrated to create functional and comfortable devices. For this reason, the diversity of knowledge and experience represented in the Wearable Technology is critical to overcoming the fundamental challenges in the field.

  1. Wearable computer for mobile augmented-reality-based controlling of an intelligent robot

    NASA Astrophysics Data System (ADS)

    Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino

    2000-10-01

    An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.

  2. Reviving a medical wearable computer for teaching purposes.

    PubMed

    Frenger, Paul

    2014-01-01

    In 1978 the author constructed a medical wearable computer using an early CMOS microprocessor and support chips. This device was targeted for use by health-conscious consumers and other early adopters. Its expandable functions included weight management, blood pressure control, diabetes care, medication reminders, smoking cessation, pediatric growth and development, simple medical database, digital communication with a doctor’s office and emergency alert system. Various physiological sensors could be plugged-into the calculator-sized chassis. The device was shown to investor groups but funding was not obtained; by 1992 the author ceased pursuing it. The Computing and Mathematics Chair at a local University, a NASA acquaintance, approached the author to mentor a CS capstone course for Summer 2012. With the author’s guidance, five students proceeded to convert this medical wearable computer design to an iPhone-based implementation using the Apple Xcode Developer Kit and other utilities. The final student device contained a body mass index (BMI) calculator, an emergency alert for 911 or other first responders, a medication reminder, a Doctor’s appointment feature, a medical database, medical Internet links, and a pediatric growth & development guide. The students’ final imple-mentation was successfully demonstrated on an actual iPhone 4 at the CS capstone meeting in mid-Summer.

  3. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects

    PubMed Central

    Li, Hongsheng

    2018-01-01

    This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms. PMID:29736230

  4. Tissue viability monitoring: a multi-sensor wearable platform approach

    NASA Astrophysics Data System (ADS)

    Mathur, Neha; Davidson, Alan; Buis, Arjan; Glesk, Ivan

    2016-12-01

    Health services worldwide are seeking ways to improve patient care for amputees suffering from diabetes, and at the same time reduce costs. The monitoring of residual limb temperature, interface pressure and gait can be a useful indicator of tissue viability in lower limb amputees especially to predict the occurrence of pressure ulcers. This is further exacerbated by elevated temperatures and humid micro environment within the prosthesis which encourages the growth of bacteria and skin breakdown. Wearable systems for prosthetic users have to be designed such that the sensors are minimally obtrusive and reliable enough to faithfully record movement and physiological signals. A mobile sensor platform has been developed for use with the lower limb prosthetic users. This system uses an Arduino board that includes sensors for temperature, gait, orientation and pressure measurements. The platform transmits sensor data to a central health authority database server infrastructure through the Bluetooth protocol at a suitable sampling rate. The data-sets recorded using these systems are then processed using machine learning algorithms to extract clinically relevant information from the data. Where a sensor threshold is reached a warning signal can be sent wirelessly together with the relevant data to the patient and appropriate medical personnel. This knowledge is also useful in establishing biomarkers related to a possible deterioration in a patient's health or for assessing the impact of clinical interventions.

  5. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.

    PubMed

    Miao, Qing; Zhang, Mingming; Wang, Congzhe; Li, Hongsheng

    2018-01-01

    This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords "ankle ∗ ," and "robot ∗ ," and ("rehabilitat ∗ " or "treat ∗ "). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.

  6. Interventions for Preventing Childhood Obesity with Smartphones and Wearable Device: A Protocol for a Non-Randomized Controlled Trial

    PubMed Central

    Yang, Hye Jung; Kang, Jae-Heon; Kim, Ok Hyun; Choi, Mona; Oh, Myungju; Nam, Jihyun; Sung, Eunju

    2017-01-01

    Background: Childhood obesity is a critical health issue, both currently and for the foreseeable future. To prevent obesity, behavior changes are essential. Smartphones can be a good tool, as the number of child smartphone users is rapidly increasing. We have developed a mobile platform system named “HAPPY ME,” which is a smartphone application coupled with a wearable device, designed to improve healthy behaviors to prevent childhood obesity. This study aimed to evaluate the effectiveness of obesity prevention among children 10–12 years of age using HAPPY ME. Methods: A total of 1000 participants, all fifth and sixth graders from four schools, were assigned to either control or intervention groups by school. Students in the intervention group used HAPPY ME. The study comprises a safety test, a 12-week efficacy test, and a six-month follow-up test to determine the long-term effects of preventive intervention via the integrated service platform. The integrated service platform aims to facilitate child-parent-school participation, involving the child-parent mobile application, a child-teacher mobile web, and a school website. Primary outcome measures are behavioral changes, including healthy eating, increased physical activity, and fitness. Secondary outcome measures are changes in anthropometric parameters (body weight, height, body mass index z-score, and waist circumference), body mass index (BMI) percentiles (obesity rate), and psychological perceptions among participants. Conclusions: The results of this study will offer evidence of the effectiveness of a mobile platform service with a multi-component intervention program based on a comprehensive approach. PMID:28208839

  7. Interventions for Preventing Childhood Obesity with Smartphones and Wearable Device: A Protocol for a Non-Randomized Controlled Trial.

    PubMed

    Yang, Hye Jung; Kang, Jae-Heon; Kim, Ok Hyun; Choi, Mona; Oh, Myungju; Nam, Jihyun; Sung, Eunju

    2017-02-13

    Childhood obesity is a critical health issue, both currently and for the foreseeable future. To prevent obesity, behavior changes are essential. Smartphones can be a good tool, as the number of child smartphone users is rapidly increasing. We have developed a mobile platform system named "HAPPY ME," which is a smartphone application coupled with a wearable device, designed to improve healthy behaviors to prevent childhood obesity. This study aimed to evaluate the effectiveness of obesity prevention among children 10-12 years of age using HAPPY ME. A total of 1000 participants, all fifth and sixth graders from four schools, were assigned to either control or intervention groups by school. Students in the intervention group used HAPPY ME. The study comprises a safety test, a 12-week efficacy test, and a six-month follow-up test to determine the long-term effects of preventive intervention via the integrated service platform. The integrated service platform aims to facilitate child-parent-school participation, involving the child-parent mobile application, a child-teacher mobile web, and a school website. Primary outcome measures are behavioral changes, including healthy eating, increased physical activity, and fitness. Secondary outcome measures are changes in anthropometric parameters (body weight, height, body mass index z-score, and waist circumference), body mass index (BMI) percentiles (obesity rate), and psychological perceptions among participants. The results of this study will offer evidence of the effectiveness of a mobile platform service with a multi-component intervention program based on a comprehensive approach.

  8. A multiparameter wearable physiologic monitoring system for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.; hide

    2005-01-01

    A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.

  9. Wearable ear EEG for brain interfacing

    NASA Astrophysics Data System (ADS)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  10. Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG

    PubMed Central

    Zhang, Xiaoliang; Li, Jiali; Liu, Yugang; Zhang, Zutao; Wang, Zhuojun; Luo, Dianyuan; Zhou, Xiang; Zhu, Miankuan; Salman, Waleed; Hu, Guangdi; Wang, Chunbai

    2017-01-01

    The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is drowsiness. The proposed system consists of three main parts: (1) a wireless wearable EEG collection; (2) train driver vigilance detection; and (3) early warning device for train driver. In the first part, an 8-channel wireless wearable brain-computer interface (BCI) device acquires the locomotive driver’s brain EEG signal comfortably under high-speed train-driving conditions. The recorded data are transmitted to a personal computer (PC) via Bluetooth. In the second step, a support vector machine (SVM) classification algorithm is implemented to determine the vigilance level using the Fast Fourier transform (FFT) to extract the EEG power spectrum density (PSD). In addition, an early warning device begins to work if fatigue is detected. The simulation and test results demonstrate the feasibility of the proposed fatigue detection system for high-speed train safety. PMID:28257073

  11. The role of individual differences on perceptions of wearable fitness device trust, usability, and motivational impact.

    PubMed

    Rupp, Michael A; Michaelis, Jessica R; McConnell, Daniel S; Smither, Janan A

    2018-07-01

    Lack of physical activity is a severe health concern in the United States with fewer than half of all Americans meeting the recommended weekly physical activity guidelines. Although wearable fitness devices can be effective in motivating people to be active, consumers are abandoning this technology soon after purchase. We examined the impact of several user (i.e. personality, age, computer self-efficacy, physical activity level) and device characteristics (trust, usability, and motivational affordances) on the behavioral intentions to use a wearable fitness device. Novice users completed a brief interaction with a fitness device similar to a first purchase experience before completing questionnaires about their interaction. We found computer self-efficacy, physical activity level, as well as personality traits indirectly increased the desire to use a fitness device and influenced the saliency of perceived motivational affordances. Additionally, trust, usability, and perceived motivational affordances were associated with increased intentions to use fitness devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Head-mounted display systems and the special operations soldier

    NASA Astrophysics Data System (ADS)

    Loyd, Rodney B.

    1998-08-01

    In 1997, the Boeing Company, working with DARPA under the Smart Modules program and the US Army Soldier Systems Command, embarked on an advanced research and development program to develop a wearable computer system tailored for use with soldiers of the US Special Operations Command. The 'special operations combat management system' is a rugged advanced wearable tactical computer, designed to provide the special operations soldier with enhanced situation awareness and battlefield information capabilities. Many issues must be considered during the design of wearable computers for a combat soldier, including the system weight, placement on the body with respect to other equipment, user interfaces and display system characteristics. During the initial feasibility study for the system, the operational environment was examined and potential users were interviewed to establish the proper display solution for the system. Many display system requirements resulted, such as head or helmet mounting, Night Vision Goggle compatibility, minimal visible light emissions, environmental performance and even the need for handheld or other 'off the head' type display systems. This paper will address these issues and other end user requirements for display systems for applications in the harsh and demanding environment of the Special Operations soldier.

  13. Using computer, mobile and wearable technology enhanced interventions to reduce sedentary behaviour: a systematic review and meta-analysis.

    PubMed

    Stephenson, Aoife; McDonough, Suzanne M; Murphy, Marie H; Nugent, Chris D; Mair, Jacqueline L

    2017-08-11

    High levels of sedentary behaviour (SB) are associated with negative health consequences. Technology enhanced solutions such as mobile applications, activity monitors, prompting software, texts, emails and websites are being harnessed to reduce SB. The aim of this paper is to evaluate the effectiveness of such technology enhanced interventions aimed at reducing SB in healthy adults and to examine the behaviour change techniques (BCTs) used. Five electronic databases were searched to identify randomised-controlled trials (RCTs), published up to June 2016. Interventions using computer, mobile or wearable technologies to facilitate a reduction in SB, using a measure of sedentary time as an outcome, were eligible for inclusion. Risk of bias was assessed using the Cochrane Collaboration's tool and interventions were coded using the BCT Taxonomy (v1). Meta-analysis of 15/17 RCTs suggested that computer, mobile and wearable technology tools resulted in a mean reduction of -41.28 min per day (min/day) of sitting time (95% CI -60.99, -21.58, I2 = 77%, n = 1402), in favour of the intervention group at end point follow-up. The pooled effects showed mean reductions at short (≤ 3 months), medium (>3 to 6 months), and long-term follow-up (>6 months) of -42.42 min/day, -37.23 min/day and -1.65 min/day, respectively. Overall, 16/17 studies were deemed as having a high or unclear risk of bias, and 1/17 was judged to be at a low risk of bias. A total of 46 BCTs (14 unique) were coded for the computer, mobile and wearable components of the interventions. The most frequently coded were "prompts and cues", "self-monitoring of behaviour", "social support (unspecified)" and "goal setting (behaviour)". Interventions using computer, mobile and wearable technologies can be effective in reducing SB. Effectiveness appeared most prominent in the short-term and lessened over time. A range of BCTs have been implemented in these interventions. Future studies need to improve reporting of BCTs within interventions and address the methodological flaws identified within the review through the use of more rigorously controlled study designs with longer-term follow-ups, objective measures of SB and the incorporation of strategies to reduce attrition. The review protocol was registered with PROSPERO: CRD42016038187.

  14. Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor.

    PubMed

    Cho, Byungjin; Kim, Ah Ra; Kim, Dong Jae; Chung, Hee-Suk; Choi, Sun Young; Kwon, Jung-Dae; Park, Sang Won; Kim, Yonghun; Lee, Byoung Hun; Lee, Kyu Hwan; Kim, Dong-Ho; Nam, Jaewook; Hahm, Myung Gwan

    2016-08-03

    We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.

  15. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications.

    PubMed

    Veluswamy, Pandiyarasan; Sathiyamoorthy, Suhasini; Khan, Faizan; Ghosh, Aranya; Abhijit, Majumdar; Hayakawa, Yasuhiro; Ikeda, Hiroya

    2017-02-10

    The central idea of this paper is to innovate a new approach for the development of wearable device materials through the coating of cotton fabric with ZnO and Sb-/Ag-/ZnO composites. The study was designed in order to have a clear understanding of the role of ZnO as well as the modified composite thereof under investigation. Cotton fabric with uniform ZnO/ZnO-composite layers on the surface was successfully synthesized via a solvothermal method. The growth behaviors were investigated by comparing ZnO and ZnO-composites. The structural, morphological, chemical states, optical, electrical and thermopower properties of these fabrics were studied. Nanostructured ZnO-composite fabric had enhanced UV shielding with a value of 83.96. It is found that the ZnO-composite fabrics have increased electrical conductivity. The thermopower value of the ZnO-composite fabric could reach 471.9μVK -1 . Such materials are anticipated to be worthwhile as wearable electronic devices and as protective textiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mobile GPU-based implementation of automatic analysis method for long-term ECG.

    PubMed

    Fan, Xiaomao; Yao, Qihang; Li, Ye; Chen, Runge; Cai, Yunpeng

    2018-05-03

    Long-term electrocardiogram (ECG) is one of the important diagnostic assistant approaches in capturing intermittent cardiac arrhythmias. Combination of miniaturized wearable holters and healthcare platforms enable people to have their cardiac condition monitored at home. The high computational burden created by concurrent processing of numerous holter data poses a serious challenge to the healthcare platform. An alternative solution is to shift the analysis tasks from healthcare platforms to the mobile computing devices. However, long-term ECG data processing is quite time consuming due to the limited computation power of the mobile central unit processor (CPU). This paper aimed to propose a novel parallel automatic ECG analysis algorithm which exploited the mobile graphics processing unit (GPU) to reduce the response time for processing long-term ECG data. By studying the architecture of the sequential automatic ECG analysis algorithm, we parallelized the time-consuming parts and reorganized the entire pipeline in the parallel algorithm to fully utilize the heterogeneous computing resources of CPU and GPU. The experimental results showed that the average executing time of the proposed algorithm on a clinical long-term ECG dataset (duration 23.0 ± 1.0 h per signal) is 1.215 ± 0.140 s, which achieved an average speedup of 5.81 ± 0.39× without compromising analysis accuracy, comparing with the sequential algorithm. Meanwhile, the battery energy consumption of the automatic ECG analysis algorithm was reduced by 64.16%. Excluding energy consumption from data loading, 79.44% of the energy consumption could be saved, which alleviated the problem of limited battery working hours for mobile devices. The reduction of response time and battery energy consumption in ECG analysis not only bring better quality of experience to holter users, but also make it possible to use mobile devices as ECG terminals for healthcare professions such as physicians and health advisers, enabling them to inspect patient ECG recordings onsite efficiently without the need of a high-quality wide-area network environment.

  17. A wireless potentiostat for mobile chemical sensing and biosensing.

    PubMed

    Steinberg, Matthew D; Kassal, Petar; Kereković, Irena; Steinberg, Ivana Murković

    2015-10-01

    Wireless chemical sensors are used as analytical devices in homeland defence, home-based healthcare, food logistics and more generally for the Sensor Internet of Things (SIoT). Presented here is a battery-powered and highly portable credit-card size potentiostat that is suitable for performing mobile and wearable amperometric electrochemical measurements with seamless wireless data transfer to mobile computing devices. The mobile electrochemical analytical system has been evaluated in the laboratory with a model redox system - the reduction of hexacyanoferrate(III) - and also with commercially available enzymatic blood-glucose test-strips. The potentiostat communicates wirelessly with mobile devices such as tablets or Smartphones by near-field communication (NFC) or with personal computers by radio-frequency identification (RFID), and thus provides a solution to the 'missing link' in connectivity that often exists between low-cost mobile and wearable chemical sensors and ubiquitous mobile computing products. The mobile potentiostat has been evaluated in the laboratory with a set of proof-of-concept experiments, and its analytical performance compared with a commercial laboratory potentiostat (R(2)=0.9999). These first experimental results demonstrate the functionality of the wireless potentiostat and suggest that the device could be suitable for wearable and point-of-sample analytical measurements. We conclude that the wireless potentiostat could contribute significantly to the advancement of mobile chemical sensor research and adoption, in particular for wearable sensors in healthcare and sport physiology, for wound monitoring and in mobile point-of-sample diagnostics as well as more generally as a part of the Sensor Internet of Things. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Integration of biochemical sensors into wearable biomaterial platforms

    NASA Astrophysics Data System (ADS)

    Jandhyala, Sidhartha; Walper, Scott A.; Cargill, Allison A.; Ozual, Abigail; Daniele, Michael A.

    2016-05-01

    With rapidly inflating healthcare costs, a limited supply of physicians and an alarming surge in lifestyle diseases, radical changes must be made to improve preventative medicine and ensure a sustainable healthcare system. A compelling solution is to equip the population with wearable health monitors to continuously record representative and actionable physiological data. Herein, we present a preliminary design and evaluation of a biochemical sensor node enabled by a substrate comprised of a nanocellulose thin-film that conforms to the skin and carries a printed sensor element. The nanocellulose layer ensures conformal and biocompatible contact with the skin, while a printed layer provides a high surface-area electrode. While the recognition/transduction element can be exchanged for many different sensing motifs, we utilize the general structure of an electrochemical glucose sensor.

  19. Beyond activity tracking: next-generation wearable and implantable sensor technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick

    2017-05-01

    Current-generation wearable devices have had success continuously measuring the activity and heart rate of subjects during exercise and daily life activities, resulting in interesting new data sets that can, though machine learning algorithms, predict a small subset of health conditions. However, this information is only very peripherally related to most health conditions, and thus offers limited utility to a wide range of the population. In this presentation, I will discuss emerging sensor technologies capable of measuring new and interesting parameters that can potentially offer much more meaningful and actionable data sets. Specifically, I will present recent work on wearable chemical sensors that can, for the first time, continuously monitor a suite of parameters like glucose, alcohol, lactate, and electrolytes, all while wirelessly delivering these results to a smart phone in real time. Demonstration platforms featuring patch, temporary tattoo, and mouthguard form factors will be described, in addition to the corresponding electronics necessary to perform sensor conditioning and wireless readout. Beyond chemical sensors, I will also discuss integration strategies with more conventional electrophysiological and physical parameters like ECG and strain gauges for cardiac and respiration rate monitoring, respectively. Finally, I will conclude the talk by introducing a new form of wireless communications in body-area networks that utilize the body itself as a channel for magnetic energy. Since the power consumption of conventional RF circuits often dominates the power of wearable devices, this new magnetic human body communication technique is specifically architected to dramatically reduce the path loss compared to conventional RF and capacitive human body communication techniques, thereby enabling ultra-low-power body area networks for next-generation wearable devices.

  20. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson's disease

    PubMed Central

    Hahn, Tim; Evers, Luc J. W.; de Vries, Nienke M.; Cohen, Eli; Afek, Michal; Bataille, Lauren; Daeschler, Margaret; Claes, Kasper; Boroojerdi, Babak; Terricabras, Dolors; Little, Max A.; Baldus, Heribert; Bloem, Bastiaan R.; Faber, Marjan J.

    2017-01-01

    Wearable devices can capture objective day-to-day data about Parkinson’s Disease (PD). This study aims to assess the feasibility of implementing wearable technology to collect data from multiple sensors during the daily lives of PD patients. The Parkinson@home study is an observational, two-cohort (North America, NAM; The Netherlands, NL) study. To recruit participants, different strategies were used between sites. Main enrolment criteria were self-reported diagnosis of PD, possession of a smartphone and age≥18 years. Participants used the Fox Wearable Companion app on a smartwatch and smartphone for a minimum of 6 weeks (NAM) or 13 weeks (NL). Sensor-derived measures estimated information about movement. Additionally, medication intake and symptoms were collected via self-reports in the app. A total of 953 participants were included (NL: 304, NAM: 649). Enrolment rate was 88% in the NL (n = 304) and 51% (n = 649) in NAM. Overall, 84% (n = 805) of participants contributed sensor data. Participants were compliant for 68% (16.3 hours/participant/day) of the study period in NL and for 62% (14.8 hours/participant/day) in NAM. Daily accelerometer data collection decreased 23% in the NL after 13 weeks, and 27% in NAM after 6 weeks. Data contribution was not affected by demographics, clinical characteristics or attitude towards technology, but was by the platform usability score in the NL (χ2 (2) = 32.014, p<0.001), and self-reported depression in NAM (χ2(2) = 6.397, p = .04). The Parkinson@home study shows that it is feasible to collect objective data using multiple wearable sensors in PD during daily life in a large cohort. PMID:29261709

  1. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  2. A Smart Wearable Sensor System for Counter-Fighting Overweight in Teenagers.

    PubMed

    Standoli, Carlo Emilio; Guarneri, Maria Renata; Perego, Paolo; Mazzola, Marco; Mazzola, Alessandra; Andreoni, Giuseppe

    2016-08-10

    PEGASO is a FP7-funded project whose goal is to develop an ICT and mobile-based platform together with an appropriate strategy to tackle the diffusion of obesity and other lifestyle-related illnesses among teenagers. Indeed, the design of an engaging strategy, leveraging a complementary set of technologies, is the approach proposed by the project to promote the adoption of healthy habits such as active lifestyle and balanced nutrition and to effectively counter-fight the emergence of overweight and obesity in the younger population. A technological key element of such a strategy sees the adoption of wearable sensors to monitor teenagers' activities, which is at the basis of developing awareness about the current lifestyle. This paper describes the experience carried out in the framework of the PEGASO project in developing and evaluating wearable monitoring systems addressed to adolescents. The paper describes the methodological approach based on the co-designing of such a wearable system and the main results that, in the first phase, involved a total of 407 adolescents across Europe in a series of focus groups conducted in three countries for the requirements definition phase. Moreover, it describes an evaluation process of signal reliability during the usage of the wearable system. The main results described here are: (a) a prototype of the standardized experimental protocol that has been developed and applied to test signal reliability in smart garments; (b) the requirements definition methodology through a co-design activity and approach to address user requirements and preferences and not only technological specifications. Such co-design approach is able to support a higher system acceptance and usability together with a sustained adoption of the solution with respect to the traditional technology push system development strategy.

  3. A Smart Wearable Sensor System for Counter-Fighting Overweight in Teenagers

    PubMed Central

    Standoli, Carlo Emilio; Guarneri, Maria Renata; Perego, Paolo; Mazzola, Marco; Mazzola, Alessandra; Andreoni, Giuseppe

    2016-01-01

    PEGASO is a FP7-funded project whose goal is to develop an ICT and mobile-based platform together with an appropriate strategy to tackle the diffusion of obesity and other lifestyle-related illnesses among teenagers. Indeed, the design of an engaging strategy, leveraging a complementary set of technologies, is the approach proposed by the project to promote the adoption of healthy habits such as active lifestyle and balanced nutrition and to effectively counter-fight the emergence of overweight and obesity in the younger population. A technological key element of such a strategy sees the adoption of wearable sensors to monitor teenagers’ activities, which is at the basis of developing awareness about the current lifestyle. This paper describes the experience carried out in the framework of the PEGASO project in developing and evaluating wearable monitoring systems addressed to adolescents. The paper describes the methodological approach based on the co-designing of such a wearable system and the main results that, in the first phase, involved a total of 407 adolescents across Europe in a series of focus groups conducted in three countries for the requirements definition phase. Moreover, it describes an evaluation process of signal reliability during the usage of the wearable system. The main results described here are: (a) a prototype of the standardized experimental protocol that has been developed and applied to test signal reliability in smart garments; (b) the requirements definition methodology through a co-design activity and approach to address user requirements and preferences and not only technological specifications. Such co-design approach is able to support a higher system acceptance and usability together with a sustained adoption of the solution with respect to the traditional technology push system development strategy. PMID:27517929

  4. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    PubMed

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  5. Investigation of signal processing algorithms for an embedded microcontroller-based wearable pulse oximeter.

    PubMed

    Johnston, W S; Mendelson, Y

    2006-01-01

    Despite steady progress in the miniaturization of pulse oximeters over the years, significant challenges remain since advanced signal processing must be implemented efficiently in real-time by a relatively small size wearable device. The goal of this study was to investigate several potential digital signal processing algorithms for computing arterial oxygen saturation (SpO(2)) and heart rate (HR) in a battery-operated wearable reflectance pulse oximeter that is being developed in our laboratory for use by medics and first responders in the field. We found that a differential measurement approach, combined with a low-pass filter (LPF), yielded the most suitable signal processing technique for estimating SpO(2), while a signal derivative approach produced the most accurate HR measurements.

  6. The smartphone as a platform for wearable cameras in health research.

    PubMed

    Gurrin, Cathal; Qiu, Zhengwei; Hughes, Mark; Caprani, Niamh; Doherty, Aiden R; Hodges, Steve E; Smeaton, Alan F

    2013-03-01

    The Microsoft SenseCam, a small camera that is worn on the chest via a lanyard, increasingly is being deployed in health research. However, the SenseCam and other wearable cameras are not yet in widespread use because of a variety of factors. It is proposed that the ubiquitous smartphones can provide a more accessible alternative to SenseCam and similar devices. To perform an initial evaluation of the potential of smartphones to become an alternative to a wearable camera such as the SenseCam. In 2012, adults were supplied with a smartphone, which they wore on a lanyard, that ran life-logging software. Participants wore the smartphone for up to 1 day and the resulting life-log data were both manually annotated and automatically analyzed for the presence of visual concepts. The results were compared to prior work using the SenseCam. In total, 166,000 smartphone photos were gathered from 47 individuals, along with associated sensor readings. The average time spent wearing the device across all users was 5 hours 39 minutes (SD=4 hours 11 minutes). A subset of 36,698 photos was selected for manual annotation by five researchers. Software analysis of these photos supports the automatic identification of activities to a similar level of accuracy as for SenseCam images in a previous study. Many aspects of the functionality of a SenseCam largely can be replicated, and in some cases enhanced, by the ubiquitous smartphone platform. This makes smartphones good candidates for a new generation of wearable sensing devices in health research, because of their widespread use across many populations. It is envisioned that smartphones will provide a compelling alternative to the dedicated SenseCam hardware for a number of users and application areas. This will be achieved by integrating new types of sensor data, leveraging the smartphone's real-time connectivity and rich user interface, and providing support for a range of relatively sophisticated applications. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Design of Secure and Lightweight Authentication Protocol for Wearable Devices Environment.

    PubMed

    Das, Ashok Kumar; Wazid, Mohammad; Kumar, Neeraj; Khan, Muhammad Khurram; Choo, Kim-Kwang Raymond; Park, YoungHo

    2017-09-18

    Wearable devices are used in various applications to collect information including step information, sleeping cycles, workout statistics, and health related information. Due to the nature and richness of the data collected by such devices, it is important to ensure the security of the collected data. This paper presents a new lightweight authentication scheme suitable for wearable device deployment. The scheme allows a user to mutually authenticate his/her wearable device(s) and the mobile terminal (e.g., Android and iOS device) and establish a session key among these devices (worn and carried by the same user) for secure communication between the wearable device and the mobile terminal. The security of the proposed scheme is then demonstrated through the broadly-accepted Real-Or-Random model, as well as using the popular formal security verification tool, known as the Automated Validation of Internet Security Protocols and Applications (AVISPA). Finally, we present a comparative summary of the proposed scheme in terms of the overheads such as computation and communication costs, security and functionality features of the proposed scheme and related schemes, and also the evaluation findings from the NS2 simulation.

  8. Towards Building a Computer Aided Education System for Special Students Using Wearable Sensor Technologies

    PubMed Central

    Mehmood, Raja Majid; Lee, Hyo Jong

    2017-01-01

    Human computer interaction is a growing field in terms of helping people in their daily life to improve their living. Especially, people with some disability may need an interface which is more appropriate and compatible with their needs. Our research is focused on similar kinds of problems, such as students with some mental disorder or mood disruption problems. To improve their learning process, an intelligent emotion recognition system is essential which has an ability to recognize the current emotional state of the brain. Nowadays, in special schools, instructors are commonly use some conventional methods for managing special students for educational purposes. In this paper, we proposed a novel computer aided method for instructors at special schools where they can teach special students with the support of our system using wearable technologies. PMID:28208734

  9. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing.

    PubMed

    Rajan, Krishna; Garofalo, Erik; Chiolerio, Alessandro

    2018-01-27

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.

  10. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing

    PubMed Central

    Rajan, Krishna; Garofalo, Erik

    2018-01-01

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC. PMID:29382050

  11. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin

    PubMed Central

    Kim, Jeonghyun; Salvatore, Giovanni A.; Araki, Hitoshi; Chiarelli, Antonio M.; Xie, Zhaoqian; Banks, Anthony; Sheng, Xing; Liu, Yuhao; Lee, Jung Woo; Jang, Kyung-In; Heo, Seung Yun; Cho, Kyoungyeon; Luo, Hongying; Zimmerman, Benjamin; Kim, Joonhee; Yan, Lingqing; Feng, Xue; Xu, Sheng; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2016-01-01

    Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have “skin-like” properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics. PMID:27493994

  12. The Nett Warrior System: A Case Study for the Acquisition of Soldier Systems

    DTIC Science & Technology

    2011-12-15

    rpfkbpp=C=mr_if`=mlif`v - 10 - k^s^i=mlpqdo^ar^qb=p`elli The evolution of wearable computers continued as an open system– bus wearable design was...established. The success of NW will depend on the program?s ability to incorporate soldier-driven design requirements, commercial technology, and...on the program’s ability to incorporate soldier-driven design requirements, commercial technology, and thorough system testing.   = = ^Åèìáëáíáçå

  13. Wearable Improved Vision System for Color Vision Deficiency Correction

    PubMed Central

    Riccio, Daniel; Di Perna, Luigi; Sanniti Di Baja, Gabriella; De Nino, Maurizio; Rossi, Settimio; Testa, Francesco; Simonelli, Francesca; Frucci, Maria

    2017-01-01

    Color vision deficiency (CVD) is an extremely frequent vision impairment that compromises the ability to recognize colors. In order to improve color vision in a subject with CVD, we designed and developed a wearable improved vision system based on an augmented reality device. The system was validated in a clinical pilot study on 24 subjects with CVD (18 males and 6 females, aged 37.4 ± 14.2 years). The primary outcome was the improvement in the Ishihara Vision Test score with the correction proposed by our system. The Ishihara test score significantly improved (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p = 0.03$ \\end{document}) from 5.8 ± 3.0 without correction to 14.8 ± 5.0 with correction. Almost all patients showed an improvement in color vision, as shown by the increased test scores. Moreover, with our system, 12 subjects (50%) passed the vision color test as normal vision subjects. The development and preliminary validation of the proposed platform confirm that a wearable augmented-reality device could be an effective aid to improve color vision in subjects with CVD. PMID:28507827

  14. myBrain: a novel EEG embedded system for epilepsy monitoring.

    PubMed

    Pinho, Francisco; Cerqueira, João; Correia, José; Sousa, Nuno; Dias, Nuno

    2017-10-01

    The World Health Organisation has pointed that a successful health care delivery, requires effective medical devices as tools for prevention, diagnosis, treatment and rehabilitation. Several studies have concluded that longer monitoring periods and outpatient settings might increase diagnosis accuracy and success rate of treatment selection. The long-term monitoring of epileptic patients through electroencephalography (EEG) has been considered a powerful tool to improve the diagnosis, disease classification, and treatment of patients with such condition. This work presents the development of a wireless and wearable EEG acquisition platform suitable for both long-term and short-term monitoring in inpatient and outpatient settings. The developed platform features 32 passive dry electrodes, analogue-to-digital signal conversion with 24-bit resolution and a variable sampling frequency from 250 Hz to 1000 Hz per channel, embedded in a stand-alone module. A computer-on-module embedded system runs a Linux ® operating system that rules the interface between two software frameworks, which interact to satisfy the real-time constraints of signal acquisition as well as parallel recording, processing and wireless data transmission. A textile structure was developed to accommodate all components. Platform performance was evaluated in terms of hardware, software and signal quality. The electrodes were characterised through electrochemical impedance spectroscopy and the operating system performance running an epileptic discrimination algorithm was evaluated. Signal quality was thoroughly assessed in two different approaches: playback of EEG reference signals and benchmarking with a clinical-grade EEG system in alpha-wave replacement and steady-state visual evoked potential paradigms. The proposed platform seems to efficiently monitor epileptic patients in both inpatient and outpatient settings and paves the way to new ambulatory clinical regimens as well as non-clinical EEG applications.

  15. iLid: Low-power Sensing of Fatigue and Drowsiness Measures on a Computational Eyeglass

    PubMed Central

    ROSTAMINIA, SOHA; MAYBERRY, ADDISON; GANESAN, DEEPAK; MARLIN, BENJAMIN; GUMMESON, JEREMY

    2018-01-01

    The ability to monitor eye closures and blink patterns has long been known to enable accurate assessment of fatigue and drowsiness in individuals. Many measures of the eye are known to be correlated with fatigue including coarse-grained measures like the rate of blinks as well as fine-grained measures like the duration of blinks and the extent of eye closures. Despite a plethora of research validating these measures, we lack wearable devices that can continually and reliably monitor them in the natural environment. In this work, we present a low-power system, iLid, that can continually sense fine-grained measures such as blink duration and Percentage of Eye Closures (PERCLOS) at high frame rates of 100fps. We present a complete solution including design of the sensing, signal processing, and machine learning pipeline; implementation on a prototype computational eyeglass platform; and extensive evaluation under many conditions including illumination changes, eyeglass shifts, and mobility. Our results are very encouraging, showing that we can detect blinks, blink duration, eyelid location, and fatigue-related metrics such as PERCLOS with less than a few percent error. PMID:29417956

  16. Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals

    NASA Astrophysics Data System (ADS)

    Lisetti, Christine Lætitia; Nasoz, Fatma

    2004-12-01

    We discuss the strong relationship between affect and cognition and the importance of emotions in multimodal human computer interaction (HCI) and user modeling. We introduce the overall paradigm for our multimodal system that aims at recognizing its users' emotions and at responding to them accordingly depending upon the current context or application. We then describe the design of the emotion elicitation experiment we conducted by collecting, via wearable computers, physiological signals from the autonomic nervous system (galvanic skin response, heart rate, temperature) and mapping them to certain emotions (sadness, anger, fear, surprise, frustration, and amusement). We show the results of three different supervised learning algorithms that categorize these collected signals in terms of emotions, and generalize their learning to recognize emotions from new collections of signals. We finally discuss possible broader impact and potential applications of emotion recognition for multimodal intelligent systems.

  17. An IoT and Wearable Technology Hackathon for Promoting Careers in Computer Science

    ERIC Educational Resources Information Center

    Byrne, Jake Rowan; O'Sullivan, Katriona; Sullivan, Kevin

    2017-01-01

    This paper explores the use of a constructivist 21st-century learning model to implement a week-long workshop, delivered as a "hackathon," to encourage preuniversity teenagers to pursue careers in STEM, with a particular emphasis on computer science. For Irish preuniversity students, their experience of computing can vary from word…

  18. An exploratory study on a chest-worn computer for evaluation of diet, physical activity and lifestyle

    USDA-ARS?s Scientific Manuscript database

    Recently, wearable computers have become new members in the family of mobile electronic devices, adding new functions to those provided by smartphones and tablets. As "always-on" miniature computers in the personal space, they will play increasing roles in the field of healthcare. In this work, we p...

  19. All-Printed Flexible and Stretchable Electronics.

    PubMed

    Mohammed, Mohammed G; Kramer, Rebecca

    2017-05-01

    A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing.

    PubMed

    Oresko, Joseph J; Duschl, Heather; Cheng, Allen C

    2010-05-01

    Cardiovascular disease (CVD) is the single leading cause of global mortality and is projected to remain so. Cardiac arrhythmia is a very common type of CVD and may indicate an increased risk of stroke or sudden cardiac death. The ECG is the most widely adopted clinical tool to diagnose and assess the risk of arrhythmia. ECGs measure and display the electrical activity of the heart from the body surface. During patients' hospital visits, however, arrhythmias may not be detected on standard resting ECG machines, since the condition may not be present at that moment in time. While Holter-based portable monitoring solutions offer 24-48 h ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline. In this paper, we seek to unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis solution using smartphones. Specifically, we developed two smartphone-based wearable CVD-detection platforms capable of performing real-time ECG acquisition and display, feature extraction, and beat classification. Furthermore, the same statistical summaries available on resting ECG machines are provided.

  1. Logic-centered architecture for ubiquitous health monitoring.

    PubMed

    Lewandowski, Jacek; Arochena, Hisbel E; Naguib, Raouf N G; Chao, Kuo-Ming; Garcia-Perez, Alexeis

    2014-09-01

    One of the key points to maintain and boost research and development in the area of smart wearable systems (SWS) is the development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness management. This paper presents such a generic architecture for multiparametric, intelligent and ubiquitous wireless sensing platforms. It is a transparent, smartphone-based sensing framework with customizable wireless interfaces and plug'n'play capability to easily interconnect third party sensor devices. It caters to wireless body, personal, and near-me area networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package enables artificial intelligence specialists, alongside with medical experts, to build data processing models by assembling different components and instantly deploying them (remotely) on patient mobile devices. In this paper, the new logic-centered software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to shift focus from software and hardware development, to medical and health process-centered design of new SWS applications.

  2. BeeSim: Leveraging Wearable Computers in Participatory Simulations with Young Children

    ERIC Educational Resources Information Center

    Peppler, Kylie; Danish, Joshua; Zaitlen, Benjamin; Glosson, Diane; Jacobs, Alexander; Phelps, David

    2010-01-01

    New technologies have enabled students to become active participants in computational simulations of dynamic and complex systems (called Participatory Simulations), providing a "first-person"perspective on complex systems. However, most existing Participatory Simulations have targeted older children, teens, and adults assuming that such concepts…

  3. Google glass based immunochromatographic diagnostic test analysis

    NASA Astrophysics Data System (ADS)

    Feng, Steve; Caire, Romain; Cortazar, Bingen; Turan, Mehmet; Wong, Andrew; Ozcan, Aydogan

    2015-03-01

    Integration of optical imagers and sensors into recently emerging wearable computational devices allows for simpler and more intuitive methods of integrating biomedical imaging and medical diagnostics tasks into existing infrastructures. Here we demonstrate the ability of one such device, the Google Glass, to perform qualitative and quantitative analysis of immunochromatographic rapid diagnostic tests (RDTs) using a voice-commandable hands-free software-only interface, as an alternative to larger and more bulky desktop or handheld units. Using the built-in camera of Glass to image one or more RDTs (labeled with Quick Response (QR) codes), our Glass software application uploads the captured image and related information (e.g., user name, GPS, etc.) to our servers for remote analysis and storage. After digital analysis of the RDT images, the results are transmitted back to the originating Glass device, and made available through a website in geospatial and tabular representations. We tested this system on qualitative human immunodeficiency virus (HIV) and quantitative prostate-specific antigen (PSA) RDTs. For qualitative HIV tests, we demonstrate successful detection and labeling (i.e., yes/no decisions) for up to 6-fold dilution of HIV samples. For quantitative measurements, we activated and imaged PSA concentrations ranging from 0 to 200 ng/mL and generated calibration curves relating the RDT line intensity values to PSA concentration. By providing automated digitization of both qualitative and quantitative test results, this wearable colorimetric diagnostic test reader platform on Google Glass can reduce operator errors caused by poor training, provide real-time spatiotemporal mapping of test results, and assist with remote monitoring of various biomedical conditions.

  4. Personalised physical exercise regime for chronic patients through a wearable ICT platform.

    PubMed

    Angelidis, Pantelis A

    2010-01-01

    Today's state of the art in exercise physiology, professional athletics and sports practice in general clearly shows that the best results depend on the personalisation and continuous update of the recommendations provided to an athlete training, a sports lover or a person whose medical condition demands regular physical exercise. The vital signs information gathered in telemonitoring systems can be better evaluated and exploited if processed along with data from the subject's electronic health records, training history and performance statistics. In this context, the current paper intends to exploit modern smart miniaturised systems and advanced information systems towards the development of an infrastructure for continuous, non-invasive acquisition and advanced processing of vital signs information. In particular, it will look into wearable electronics embedded in textile capable of performing regular or exceptional measurements of vital physiological parameters and communicating them to an application server for further processing.

  5. Lunar Health Monitor (LHM)

    NASA Technical Reports Server (NTRS)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  6. Integration of Wearable Solutions in AAL Environments with Mobility Support.

    PubMed

    Costa, Susana E P; Rodrigues, Joel J P C; Silva, Bruno M C; Isento, João N; Corchado, Juan M

    2015-12-01

    The overall demographic profile of current societies point to a significant growth of the elderly people. Associated with the increase of the average hope of life and consequent increase in chronic diseases, there is the need for protection and daily care. Increasing investments in technology, such as Ambient Assisted Living (AAL) solutions, promote the quality of live extending the time people can live in their desired environment. This paper proposes the design, deployment, and real testbed of an e-health wearable monitoring system based on the integration of several AAL tools and platforms for elderly's bio-signals monitoring. This solution includes electrocardiography (ECG), respiration rate, beats per minute, body temperature, and falls detention and notification. The paper also describes, in detail, the real pilot and analyzes some early results concerning the users quality of experience, and the found results are very promising.

  7. A review on architectures and communications technologies for wearable health-monitoring systems.

    PubMed

    Custodio, Víctor; Herrera, Francisco J; López, Gregorio; Moreno, José Ignacio

    2012-10-16

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in "LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments", published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  8. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    PubMed Central

    Custodio, Víctor; Herrera, Francisco J.; López, Gregorio; Moreno, José Ignacio

    2012-01-01

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications. PMID:23202028

  9. Nanopaper as an Optical Sensing Platform.

    PubMed

    Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben

    2015-07-28

    Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable.

  10. Setting the New Standard with Mobile Computing in Online Learning

    ERIC Educational Resources Information Center

    Shih, Yuhsun Edward; Mills, Dennis

    2007-01-01

    Mobile learning represents exciting new frontiers in education and pedagogy. With the features of "wearable" computing and multimedia content delivery via mobile technologies, mobile learning becomes feasible and offers new benefits to instructors and learners. How do mobile technologies influence our teaching and learning in traditional…

  11. Comparative Analysis of Palm and Wearable Computers for Participatory Simulations

    ERIC Educational Resources Information Center

    Klopfer, Eric; Yoon, Susan; Rivas, Luz

    2004-01-01

    Recent educational computer-based technologies have offered promising lines of research that promote social constructivist learning goals, develop skills required to operate in a knowledge-based economy (Roschelle et al. 2000), and enable more authentic science-like problem-solving. In our research programme, we have been interested in combining…

  12. Integrated Display and Environmental Awareness System - System Architecture Definition

    NASA Technical Reports Server (NTRS)

    Doule, Ondrej; Miranda, David; Hochstadt, Jake

    2017-01-01

    The Integrated Display and Environmental Awareness System (IDEAS) is an interdisciplinary team project focusing on the development of a wearable computer and Head Mounted Display (HMD) based on Commercial-Off-The-Shelf (COTS) components for the specific application and needs of NASA technicians, engineers and astronauts. Wearable computers are on the verge of utilization trials in daily life as well as industrial environments. The first civil and COTS wearable head mounted display systems were introduced just a few years ago and they probed not only technology readiness in terms of performance, endurance, miniaturization, operability and usefulness but also maturity of practice in perspective of a socio-technical context. Although the main technical hurdles such as mass and power were addressed as improvements on the technical side, the usefulness, practicality and social acceptance were often noted on the side of a broad variety of humans' operations. In other words, although the technology made a giant leap, its use and efficiency still looks for the sweet spot. The first IDEAS project started in January 2015 and was concluded in January 2017. The project identified current COTS systems' capability at minimum cost and maximum applicability and brought about important strategic concepts that will serve further IDEAS-like system development.

  13. Testing and evaluation of a wearable augmented reality system for natural outdoor environments

    NASA Astrophysics Data System (ADS)

    Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg

    2013-05-01

    This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.

  14. [An ultra-low power, wearable, long-term ECG monitoring system with mass storage].

    PubMed

    Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai

    2012-01-01

    In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.

  15. SSC San Diego Biennial Review 2003. Vol 2: Communication and Information Systems

    DTIC Science & Technology

    2003-01-01

    University, Department of Electrical and Computer Engineering) Michael Jablecki (Science and Technology Corporation) Stochastic Unified Multiple...wearable computers and cellular phones. The technology-transfer process involved a coalition of government and industrial partners, each providing...the design and fabrication of the coupler. SSC San Diego developed a computer -controlled fused fiber fabrication station to achieve the required

  16. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.

    PubMed

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A; Davis, Ronald W; Javey, Ali

    2016-01-28

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

  17. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali

    2016-01-01

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

  18. Implementing Internet of Things in a military command and control environment

    NASA Astrophysics Data System (ADS)

    Raglin, Adrienne; Metu, Somiya; Russell, Stephen; Budulas, Peter

    2017-05-01

    While the term Internet of Things (IoT) has been coined relatively recently, it has deep roots in multiple other areas of research including cyber-physical systems, pervasive and ubiquitous computing, embedded systems, mobile ad-hoc networks, wireless sensor networks, cellular networks, wearable computing, cloud computing, big data analytics, and intelligent agents. As the Internet of Things, these technologies have created a landscape of diverse heterogeneous capabilities and protocols that will require adaptive controls to effect linkages and changes that are useful to end users. In the context of military applications, it will be necessary to integrate disparate IoT devices into a common platform that necessarily must interoperate with proprietary military protocols, data structures, and systems. In this environment, IoT devices and data will not be homogeneous and provenance-controlled (i.e. single vendor/source/supplier owned). This paper presents a discussion of the challenges of integrating varied IoT devices and related software in a military environment. A review of contemporary commercial IoT protocols is given and as a practical example, a middleware implementation is proffered that provides transparent interoperability through a proactive message dissemination system. The implementation is described as a framework through which military applications can integrate and utilize commercial IoT in conjunction with existing military sensor networks and command and control (C2) systems.

  19. PhysioDroid: Combining Wearable Health Sensors and Mobile Devices for a Ubiquitous, Continuous, and Personal Monitoring

    PubMed Central

    Villalonga, Claudia; Damas, Miguel

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices. PMID:25295301

  20. Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology.

    PubMed

    Kim, Kang-Hyun; Hong, Soon Kyu; Jang, Nam-Su; Ha, Sung-Hun; Lee, Hyung Woo; Kim, Jong-Man

    2017-05-24

    Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa -1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).

  1. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    PubMed

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  2. Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers via Skin and Breath: Toward Disease Prevention via Wearable Devices.

    PubMed

    Jin, Han; Huynh, Tan-Phat; Haick, Hossam

    2016-07-13

    Flexible and wearable electronic sensors are useful for the early diagnosis and monitoring of an individual's health state. Sampling of volatile organic compounds (VOCs) derived from human breath/skin or monitoring abrupt changes in heart-beat/breath rate should allow noninvasive monitoring of disease states at an early stage. Nevertheless, for many reported wearable sensing devices, interaction with the human body leads incidentally to unavoidable scratches and/or mechanical cuts and bring about malfunction of these devices. We now offer proof-of-concept of nanoparticle-based flexible sensor arrays with fascinating self-healing abilities. By integrating a self-healable polymer substrate with 5 kinds of functionalized gold nanoparticle films, a sensor array gives a fast self-healing (<3 h) and attractive healing efficiency in both the substrate and sensing films. The proposed platform was used in sensing pressure variation and 11 kinds of VOCs. The sensor array had satisfactory sensitivity, a low detection limit, and promising discrimination features in monitoring both of VOCs and pressure variation, even after full healing. These results presage a new type of smart sensing device, with a desirable performance in the possible detection and/or clinical application for a number of different purposes.

  3. Wearable motion sensors to continuously measure real-world physical activities.

    PubMed

    Dobkin, Bruce H

    2013-12-01

    Rehabilitation for sensorimotor impairments aims to improve daily activities, walking, exercise, and motor skills. Monitoring of practice and measuring outcomes, however, is usually restricted to laboratory-based procedures and self-reports. Mobile health devices may reverse these confounders of daily care and research trials. Wearable, wireless motion sensor data, analyzed by activity pattern-recognition algorithms, can describe the type, quantity, and quality of mobility-related activities in the community. Data transmission from the sensors to a cell phone and the Internet enable continuous monitoring. Remote access to laboratory quality data about walking speed, duration and distance, gait asymmetry and smoothness of movements, as well as cycling, exercise, and skills practice, opens new opportunities to engage patients in progressive, personalized therapies with feedback about the performance. Clinical trial designs will be able to include remote verification of the integrity of complex physical interventions and compliance with practice, as well as capture repeated, ecologically sound, ratio scale outcome measures. Given the progressively falling cost of miniaturized wearable gyroscopes, accelerometers, and other physiologic sensors, as well as inexpensive data transmission, sensing systems may become as ubiquitous as cell phones for healthcare. Neurorehabilitation can develop these mobile health platforms for daily care and clinical trials to improve exercise and fitness, skills learning, and physical functioning.

  4. MEDIC: medical embedded device for individualized care.

    PubMed

    Wu, Winston H; Bui, Alex A T; Batalin, Maxim A; Au, Lawrence K; Binney, Jonathan D; Kaiser, William J

    2008-02-01

    Presented work highlights the development and initial validation of a medical embedded device for individualized care (MEDIC), which is based on a novel software architecture, enabling sensor management and disease prediction capabilities, and commercially available microelectronic components, sensors and conventional personal digital assistant (PDA) (or a cell phone). In this paper, we present a general architecture for a wearable sensor system that can be customized to an individual patient's needs. This architecture is based on embedded artificial intelligence that permits autonomous operation, sensor management and inference, and may be applied to a general purpose wearable medical diagnostics. A prototype of the system has been developed based on a standard PDA and wireless sensor nodes equipped with commercially available Bluetooth radio components, permitting real-time streaming of high-bandwidth data from various physiological and contextual sensors. We also present the results of abnormal gait diagnosis using the complete system from our evaluation, and illustrate how the wearable system and its operation can be remotely configured and managed by either enterprise systems or medical personnel at centralized locations. By using commercially available hardware components and software architecture presented in this paper, the MEDIC system can be rapidly configured, providing medical researchers with broadband sensor data from remote patients and platform access to best adapt operation for diagnostic operation objectives.

  5. Conceptual Privacy Framework for Health Information on Wearable Device

    PubMed Central

    Safavi, Seyedmostafa; Shukur, Zarina

    2014-01-01

    Wearable health tech provides doctors with the ability to remotely supervise their patients' wellness. It also makes it much easier to authorize someone else to take appropriate actions to ensure the person's wellness than ever before. Information Technology may soon change the way medicine is practiced, improving the performance, while reducing the price of healthcare. We analyzed the secrecy demands of wearable devices, including Smartphone, smart watch and their computing techniques, that can soon change the way healthcare is provided. However, before this is adopted in practice, all devices must be equipped with sufficient privacy capabilities related to healthcare service. In this paper, we formulated a new improved conceptual framework for wearable healthcare systems. This framework consists of ten principles and nine checklists, capable of providing complete privacy protection package to wearable device owners. We constructed this framework based on the analysis of existing mobile technology, the results of which are combined with the existing security standards. The approach also incorporates the market share percentage level of every app and its respective OS. This framework is evaluated based on the stringent CIA and HIPAA principles for information security. This evaluation is followed by testing the capability to revoke rights of subjects to access objects and ability to determine the set of available permissions for a particular subject for all models Finally, as the last step, we examine the complexity of the required initial setup. PMID:25478915

  6. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.

    PubMed

    Das, Anup; Pradhapan, Paruthi; Groenendaal, Willemijn; Adiraju, Prathyusha; Rajan, Raj Thilak; Catthoor, Francky; Schaafsma, Siebren; Krichmar, Jeffrey L; Dutt, Nikil; Van Hoof, Chris

    2018-03-01

    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Conceptual privacy framework for health information on wearable device.

    PubMed

    Safavi, Seyedmostafa; Shukur, Zarina

    2014-01-01

    Wearable health tech provides doctors with the ability to remotely supervise their patients' wellness. It also makes it much easier to authorize someone else to take appropriate actions to ensure the person's wellness than ever before. Information Technology may soon change the way medicine is practiced, improving the performance, while reducing the price of healthcare. We analyzed the secrecy demands of wearable devices, including Smartphone, smart watch and their computing techniques, that can soon change the way healthcare is provided. However, before this is adopted in practice, all devices must be equipped with sufficient privacy capabilities related to healthcare service. In this paper, we formulated a new improved conceptual framework for wearable healthcare systems. This framework consists of ten principles and nine checklists, capable of providing complete privacy protection package to wearable device owners. We constructed this framework based on the analysis of existing mobile technology, the results of which are combined with the existing security standards. The approach also incorporates the market share percentage level of every app and its respective OS. This framework is evaluated based on the stringent CIA and HIPAA principles for information security. This evaluation is followed by testing the capability to revoke rights of subjects to access objects and ability to determine the set of available permissions for a particular subject for all models Finally, as the last step, we examine the complexity of the required initial setup.

  8. The Future's Future: Implications of Emerging Technology for Special Education Program Planning.

    ERIC Educational Resources Information Center

    Hofstetter, Fred T.

    2001-01-01

    This article reviews emerging technologies, imagines how they can be used to help learners with special needs, and recommends new special education program initiatives to help these students make a meaningful transition from school to work. Wearable computers, personal computing devices, DVD, HDTV, MP3, and personal digital assistants are…

  9. Development of gait segmentation methods for wearable foot pressure sensors.

    PubMed

    Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C

    2012-01-01

    We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.

  10. Feasibility of energy harvesting techniques for wearable medical devices.

    PubMed

    Voss, Thaddaeus J; Subbian, Vignesh; Beyette, Fred R

    2014-01-01

    Wearable devices are arguably one of the most rapidly growing technologies in the computing and health care industry. These systems provide improved means of monitoring health status of humans in real-time. In order to cope with continuous sensing and transmission of biological and health status data, it is desirable to move towards energy autonomous systems that can charge batteries using passive, ambient energy. This not only ensures uninterrupted data capturing, but could also eliminate the need to frequently remove, replace, and recharge batteries. To this end, energy harvesting is a promising area that can lead to extremely power-efficient portable medical devices. This paper presents an experimental prototype to study the feasibility of harvesting two energy sources, solar and thermoelectric energy, in the context of wearable devices. Preliminary results show that such devices can be powered by transducing ambient energy that constantly surrounds us.

  11. An efficient motion-resistant method for wearable pulse oximeter.

    PubMed

    Yan, Yong-Sheng; Zhang, Yuan-Ting

    2008-05-01

    Reduction of motion artifact and power saving are crucial in designing a wearable pulse oximeter for long-term telemedicine application. In this paper, a novel algorithm, minimum correlation discrete saturation transform (MCDST) has been developed for the estimation of arterial oxygen saturation (SaO2), based on an optical model derived from photon diffusion analysis. The simulation shows that the new algorithm MCDST is more robust under low SNRs than the clinically verified motion-resistant algorithm discrete saturation transform (DST). Further, the experiment with different severity of motions demonstrates that MCDST has a slightly better performance than DST algorithm. Moreover, MCDST is more computationally efficient than DST because the former uses linear algebra instead of the time-consuming adaptive filter used by latter, which indicates that MCDST can reduce the required power consumption and circuit complexity of the implementation. This is vital for wearable devices, where the physical size and long battery life are crucial.

  12. A wireless energy transfer platform, integrated at the bedside.

    PubMed

    De Clercq, Hans; Puers, Robert

    2013-01-01

    This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.

  13. How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX.

    PubMed

    Boulos, Maged N Kamel; Wheeler, Steve; Tavares, Carlos; Jones, Ray

    2011-04-05

    The latest generation of smartphones are increasingly viewed as handheld computers rather than as phones, due to their powerful on-board computing capability, capacious memories, large screens and open operating systems that encourage application development. This paper provides a brief state-of-the-art overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake. Platforms available today include Android, Apple iOS, RIM BlackBerry, Symbian, and Windows (Windows Mobile 6.x and the emerging Windows Phone 7 platform). The paper covers apps targeting both laypersons/patients and healthcare professionals in various scenarios, e.g., health, fitness and lifestyle education and management apps; ambient assisted living apps; continuing professional education tools; and apps for public health surveillance. Among the surveyed apps are those assisting in chronic disease management, whether as standalone apps or part of a BAN (Body Area Network) and remote server configuration. We describe in detail the development of a smartphone app within eCAALYX (Enhanced Complete Ambient Assisted Living Experiment, 2009-2012), an EU-funded project for older people with multiple chronic conditions. The eCAALYX Android smartphone app receives input from a BAN (a patient-wearable smart garment with wireless health sensors) and the GPS (Global Positioning System) location sensor in the smartphone, and communicates over the Internet with a remote server accessible by healthcare professionals who are in charge of the remote monitoring and management of the older patient with multiple chronic conditions. Finally, we briefly discuss barriers to adoption of health and healthcare smartphone apps (e.g., cost, network bandwidth and battery power efficiency, usability, privacy issues, etc.), as well as some workarounds to mitigate those barriers.

  14. How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX

    PubMed Central

    2011-01-01

    The latest generation of smartphones are increasingly viewed as handheld computers rather than as phones, due to their powerful on-board computing capability, capacious memories, large screens and open operating systems that encourage application development. This paper provides a brief state-of-the-art overview of health and healthcare smartphone apps (applications) on the market today, including emerging trends and market uptake. Platforms available today include Android, Apple iOS, RIM BlackBerry, Symbian, and Windows (Windows Mobile 6.x and the emerging Windows Phone 7 platform). The paper covers apps targeting both laypersons/patients and healthcare professionals in various scenarios, e.g., health, fitness and lifestyle education and management apps; ambient assisted living apps; continuing professional education tools; and apps for public health surveillance. Among the surveyed apps are those assisting in chronic disease management, whether as standalone apps or part of a BAN (Body Area Network) and remote server configuration. We describe in detail the development of a smartphone app within eCAALYX (Enhanced Complete Ambient Assisted Living Experiment, 2009-2012), an EU-funded project for older people with multiple chronic conditions. The eCAALYX Android smartphone app receives input from a BAN (a patient-wearable smart garment with wireless health sensors) and the GPS (Global Positioning System) location sensor in the smartphone, and communicates over the Internet with a remote server accessible by healthcare professionals who are in charge of the remote monitoring and management of the older patient with multiple chronic conditions. Finally, we briefly discuss barriers to adoption of health and healthcare smartphone apps (e.g., cost, network bandwidth and battery power efficiency, usability, privacy issues, etc.), as well as some workarounds to mitigate those barriers. PMID:21466669

  15. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    PubMed

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  16. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    PubMed Central

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-01-01

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver’s vigilance level . Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model. PMID:26907278

  17. The usefulness and actual use of wearable devices among the elderly population.

    PubMed

    Kekade, Shwetambara; Hseieh, Chung-Ho; Islam, Md Mohaimenul; Atique, Suleman; Mohammed Khalfan, Abdulwahed; Li, Yu-Chuan; Abdul, Shabbir Syed

    2018-01-01

    Elderly populations are more prone to diseases and need continuous monitoring of parameters to ensure good health. Wearable devices (WDs) can be helpful in the early detection and management of medical conditions. However, less is known about the use of currently available WDs among elderly populations. The objectives of this study were to determine the usefulness and actual use of wearable devices among the elderly population. Our methodology was based on a systematic review and a survey questionnaire. In the systematic review, search was conducted in four databases PubMed, MDPI, Sage, and Scopus with search terms "wearable device" and "elderly", "wearable sensor" and "elderly". The inclusion criteria were the studies which described health-related wearable devices, its use as the outcome, conducted on a minimum of ten participants and published in the last five years. The survey was conducted on the MOOCs (Massive Open Online Course) platform. The questionnaire was related to the use of technology, intention to use, security and privacy concerns, and willingness to pay. The review identified 4915 articles, of which, 31 studies eventually met the inclusion criteria. All studies reported positive impacts after assessing devices, despite certain drawbacks. The majority of the samples were males. The survey revealed responses from 233 individuals out of the 1100 participants of the course. The survey results were categorized into two age groups: 54.3% were elderly (>65 years) and 45.49% were non-elderly (≤65 years). Very few elderly people were currently using WD. More than 60% of elderly people were interested in the future use of wearable devices, and preferred future use to improve physical and mental activities. A majority of the respondents were female. This study suggests awareness should be created among elderly populations regarding the use of WDs for the early detection and prevention of complications and emergencies. Elderly populations are more prone to benefits from using WDs. The review concluded that devices should be tested on elderly groups as well, considering sex equality, and on both healthy and sick participants for better insights. The survey determined the elderly as frequent users of technology, but lack of knowledge of WD and demonstrated female interest in the use of WD. In future research on WDs, it is suggested that clinical studies be conducted for longer durations, and standard protocols such as age and sex equality should be considered. Requirements from both users and physicians should be acknowledged for better cognizance of WDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Concurrent EEG And NIRS Tomographic Imaging Based on Wearable Electro-Optodes

    DTIC Science & Technology

    2014-04-13

    Interfaces   ( BCIs ),   and   other   systems   in   the   same   computational   framework.   Figure   11   below   shows...Improving  Brain-­‐Computer   Interfaces  Using   Independent  Component   Analysis,  In:  Towards  Future   BCIs ,  2012

  19. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    PubMed Central

    Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali

    2016-01-01

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health1–12. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications. PMID:26819044

  20. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.

    PubMed

    Maisto, Maurizio; Pacchierotti, Claudio; Chinello, Francesco; Salvietti, Gionata; De Luca, Alessandro; Prattichizzo, Domenico

    2017-01-01

    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games "Pokémon GO" and "Ingress" or the Google Translate real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects without constraining the motion or the workspace of the user. In this paper, we present the experimental evaluation of two wearable haptic interfaces for the fingers in three AR scenarios, enrolling 38 participants. In the first experiment, subjects were requested to write on a virtual board using a real chalk. The haptic devices provided the interaction forces between the chalk and the board. In the second experiment, subjects were asked to pick and place virtual and real objects. The haptic devices provided the interaction forces due to the weight of the virtual objects. In the third experiment, subjects were asked to balance a virtual sphere on a real cardboard. The haptic devices provided the interaction forces due to the weight of the virtual sphere rolling on the cardboard. Providing haptic feedback through the considered wearable device significantly improved the performance of all the considered tasks. Moreover, subjects significantly preferred conditions providing wearable haptic feedback.

  1. A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone.

    PubMed

    Miao, Fen; Cheng, Yayu; He, Yi; He, Qingyun; Li, Ye

    2015-05-19

    Continuously monitoring the ECG signals over hours combined with activity status is very important for preventing cardiovascular diseases. A traditional ECG holter is often inconvenient to carry because it has many electrodes attached to the chest and because it is heavy. This work proposes a wearable, low power context-aware ECG monitoring system integrated built-in kinetic sensors of the smartphone with a self-designed ECG sensor. The wearable ECG sensor is comprised of a fully integrated analog front-end (AFE), a commercial micro control unit (MCU), a secure digital (SD) card, and a Bluetooth module. The whole sensor is very small with a size of only 58 × 50 × 10 mm for wearable monitoring application due to the AFE design, and the total power dissipation in a full round of ECG acquisition is only 12.5 mW. With the help of built-in kinetic sensors of the smartphone, the proposed system can compute and recognize user's physical activity, and thus provide context-aware information for the continuous ECG monitoring. The experimental results demonstrated the performance of proposed system in improving diagnosis accuracy for arrhythmias and identifying the most common abnormal ECG patterns in different activities. In conclusion, we provide a wearable, accurate and energy-efficient system for long-term and context-aware ECG monitoring without any extra cost on kinetic sensor design but with the help of the widespread smartphone.

  2. IDEAS Pamphlet for CES

    NASA Technical Reports Server (NTRS)

    Miranda, David J.; Santora, Joshua D.; Hochstadt, Jake

    2017-01-01

    Pamphlet on the IDEAS project for the Game Changing Development programs NASA booth at the Consumer Electronics Show. Pamphlet covers a high level overview of the technology developed and its capabilities. The technology being developed for the Integrated Display and Environmental Awareness System (IDEAS) project is a wearable computer system with an optical heads-up display (HUD) providing various means of communication and data manipulation to the user. The wearable computer, in the form of smart glasses, would allow personnel to view and modify critical information on a transparent, interactive display. This is presented in their unobstructed field of view, without taking their eyes or hands away from their critical work. The product is being designed in a modular manner so that the user can adjust the capabilities of the device depending on need. IDEAS is a full featured hardware and softwaresystem built to enhance the capabilities of theNASA work force on the ground and in space.

  3. Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors

    PubMed Central

    Huang, Guoji; Hou, Chengyi; Shao, Yuanlong; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang; Zhu, Meifang

    2014-01-01

    Graphene fibres are continuously prepared from universal graphene oxide precursors by a novel hydrogel-assisted spinning method. With assistance of a rolling process, meters of ribbon-like GFs, or GRs with improved conductivity, tensile strength, and a long-range ordered compact layer structure are successfully obtained. Furthermore, we refined our spinning process to obtained elastic GRs with a mixing microstructure and exceptional elasticity, which may provide a platform for electronic skins and wearable electronics, sensors, and energy devices. PMID:24576869

  4. Fabrication Methods and Performance of Low-Permeability Microfluidic Components for a Miniaturized Wearable Drug Delivery System

    PubMed Central

    Mescher, Mark J.; Swan, Erin E. Leary; Fiering, Jason; Holmboe, Maria E.; Sewell, William F.; Kujawa, Sharon G.; McKenna, Michael J.; Borenstein, Jeffrey T.

    2010-01-01

    In this paper, we describe low-permeability components of a microfluidic drug delivery system fabricated with versatile micromilling and lamination techniques. The fabrication process uses laminate sheets which are machined using XY milling tables commonly used in the printed-circuit industry. This adaptable platform for polymer microfluidics readily accommodates integration with silicon-based sensors, printed-circuit, and surface-mount technologies. We have used these methods to build components used in a wearable liquid-drug delivery system for in vivo studies. The design, fabrication, and performance of membrane-based fluidic capacitors and manual screw valves provide detailed examples of the capability and limitations of the fabrication method. We demonstrate fluidic capacitances ranging from 0.015 to 0.15 μL/kPa, screw valves with on/off flow ratios greater than 38 000, and a 45× reduction in the aqueous fluid loss rate to the ambient due to permeation through a silicone diaphragm layer. PMID:20852729

  5. OLAM: A wearable, non-contact sensor for continuous heart-rate and activity monitoring.

    PubMed

    Albright, Ryan K; Goska, Benjamin J; Hagen, Tory M; Chi, Mike Y; Cauwenberghs, G; Chiang, Patrick Y

    2011-01-01

    A wearable, multi-modal sensor is presented that can non-invasively monitor a patient's activity level and heart function concurrently for more than a week. The 4 in(2) sensor incorporates both a non-contact heartrate sensor and a 5-axis inertial measurement unit (IMU), allowing simultaneous heart, respiration, and movement monitoring without requiring physical contact with the skin [1]. Hence, this Oregon State University Life and Activity Monitor (OLAM) provides the unique opportunity to combine motion data with heart-rate information, enabling assessment of actual physical activity beyond conventional movement sensors. OLAM also provides a unique platform for non-contact sensing, enabling the filtering of movement artifacts generated by the non-contact capacitive interface, using the IMU data as a movement noise channel. Intended to be used in clinical trials for weeks at a time with no physician intervention, the OLAM allows continuous non-invasive monitoring of patients, providing the opportunity for long-term observation into a patient's physical activity and subtle longitudinal changes.

  6. Fabric Organic Electrochemical Transistors for Biosensors.

    PubMed

    Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng

    2018-06-01

    Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-Powered Multiparameter Health Sensor.

    PubMed

    Tobola, Andreas; Leutheuser, Heike; Pollak, Markus; Spies, Peter; Hofmann, Christian; Weigand, Christian; Eskofier, Bjoern M; Fischer, Georg

    2018-01-01

    Wearable health sensors are about to change our health system. While several technological improvements have been presented to enhance performance and energy-efficiency, battery runtime is still a critical concern for practical use of wearable biomedical sensor systems. The runtime limitation is directly related to the battery size, which is another concern regarding practicality and customer acceptance. We introduced ULPSEK-Ultra-Low-Power Sensor Evaluation Kit-for evaluation of biomedical sensors and monitoring applications (http://ulpsek.com). ULPSEK includes a multiparameter sensor measuring and processing electrocardiogram, respiration, motion, body temperature, and photoplethysmography. Instead of a battery, ULPSEK is powered using an efficient body heat harvester. The harvester produced 171 W on average, which was sufficient to power the sensor below 25 C ambient temperature. We present design issues regarding the power supply and the power distribution network of the ULPSEK sensor platform. Due to the security aspect of self-powered health sensors, we suggest a hybrid solution consisting of a battery charged by a harvester.

  8. Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs.

    PubMed

    Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won

    2018-06-14

    We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.

  9. A reconfigurable, wearable, wireless ECG system.

    PubMed

    Borromeo, S; Rodriguez-Sanchez, C; Machado, F; Hernandez-Tamames, J A; de la Prieta, R

    2007-01-01

    New emerging concepts as "wireless hospital", "mobile healthcare" or "wearable telemonitoring" require the development of bio-signal acquisition devices to be easily integrated into the clinical routine. In this work, we present a new system for Electrocardiogram (ECG) acquisition and its processing, with wireless transmission on demand (either the complete ECG or only one alarm message, just in case a pathological heart rate detected). Size and power consumption are optimized in order to provide mobility and comfort to the patient. We have designed a modular hardware system and an autonomous platform based on a Field-Programmable Gate Array (FPGA) for developing and debugging. The modular approach allows to redesign the system in an easy way. Its adaptation to a new biomedical signal would only need small changes on it. The hardware system is composed of three layers that can be plugged/unplugged: communication layer, processing layer and sensor layer. In addition, we also present a general purpose end-user application developed for mobile phones or Personal Digital Assistant devices (PDAs).

  10. Integration of Technology-based Behavioral Health Interventions in Substance Abuse and Addiction Services.

    PubMed

    Ramsey, Alex

    2015-08-01

    The past decade has witnessed revolutionary changes to the delivery of health services, ushered in to a great extent by the introduction of electronic health record systems. More recently, a new class of technological advancements-technology-based behavioral health interventions, which involve the delivery of evidence-informed practices via computers, web-based applications, mobile phones, wearable sensors, or other technological platforms-has emerged and is primed to once again radically shift current models for behavioral healthcare. Despite the promise and potential of these new therapeutic approaches, a greater understanding of the impact of technology-based interventions on cornerstone issues of mental health and addiction services-namely access, quality, and cost -is needed. The current review highlights 1) relevant conceptual frameworks that guide this area of research, 2) key studies that inform the relevance of technology-based interventions for behavioral healthcare access, quality, and cost, 3) pressing methodological issues that require attention, 4) unresolved questions that warrant further investigation, and 5) practical implications that underscore important new directions for this emerging area of research.

  11. Towards Wearable Cognitive Assistance

    DTIC Science & Technology

    2013-12-01

    ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keywords: mobile computing, cloud...It presents a muli-tiered mobile system architecture that offers tight end-to-end latency bounds on compute-intensive cognitive assistance...to an entire neighborhood or an entire city is extremely expensive and time-consuming. Physical infrastructure in public spaces tends to evolve very

  12. CHRONIOUS: a wearable platform for monitoring and management of patients with chronic disease.

    PubMed

    Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I

    2011-01-01

    The CHRONIOUS system has been developed based on an open architecture design that consists of a set of subsystems which interact in order to provide all the needed services to the chronic disease patients. An advanced multi-parametric expert system is being implemented that fuses information effectively from various sources using intelligent techniques. Data are collected by sensors of a body network controlling vital signals while additional tools record dietary habits and plans, drug intake, environmental and biochemical parameters and activity data. The CHRONIOUS platform provides guidelines and standards for the future generations of "chronic disease management systems" and facilitates sophisticated monitoring tools. In addition, an ontological information retrieval system is being delivered satisfying the necessities for up-to-date clinical information of Chronic Obstructive pulmonary disease (COPD) and Chronic Kidney Disease (CKD). Moreover, support tools are being embedded in the system, such as the Mental Tools for the monitoring of patient mental health status. The integrated platform provides real-time patient monitoring and supervision, both indoors and outdoors and represents a generic platform for the management of various chronic diseases.

  13. Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices.

    PubMed

    Batchelor, John C; Yeates, Stephen G; Casson, Alexander J

    2016-08-01

    Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail.

  14. Wearable Internet of Things - from human activity tracking to clinical integration.

    PubMed

    Kumari, Poonam; Lopez-Benitez, Miguel; Gyu Myoung Lee; Tae-Seong Kim; Minhas, Atul S

    2017-07-01

    Wearable devices for human activity tracking have been emerging rapidly. Most of them are capable of sending health statistics to smartphones, smartwatches or smart bands. However, they only provide the data for individual analysis and their data is not integrated into clinical practice. Leveraging on the Internet of Things (IoT), edge and cloud computing technologies, we propose an architecture which is capable of providing cloud based clinical services using human activity data. Such services could supplement the shortage of staff in primary healthcare centers thereby reducing the burden on healthcare service providers. The enormous amount of data created from such services could also be utilized for planning future therapies by studying recovery cycles of existing patients. We provide a prototype based on our architecture and discuss its salient features. We also provide use cases of our system in personalized and home based healthcare services. We propose an International Telecommunication Union based standardization (ITU-T) for our design and discuss future directions in wearable IoT.

  15. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    PubMed Central

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  16. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    PubMed

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  17. TongueToSpeech (TTS): Wearable wireless assistive device for augmented speech.

    PubMed

    Marjanovic, Nicholas; Piccinini, Giacomo; Kerr, Kevin; Esmailbeigi, Hananeh

    2017-07-01

    Speech is an important aspect of human communication; individuals with speech impairment are unable to communicate vocally in real time. Our team has developed the TongueToSpeech (TTS) device with the goal of augmenting speech communication for the vocally impaired. The proposed device is a wearable wireless assistive device that incorporates a capacitive touch keyboard interface embedded inside a discrete retainer. This device connects to a computer, tablet or a smartphone via Bluetooth connection. The developed TTS application converts text typed by the tongue into audible speech. Our studies have concluded that an 8-contact point configuration between the tongue and the TTS device would yield the best user precision and speed performance. On average using the TTS device inside the oral cavity takes 2.5 times longer than the pointer finger using a T9 (Text on 9 keys) keyboard configuration to type the same phrase. In conclusion, we have developed a discrete noninvasive wearable device that allows the vocally impaired individuals to communicate in real time.

  18. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces--a mini-review.

    PubMed

    Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping

    2010-01-01

    Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.

  19. An internet-based wearable watch-over system for elderly and disabled utilizing EMG and accelerometer.

    PubMed

    Kishimoto, M; Yoshida, T; Hayasaka, T; Mori, D; Imai, Y; Matsuki, N; Ishikawa, T; Yamaguchi, T

    2009-01-01

    An effective way for preventing injuries and diseases among the elderly is to monitor their daily lives. In this regard, we propose the use of a "Hyper Hospital Network", which is an information support system for elderly people and patients. In the current study, we developed a wearable system for monitoring electromyography (EMG) and acceleration using the Hyper Hospital Network plan. The current system is an upgraded version of our previous system for gait analysis (Yoshida et al. [13], Telemedicine and e-Health 13 703-714), and lets us monitor decreases in exercise and the presence of a hemiplegic gait more accurately. To clarify the capabilities and reliability of the system, we performed three experimental evaluations: one to verify the performance of the wearable system, a second to detect a hemiplegic gait, and a third to monitor EMG and accelerations simultaneously. Our system successfully detected a lack of exercise by monitoring the iEMG in healthy volunteers. Moreover, by using EMG and acceleration signals simultaneously, the reliability of the Hampering Index (HI) for detecting hemiplegia walking was improved significantly. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical conditions of older persons and patients.

  20. Acceptance of Commercially Available Wearable Activity Trackers Among Adults Aged Over 50 and With Chronic Illness: A Mixed-Methods Evaluation.

    PubMed

    Mercer, Kathryn; Giangregorio, Lora; Schneider, Eric; Chilana, Parmit; Li, Melissa; Grindrod, Kelly

    2016-01-27

    Physical inactivity and sedentary behavior increase the risk of chronic illness and death. The newest generation of "wearable" activity trackers offers potential as a multifaceted intervention to help people become more active. To examine the usability and usefulness of wearable activity trackers for older adults living with chronic illness. We recruited a purposive sample of 32 participants over the age of 50, who had been previously diagnosed with a chronic illness, including vascular disease, diabetes, arthritis, and osteoporosis. Participants were between 52 and 84 years of age (mean 64); among the study participants, 23 (72%) were women and the mean body mass index was 31 kg/m(2). Participants tested 5 trackers, including a simple pedometer (Sportline or Mio) followed by 4 wearable activity trackers (Fitbit Zip, Misfit Shine, Jawbone Up 24, and Withings Pulse) in random order. Selected devices represented the range of wearable products and features available on the Canadian market in 2014. Participants wore each device for at least 3 days and evaluated it using a questionnaire developed from the Technology Acceptance Model. We used focus groups to explore participant experiences and a thematic analysis approach to data collection and analysis. Our study resulted in 4 themes: (1) adoption within a comfort zone; (2) self-awareness and goal setting; (3) purposes of data tracking; and (4) future of wearable activity trackers as health care devices. Prior to enrolling, few participants were aware of wearable activity trackers. Most also had been asked by a physician to exercise more and cited this as a motivation for testing the devices. None of the participants planned to purchase the simple pedometer after the study, citing poor accuracy and data loss, whereas 73% (N=32) planned to purchase a wearable activity tracker. Preferences varied but 50% felt they would buy a Fitbit and 42% felt they would buy a Misfit, Jawbone, or Withings. The simple pedometer had a mean acceptance score of 56/95 compared with 63 for the Withings, 65 for the Misfit and Jawbone, and 68 for the Fitbit. To improve usability, older users may benefit from devices that have better compatibility with personal computers or less-expensive Android mobile phones and tablets, and have comprehensive paper-based user manuals and apps that interpret user data. For older adults living with chronic illness, wearable activity trackers are perceived as useful and acceptable. New users may need support to both set up the device and learn how to interpret their data.

  1. Development of a wearable system module for monitoring physical and mental workload.

    PubMed

    Kim, Sinbae; Nakamura, Hiromi; Yoshida, Toshihiko; Kishimoto, Masamichi; Imai, Yohsuke; Matsuki, Noriaki; Ishikawa, Takuji; Yamaguchi, Takami

    2008-11-01

    The population of most developed countries is rapidly aging, which has created a growing demand for home care. A key issue in medicine is supporting the increasing number of elderly patients, both physically and mentally. In this study, we developed a wearable computer that contained modules for measuring electrocardiograms (ECGs) and femoral artery pulse waves using an accelerometer. This system has several benefits: (a) it can provide a database server in each patient's home; (b) its high extendibility and flexibility facilitate adaptation to a patient's needs; and (c) it allows patients to keep their own data, thus protecting the privacy of personal information. To clarify the capabilities and reliability of the system, we applied it to 8 healthy young volunteers during states of physical and mental work. This system successfully detected clear ECGs and femoral artery pulse waves to calculate important bioinformation, including heart rate, pulse wave velocity, and the power spectral density of spontaneous beat-to-beat oscillations in the R-R interval. In this study, we proposed the way to provide an assessment of the physical and mental condition of the subject using analysis of the bio-information with respect to the physical and mental workloads. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical and mental conditions of older persons and patients.

  2. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation.

    PubMed

    Crea, Simona; Cipriani, Christian; Donati, Marco; Carrozza, Maria Chiara; Vitiello, Nicola

    2015-03-01

    Here we describe a novel wearable feedback apparatus for lower-limb amputees. The system is based on three modules: a pressure-sensitive insole for the measurement of the plantar pressure distribution under the prosthetic foot during gait, a computing unit for data processing and gait segmentation, and a set of vibrating elements placed on the thigh skin. The feedback strategy relies on the detection of specific gait-phase transitions of the amputated leg. Vibrating elements are activated in a time-discrete manner, simultaneously with the occurrence of the detected gait-phase transitions. Usability and effectiveness of the apparatus were successfully assessed through an experimental validation involving ten healthy volunteers.

  3. A remote assessment system with a vision robot and wearable sensors.

    PubMed

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  4. Feasibility Testing of a Wearable Behavioral Aid for Social Learning in Children with Autism.

    PubMed

    Daniels, Jena; Haber, Nick; Voss, Catalin; Schwartz, Jessey; Tamura, Serena; Fazel, Azar; Kline, Aaron; Washington, Peter; Phillips, Jennifer; Winograd, Terry; Feinstein, Carl; Wall, Dennis P

    2018-01-01

    Recent advances in computer vision and wearable technology have created an opportunity to introduce mobile therapy systems for autism spectrum disorders (ASD) that can respond to the increasing demand for therapeutic interventions; however, feasibility questions must be answered first. We studied the feasibility of a prototype therapeutic tool for children with ASD using Google Glass, examining whether children with ASD would wear such a device, if providing the emotion classification will improve emotion recognition, and how emotion recognition differs between ASD participants and neurotypical controls (NC). We ran a controlled laboratory experiment with 43 children: 23 with ASD and 20 NC. Children identified static facial images on a computer screen with one of 7 emotions in 3 successive batches: the first with no information about emotion provided to the child, the second with the correct classification from the Glass labeling the emotion, and the third again without emotion information. We then trained a logistic regression classifier on the emotion confusion matrices generated by the two information-free batches to predict ASD versus NC. All 43 children were comfortable wearing the Glass. ASD and NC participants who completed the computer task with Glass providing audible emotion labeling ( n  = 33) showed increased accuracies in emotion labeling, and the logistic regression classifier achieved an accuracy of 72.7%. Further analysis suggests that the ability to recognize surprise, fear, and neutrality may distinguish ASD cases from NC. This feasibility study supports the utility of a wearable device for social affective learning in ASD children and demonstrates subtle differences in how ASD and NC children perform on an emotion recognition task. Schattauer GmbH Stuttgart.

  5. Diverse Applications of Nanomedicine

    PubMed Central

    2017-01-01

    The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. PMID:28290206

  6. An Integrated Approach for the Monitoring of Brain and Autonomic Response of Children with Autism Spectrum Disorders during Treatment by Wearable Technologies

    PubMed Central

    Billeci, Lucia; Tonacci, Alessandro; Tartarisco, Gennaro; Narzisi, Antonio; Di Palma, Simone; Corda, Daniele; Baldus, Giovanni; Cruciani, Federico; Anzalone, Salvatore M.; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo

    2016-01-01

    Autism Spectrum Disorders (ASD) are associated with physiological abnormalities, which are likely to contribute to the core symptoms of the condition. Wearable technologies can provide data in a semi-naturalistic setting, overcoming the limitations given by the constrained situations in which physiological signals are usually acquired. In this study an integrated system based on wearable technologies for the acquisition and analysis of neurophysiological and autonomic parameters during treatment is proposed and an application on five children with ASD is presented. Signals were acquired during a therapeutic session based on an imitation protocol in ASD children. Data were analyzed with the aim of extracting quantitative EEG (QEEG) features from EEG signals as well as heart rate and heart rate variability (HRV) from ECG. The system allowed evidencing changes in neurophysiological and autonomic response from the state of disengagement to the state of engagement of the children, evidencing a cognitive involvement in the children in the tasks proposed. The high grade of acceptability of the monitoring platform is promising for further development and implementation of the tool. In particular if the results of this feasibility study would be confirmed in a larger sample of subjects, the system proposed could be adopted in more naturalistic paradigms that allow real world stimuli to be incorporated into EEG/psychophysiological studies for the monitoring of the effect of the treatment and for the implementation of more individualized therapeutic programs. PMID:27445652

  7. eButton: A Wearable Computer for Health Monitoring and Personal Assistance

    PubMed Central

    Sun, Mingui; Burke, Lora E.; Mao, Zhi-Hong; Chen, Yiran; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Jia, Wenyan

    2014-01-01

    Recent advances in mobile devices have made profound changes in people's daily lives. In particular, the impact of easy access of information by the smartphone has been tremendous. However, the impact of mobile devices on healthcare has been limited. Diagnosis and treatment of diseases are still initiated by occurrences of symptoms, and technologies and devices that emphasize on disease prevention and early detection outside hospitals are under-developed. Besides healthcare, mobile devices have not yet been designed to fully benefit people with special needs, such as the elderly and those suffering from certain disabilities, such blindness. In this paper, an overview of our research on a new wearable computer called eButton is presented. The concepts of its design and electronic implementation are described. Several applications of the eButton are described, including evaluating diet and physical activity, studying sedentary behavior, assisting the blind and visually impaired people, and monitoring older adults suffering from dementia. PMID:25340176

  8. cStress: Towards a Gold Standard for Continuous Stress Assessment in the Mobile Environment

    PubMed Central

    Hovsepian, Karen; al’Absi, Mustafa; Ertin, Emre; Kamarck, Thomas; Nakajima, Motohiro; Kumar, Santosh

    2015-01-01

    Recent advances in mobile health have produced several new models for inferring stress from wearable sensors. But, the lack of a gold standard is a major hurdle in making clinical use of continuous stress measurements derived from wearable sensors. In this paper, we present a stress model (called cStress) that has been carefully developed with attention to every step of computational modeling including data collection, screening, cleaning, filtering, feature computation, normalization, and model training. More importantly, cStress was trained using data collected from a rigorous lab study with 21 participants and validated on two independently collected data sets — in a lab study on 26 participants and in a week-long field study with 20 participants. In testing, the model obtains a recall of 89% and a false positive rate of 5% on lab data. On field data, the model is able to predict each instantaneous self-report with an accuracy of 72%. PMID:26543926

  9. Wearable flex sensor system for multiple badminton player grip identification

    NASA Astrophysics Data System (ADS)

    Jacob, Alvin; Zakaria, Wan Nurshazwani Wan; Tomari, Mohd Razali Bin Md; Sek, Tee Kian; Suberi, Anis Azwani Muhd

    2017-09-01

    This paper focuses on the development of a wearable sensor system to identify the different types of badminton grip that is used by a player during training. Badminton movements and strokes are fast and dynamic, where most of the involved movement are difficult to identify with the naked eye. Also, the usage of high processing optometric motion capture system is expensive and causes computational burden. Therefore, this paper suggests the development of a sensorized glove using flex sensor to measure a badminton player's finger flexion angle. The proposed Hand Monitoring Module (HMM) is connected to a personal computer through Bluetooth to enable wireless data transmission. The usability and feasibility of the HMM to identify different grip types were examined through a series of experiments, where the system exhibited 70% detection ability for the five different grip type. The outcome plays a major role in training players to use the proper grips for a badminton stroke to achieve a more powerful and accurate stroke execution.

  10. Design and Evaluation of a Pervasive Coaching and Gamification Platform for Young Diabetes Patients.

    PubMed

    Klaassen, Randy; Bul, Kim C M; Op den Akker, Rieks; van der Burg, Gert Jan; Kato, Pamela M; Di Bitonto, Pierpaolo

    2018-01-30

    Self monitoring, personal goal-setting and coaching, education and social support are strategies to help patients with chronic conditions in their daily care. Various tools have been developed, e.g., mobile digital coaching systems connected with wearable sensors, serious games and patient web portals to personal health records, that aim to support patients with chronic conditions and their caregivers in realizing the ideal of self-management. We describe a platform that integrates these tools to support young patients in diabetes self-management through educational game playing, monitoring and motivational feedback. We describe the design of the platform referring to principles from healthcare, persuasive system design and serious game design. The virtual coach is a game guide that can also provide personalized feedback about the user's daily care related activities which have value for making progress in the game world. User evaluations with patients under pediatric supervision revealed that the use of mobile technology in combination with web-based elements is feasible but some assumptions made about how users would connect to the platform were not satisfied in reality, resulting in less than optimal user experiences. We discuss challenges with suggestions for further development of integrated pervasive coaching and gamification platforms in medical practice.

  11. Design and Evaluation of a Pervasive Coaching and Gamification Platform for Young Diabetes Patients †

    PubMed Central

    Klaassen, Randy; Bul, Kim C. M.; op den Akker, Rieks; van der Burg, Gert Jan; Di Bitonto, Pierpaolo

    2018-01-01

    Self monitoring, personal goal-setting and coaching, education and social support are strategies to help patients with chronic conditions in their daily care. Various tools have been developed, e.g., mobile digital coaching systems connected with wearable sensors, serious games and patient web portals to personal health records, that aim to support patients with chronic conditions and their caregivers in realizing the ideal of self-management. We describe a platform that integrates these tools to support young patients in diabetes self-management through educational game playing, monitoring and motivational feedback. We describe the design of the platform referring to principles from healthcare, persuasive system design and serious game design. The virtual coach is a game guide that can also provide personalized feedback about the user’s daily care related activities which have value for making progress in the game world. User evaluations with patients under pediatric supervision revealed that the use of mobile technology in combination with web-based elements is feasible but some assumptions made about how users would connect to the platform were not satisfied in reality, resulting in less than optimal user experiences. We discuss challenges with suggestions for further development of integrated pervasive coaching and gamification platforms in medical practice. PMID:29385750

  12. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application.

    PubMed

    Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho

    2010-03-01

    Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.

  13. Fusion solution for soldier wearable gunfire detection systems

    NASA Astrophysics Data System (ADS)

    Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin

    2012-06-01

    Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.

  14. Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects.

    PubMed

    Brown, Matthew S; Ashley, Brandon; Koh, Ahyeon

    2018-01-01

    Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress.

  15. Sequence Learning with Passive RFID Sensors for Real-Time Bed-Egress Recognition in Older People.

    PubMed

    Wickramasinghe, Asanga; Ranasinghe, Damith C; Fumeaux, Christophe; Hill, Keith D; Visvanathan, Renuka

    2017-07-01

    Getting out of bed and ambulating without supervision is identified as one of the major causes of patient falls in hospitals and nursing homes. Therefore, increased supervision is proposed as a key strategy toward falls prevention. An emerging generation of batteryless, lightweight, and wearable sensors are creating new possibilities for ambulatory monitoring, where the unobtrusive nature of such sensors makes them particularly adapted for monitoring older people. In this study, we investigate the use of a batteryless radio-frequency identification (RFID) tag response to analyze bed-egress movements. We propose a bed-egress movement detection framework that includes a novel sequence learning classifier with a set of features derived from bed-egress motion analysis. We analyzed data from 14 healthy older people (66-86 years old) who wore a wearable embodiment of a batteryless accelerometer integrated RFID sensor platform loosely attached over their clothes at sternum level, and undertook a series of activities including bed-egress in two clinical room settings. The promising results indicate the efficacy of our batteryless bed-egress monitoring framework.

  16. A paraeducator glove for counting disabled-child behaviors that incorporates a Bluetooth Low Energy wireless link to a smart phone.

    PubMed

    Luan, Shiwei; Gude, Dana; Prakash, Punit; Warren, Steve

    2014-01-01

    Behavior tracking with severely disabled children can be a challenge, since dealing directly with a child's behavior is more immediately pressing than the need to record an event for tracking purposes. By the time a paraeducator (`para') is able to break away and record events, behavior counts can be forgotten. This paper presents a paraeducator glove design that can help to track behaviors with minimal distraction by allowing a paraeducator to touch their thumb to one of their other four fingers, where each finger represents a different behavior. Count data are packaged by a microcontroller board on the glove and then sent wirelessly to a smart phone via a Bluetooth Low Energy (BLE) link. A customized BLE profile was designed for this application to promote real-time recording. These data can be forwarded to a database for further analysis. This para glove design addresses basic needs of a wearable device that employs BLE, including local data collection, BLE data transmission, and remote data recording. More functional sensors can be added to this platform to support other wearable scenarios.

  17. Engaging Overweight Adolescents in a Health and Fitness Program Using Wearable Activity Trackers.

    PubMed

    Wilson, Marian; Ramsay, Samantha; Young, Kimberly J

    Our objectives were to (a) examine feasibility and receptivity of overweight adolescents joining a community-based group fitness program and (b) test preliminary efficacy of a 12-week pilot intervention designed to promote health, fitness, and self-efficacy for the identified teens. The 12-week fitness program for overweight adolescents was developed and included planned physical activities, nutrition classes, and goal-setting sessions. A one-group pre-/posttest study design evaluated 20 participants from grades 10 through 12 who enrolled in the program pilot study. Participants were given a wearable activity tracker that captured data using an Internet-based platform. Outcome measures included body mass index, screen time, fitness, and cardiovascular measures. A community fitness program for overweight adolescents was successfully implemented. High school students were receptive to the intervention and reported high program satisfaction. Positive effects included measurements of strength, systolic blood pressure, weight, and screen time behaviors. This study provides evidence to support the feasibility, acceptance, and preliminary effects of the pilot program with overweight adolescents. Copyright © 2017 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  18. Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects

    PubMed Central

    Brown, Matthew S.; Ashley, Brandon; Koh, Ahyeon

    2018-01-01

    Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress. PMID:29755977

  19. All-soft, battery-free, and wireless chemical sensing platform based on liquid metal for liquid- and gas-phase VOC detection.

    PubMed

    Kim, Min-Gu; Alrowais, Hommood; Kim, Choongsoon; Yeon, Pyungwoo; Ghovanloo, Maysam; Brand, Oliver

    2017-06-27

    Lightweight, flexible, stretchable, and wireless sensing platforms have gained significant attention for personal healthcare and environmental monitoring applications. This paper introduces an all-soft (flexible and stretchable), battery-free, and wireless chemical microsystem using gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS), fabricated using an advanced liquid metal thin-line patterning technique based on soft lithography. Considering its flexible, stretchable, and lightweight characteristics, the proposed sensing platform is well suited for wearable sensing applications either on the skin or on clothing. Using the microfluidic sensing platform, detection of liquid-phase and gas-phase volatile organic compounds (VOC) is demonstrated using the same design, which gives an opportunity to have the sensor operate under different working conditions and environments. In the case of liquid-phase chemical sensing, the wireless sensing performance and microfluidic capacitance tunability for different dielectric liquids are evaluated using analytical, numerical, and experimental approaches. In the case of gas-phase chemical sensing, PDMS is used both as a substrate and a sensing material. The gas sensing performance is evaluated and compared to a silicon-based, solid-state gas sensor with a PDMS sensing film.

  20. Computational neurorehabilitation: modeling plasticity and learning to predict recovery.

    PubMed

    Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas

    2016-04-30

    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

  1. A wearable, mobile phone-based respiration monitoring system for sleep apnea syndrome detection.

    PubMed

    Ishida, Ryoichi; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton

    2005-01-01

    A new wearable respiration monitoring system has been developed for non-invasive detection of sleep apnea syndrome. The system, which is attached to a shirt, consists of a piezoelectric sensor, a low-power 8-bit single chip microcontroller, EEPROM and a 2.4 GHz low-power transmitting mobile phone (PHS). The piezoelectric sensor, whose electrical polarization voltage is produced by body movements, is installed inside the shirt and closely contacts the patient's chest. The low frequency components of body movements recorded by the sensor are mainly generated by respiration. The microcontroller sequentially stores the movement signal to the EEPROM for 5 minutes and detects, by time-frequency analysis, whether the patient has breathed during that time. When the patient is apneic for 10 sseconds, the microcontroller sends the recorded respiration waveform during and one minute before and after the apnea directly to the hospital server computer via the mobile phone. The server computer then creates apnea "filings" automatically for every patient. The system can be used at home and be self-applied by patients. Moreover, the system does not require any extra equipment such as a personal computer, PDA, or Internet connection.

  2. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    PubMed

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  3. Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care.

    PubMed

    Bayo-Monton, Jose-Luis; Martinez-Millana, Antonio; Han, Weisi; Fernandez-Llatas, Carlos; Sun, Yan; Traver, Vicente

    2018-06-06

    Health and sociological indicators alert that life expectancy is increasing, hence so are the years that patients have to live with chronic diseases and co-morbidities. With the advancement in ICT, new tools and paradigms are been explored to provide effective and efficient health care. Telemedicine and health sensors stand as indispensable tools for promoting patient engagement, self-management of diseases and assist doctors to remotely follow up patients. In this paper, we evaluate a rapid prototyping solution for information merging based on five health sensors and two low-cost ubiquitous computing components: Arduino and Raspberry Pi. Our study, which is entirely described with the purpose of reproducibility, aimed to evaluate the extent to which portable technologies are capable of integrating wearable sensors by comparing two deployment scenarios: Raspberry Pi 3 and Personal Computer. The integration is implemented using a choreography engine to transmit data from sensors to a display unit using web services and a simple communication protocol with two modes of data retrieval. Performance of the two set-ups is compared by means of the latency in the wearable data transmission and data loss. PC has a delay of 0.051 ± 0.0035 s (max = 0.2504 s), whereas the Raspberry Pi yields a delay of 0.0175 ± 0.149 s (max = 0.294 s) for N = 300. Our analysis confirms that portable devices ( p < < 0 . 01 ) are suitable to support the transmission and analysis of biometric signals into scalable telemedicine systems.

  4. Acceptance of Commercially Available Wearable Activity Trackers Among Adults Aged Over 50 and With Chronic Illness: A Mixed-Methods Evaluation

    PubMed Central

    Mercer, Kathryn; Giangregorio, Lora; Schneider, Eric; Chilana, Parmit; Li, Melissa

    2016-01-01

    Background Physical inactivity and sedentary behavior increase the risk of chronic illness and death. The newest generation of “wearable” activity trackers offers potential as a multifaceted intervention to help people become more active. Objective To examine the usability and usefulness of wearable activity trackers for older adults living with chronic illness. Methods We recruited a purposive sample of 32 participants over the age of 50, who had been previously diagnosed with a chronic illness, including vascular disease, diabetes, arthritis, and osteoporosis. Participants were between 52 and 84 years of age (mean 64); among the study participants, 23 (72%) were women and the mean body mass index was 31 kg/m2. Participants tested 5 trackers, including a simple pedometer (Sportline or Mio) followed by 4 wearable activity trackers (Fitbit Zip, Misfit Shine, Jawbone Up 24, and Withings Pulse) in random order. Selected devices represented the range of wearable products and features available on the Canadian market in 2014. Participants wore each device for at least 3 days and evaluated it using a questionnaire developed from the Technology Acceptance Model. We used focus groups to explore participant experiences and a thematic analysis approach to data collection and analysis. Results Our study resulted in 4 themes: (1) adoption within a comfort zone; (2) self-awareness and goal setting; (3) purposes of data tracking; and (4) future of wearable activity trackers as health care devices. Prior to enrolling, few participants were aware of wearable activity trackers. Most also had been asked by a physician to exercise more and cited this as a motivation for testing the devices. None of the participants planned to purchase the simple pedometer after the study, citing poor accuracy and data loss, whereas 73% (N=32) planned to purchase a wearable activity tracker. Preferences varied but 50% felt they would buy a Fitbit and 42% felt they would buy a Misfit, Jawbone, or Withings. The simple pedometer had a mean acceptance score of 56/95 compared with 63 for the Withings, 65 for the Misfit and Jawbone, and 68 for the Fitbit. To improve usability, older users may benefit from devices that have better compatibility with personal computers or less-expensive Android mobile phones and tablets, and have comprehensive paper-based user manuals and apps that interpret user data. Conclusions For older adults living with chronic illness, wearable activity trackers are perceived as useful and acceptable. New users may need support to both set up the device and learn how to interpret their data. PMID:26818775

  5. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    NASA Astrophysics Data System (ADS)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  6. Cellulose Nanofiber Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2012-01-01

    Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...

  7. Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2013-01-01

    Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...

  8. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    USDA-ARS?s Scientific Manuscript database

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing h...

  9. Techno-Human Mesh: The Growing Power of Information Technologies.

    ERIC Educational Resources Information Center

    West, Cynthia K.

    This book examines the intersection of information technologies, power, people, and bodies. It explores how information technologies are on a path of creating efficiency, productivity, profitability, surveillance, and control, and looks at the ways in which human-machine interface technologies, such as wearable computers, biometric technologies,…

  10. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management.

    PubMed

    Lee, Yongkuk; Howe, Connor; Mishra, Saswat; Lee, Dong Sup; Mahmood, Musa; Piper, Matthew; Kim, Youngbin; Tieu, Katie; Byun, Hun-Soo; Coffey, James P; Shayan, Mahdis; Chun, Youngjae; Costanzo, Richard M; Yeo, Woon-Hong

    2018-05-22

    Recent wearable devices offer portable monitoring of biopotentials, heart rate, or physical activity, allowing for active management of human health and wellness. Such systems can be inserted in the oral cavity for measuring food intake in regard to controlling eating behavior, directly related to diseases such as hypertension, diabetes, and obesity. However, existing devices using plastic circuit boards and rigid sensors are not ideal for oral insertion. A user-comfortable system for the oral cavity requires an ultrathin, low-profile, and soft electronic platform along with miniaturized sensors. Here, we introduce a stretchable hybrid electronic system that has an exceptionally small form factor, enabling a long-range wireless monitoring of sodium intake. Computational study of flexible mechanics and soft materials provides fundamental aspects of key design factors for a tissue-friendly configuration, incorporating a stretchable circuit and sensor. Analytical calculation and experimental study enables reliable wireless circuitry that accommodates dynamic mechanical stress. Systematic in vitro modeling characterizes the functionality of a sodium sensor in the electronics. In vivo demonstration with human subjects captures the device feasibility for real-time quantification of sodium intake, which can be used to manage hypertension.

  11. CHRONIOUS: an open, ubiquitous and adaptive chronic disease management platform for chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD) and renal insufficiency.

    PubMed

    Rosso, R; Munaro, G; Salvetti, O; Colantonio, S; Ciancitto, F

    2010-01-01

    CHRONIOUS is an highly innovative Information and Communication Technologies (ICT) research Initiative that aspires to implement its vision for ubiquitous health and lifestyle monitoring. The 17 European project partners are strictly working together since February 2008 to realize and open platform to manage and monitor elderly patients with chronic diseases and many difficulties to reach hospital centers for routine controls. The testing activities will be done in Italy and Spain involving COPD (Chronic Obstructive Pulmonary Disease) and CKD (Chronic Kidney Disease) patients, these being widespread and highly expensive in terms of social and economic costs. Patients, equipped by wearable technologies and sensors and interacting with lifestyle interfaces, will be assisted by healthcare personnel able to check the health record and critical conditions through the Chronious platform data analysis and decision support system. Additionally, the new ontology based literature search engine will help the clinicians in the standardization of care delivery process. This paper is to present the main project objectives and its principal components from the intelligent system point of view.

  12. Automatic fall monitoring: a review.

    PubMed

    Pannurat, Natthapon; Thiemjarus, Surapa; Nantajeewarawat, Ekawit

    2014-07-18

    Falls and fall-related injuries are major incidents, especially for elderly people, which often mark the onset of major deterioration of health. More than one-third of home-dwelling people aged 65 or above and two-thirds of those in residential care fall once or more each year. Reliable fall detection, as well as prevention, is an important research topic for monitoring elderly living alone in residential or hospital units. The aim of this study is to review the existing fall detection systems and some of the key research challenges faced by the research community in this field. We categorize the existing platforms into two groups: wearable and ambient devices; the classification methods are divided into rule-based and machine learning techniques. The relative merit and potential drawbacks are discussed, and we also outline some of the outstanding research challenges that emerging new platforms need to address.

  13. Implementation of a smartphone as a wireless gyroscope platform for quantifying reduced arm swing in hemiplegie gait with machine learning classification by multilayer perceptron neural network.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2016-08-01

    Natural gait consists of synchronous and rhythmic patterns for both the lower and upper limb. People with hemiplegia can experience reduced arm swing, which can negatively impact the quality of gait. Wearable and wireless sensors, such as through a smartphone, have demonstrated the ability to quantify various features of gait. With a software application the smartphone (iPhone) can function as a wireless gyroscope platform capable of conveying a gyroscope signal recording as an email attachment by wireless connectivity to the Internet. The gyroscope signal recordings of the affected hemiplegic arm with reduced arm swing arm and the unaffected arm are post-processed into a feature set for machine learning. Using a multilayer perceptron neural network a considerable degree of classification accuracy is attained to distinguish between the affected hemiplegic arm with reduced arm swing arm and the unaffected arm.

  14. Automatic Fall Monitoring: A Review

    PubMed Central

    Pannurat, Natthapon; Thiemjarus, Surapa; Nantajeewarawat, Ekawit

    2014-01-01

    Falls and fall-related injuries are major incidents, especially for elderly people, which often mark the onset of major deterioration of health. More than one-third of home-dwelling people aged 65 or above and two-thirds of those in residential care fall once or more each year. Reliable fall detection, as well as prevention, is an important research topic for monitoring elderly living alone in residential or hospital units. The aim of this study is to review the existing fall detection systems and some of the key research challenges faced by the research community in this field. We categorize the existing platforms into two groups: wearable and ambient devices; the classification methods are divided into rule-based and machine learning techniques. The relative merit and potential drawbacks are discussed, and we also outline some of the outstanding research challenges that emerging new platforms need to address. PMID:25046016

  15. Low Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease

    PubMed Central

    Dieffenderfer, James; Goodell, Henry; Mills, Steven; McKnight, Michael; Yao, Shanshan; Lin, Feiyan; Beppler, Eric; Bent, Brinnae; Lee, Bongmook; Misra, Veena; Zhu, Yong; Oralkan, Omer; Strohmaier, Jason; Muth, John; Peden, David; Bozkurt, Alper

    2016-01-01

    We present our efforts towards enabling a wearable sensor system that allows for the correlation of individual environmental exposures to physiologic and subsequent adverse health responses. This system will permit a better understanding of the impact of increased ozone levels and other pollutants on chronic asthma conditions. We discuss the inefficiency of existing commercial off-the-shelf components to achieve continuous monitoring and our system-level and nano-enabled efforts towards improving the wearability and power consumption. Our system consists of a wristband, a chest patch, and a handheld spirometer. We describe our preliminary efforts to achieve a sub-milliwatt system ultimately powered by the energy harvested from thermal radiation and motion of the body with the primary contributions being an ultra-low power ozone sensor, an volatile organic compounds sensor, spirometer, and the integration of these and other sensors in a multimodal sensing platform. The measured environmental parameters include ambient ozone concentration, temperature, and relative humidity. Our array of sensors also assesses heart rate via photoplethysmography and electrocardiography, respiratory rate via photoplethysmography, skin impedance, three-axis acceleration, wheezing via a microphone, and expiratory airflow. The sensors on the wristband, chest patch, and spirometer consume 0.83, 0.96, and 0.01 milliwatts respectively. The data from each sensor is continually streamed to a peripheral data aggregation device and is subsequently transferred to a dedicated server for cloud storage. Future work includes reducing the power consumption of the system-on-chip including radio to reduce the entirety of each described system in the sub-milliwatt range. PMID:27249840

  16. Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease.

    PubMed

    Dieffenderfer, James; Goodell, Henry; Mills, Steven; McKnight, Michael; Yao, Shanshan; Lin, Feiyan; Beppler, Eric; Bent, Brinnae; Lee, Bongmook; Misra, Veena; Zhu, Yong; Oralkan, Omer; Strohmaier, Jason; Muth, John; Peden, David; Bozkurt, Alper

    2016-09-01

    We present our efforts toward enabling a wearable sensor system that allows for the correlation of individual environmental exposures with physiologic and subsequent adverse health responses. This system will permit a better understanding of the impact of increased ozone levels and other pollutants on chronic asthma conditions. We discuss the inefficiency of existing commercial off-the-shelf components to achieve continuous monitoring and our system-level and nano-enabled efforts toward improving the wearability and power consumption. Our system consists of a wristband, a chest patch, and a handheld spirometer. We describe our preliminary efforts to achieve a submilliwatt system ultimately powered by the energy harvested from thermal radiation and motion of the body with the primary contributions being an ultralow-power ozone sensor, an volatile organic compounds sensor, spirometer, and the integration of these and other sensors in a multimodal sensing platform. The measured environmental parameters include ambient ozone concentration, temperature, and relative humidity. Our array of sensors also assesses heart rate via photoplethysmography and electrocardiography, respiratory rate via photoplethysmography, skin impedance, three-axis acceleration, wheezing via a microphone, and expiratory airflow. The sensors on the wristband, chest patch, and spirometer consume 0.83, 0.96, and 0.01 mW, respectively. The data from each sensor are continually streamed to a peripheral data aggregation device and are subsequently transferred to a dedicated server for cloud storage. Future work includes reducing the power consumption of the system-on-chip including radio to reduce the entirety of each described system in the submilliwatt range.

  17. Recent Advances in Biointegrated Optoelectronic Devices.

    PubMed

    Xu, Huihua; Yin, Lan; Liu, Chuan; Sheng, Xing; Zhao, Ni

    2018-05-28

    With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy.

    PubMed

    McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan

    2016-01-01

    Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.

  19. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy

    PubMed Central

    McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan

    2016-01-01

    Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the “wild”. We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain’s Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design. PMID:27242480

  20. A Compressed Sensing-Based Wearable Sensor Network for Quantitative Assessment of Stroke Patients

    PubMed Central

    Yu, Lei; Xiong, Daxi; Guo, Liquan; Wang, Jiping

    2016-01-01

    Clinical rehabilitation assessment is an important part of the therapy process because it is the premise for prescribing suitable rehabilitation interventions. However, the commonly used assessment scales have the following two drawbacks: (1) they are susceptible to subjective factors; (2) they only have several rating levels and are influenced by a ceiling effect, making it impossible to exactly detect any further improvement in the movement. Meanwhile, energy constraints are a primary design consideration in wearable sensor network systems since they are often battery-operated. Traditionally, for wearable sensor network systems that follow the Shannon/Nyquist sampling theorem, there are many data that need to be sampled and transmitted. This paper proposes a novel wearable sensor network system to monitor and quantitatively assess the upper limb motion function, based on compressed sensing technology. With the sparse representation model, less data is transmitted to the computer than with traditional systems. The experimental results show that the accelerometer signals of Bobath handshake and shoulder touch exercises can be compressed, and the length of the compressed signal is less than 1/3 of the raw signal length. More importantly, the reconstruction errors have no influence on the predictive accuracy of the Brunnstrom stage classification model. It also indicated that the proposed system can not only reduce the amount of data during the sampling and transmission processes, but also, the reconstructed accelerometer signals can be used for quantitative assessment without any loss of useful information. PMID:26861337

  1. A Compressed Sensing-Based Wearable Sensor Network for Quantitative Assessment of Stroke Patients.

    PubMed

    Yu, Lei; Xiong, Daxi; Guo, Liquan; Wang, Jiping

    2016-02-05

    Clinical rehabilitation assessment is an important part of the therapy process because it is the premise for prescribing suitable rehabilitation interventions. However, the commonly used assessment scales have the following two drawbacks: (1) they are susceptible to subjective factors; (2) they only have several rating levels and are influenced by a ceiling effect, making it impossible to exactly detect any further improvement in the movement. Meanwhile, energy constraints are a primary design consideration in wearable sensor network systems since they are often battery-operated. Traditionally, for wearable sensor network systems that follow the Shannon/Nyquist sampling theorem, there are many data that need to be sampled and transmitted. This paper proposes a novel wearable sensor network system to monitor and quantitatively assess the upper limb motion function, based on compressed sensing technology. With the sparse representation model, less data is transmitted to the computer than with traditional systems. The experimental results show that the accelerometer signals of Bobath handshake and shoulder touch exercises can be compressed, and the length of the compressed signal is less than 1/3 of the raw signal length. More importantly, the reconstruction errors have no influence on the predictive accuracy of the Brunnstrom stage classification model. It also indicated that the proposed system can not only reduce the amount of data during the sampling and transmission processes, but also, the reconstructed accelerometer signals can be used for quantitative assessment without any loss of useful information.

  2. Wearable Notification via Dissemination Service in a Pervasive Computing Environment

    DTIC Science & Technology

    2015-09-01

    context, state, and environment in a manner that would be transparent to a Soldier’s common operations. 15. SUBJECT TERMS pervasive computing, Android ...of user context shifts, i.e., changes in the user’s position, history , workflow, or resource interests. If the PCE is described as a 2-component...convenient viewing on the Glass’s screen just above the line of sight. All of the software developed uses Google’s Android open-source software stack

  3. Wearable energy sources based on 2D materials.

    PubMed

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  4. Advanced Visual and Instruction Systems for Maintenance Support (AVIS-MS)

    DTIC Science & Technology

    2006-12-01

    Hayashi , "Augmentable Reality: Situated Communication through Physical and Digital Spaces," Proc. 2nd Int’l Symp. Wearable Computers, IEEE CS Press...H. Ohno , "An Optical See-through Display for Mutual Occlusion of Real and Virtual Environments," Proc. Int’l Symp. Augmented Reality 2000 (ISARO0

  5. A Haptic Glove as a Tactile-Vision Sensory Substitution for Wayfinding.

    ERIC Educational Resources Information Center

    Zelek, John S.; Bromley, Sam; Asmar, Daniel; Thompson, David

    2003-01-01

    A device that relays navigational information using a portable tactile glove and a wearable computer and camera system was tested with nine adults with visual impairments. Paths traversed by subjects negotiating an obstacle course were not qualitatively different from paths produced with existing wayfinding devices and hitting probabilities were…

  6. The energy-efficient implementation of an adaptive-filtering-based QRS complex detection method for wearable devices

    NASA Astrophysics Data System (ADS)

    Tian, Shudong; Han, Jun; Yang, Jianwei; Zeng, Xiaoyang

    2017-10-01

    Electrocardiogram (ECG) can be used as a valid way for diagnosing heart disease. To fulfill ECG processing in wearable devices by reducing computation complexity and hardware cost, two kinds of adaptive filters are designed to perform QRS complex detection and motion artifacts removal, respectively. The proposed design achieves a sensitivity of 99.49% and a positive predictivity of 99.72%, tested under the MIT-BIH ECG database. The proposed design is synthesized under the SMIC 65-nm CMOS technology and verified by post-synthesis simulation. Experimental results show that the power consumption and area cost of this design are of 160 μW and 1.09 × 10 5 μm2, respectively. Project supported by the National Natural Science Foundation of China (Nos. 61574040, 61234002, 61525401).

  7. Remotely Delivered Exercise-Based Cardiac Rehabilitation: Design and Content Development of a Novel mHealth Platform.

    PubMed

    Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph

    2016-06-24

    Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.

  8. Wearable electroencephalography. What is it, why is it needed, and what does it entail?

    PubMed

    Casson, Alexander; Yates, David; Smith, Shelagh; Duncan, John; Rodriguez-Villegas, Esther

    2010-01-01

    The electroencephalogram (EEG) is a classic noninvasive method for measuring a person's brain waves and is used in a large number of fields: from epilepsy and sleep disorder diagnosis to brain-computer interfaces (BCIs). Electrodes are placed on the scalp to detect the microvolt-sized signals that result from synchronized neuronal activity within the brain. Current long-term EEG monitoring is generally either carried out as an inpatient in combination with video recording and long cables to an amplifier and recording unit or is ambulatory. In the latter, the EEG recorder is portable but bulky, and in principle, the subject can go about their normal daily life during the recording. In practice, however, this is rarely the case. It is quite common for people undergoing ambulatory EEG monitoring to take time off work and stay at home rather than be seen in public with such a device. Wearable EEG is envisioned as the evolution of ambulatory EEG units from the bulky, limited lifetime devices available today to small devices present only on the head that can record EEG for days, weeks, or months at a time. Such miniaturized units could enable prolonged monitoring of chronic conditions such as epilepsy and greatly improve the end-user acceptance of BCI systems. In this article, we aim to provide a review and overview of wearable EEG technology, answering the questions: What is it, why is it needed, and what does it entail? We first investigate the requirements of portable EEG systems and then link these to the core applications of wearable EEG technology: epilepsy diagnosis, sleep disorder diagnosis, and BCIs. As a part of our review, we asked 21 neurologists (as a key user group) for their views on wearable EEG. This group highlighted that wearable EEG will be an essential future tool. Our descriptions here will focus mainly on epilepsy and the medical applications of wearable EEG, as this is the historical background of the EEG, our area of expertise, and a core motivating area in itself, but we will also discuss the other application areas. We continue by considering the forthcoming research challenges, principally new electrode technology and lower power electronics, and we outline our approach for dealing with the electronic power issues. We believe that the optimal approach to realizing wearable EEG technology is not to optimize any one part but to find the best set of tradeoffs at both the system and implementation level. In this article, we discuss two of these tradeoffs in detail: investigating the online compression of EEG data to reduce the system power consumption and the optimal method for providing this data compression.

  9. Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2010-01-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue–computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2–C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course. PMID:20332552

  10. Computational Analysis of a Thermoelectric Generator for Waste-Heat Harvesting in Wearable Systems

    NASA Astrophysics Data System (ADS)

    Kossyvakis, D. N.; Vassiliadis, S. G.; Vossou, C. G.; Mangiorou, E. E.; Potirakis, S. M.; Hristoforou, E. V.

    2016-06-01

    Over recent decades, a constantly growing interest in the field of portable electronic devices has been observed. Recent developments in the scientific areas of integrated circuits and sensing technologies have enabled realization and design of lightweight low-power wearable sensing systems that can be of great use, especially for continuous health monitoring and performance recording applications. However, to facilitate wide penetration of such systems into the market, the issue of ensuring their seamless and reliable power supply still remains a major concern. In this work, the performance of a thermoelectric generator, able to exploit the temperature difference established between the human body and the environment, has been examined computationally using ANSYS 14.0 finite-element modeling (FEM) software, as a means for providing the necessary power to various portable electronic systems. The performance variation imposed due to different thermoelement geometries has been estimated to identify the most appropriate solution for the considered application. Furthermore, different ambient temperature and heat exchange conditions between the cold side of the generator and the environment have been investigated. The computational analysis indicated that power output in the order of 1.8 mW can be obtained by a 100-cm2 system, if specific design criteria can be fulfilled.

  11. What is the Best Configuration of Wearable Sensors to Measure Spatiotemporal Gait Parameters in Children with Cerebral Palsy?

    PubMed Central

    Carcreff, Lena; Paraschiv-Ionescu, Anisoara; De Coulon, Geraldo; Armand, Stéphane; Aminian, Kamiar

    2018-01-01

    Wearable inertial devices have recently been used to evaluate spatiotemporal parameters of gait in daily life situations. Given the heterogeneity of gait patterns in children with cerebral palsy (CP), the sensor placement and analysis algorithm may influence the validity of the results. This study aimed at comparing the spatiotemporal measurement performances of three wearable configurations defined by different sensor positioning on the lower limbs: (1) shanks and thighs, (2) shanks, and (3) feet. The three configurations were selected based on their potential to be used in daily life for children with CP and typically developing (TD) controls. For each configuration, dedicated gait analysis algorithms were used to detect gait events and compute spatiotemporal parameters. Fifteen children with CP and 11 TD controls were included. Accuracy, precision, and agreement of the three configurations were determined in comparison with an optoelectronic system as a reference. The three configurations were comparable for the evaluation of TD children and children with a low level of disability (CP-GMFCS I) whereas the shank-and-thigh-based configuration was more robust regarding children with a higher level of disability (CP-GMFCS II–III). PMID:29385700

  12. An affordable wearable video system for emergency response training

    NASA Astrophysics Data System (ADS)

    King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.

    2009-02-01

    Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.

  13. Human-technology Integration

    NASA Astrophysics Data System (ADS)

    Mullen, Katharine M.

    Human-technology integration is the replacement of human parts and extension of human capabilities with engineered devices and substrates. Its result is hybrid biological-artificial systems. We discuss here four categories of products furthering human-technology integration: wearable computers, pervasive computing environments, engineered tissues and organs, and prosthetics, and introduce examples of currently realized systems in each category. We then note that realization of a completely artificial sytem via the path of human-technology integration presents the prospect of empirical confirmation of an aware artificially embodied system.

  14. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  15. Using Technology to Improve Cancer Care: Social Media, Wearables, and Electronic Health Records.

    PubMed

    Fisch, Michael J; Chung, Arlene E; Accordino, Melissa K

    2016-01-01

    Digital engagement has become pervasive in the delivery of cancer care. Internet- and cellular phone-based tools and systems are allowing large groups of people to engage with each other and share information. Health systems and individual health professionals are adapting to this revolution in consumer and patient behavior by developing ways to incorporate the benefits of technology for the purpose of improving the quality of medical care. One example is the use of social media platforms by oncologists to foster interaction with each other and to participate with the lay public in dialogue about science, medicine, and cancer care. In addition, consumer devices and sensors (wearables) have provided a new, growing dimension of digital engagement and another layer of patient-generated health data to foster better care and research. Finally, electronic health records have become the new standard for oncology care delivery, bringing new opportunities to measure quality in real time and follow practice patterns, as well as new challenges as providers and patients seek ways to integrate this technology along with other forms of digital engagement to produce more satisfaction in the process of care along with measurably better outcomes.

  16. A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area

    PubMed Central

    Rodríguez-Martín, Daniel; Pérez-López, Carlos; Samà, Albert; Cabestany, Joan; Català, Andreu

    2013-01-01

    Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU), which are wearable and comfortable devices with long battery life. The IMU's movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A μSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson's disease symptoms, in gait analysis, and in a fall detection system. PMID:24145917

  17. A wearable inertial measurement unit for long-term monitoring in the dependency care area.

    PubMed

    Rodríguez-Martín, Daniel; Pérez-López, Carlos; Samà, Albert; Cabestany, Joan; Català, Andreu

    2013-10-18

    Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU), which are wearable and comfortable devices with long battery life. The IMU's movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A µSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson's disease symptoms, in gait analysis, and in a fall detection system.

  18. Gait Analysis Using Wearable Sensors

    PubMed Central

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  19. Smart portable rehabilitation devices.

    PubMed

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-07-12

    The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved.

  20. Smart portable rehabilitation devices

    PubMed Central

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-01-01

    Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. Conclusion Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved. PMID:16011801

  1. Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review

    PubMed Central

    Rooksby, John; Gray, Cindy M

    2018-01-01

    Background Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. Objectives This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. Method An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. Results A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). Conclusions The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines. PMID:29572200

  2. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    PubMed

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  3. Wearable strain sensors based on thin graphite films for human activity monitoring

    NASA Astrophysics Data System (ADS)

    Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi

    2017-12-01

    Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.

  4. An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones.

    PubMed

    Protopappas, Vasilios C; Baga, Dina A; Fotiadis, Dimitrios I; Likas, Aristidis C; Papachristos, Athanasios A; Malizos, Konstantinos N

    2005-09-01

    An ultrasound wearable system for remote monitoring and acceleration of the healing process in fractured long bones is presented. The so-called USBone system consists of a pair of ultrasound transducers, implanted into the fracture region, a wearable device and a centralized unit. The wearable device is responsible to carry out ultrasound measurements using the axial-transmission technique and initiate therapy sessions of low-intensity pulsed ultrasound. The acquired measurements and other data are wirelessly transferred from the patient-site to the centralized unit, which is located in a clinical setting. The evaluation of the system on an animal tibial osteotomy model is also presented. A dataset was constructed for monitoring purposes consisting of serial ultrasound measurements, follow-up radiographs, quantitative computed tomography-based densitometry and biomechanical data. The animal study demonstrated the ability of the system to collect ultrasound measurements in an effective and reliable fashion and participating orthopaedic surgeons accepted the system for future clinical application. Analysis of the acquired measurements showed that the pattern of evolution of the ultrasound velocity through healing bones over the postoperative period monitors a dynamic healing process. Furthermore, the ultrasound velocity of radiographically healed bones returns to 80% of the intact bone value, whereas the correlation coefficient of the velocity with the material and mechanical properties of the healing bone ranges from 0.699 to 0.814. The USBone system constitutes the first telemedicine system for the out-hospital management of patients sustained open fractures and treated with external fixation devices.

  5. Context Becomes Content: Sensor Data for Computer-Supported Reflective Learning

    ERIC Educational Resources Information Center

    Muller, Lars; Divitini, Monica; Mora, Simone; Rivera-Pelayo, Veronica; Stork, Wilhelm

    2015-01-01

    Wearable devices and ambient sensors can monitor a growing number of aspects of daily life and work. We propose to use this context data as content for learning applications in workplace settings to enable employees to reflect on experiences from their work. Learning by reflection is essential for today's dynamic work environments, as employees…

  6. Smartwatches as a Learning Tool: A Survey of Student Attitudes

    ERIC Educational Resources Information Center

    Davie, Neil; Hilber, Tobias

    2016-01-01

    Both teachers and students of language learning are keen to make use of new technologies to enhance their learning. At the latest, the launch of the Apple Watch has made the general public aware of the smartwatch and the possibilities, at least according to the marketing hype, that these wearable computers offer. The sales of smartwatches are…

  7. Accuracy of remote chest X-ray interpretation using Google Glass technology.

    PubMed

    Spaedy, Emily; Christakopoulos, Georgios E; Tarar, Muhammad Nauman J; Christopoulos, Georgios; Rangan, Bavana V; Roesle, Michele; Ochoa, Cristhiaan D; Yarbrough, William; Banerjee, Subhash; Brilakis, Emmanouil S

    2016-09-15

    We sought to explore the accuracy of remote chest X-ray reading using hands-free, wearable technology (Google Glass, Google, Mountain View, California). We compared interpretation of twelve chest X-rays with 23 major cardiopulmonary findings by faculty and fellows from cardiology, radiology, and pulmonary-critical care via: (1) viewing the chest X-ray image on the Google Glass screen; (2) viewing a photograph of the chest X-ray taken using Google Glass and interpreted on a mobile device; (3) viewing the original chest X-ray on a desktop computer screen. One point was given for identification of each correct finding and a subjective rating of user experience was recorded. Fifteen physicians (5 faculty and 10 fellows) participated. The average chest X-ray reading score (maximum 23 points) as viewed through the Google Glass, Google Glass photograph on a mobile device, and the original X-ray viewed on a desktop computer was 14.1±2.2, 18.5±1.5 and 21.3±1.7, respectively (p<0.0001 between Google Glass and mobile device, p<0.0001 between Google Glass and desktop computer and p=0.0004 between mobile device and desktop computer). Of 15 physicians, 11 (73.3%) felt confident in detecting findings using the photograph taken by Google Glass as viewed on a mobile device. Remote chest X-ray interpretation using hands-free, wearable technology (Google Glass) is less accurate than interpretation using a desktop computer or a mobile device, suggesting that further technical improvements are needed before widespread application of this novel technology. Published by Elsevier Ireland Ltd.

  8. Human interaction with wearable computer systems: a look at glasses-mounted displays

    NASA Astrophysics Data System (ADS)

    Revels, Allen R.; Quill, Laurie L.; Kancler, David E.; Masquelier, Barbara L.

    1998-09-01

    With the advancement of technology and the information explosion, integration of the two into performance aiding systems can have a significant impact on operational and maintenance environments. The Department of Defense and commercial industry have made great strides in digitizing and automating technical manuals and data to be presented on performance aiding systems. These performance aides are computerized interactive systems that provide procedures on how to operate and maintain fielded systems. The idea is to provide the end-user a system which is compatible with their work environment. The purpose of this paper is to show, historically, the progression of wearable computer aiding systems for maintenance environments, and then highlight the work accomplished in the design and development of glasses- mounted displays (GMD). The paper reviews work performed over the last seven years, then highlights, through review of a usability study, the advances made with GMDs. The use of portable computing systems, such as laptop and notebook, computers, does not necessarily increase the accessibility of the displayed information while accomplishing a given task in a hands-busy, mobile work environment. The use of a GMD increases accessibility of the information by placing it in eye sight of the user without obstructing the surrounding environment. Although the potential utility for this type of display is great, hardware and human integration must be refined. Results from the usability study show the usefulness and usability of the GMD in a mobile, hands-free environment.

  9. Wearable Environmental and Physiological Sensing Unit

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Ahlman, Jim; Stricker, Ed; Santos, Elmer

    2007-01-01

    The wearable environmental and physiological sensing unit (WEPS) is a prototype of systems to be worn by emergency workers (e.g., firefighters and members of hazardous-material response teams) to increase their level of safety. The WEPS includes sensors that measure a few key physiological and environmental parameters, a microcontroller unit that processes the digitized outputs of the sensors, and a radio transmitter that sends the processed sensor signals to a computer in a mobile command center for monitoring by a supervisor. The monitored parameters serve as real-time indications of the wearer s physical condition and level of activity, and of the degree and type of danger posed by the wearer s environment. The supervisor could use these indications to determine, for example, whether the wearer should withdraw in the face of an increasing hazard or whether the wearer should be rescued.

  10. A biotechnological T-shirt monitors the patient's heart during hemodialysis.

    PubMed

    Lacquaniti, Antonio; Donato, Valentina; Lucisano, Silvia; Buemi, Antoine; Buemi, Michele

    2012-01-01

    Uremic patients are characterized by a "pro-arrhythmic substrate." Arrhythmia appearance during hemodialysis (HD) is an unexpected event with a high incidence of mortality and morbidity and difficult to record in patients repeatedly checked using electrocardiogram (ECG). Furthermore the carrying out of this important examination by classical devices during HD is uncomfortable and sometimes stressful for the patient. It may be very useful to monitor the patient's cardiac activity during the whole HD session. We tried to overcome these difficulties using Whealthy(®) (Wearable Health Care System), a wearable system in a T-shirt composed of conductors and piezoresistive materials, integrated to form fibers and threads connected to tissular sensors, electrodes, and connectors. ECG and pneumographic impedance signals are acquired by the electrodes in the tissue, and the data are registered by a small computer and transmitted via GPRS or Bluetooth.

  11. Polymer nanofiber-carbon nanotube network generating circuits

    NASA Astrophysics Data System (ADS)

    Mutlu, Mustafa Umut; Akın, Osman; Yildiz, Ümit Hakan

    2018-02-01

    The polymer nanofiber carbon nanotube (CNT) based devices attracts attention since they promise high performance for next generation devices such as wearable electronics, ultra-light weighted appliances and foldable devices. This abstract describes the utilization of polymer nanofibers and CNT as major component of low cost foldable photo-resistor. We use polymer nanofiber as template guiding CNTs to generate nanocircuits and conductive sensing network. The controlled combination of CNTs and polymer nanofibers provide opportunities for device miniaturization without loss of performance. The nanofiber-CNT network based photo-resistor exhibits broad band response 400 to 1600 nm that holding promises for ultra-thin devices and new sensing platforms.

  12. Supporting the Delivery of Total Knee Replacements Care for Both Patients and Their Clinicians With a Mobile App and Web-Based Tool: Randomized Controlled Trial Protocol.

    PubMed

    Hussain, M Sazzad; Li, Jane; Brindal, Emily; van Kasteren, Yasmin; Varnfield, Marlien; Reeson, Andrew; Berkovsky, Shlomo; Freyne, Jill

    2017-03-01

    Total knee replacement (TKR) surgeries have increased in recent years. Exercise programs and other interventions following surgery can facilitate the recovery process. With limited clinician contact time, patients with TKR have a substantial burden of self-management and limited communication with their care team, thus often fail to implement an effective rehabilitation plan. We have developed a digital orthopedic rehabilitation platform that comprises a mobile phone app, wearable activity tracker, and clinical Web portal in order to engage patients with self-management tasks for surgical preparation and recovery, thus addressing the challenges of adherence to and completion of TKR rehabilitation. The study will determine the efficacy of the TKR platform in delivering information and assistance to patients in their preparation and recovery from TKR surgery and a Web portal for clinician care teams (ie, surgeons and physiotherapists) to remotely support and monitor patient progress. The study will evaluate the TKR platform through a randomized controlled trial conducted at multiple sites (N=5) in a number of states in Australia with 320 patients undergoing TKR surgery; the trial will run for 13 months for each patient. Participants will be randomized to either a control group or an intervention group, both receiving usual care as provided by their hospital. The intervention group will receive the app and wearable activity tracker. Participants will be assessed at 4 different time points: 4 weeks before surgery, immediately before surgery, 12 weeks after surgery, and 52 weeks after surgery. The primary outcome measure is the Oxford Knee Score. Secondary outcome measures include quality of life (Short-Form Health Survey); depression, anxiety, and stress (Depression, Anxiety, and Stress Scales); self-motivation; self-determination; self-efficacy; and the level of satisfaction with the knee surgery and care delivery. The study will also collect quantitative usage data related to all components (app, activity tracker, and Web portal) of the TKR platform and qualitative data on the perceptions of the platform as a tool for patients, carers, and clinicians. Finally, an economic evaluation of the impact of the platform will be conducted. Development of the TKR platform has been completed and deployed for trial. The research protocol is approved by 2 human research ethics committees in Australia. A total of 5 hospitals in Australia (2 in New South Wales, 2 in Queensland, and 1 in South Australia) are expected to participate in the trial. The TKR platform is designed to provide flexibility in care delivery and increased engagement with rehabilitation services. This trial will investigate the clinical and behavioral efficacy of the app and impact of the TKR platform in terms of service satisfaction, acceptance, and economic benefits of the provision of digital services. Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12616000504415; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370536 (Archived by WebCite at http://www.webcitation.org/6oKES0Gp1). ©M Sazzad Hussain, Jane Li, Emily Brindal, Yasmin van Kasteren, Marlien Varnfield, Andrew Reeson, Shlomo Berkovsky, Jill Freyne. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 01.03.2017.

  13. Remotely Delivered Exercise-Based Cardiac Rehabilitation: Design and Content Development of a Novel mHealth Platform

    PubMed Central

    Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph

    2016-01-01

    Background Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. Objective We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. Methods An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. Results The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients’ exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. Conclusions The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial. PMID:27342791

  14. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.

    PubMed

    Mehta, Daryush D; Zañartu, Matías; Feng, Shengran W; Cheyne, Harold A; Hillman, Robert E

    2012-11-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use.

  15. Graphene paper supported MoS2 nanocrystals monolayer with Cu submicron-buds: High-performance flexible platform for sensing in sweat.

    PubMed

    Wang, Zhengyun; Dong, Shuang; Gui, Mengxi; Asif, Muhammad; Wang, Wei; Wang, Feng; Liu, Hongfang

    2018-02-15

    Flexible sweat biosensors are of considerable current interest for the development of wearable smart miniature devices. In this work, we report a novel type of flexible and electrochemical sweat platform fabricated by depositing Cu submicron buds on freestanding graphene paper (GP) carrying MoS 2 nanocrystals monolayer for bio-functional detection of glucose and lactate. Quantitative analysis of glucose and lactate was carried out by using amperometric i-t method. Linear ranges were obtained between 5 and 1775 μM for glucose and 0.01-18.4 mM for lactate, and their corresponding limits of detection were 500 nM and 0.1 μM, respectively. The platform demonstrates fast response, good selectivity, superb reproducibility and outstanding flexibility, which enable its use for monitoring glucose and lactate in human perspiration. The strategy of structurally integrating 3D transition metal, 0D transition metal sulfide and 2D graphene will provide new insight into the design of flexible electrodes for sweat glucose and lactate monitoring and a wider range of applications in biosensing, bioelectronics, and lab-on-a-chip devices. Copyright © 2017. Published by Elsevier Inc.

  16. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform

    PubMed Central

    Mehta, Daryush D.; Zañartu, Matías; Feng, Shengran W.; Cheyne, Harold A.; Hillman, Robert E.

    2012-01-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use. PMID:22875236

  17. Simple video format for mobile applications

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Miao, Zhourong; Li, Chung-Sheng

    2000-04-01

    With the advent of pervasive computing, there is a growing demand for enabling multimedia applications on mobile devices. Large numbers of pervasive computing devices, such as personal digital assistants (PDAs), hand-held computer (HHC), smart phones, portable audio players, automotive computing devices, and wearable computers are gaining access to online information sources. However, the pervasive computing devices are often constrained along a number of dimensions, such as processing power, local storage, display size and depth, connectivity, and communication bandwidth, which makes it difficult to access rich image and video content. In this paper, we report on our initial efforts in designing a simple scalable video format with low-decoding and transcoding complexity for pervasive computing. The goal is to enable image and video access for mobile applications such as electronic catalog shopping, video conferencing, remote surveillance and video mail using pervasive computing devices.

  18. Wearable Chemosensors: A Review of Recent Progress

    PubMed Central

    Qian, Ruo‐Can

    2017-01-01

    Abstract In recent years, there has been growing demand for wearable chemosensors for their important potential applications in mobile and electronic healthcare, patient self‐assessment, human motion monitoring, and so on. Innovations in wearable chemosensors are revolutionizing the modern lifestyle, especially the involvement of both doctors and patients in the modern healthcare system. The facile interaction of wearable chemosensors with the human body makes them favorable and convenient tools for the detection and long‐term monitoring of the chemical, biological, and physical status of the human body at a low cost with high performance. In this Minireview, we give a brief overview of the recent advances and developments in the field of wearable chemosensors, summarize the basic types of wearable chemosensors, and discuss their main functions and fabrication methods. At the end of this paper, the future development direction of wearable chemosensors is prospected. With continued interest and attention to this field, new exciting progress is expected in the development of innovative wearable chemosensors. PMID:29435397

  19. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    PubMed Central

    Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang

    2014-01-01

    This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668

  20. A review of wearable sensors and systems with application in rehabilitation

    PubMed Central

    2012-01-01

    The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques) that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed. PMID:22520559

  1. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    PubMed

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces

    PubMed Central

    Heo, Jeong; Yoon, Heenam; Park, Kwang Suk

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) patients whose voluntary muscles are paralyzed commonly communicate with the outside world using eye movement. There have been many efforts to support this method of communication by tracking or detecting eye movement. An electrooculogram (EOG), an electro-physiological signal, is generated by eye movements and can be measured with electrodes placed around the eye. In this study, we proposed a new practical electrode position on the forehead to measure EOG signals, and we developed a wearable forehead EOG measurement system for use in Human Computer/Machine interfaces (HCIs/HMIs). Four electrodes, including the ground electrode, were placed on the forehead. The two channels were arranged vertically and horizontally, sharing a positive electrode. Additionally, a real-time eye movement classification algorithm was developed based on the characteristics of the forehead EOG. Three applications were employed to evaluate the proposed system: a virtual keyboard using a modified Bremen BCI speller and an automatic sequential row-column scanner, and a drivable power wheelchair. The mean typing speeds of the modified Bremen brain–computer interface (BCI) speller and automatic row-column scanner were 10.81 and 7.74 letters per minute, and the mean classification accuracies were 91.25% and 95.12%, respectively. In the power wheelchair demonstration, the user drove the wheelchair through an 8-shape course without collision with obstacles. PMID:28644398

  3. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.

    PubMed

    Heo, Jeong; Yoon, Heenam; Park, Kwang Suk

    2017-06-23

    Amyotrophic lateral sclerosis (ALS) patients whose voluntary muscles are paralyzed commonly communicate with the outside world using eye movement. There have been many efforts to support this method of communication by tracking or detecting eye movement. An electrooculogram (EOG), an electro-physiological signal, is generated by eye movements and can be measured with electrodes placed around the eye. In this study, we proposed a new practical electrode position on the forehead to measure EOG signals, and we developed a wearable forehead EOG measurement system for use in Human Computer/Machine interfaces (HCIs/HMIs). Four electrodes, including the ground electrode, were placed on the forehead. The two channels were arranged vertically and horizontally, sharing a positive electrode. Additionally, a real-time eye movement classification algorithm was developed based on the characteristics of the forehead EOG. Three applications were employed to evaluate the proposed system: a virtual keyboard using a modified Bremen BCI speller and an automatic sequential row-column scanner, and a drivable power wheelchair. The mean typing speeds of the modified Bremen brain-computer interface (BCI) speller and automatic row-column scanner were 10.81 and 7.74 letters per minute, and the mean classification accuracies were 91.25% and 95.12%, respectively. In the power wheelchair demonstration, the user drove the wheelchair through an 8-shape course without collision with obstacles.

  4. Machine learning methods for classifying human physical activity from on-body accelerometers.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2010-01-01

    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.

  5. Evaluation of the Virtual Squad Training System

    DTIC Science & Technology

    2010-01-01

    ABSTRACT (Maximum 200 words): The Virtual Squad Training System ( VSTS ) is a network of nine individual immersive simulators with Helmet-Mounted...Displays (HMDs), and a command station for controlling computer generated entities. The VSTS includes both tethered and wearable simulators. The VSTS was...affected Soldiers’ ratings of the VSTS . Simulator sickness incidence was low compared to previous evaluations of antecedent systems using HMDs

  6. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review.

    PubMed

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2016-03-25

    Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors.

  7. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review

    PubMed Central

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Lam, Wing Kai; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2016-01-01

    Falls and fall-induced injuries are major global public health problems. Balance and gait disorders have been the second leading cause of falls. Inertial motion sensors and force sensors have been widely used to monitor both static and dynamic balance performance. Based on the detected performance, instant visual, auditory, electrotactile and vibrotactile biofeedback could be provided to augment the somatosensory input and enhance balance control. This review aims to synthesize the research examining the effect of biofeedback systems, with wearable inertial motion sensors and force sensors, on balance performance. Randomized and non-randomized clinical trials were included in this review. All studies were evaluated based on the methodological quality. Sample characteristics, device design and study characteristics were summarized. Most previous studies suggested that biofeedback devices were effective in enhancing static and dynamic balance in healthy young and older adults, and patients with balance and gait disorders. Attention should be paid to the choice of appropriate types of sensors and biofeedback for different intended purposes. Maximizing the computing capacity of the micro-processer, while minimizing the size of the electronic components, appears to be the future direction of optimizing the devices. Wearable balance-improving devices have their potential of serving as balance aids in daily life, which can be used indoors and outdoors. PMID:27023558

  8. Design and test of a hybrid foot force sensing and GPS system for richer user mobility activity recognition.

    PubMed

    Zhang, Zelun; Poslad, Stefan

    2013-11-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.

  9. Development of a wearable motion capture suit and virtual reality biofeedback system for the instruction and analysis of sports rehabilitation exercises.

    PubMed

    Fitzgerald, Diarmaid; Foody, John; Kelly, Dan; Ward, Tomas; Markham, Charles; McDonald, John; Caulfield, Brian

    2007-01-01

    This paper describes the design and development of a computer game for instructing an athlete through a series of prescribed rehabilitation exercises. In an attempt to prevent or treat musculoskeletal type injuries along with trying to improve physical performance, athletes are prescribed exercise programmes by appropriately trained specialists. Typically athletes are shown how to perform each exercise in the clinic following examination but they often have no way of knowing if their technique is correct while they are performing their home exercise programme. We describe a system that allows an automatic audit of this activity. Our system utilises ten inertial motion tracking sensors incorporated in a wearable body suit which allows a bluetooth connection from a root hub to a laptop/computer. Using our specifically designed software programme, the athlete can be instructed and analysed as he/she performs the individually tailored exercise programme and a log is recorded of the time and performance level of each exercise completed. We describe a case study that illustrates how a clinician can at a later date review the athletes progress and subsequently alter the exercise programme as they see fit.

  10. Wearable Devices for Classification of Inadequate Posture at Work Using Neural Networks

    PubMed Central

    Barkallah, Eya; Freulard, Johan; Otis, Martin J. -D.; Ngomo, Suzy; Ayena, Johannes C.; Desrosiers, Christian

    2017-01-01

    Inadequate postures adopted by an operator at work are among the most important risk factors in Work-related Musculoskeletal Disorders (WMSDs). Although several studies have focused on inadequate posture, there is limited information on its identification in a work context. The aim of this study is to automatically differentiate between adequate and inadequate postures using two wearable devices (helmet and instrumented insole) with an inertial measurement unit (IMU) and force sensors. From the force sensors located inside the insole, the center of pressure (COP) is computed since it is considered an important parameter in the analysis of posture. In a first step, a set of 60 features is computed with a direct approach, and later reduced to eight via a hybrid feature selection. A neural network is then employed to classify the current posture of a worker, yielding a recognition rate of 90%. In a second step, an innovative graphic approach is proposed to extract three additional features for the classification. This approach represents the main contribution of this study. Combining both approaches improves the recognition rate to 95%. Our results suggest that neural network could be applied successfully for the classification of adequate and inadequate posture. PMID:28862665

  11. Embedded Systems and TensorFlow Frameworks as Assistive Technology Solutions.

    PubMed

    Mulfari, Davide; Palla, Alessandro; Fanucci, Luca

    2017-01-01

    In the field of deep learning, this paper presents the design of a wearable computer vision system for visually impaired users. The Assistive Technology solution exploits a powerful single board computer and smart glasses with a camera in order to allow its user to explore the objects within his surrounding environment, while it employs Google TensorFlow machine learning framework in order to real time classify the acquired stills. Therefore the proposed aid can increase the awareness of the explored environment and it interacts with its user by means of audio messages.

  12. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.

    PubMed

    Gao, Lei; Bourke, A K; Nelson, John

    2014-06-01

    Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection

    PubMed Central

    Bellemare-Rousseau, Simon; Khalil, Mazen; Messaddeq, Younes

    2018-01-01

    In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual’s breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user’s comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16–1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute. PMID:29587396

  14. QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform.

    PubMed

    Taylor, Sara; Sano, Akane; Ferguson, Craig; Mohan, Akshay; Picard, Rosalind W

    2018-04-05

    Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experiments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub), which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study ( N = 13) to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing.

  15. QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform †

    PubMed Central

    Sano, Akane; Ferguson, Craig; Mohan, Akshay; Picard, Rosalind W.

    2018-01-01

    Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experiments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub), which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study (N = 13) to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing. PMID:29621133

  16. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection.

    PubMed

    Roudjane, Mourad; Bellemare-Rousseau, Simon; Khalil, Mazen; Gorgutsa, Stepan; Miled, Amine; Messaddeq, Younes

    2018-03-25

    In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual's breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user's comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16-1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute.

  17. Renewable-emodin-based wearable supercapacitors.

    PubMed

    Hu, Pengfei; Chen, Tinghan; Yang, Yun; Wang, Hua; Luo, Zihao; Yang, Jie; Fu, Haoran; Guo, Lin

    2017-01-26

    With the increasing dependency of human life on wearable electronics, the development of corresponding energy-storage devices is being insensitively pursued. Considering the special usage locations of wearable energy-storage devices, the safety and non-toxicity of electrode materials adopted should be of concern. In this work, a novel all-solid-state wearable supercapacitor based on the renewable-biomolecule emodin, naturally derivable from traditional Chinese herbal rhubarb or Polygonum cuspidatum, was successfully fabricated. Such supercapacitors exhibited excellent charge storage and rate capability with great flexibility and could be integrated into wearable electronics. As a proof of concept, a strap-shaped supercapacitor was fabricated, and it was capable of powering an electronic watch. Our work will promote the development of safe wearable electronics.

  18. A blinded assessment of video quality in wearable technology for telementoring in open surgery: the Google Glass experience.

    PubMed

    Hashimoto, Daniel A; Phitayakorn, Roy; Fernandez-del Castillo, Carlos; Meireles, Ozanan

    2016-01-01

    The goal of telementoring is to recreate face-to-face encounters with a digital presence. Open-surgery telementoring is limited by lack of surgeon's point-of-view cameras. Google Glass is a wearable computer that looks like a pair of glasses but is equipped with wireless connectivity, a camera, and viewing screen for video conferencing. This study aimed to assess the safety of using Google Glass by assessing the video quality of a telementoring session. Thirty-four (n = 34) surgeons at a single institution were surveyed and blindly compared via video captured with Google Glass versus an Apple iPhone 5 during the open cholecystectomy portion of a Whipple. Surgeons were asked to evaluate the quality of the video and its adequacy for safe use in telementoring. Thirty-four of 107 invited surgical attendings (32%) responded to the anonymous survey. A total of 50% rated the Google Glass video as fair with the other 50% rating it as bad to poor. A total of 52.9% of respondents rated the Apple iPhone video as good. A significantly greater proportion of respondents felt Google Glass video quality was inadequate for telementoring versus the Apple iPhone's (82.4 vs 26.5%, p < 0.0001). Intraclass correlation coefficient was 0.924 (95% CI 0.660-0.999, p < 0.001). While Google Glass provides a great breadth of functionality as a wearable device with two-way communication capabilities, current hardware limitations prevent its use as a telementoring device in surgery as the video quality is inadequate for safe telementoring. As the device is still in initial phases of development, future iterations or competitor devices may provide a better telementoring application for wearable devices.

  19. Systematic Review on the Effects of Serious Games and Wearable Technology Used in Rehabilitation of Patients With Traumatic Bone and Soft Tissue Injuries.

    PubMed

    Meijer, Henriëtte A; Graafland, Maurits; Goslings, J Carel; Schijven, Marlies P

    2017-11-11

    To assess the effects on functional outcomes and treatment adherence of wearable technology and serious games (ie, interactive computer applications with specific purposes useful in the "real world") currently used in physical rehabilitation of patients after traumatic bone and soft tissue injuries. PubMed, EMBASE, Cochrane Library, and Current Index to Nursing and Allied Health Literature were searched without publication date restrictions for the terms wearable, serious game, videogame or mobile application, and rehabilitation, exercise therapy, and physiotherapy. The search yielded 2704 eligible articles, which were screened by 2 independent reviewers. Studies comparing serious games to standard therapy were included. Methodology and results of the studies were critically appraised in conformity with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twelve articles were included, all of which tested "off-the-shelf" games. No studies on "wearable-controlled" games or games specifically developed for rehabilitation could be included. Medical conditions included postoperative rehabilitation and acute traumatic injuries. All studies were of low to moderate quality. Only 2 studies found beneficial effects of serious games compared to conventional therapy. One of 3 studies reporting pain scores found beneficial effects of serious games compared to physiotherapy. One of 5 trials reporting treatment adherence found a statistically significant advantage in the game group compared to conventional physiotherapy. Because of heterogeneity in study design and outcome measures, pooling of data was not possible. Serious games seem a safe alternative or addition to conventional physiotherapy after traumatic bone and soft tissue injuries. Future research should determine their validity and effectiveness in rehabilitation therapy, next to their cost-effectiveness and effect on treatment adherence. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems

    PubMed Central

    Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao

    2016-01-01

    In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm. PMID:26985896

  1. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.

    PubMed

    Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao

    2016-03-12

    In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

  2. Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG

    PubMed Central

    Mullen, Tim R.; Kothe, Christian A.E.; Chi, Mike; Ojeda, Alejandro; Kerth, Trevor; Makeig, Scott; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2015-01-01

    Goal We present and evaluate a wearable high-density dry electrode EEG system and an open-source software framework for online neuroimaging and state classification. Methods The system integrates a 64-channel dry EEG form-factor with wireless data streaming for online analysis. A real-time software framework is applied, including adaptive artifact rejection, cortical source localization, multivariate effective connectivity inference, data visualization, and cognitive state classification from connectivity features using a constrained logistic regression approach (ProxConn). We evaluate the system identification methods on simulated 64-channel EEG data. Then we evaluate system performance, using ProxConn and a benchmark ERP method, in classifying response errors in 9 subjects using the dry EEG system. Results Simulations yielded high accuracy (AUC=0.97±0.021) for real-time cortical connectivity estimation. Response error classification using cortical effective connectivity (sdDTF) was significantly above chance with similar performance (AUC) for cLORETA (0.74±0.09) and LCMV (0.72±0.08) source localization. Cortical ERP-based classification was equivalent to ProxConn for cLORETA (0.74±0.16) but significantly better for LCMV (0.82±0.12). Conclusion We demonstrated the feasibility for real-time cortical connectivity analysis and cognitive state classification from high-density wearable dry EEG. Significance This paper is the first validated application of these methods to 64-channel dry EEG. The work addresses a need for robust real-time measurement and interpretation of complex brain activity in the dynamic environment of the wearable setting. Such advances can have broad impact in research, medicine, and brain-computer interfaces. The pipelines are made freely available in the open-source SIFT and BCILAB toolboxes. PMID:26415149

  3. Event-Triggered Model Predictive Control for Embedded Artificial Pancreas Systems.

    PubMed

    Chakrabarty, Ankush; Zavitsanou, Stamatina; Doyle, Francis J; Dassau, Eyal

    2018-03-01

    The development of artificial pancreas (AP) technology for deployment in low-energy, embedded devices is contingent upon selecting an efficient control algorithm for regulating glucose in people with type 1 diabetes mellitus. In this paper, we aim to lower the energy consumption of the AP by reducing controller updates, that is, the number of times the decision-making algorithm is invoked to compute an appropriate insulin dose. Physiological insights into glucose management are leveraged to design an event-triggered model predictive controller (MPC) that operates efficiently, without compromising patient safety. The proposed event-triggered MPC is deployed on a wearable platform. Its robustness to latent hypoglycemia, model mismatch, and meal misinformation is tested, with and without meal announcement, on the full version of the US-FDA accepted UVA/Padova metabolic simulator. The event-based controller remains on for 18 h of 41 h in closed loop with unannounced meals, while maintaining glucose in 70-180 mg/dL for 25 h, compared to 27 h for a standard MPC controller. With meal announcement, the time in 70-180 mg/dL is almost identical, with the controller operating a mere 25.88% of the time in comparison with a standard MPC. A novel control architecture for AP systems enables safe glycemic regulation with reduced processor computations. Our proposed framework integrated seamlessly with a wide variety of popular MPC variants reported in AP research, customizes tradeoff between glycemic regulation and efficacy according to prior design specifications, and eliminates judicious prior selection of controller sampling times.

  4. A Study on Secure Medical-Contents Strategies with DRM Based on Cloud Computing

    PubMed Central

    Měsíček, Libor; Choi, Jongsun

    2018-01-01

    Many hospitals and medical clinics have been using a wearable sensor in its health care system because the wearable sensor, which is able to measure the patients' biometric information, has been developed to analyze their patients remotely. The measured information is saved to a server in a medical center, and the server keeps the medical information, which also involves personal information, on a cloud system. The server and network devices are used by connecting each other, and sensitive medical records are dealt with remotely. However, these days, the attackers, who try to attack the server or the network systems, are increasing. In addition, the server and the network system have a weak protection and security policy against the attackers. In this paper, it is suggested that security compliance of medical contents should be followed to improve the level of security. As a result, the medical contents are kept safely. PMID:29796233

  5. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.

    PubMed

    Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen

    2017-11-23

    Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  6. Automatic diet monitoring: a review of computer vision and wearable sensor-based methods.

    PubMed

    Hassannejad, Hamid; Matrella, Guido; Ciampolini, Paolo; De Munari, Ilaria; Mordonini, Monica; Cagnoni, Stefano

    2017-09-01

    Food intake and eating habits have a significant impact on people's health. Widespread diseases, such as diabetes and obesity, are directly related to eating habits. Therefore, monitoring diet can be a substantial base for developing methods and services to promote healthy lifestyle and improve personal and national health economy. Studies have demonstrated that manual reporting of food intake is inaccurate and often impractical. Thus, several methods have been proposed to automate the process. This article reviews the most relevant and recent researches on automatic diet monitoring, discussing their strengths and weaknesses. In particular, the article reviews two approaches to this problem, accounting for most of the work in the area. The first approach is based on image analysis and aims at extracting information about food content automatically from food images. The second one relies on wearable sensors and has the detection of eating behaviours as its main goal.

  7. A Study on Secure Medical-Contents Strategies with DRM Based on Cloud Computing.

    PubMed

    Ko, Hoon; Měsíček, Libor; Choi, Jongsun; Hwang, Seogchan

    2018-01-01

    Many hospitals and medical clinics have been using a wearable sensor in its health care system because the wearable sensor, which is able to measure the patients' biometric information, has been developed to analyze their patients remotely. The measured information is saved to a server in a medical center, and the server keeps the medical information, which also involves personal information, on a cloud system. The server and network devices are used by connecting each other, and sensitive medical records are dealt with remotely. However, these days, the attackers, who try to attack the server or the network systems, are increasing. In addition, the server and the network system have a weak protection and security policy against the attackers. In this paper, it is suggested that security compliance of medical contents should be followed to improve the level of security. As a result, the medical contents are kept safely.

  8. Energy Consumption Management of Virtual Cloud Computing Platform

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  9. Human Pacman: A Mobile Augmented Reality Entertainment System Based on Physical, Social, and Ubiquitous Computing

    NASA Astrophysics Data System (ADS)

    Cheok, Adrian David

    This chapter details the Human Pacman system to illuminate entertainment computing which ventures to embed the natural physical world seamlessly with a fantasy virtual playground by capitalizing on infrastructure provided by mobile computing, wireless LAN, and ubiquitous computing. With Human Pacman, we have a physical role-playing computer fantasy together with real human-social and mobile-gaming that emphasizes on collaboration and competition between players in a wide outdoor physical area that allows natural wide-area human-physical movements. Pacmen and Ghosts are now real human players in the real world experiencing mixed computer graphics fantasy-reality provided by using the wearable computers on them. Virtual cookies and actual tangible physical objects are incorporated into the game play to provide novel experiences of seamless transitions between the real and virtual worlds. This is an example of a new form of gaming that anchors on physicality, mobility, social interaction, and ubiquitous computing.

  10. Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials.

    PubMed

    Fan, Shicheng; Dan, Li; Meng, Lingju; Zheng, Wei; Elias, Anastasia; Wang, Xihua

    2017-11-09

    Flexible force/pressure sensors are of interest for academia and industry and have applications in wearable technologies. Most of such sensors on the market or reported in journal publications are based on the operation mechanism of probing capacitance or resistance changes of the materials under pressure. Recently, we reported the microelectromechanical (MEM) sensors based on a different mechanism: mechanical switches. Multiples of such MEM sensors can be integrated to achieve the same function of regular force/pressure sensors while having the advantages of ease of fabrication and long-term stability in operation. Herein, we report the dramatically improved response time (more than one order of magnitude) of these MEM sensors by employing eco-friendly nanomaterials-cellulose nanocrystals. For instance, the incorporation of polydimethysiloxane filled with cellulose nanocrystals shortened the response time of MEM sensors from sub-seconds to several milliseconds, leading to the detection of both diastolic and systolic pressures in the radial arterial blood pressure measurement. Comprehensive mechanical and electrical characterization of the materials and the devices reveal that greatly enhanced storage modulus and loss modulus play key roles in this improved response time. The demonstrated fast-response flexible sensors enabled continuous monitoring of heart rate and complex cardiovascular signals using pressure sensors for future wearable sensing platforms.

  11. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare.

    PubMed

    Yang, Zhe; Zhou, Qihao; Lei, Lei; Zheng, Kan; Xiang, Wei

    2016-12-01

    Public healthcare has been paid an increasing attention given the exponential growth human population and medical expenses. It is well known that an effective health monitoring system can detect abnormalities of health conditions in time and make diagnoses according to the gleaned data. As a vital approach to diagnose heart diseases, ECG monitoring is widely studied and applied. However, nearly all existing portable ECG monitoring systems cannot work without a mobile application, which is responsible for data collection and display. In this paper, we propose a new method for ECG monitoring based on Internet-of-Things (IoT) techniques. ECG data are gathered using a wearable monitoring node and are transmitted directly to the IoT cloud using Wi-Fi. Both the HTTP and MQTT protocols are employed in the IoT cloud in order to provide visual and timely ECG data to users. Nearly all smart terminals with a web browser can acquire ECG data conveniently, which has greatly alleviated the cross-platform issue. Experiments are carried out on healthy volunteers in order to verify the reliability of the entire system. Experimental results reveal that the proposed system is reliable in collecting and displaying real-time ECG data, which can aid in the primary diagnosis of certain heart diseases.

  12. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System

    PubMed Central

    2018-01-01

    Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles’ synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data. PMID:29587391

  13. Writable electrochemical energy source based on graphene oxide

    PubMed Central

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  14. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    NASA Astrophysics Data System (ADS)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  15. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System.

    PubMed

    Liu, Kun; Liu, Yong; Yan, Jianchao; Sun, Zhenyuan

    2018-03-25

    Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles' synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data.

  16. Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers.

    PubMed

    Hu, Han-Wen; Haider, Golam; Liao, Yu-Ming; Roy, Pradip Kumar; Ravindranath, Rini; Chang, Huan-Tsung; Lu, Cheng-Hsin; Tseng, Chang-Yang; Lin, Tai-Yung; Shih, Wei-Heng; Chen, Yang-Fang

    2017-11-01

    A stretchable, flexible, and bendable random laser system capable of lasing in a wide range of spectrum will have many potential applications in next- generation technologies, such as visible-spectrum communication, superbright solid-state lighting, biomedical studies, fluorescence, etc. However, producing an appropriate cavity for such a wide spectral range remains a challenge owing to the rigidity of the resonator for the generation of coherent loops. 2D materials with wrinkled structures exhibit superior advantages of high stretchability and a suitable matrix for photon trapping in between the hill and valley geometries compared to their flat counterparts. Here, the intriguing functionalities of wrinkled reduced graphene oxide, single-layer graphene, and few-layer hexagonal boron nitride, respectively, are utilized to design highly stretchable and wearable random laser devices with ultralow threshold. Using methyl-ammonium lead bromide perovskite nanocrystals (PNC) to illustrate the working principle, the lasing threshold is found to be ≈10 µJ cm -2 , about two times less than the lowest value ever reported. In addition to PNC, it is demonstrated that the output lasing wavelength can be tuned using different active materials such as semiconductor quantum dots. Thus, this study is very useful for the future development of high-performance wearable optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    PubMed Central

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-01-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913

  18. One size fits all electronics for insole-based activity monitoring.

    PubMed

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  19. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    PubMed

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Flexible graphene bio-nanosensor for lactate.

    PubMed

    Labroo, Pratima; Cui, Yue

    2013-03-15

    The development of a flexible nanosensor for detecting lactate could expand opportunities for using graphene, both in fundamental studies for a variety of device platforms and in practical applications. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with ultrasensitive sensing capabilities. Lactic acid is important for clinical analysis, sports medicine, and the food industry. Recently, wearable and flexible bioelectronics on plastics have attracted great interest for healthcare, sports and defense applications due to their advantages of being light-weight, bendable, or stretchable. Here, we demonstrate for the first time the development of a flexible graphene-based bio-nanosensor to detect lactate. Our results show that flexible lactate biosensors can be fabricated on a variety of plastic substrates. The sensor can detect lactate sensitively from 0.08 μM to 20 μM with a fast steady-state measuring time of 2s. The sensor can also detect lactate under different mechanical bending conditions, the sensor response decreased as the bending angle and number of bending repetitions increased. We anticipate that these results could open exciting opportunities for fundamental studies of flexible graphene bioelectronics by using other bioreceptors, as well as a variety of wearable, implantable, real-time, or on-site applications in fields ranging from clinical analysis to defense. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. FORCEnet Net Centric Architecture - A Standards View

    DTIC Science & Technology

    2006-06-01

    SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION DATA MANAGEMENT APPLICATION...R V I C E P L A T F O R M S E R V I C E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM...E F R A M E W O R K USER-FACING SERVICES SHARED SERVICES NETWORKING/COMMUNICATIONS STORAGE COMPUTING PLATFORM DATA INTERCHANGE/INTEGRATION

  2. The 2011 ABJS Nicolas Andry Award: 'Lab'-in-a-knee: in vivo knee forces, kinematics, and contact analysis.

    PubMed

    D'Lima, Darryl D; Patil, Shantanu; Steklov, Nicolai; Colwell, Clifford W

    2011-10-01

    Tibiofemoral forces are important in the design and clinical outcomes of TKA. We developed a tibial tray with force transducers and a telemetry system to directly measure tibiofemoral compressive forces in vivo. Knee forces and kinematics traditionally have been measured under laboratory conditions. Although this approach is useful for quantitative measurements and experimental studies, the extrapolation of results to clinical conditions may not always be valid. We therefore developed wearable monitoring equipment and computer algorithms for classifying and identifying unsupervised activities outside the laboratory. Tibial forces were measured for activities of daily living, athletic and recreational activities, and with orthotics and braces, during 4 years postoperatively. Additional measurements included video motion analysis, EMG, fluoroscopic kinematic analysis, and ground reaction force measurement. In vivo measurements were used to evaluate computer models of the knee. Finite element models were used for contact analysis and for computing knee kinematics from measured knee forces. A third-generation system was developed for continuous monitoring of knee forces and kinematics outside the laboratory using a wearable data acquisition hardware. By using measured knee forces and knee flexion angle, we were able to compute femorotibial AP translation (-12 to +4 mm), mediolateral translation (-1 to 1.5 mm), axial rotation (-3° to 12°), and adduction-abduction (-1° to +1°). The neural-network-based classification system was able to identify walking, stair-climbing, sit-to-stand, and stand-to-sit activities with 100% accuracy. Our data may be used to improve existing in vitro models and wear simulators, and enhance prosthetic designs and biomaterials.

  3. Tea, talk and technology: patient and public involvement to improve connected health 'wearables' research in dementia.

    PubMed

    Hassan, Lamiece; Swarbrick, Caroline; Sanders, Caroline; Parker, Angela; Machin, Matt; Tully, Mary P; Ainsworth, John

    2017-01-01

    There are a growing number of mobile phones, watches and electronic devices which can be worn on the body to track aspects of health and well-being, such as daily steps, sleep and exercise. Dementia researchers think that these devices could potentially be used as part of future research projects, for example to help spot changes in daily activity that may signal the early symptoms of dementia. We asked a range of older people, including people living with dementia and their carers, to participate in interactive discussions about how future participants might find using these devices as part of research projects. We also invited volunteers to borrow a range of devices to test at home, giving them further insights. Discussions revealed that people were generally supportive of this type of research, provided they gave informed consent and that devices were discreet, comfortable and easy to use. They also valued technical support and regular feedback on study progress to encourage ongoing participation. These findings were used to develop a pool of devices for researchers, with computer software and written guidance to help plan, design and support studies. Our work shows that when given the right opportunities, people who are affected by dementia can provide valuable insights that can enhance the design, delivery and quality of future research. Background Increasingly, researchers are recognising the potential for connected health devices, including smartphones and smartwatches, to generate high resolution data about patterns of daily activity and health outcomes. One aim of the Dementias Platform UK (DPUK) project is to provide researchers with a secure means to collect, collate and link data generated by such devices, thereby accelerating this type of research in the field of dementia. We aimed to involve members of the public in discussions about the acceptability and feasibility of different devices and research designs to inform the development of a device pool, software platform and written guidance to support future studies. Methods Over 30 people attended a series of interactive workshops, drop-in sessions and meetings in Greater Manchester. This included people living with dementia and cognitive impairments, carers and people without memory problems. Discussions were tailored to suit different audiences and focused on the feasibility and acceptability of a range of different wearable devices and research designs. We also invited volunteers to borrow a device to test at home, enabling further insights from hands-on interactions with devices. Results Discussions revealed that people were supportive of connected health dementia research in principle, provided they gave informed consent and that devices were discreet, comfortable and easy to use. Moreover, they recommended technical support and regular feedback on study progress to encourage ongoing participation. Conclusion By using a range of discussion-based and practical activities, we found it was feasible to involve people affected by dementia and use their insights to shape the development of a software platform and device pool to support future connected health dementia research. We recommend that researchers planning such studies in future pay adequate attention to designing suitable participant information, technical support and mechanisms of providing study progress updates to support sustained engagement from participants.

  4. Unmanned Ground Vehicles for Integrated Force Protection

    DTIC Science & Technology

    2004-04-01

    employed. 2 Force Protection 18 MAR 02 Security Posts Squad Laptop Fire Tm Ldr Wearable Computers OP/LP Def Fight Psn SRT Sensors USA, USMC, Allied...visual systems. Attaching sensors and response devices on a monorail proved to be much more technically challenging than expected. Film producers and...facilitate experimentation with weapon aiming and firing techniques from the MRHA. grated Marsupial Delivery System was developed to transport smaller

  5. Using e-Learning Platforms for Mastery Learning in Developmental Mathematics Courses

    ERIC Educational Resources Information Center

    Boggs, Stacey; Shore, Mark; Shore, JoAnna

    2004-01-01

    Many colleges and universities have adopted e-learning platforms to utilize computers as an instructional tool in developmental (i.e., beginning and intermediate algebra) mathematics courses. An e-learning platform is a computer program used to enhance course instruction via computers and the Internet. Allegany College of Maryland is currently…

  6. Hybrid integration of VCSELs onto a silicon photonic platform for biosensing application

    NASA Astrophysics Data System (ADS)

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Cardile, Paolo; Daly, Aidan; Carroll, Lee; O'Brien, Peter

    2017-02-01

    This paper presents a technology of hybrid integration vertical cavity surface emitting lasers (VCSELs) directly on silicon photonics chip. By controlling the reflow of the solder balls used for electrical and mechanical bonding, the VCSELs were bonded at 10 degree to achieve the optimum angle-of-incidence to the planar grating coupler through vision based flip-chip techniques. The 1 dB discrepancy between optical loss values of flip-chip passive assembly and active alignment confirmed that the general purpose of the flip-chip design concept is achieved. This hybrid approach of integrating a miniaturized light source on chip opens the possibly of highly compact sensor system, which enable future portable and wearable diagnostics devices.

  7. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    PubMed

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Boutiques: a flexible framework to integrate command-line applications in computing platforms.

    PubMed

    Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C

    2018-05-01

    We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.

  9. Wearable device implications in the healthcare industry.

    PubMed

    Erdmier, Casey; Hatcher, Jason; Lee, Michael

    2016-01-01

    This manuscript analyses the impact of wearable device technology in the healthcare industry. The authors provide an exploration of the different types of wearable technology that are becoming popular or are emerging into the consumer market and the personal health information and other user data these devices collect. The applications of wearable technology to healthcare and wellness are discussed, along with the impact of these devices on the industry. Finally, an analysis is provided, describing the current regulations in the US and UK that govern wearable devices and the impact of these device regulations on users and healthcare professionals.

  10. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  11. Real Time Physiological Status Monitoring (RT-PSM): Accomplishments, Requirements, and Research Roadmap

    DTIC Science & Technology

    2016-03-01

    Maneuver Center of Excellence (US Army - Ft. Benning) MINIMEN Minimalist Wearable Mesh Network Mloco Metabolic Costs of Locomotion MOUT Military...detect blast and ballistic wounding events Quantum Applied Science & Research, Inc. Army A05-163 SBIR 2005 Minimalist Short- Range Wearable for...STTR 2005 (Phase 1) 2005 Minimalist Wearable Mesh Network (MINIMEN) System Develop PSM system linking wearable sensors, mesh networking

  12. Development of a wearable measurement and control unit for personal customizing machine-supported exercise.

    PubMed

    Wang, Zhihui; Tamura, Naoki; Kiryu, Tohru

    2005-01-01

    Wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of personal customizing machine-supported exercise that have biosignal-based controls. In this paper, we propose a new wearable unit design equipped with measurement and control functions to support the personal customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise and output workload control commands to the exercise machines. We then applied a prototype of the wearable unit to an Internet-based cycle ergometer system. The wearable unit was examined using twelve young people to check its feasibility. The results verified that the unit could successfully adapt to the control of the workload and was effective for continuously supporting gradual changes in physical activities.

  13. What Does Big Data Mean for Wearable Sensor Systems?

    PubMed Central

    Lovell, N. H.; Yang, G. Z.; Horsch, A.; Lukowicz, P.; Murrugarra, L.; Marschollek, M.

    2014-01-01

    Summary Objectives The aim of this paper is to discuss how recent developments in the field of big data may potentially impact the future use of wearable sensor systems in healthcare. Methods The article draws on the scientific literature to support the opinions presented by the IMIA Wearable Sensors in Healthcare Working Group. Results The following is discussed: the potential for wearable sensors to generate big data; how complementary technologies, such as a smartphone, will augment the concept of a wearable sensor and alter the nature of the monitoring data created; how standards would enable sharing of data and advance scientific progress. Importantly, attention is drawn to statistical inference problems for which big datasets provide little assistance, or may hinder the identification of a useful solution. Finally, a discussion is presented on risks to privacy and possible negative consequences arising from intensive wearable sensor monitoring. Conclusions Wearable sensors systems have the potential to generate datasets which are currently beyond our capabilities to easily organize and interpret. In order to successfully utilize wearable sensor data to infer wellbeing, and enable proactive health management, standards and ontologies must be developed which allow for data to be shared between research groups and between commercial systems, promoting the integration of these data into health information systems. However, policy and regulation will be required to ensure that the detailed nature of wearable sensor data is not misused to invade privacies or prejudice against individuals. PMID:25123733

  14. Youth's social network structures and peer influences: study protocol MyMovez project - Phase I.

    PubMed

    Bevelander, Kirsten E; Smit, Crystal R; van Woudenberg, Thabo J; Buijs, Laura; Burk, William J; Buijzen, Moniek

    2018-04-16

    Youth are an important target group for social network interventions, because they are particularly susceptible to the adaptation of healthy and unhealthy habits and behaviors of others. They are surrounded by 'social influence agents' (i.e., role models such as family, friends and peers) that co-determine their dietary intake and physical activity. However, there is a lack of systematic and comprehensive research on the implementation of a social network approach in health campaigns. The MyMovez research project aims to fill this gap by developing a method for effective social network campaign implementation. This protocol paper describes the design and methods of Phase I of the MyMovez project, aiming to unravel youth's social network structures in combination with individual, psychosocial, and environmental factors related to energy intake and expenditure. In addition, the Wearable Lab is developed to enable an attractive and state-of-the-art way of collecting data and online campaign implementation via social networks. Phase I of the MyMovez project consists of a large-scale cross-sequential cohort study (N = 953; 8-12 and 12-15 y/o). In five waves during a 3-year period (2016-2018), data are collected about youth's social network exposure, media consumption, socialization experiences, psychological determinants of behavior, physical environment, dietary intake (snacking and drinking behavior) and physical activity using the Wearable Lab. The Wearable Lab exists of a smartphone-based research application (app) connected to an activity tracking bracelet, that is developed throughout the duration of the project. It generates peer- and self-reported (e.g., sociometric data and surveys) and experience sampling data, social network beacon data, real-time physical activity data (i.e., steps and cycling), location information, photos and chat conversation data from the app's social media platform Social Buzz. The MyMovez project - Phase I is an innovative cross-sequential research project that investigates how social influences co-determine youth's energy intake and expenditure. This project utilizes advanced research technologies (Wearable Lab) that provide unique opportunities to better understand the underlying processes that impact youths' health-related behaviors. The project is theoretically and methodologically pioneering and produces a unique and useful method for successfully implementing and improving health campaigns.

  15. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    PubMed

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  16. Detecting falls with wearable sensors using machine learning techniques.

    PubMed

    Özdemir, Ahmet Turan; Barshan, Billur

    2014-06-18

    Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerometer, gyroscope, and magnetometer/compass). Fourteen volunteers perform a standardized set of movements including 20 voluntary falls and 16 activities of daily living (ADLs), resulting in a large dataset with 2520 trials. To reduce the computational complexity of training and testing the classifiers, we focus on the raw data for each sensor in a 4 s time window around the point of peak total acceleration of the waist sensor, and then perform feature extraction and reduction. Most earlier studies on fall detection employ rule-based approaches that rely on simple thresholding of the sensor outputs. We successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs). We compare the performance and the computational complexity of the classifiers and achieve the best results with the k-NN classifier and LSM, with sensitivity, specificity, and accuracy all above 99%. These classifiers also have acceptable computational requirements for training and testing. Our approach would be applicable in real-world scenarios where data records of indeterminate length, containing multiple activities in sequence, are recorded.

  17. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  18. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  19. PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH

    PubMed Central

    KAMDAR, MAULIK R.; WU, MICHELLE J.

    2018-01-01

    Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard currently available for the measurement of mental health. This issue is exacerbated by the fact that the information physicians use to diagnose these disorders is episodic and often subjective. Current methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances in EEG and video monitoring technologies have not been widely adopted due to invasiveness and inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for providing continuous, quantitative data about a patient. Here, we introduce PRISM — Passive, Real-time Information for Sensing Mental Health. This platform integrates motion, light and heart rate data from a smart watch application with user interactions and text insights from a web application. We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13 subjects. We have engineered appropriate features and applied both unsupervised and supervised learning to develop models that can recapitulate user-reported ratings of their emotional state. This demonstrates that the data has the potential to be useful for evaluating mental health. This platform will allow us to leverage continuous streams of passive data for early and accurate diagnosis as well as constant monitoring of patients suffering from mental disorders. PMID:26776198

  20. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Examining individuals' adoption of healthcare wearable devices: An empirical study from privacy calculus perspective.

    PubMed

    Li, He; Wu, Jing; Gao, Yiwen; Shi, Yao

    2016-04-01

    Wearable technology has shown the potential of improving healthcare efficiency and reducing healthcare cost. Different from pioneering studies on healthcare wearable devices from technical perspective, this paper explores the predictors of individuals' adoption of healthcare wearable devices. Considering the importance of individuals' privacy perceptions in healthcare wearable devices adoption, this study proposes a model based on the privacy calculus theory to investigate how individuals adopt healthcare wearable devices. The proposed conceptual model was empirically tested by using data collected from a survey. The sample covers 333 actual users of healthcare wearable devices. Structural equation modeling (SEM) method was employed to estimate the significance of the path coefficients. This study reveals several main findings: (1) individuals' decisions to adopt healthcare wearable devices are determined by their risk-benefit analyses (refer to privacy calculus). In short, if an individual's perceived benefit is higher than perceived privacy risk, s/he is more likely to adopt the device. Otherwise, the device would not be adopted; (2) individuals' perceived privacy risk is formed by health information sensitivity, personal innovativeness, legislative protection, and perceived prestige; and (3) individuals' perceived benefit is determined by perceived informativeness and functional congruence. The theoretical and practical implications, limitations, and future research directions are then discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity

    PubMed Central

    2018-01-01

    Although it is becoming increasingly popular to monitor parameters related to training, recovery, and health with wearable sensor technology (wearables), scientific evaluation of the reliability, sensitivity, and validity of such data is limited and, where available, has involved a wide variety of approaches. To improve the trustworthiness of data collected by wearables and facilitate comparisons, we have outlined recommendations for standardized evaluation. We discuss the wearable devices themselves, as well as experimental and statistical considerations. Adherence to these recommendations should be beneficial not only for the individual, but also for regulatory organizations and insurance companies. PMID:29712629

  3. Big data collision: the internet of things, wearable devices and genomics in the study of neurological traits and disease.

    PubMed

    Talboom, Joshua S; Huentelman, Matthew J

    2018-05-01

    Advances in information technology (IT) hardware in the last decade have led to the advent of small connected devices broadly referred to as the Internet of Things (IoT). The IoT and its subcategory of wearable devices (wearables) both have the potential to greatly impact biomedical research. This focused review covers recent biomedical research using the IoT and wearables in the area of neurological traits and disease. In addition, a look into the future of biomedical research using IoT devices and wearables as well as some areas requiring further consideration by the field will be discussed.

  4. Boutiques: a flexible framework to integrate command-line applications in computing platforms

    PubMed Central

    Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C

    2018-01-01

    Abstract We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science. PMID:29718199

  5. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  6. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA, Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  7. Location verification algorithm of wearable sensors for wireless body area networks.

    PubMed

    Wang, Hua; Wen, Yingyou; Zhao, Dazhe

    2018-01-01

    Knowledge of the location of sensor devices is crucial for many medical applications of wireless body area networks, as wearable sensors are designed to monitor vital signs of a patient while the wearer still has the freedom of movement. However, clinicians or patients can misplace the wearable sensors, thereby causing a mismatch between their physical locations and their correct target positions. An error of more than a few centimeters raises the risk of mistreating patients. The present study aims to develop a scheme to calculate and detect the position of wearable sensors without beacon nodes. A new scheme was proposed to verify the location of wearable sensors mounted on the patient's body by inferring differences in atmospheric air pressure and received signal strength indication measurements from wearable sensors. Extensive two-sample t tests were performed to validate the proposed scheme. The proposed scheme could easily recognize a 30-cm horizontal body range and a 65-cm vertical body range to correctly perform sensor localization and limb identification. All experiments indicate that the scheme is suitable for identifying wearable sensor positions in an indoor environment.

  8. Wearable sensors for human health monitoring

    NASA Astrophysics Data System (ADS)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  9. A Lightweight Remote Parallel Visualization Platform for Interactive Massive Time-varying Climate Data Analysis

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, T.; Huang, Q.; Liu, Q.

    2014-12-01

    Today's climate datasets are featured with large volume, high degree of spatiotemporal complexity and evolving fast overtime. As visualizing large volume distributed climate datasets is computationally intensive, traditional desktop based visualization applications fail to handle the computational intensity. Recently, scientists have developed remote visualization techniques to address the computational issue. Remote visualization techniques usually leverage server-side parallel computing capabilities to perform visualization tasks and deliver visualization results to clients through network. In this research, we aim to build a remote parallel visualization platform for visualizing and analyzing massive climate data. Our visualization platform was built based on Paraview, which is one of the most popular open source remote visualization and analysis applications. To further enhance the scalability and stability of the platform, we have employed cloud computing techniques to support the deployment of the platform. In this platform, all climate datasets are regular grid data which are stored in NetCDF format. Three types of data access methods are supported in the platform: accessing remote datasets provided by OpenDAP servers, accessing datasets hosted on the web visualization server and accessing local datasets. Despite different data access methods, all visualization tasks are completed at the server side to reduce the workload of clients. As a proof of concept, we have implemented a set of scientific visualization methods to show the feasibility of the platform. Preliminary results indicate that the framework can address the computation limitation of desktop based visualization applications.

  10. Hybrid-Aware Model for Senior Wellness Service in Smart Home.

    PubMed

    Jung, Yuchae

    2017-05-22

    Smart home technology with situation-awareness is important for seniors to improve safety and security. With the development of context-aware computing, wearable sensor technology, and ubiquitous computing, it is easier for seniors to manage their health problem in smart home environment. For monitoring senior activity in smart home, wearable, and motion sensors-such as respiration rate (RR), electrocardiography (ECG), body temperature, and blood pressure (BP)-were used for monitoring movements of seniors. For context-awareness, environmental sensors-such as gas, fire, smoke, dust, temperature, and light sensors-were used for senior location data collection. Based on senior activity, senior health status can be classified into positive and negative. Based on senior location and time, senior safety is classified into safe and emergency. In this paper, we propose a hybrid inspection service middleware for monitoring elderly health risk based on senior activity and location. This hybrid-aware model for the detection of abnormal status of seniors has four steps as follows: (1) data collection from biosensors and environmental sensors; (2) monitoring senior location and time of stay in each location using environmental sensors; (3) monitoring senior activity using biometric data; finally, (4) expectation-maximization based decision-making step recommending proper treatment based on a senior health risk ratio.

  11. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    PubMed

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  12. A QRS Detection and R Point Recognition Method for Wearable Single-Lead ECG Devices.

    PubMed

    Chen, Chieh-Li; Chuang, Chun-Te

    2017-08-26

    In the new-generation wearable Electrocardiogram (ECG) system, signal processing with low power consumption is required to transmit data when detecting dangerous rhythms and to record signals when detecting abnormal rhythms. The QRS complex is a combination of three of the graphic deflection seen on a typical ECG. This study proposes a real-time QRS detection and R point recognition method with low computational complexity while maintaining a high accuracy. The enhancement of QRS segments and restraining of P and T waves are carried out by the proposed ECG signal transformation, which also leads to the elimination of baseline wandering. In this study, the QRS fiducial point is determined based on the detected crests and troughs of the transformed signal. Subsequently, the R point can be recognized based on four QRS waveform templates and preliminary heart rhythm classification can be also achieved at the same time. The performance of the proposed approach is demonstrated using the benchmark of the MIT-BIH Arrhythmia Database, where the QRS detected sensitivity (Se) and positive prediction (+P) are 99.82% and 99.81%, respectively. The result reveals the approach's advantage of low computational complexity, as well as the feasibility of the real-time application on a mobile phone and an embedded system.

  13. Design and Test of a Hybrid Foot Force Sensing and GPS System for Richer User Mobility Activity Recognition

    PubMed Central

    Zhang, Zelun; Poslad, Stefan

    2013-01-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals. PMID:24189333

  14. Hybrid-Aware Model for Senior Wellness Service in Smart Home

    PubMed Central

    Jung, Yuchae

    2017-01-01

    Smart home technology with situation-awareness is important for seniors to improve safety and security. With the development of context-aware computing, wearable sensor technology, and ubiquitous computing, it is easier for seniors to manage their health problem in smart home environment. For monitoring senior activity in smart home, wearable, and motion sensors—such as respiration rate (RR), electrocardiography (ECG), body temperature, and blood pressure (BP)—were used for monitoring movements of seniors. For context-awareness, environmental sensors—such as gas, fire, smoke, dust, temperature, and light sensors—were used for senior location data collection. Based on senior activity, senior health status can be classified into positive and negative. Based on senior location and time, senior safety is classified into safe and emergency. In this paper, we propose a hybrid inspection service middleware for monitoring elderly health risk based on senior activity and location. This hybrid-aware model for the detection of abnormal status of seniors has four steps as follows: (1) data collection from biosensors and environmental sensors; (2) monitoring senior location and time of stay in each location using environmental sensors; (3) monitoring senior activity using biometric data; finally, (4) expectation-maximization based decision-making step recommending proper treatment based on a senior health risk ratio. PMID:28531157

  15. Human-in-the-loop development of soft wearable robots

    NASA Astrophysics Data System (ADS)

    Walsh, Conor

    2018-06-01

    The field of soft wearable robotics offers the opportunity to wear robots like clothes to assist the movement of specific body parts or to endow the body with functionalities. Collaborative efforts of materials, apparel and robotics science have already led to the development of wearable technologies for physical therapy. Optimizing the human-robot system by human-in-the-loop approaches will pave the way for personalized soft wearable robots for a variety of applications.

  16. A wearable context aware system for ubiquitous healthcare.

    PubMed

    Kang, Dong-Oh; Lee, Hyung-Jik; Ko, Eun-Jung; Kang, Kyuchang; Lee, Jeunwoo

    2006-01-01

    Recent developments of information technologies are leading the advent of the era of ubiquitous healthcare, which means healthcare services at any time and at any places. The ubiquitous healthcare service needs a wearable system for more continual measurement of biological signals of a user, which gives information of the user from wearable sensors. In this paper, we propose a wearable context aware system for ubiquitous healthcare, and its systematic design process of a ubiquitous healthcare service. Some wearable sensor systems are introduced with Zigbee communication. We develop a context aware framework to send information from wearable sensors to healthcare service entities as a middleware to solve the interoperability problem between sensor makers and healthcare service providers. And, we propose a systematic process of design of ubiquitous healthcare services with the context aware framework. In order to show the feasibility of the proposed system, some application examples are given, which are applied to remote monitoring, and a self check service.

  17. The Baetylus Theorem—the central disconnect driving consumer behavior and investment returns in Wearable Technologies

    PubMed Central

    Levine, James A.

    2016-01-01

    The Wearable Technology market may increase fivefold by the end of the decade. There is almost no academic investigation as to what drives the investment hypothesis in wearable technologies. This paper seeks to examine this issue from an evidence-based perspective. There is a fundamental disconnect in how consumers view wearable sensors and how companies market them; this is called The Baetylus Theorem where people believe (falsely) that by buying a wearable sensor they will receive health benefit; data suggest that this is not the case. This idea is grounded social constructs, psychological theories and marketing approaches. A marketing proposal that fails to recognize The Baetylus Theorem and how it can be integrated into a business offering has not optimized its competitive advantage. More importantly, consumers should not falsely believe that purchasing a wearable technology, improves health. PMID:27617162

  18. The Baetylus Theorem-the central disconnect driving consumer behavior and investment returns in Wearable Technologies.

    PubMed

    Levine, James A

    2016-08-01

    The Wearable Technology market may increase fivefold by the end of the decade. There is almost no academic investigation as to what drives the investment hypothesis in wearable technologies. This paper seeks to examine this issue from an evidence-based perspective. There is a fundamental disconnect in how consumers view wearable sensors and how companies market them; this is called The Baetylus Theorem where people believe (falsely) that by buying a wearable sensor they will receive health benefit; data suggest that this is not the case. This idea is grounded social constructs, psychological theories and marketing approaches. A marketing proposal that fails to recognize The Baetylus Theorem and how it can be integrated into a business offering has not optimized its competitive advantage. More importantly, consumers should not falsely believe that purchasing a wearable technology, improves health.

  19. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  20. Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies

    PubMed Central

    Düking, Peter; Hotho, Andreas; Holmberg, Hans-Christer; Fuss, Franz Konstantin; Sperlich, Billy

    2016-01-01

    Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables) provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete's training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health. PMID:27014077

  1. Behavioral Economics, Wearable Devices, and Cooperative Games: Results From a Population-Based Intervention to Increase Physical Activity.

    PubMed

    van Mierlo, Trevor; Hyatt, Douglas; Ching, Andrew T; Fournier, Rachel; Dembo, Ron S

    2016-01-28

    Health care literature supports the development of accessible interventions that integrate behavioral economics, wearable devices, principles of evidence-based behavior change, and community support. However, there are limited real-world examples of large scale, population-based, member-driven reward platforms. Subsequently, a paucity of outcome data exists and health economic effects remain largely theoretical. To complicate matters, an emerging area of research is defining the role of Superusers, the small percentage of unusually engaged digital health participants who may influence other members. The objective of this preliminary study is to analyze descriptive data from GOODcoins, a self-guided, free-to-consumer engagement and rewards platform incentivizing walking, running and cycling. Registered members accessed the GOODcoins platform through PCs, tablets or mobile devices, and had the opportunity to sync wearables to track activity. Following registration, members were encouraged to join gamified group challenges and compare their progress with that of others. As members met challenge targets, they were rewarded with GOODcoins, which could be redeemed for planet- or people-friendly products. Outcome data were obtained from the GOODcoins custom SQL database. The reporting period was December 1, 2014 to May 1, 2015. Descriptive self-report data were analyzed using MySQL and MS Excel. The study period includes data from 1298 users who were connected to an exercise tracking device. Females consisted of 52.6% (n=683) of the study population, 33.7% (n=438) were between the ages of 20-29, and 24.8% (n=322) were between the ages of 30-39. 77.5% (n=1006) of connected and active members met daily-recommended physical activity guidelines of 30 minutes, with a total daily average activity of 107 minutes (95% CI 90, 124). Of all connected and active users, 96.1% (n=1248) listed walking as their primary activity. For members who exchanged GOODcoins, the mean balance was 4,000 (95% CI 3850, 4150) at time of redemption, and 50.4% (n=61) of exchanges were for fitness or outdoor products, while 4.1% (n=5) were for food-related items. Participants were most likely to complete challenges when rewards were between 201-300 GOODcoins. The purpose of this study is to form a baseline for future research. Overall, results indicate that challenges and incentives may be effective for connected and active members, and may play a role in achieving daily-recommended activity guidelines. Registrants were typically younger, walking was the primary activity, and rewards were mainly exchanged for fitness or outdoor products. Remaining to be determined is whether members were already physically active at time of registration and are representative of healthy adherers, or were previously inactive and were incentivized to change their behavior. As challenges are gamified, there is an opportunity to investigate the role of superusers and healthy adherers, impacts on behavioral norms, and how cooperative games and incentives can be leveraged across stratified populations. Study limitations and future research agendas are discussed.

  2. Compliance With Mobile Ecological Momentary Assessment Protocols in Children and Adolescents: A Systematic Review and Meta-Analysis

    PubMed Central

    2017-01-01

    Background Mobile device-based ecological momentary assessment (mobile-EMA) is increasingly used to collect participants' data in real-time and in context. Although EMA offers methodological advantages, these advantages can be diminished by participant noncompliance. However, evidence on how well participants comply with mobile-EMA protocols and how study design factors associated with participant compliance is limited, especially in the youth literature. Objective To systematically and meta-analytically examine youth’s compliance to mobile-EMA protocols and moderators of participant compliance in clinical and nonclinical settings. Methods Studies using mobile devices to collect EMA data among youth (age ≤18 years old) were identified. A systematic review was conducted to describe the characteristics of mobile-EMA protocols and author-reported factors associated with compliance. Random effects meta-analyses were conducted to estimate the overall compliance across studies and to explore factors associated with differences in youths’ compliance. Results This review included 42 unique studies that assessed behaviors, subjective experiences, and contextual information. Mobile phones were used as the primary mode of EMA data collection in 48% (20/42) of the reviewed studies. In total, 12% (5/42) of the studies used wearable devices in addition to the EMA data collection platforms. About half of the studies (62%, 24/42) recruited youth from nonclinical settings. Most (98%, 41/42) studies used a time-based sampling protocol. Among these studies, most (95%, 39/41) prompted youth 2-9 times daily, for a study length ranging from 2-42 days. Sampling frequency and study length did not differ between studies with participants from clinical versus nonclinical settings. Most (88%, 36/41) studies with a time-based sampling protocol defined compliance as the proportion of prompts to which participants responded. In these studies, the weighted average compliance rate was 78.3%. The average compliance rates were not different between studies with clinical (76.9%) and nonclinical (79.2%; P=.29) and studies that used only a mobile-EMA platform (77.4%) and mobile platform plus additional wearable devices (73.0%, P=.36). Among clinical studies, the mean compliance rate was significantly lower in studies that prompted participants 2-3 times (73.5%) or 4-5 times (66.9%) compared with studies with a higher sampling frequency (6+ times: 89.3%). Among nonclinical studies, a higher average compliance rate was observed in studies that prompted participants 2-3 times daily (91.7%) compared with those that prompted participants more frequently (4-5 times: 77.4%; 6+ times: 75.0%). The reported compliance rates did not differ by duration of EMA period among studies from either clinical or nonclinical settings. Conclusions The compliance rate among mobile-EMA studies in youth is moderate but suboptimal. Study design may affect protocol compliance differently between clinical and nonclinical participants; including additional wearable devices did not affect participant compliance. A more consistent compliance-related result reporting practices can facilitate understanding and improvement of participant compliance with EMA data collection among youth. PMID:28446418

  3. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    PubMed Central

    Zhang, Xiong; Zhao, Yacong; Zhang, Yu; Zhong, Xuefei; Fan, Zhaowen

    2018-01-01

    The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities. PMID:29543737

  4. Intelligent Medical Garments with Graphene-Functionalized Smart-Cloth ECG Sensors.

    PubMed

    Yapici, Murat Kaya; Alkhidir, Tamador Elboshra

    2017-04-16

    Biopotential signals are recorded mostly by using sticky, pre-gelled electrodes, which are not ideal for wearable, point-of-care monitoring where the usability of the personalized medical device depends critically on the level of comfort and wearability of the electrodes. We report a fully-wearable medical garment for mobile monitoring of cardiac biopotentials from the wrists or the neck with minimum restriction to regular clothing habits. The wearable prototype is based on elastic bands with graphene functionalized, textile electrodes and battery-powered, low-cost electronics for signal acquisition and wireless transmission. Comparison of the electrocardiogram (ECG) recordings obtained from the wearable prototype against conventional wet electrodes indicate excellent conformity and spectral coherence among the two signals.

  5. Energy Harvesting Based Body Area Networks for Smart Health.

    PubMed

    Hao, Yixue; Peng, Limei; Lu, Huimin; Hassan, Mohammad Mehedi; Alamri, Atif

    2017-07-10

    Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device's battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive.

  6. Energy Harvesting Based Body Area Networks for Smart Health

    PubMed Central

    Hao, Yixue; Peng, Limei; Alamri, Atif

    2017-01-01

    Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device’s battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive. PMID:28698501

  7. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement.

    PubMed

    del Rosario, Michael B; Redmond, Stephen J; Lovell, Nigel H

    2015-07-31

    Advances in mobile technology have led to the emergence of the "smartphone", a new class of device with more advanced connectivity features that have quickly made it a constant presence in our lives. Smartphones are equipped with comparatively advanced computing capabilities, a global positioning system (GPS) receivers, and sensing capabilities (i.e., an inertial measurement unit (IMU) and more recently magnetometer and barometer) which can be found in wearable ambulatory monitors (WAMs). As a result, algorithms initially developed for WAMs that "count" steps (i.e., pedometers); gauge physical activity levels; indirectly estimate energy expenditure and monitor human movement can be utilised on the smartphone. These algorithms may enable clinicians to "close the loop" by prescribing timely interventions to improve or maintain wellbeing in populations who are at risk of falling or suffer from a chronic disease whose progression is linked to a reduction in movement and mobility. The ubiquitous nature of smartphone technology makes it the ideal platform from which human movement can be remotely monitored without the expense of purchasing, and inconvenience of using, a dedicated WAM. In this paper, an overview of the sensors that can be found in the smartphone are presented, followed by a summary of the developments in this field with an emphasis on the evolution of algorithms used to classify human movement. The limitations identified in the literature will be discussed, as well as suggestions about future research directions.

  8. A flexible routing scheme for patients with topographical disorientation.

    PubMed

    Torres-Solis, Jorge; Chau, Tom

    2007-11-28

    Individuals with topographical disorientation have difficulty navigating through indoor environments. Recent literature has suggested that ambient intelligence technologies may provide patients with navigational assistance through auditory or graphical instructions delivered via embedded devices. We describe an automatic routing engine for such an ambient intelligence system. The method routes patients with topographical disorientation through indoor environments by repeatedly computing the route of minimal cost from the current location of the patient to a specified destination. The cost of a given path not only reflects the physical distance between end points, but also incorporates individual patient abilities, the presence of mobility-impeding physical barriers within a building and the dynamic nature of the indoor environment. We demonstrate the method by routing simulated patients with either topographical disorientation or physical disabilities. Additionally, we exemplify the ability to route a patient from source to destination while taking into account changes to the building interior. When compared to a random walk, the proposed routing scheme offers potential cost-savings even when the patient follows only a subset of instructions. The routing method presented reduces the navigational effort for patients with topographical disorientation in indoor environments, accounting for physical abilities of the patient, environmental barriers and dynamic building changes. The routing algorithm and database proposed could be integrated into wearable and mobile platforms within the context of an ambient intelligence solution.

  9. Mining the Quantified Self: Personal Knowledge Discovery as a Challenge for Data Science.

    PubMed

    Fawcett, Tom

    2015-12-01

    The last several years have seen an explosion of interest in wearable computing, personal tracking devices, and the so-called quantified self (QS) movement. Quantified self involves ordinary people recording and analyzing numerous aspects of their lives to understand and improve themselves. This is now a mainstream phenomenon, attracting a great deal of attention, participation, and funding. As more people are attracted to the movement, companies are offering various new platforms (hardware and software) that allow ever more aspects of daily life to be tracked. Nearly every aspect of the QS ecosystem is advancing rapidly, except for analytic capabilities, which remain surprisingly primitive. With increasing numbers of qualified self participants collecting ever greater amounts and types of data, many people literally have more data than they know what to do with. This article reviews the opportunities and challenges posed by the QS movement. Data science provides well-tested techniques for knowledge discovery. But making these useful for the QS domain poses unique challenges that derive from the characteristics of the data collected as well as the specific types of actionable insights that people want from the data. Using a small sample of QS time series data containing information about personal health we provide a formulation of the QS problem that connects data to the decisions of interest to the user.

  10. Formal design and verification of a reliable computing platform for real-time control. Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Divito, Ben L.; Butler, Ricky W.; Caldwell, James L.

    1990-01-01

    A high-level design is presented for a reliable computing platform for real-time control applications. Design tradeoffs and analyses related to the development of the fault-tolerant computing platform are discussed. The architecture is formalized and shown to satisfy a key correctness property. The reliable computing platform uses replicated processors and majority voting to achieve fault tolerance. Under the assumption of a majority of processors working in each frame, it is shown that the replicated system computes the same results as a single processor system not subject to failures. Sufficient conditions are obtained to establish that the replicated system recovers from transient faults within a bounded amount of time. Three different voting schemes are examined and proved to satisfy the bounded recovery time conditions.

  11. PlaIMoS: A Remote Mobile Healthcare Platform to Monitor Cardiovascular and Respiratory Variables

    PubMed Central

    Miramontes, Ramses; Aquino, Raúl; Flores, Arturo; Rodríguez, Guillermo; Anguiano, Rafael; Ríos, Arturo; Edwards, Arthur

    2017-01-01

    The number of elderly and chronically ill patients has grown significantly over the past few decades as life expectancy has increased worldwide, leading to increased demands on the health care system and significantly taxing traditional health care practices. Consequently, there is an urgent need to use technology to innovate and more constantly and intensely monitor, report and analyze critical patient physiological parameters beyond conventional clinical settings in a more efficient and cost effective manner. This paper presents a technological platform called PlaIMoS which consists of wearable sensors, a fixed measurement station, a network infrastructure that employs IEEE 802.15.4 and IEEE 802.11 to transmit data with security mechanisms, a server to analyze all information collected and apps for iOS, Android and Windows 10 mobile operating systems to provide real-time measurements. The developed architecture, designed primarily to record and report electrocardiogram and heart rate data, also monitors parameters associated with chronic respiratory illnesses, including patient blood oxygen saturation and respiration rate, body temperature, fall detection and galvanic resistance. PMID:28106832

  12. PlaIMoS: A Remote Mobile Healthcare Platform to Monitor Cardiovascular and Respiratory Variables.

    PubMed

    Miramontes, Ramses; Aquino, Raúl; Flores, Arturo; Rodríguez, Guillermo; Anguiano, Rafael; Ríos, Arturo; Edwards, Arthur

    2017-01-19

    The number of elderly and chronically ill patients has grown significantly over the past few decades as life expectancy has increased worldwide, leading to increased demands on the health care system and significantly taxing traditional health care practices. Consequently, there is an urgent need to use technology to innovate and more constantly and intensely monitor, report and analyze critical patient physiological parameters beyond conventional clinical settings in a more efficient and cost effective manner. This paper presents a technological platform called PlaIMoS which consists of wearable sensors, a fixed measurement station, a network infrastructure that employs IEEE 802.15.4 and IEEE 802.11 to transmit data with security mechanisms, a server to analyze all information collected and apps for iOS, Android and Windows 10 mobile operating systems to provide real-time measurements. The developed architecture, designed primarily to record and report electrocardiogram and heart rate data, also monitors parameters associated with chronic respiratory illnesses, including patient blood oxygen saturation and respiration rate, body temperature, fall detection and galvanic resistance.

  13. Identification of COPD patients' health status using an intelligent system in the CHRONIOUS wearable platform.

    PubMed

    Bellos, Christos C; Papadopoulos, Athanasios; Rosso, Roberto; Fotiadis, Dimitrios I

    2014-05-01

    The CHRONIOUS system offers an integrated platform aiming at the effective management and real-time assessment of the health status of the patient suffering from chronic obstructive pulmonary disease (COPD). An intelligent system is developed for the analysis and the real-time evaluation of patient's condition. A hybrid classifier has been implemented on a personal digital assistant, combining a support vector machine, a random forest, and a rule-based system to provide a more advanced categorization scheme for the early and in real-time characterization of a COPD episode. This is followed by a severity estimation algorithm which classifies the identified pathological situation in different levels and triggers an alerting mechanism to provide an informative and instructive message/advice to the patient and the clinical supervisor. The system has been validated using data collected from 30 patients that have been annotated by experts indicating 1) the severity level of the current patient's health status, and 2) the COPD disease level of the recruited patients according to the GOLD guidelines. The achieved characterization accuracy has been found 94%.

  14. Identifying balance impairments in people with Parkinson's disease using video and wearable sensors.

    PubMed

    Stack, Emma; Agarwal, Veena; King, Rachel; Burnett, Malcolm; Tahavori, Fatemeh; Janko, Balazs; Harwin, William; Ashburn, Ann; Kunkel, Dorit

    2018-05-01

    Falls and near falls are common among people with Parkinson's (PwP). To date, most wearable sensor research focussed on fall detection, few studies explored if wearable sensors can detect instability. Can instability (caution or near-falls) be detected using wearable sensors in comparison to video analysis? Twenty-four people (aged 60-86) with and without Parkinson's were recruited from community groups. Movements (e.g. walking, turning, transfers and reaching) were observed in the gait laboratory and/or at home; recorded using clinical measures, video and five wearable sensors (attached on the waist, ankles and wrists). After defining 'caution' and 'instability', two researchers evaluated video data and a third the raw wearable sensor data; blinded to each other's evaluations. Agreement between video and sensor data was calculated on stability, timing, step count and strategy. Data was available for 117 performances: 82 (70%) appeared stable on video. Ratings agreed in 86/117 cases (74%). Highest agreement was noted for chair transfer, timed up and go test and 3 m walks. Video analysts noted caution (slow, contained movements, safety-enhancing postures and concentration) and/or instability (saving reactions, stopping after stumbling or veering) in 40/134 performances (30%): raw wearable sensor data identified 16/35 performances rated cautious or unstable (sensitivity 46%) and 70/82 rated stable (specificity 85%). There was a 54% chance that a performance identified from wearable sensors as cautious/unstable was so; rising to 80% for stable movements. Agreement between wearable sensor and video data suggested that wearable sensors can detect subtle instability and near-falls. Caution and instability were observed in nearly a third of performances, suggesting that simple, mildly challenging actions, with clearly defined start- and end-points, may be most amenable to monitoring during free-living at home. Using the genuine near-falls recorded, work continues to automatically detect subtle instability using algorithms. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  15. iShadow: Design of a Wearable, Real-Time Mobile Gaze Tracker.

    PubMed

    Mayberry, Addison; Hu, Pan; Marlin, Benjamin; Salthouse, Christopher; Ganesan, Deepak

    2014-06-01

    Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms. Our key contribution is the design of an eye tracker that dramatically reduces the sensing and computation needs for eye tracking, thereby achieving orders of magnitude reductions in power consumption and form-factor. The key idea is that eye images are extremely redundant, therefore we can estimate gaze by using a small subset of carefully chosen pixels per frame. We instantiate this idea in a prototype hardware platform equipped with a low-power image sensor that provides random access to pixel values, a low-power ARM Cortex M3 microcontroller, and a bluetooth radio to communicate with a mobile phone. The sparse pixel-based gaze estimation algorithm is a multi-layer neural network learned using a state-of-the-art sparsity-inducing regularization function that minimizes the gaze prediction error while simultaneously minimizing the number of pixels used. Our results show that we can operate at roughly 70mW of power, while continuously estimating eye gaze at the rate of 30 Hz with errors of roughly 3 degrees.

  16. iShadow: Design of a Wearable, Real-Time Mobile Gaze Tracker

    PubMed Central

    Mayberry, Addison; Hu, Pan; Marlin, Benjamin; Salthouse, Christopher; Ganesan, Deepak

    2015-01-01

    Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms. Our key contribution is the design of an eye tracker that dramatically reduces the sensing and computation needs for eye tracking, thereby achieving orders of magnitude reductions in power consumption and form-factor. The key idea is that eye images are extremely redundant, therefore we can estimate gaze by using a small subset of carefully chosen pixels per frame. We instantiate this idea in a prototype hardware platform equipped with a low-power image sensor that provides random access to pixel values, a low-power ARM Cortex M3 microcontroller, and a bluetooth radio to communicate with a mobile phone. The sparse pixel-based gaze estimation algorithm is a multi-layer neural network learned using a state-of-the-art sparsity-inducing regularization function that minimizes the gaze prediction error while simultaneously minimizing the number of pixels used. Our results show that we can operate at roughly 70mW of power, while continuously estimating eye gaze at the rate of 30 Hz with errors of roughly 3 degrees. PMID:26539565

  17. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads.

    PubMed

    Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-05-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.

  18. Intelligent assistant carer for active aging

    NASA Astrophysics Data System (ADS)

    Bizjak, Jani; Gradišek, Anton; Stepančič, Luka; Gjoreski, Hristijan; Gams, Matjaž

    2017-12-01

    We present the concept of an Intelligent Assistant Carer system for the elderly, designed to help with active aging and to facilitate the interactions with carers. The system is modular, allowing the users to choose the appropriate functions according to their needs, and is built on an open platform in order to make it compatible with third-party products and services. Currently, the system consists of a wearable device (a smartwatch) and an internet portal that manages the data and takes care of the interactions between the user, the carers, and the support services. We present in detail one of the modules, i.e., fall detection, and the results of a pilot study for the system on 150 users over the course of 3 months.

  19. A fluid collection system for dermal wounds in clinical investigations

    PubMed Central

    Klopfer, Michael; Li, G.-P.; Widgerow, Alan; Bachman, Mark

    2016-01-01

    In this work, we demonstrate the use of a thin, self adherent, and clinically durable patch device that can collect fluid from a wound site for analysis. This device is manufactured from laminated silicone layers using a novel all-silicone double-molding process. In vitro studies for flow and delivery were followed by a clinical demonstration for exudate collection efficiency from a clinically presented partial thickness burn. The demonstrated utility of this device lends itself for use as a research implement used to clinically sample wound exudate for analysis. This device can serve as a platform for future integration of wearable technology into wound monitoring and care. The demonstrated fabrication method can be used for devices requiring thin membrane construction. PMID:27051470

  20. Training Capabilities of Wearable and Desktop Simulator Interfaces

    DTIC Science & Technology

    2011-11-01

    Nausea subscale the Wearable group reported a higher level ( M = 13.42) than both the Desktop group ( M = 3.39, p < .001) and the Control group ( M ...7.69, p = .013). For the Oculomotor subscale, the Wearable group again reported a higher level ( M = 22.50) than both the Desktop group ( M = 6.60, p...001) and the Control group ( M = 11.49, p = .007). For the Disorientation subscale, once again the Wearable group reported a higher level ( M

  1. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  2. Wearable Virtual White Cane Network for navigating people with visual impairment.

    PubMed

    Gao, Yabiao; Chandrawanshi, Rahul; Nau, Amy C; Tse, Zion Tsz Ho

    2015-09-01

    Navigating the world with visual impairments presents inconveniences and safety concerns. Although a traditional white cane is the most commonly used mobility aid due to its low cost and acceptable functionality, electronic traveling aids can provide more functionality as well as additional benefits. The Wearable Virtual Cane Network is an electronic traveling aid that utilizes ultrasound sonar technology to scan the surrounding environment for spatial information. The Wearable Virtual Cane Network is composed of four sensing nodes: one on each of the user's wrists, one on the waist, and one on the ankle. The Wearable Virtual Cane Network employs vibration and sound to communicate object proximity to the user. While conventional navigation devices are typically hand-held and bulky, the hands-free design of our prototype allows the user to perform other tasks while using the Wearable Virtual Cane Network. When the Wearable Virtual Cane Network prototype was tested for distance resolution and range detection limits at various displacements and compared with a traditional white cane, all participants performed significantly above the control bar (p < 4.3 × 10(-5), standard t-test) in distance estimation. Each sensor unit can detect an object with a surface area as small as 1 cm(2) (1 cm × 1 cm) located 70 cm away. Our results showed that the walking speed for an obstacle course was increased by 23% on average when subjects used the Wearable Virtual Cane Network rather than the white cane. The obstacle course experiment also shows that the use of the white cane in combination with the Wearable Virtual Cane Network can significantly improve navigation over using either the white cane or the Wearable Virtual Cane Network alone (p < 0.05, paired t-test). © IMechE 2015.

  3. Unintended Consequences of Wearable Sensor Use in Healthcare. Contribution of the IMIA Wearable Sensors in Healthcare WG.

    PubMed

    Schukat, M; McCaldin, D; Wang, K; Schreier, G; Lovell, N H; Marschollek, M; Redmond, S J

    2016-11-10

    As wearable sensors take the consumer market by storm, and medical device manufacturers move to make their devices wireless and appropriate for ambulatory use, this revolution brings with it some unintended consequences, which we aim to discuss in this paper. We discuss some important unintended consequences, both beneficial and unwanted, which relate to: modifications of behavior; creation and use of big data sets; new security vulnerabilities; and unforeseen challenges faced by regulatory authorities, struggling to keep pace with recent innovations. Where possible, we proposed potential solutions to unwanted consequences. Intelligent and inclusive design processes may mitigate unintended modifications in behavior. For big data, legislating access to and use of these data will be a legal and political challenge in the years ahead, as we trade the health benefits of wearable sensors against the risk to our privacy. The wireless and personal nature of wearable sensors also exposes them to a number of unique security vulnerabilities. Regulation plays an important role in managing these security risks, but also has the dual responsibility of ensuring that wearable devices are fit for purpose. However, the burden of validating the function and security of medical devices is becoming infeasible for regulators, given the many software apps and wearable sensors entering the market each year, which are only a subset of an even larger 'internet of things'. Wearable sensors may serve to improve wellbeing, but we must be vigilant against the occurrence of unintended consequences. With collaboration between device manufacturers, regulators, and end-users, we balance the risk of unintended consequences occurring against the incredible benefit that wearable sensors promise to bring to the world.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  5. Micro-Controllable, Multi-Functional Interface Module for Digital MP: A Wearable Computer Security Application

    DTIC Science & Technology

    2004-05-01

    Army Soldier System Command: http://www.natick.armv.mil Role Name Facial Recognition Program Manager, Army Technical Lead Mark Chandler...security force with a facial recognition system. Mike Holloran, technology officer with the 6 Fleet, directed LCDR Hoa Ho and CAPT(s) Todd Morgan to...USN 6th Fleet was accomplished with the admiral expressing his support for continuing the evaluation of the a facial recognition system. This went

  6. Intelligent Medical Garments with Graphene-Functionalized Smart-Cloth ECG Sensors

    PubMed Central

    Yapici, Murat Kaya; Alkhidir, Tamador Elboshra

    2017-01-01

    Biopotential signals are recorded mostly by using sticky, pre-gelled electrodes, which are not ideal for wearable, point-of-care monitoring where the usability of the personalized medical device depends critically on the level of comfort and wearability of the electrodes. We report a fully-wearable medical garment for mobile monitoring of cardiac biopotentials from the wrists or the neck with minimum restriction to regular clothing habits. The wearable prototype is based on elastic bands with graphene functionalized, textile electrodes and battery-powered, low-cost electronics for signal acquisition and wireless transmission. Comparison of the electrocardiogram (ECG) recordings obtained from the wearable prototype against conventional wet electrodes indicate excellent conformity and spectral coherence among the two signals. PMID:28420158

  7. Recent advances in flexible and wearable organic optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin

    2018-01-01

    Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).

  8. A novel dynamic sensing of wearable digital textile sensor with body motion analysis.

    PubMed

    Yang, Chang-Ming; Lin, Zhan-Sheng; Hu, Chang-Lin; Chen, Yu-Shih; Ke, Ling-Yi; Chen, Yin-Rui

    2010-01-01

    This work proposes an innovative textile sensor system to monitor dynamic body movement and human posture by attaching wearable digital sensors to analyze body motion. The proposed system can display and analyze signals when individuals are walking, running, veering around, walking up and down stairs, as well as falling down with a wearable monitoring system, which reacts to the coordination between the body and feet. Several digital sensor designs are embedded in clothing and wear apparel. Any pressure point can determine which activity is underway. Importantly, wearable digital sensors and a wearable monitoring system allow adaptive, real-time postures, real time velocity, acceleration, non-invasive, transmission healthcare, and point of care (POC) for home and non-clinical environments.

  9. Personalized cumulative UV tracking on mobiles & wearables.

    PubMed

    Dey, S; Sahoo, S; Agrawal, H; Mondal, A; Bhowmik, T; Tiwari, V N

    2017-07-01

    Maintaining a balanced Ultra Violet (UV) exposure level is vital for a healthy living as the excess of UV dose can lead to critical diseases such as skin cancer while the absence can cause vitamin D deficiency which has recently been linked to onset of cardiac abnormalities. Here, we propose a personalized cumulative UV dose (CUVD) estimation system for smartwatch and smartphone devices having the following novelty factors; (a) sensor orientation invariant measurement of UV exposure using a bootstrap resampling technique, (b) estimation of UV exposure using only light intensity (lux) sensor (c) optimal UV exposure dose estimation. Our proposed method will eliminate the need for a dedicated UV sensor thus widen the user base of the proposed solution, render it unobtrusive by eliminating the critical requirement of orienting the device in a direction facing the sun. The system is implemented on android mobile platform and validated on 1200 minutes of lux and UV index (UVI) data collected across several days covering morning to evening time frames. The result shows very impressive final UVI estimation accuracy. We believe our proposed solution will enable the future wearable and smartphone users to obtain a seamless personalized UV exposure dose across a day paving a way for simple yet very useful recommendations such as right skin protective measure for reducing risk factors of long term UV exposure related diseases like skin cancer and, cardiac abnormality.

  10. Development and evaluation of an ultrasonic personal aerosol sampler.

    PubMed

    Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D

    2017-03-01

    Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  11. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.

    PubMed

    Liu, Yuhao; Pharr, Matt; Salvatore, Giovanni Antonio

    2017-10-24

    Skin is the largest organ of the human body, and it offers a diagnostic interface rich with vital biological signals from the inner organs, blood vessels, muscles, and dermis/epidermis. Soft, flexible, and stretchable electronic devices provide a novel platform to interface with soft tissues for robotic feedback and control, regenerative medicine, and continuous health monitoring. Here, we introduce the term "lab-on-skin" to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin. These devices can conformally laminate on the epidermis to mitigate motion artifacts and mismatches in mechanical properties created by conventional, rigid electronics while simultaneously providing accurate, non-invasive, long-term, and continuous health monitoring. Recent progress in the design and fabrication of soft sensors with more advanced capabilities and enhanced reliability suggest an impending translation of these devices from the research lab to clinical environments. Regarding these advances, the first part of this manuscript reviews materials, design strategies, and powering systems used in soft electronics. Next, the paper provides an overview of applications of these devices in cardiology, dermatology, electrophysiology, and sweat diagnostics, with an emphasis on how these systems may replace conventional clinical tools. The review concludes with an outlook on current challenges and opportunities for future research directions in wearable health monitoring.

  12. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices

    PubMed Central

    Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W.

    2015-01-01

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparentand working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90o. Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices. PMID:26076705

  13. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    PubMed

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  14. Sensing human physiological response using wearable carbon nanotube-based fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.; Koo, Helen S.

    2016-04-01

    Flexible and wearable sensors for human monitoring have received increased attention. Besides detecting motion and physical activity, measuring human vital signals (e.g., respiration rate and body temperature) provide rich data for assessing subjects' physiological or psychological condition. Instead of using conventional, bulky, sensing transducers, the objective of this study was to design and test a wearable, fabric-like sensing system. In particular, multi-walled carbon nanotube (MWCNT)-latex thin films of different MWCNT concentrations were first fabricated using spray coating. Freestanding MWCNT-latex films were then sandwiched between two layers of flexible fabric using iron-on adhesive to form the wearable sensor. Second, to characterize its strain sensing properties, the fabric sensors were subjected to uniaxial and cyclic tensile load tests, and they exhibited relatively stable electromechanical responses. Finally, the wearable sensors were placed on a human subject for monitoring simple motions and for validating their practical strain sensing performance. Overall, the wearable fabric sensor design exhibited advances such as flexibility, ease of fabrication, light weight, low cost, noninvasiveness, and user comfort.

  15. Wearable sensor systems for infants.

    PubMed

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-02-05

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  16. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design.

    PubMed

    Sumboja, Afriyanti; Liu, Jiawei; Zheng, Wesley Guangyuan; Zong, Yun; Zhang, Hua; Liu, Zhaolin

    2018-06-27

    Compatible energy storage devices that are able to withstand various mechanical deformations, while delivering their intended functions, are required in wearable technologies. This imposes constraints on the structural designs, materials selection, and miniaturization of the cells. To date, extensive efforts have been dedicated towards developing electrochemical energy storage devices for wearables, with a focus on incorporation of shape-conformable materials into mechanically robust designs that can be worn on the human body. In this review, we highlight the quantified performances of reported wearable electrochemical energy storage devices, as well as their micro-sized counterparts under specific mechanical deformations, which can be used as the benchmark for future studies in this field. A general introduction to the wearable technology, the development of the selection and synthesis of active materials, cell design approaches and device fabrications are discussed. It is followed by challenges and outlook toward the practical use of electrochemical energy storage devices for wearable applications.

  17. Beyond fitness tracking: The use of consumer-grade wearable data from normal volunteers in cardiovascular and lipidomics research

    PubMed Central

    Teo, Jing Xian; Yang, Chengxi; Pua, Chee Jian; Blöcker, Christopher; Lim, Jing Quan; Ching, Jianhong; Yap, Jonathan Jiunn Liang; Tan, Swee Yaw; Sahlén, Anders; Chin, Calvin Woon-Loong; Teh, Bin Tean; Rozen, Steven G.; Cook, Stuart Alexander; Yeo, Khung Keong; Tan, Patrick

    2018-01-01

    The use of consumer-grade wearables for purposes beyond fitness tracking has not been comprehensively explored. We generated and analyzed multidimensional data from 233 normal volunteers, integrating wearable data, lifestyle questionnaires, cardiac imaging, sphingolipid profiling, and multiple clinical-grade cardiovascular and metabolic disease markers. We show that subjects can be stratified into distinct clusters based on daily activity patterns and that these clusters are marked by distinct demographic and behavioral patterns. While resting heart rates (RHRs) performed better than step counts in being associated with cardiovascular and metabolic disease markers, step counts identified relationships between physical activity and cardiac remodeling, suggesting that wearable data may play a role in reducing overdiagnosis of cardiac hypertrophy or dilatation in active individuals. Wearable-derived activity levels can be used to identify known and novel activity-modulated sphingolipids that are in turn associated with insulin sensitivity. Our findings demonstrate the potential for wearables in biomedical research and personalized health. PMID:29485983

  18. Wearable medical systems for p-Health.

    PubMed

    Teng, Xiao-Fei; Zhang, Yuan-Ting; Poon, Carmen C Y; Bonato, Paolo

    2008-01-01

    Driven by the growing aging population, prevalence of chronic diseases, and continuously rising healthcare costs, the healthcare system is undergoing a fundamental transformation, from the conventional hospital-centered system to an individual-centered system. Current and emerging developments in wearable medical systems will have a radical impact on this paradigm shift. Advances in wearable medical systems will enable the accessibility and affordability of healthcare, so that physiological conditions can be monitored not only at sporadic snapshots but also continuously for extended periods of time, making early disease detection and timely response to health threats possible. This paper reviews recent developments in the area of wearable medical systems for p-Health. Enabling technologies for continuous and noninvasive measurements of vital signs and biochemical variables, advances in intelligent biomedical clothing and body area networks, approaches for motion artifact reduction, strategies for wearable energy harvesting, and the establishment of standard protocols for the evaluation of wearable medical devices are presented in this paper with examples of clinical applications of these technologies.

  19. Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.

    PubMed

    Souri, Hamid; Bhattacharyya, Debes

    2018-06-05

    The demand for stretchable, flexible, and wearable multifunctional devices based on conductive nanomaterials is rapidly increasing considering their interesting applications including human motion detection, robotics, and human-machine interface. There still exists a great challenge to manufacture stretchable, flexible, and wearable devices through a scalable and cost-effective fabrication method. Herein, we report a simple method for the mass production of electrically conductive textiles, made of cotton and wool, by hybridization of graphene nanoplatelets and carbon black particles. Conductive textiles incorporated into a highly elastic elastomer are utilized as highly stretchable and wearable strain sensors and heaters. The electromechanical characterizations of our multifunctional devices establish their excellent performance as wearable strain sensors to monitor various human motions, such as finger, wrist, and knee joint movements, and to recognize sound with high durability. Furthermore, the electrothermal behavior of our devices shows their potential application as stretchable and wearable heaters working at a maximum temperature of 103 °C powered with 20 V.

  20. Wearable Sensor Systems for Infants

    PubMed Central

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-01-01

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future. PMID:25664432

  1. Performance Evaluation of Wearable Sensor Systems: A Case Study in Moderate-Scale Deployment in Hospital Environment.

    PubMed

    Sun, Wen; Ge, Yu; Zhang, Zhiqiang; Wong, Wai-Choong

    2015-09-25

    A wearable sensor system enables continuous and remote health monitoring and is widely considered as the next generation of healthcare technology. The performance, the packet error rate (PER) in particular, of a wearable sensor system may deteriorate due to a number of factors, particularly the interference from the other wearable sensor systems in the vicinity. We systematically evaluate the performance of the wearable sensor system in terms of PER in the presence of such interference in this paper. The factors that affect the performance of the wearable sensor system, such as density, traffic load, and transmission power in a realistic moderate-scale deployment case in hospital are all considered. Simulation results show that with 20% duty cycle, only 68.5% of data transmission can achieve the targeted reliability requirement (PER is less than 0.05) even in the off-peak period in hospital. We then suggest some interference mitigation schemes based on the performance evaluation results in the case study.

  2. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    NASA Astrophysics Data System (ADS)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  3. Development of a computer model to predict platform station keeping requirements in the Gulf of Mexico using remote sensing data

    NASA Technical Reports Server (NTRS)

    Barber, Bryan; Kahn, Laura; Wong, David

    1990-01-01

    Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.

  4. Analysis of Biosignals During Immersion in Computer Games.

    PubMed

    Yeo, Mina; Lim, Seokbeen; Yoon, Gilwon

    2017-11-17

    The number of computer game users is increasing as computers and various IT devices in connection with the Internet are commonplace in all ages. In this research, in order to find the relevance of behavioral activity and its associated biosignal, biosignal changes before and after as well as during computer games were measured and analyzed for 31 subjects. For this purpose, a device to measure electrocardiogram, photoplethysmogram and skin temperature was developed such that the effect of motion artifacts could be minimized. The device was made wearable for convenient measurement. The game selected for the experiments was League of Legends™. Analysis on the pulse transit time, heart rate variability and skin temperature showed increased sympathetic nerve activities during computer game, while the parasympathetic nerves became less active. Interestingly, the sympathetic predominance group showed less change in the heart rate variability as compared to the normal group. The results can be valuable for studying internet gaming disorder.

  5. Remote biomonitoring of temperatures in mothers and newborns: design, development and testing of a wearable sensor device in a tertiary-care hospital in southern India.

    PubMed

    Mony, Prem K; Thankachan, Prashanth; Bhat, Swarnarekha; Rao, Suman; Washington, Maryann; Antony, Sumi; Thomas, Annamma; Nagarajarao, Sheela C; Rao, Hiteshwar; Amrutur, Bharadwaj

    2018-04-01

    Newer technologies such as wearables, sensors, mobile telephony and computing offer opportunities to monitor vital physiological parameters and tackle healthcare problems, thereby improving access and quality of care. We describe the design, development and testing of a wearable sensor device for remote biomonitoring of body temperatures in mothers and newborns in southern India. Based on client needs and technological requirements, a wearable sensor device was designed and developed using principles of 'social innovation' design. The device underwent multiple iterations in product design and engineering based on user feedback, and then following preclinical testing, a techno-feasibility study and clinical trial were undertaken in a tertiary-care teaching hospital in Bangalore, India. Clinical trial phases I and IIa for evaluation of safety and efficacy were undertaken in the following sequence: 7 healthy adult volunteers; 18 healthy mothers; 3 healthy babies; 10 stable babies in the neonatal care intensive unit and 1 baby with morbidities. Time-stamped skin temperature readings obtained at 5 min intervals over a 1-hour period from the device secured on upper arms of mothers and abdomen of neonates were compared against readings from thermometers used routinely in clinical practice. Devices were comfortably secured on to adults and neonates, and data were efficiently transmitted via the gateway device for secure storage and retrieval for analysis. The mean skin temperatures in mothers were lower than the axillary temperatures by 2°C; and in newborns, there was a precision of -0.5°C relative to axillary measurements. While occasional minimal adverse events were noted in healthy volunteers, no adverse events were noted in mothers or neonates. This proof-of-concept study shows that this device is promising in terms of feasibility, safety and accuracy (with appropriate calibration) with potential for further refinements in device accuracy and pursuit of further phases of clinical research for improved maternal and neonatal health.

  6. Wearable sensors objectively measure gait parameters in Parkinson’s disease

    PubMed Central

    Marxreiter, Franz; Gossler, Julia; Kohl, Zacharias; Reinfelder, Samuel; Gassner, Heiko; Aminian, Kamiar; Eskofier, Bjoern M.; Winkler, Jürgen; Klucken, Jochen

    2017-01-01

    Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson’s disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson’s disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson’s disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects’ preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson’s disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson’s disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson’s disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based gait measurement in Parkinson’s disease reaching high technological readiness levels for both, large scale clinical studies and individual patient care. PMID:29020012

  7. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices

    PubMed Central

    Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Objectives Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. Methods MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Results Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Conclusions Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization. PMID:28261526

  8. Barriers to the Adoption of Wearable Sensors in the Workplace: A Survey of Occupational Safety and Health Professionals.

    PubMed

    Schall, Mark C; Sesek, Richard F; Cavuoto, Lora A

    2018-05-01

    To gather information on the (a) types of wearable sensors, particularly personal activity monitors, currently used by occupational safety and health (OSH) professionals; (b) potential benefits of using such technologies in the workplace; and (c) perceived barriers preventing the widespread adoption of wearable sensors in industry. Wearable sensors are increasingly being promoted as a means to improve employee health and well-being, and there is mounting evidence supporting their use as exposure assessment and personal health tools. Despite this, many workplaces have been hesitant to adopt these technologies. An electronic survey was emailed to 28,428 registered members of the American Society of Safety Engineers (ASSE) and 1,302 professionals certified by the Board of Certification in Professional Ergonomics (BCPE). A total of 952 valid responses were returned. Over half of respondents described being in favor of using wearable sensors to track OSH-related risk factors and relevant exposure metrics at their respective workplaces. However, barriers including concerns regarding employee privacy/confidentiality of collected data, employee compliance, sensor durability, the cost/benefit ratio of using wearables, and good manufacturing practice requirements were described as challenges precluding adoption. The broad adoption of wearable technologies appears to depend largely on the scientific community's ability to successfully address the identified barriers. Investigators may use the information provided to develop research studies that better address OSH practitioner concerns and help technology developers operationalize wearable sensors to improve employee health and well-being.

  9. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.

    PubMed

    Georgiou, Konstantinos; Larentzakis, Andreas V; Khamis, Nehal N; Alsuhaibani, Ghadah I; Alaska, Yasser A; Giallafos, Elias J

    2018-03-01

    A growing number of wearable devices claim to provide accurate, cheap and easily applicable heart rate variability (HRV) indices. This is mainly accomplished by using wearable photoplethysmography (PPG) and/or electrocardiography (ECG), through simple and non-invasive techniques, as a substitute of the gold standard RR interval estimation through electrocardiogram. Although the agreement between pulse rate variability (PRV) and HRV has been evaluated in the literature, the reported results are still inconclusive especially when using wearable devices. The purpose of this systematic review is to investigate if wearable devices provide a reliable and precise measurement of classic HRV parameters in rest as well as during exercise. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases, as well as, through internet search. The 308 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Eighteen studies were included. Sixteen of them integrated ECG - HRV technology and two of them PPG - PRV technology. All of them examined wearable devices accuracy in RV detection during rest, while only eight of them during exercise. The correlation between classic ECG derived HRV and the wearable RV ranged from very good to excellent during rest, yet it declined progressively as exercise level increased. Wearable devices may provide a promising alternative solution for measuring RV. However, more robust studies in non-stationary conditions are needed using appropriate methodology in terms of number of subjects involved, acquisition and analysis techniques implied.

  10. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.

    PubMed

    Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.

  11. Traffic information computing platform for big data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Zongtao, E-mail: ztduan@chd.edu.cn; Li, Ying, E-mail: ztduan@chd.edu.cn; Zheng, Xibin, E-mail: ztduan@chd.edu.cn

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  12. Open source acceleration of wave optics simulations on energy efficient high-performance computing platforms

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey; Bos, Jeremy P.

    2017-05-01

    We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.

  13. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    ERIC Educational Resources Information Center

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  14. MediLink: a wearable telemedicine system for emergency and mobile applications.

    PubMed

    Koval, T; Dudziak, M

    1999-01-01

    The practical needs of the medical professional faced with critical care or emergency situations differ from those working in many environments where telemedicine and mobile computing have been introduced and tested. One constructive criticism of the telemedicine initiative has been to question what positive benefits are gained from videoconferencing, paperless transactions, and online access to patient record. With a goal of producing a positive answer to such questions an architecture for multipurpose mobile telemedicine applications has been developed. The core technology is based upon a wearable personal computer with a smart-card interface coupled with speech, pen, video input and wireless intranet connectivity. The TransPAC system with the MedLink software system is designed to provide an integrated solution for a broad range of health care functions where mobile and hands-free or limited-access systems are preferred or necessary and where the capabilities of other mobile devices are insufficient or inappropriate. Structured and noise-resistant speech-to-text interfacing plus the use of a web browser-like display, accessible through either a flatpanel, standard, or headset monitor, gives the beltpack TransPAC computer the functions of a complete desktop including PCMCIA card interfaces for internet connectivity and a secure smartcard with 16-bit microprocessor and upwards of 64K memory. The card acts to provide user access control for security, user custom configuration of applications and display and vocabulary, and memory to diminish the need for PC-server communications while in an active session. TransPAC is being implemented for EMT and ER staff usage.

  15. A Novel Wearable Device for Food Intake and Physical Activity Recognition

    PubMed Central

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  16. A Novel Wearable Device for Food Intake and Physical Activity Recognition.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-07-11

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure.

  17. Wearable sweat detector device design for health monitoring and clinical diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  18. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity.

    PubMed

    Düking, Peter; Fuss, Franz Konstantin; Holmberg, Hans-Christer; Sperlich, Billy

    2018-04-30

    Although it is becoming increasingly popular to monitor parameters related to training, recovery, and health with wearable sensor technology (wearables), scientific evaluation of the reliability, sensitivity, and validity of such data is limited and, where available, has involved a wide variety of approaches. To improve the trustworthiness of data collected by wearables and facilitate comparisons, we have outlined recommendations for standardized evaluation. We discuss the wearable devices themselves, as well as experimental and statistical considerations. Adherence to these recommendations should be beneficial not only for the individual, but also for regulatory organizations and insurance companies. ©Peter Düking, Franz Konstantin Fuss, Hans-Christer Holmberg, Billy Sperlich. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 30.04.2018.

  19. Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular Simulation Workloads

    PubMed Central

    Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus

    2016-01-01

    Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922

  20. Autonomous self-organizing resource manager for multiple networked platforms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III

    2002-08-01

    A fuzzy logic based expert system for resource management has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar autonomous naval platforms defending their group against attackers. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper provides an overview of the resource manager including the four fuzzy decision trees that make up the resource manager; the fuzzy EA model; genetic algorithm based optimization; co-evolutionary data mining through gaming; and mathematical, computational and hardware based validation. Methods of automatically designing new multi-platform EA techniques are considered. The expert system runs on each defending platform rendering it an autonomous system requiring no human intervention. There is no commanding platform. Instead the platforms work cooperatively as a function of battlespace geometry; sensor data such as range, bearing, ID, uncertainty measures for sensor output; intelligence reports; etc. Computational experiments will show the defending networked platform's ability to self- organize. The platforms' ability to self-organize is illustrated through the output of the scenario generator, a software package that automates the underlying data mining problem and creates a computer movie of the platforms' interaction for evaluation.

  1. Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.

    2012-12-01

    Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.

  2. Rotating Desk for Collaboration by Two Computer Programmers

    NASA Technical Reports Server (NTRS)

    Riley, John Thomas

    2005-01-01

    A special-purpose desk has been designed to facilitate collaboration by two computer programmers sharing one desktop computer or computer terminal. The impetus for the design is a trend toward what is known in the software industry as extreme programming an approach intended to ensure high quality without sacrificing the quantity of computer code produced. Programmers working in pairs is a major feature of extreme programming. The present desk design minimizes the stress of the collaborative work environment. It supports both quality and work flow by making it unnecessary for programmers to get in each other s way. The desk (see figure) includes a rotating platform that supports a computer video monitor, keyboard, and mouse. The desk enables one programmer to work on the keyboard for any amount of time and then the other programmer to take over without breaking the train of thought. The rotating platform is supported by a turntable bearing that, in turn, is supported by a weighted base. The platform contains weights to improve its balance. The base includes a stand for a computer, and is shaped and dimensioned to provide adequate foot clearance for both users. The platform includes an adjustable stand for the monitor, a surface for the keyboard and mouse, and spaces for work papers, drinks, and snacks. The heights of the monitor, keyboard, and mouse are set to minimize stress. The platform can be rotated through an angle of 40 to give either user a straight-on view of the monitor and full access to the keyboard and mouse. Magnetic latches keep the platform preferentially at either of the two extremes of rotation. To switch between users, one simply grabs the edge of the platform and pulls it around. The magnetic latch is easily released, allowing the platform to rotate freely to the position of the other user

  3. Micromagnetics on high-performance workstation and mobile computational platforms

    NASA Astrophysics Data System (ADS)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  4. Continuous measurement of breast tumor hormone receptor expression: a comparison of two computational pathology platforms

    PubMed Central

    Ahern, Thomas P.; Beck, Andrew H.; Rosner, Bernard A.; Glass, Ben; Frieling, Gretchen; Collins, Laura C.; Tamimi, Rulla M.

    2017-01-01

    Background Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumor estrogen receptor (ER) and progesterone receptor (PR) expression. Methods Breast tumor microarrays from the Nurses’ Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumor nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots, and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Results Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (rho≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUCAperio=0.97; AUCDefiniens=0.90; difference=0.07, 95% CI: 0.05, 0.09) and PR positivity (AUCAperio=0.94; AUCDefiniens=0.87; difference=0.07, 95% CI: 0.03, 0.12). Conclusion Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumor biomarker discovery. PMID:27729430

  5. Eyeglasses based wireless electrolyte and metabolite sensor platform.

    PubMed

    Sempionatto, Juliane R; Nakagawa, Tatsuo; Pavinatto, Adriana; Mensah, Samantha T; Imani, Somayeh; Mercier, Patrick; Wang, Joseph

    2017-05-16

    The demand for wearable sensors has grown rapidly in recent years, with increasing attention being given to epidermal chemical sensing. Here, we present the first example of a fully integrated eyeglasses wireless multiplexed chemical sensing platform capable of real-time monitoring of sweat electrolytes and metabolites. The new concept has been realized by integrating an amperometric lactate biosensor and a potentiometric potassium ion-selective electrode into the two nose-bridge pads of the glasses and interfacing them with a wireless electronic backbone placed on the glasses' arms. Simultaneous real-time monitoring of sweat lactate and potassium levels with no apparent cross-talk is demonstrated along with wireless signal transduction. The electrochemical sensors were screen-printed on polyethylene terephthalate (PET) stickers and placed on each side of the glasses' nose pads in order to monitor sweat metabolites and electrolytes. The electronic backbone on the arms of the glasses' frame offers control of the amperometric and potentiometric transducers and enables Bluetooth wireless data transmission to the host device. The new eyeglasses system offers an interchangeable-sensor feature in connection with a variety of different nose-bridge amperometric and potentiometric sensor stickers. For example, the lactate bridge-pad sensor was replaced with a glucose one to offer convenient monitoring of sweat glucose. Such a fully integrated wireless "Lab-on-a-Glass" multiplexed biosensor platform can be readily expanded for the simultaneous monitoring of additional sweat electrolytes and metabolites.

  6. Study on the application of mobile internet cloud computing platform

    NASA Astrophysics Data System (ADS)

    Gong, Songchun; Fu, Songyin; Chen, Zheng

    2012-04-01

    The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.

  7. Building the Joint Battlespace Infosphere. Volume 1: Summary

    DTIC Science & Technology

    1999-12-17

    portable devices , including wearable computer technology for mobile or field application 7.1.4.4.3 The Far Term (2009) The technology will be...graphic on a 2-D map image, or change the list of weapons to be loaded on an F/A-18, or sound an audible alarm in conjunction with flashing red...information automatically through a subscribe process. (3) At the same time, published information can be automatically changed into a new representation or

  8. CSP - 2017 International Conference of Mobile Brain Body Imaging (MoBI) and the Neuroscience of Art, Innovation and Creativity

    DTIC Science & Technology

    2017-09-10

    including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services , Directorate for Information Operations and...covered in the conference: 1) Wearable Mobile Brain-Body Imaging (MoBI) technologies (both hardware and software developments); 2) Cognitive and Brain...the state of the art and challenges in cognitive and affective brain-computer interfaces, and their deployment in the service of the arts and the

  9. The Motivational Impact of Wearable Healthy Lifestyle Technologies: A Self-Determination Perspective on Fitbits with Adolescents

    ERIC Educational Resources Information Center

    Kerner, Charlotte; Goodyear, Victoria A.

    2017-01-01

    Background: Considerable numbers of young people are not meeting physical activity guidelines. Wearable fitness devices can provide opportunities for physical activity promotion. Purpose: The aim of the study was to explore whether wearable healthy lifestyle technologies impacted on adolescents' (13- to 14-year-olds) motivation for physical…

  10. Special Article Personal Wearable Technologies in Education: Value or Villain?

    ERIC Educational Resources Information Center

    Borthwick, Arlene C.; Anderson, Cindy L.; Finsness, Elizabeth S.; Foulger, Teresa S.

    2015-01-01

    Wearable personal learning technologies can gather data from the person wearing the device or from the surrounding environment and enable that data to be transferred to another device or shared via the cloud. Wearable technologies can serve as a valuable asset in the classroom enhancing differentiation of instruction and student engagement. They…

  11. Design considerations on ultra-low-power wireless transmitters for wearable medical devices.

    PubMed

    Manstretta, Danilo

    2010-01-01

    A wireless transmitter for wearable bio-sensing applications must fulfill very specialized requirements. It has been estimated that for truly wearable systems it must operate with an average power consumption of less than 140 microW. The alternatives, pitfalls, and realistic performance of robust, low power signal transmission will be addressed.

  12. Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics.

    PubMed

    Li, La; Lou, Zheng; Chen, Di; Jiang, Kai; Han, Wei; Shen, Guozhen

    2017-11-22

    The popularization of personalized wearable devices has accelerated the development of flexible/stretchable supercapacitors (SCs) that possess remarkable features of miniaturization, high security, and easy integration to build an all-in-one integrated system, and realize the functions of comfortable, noninvasive and continuous health monitoring, motion records, and information acquisition, etc. This Review presents a brief phylogeny of flexible/stretchable SCs, represented by planar micro-supercapacitors (MSCs) and 1D fibrous SCs. The latest progress and advantages of different flexible/stretchable/self-healing substrate, solid-state electrolyte and electrode materials for the fabrication of wearable SCs devices are summarized. The various configurations used in planar MSCs and 1D fibrous SCs aiming at the improvement of performance are also discussed. In addition, from the viewpoint of practical value and large-scale production, a survey of integrated systems, from different types of SC powered wearable sensing (gas, pressure, tactile…) systems, wearable all-in-one systems (including energy harvest, storage, and functional groups), to device packaging is presented. Finally, the challenges and future perspectives of wearable SCs are also considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tracking down a solution: exploring the acceptability and value of wearable GPS devices for older persons, individuals with a disability and their support persons.

    PubMed

    Williamson, Brittany; Aplin, Tammy; de Jonge, Desleigh; Goyne, Matthew

    2017-11-01

    To explore the acceptability and value of three wearable GPS devices for older persons and individuals with a disability and safety concerns when accessing the community. This pilot study explored six wearers' and their support persons' experience of using three different wearable GPS devices (a pendant, watch, and mini GPS phone), each for a two-week period. Participants identified safety as the main value of using a wearable GPS device. The acceptability and value of these devices was strongly influenced by device features, ease of use, cost, appearance, the reliability of the GPS coordinates, the wearer's health condition and the users familiarity with technology. Overall, participants indicated that they preferred the pendant. Wearable GPS devices are potentially useful in providing individuals who have safety concerns with reassurance and access to assistance as required. To ensure successful utilization, future device design and device selection should consider the user's familiarity with technology and their health condition. This study also revealed that not all wearable GPS devices provide continuous location tracking. It is therefore critical to ensure that the device's location tracking functions address the wearer's requirements and reason for using the device. Implications for Rehabilitation The acceptability and usability of wearable GPS devices is strongly influenced by the device features, ease of use, cost, appearance, the reliability of the device to provide accurate and timely GPS coordinates, as well as the health condition of the wearer and their familiarity with technology. Wearable GPS devices need to be simple to use and support and training is essential to ensure they are successfully utilized. Not all wearable GPS devices provide continuous location tracking and accuracy of location is impacted by line of sight to satellites. Therefore, care needs to be taken when choosing a suitable device, to ensure that the device's location tracking features are based on the wearer's requirements and value behind using the device.

  14. [The Key Technology Study on Cloud Computing Platform for ECG Monitoring Based on Regional Internet of Things].

    PubMed

    Yang, Shu; Qiu, Yuyan; Shi, Bo

    2016-09-01

    This paper explores the methods of building the internet of things of a regional ECG monitoring, focused on the implementation of ECG monitoring center based on cloud computing platform. It analyzes implementation principles of automatic identifi cation in the types of arrhythmia. It also studies the system architecture and key techniques of cloud computing platform, including server load balancing technology, reliable storage of massive smalfi les and the implications of quick search function.

  15. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites.

    PubMed

    Wu, Chaoxing; Kim, Tae Whan; Li, Fushan; Guo, Tailiang

    2016-07-26

    The technological realization of wearable triboelectric generators is attractive because of their promising applications in wearable self-powered intelligent systems. However, the low electrical conductivity, the low electrical stability, and the low compatibility of current electronic textiles (e-textiles) and clothing restrict the comfortable and aesthetic integration of wearable generators into human clothing. Here, we present high-performance, transparent, smart e-textiles that employ commercial textiles coated with silver nanowire/graphene sheets fabricated by using a scalable, environmentally friendly, full-solution process. The smart e-textiles show superb and stable conduction of below 20 Ω/square as well as excellent flexibility, stretchability, foldability, and washability. In addition, wearable electricity-generating textiles, in which the e-textiles act as electrodes as well as wearable substrates, are presented. Because of the high compatibility of smart e-textiles and clothing, the electricity-generating textiles can be easily integrated into a glove to harvest the mechanical energy induced by the motion of the fingers. The effective output power generated by a single generator due to that motion reached as high as 7 nW/cm(2). The successful demonstration of the electricity-generating glove suggests a promising future for polyester/Ag nanowire/graphene core-shell nanocomposite-based smart e-textiles for real wearable electronic systems and self-powered clothing.

  16. Features and application of wearable biosensors in medical care

    PubMed Central

    Ajami, Sima; Teimouri, Fotooheh

    2015-01-01

    One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases. PMID:26958058

  17. Development of a Just-in-Time Adaptive mHealth Intervention for Insomnia: Usability Study.

    PubMed

    Pulantara, I Wayan; Parmanto, Bambang; Germain, Anne

    2018-05-17

    Healthy sleep is a fundamental component of physical and brain health. Insomnia, however, is a prevalent sleep disorder that compromises functioning, productivity, and health. Therefore, developing efficient treatment delivery methods for insomnia can have significant societal and personal health impacts. Cognitive behavioral therapy for insomnia (CBTI) is the recommended first-line treatment of insomnia but access is currently limited for patients, since treatment must occur in specialty sleep clinics, which suffer from an insufficient number of trained clinicians. Smartphone-based interventions offer a promising means for improving the delivery of CBTI. Furthermore, novel features such as real-time monitoring and assessment, personalization, dynamic adaptations of the intervention, and context awareness can enhance treatment personalization and effectiveness, and reduce associated costs. Ultimately, this "Just in Time Adaptive Intervention" for insomnia-an intervention approach that is acceptable to patients and clinicians, and is based on mobile health (mHealth) platform and tools-can significantly improve patient access and clinician delivery of evidence-based insomnia treatments. This study aims to develop and assess the usability of a Just in Time Adaptive Intervention application platform called iREST ("interactive Resilience Enhancing Sleep Tactics") for use in behavioral insomnia interventions. iREST can be used by both patients and clinicians. The development of iREST was based on the Iterative and Incremental Development software development model. Requirement analysis was based on the case study's description, workflow and needs, clinician inputs, and a previously conducted BBTI military study/implementation of the Just in Time Adaptive Intervention architecture. To evaluate the usability of the iREST mHealth tool, a pilot usability study was conducted. Additionally, this study explores the feasibility of using an off-the-shelf wearable device to supplement the subjective assessment of patient sleep patterns. The iREST app was developed from the mobile logical architecture of Just in Time Adaptive Intervention. It consists of a cross-platform smartphone app, a clinician portal, and secure 2-way communications platform between the app and the portal. The usability study comprised 19 Active Duty Service Members and Veterans between the ages of 18 and 60. Descriptive statistics based on in-app questionnaires indicate that on average, 12 (mean 12.23, SD 8.96) unique devices accessed the clinician portal per day for more than two years, while the app was rated as "highly usable", achieving a mean System Usability Score score of 85.74 (SD 12.37), which translates to an adjective rating of "Excellent". The participants also gave high scores on "ease of use and learnability" with an average score of 4.33 (SD 0.65) on a scale of 1 to 5. iREST provides a feasible platform for the implementation of Just in Time Adaptive Intervention in mHealth-based and remote intervention settings. The system was rated highly usable and its cross-platformness made it readily implemented within the heavily segregated smartphone market. The use of wearables to track sleep is promising; yet the accuracy of this technology needs further improvement. Ultimately, iREST demonstrates that mHealth-based Just in Time Adaptive Intervention is not only feasible, but also works effectively. ©I Wayan Pulantara, Bambang Parmanto, Anne Germain. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 17.05.2018.

  18. Wearable Writing: Enriching Student Peer Review with Point-of-View Video Feedback Using Google Glass

    ERIC Educational Resources Information Center

    Tham, Jason Chew Kit

    2017-01-01

    As technology continues to become more ubiquitous and touches almost every aspect of the composing process, students and teachers are faced with new means to make writing a multimodal experience. This article embraces the emerging sector of wearable technology, presenting wearable writing strategies that would reimagine composition pedagogy.…

  19. Cloud computing for comparative genomics with windows azure platform.

    PubMed

    Kim, Insik; Jung, Jae-Yoon; Deluca, Todd F; Nelson, Tristan H; Wall, Dennis P

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services.

  20. Cloud Computing for Comparative Genomics with Windows Azure Platform

    PubMed Central

    Kim, Insik; Jung, Jae-Yoon; DeLuca, Todd F.; Nelson, Tristan H.; Wall, Dennis P.

    2012-01-01

    Cloud computing services have emerged as a cost-effective alternative for cluster systems as the number of genomes and required computation power to analyze them increased in recent years. Here we introduce the Microsoft Azure platform with detailed execution steps and a cost comparison with Amazon Web Services. PMID:23032609

Top