Will climate change affect weather types associated with flooding in the Elbe river basin?
NASA Astrophysics Data System (ADS)
Nissen, Katrin M.; Pardowitz, Tobias; Ulbrich, Uwe; Nied, Manuela
2013-04-01
This study investigates the effects of anthropogenic climate change on weather types associated with flooding in the Elbe river basin. The study is based on an ensemble of 3 simulations with the ECHAM5 MPIOM coupled model forced with historical and SRES A1B greenhouse gas concentrations. Relevant weather types, occuring in association with recent flood events, are identified in the ERA40 reanalysis data set. The weather types are classified with the SANDRA cluster algorithm. Distributions of tropospheric humidity content, 500 hPa geopotential height and 500 hPa temperature over Europe are taken as input parameters. 8 (out of 40) weather types are found to be associated with flooding events in the Elbe river basin. The majority of these (6) typically occur during winter, while 2 are warm season patterns. Downscaling reveals characteristic precipitation anomalies associated with the individual patterns. The 8 flood relevant weather types are then identified in the ECHAM5 simulations. The effect of climate change on these patterns is investigated by comparing the last 30 years of the previous century to the last 30 years of the 21st century. According to the model the frequency of most patterns will not change. 5 patterns may experience a statistically significant increase in the mean precipitation over the catchment area and 4 patterns an increase in extreme precipitation. Persistence may slightly decrease for 2 patterns and remain unchanged for the others. Overall, this indicates a moderate increase in the risk for Elbe river flooding, related to changes in the weather patterns, in the coming decades.
A new precipitation and drought climatology based on weather patterns.
Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert
2018-02-01
Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.
A new precipitation and meteorological drought climatology based on weather patterns
NASA Astrophysics Data System (ADS)
Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.
2017-12-01
Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.
A new precipitation and drought climatology based on weather patterns
Fowler, Hayley J.; Kilsby, Christopher G.; Neal, Robert
2017-01-01
ABSTRACT Weather‐pattern, or weather‐type, classifications are a valuable tool in many applications as they characterize the broad‐scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather‐pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI‐based drought months. The new weather‐pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation‐based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra‐pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification‐based analyses in the UK. PMID:29456290
NASA Astrophysics Data System (ADS)
Baltaci, H.; Kindap, T.; Unal, A.; Karaca, M.
2012-04-01
In this study, we investigated the relationship between synoptic weather types and rainfall patterns in the Marmara region, northwestern part of Turkey. For this purpose, the automated Lamb weather type classification method was applied to the NCEP/NCAR reanalysis daily mean sea level pressure data for the period between 2001 and 2010. Ten synoptic weather types were found that represent the 90% of the synoptic patterns that affect the Marmara region. Based on the annual frequency analysis, mainly six synoptic weather types, 24% (NorthEast), 21% (North), 11% (South), 9% (SouthWest), 7% (Anticyclonic), 5% (Cyclonic), were found dominant in the region. Multiple comparison tests suggest that (i.e., Bonferroni test) northerly patterns (i.e., North and NorthEast) have statistically significantly higher percentages as compared to the southerly (i.e., South and SouthWest) and the rest of the patterns (i.e., Anticylonic and Cylonic). During winter months, N- and NE-patterns observed less frequently than the annual frequencies of them, 18% and 13% of the period, respectively. On the other hand, due to the formation of the low pressure center located over the central Mediterranean Sea, S- and SW-patterns were observed more frequently than their annual mean frequencies, 16% and 17%, respectively. During summer months, N- and NE-patterns become dominant in the region, and they constitute about three quarters of the period, 25% and 44%, respectively. The low pressure center located over central Anatolia and Black Sea brings moist and cool air to the region, preventing excessive heating during the summer season. Cyclonic patterns observed less frequent during the winter and fall months, about 3%. They become more frequent during the summer season, 9% as a result of the shifting of the subtropical jet stream to the south, and the seasonal movement of the Basra low pressure toward the inner and northern parts of the Anatolian peninsula. On the other hand, Anticyclonic patterns are more common in the fall season 11% due to the expansion of spatial extent of the anticyclone center located over the Caspian Sea. Daily precipitation records for the period of between 2001 and 2010 belong to 14 meteorological stations in the region were investigated to understand the influence of synoptic weather types on precipitation. Based on daily precipitation records, about one-third of the NE-patterns result in precipitation which is slightly larger than patterns from other directions. The corresponding values for SW-, N- and S-patterns are 29%, 25% and 25%, respectively. Northerly patterns (N and NE) causes more frequent precipitation on the northern and eastern parts of the region. On the other hand, southerly patterns (S and SW) are more influential and cause more frequent precipitation on the south and northwestern parts of the region. Therefore, frequency of synoptic weather types and daily precipitation records suggest that precipitation regimes are of a different nature in northern and southern parts of the Marmara region. Keywords Synoptic weather types; Marmara Region; Lamb classification; Rainfall patterns
Synoptic weather types associated with critical fire weather
Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson
1964-01-01
Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...
A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area
McCabe, Gregory J.
1990-01-01
A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.
Bradford, J.B.
2011-01-01
Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Weather Fundamentals: Climate & Seasons. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…
NASA Astrophysics Data System (ADS)
Wachter, Paul; Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus; Höppner, Kathrin
2017-04-01
Large parts of the Polar Regions are affected by a warming trend associated with substantial changes in the cryosphere. In Antarctica this positive trend pattern is most dominant in the western part of the continent and on the Antarctic Peninsula (AP). An important driving mechanism of temperature variability and trends in this region is the atmospheric circulation. Changes in atmospheric circulation modes and frequencies of circulation types have major impacts on temperature characteristics at a certain station or region. We present results of a statistical downscaling study focused on AP temperature variability showing both results of large-scale atmospheric circulation modes and regional weather type classifications derived from monthly and daily gridded reanalysis data sets. In order to investigate spatial trends and variabilities of the Southern Annular Mode (SAM), we analyze spatio-temporally resolved SAM-pattern maps from 1979 to 2015. First results show dominant multi-annual to decadal pattern variabilities which can be directly linked to temperature variabilities at the Antarctic Peninsula. A sub-continental to regional view on the influence of atmospheric circulation on AP temperature variability is given by the analysis of weather type classifications (WTC). With this analysis we identify significant changes in the frequency of occurrence of highly temperature-relevant circulation patterns. The investigated characteristics of weather type frequencies can also be related to the identified changes of the SAM.
NASA Astrophysics Data System (ADS)
Suriano, Zachary J.
2018-02-01
Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.
NASA Astrophysics Data System (ADS)
Hoffmann, P.
2018-04-01
In this study two complementary approaches have been combined to estimate the reliability of the data-driven seasonal predictability of the meteorological summer mean temperature (T_{JJA}) over Europe. The developed model is based on linear regressions and uses early season predictors to estimate the target value T_{JJA}. We found for the Potsdam (Germany) climate station that the monthly standard deviations (σ) from January to April and the temperature mean ( m) in April are good predictors to describe T_{JJA} after 1990. However, before 1990 the model failed. The core region where this model works is the north-eastern part of Central Europe. We also analyzed long-term trends of monthly Hess/Brezowsky weather types as possible causes of the dynamical changes. In spring, a significant increase of the occurrences for two opposite weather patterns was found: Zonal Ridge across Central Europe (BM) and Trough over Central Europe (TRM). Both currently make up about 30% of the total alternating weather systems over Europe. Other weather types are predominantly decreasing or their trends are not significant. Thus, the predictability may be attributed to these two weather types where the difference between the two Z500 composite patterns is large. This also applies to the north-eastern part of Central Europe. Finally, the detected enhanced seasonal predictability over Europe is alarming, because severe side effects may occur. One of these are more frequent climate extremes in summer half-year.
NASA Astrophysics Data System (ADS)
Chen, Y.; Ho, C.; Chang, L.
2011-12-01
In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the conditional probability density function (PDF) of precipitations approximated by the kernel density estimation are calculated respectively for each weather types. In the synthesis step, 100 patterns of synthesis data are generated. First, the weather type of the n-th day are determined by the results of K-means clustering. The associated transition matrix and PDF of the weather type were also determined for the usage of the next sub-step in the synthesis process. Second, the precipitation condition, dry or wet, can be synthesized basing on the transition matrix. If the synthesized condition is dry, the quantity of precipitation is zero; otherwise, the quantity should be further determined in the third sub-step. Third, the quantity of the synthesized precipitation is assigned as the random variable of the PDF defined above. The synthesis efficiency compares the gap of the monthly mean curves and monthly standard deviation curves between the historical precipitation data and the 100 patterns of synthesis data.
The Synoptic Climatology of Severe Thunderstorms in Manitoba.
NASA Astrophysics Data System (ADS)
Ladochy, Stephen Eugene Gabriel
The thesis presents the climatologies for Manitoba thunderstorms, hailstorms and tornadoes as well as investigates the synoptic weather conditions conducive for their development. The study not only uses standard meteorological information, but also various kinds of proxy data, in the form of damage reports. These damage reports complement the meteorological data by providing a higher resolution of observations, particularly in the sparsely populated regions. The synoptic conditions are relatively similar for all forms of severe thunderstorms, though the upper level jet stream (ULJ) is stronger for tornadoes, in general. Composite charts, drawn for 50 larger, more damaging hail days and 48 tornado days in the 1970's, helped identify important surface and upper air weather parameters and their inter -relationships with each other and the location of the storm. Time sequence composite charts were used to also show the development process in severe weather occurrences. From the composites, a synoptic weather type classification was devised with 10 categories to identify each storm by type. The most common pattern for severe weather has a strong southwesterly ULJ, with the storm occurring ahead of an advancing cold front. The ULJ patterns were drawn for each synoptic type days, showing differences between categories. The average conditions during tornado touchdowns were also seen from composite maps of surface and upper air isobaric charts. While severe thunderstorms are seen to occur under the "ideal" conditions, often described for U.S. severe weather, they can also be produced under other weather patterns and combinations of atmospheric parameters thought less favorable. The ULJ and LLJ (low-level jet stream) models used in U.S. studies do not always fit Manitoba storms, however, less favorable jet positions, at specific levels, can be compensated for by low-level advection of warm, and moist air.
NASA Astrophysics Data System (ADS)
El Kenawy, Ahmed M.; McCabe, Matthew F.
2017-10-01
An assessment of future change in synoptic conditions over the Arabian Peninsula throughout the twenty-first century was performed using 20 climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. We employed the mean sea level pressure (SLP) data from model output together with NCEP/NCAR reanalysis data and compared the relevant circulation types produced by the Lamb classification scheme for the base period 1975-2000. Overall, model results illustrated good agreement with the reanalysis, albeit with a tendency to underestimate cyclonic (C) and southeasterly (SE) patterns and to overestimate anticyclones and directional flows. We also investigated future projections for each circulation-type during the rainy season (December-May) using three Representative Concentration Pathways (RCPs), comprising RCP2.6, RCP4.5, and RCP8.5. Overall, two scenarios (RCP4.5 and RCP 8.5) revealed a statistically significant increase in weather types favoring above normal rainfall in the region (e.g., C and E-types). In contrast, weather types associated with lower amounts of rainfall (e.g., anticyclones) are projected to decrease in winter but increase in spring. For all scenarios, there was consistent agreement on the sign of change (i.e., positive/negative) for the most frequent patterns (e.g., C, SE, E and A-types), whereas the sign was uncertain for less recurrent types (e.g., N, NW, SE, and W). The projected changes in weather type frequencies in the region can be viewed not only as indicators of change in rainfall response but may also be used to inform impact studies pertinent to water resource planning and management, extreme weather analysis, and agricultural production.
Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem
2016-01-01
With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10-14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to understand the influence of urban design and built environment on SB in children.
Synoptic weather typing applied to air pollution mortality among the elderly in 10 Canadian cities.
Vanos, Jennifer K; Cakmak, Sabit; Bristow, Corben; Brion, Vladislav; Tremblay, Neil; Martin, Sara L; Sheridan, Scott S
2013-10-01
Synoptic circulation patterns (large-scale weather systems) affect ambient levels of air pollution, as well as the relationship between air pollution and human health. To investigate the air pollution-mortality relationship within weather types and seasons, and to determine which combination of atmospheric conditions may pose increased health threats in the elderly age categories. The relative risk of mortality (RR) due to air pollution was examined using Poisson generalized linear models (GLMs) within specific weather types. Analysis was completed by weather type and age group (all ages, ≤64, 65-74, 75-84, ≥85 years) in ten Canadian cities from 1981 to 1999. There was significant modification of RR by weather type and age. When examining the entire population, weather type was shown to have the greatest modifying effect on the risk of dying due to ozone (O3). This effect was highest on average for the dry tropical (DT) weather type, with the all-age RR of mortality at a population weighted mean (PWM) found to be 1.055 (95% CI 1.026-1.085). All-weather type risk estimates increased with age due to exposure to carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). On average, RR increased by 2.6, 3.8 and 1.5% for the respective pollutants between the ≤64 and ≥85 age categories. Conversely, mean ozone estimates remained relatively consistent with age. Elevated levels of air pollution were found to be detrimental to the health of elderly individuals for all weather types. However, the entire population was negatively effected by air pollution on the hot dry (DT) and hot humid (MT) days. We identified a significant modification of RR for mortality due to air pollution by age, which is enhanced under specific weather types. Efforts should be targeted at minimizing pollutant exposure to the elderly and/or all age groups with respect to weather type in question. Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.;
2013-01-01
X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in the Rocknest samples.
Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem
2016-01-01
With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10–14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to understand the influence of urban design and built environment on SB in children. PMID:29546188
Meteorological factors associated with abundance of airborne fungal spores over natural vegetation
NASA Astrophysics Data System (ADS)
Crandall, Sharifa G.; Gilbert, Gregory S.
2017-08-01
The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the vegetation type. This suggests that overall patterns of fungal spore dynamics may be predictable across heterogeneous landscapes based on local weather patterns.
Simulation of precipitation by weather pattern and frontal analysis
NASA Astrophysics Data System (ADS)
Wilby, Robert
1995-12-01
Daily rainfall from two sites in central and southern England was stratified according to the presence or absence of weather fronts and then cross-tabulated with the prevailing Lamb Weather Type (LWT). A semi-Markov chain model was developed for simulating daily sequences of LWTs from matrices of transition probabilities between weather types for the British Isles 1970-1990. Daily and annual rainfall distributions were then simulated from the prevailing LWTs using historic conditional probabilities for precipitation occurrence and frontal frequencies. When compared with a conventional rainfall generator the frontal model produced improved estimates of the overall size distribution of daily rainfall amounts and in particular the incidence of low-frequency high-magnitude totals. Further research is required to establish the contribution of individual frontal sub-classes to daily rainfall totals and of long-term fluctuations in frontal frequencies to conditional probabilities.
NASA Astrophysics Data System (ADS)
Spellman, Greg
2017-05-01
A weather-type catalogue based on the Jenkinson and Collison method was developed for an area in south-west Russia for the period 1961-2010. Gridded sea level pressure data was obtained from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The resulting catalogue was analysed for frequency of individual types and groups of weather types to characterise long-term atmospheric circulation in this region. Overall, the most frequent type is anticyclonic (A) (23.3 %) followed by cyclonic (C) (11.9 %); however, there are some key seasonal patterns with westerly circulation being significantly more common in winter than summer. The utility of this synoptic classification is evaluated by modelling daily rainfall amounts. A low level of error is found using a simple model based on the prevailing weather type. Finally, characteristics of the circulation classification are compared to those for the original JC British Isles catalogue and a much more equal distribution of flow types is seen in the former classification.
Objective classification of atmospheric circulation over southern Scandinavia
NASA Astrophysics Data System (ADS)
Linderson, Maj-Lena
2001-02-01
A method for calculating circulation indices and weather types following the Lamb classification is applied to southern Scandinavia. The main objective is to test the ability of the method to describe the atmospheric circulation over the area, and to evaluate the extent to which the pressure patterns determine local precipitation and temperature in Scania, southernmost Sweden. The weather type classification method works well and produces distinct groups. However, the variability within the group is large with regard to the location of the low pressure centres, which may have implications for the precipitation over the area. The anticyclonic weather type dominates, together with the cyclonic and westerly types. This deviates partly from the general picture for Sweden and may be explained by the southerly location of the study area. The cyclonic type is most frequent in spring, although cloudiness and amount of rain are lowest during this season. This could be explained by the occurrence of weaker cyclones or low air humidity during this time of year. Local temperature and precipitation were modelled by stepwise regression for each season, designating weather types as independent variables. Only the winter season-modelled temperature and precipitation show a high and robust correspondence to the observed temperature and precipitation, even though <60% of the precipitation variance is explained. In the other seasons, the connection between atmospheric circulation and the local temperature and precipitation is low. Other meteorological parameters may need to be taken into account. The time and space resolution of the mean sea level pressure (MSLP) grid may affect the results, as many important features might not be covered by the classification. Local physiography may also influence the local climate in a way that cannot be described by the atmospheric circulation pattern alone, stressing the importance of using more than one observation series.
Linning, Shannon J; Andresen, Martin A; Brantingham, Paul J
2017-12-01
This study investigates whether crime patterns fluctuate periodically throughout the year using data containing different property crime types in two Canadian cities with differing climates. Using police report data, a series of ordinary least squares (OLS; Vancouver, British Columbia) and negative binomial (Ottawa, Ontario) regressions were employed to examine the corresponding temporal patterns of property crime in Vancouver (2003-2013) and Ottawa (2006-2008). Moreover, both aggregate and disaggregate models were run to examine whether different weather and temporal variables had a distinctive impact on particular offences. Overall, results suggest that cities that experience greater variations in weather throughout the year have more distinct increases of property offences in the summer months and that different climate variables affect certain crime types, thus advocating for disaggregate analysis in the future.
Using Music to Communicate Weather and Climate
NASA Astrophysics Data System (ADS)
Williams, P.; Aplin, K. L.; Brown, S.; Jenkins, K.; Mander, S.; Walsh, C.
2016-12-01
Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.
Using Music to Communicate Weather and Climate
NASA Astrophysics Data System (ADS)
Williams, P.; Aplin, K. L.; Brown, S.
2017-12-01
Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.
Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall
NASA Astrophysics Data System (ADS)
Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James
2010-05-01
The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. FERRANTI, E. J. S., WHYATT, J. D., TIMMIS, R. J. & DAVIES, G. (2010) Using GIS to investigate spatial and temporal variations in upland rainfall. Transactions in GIS, [in press]. MARAUN, D., OSBORN, T. J. & GILLETT, N. P. (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833-842.
Atmospheric Turbulence Avoidance
DOT National Transportation Integrated Search
1997-09-09
This Advisory Circular (AC) describes to pilots, aircrew members, dispatchers, : and other operations personnel the various types of clear air turbulence (CAT) : and some of the weather patterns associated with it. Also included are "Rules : of Thumb...
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
Atmospheric circulation types and daily mortality in Athens, Greece.
Kassomenos, P; Gryparis, A; Samoli, E; Katsouyanni, K; Lykoudis, S; Flocas, H A
2001-01-01
We investigated the short-term effects of synoptic and mesoscale atmospheric circulation types on mortality in Athens, Greece. The synoptic patterns in the lower troposphere were classified in 8 a priori defined categories. The mesoscale weather types were classified into 11 categories, using meteorologic parameters from the Athens area surface monitoring network; the daily number of deaths was available for 1987-1991. We applied generalized additive models (GAM), extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns. We adjusted for long-term trends, day of the week, ambient particle concentrations, and additional temperature effects. Both classifications, synoptic and mesoscale, explain the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southeasterly flow [increase 10%; 95% confidence interval (CI), 6.1-13.9% compared to the high-low pressure system), followed by zonal flow (5.8%; 95% CI, 1.8-10%). The high-low pressure system and the northwesterly flow are associated with the lowest mortality. The seasonal patterns are consistent with the annual pattern. For mesoscale categories, in the cold period the highest mortality is observed during days characterized by the easterly flow category (increase 9.4%; 95% CI, 1.0-18.5% compared to flow without the main component). In the warm period, the highest mortality occurs during the strong southerly flow category (8.5% increase; 95% CI, 2.0-15.4% compared again to flow without the main component). Adjusting for ambient particle levels leaves the estimated associations unchanged for the synoptic categories and slightly increases the effects of mesoscale categories. In conclusion, synoptic and mesoscale weather classification is a useful tool for studying the weather-health associations in a warm Mediterranean climate situation. PMID:11445513
Differential Bacterial Colonization of Volcanic Minerals in Deep Thermal Basalts
NASA Astrophysics Data System (ADS)
Smith, A. R.; Popa, R.; Fisk, M. R.; Nielsen, M.; Wheat, G.; Jannasch, H.; Fisher, A.; Sievert, S.
2010-04-01
There are reports of microbial weathering patterns in volcanic glass and minerals of both terrestrial and Martian origin. Volcanic minerals are colonized differentially in subsurface hydrothermal environments by a variety of physiological types.
Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science
NASA Technical Reports Server (NTRS)
Steele, Colleen (Editor); Steele, Colleen; Ryan, William F.
1995-01-01
The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level course of the project and activities developed by the teachers. The publication was developed to provide teachers with a comprehensive approach to using satellite imagery to enhance science education. The teacher's guide is divided into topical chapters and enables teachers to expand their knowledge of the atmosphere, common weather patterns, and remote sensing. Topics include: weather systems and satellite imagery including mid-latitude weather systems; wave motion and the general circulation; cyclonic disturbances and baroclinic instability; clouds; additional common weather patterns; satellite images and the internet; environmental satellites; orbits; and ground station set-up. Activities are listed by suggested grade level and include the following topics: using weather symbols; forecasting the weather; cloud families and identification; classification of cloud types through infrared Automatic Picture Transmission (APT) imagery; comparison of visible and infrared imagery; cold fronts; to ski or not to ski (imagery as a decision making tool), infrared and visible satellite images; thunderstorms; looping satellite images; hurricanes; intertropical convergence zone; and using weather satellite images to enhance a study of the Chesapeake Bay. A list of resources is also included.
Field Studies Delve Into the Intricacies of Mountain Weather
NASA Astrophysics Data System (ADS)
Fernando, Harindra J. S.; Pardyjak, Eric R.
2013-09-01
Mountain meteorology, in particular weather prediction in complex (rugged) terrain, is emerging as an important topic for science and society. Large urban settlements such as Los Angeles, Hong Kong, and Rio de Janeiro have grown within or in the shadow of complex terrain, and managing the air quality of such cities requires a good understanding of the air flow patterns that spill off of mountains. On a daily time scale, the interconnected engineered and natural systems that sustain urban metabolism and quality of life are affected by weather [Fernando, 2010]. Further, recent military engagements in remote mountainous areas have heightened the need for better weather predictions—alpine warfare is considered to be one of the most dangerous types of combat.
NASA Astrophysics Data System (ADS)
Russo, Ana; Gouveia, Célia; Levy, Ilan; Dayan, Uri; Jerez, Sonia; Mendes, Manuel; Trigo, Ricardo
2016-06-01
Coastal zones are under increasing development and experience air pollution episodes regularly. These episodes are often related to peaks in local emissions from industry or transportation, but can also be associated with regional transport from neighbour urban areas influenced by land-sea breeze recirculation. This study intends to analyze the relation between circulation weather patterns, air mass recirculation and pollution levels in three coastal airsheds of Portugal (Lisbon, Porto and Sines) based on the application of an objective quantitative measure of potential recirculation. Although ventilation events have a dominant presence throughout the studied 9-yrs period on all the three airsheds, recirculation and stagnation conditions occur frequently. The association between NO2, SO2 and O3 levels and recirculation potential is evident during summer months. Under high average recirculation potential and high variability, NO2 and SO2 levels are higher for the three airsheds, whilst for O3 each airshed responds differently. This indicates a high heterogeneity among the three airsheds in (1) the type of emission - traffic or industry - prevailing for each contaminant, and (2) the response to the various circulation weather patterns and recirculation situations. Irrespectively of that, the proposed methodology, based on iterative K-means clustering, allows to identify which prevailing patterns are associated with high recirculation potential, having the advantage of being applicable to any geographical location.
A coupled synoptic-hydrological model for climate change impact assessment
NASA Astrophysics Data System (ADS)
Wilby, Robert; Greenfield, Brian; Glenny, Cathy
1994-01-01
A coupled atmospheric-hydrological model is presented. Sequences of daily rainfall occurrence for the 20 year period 1971-1990 at sites in the British Isles are related to the Lamb's Weather Types (LWT) by using conditional probabilities. Time series of circulation patterns and hence rainfall were then generated using a Markov representation of matrices of transition probabilities between weather types. The resultant precipitation data were used as input to a semidistributed catchment model to simulate daily flows. The combined model successfully reproduced aspects of the daily weather, precipitation and flow regimes. A range of synoptic scenarios were further investigated with particular reference to low flows in the River Coln, UK. The modelling approach represents a means of translating general circulation model (GCM) climate change predictions at the macro-scale into hydrological concerns at the catchment scale.
NASA Astrophysics Data System (ADS)
Fleig, Anne K.; Tallaksen, Lena M.; Hisdal, Hege; Stahl, Kerstin; Hannah, David M.
Classifications of weather and circulation patterns are often applied in research seeking to relate atmospheric state to surface environmental phenomena. However, numerous procedures have been applied to define the patterns, thus limiting comparability between studies. The COST733 Action “ Harmonisation and Applications of Weather Type Classifications for European regions” tests 73 different weather type classifications (WTC) and their associate weather types (WTs) and compares the WTCs’ utility for various applications. The objective of this study is to evaluate the potential of these WTCs for analysis of regional hydrological drought development in north-western Europe. Hydrological drought is defined in terms of a Regional Drought Area Index (RDAI), which is based on deficits derived from daily river flow series. RDAI series (1964-2001) were calculated for four homogeneous regions in Great Britain and two in Denmark. For each region, WTs associated with hydrological drought development were identified based on antecedent and concurrent WT-frequencies for major drought events. The utility of the different WTCs for the study of hydrological drought development was evaluated, and the influence of WTC attributes, i.e. input variables, number of defined WTs and general classification concept, on WTC performance was assessed. The objective Grosswetterlagen (OGWL), the objective Second-Generation Lamb Weather Type Classification (LWT2) with 18 WTs and two implementations of the objective Wetterlagenklassifikation (WLK; with 40 and 28 WTs) outperformed all other WTCs. In general, WTCs with more WTs (⩾27) were found to perform better than WTCs with less (⩽18) WTs. The influence of input variables was not consistent across the different classification procedures, and the performance of a WTC was determined primarily by the classification procedure itself. Overall, classification procedures following the relatively simple general classification concept of predefining WTs based on thresholds, performed better than those based on more sophisticated classification concepts such as deriving WTs by cluster analysis or artificial neural networks. In particular, PCA based WTCs with 9 WTs and automated WTCs with a high number of predefined WTs (subjectively and threshold based) performed well. It is suggested that the explicit consideration of the air flow characteristics of meridionality, zonality and cyclonicity in the definition of WTs is a useful feature for a WTC when analysing regional hydrological drought development.
Tarisa K. Zimet; Jonathan E. Martin
2003-01-01
Meteorological assessment of wildfire risk has traditionally involved identification of several synoptic types empirically determined to influence wildfire spread. Such weather types are characterized by identifiable synoptic-scale structures and processes. Schroeder et. al. (1964) identified four recognizable synoptic-scale patterns that contribute most frequently to...
Katapally, Tarun Reddy; Muhajarine, Nazeem
2015-01-01
Objectives In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures—variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. Design This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10–14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Results Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate recommended MVPA. Conclusions The findings indicate that after factoring in weather variation, certain types of urban design are more likely to be associated with MVPA accumulation. PMID:26621516
Katapally, Tarun R; Rainham, Daniel; Muhajarine, Nazeem
2016-06-27
While active living interventions focus on modifying urban design and built environment, weather variation, a phenomenon that perennially interacts with these environmental factors, is consistently underexplored. This study's objective is to develop a methodology to link weather data with existing cross-sectional accelerometry data in capturing weather variation. Saskatoon's neighbourhoods were classified into grid-pattern, fractured grid-pattern and curvilinear neighbourhoods. Thereafter, 137 Actical accelerometers were used to derive moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB) data from 455 children in 25 sequential one-week cycles between April and June, 2010. This sequential deployment was necessary to overcome the difference in the ratio between the sample size and the number of accelerometers. A data linkage methodology was developed, where each accelerometry cycle was matched with localized (Saskatoon-specific) weather patterns derived from Environment Canada. Statistical analyses were conducted to depict the influence of urban design on MVPA and SB after factoring in localized weather patterns. Integration of cross-sectional accelerometry with localized weather patterns allowed the capture of weather variation during a single seasonal transition. Overall, during the transition from spring to summer in Saskatoon, MVPA increased and SB decreased during warmer days. After factoring in localized weather, a recurring observation was that children residing in fractured grid-pattern neighbourhoods accumulated significantly lower MVPA and higher SB. The proposed methodology could be utilized to link globally available cross-sectional accelerometry data with place-specific weather data to understand how built and social environmental factors interact with varying weather patterns in influencing active living.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.
2009-01-01
The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.
Process-based evaluation of the ÖKS15 Austrian climate scenarios: First results
NASA Astrophysics Data System (ADS)
Mendlik, Thomas; Truhetz, Heimo; Jury, Martin; Maraun, Douglas
2017-04-01
The climate scenarios for Austria from the ÖKS15 project consists of 13 downscaled and bias-corrected RCMs from the EURO-CORDEX project. This dataset is meant for the broad public and is now available at the central national archive for climate data (CCCA Data Center). Because of this huge public outreach it is absolutely necessary to objectively discuss the limitations of this dataset and to publish these limitations, which should also be understood by a non-scientific audience. Even though systematical climatological biases have been accounted for by the Scaled-Distribution-Mapping (SDM) bias-correction method, it is not guaranteed that the model biases have been removed for the right reasons. If climate scenarios do not get the patterns of synoptic variability right, biases will still prevail in certain weather patterns. Ultimately this will have consequences for the projected climate change signals. In this study we derive typical weather types in the Alpine Region based on patterns from mean sea level pressure from ERA-INTERIM data and check the occurrence of these synoptic phenomena in EURO-CORDEX data and their corresponding driving GCMs. Based on these weather patterns we analyze the remaining biases of the downscaled and bias-corrected scenarios. We argue that such a process-based evaluation is not only necessary from a scientific point of view, but can also help the broader public to understand the limitations of downscaled climate scenarios, as model errors can be interpreted in terms of everyday observable weather.
Is countershading camouflage robust to lighting change due to weather?
Penacchio, Olivier; Lovell, P George; Harris, Julie M
2018-02-01
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering 'optimal' camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a 'generic' predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target 'prey'. We set these items in two light environments: strongly directional 'sunny' and more diffuse 'cloudy'. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage.
NASA Astrophysics Data System (ADS)
Frias, T.; Trigo, R. M.; Garreaud, R.
2009-04-01
The Andes Cordillera induces considerable disturbances on the structure and evolution of the pressure systems that influences South America. Different weather types for southern South America are derived from the daily maps of geopotential height at 850hPa corresponding to a 42 year period, spanning from 1958 to 2000. Here we have used the ECWMF ERA-40 reanalysis dataset to construct an automated version of the Lamb Weather type (WTs) classification scheme (Jones et al., 1993) developed for the UK. We have identified 8 basic WTs (Cyclonic, Anticyclonic and 6 main directional types) following a similar methodology to that previously adopted by Trigo and DaCamara, 2000 (for Iberia). This classification was applied to two regions of study (CLnorth and CLsouth) which differ 20° in latitude, so that the vast Chile territory could be covered. Then were assessed the impact of the occurrence of this weather types in precipitation in Chile, as well as in the distribution of precipitation and temperature fields (reanalysis data) in southern half of South America. The results allow to conclude that the precipitation in central region of Chile is largely linked with the class occurrence (concerning CLnorth) of cyclonic circulation and of West quadrant (SW, W and NW), despite of it's relatively low frequency. In CLsouth, for its part, it is verified that the most frequent circulation is from the west quadrant, although the associated amount of rainfall is lower than in CLnorth. There was also a general decrease of precipitation at local weather stations chosen in the considered period of study, particularly in austral winter.
NASA Astrophysics Data System (ADS)
Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.
2016-12-01
Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.
The relationship between wind power, electricity demand and winter weather patterns in Great Britain
NASA Astrophysics Data System (ADS)
Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.
2017-06-01
Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.
NASA Astrophysics Data System (ADS)
Zaki, M. K.; Furi, N. T.; Syamsiyah, Jauhari; Sumani
2018-03-01
Weather dynamics such as the fifth time of the rainy season and drought are becoming more frequent. These conditions pose a significant impact on the strategies of cultivation such as cropping pattern and crop yields, especially in rainfed areas. One of the steps that can be taken is to return to local wisdom, such as pranata mangsa. This study aimed at analyzing the relationship of the variability of precipitation in rainfed areas with pranata mangsa and then to evaluate cropping patterns based on the result of the analysis. The study was conducted in rainfed areas of the District of Jumantono, Karanganyar Regency; and District of Teras and District of Ampel, Boyolali Regency in June until December 2014. The research method is a descriptive exploratory survey with purposive sampling based on moderate altitude (200-700 masl). The types of data that are used are primary and secondary. Data analysis was used correlation test. The results showed that precipitation in rainfed areas has a close relationship with paranata mangsa. These results explain that pranata mangsa still relevant to be used even though it has happened weather dynamics.
Circulation weather types and their influence on precipitation in Serbia
NASA Astrophysics Data System (ADS)
Putniković, Suzana; Tošić, Ivana; Đurđević, Vladimir
2016-10-01
An objective classification scheme of atmospheric circulation, in which daily circulation is determined by the strength, direction, and vorticity of geostrophic flow, has been applied to the atmosphere over Serbia for the time period 1961-2010. The results for the sea level and isobaric level of 500 hPa for winter and summer are presented. The 26 circulation types (eight pure direction, 16 hybrid, cyclonic, and anticyclonic types) are determined and described. Each of the circulation types has a distinct underlying synoptic pattern that produces the expected type and direction of flow over the study area. The relative frequencies of the circulation types, and the relationship between the precipitation and circulation types at three stations on a seasonal time scale are analyzed. The anticyclonic weather type dominates in winter (18.93 %) and summer (18.70 %), followed by the northeasterly type (16.65 %) in summer, and the cyclonic type (12.83 %) in winter. The cyclonic types (C and hybrid) have a higher than average probability of rain at all stations. Conversely, the anticyclonic types are associated with a lower than average probability and intensity of rainfall.
Is countershading camouflage robust to lighting change due to weather?
2018-01-01
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage. PMID:29515822
The Aleutian Low and Winter Climatic Conditions in the Bering Sea. Part I: Classification
NASA Astrophysics Data System (ADS)
Rodionov, S. N.; Overland, J. E.; Bond, N. A.
2005-01-01
The Aleutian low is examined as a primary determinant of surface air temperature (SAT) variability in the Bering Sea during the winter (December-January-February-March (DJFM)) months. The Classification and Regression Tree (CART) method is used to classify five types of atmospheric circulation for anomalously warm months (W1-W5) and cold months (C1-C5). For the Bering Sea, changes in the position of the Aleutian low are shown to be more important than changes in its central pressure. The first two types, W1 and C1, account for 51% of the "warm" and 37% of the "cold" months. The W1-type pattern is characterized by the anomalously deep Aleutian low shifted west and north of its mean position. In this situation, an increased cyclonic activity occurs in the western Bering Sea. The C1-type pattern represents a split Aleutian low with one center in the northwestern Pacific and the other in the Gulf of Alaska. The relative frequency of the W1 to C1 types of atmospheric circulation varies on decadal time scales, which helps to explain the predominance of fluctuations on these time scales in the weather of the Bering Sea. Previous work has noted the prominence of multidecadal variability in the North Pacific. The present study finds multidecadal variations in frequencies of the W3 and C3 patterns, both of which are characterized by increased cyclonic activity south of 51°N. In general, the CART method is found to be a suitable means for characterizing the wintertime atmospheric circulation of the North Pacific in terms of its impact on the Bering Sea. The results show that similar pressure anomaly patterns for the North Pacific as a whole can actually result in different conditions for the Bering Sea, and that similar weather conditions in the Bering Sea can arise from decidedly different large-scale pressure patterns.
Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem
2015-11-30
In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures-variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10-14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate recommended MVPA. The findings indicate that after factoring in weather variation, certain types of urban design are more likely to be associated with MVPA accumulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
ClimateNet: A Machine Learning dataset for Climate Science Research
NASA Astrophysics Data System (ADS)
Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.
2017-12-01
Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.
Integration of Weather Avoidance and Traffic Separation
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.
2011-01-01
This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction
Weather chains during the 2013/2014 winter and their significance for seasonal prediction
NASA Astrophysics Data System (ADS)
Davies, Huw C.
2015-11-01
Day-to-day weather forecasting has improved substantially over the past few decades. In contrast, progress in seasonal prediction outside the tropics has been meagre and mixed. On seasonal timescales, the constraining influence of the initial atmospheric state is weak, and the internal variability associated with transient weather systems tends to be large compared with the nuanced influence of anomalies in external forcing. Current research and operational activities focus on exploring and exploiting potential links between external anomalies and seasonal-mean climate patterns. Here I examine reanalysed meteorological data sets for the unusual winter 2013/2014, with drought and freezing conditions juxtaposed over North America and severe wet and stormy weather over parts of Europe, to study the role of weather systems and their transient upper-tropospheric flow patterns. I find that the amplitude, recurrence and location of these transient patterns account directly for the corresponding anomalous seasonal-mean patterns. They occurred episodically and sequentially, were linked dynamically, and exhibited some circumpolar connectivity. I conclude that the upper-tropospheric components of transient weather systems are significant for understanding and predicting seasonal weather patterns, whereas the role of external factors is more subtle.
NASA Astrophysics Data System (ADS)
Ramos, A. M.; Trigo, R. M.; Lorenzo, M. N.; Vaquero, J. M.; Gallego, M. C.; Valente, M. A.; Gimeno, L.
2009-04-01
In recent years a large number of automated classifications of atmospheric circulation patterns have been published covering the entire European continent or specific sub-regions (Huth et al., 2008). This generalized use of objective classifications results from their relatively straightforward computation but crucially from their capacity to provide simple description of typical synoptic conditions as well as their climatic and environmental impact. For this purpose, the vast majority of authors has employed the Reanalyses datasets, namely from either NCEP/NCAR or ECMWF projects. However, both these widely used datasets suffer from important caveats, namely their restricted temporal coverage, that is limited to the last six decades (NCEP/NCAR since 1948 and ECMWF since 1958). This limitation has been partially mitigated by the recent availability of continuous daily mean sea level pressure obtained within the European project EMULATE, that extended the historic records over the extra-tropical Atlantic and Europe (70°-25° N by 70° W-50° E), for the period 1850 to the present (Ansell, T. J. et al. 2006). Here we have used the extended EMULATE dataset to construct an automated version of the Lamb Weather type (WTs) classification scheme (Jones et al 1993) adapted for the center of the Iberian Peninsula. We have identified 10 basic WTs (Cyclonic, Anticyclonic and 8 directional types) following a similar methodology to that previously adopted by Trigo and DaCamara, 2000 (for Portugal) and Lorenzo et al. 2008 (for Galicia, northwestern Iberia). We have evaluated trends of monthly/seasonal frequency of each WT for the entire period and several shorter periods. Finally, we use the long-term precipitation time series from Lisbon (recently digitized) and Cadiz (southern Spain) to evaluate, the impact of each WT on the precipitation regime. It is shown that the Anticyclonic (A) type, although being the most frequent class in winter, gives a rather small contribution to the winter precipitation amount, observed on a daily basis. On the other hand, the three wettest WTs, namely the Cyclonic (C), South-westerly (SW) and Westerly (W) types, together representing roughly a third of all winter days, do account for more than 60% of the observed daily precipitation. It is shown that the large inter-annual variability of precipitation in both cities is highly related with the corresponding inter-annual variability of the wet WTs. Ansell, T. J. et al. (2006) Daily mean sea level pressure reconstructions for the European - North Atlantic region for the period 1850-2003, Journal of Climate, 19, 2717-2742, doi: 10.1175/JCLI3775.1 Huth R., Beck C., Philipp A., Demuzere M, Ustrnul Z, Cahynová M., Kyselý J., Tveito O.E. (2008) Classifications of atmospheric circulation patterns: recent advances and applications. Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146:, 105-152 Jones, P. D. , M. Hulme , K. R. Briffa. (1993) A comparison of Lamb circulation types with an objective classification scheme. Int. J. Climatol. 13: 655- 663. Lorenzo M.N., Taboada J.J. and Gimeno L. (2008) Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int. J. Climatol. Published Online: Nov 12 2007 5:30AM DOI: 10.1002/joc.1646. Trigo R.M. and Da Camara C.C. (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol., 20, 1559-1581.
Evaluating climate models: Should we use weather or climate observations?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Robert J; Erickson III, David J
2009-12-01
Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their abilitymore » to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.« less
Basement Fracturing and Weathering On- and Offshore Norway - Genesis, Age, and Landscape Development
NASA Astrophysics Data System (ADS)
Knies, J.; van der Lelij, R.; Faust, J.; Scheiber, T.; Broenner, M.; Fredin, O.; Mueller, A.; Viola, G.
2014-12-01
Saprolite remnants onshore Scandinavia have been investigated only sporadically. The nature and age of the deeply weathered material thus remains only loosely constrained. The type and degree of weathering of in situ weathered soils are indicative of the environmental conditions during their formation. When external forcing changes, properties related to previous weathering conditions are usually preserved, for example in clay mineral assemblages. By constraining the age and rate of weathering onshore and by isotopically dating selected faults determined to be intimately linked to weathered basement blocks, the influence of climate development, brittle deformation and landscape processes on weathering can be quantified. The "BASE" project aims to establish a temporal and conceptual framework for brittle tectonics, weathering patterns and landscape evolution affecting the basement onshore and offshore Norway. We will study the formation of saprolite in pre-Quaternary times, the influence of deep weathering on landscape development and establish a conceptual structural template of the evolution of the brittle deformational features that are exposed on onshore (weathered) basement blocks. Moreover, saprolitic material may have been eroded and preserved along the Norwegian continental margin during Cenozoic times. By studying both the onshore remnants and offshore erosional products deposited during periods of extreme changes of climate and tectonic boundary conditions (e..g Miocene-Pliocene), new inferences on the timing and controlling mechanisms of denudation, and on the relevance of deep weathering on Late Cenozoic global cooling can be drawn.
Simulated Impacts of El Nino/Southern Oscillation on United States Water Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Allison M.; Brown, Robert A.; Rosenberg, Norman J.
The El Nino/Southern Oscillation alters global weather patterns with consequences for fresh water quality and supply. ENSO events impact regions and natural resource sectors around the globe. For example, in 1997-98, a strong El Ni?o brought warm ocean temperatures, flooding and record snowfall to the west coast of the US. Research on ENSO events and their impacts has improved long range weather predictions, potentially reducing the damage and economic cost of these anomalous weather patterns. Here, we simulate the impacts of four types of ENSO states on water resources in the conterminous United States. We distinguish between Neutral, El Ni?o,more » La Ni?a and strong El Ni?o years over the period of 1960-1989. Using climate statistics that characterize these ENSO states to drive the HUMUS water resources model, we examine the effects of 'pure' ENSO events, without complications from transition periods. Strong El Ni?o is not simply an amplification of El Ni?o; it leads to strikingly different consequences for climate and water resources.« less
Imholt, Christian; Reil, Daniela; Eccard, Jana A; Jacob, Daniela; Hempelmann, Nils; Jacob, Jens
2015-02-01
Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. © 2014 Society of Chemical Industry.
Accumulation of atmospheric sulfur in some Costa Rican soils
Bern, Carleton R.; Townsend, Alan R.
2013-01-01
Sulfur is one of the macronutrient elements whose sources to terrestrial ecosystems should shift from dominance by rock-weathering to atmospheric deposition as soils and underlying substrate undergo progressive weathering and leaching. However, the nature and timing of this transition is not well known. We investigated sources of sulfur to tropical rain forests growing on basalt-derived soils in the Osa Peninsula region of Costa Rica. Sulfur sources were examined using stable isotope ratios (δ34S) and compared to chemical indices of soil development. The most weathered soils, and the forests they supported, are dominated by atmospheric sulfur, while a less weathered soil type contains both rock-derived and atmospheric sulfur. Patterns of increasing δ34S with increasing soil sulfur concentration across the landscape suggest atmospheric sulfur is accumulating, and little rock-derived sulfur has been retained. Soil sulfur, minus adsorbed sulfate, is correlated with carbon and nitrogen, implying that sulfur accumulation occurs as plants and microbes incorporate sulfur into organic matter. Only the lower depth increments of the more weathered soils contained significant adsorbed sulfate. The evidence suggests a pattern of soil development in which sulfur-bearing minerals in rock, such as sulfides, weather early relative to other minerals, and the released sulfate is leached away. Sulfur added via atmospheric deposition is retained as organic matter accumulates in the soil profile. Adsorbed sulfate accumulates later, driven by changes in soil chemistry and mineralogy. These aspects of sulfur behavior during pedogenesis in this environment may hasten the transition to dominance by atmospheric sources.
Assessment of WRF Simulated Precipitation by Meteorological Regimes
NASA Astrophysics Data System (ADS)
Hagenhoff, Brooke Anne
This study evaluated warm-season precipitation events in a multi-year (2007-2014) database of Weather Research and Forecasting (WRF) simulations over the Northern Plains and Southern Great Plains. These WRF simulations were run daily in support of the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) by the National Severe Storms Laboratory (NSSL) for operational forecasts. Evaluating model skill by synoptic pattern allows for an understanding of how model performance varies with particular atmospheric states and will aid forecasters with pattern recognition. To conduct this analysis, a competitive neural network known as the Self-Organizing Map (SOM) was used. SOMs allow the user to represent atmospheric patterns in an array of nodes that represent a continuum of synoptic categorizations. North American Regional Reanalysis (NARR) data during the warm season (April-September) was used to perform the synoptic typing over the study domains. Simulated precipitation was evaluated against observations provided by the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis.
30 CFR 816.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9809, Mar. 8, 1983...
30 CFR 816.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9809, Mar. 8, 1983...
30 CFR 816.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9809, Mar. 8, 1983...
30 CFR 817.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9811, Mar. 8, 1983] ...
30 CFR 817.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9811, Mar. 8, 1983] ...
30 CFR 817.68 - Use of explosives: Records of blasting operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9811, Mar. 8, 1983] ...
Fowler, A.C.; Flint, Paul L.
1997-01-01
Following an oil spill off St Paul Island, Alaska in February 1996, persistence rates and detection probabilities of oiled king eider (Somateria spectabilis) carcasses were estimated using the Cormack-Jolly-Seber model. Carcass persistence rates varied by day, beach type and sex, while detection probabilities varied by day and beach type. Scavenging, wave action and weather influenced carcass persistence. The patterns of persistence differed on rock and sand beaches and female carcasses had a different persistence function than males. Weather, primarily snow storms, and degree of carcass scavenging, diminished carcass detectability. Detection probabilities on rock beaches were lower and more variable than on sand beaches. The combination of persistence rates and detection probabilities can be used to improve techniques of estimating total mortality.
Paschalidou, A K; Kassomenos, P A; McGregor, G R
2017-11-15
Although heat-related mortality has received considerable research attention, the impact of cold weather on public health is less well-developed, probably due to the fact that physiological responses to cold weather can vary substantially among individuals, age groups, diseases etc., depending on a number of behavioral and physiological factors. In the current work we use the classification techniques provided by the COST-733 software to link synoptic circulation patterns with excess cold-related mortality in 5 regions of England. We conclude that, regardless of the classification scheme used, the most hazardous conditions for public health in England are associated with the prevalence of the Easterly type of weather, favoring advection of cold air from continental Europe. It is noteworthy that there has been observed little-to-no regional variation with regards to the classification results among the 5 regions, suggestive of a spatially homogenous response of mortality to the atmospheric patterns identified. In general, the 10 different groupings of days used reveal that excess winter mortality is linked with the lowest daily minimum/maximum temperatures in the area. However it is not uncommon to observe high mortality rates during days with higher, in relative terms, temperatures, when rapidly changing weather results in an increase of mortality. Such a finding confirms the complexity of cold-related mortality and highlights the importance of synoptic climatology in understanding of the phenomenon. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernández-Ceballos, M. A.; García-Mozo, H.; Galán, C.
2015-08-01
The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak ( Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.
Hernández-Ceballos, M A; García-Mozo, H; Galán, C
2015-08-01
The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.
Spatial extreme value analysis to project extremes of large-scale indicators for severe weather
Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M
2013-01-01
Concurrently high values of the maximum potential wind speed of updrafts (Wmax) and 0–6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd. PMID:24223482
Deep Learning for Extreme Weather Detection
NASA Astrophysics Data System (ADS)
Prabhat, M.; Racah, E.; Biard, J.; Liu, Y.; Mudigonda, M.; Kashinath, K.; Beckham, C.; Maharaj, T.; Kahou, S.; Pal, C.; O'Brien, T. A.; Wehner, M. F.; Kunkel, K.; Collins, W. D.
2017-12-01
We will present our latest results from the application of Deep Learning methods for detecting, localizing and segmenting extreme weather patterns in climate data. We have successfully applied supervised convolutional architectures for the binary classification tasks of detecting tropical cyclones and atmospheric rivers in centered, cropped patches. We have subsequently extended our architecture to a semi-supervised formulation, which is capable of learning a unified representation of multiple weather patterns, predicting bounding boxes and object categories, and has the capability to detect novel patterns (w/ few, or no labels). We will briefly present our efforts in scaling the semi-supervised architecture to 9600 nodes of the Cori supercomputer, obtaining 15PF performance. Time permitting, we will highlight our efforts in pixel-level segmentation of weather patterns.
Effect of weather patterns on preweaning growth of beef calves in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Beef production records collected over a 76-year investigation into effects of linebreeding and selection of Hereford cattle, and concurrent weather records were used to assess effects of weather patterns on the growth of calves from birth to weaning. Data were simultaneously adjusted for trends in ...
View of clouds over Indian Ocean taken by Astronaut John Glenn during MA-6
NASA Technical Reports Server (NTRS)
1962-01-01
A view of clouds over the Indian Ocean as photographed by Astronaut John H. Glenn Jr. aboard the 'Friendship 7' spacecraft on February 20, 1962. The cloud panorama illustrates the visibility of different cloud types and weather patterns. Shadows produced by the rising Sun aid in the determination of relative cloud heights.
Relationships between fire frequency and woody canopy cover in a semi-arid African savanna
Andrew T. Hudak; Bruce H. Brockett
2003-01-01
Landscape-scale fire patterns result from complex interactions among weather, ignition sources, vegetation type and the biophysical environment (Hargrove et al. 2000, Morgan et al. 2001, Keane et al. 2002, Hudak, Fairbanks & Brockett in press). Patch characteristics (e.g. woody canopy cover) influence fire characteristics, which in turn influence patch...
Daily Weather and Children's Physical Activity Patterns.
Remmers, Teun; Thijs, Carel; Timperio, Anna; Salmon, J O; Veitch, Jenny; Kremers, Stef P J; Ridgers, Nicola D
2017-05-01
Understanding how the weather affects physical activity (PA) may help in the design, analysis, and interpretation of future studies, especially when investigating PA across diverse meteorological settings and with long follow-up periods. The present longitudinal study first aims to examine the influence of daily weather elements on intraindividual PA patterns among primary school children across four seasons, reflecting day-to-day variation within each season. Second, we investigate whether the influence of weather elements differs by day of the week (weekdays vs weekends), gender, age, and body mass index. PA data were collected by ActiGraph accelerometers for 1 wk in each of four school terms that reflect each season in southeast Australia. PA data from 307 children (age range 8.7-12.8 yr) were matched to daily meteorological variables obtained from the Australian Government's Bureau of Meteorology (maximum temperature, relative humidity, solar radiation, day length, and rainfall). Daily PA patterns and their association with weather elements were analyzed using multilevel linear mixed models. Temperature was the strongest predictor of moderate and vigorous PA, followed by solar radiation and humidity. The relation with temperature was curvilinear, showing optimum PA levels at temperatures between 20°C and 22°C. Associations between weather elements on PA did not differ by gender, child's age, or body mass index. This novel study focused on the influence of weather elements on intraindividual PA patterns in children. As weather influences cannot be controlled, knowledge of its effect on individual PA patterns may help in the design of future studies, interpretation of their results, and translation into PA promotion.
Evidence linking rapid Arctic warming to mid-latitude weather patterns.
Francis, Jennifer; Skific, Natasa
2015-07-13
The effects of rapid Arctic warming and ice loss on weather patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification--the enhanced sensitivity of high-latitude temperature to global warming--in only the last 10-20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting weather patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming-and resulting weakening of the poleward temperature gradient-is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent weather patterns that are known to cause extreme weather events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged weather conditions.
Isolating weather effects from seasonal activity patterns of a temperate North American Colubrid
Andrew D. George; Frank R. III Thompson; John Faaborg
2015-01-01
Forecasting the effects of climate change on threatened ecosystems and species will require an understanding of how weather influences processes that drive population dynamics. We have evaluated weather effects on activity patterns of western ratsnakes, a widespread predator of birds and small mammals in eastern North America. From 2010-2013 we radio-tracked 53...
NASA Astrophysics Data System (ADS)
Piper, David; Kunz, Michael; Ehmele, Florian; Mohr, Susanna; Mühr, Bernhard; Kron, Andreas; Daniell, James
2016-12-01
During a 15-day episode from 26 May to 9 June 2016, Germany was affected by an exceptionally large number of severe thunderstorms. Heavy rainfall, related flash floods and creek flooding, hail, and tornadoes caused substantial losses running into billions of euros (EUR). This paper analyzes the key features of the severe thunderstorm episode using extreme value statistics, an aggregated precipitation severity index, and two different objective weather-type classification schemes. It is shown that the thunderstorm episode was caused by the interaction of high moisture content, low thermal stability, weak wind speed, and large-scale lifting by surface lows, persisting over almost 2 weeks due to atmospheric blocking.For the long-term assessment of the recent thunderstorm episode, we draw comparisons to a 55-year period (1960-2014) regarding clusters of convective days with variable length (2-15 days) based on precipitation severity, convection-favoring weather patterns, and compound events with low stability and weak flow. It is found that clusters with more than 8 consecutive convective days are very rare. For example, a 10-day cluster with convective weather patterns prevailing during the recent thunderstorm episode has a probability of less than 1 %.
NASA Astrophysics Data System (ADS)
Murawski, Aline; Bürger, Gerd; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
The use of a weather pattern based approach for downscaling of coarse, gridded atmospheric data, as usually obtained from the output of general circulation models (GCM), allows for investigating the impact of anthropogenic greenhouse gas emissions on fluxes and state variables of the hydrological cycle such as e.g. on runoff in large river catchments. Here we aim at attributing changes in high flows in the Rhine catchment to anthropogenic climate change. Therefore we run an objective classification scheme (simulated annealing and diversified randomisation - SANDRA, available from the cost733 classification software) on ERA20C reanalyses data and apply the established classification to GCMs from the CMIP5 project. After deriving weather pattern time series from GCM runs using forcing from all greenhouse gases (All-Hist) and using natural greenhouse gas forcing only (Nat-Hist), a weather generator will be employed to obtain climate data time series for the hydrological model. The parameters of the weather pattern classification (i.e. spatial extent, number of patterns, classification variables) need to be selected in a way that allows for good stratification of the meteorological variables that are of interest for the hydrological modelling. We evaluate the skill of the classification in stratifying meteorological data using a multi-variable approach. This allows for estimating the stratification skill for all meteorological variables together, not separately as usually done in existing similar work. The advantage of the multi-variable approach is to properly account for situations where e.g. two patterns are associated with similar mean daily temperature, but one pattern is dry while the other one is related to considerable amounts of precipitation. Thus, the separation of these two patterns would not be justified when considering temperature only, but is perfectly reasonable when accounting for precipitation as well. Besides that, the weather patterns derived from reanalyses data should be well represented in the All-Hist GCM runs in terms of e.g. frequency, seasonality, and persistence. In this contribution we show how to select the most appropriate weather pattern classification and how the classes derived from it are reflected in the GCMs.
NASA Astrophysics Data System (ADS)
Heidenreich, Majana; Bernhofer, Christian
2014-05-01
High concentrations of particulate matter (PM) and ground-level ozone (O3) have negative impacts on human health, e.g., increased risk of respiratory disease, and the environment. European Union (EU) air policy and air quality standards led to continuously reduced air pollution problems in recent decades. Nevertheless, the limit values for PM10 (particles with diameter of 10 micrometers or less) and ozone - defined by the directive 2008/50/EC of the European Parliament - are still exceeded frequently. Poor air quality and the exceedance of limits result mainly from the combination of high emissions and unfavourable weather conditions. Datasets from German monitoring stations are used to describe the spatial and temporal variability of the exceedance of concentration limits for PM10 and ozone for the federal states of Germany. Time series are analysed for the period 2000-2012 for PM10 and for the period 1990-2012 for ozone. Furthermore, the influence of weather patterns on the exceedance of concentration limits on a regional scale was investigated. Here, the "objective weather types" of the German Weather Service were used. As expected, for most regions anticyclonic weather types (with a negative cyclonality index for the two levels 950 and 500 hPa) show a high frequency on exeedance days, both for PM10 and ozone. The results could contribute to estimate the future exceedance frequency of concentration limits and to develop possible countermeasures.
78 FR 78486 - Notice of Funding Availability for Resilience Projects in Response to Hurricane Sandy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... changes in development patterns, demographics, or climate change and extreme weather patterns. For the... located; or projected changes in development patterns, demographics, or extreme weather or other climate... climate-related disasters are a continuing threat. According to the ``Hurricane Sandy Rebuilding Strategy...
Simulated building energy demand biases resulting from the use of representative weather stations
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; ...
2017-11-06
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
Simulated building energy demand biases resulting from the use of representative weather stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd
Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less
Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz
2011-01-01
The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...
Classifying Urban Space Types of Seoul using Time-series Heat Island map
NASA Astrophysics Data System (ADS)
Jung, S.; KIM, H.; JE, M.
2017-12-01
In August 2016, the hottest heat occurred in Korea since the weather observation started in Korea. Due to climate changes, this heat phenomenon is expected to be severe more in the future. Thus, this study analyzed the heatwave occurred in 2016 with regard to Seoul from various angles to identify the characteristics of urban regions where the heat island phenomenon occurred. To do this, first, temperature data for two days on August 6 and 12 in 2016 when the hottest heatwave occurred were collected from 287 places of automatic weather stations (AWS) installed in Seoul and adjacent suburbs. The temperature distribution of Seoul was mapped using interpolation in every hour using the collected temperature data. Second, regions in Seoul were classified using statistical methods based on spatial characteristics such as land coverage, density, use type, and traffic volume in Seoul. Third, a daily pattern of change in temperature in the classified regions was depicted with a graph, and regions were re-classified based on the daily pattern of change in temperature. Finally, the characteristics of the classified regions were re-reviewed and then, heat island occurrence, continuation, and reduction measure by region type were discussed. The analysis results showed that a pattern of heatwave occurrence was exhibited differently by the classified region type. The results also showed that not only physical characteristics such as land coverage but also socioeconomic index such as population density and floating population that induced a traffic volume influenced the pattern of heatwave occurrence despite of the same land usage regions. This study not only classified urban climate regions by existing mean temperature and specific time-point temperature but also proposed a methodology that analyzed heat island phenomenon inside cities by using time-series temperature data in a day. Furthermore, this study enabled regional classification based on heat island characteristics to contribute to establishment of measure for each regional classification.
Using Weather Types to Understand and Communicate Weather and Climate Impacts
NASA Astrophysics Data System (ADS)
Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.
2017-12-01
A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.
Summarising climate and air quality (ozone) data on self-organising maps: a Sydney case study.
Jiang, Ningbo; Betts, Alan; Riley, Matt
2016-02-01
This paper explores the classification and visualisation utility of the self-organising map (SOM) method in the context of New South Wales (NSW), Australia, using gridded NCEP/NCAR geopotential height reanalysis for east Australia, together with multi-site meteorological and air quality data for Sydney from the NSW Office of Environment and Heritage Air Quality Monitoring Network. A twice-daily synoptic classification has been derived for east Australia for the period of 1958-2012. The classification has not only reproduced the typical synoptic patterns previously identified in the literature but also provided an opportunity to visualise the subtle, non-linear change in the eastward-migrating synoptic systems influencing NSW (including Sydney). The summarisation of long-term, multi-site air quality/meteorological data from the Sydney basin on the SOM plane has identified a set of typical air pollution/meteorological spatial patterns in the region. Importantly, the examination of these patterns in relation to synoptic weather types has provided important visual insights into how local and synoptic meteorological conditions interact with each other and affect the variability of air quality in tandem. The study illustrates that while synoptic circulation types are influential, the within-type variability in mesoscale flows plays a critical role in determining local ozone levels in Sydney. These results indicate that the SOM can be a useful tool for assessing the impact of weather and climatic conditions on air quality in the regional airshed. This study further promotes the use of the SOM method in environmental research.
Morey, G.B.; Setterholm, D.R.
1997-01-01
The relative abundance of rare earth elements in sediments has been suggested as a tool for determining their source rocks. This correlation requires that weathering, erosion, and sedimentation do not alter the REE abundances, or do so in a predictable manner. We find that the rare earth elements are mobilized and fractionated by weathering, and that sediments derived from the weathered materials can display modifications of the original pattern of rare earth elements of some due to grain-size sorting of the weathered material. However, the REE distribution pattern of the provenance terrane can be recognized in the sediments.
Potential value of satellite cloud pictures in weather modification projects
NASA Technical Reports Server (NTRS)
Biswas, K. R.
1972-01-01
Satellite imagery for one project season of cloud seeding programs in the northern Great Plains has been surveyed for its probable usefulness in weather modification programs. The research projects and the meteorological information available are described. A few illustrative examples of satellite imagery analysis are cited and discussed, along with local observations of weather and the seeding decisions made in the research program. This analysis indicates a definite correlation between satellite-observed cloud patterns and the types of cloud seeding activity undertaken, and suggests a high probability of better and/or earlier decisions if the imagery is available in real time. Infrared imagery provides better estimates of cloud height which can be useful in assessing the possibility of a hail threat. The satellite imagery appears to be of more value to area-seeding projects than to single-cloud seeding experiments where the imagery is of little value except as an aid in local forecasting and analysis.
Hebbern, Christopher; Cakmak, Sabit
2015-09-01
Pollution levels and the effect of air pollution on human health can be modified by synoptic weather type and aeroallergens. We investigated the effect modification of aeroallergens on the association between CO, O3, NO2, SO2, PM10, PM2.5 and asthma hospitalisation rates in seven synoptic weather types. We developed single air pollutant models, adjusted for the effect of aeroallergens and stratified by synoptic weather type, and pooled relative risk estimates for asthma hospitalisation in ten Canadian cities. Aeroallergens significantly modified the relative risk in 19 pollutant-weather type combinations, reducing the size and variance for each single pollutant model. However, aeroallergens did not significantly modify relative risk for any pollutant in the DT or MT weather types, or for PM10 in any weather type. Thus, there is a modifying effect of aeroallergens on the association between CO, O3, NO2, SO2, PM2.5 and asthma hospitalisations that differs under specific synoptic weather types. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Spatial patterns of large natural fires in Sierra Nevada wilderness areas
Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.
2007-01-01
The effects of fire on vegetation vary based on the properties and amount of existing biomass (or fuel) in a forest stand, weather conditions, and topography. Identifying controls over the spatial patterning of fire-induced vegetation change, or fire severity, is critical in understanding fire as a landscape scale process. We use gridded estimates of fire severity, derived from Landsat ETM+ imagery, to identify the biotic and abiotic factors contributing to the observed spatial patterns of fire severity in two large natural fires. Regression tree analysis indicates the importance of weather, topography, and vegetation variables in explaining fire severity patterns between the two fires. Relative humidity explained the highest proportion of total sum of squares throughout the Hoover fire (Yosemite National Park, 2001). The lowest fire severity corresponded with increased relative humidity. For the Williams fire (Sequoia/Kings Canyon National Parks, 2003) dominant vegetation type explains the highest proportion of sum of squares. Dominant vegetation was also important in determining fire severity throughout the Hoover fire. In both fires, forest stands that were dominated by lodgepole pine (Pinus contorta) burned at highest severity, while red fir (Abies magnifica) stands corresponded with the lowest fire severities. There was evidence in both fires that lower wind speed corresponded with higher fire severity, although the highest fire severity in the Williams fire occurred during increased wind speed. Additionally, in the vegetation types that were associated with lower severity, burn severity was lowest when the time since last fire was fewer than 11 and 17 years for the Williams and Hoover fires, respectively. Based on the factors and patterns identified, managers can anticipate the effects of management ignited and naturally ignited fires at the forest stand and the landscape levels. ?? 2007 Springer Science+Business Media, Inc.
Huang, Jing; Xi, Jun; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong
2014-01-01
Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure. PMID:24077700
NASA Astrophysics Data System (ADS)
Overton, E. B.; Meyer, B.; Miles, S.; Olson, G.; Adhikari, P. L.
2016-02-01
It has been well established that the composition of oil, when spilled into the marine environment, undergoes substantial changes caused by weathering. The general sequence of this compositional change begins with straight chain alkanes (the fastest to degrade), followed by low molecular weight branched and cyclic alkanes and, finally the aromatics. Most resistant to weathering are the higher molecular weight cyclic and branched alkanes (i.e., the "forensic biomarker compounds" such as the hopanes and steranes) and tri-aromatic ringed steroids. The composition of these biomarker compounds is particularly resistant to change because they are not affected by evaporative weathering, are not water soluble, and are not readily degraded by microbial and/or photo-oxidation. However, after extensive time in the environment, being subjected to numerous weathering factors, biomarker compositional patterns are beginning to exhibit significant changes. This presentation will describe the general weathering patterns of petroleum residues in sediment samples collected from marsh areas of coastal Louisiana over a five year period. Particular attention will focus on compositional changes that have been observed in the steranes and diasteranes compounds that traditionally have been considered the most resistant to compositional changes due to weathering.
Cai, Liqi; Wang, Jundong; Peng, Jinping; Wu, Ziqing; Tan, Xiangling
2018-07-01
Plastic debris represents one of the most prevalent and persistent pollution problems in the marine environment. In particular, microplastics that are mainly degraded from larger plastic debris have become a growing environmental concern. However, studies on the degradation of plastics in the aquatic environment that hydrobios reside in have been limited, while several studies regarding the degradation of plastics have been conducted under outdoor or accelerated weathering conditions. Thus, observation of the degradation of three types of virgin plastic pellets exposed to UV irradiation in three different environments (i.e., simulated seawater, ultrapure water, and a waterless (air) condition) was carried out. Data on the changes in physical and chemical properties were collected. The FTIR spectra showed that hydroxyl groups and carbonyl groups developed in three types of weathered plastic pellets under the air and ultrapure water environmental conditions after 3months of UV irradiation, while only carbonyl groups were found in plastic pellets in the simulated seawater environment. In contrast, the Raman spectra showed no significant changes in the weathered plastic pellets, but there were different intensities of characteristic peaks after exposure to UV irradiation. In addition, SEM images illustrated that granular oxidation, cracks and flakes were common patterns during degradation, and the plastic pellets in the three different environments experienced different levels of chemical weathering. We suggest that further studies on the degradation processes of plastic debris are needed to predict the fate of plastic debris in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain
NASA Astrophysics Data System (ADS)
Royé, D.; Taboada, J. J.; Martí, A.; Lorenzo, M. N.
2016-04-01
The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.
Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain.
Royé, D; Taboada, J J; Martí, A; Lorenzo, M N
2016-04-01
The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.
Grundström, Maria; Dahl, Åslög; Ou, Tinghai; Chen, Deliang; Pleijel, Håkan
2017-01-01
Exposure to elevated air pollution levels can aggravate pollen allergy symptoms. The aim of this study was to investigate the relationships between airborne birch ( Betula ) pollen, urban air pollutants NO 2 , O 3 and PM 10 and their effects on antihistamine demand in Gothenburg and Malmö, Sweden, 2006-2012. Further, the influence of large-scale weather pattern on pollen-/pollution-related risk, using Lamb weather types (LWTs), was analysed. Daily LWTs were obtained by comparing the atmospheric pressure over a 16-point grid system over southern Sweden (scale ~3000 km). They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E…). Birch pollen levels were exceptionally high under LWTs E and SE in both cities. Furthermore, LWTs with dry and moderately calm meteorological character (A, NE, E, SE) were associated with strongly elevated air pollution (NO 2 and PM 10 ) in Gothenburg. For most weather situations in both cities, simultaneously high birch pollen together with high air pollution had larger over-the-counter (OTC) sales of antihistamines than situations with high birch pollen alone. LWTs NE, E, SE and S had the highest OTC sales in both cities. In Gothenburg, the city with a higher load of both birch pollen and air pollution, the higher OTC sales were especially obvious and indicate an increased effect on allergic symptoms from air pollution. Furthermore, Gothenburg LWTs A, NE, E and SE were associated with high pollen and air pollution levels and thus classified as high-risk weather types. In Malmö, corresponding high-risk LWTs were NE, E, SE and S. Furthermore, occurrence of high pollen and air pollutants as well as OTC sales correlated strongly with vapour pressure deficit and temperature in Gothenburg (much less so in Malmö). This provides evidence that the combination of meteorological properties associated with LWTs can explain high levels of birch pollen and air pollution. Our study shows that LWTs represent a useful tool for integrated daily air quality forecasting/warning.
NASA Astrophysics Data System (ADS)
Grundström, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H.
2015-11-01
Atmospheric ultrafine particles (UFP; diameter < 0.1 μm) represent a growing global health concern in urban environments and has a strong link to traffic related emissions. UFP is usually the dominating fraction of atmospheric particle number concentrations (PNC) despite being a minor part of total particle mass. The aim of this study was to empirically investigate the relationship between PNC and other air pollutants (NOX, NO2 and PM10) in the urban environment and their dependence on meteorology and weather type, using the Lamb Weather Type (LWT) classification scheme. The study was carried out in Gothenburg, Sweden, at an urban background site during April 2007-May 2008. It was found that daily average [PNC] correlated very well with [NOx] (R2 = 0.73) during inversion days, to a lesser extent with [NO2] (R2 = 0.58) and poorly with [PM10] (R2 = 0.07). Both PNC and NOx had similar response patterns to wind speed and to the strength of temperature inversions. PNC displayed two regimes, one strongly correlated to NOx and a second poorly correlated to NOx which was characterised by high wind speed. For concentration averages based on LWTs, the PNC-[NOx] relationship remained strong (R2 = 0.70) where the windy LWT W deviated noticeably. Exclusion of observations with wind speed >5 ms-1 or ΔT < 0 °C from LWTs produced more uniform and stronger relationships (R2 = 0.90; R2 = 0.93). Low wind speeds and positive vertical temperature gradients were most common during LWTs A, NW, N and NE. These weather types were also associated with the highest daily means of NOx (∼30 ppb) and PNC (∼10 000 # cm-3). A conclusion from this study is that NOx (but not PM10) is a good proxy for PNC especially during calm and stable conditions and that LWTs A, NW, N and NE are high risk weather types for elevated NOx and PNC.
A synoptic climatology for forest fires in the NE US and future implications for GCM simulations
Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu
1994-01-01
We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...
Influence of climate change on productivity of American White Pelicans, Pelecanus erythrorhynchos
Sovada, Marsha A.; Igl, Lawrence D.; Pietz, Pamela J.; Bartos, Alisa J.
2014-01-01
In the past decade, severe weather and West Nile virus were major causes of chick mortality at American white pelican (Pelecanus erythrorhynchos) colonies in the northern plains of North America. At one of these colonies, Chase Lake National Wildlife Refuge in North Dakota, spring arrival by pelicans has advanced approximately 16 days over a period of 44 years (1965–2008). We examined phenology patterns of pelicans and timing of inclement weather through the 44-year period, and evaluated the consequence of earlier breeding relative to weather-related chick mortality. We found severe weather patterns to be random through time, rather than concurrently shifting with the advanced arrival of pelicans. In recent years, if nest initiations had followed the phenology patterns of 1965 (i.e., nesting initiated 16 days later), fewer chicks likely would have died from weather-related causes. That is, there would be fewer chicks exposed to severe weather during a vulnerable transition period that occurs between the stage when chicks are being brooded by adults and the stage when chicks from multiple nests become part of a thermally protective crèche.
Recreational use assessment of water-based activities, using time-lapse construction cameras.
Sunger, Neha; Teske, Sondra S; Nappier, Sharon; Haas, Charles N
2012-01-01
Recreational exposure to surface waters during periods of increased pathogen concentration may lead to a significantly higher risk of illness. However, estimates of elementary exposure factors necessary to evaluate health risk (i.e., usage distributions and exposure durations) are not available for many non-swimming water-related activities. No prior studies have assessed non-swimming water exposure with respect to factors leading to impaired water quality from increased pathogen concentration, such as weather condition (rain events produce increased runoff and sewer overflows) and type of day (heavy recreational periods). We measured usage patterns and evaluated the effect of weather and type of day at eight water sites located within Philadelphia, by using a novel "time lapse photography" technology during three peak recreational seasons (May-September) 2008-2010. Camera observations validated with simultaneous in-person surveys exhibited a strong correlation (R(2)=0.81 to 0.96) between the two survey techniques, indicating that the application of remote photography in collecting human exposure data was appropriate. Recreational activities usage varied more on a temporal basis than due to inclement weather. Only 14% (6 out of 44) of the site-specific activity combinations showed dry weather preference, whereas 41.5% (17 out of 41) of the combinations indicated greater usage on weekends as compared with weekday. In general, the log normal distribution described the playing and wading duration distribution, while the gamma distribution was the best fit for fishing durations. Remote photography provided unbiased, real-time human exposure data and was less personnel intensive compared with traditional survey methods. However, there are potential limitations associated with remote surveillance data related to its limited view. This is the first study to report that time lapse cameras can be successfully applied to assess water-based human recreational patterns and can provide precise exposure statistics for non-swimming recreational exposures.
Akoll, Peter; Konecny, Robert; Mwanja, Wilson W; Schiemer, Fritz
2012-04-01
The larval stages of Bolbophorus sp. (digenean) and Amirthalingamia macracantha (cestode) are frequently reported in Oreochromis niloticus in Uganda. Little, however, is known about their infection patterns. This study examined the influence of habitat type, host size, and sex and weather patterns on the parasite populations in Uganda. A total of 650 fish were collected between January and November 2008 from a reservoir, cages, fishponds and a stream. The prevalence and intensity of A. macracantha and the prevalence of Bolbophorus sp. differed across the water bodies reflecting the effect of habitat characteristics on parasite transmission. Host sex did not significantly influence the infection patterns, although female fish were slightly more parasitized than male and sexually undifferentiated individuals. The fish size was positively correlated with helminth infections demonstrating accumulation and prolonged exposure of larger (older) fish to the parasites. The metacercariae population did not vary significantly across months, while monthly A. macracantha infection fluctuated markedly. With regard to rain seasons, higher prevalence and intensity of A. macracantha were recorded in wet season. For Bolbophorus sp., only the prevalence varied with seasons, with higher prevalence recorded in the dry season than in wet season. Generally, Bolbophorus sp. responded weakly to changes in water body, host sex and size and weather patterns. Rainfall appears to be an essential cue for coracidia hatching.
Classification and machine recognition of severe weather patterns
NASA Technical Reports Server (NTRS)
Wang, P. P.; Burns, R. C.
1976-01-01
Forecasting and warning of severe weather conditions are treated from the vantage point of pattern recognition by machine. Pictorial patterns and waveform patterns are distinguished. Time series data on sferics are dealt with by considering waveform patterns. A severe storm patterns recognition machine is described, along with schemes for detection via cross-correlation of time series (same channel or different channels). Syntactic and decision-theoretic approaches to feature extraction are discussed. Active and decayed tornados and thunderstorms, lightning discharges, and funnels and their related time series data are studied.
Ecological Effects of Weather Modification: A Problem Analysis.
ERIC Educational Resources Information Center
Cooper, Charles F.; Jolly, William C.
This publication reviews the potential hazards to the environment of weather modification techniques as they eventually become capable of producing large scale weather pattern modifications. Such weather modifications could result in ecological changes which would generally require several years to be fully evident, including the alteration of…
Adverse weather conditions and fatal motor vehicle crashes in the United States, 1994-2012.
Saha, Shubhayu; Schramm, Paul; Nolan, Amanda; Hess, Jeremy
2016-11-08
Motor vehicle crashes are a leading cause of injury mortality. Adverse weather and road conditions have the potential to affect the likelihood of motor vehicle fatalities through several pathways. However, there remains a dearth of assessments associating adverse weather conditions to fatal crashes in the United States. We assessed trends in motor vehicle fatalities associated with adverse weather and present spatial variation in fatality rates by state. We analyzed the Fatality Analysis Reporting System (FARS) datasets from 1994 to 2012 produced by the National Highway Traffic Safety Administration (NHTSA) that contains reported weather information for each fatal crash. For each year, we estimated the fatal crashes that were associated with adverse weather conditions. We stratified these fatalities by months to examine seasonal patterns. We calculated state-specific rates using annual vehicle miles traveled data for all fatalities and for those related to adverse weather to examine spatial variations in fatality rates. To investigate the role of adverse weather as an independent risk factor for fatal crashes, we calculated odds ratios for known risk factors (e.g., alcohol and drug use, no restraint use, poor driving records, poor light conditions, highway driving) to be reported along with adverse weather. Total and adverse weather-related fatalities decreased over 1994-2012. Adverse weather-related fatalities constituted about 16 % of total fatalities on average over the study period. On average, 65 % of adverse weather-related fatalities happened between November and April, with rain/wet conditions more frequently reported than snow/icy conditions. The spatial distribution of fatalities associated with adverse weather by state was different than the distribution of total fatalities. Involvement of alcohol or drugs, no restraint use, and speeding were less likely to co-occur with fatalities during adverse weather conditions. While adverse weather is reported for a large number of motor vehicle fatalities for the US, the type of adverse weather and the rate of associated fatality vary geographically. These fatalities may be addressed and potentially prevented by modifying speed limits during inclement weather, improving road surfacing, ice and snow removal, and providing transit alternatives, but the impact of potential interventions requires further research.
On the relationship between atmospheric rivers, weather types and floods in Galicia (NW Spain)
NASA Astrophysics Data System (ADS)
Eiras-Barca, Jorge; Lorenzo, Nieves; Taboada, Juan; Robles, Alba; Miguez-Macho, Gonzalo
2018-06-01
Atmospheric rivers (ARs) - long and narrow structures of anomalously high water vapor flux located in the warm sector of extratropical cyclones - have been shown to be closely related to extreme precipitation and flooding. In this paper we analyze the connection between ARs and flooding in the northwestern Spanish region of Galicia under a variety of synoptic conditions represented by the so-called weather types
, a classification of daily sea-level pressure patterns obtained by means of a simple scheme that adopts the subjective procedure of Lamb. Flood events are identified from official reports conducted by the Spanish emergency management agency (Protección Civil) from 1979 to 2010. Our results suggest that, although most flood events in Galicia do not coincide with the presence of an overhead AR, ARs are present in the majority of severe cases, particularly in coastal areas. Flood events associated with ARs are connected to cyclonic weather types with westerly and southwesterly flows, which occur mostly in winter months. The link between ARs and severe flooding is not very apparent in inland areas or during summer months, in which case heavy precipitation is usually not frontal in nature but rather convective. Nevertheless, our results show that, in general, the amount of precipitation in flood events in Galicia more than doubles when an AR is present.
Arctic-midlatitude weather linkages in North America
NASA Astrophysics Data System (ADS)
Overland, James E.; Wang, Muyin
2018-06-01
There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.
Horanont, Teerayut; Phithakkitnukoon, Santi; Leong, Tuck W; Sekimoto, Yoshihide; Shibasaki, Ryosuke
2013-01-01
This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM-1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics.
Leong, Tuck W.; Sekimoto, Yoshihide; Shibasaki, Ryosuke
2013-01-01
This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM–1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics. PMID:24367481
The sensitivity of snowfall to weather states over Sweden
NASA Astrophysics Data System (ADS)
Norin, Lars; Devasthale, Abhay; L'Ecuyer, Tristan S.
2017-09-01
For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studies focused on the sensitivity of snowfall to weather states over Sweden.In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anticyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic Oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states.In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that, even though the heaviest snowfall intensities occur during conditions with winds from the south-west, the largest contribution to snowfall accumulation arrives with winds from the south-east. Large differences in snowfall due to variations in the North Atlantic Oscillation are shown as well as a strong effect of cyclonic and anticyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.
The effect of two types of El Niño on the southerly low-level jets in North America
Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi Bian
2016-01-01
Low-level jets (LLJs) are frequent weather phenomena in many regions of North America and have profound impacts on precipitation and wind energy. We used a 31 year (1979-2010) three-hourly reanalysis data set to examine the teleconnection between southerly LLJ activity in North America and the two dominant patterns of the equatorial Pacific Ocean sea surface...
NASA Astrophysics Data System (ADS)
Moore, Leah; Nicholson, Allan; Cook, Wayne; Sweeney, Margaret
2014-05-01
In the Greater Launceston Area (GLA) in northern Tasmania, Australia, there is a widespread urban salinity problem with severe impacts on urban/peri-urban infrastructure in localised areas. Salinity patterns in the landscape (elevated flux to waterways; salt efflorescence at the land surface) could be related to: the underlying rock type, the thickness of regolith materials and hence the volume of the salt store, the landforms present and the amount of water passing over and through the landscape. In northern Tasmania secondary mineralogy on dolerite typically includes formation of Fe/Ca smectite phases (e.g. nontronite, saponite) and Fe-Ti oxides/sesquioxides (e.g. hematite, goethite) with some primary phases (e.g. Ca-plagioclase feldspar, augite) weathering through to a suite dominated by kaolinite clay and Fe-Ti oxides/sesquioxides. Deeply weathered profiles in the GLA have weathered to the kaolintite-clay dominant mineralogy and in places there are gibbsite/beidellite/hematite/goethite bauxites developed. Most existing salinity mapping emphasises salt manifestation over paleo-estuarine sediments of the Paleogene Tamar-Esk River system, so incorporation of deeply weathered Jurassic dolerite materials into the salt budget considerably augments the estimated potential hazard. Rapid stream surveys provide a snapshot of stream electrical conductivity (EC) over the study area at regular intervals allowing a broad evaluation of salt flux patterns in surfaces waters. Higher EC readings were obtained from selected streams draining: deeply weathered dolerite profiles (0.37 1.86 dS/m) and deeply weathered Paleogene paleo-estuarine sediments (0.49 to 1.16 dS/m). Lower values were measured on up-faulted dolerite blocks (<0.10 dS/m); moderately weathered, high relief dolerite (<0.03 dS/m), and in incised streams flowing over a rocky dolerite substrate (<0.03 dS/m). The patterns of stream EC reflect the nature of the regolith materials the streams drain, and match mapped patterns for distribution of deeply weathered Jurassic dolerite and moderately to deeply weathered bedded paleo-estuarine sediments of the Paleogene Tamar-Esk river system, some Quaternary terrace deposits along the Tamar and Esk Rivers; and some Holocene estuarine sediments. Recent geomorphic mapping has enabled development of a more comprehensive and consistent landscape evolution model that builds on existing knowledge. This model describes the influence of a progressively incising Tamar-Esk river system in response to episodic lowering of the local base level, with multiple episodes of valley widening as the river system stabilised after incision. Successive lowering events dissected earlier landforms, but locally remnant surfaces are preserved that represent former fluvial plain and terrace features. These processes were partially controlled by the structural configuration and contrasting resistance of the underlying lithologies, influencing the planform geometries of the rivers, and consequently the potential to preserve paleo-fluvial features. Because the Tamar River is an estuarine system, some of the lowermost preserved surfaces are likely to reflect marine processes (e.g. 5-7m; 10-12m ASL). The geomorphic mapping was conducted independently of the hydrogeological landscape (HGL) characterisation in the GLA, but there is strong correlation between the areas identified as having elevated salinity hazard (HGL) and newly mapped remnant surfaces in this landscape. This work complements HGL research and supports development of an increasingly rigorous evidence-based framework for GLA salinity hazard management.
The influence from synoptic weather on the variation of air pollution and pollen exposure
NASA Astrophysics Data System (ADS)
Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan
2014-05-01
Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.
Atmospheric forcing of sea ice leads in the Beaufort Sea
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.
2016-12-01
Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.
Identifying Patterns in the Weather of Europe for Source Term Estimation
NASA Astrophysics Data System (ADS)
Klampanos, Iraklis; Pappas, Charalambos; Andronopoulos, Spyros; Davvetas, Athanasios; Ikonomopoulos, Andreas; Karkaletsis, Vangelis
2017-04-01
During emergencies that involve the release of hazardous substances into the atmosphere the potential health effects on the human population and the environment are of primary concern. Such events have occurred in the past, most notably involving radioactive and toxic substances. Examples of radioactive release events include the Chernobyl accident in 1986, as well as the more recent Fukushima Daiichi accident in 2011. Often, the release of dangerous substances in the atmosphere is detected at locations different from the release origin. The objective of this work is the rapid estimation of such unknown sources shortly after the detection of dangerous substances in the atmosphere, with an initial focus on nuclear or radiological releases. Typically, after the detection of a radioactive substance in the atmosphere indicating the occurrence of an unknown release, the source location is estimated via inverse modelling. However, depending on factors such as the spatial resolution desired, traditional inverse modelling can be computationally time-consuming. This is especially true for cases where complex topography and weather conditions are involved and can therefore be problematic when timing is critical. Making use of machine learning techniques and the Big Data Europe platform1, our approach moves the bulk of the computation before any such event taking place, therefore allowing for rapid initial, albeit rougher, estimations regarding the source location. Our proposed approach is based on the automatic identification of weather patterns within the European continent. Identifying weather patterns has long been an active research field. Our case is differentiated by the fact that it focuses on plume dispersion patterns and these meteorological variables that affect dispersion the most. For a small set of recurrent weather patterns, we simulate hypothetical radioactive releases from a pre-known set of nuclear reactor locations and for different substance and temporal parameters, using the Java flavour of the Euratom-supported funded RODOS (Real-time On-line DecisiOn Support) system2 for off-site emergency management after nuclear accidents. Once dispersions have been pre-computed, and immediately after a detected release, the currently observed weather can be matched to the derived weather classes. Since each weather class corresponds to a different plume dispersion pattern, the closest classes to an unseen weather sample, say the current weather, are the most likely to lead us to the release origin. In addressing the above problem, we make use of multiple years of weather reanalysis data from NCAR's version3 of ECMWF's ERA-Interim4. To derive useful weather classes, we evaluate several algorithms, ranging from straightforward unsupervised clustering to more complex methods, including relevant neural-network algorithms, on multiple variables. Variables and feature sets, clustering algorithms and evaluation approaches are all dealt with and presented experimentally. The Big Data Europe platform allows for the implementation and execution of the above tasks in the cloud, in a scalable, robust and efficient way.
NASA Astrophysics Data System (ADS)
Garcia-Guinea, J.; Crespo-Feo, E.; Correcher, V.; Iordanidis, A.; Charalampides, G.; Karamitrou-Mentessidi, G.
This work focus on the Thermoluminescence (TL), the Spatially Resolved Spectral Cathodoluminescence (CL) and Raman spectroscopy (Raman) of white marble specimens collected from the archaeological park of Aiani (Greece) and from patterns of Iceland calcite and Macael marble for comparison purposes. The spectra CL were measured with a high sensitivity cathodoluminescence spectrometer MonoCL3 of Gatan (UK) attached to an FEI-ESEM microscope (CL-ESEM). The experimental set of spectra CL curves of Aiani white marbles suggest that the blue band is more resistant to weathering in comparison with the red band which drops down easily under weathering. The comparison among CL spectra of CaCO3 patterns give a slight difference between the small 330 nm peak, detected in marble and not observed in the monocrystal pattern of Iceland calcite. The Backscattering Electron Dispersed (BSED) images of the white marble are similar to the CL monochromatic plots at 330 nm which highlight the surfaces with remarkable clarity, suggesting a CL emission-defect associated to the marble crystal interfaces, such as protons or hydroxyls. Conversely, the 395 nm monochromatic mapping depicts a CL image emitting from bulk and not from interfaces attributable to point defects or cationic activators in Ca2+ positions. The blue band of the spectra luminescence of marble is composed by several peaks associated to very different types of luminescent defects. This statement is not inconsequential since in archaeological TL dating of marbles the regenerated luminescence in the blue region of the spectrum is a serious difficulty and further research on this topic is necessary.
The use of weather data to predict non-recurring traffic congestion
DOT National Transportation Integrated Search
2006-08-01
This project will demonstrate the quantitative relationship between weather patterns and surface traffic conditions. The aviation and maritime industries use weather measurements and predictions as a normal part of operations, and this can be extende...
Influence of solar variability on the occurrence of central European weather types from 1763 to 2009
NASA Astrophysics Data System (ADS)
Schwander, Mikhaël; Rohrer, Marco; Brönnimann, Stefan; Malik, Abdul
2017-09-01
The impact of solar variability on weather and climate in central Europe is still not well understood. In this paper we use a new time series of daily weather types to analyse the influence of the 11-year solar cycle on the tropospheric weather of central Europe. We employ a novel, daily weather type classification over the period 1763-2009 and investigate the occurrence frequency of weather types under low, moderate, and high solar activity level. Results show a tendency towards fewer days with westerly and west-southwesterly flow over central Europe under low solar activity. In parallel, the occurrence of northerly and easterly types increases. For the 1958-2009 period, a more detailed view can be gained from reanalysis data. Mean sea level pressure composites under low solar activity also show a reduced zonal flow, with an increase of the mean blocking frequency between Iceland and Scandinavia. Weather types and reanalysis data show that the 11-year solar cycle influences the late winter atmospheric circulation over central Europe with colder (warmer) conditions under low (high) solar activity.
Shao, Wanyun; Goidel, Kirby
2016-11-01
What role do objective weather conditions play in coastal residents' perceptions of local climate shifts and how do these perceptions affect attitudes toward climate change? While scholars have increasingly investigated the role of weather and climate conditions on climate-related attitudes and behaviors, they typically assume that residents accurately perceive shifts in local climate patterns. We directly test this assumption using the largest and most comprehensive survey of Gulf Coast residents conducted to date supplemented with monthly temperature data from the U.S. Historical Climatology Network and extreme weather events data from National Climatic Data Center. We find objective conditions have limited explanatory power in determining perceptions of local climate patterns. Only the 15- and 19-year hurricane trends and decadal summer temperature trend have some effects on perceptions of these weather conditions, while the decadal trend of total number of extreme weather events and 15- and 19-year winter temperature trends are correlated with belief in climate change. Partisan affiliation, in contrast, plays a powerful role affecting individual perceptions of changing patterns of air temperatures, flooding, droughts, and hurricanes, as well as belief in the existence of climate change and concern for future consequences. At least when it comes to changing local conditions, "seeing is not believing." Political orientations rather than local conditions drive perceptions of local weather conditions and these perceptions-rather than objectively measured weather conditions-influence climate-related attitudes. © 2016 Society for Risk Analysis.
Precipitation and primary health care visits for gastrointestinal illness in Gothenburg, Sweden.
Tornevi, Andreas; Barregård, Lars; Forsberg, Bertil
2015-01-01
The river Göta Älv is a source of freshwater for the City of Gothenburg, Sweden, and we recently identified a clear influence of upstream precipitation on concentrations of indicator bacteria in the river water, as well as an association with the daily number of phone calls to the nurse advice line related to acute gastrointestinal illnesses (AGI calls). This study aimed to examine visits to primary health-care centers owing to similar symptoms (AGI visits) in the same area, to explore associations with precipitation, and to compare variability in AGI visits and AGI calls. We obtained data covering six years (2007-2012) of daily AGI visits and studied their association with prior precipitation (0-28 days) using a distributed lag nonlinear Poisson regression model, adjusting for seasonal patterns and covariates. In addition, we studied the effects of prolonged wet and dry weather on AGI visits. We analyzed lagged short-term relations between AGI visits and AGI calls, and we studied differences in their seasonal patterns using a binomial regression model. The study period saw a total of 17,030 AGI visits, and the number of daily visits decreased on days when precipitation occurred. However, prolonged wet weather was associated with an elevated number of AGI visits. Differences in seasonality patterns were observed between AGI visits and AGI calls, as visits were relatively less frequent during winter and relatively more frequent in August, and only weak short-term relations were found. AGI visits and AGI calls seems to partly reflect different types of AGI illnesses, and the patients' choice of medical contact (in-person visits versus phone calls) appears to depend on current weather conditions. An association between prolonged wet weather and increased AGI visits supports the hypothesis that the drinking water is related to an increased risk of AGI illnesses.
NASA Astrophysics Data System (ADS)
Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis
2017-01-01
The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''
View of clouds over Indian Ocean taken by Astronaut John Glenn during MA-6
1962-02-20
S62-06021 (20 Feb. 1962) --- A view of clouds over the Indian Ocean as photographed by astronaut John H. Glenn Jr. aboard the "Friendship 7" spacecraft during his Mercury Atlas 6 (MA-6) spaceflight on Feb. 20, 1962. The cloud panorama illustrates the visibility of different cloud types and weather patterns. Shadows produced by the rising sun aid in the determination of relative cloud heights. Photo credit: NASA
Vebrová, Lucie; van Nieuwenhuijzen, Andre; Kolář, Vojtěch; Boukal, David S
2018-06-19
Chironomids, a major invertebrate taxon in many standing freshwaters, rely on adult flight to reach new suitable sites, yet the impact of weather conditions on their flight activity is little understood. We investigated diel and seasonal flight activity patterns of aquatic and terrestrial chironomids in a reclaimed sandpit area and analysed how weather conditions and seasonality influenced their total abundance and species composition. Air temperature, relative humidity, wind speed, and air pressure significantly affected total flight activity of both groups, but not in the same way. We identified an intermediate temperature and humidity optimum for the flight activity of terrestrial chironomids, which contrasted with weaker, timescale-dependent relationships in aquatic species. Flight activity of both groups further declined with wind speed and increased with air pressure. Observed flight patterns also varied in time on both daily and seasonal scale. Flight activity of both groups peaked in the evenings after accounting for weather conditions but, surprisingly, aquatic and terrestrial chironomids used partly alternating time windows for dispersal during the season. This may be driven by different seasonal trends of key environmental variables in larval habitats and hence implies that species phenologies and conditions experienced by chironomid larvae (and probably other aquatic insects with short-lived adults) influence adult flight patterns more than weather conditions. Our results provide detailed insights into the drivers of chironomid flight activity and highlight the methodological challenges arising from the inherent collinearity of weather characteristics and their diurnal and seasonal cycles.
Murray, Kris A; Skerratt, Lee F; Garland, Stephen; Kriticos, Darren; McCallum, Hamish
2013-01-01
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline.
Shift in fire-ecosystems and weather changes
Bongani Finiza
2013-01-01
During recent decades too much focus fell on fire suppression and fire engineering methods. Little attention has been given to understanding the shift in the changing fire weather resulting from the global change in weather patterns. Weather change have gradually changed the way vegetation cover respond to fire occurrence and brought about changes in fire behavior and...
NASA Astrophysics Data System (ADS)
Trout, Joseph; Manson, J. Russell; King, David; Decicco, Nicolas; Prince, Alyssa; di Mercurio, Alexis; Rios, Manual
2017-01-01
Wake Vortex Turbulence is the turbulence generated by an aircraft in flight. This turbulence is created by vortices at the tips of the wing that may decay slowly and persist for several minutes after creation. These vortices and turbulence are hazardous to other aircraft in the vicinity. The strength, formation and lifetime of the turbulence and vortices are effected by many things including the weather. Here we present the final results of the pilot project to investigation of low level wind fields generated by the Weather Research and Forecasting Model and an analysis of historical data. The findings from the historical data and the data simulations were used as inputs for the computational fluid dynamics model (OpenFoam) to show that the vortices could be simulated using OpenFoam. Presented here are the updated results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Stockton University and the FAA''.
NASA Astrophysics Data System (ADS)
Castro, C.
2013-05-01
Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.
NASA Astrophysics Data System (ADS)
Pallotta, M.; Herdies, D. L.; Gonçalves, L. G.
2013-05-01
There is nowadays a growing interest in the influence and impacts of weather and climate in human life. The weather conditions analysis shows the utility of this type of tool when applied in sports. These conditions act as a differential in strategy and training, especially for outdoor sports. This study had as aim objective develop weather forecast and thermal comfort evaluation targeted to sports, and hoped that the results can be used to the development of products and weather service in the Olympic Games 2016 in Rio de Janeiro City. The use of weather forecast applied to the sport showed to be efficient for the case of Rio de Janeiro City Marathon, especially due to the high spatial resolution. The WRF simulations for the three marathons studied showed good results for temperature, atmospheric pressure, and relative humidity. On the other hand, the forecast of the wind showed a pattern of overestimation of the real situation in all cases. It was concluded that the WRF model provides, in general, more representative simulations from 36 hours in advance, and with 18 hours of integration they were even better, describing efficiently the synoptic situation that would be found. A review of weather conditions and thermal comfort at specific points of the marathon route showed that there are significant differences between the stages of the marathon, which makes possible to plan the competition strategy under the thermal comfort. It was concluded that a relationship between a situation more thermally comfortable (uncomfortable) and the best (worst) time in Rio de Janeiro City Marathon
Meteorological phenomena in Western classical orchestral music
NASA Astrophysics Data System (ADS)
Williams, P. D.; Aplin, K. L.
2012-12-01
The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765
On the linkage between Arctic sea ice and Mid-latitude weather pattern: the situation in East Asia
NASA Astrophysics Data System (ADS)
Gu, S.; Zhang, Y.; Wu, Q.
2017-12-01
The influence of Arctic changes on the weather patterns in the highly populated mid-latitude is a complex and controversial topic with considerable uncertainties such as the low signal-to-noise, ill-suited metrics of circulation changes and the missing of dynamical understanding. In this study, the possible linkage between the Arctic sea ice concentration (SIC) and the wintertime weather patterns in East Asia is investigated by comparing groups of statistical and diagnostic analyses. Our study shows a robust relationship between the early autumn SIC in Barents, Kara, Laptev and East Siberia Sea and the energies of wintertime transient activities corresponding to the weather patterns over East Asia on inter-annual time scales. With the reduction of SIC in autumn, the wintertime synoptic (2-10 day) kinetic energy in the north of Eurasia decreases while the low-frequency (10-30 days) kinetic energy, which corresponds to persistent weather patterns, exhibits an evident and dominant increase over the north of Caspian Sea, Lake Baikal and the Ural Mountain. With the reduction of SIC, the intra-seasonal temperature fluctuations present coherent changes over a broader region as well, with significant increase of the low-frequency variability in the vast north of Tibet Plateau and East Asia. The changes of the low-frequency transient activities may be attributed to the slowly southward propagating wave energies from polar regions. However, no consistent stratosphere signals are found associated with such linkage on inter-annual time scales.
Severe Weather Forecast Decision Aid
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Wheeler, Mark M.; Short, David A.
2005-01-01
This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Chang, T. C.; Fowler, M. G.; Gloersen, P.; Kuhn, P. M.; Ramseier, R. O.; Ross, D. B.; Stambach, G.; Webster, W. J., Jr.; Wilheit, T. T.
1974-01-01
The atmospheric circulation which occurred during the Bering Sea Experiment, 15 February to 10 March 1973, in and around the experiment area is analyzed and related to the macroscale morphology and dynamics of the sea ice cover. The ice cover was very complex in structure, being made up of five ice types, and underwent strong dynamic activity. Synoptic analyses show that an optimum variety of weather situations occurred during the experiment: an initial strong anticyclonic period (6 days), followed by a period of strong cyclonic activity (6 days), followed by weak anticyclonic activity (3 days), and finally a period of weak cyclonic activity (4 days). The data of the mesoscale test areas observed on the four sea ice option flights, and ship weather, and drift data give a detailed description of mesoscale ice dynamics which correlates well with the macroscale view: anticyclonic activity advects the ice southward with strong ice divergence and a regular lead and polynya pattern; cyclonic activity advects the ice northward with ice convergence, or slight divergence, and a random lead and polynya pattern.
Dynamically Evolving Sectors for Convective Weather Impact
NASA Technical Reports Server (NTRS)
Drew, Michael C.
2010-01-01
A new strategy for altering existing sector boundaries in response to blocking convective weather is presented. This method seeks to improve the reduced capacity of sectors directly affected by weather by moving boundaries in a direction that offers the greatest capacity improvement. The boundary deformations are shared by neighboring sectors within the region in a manner that preserves their shapes and sizes as much as possible. This reduces the controller workload involved with learning new sector designs. The algorithm that produces the altered sectors is based on a force-deflection mesh model that needs only nominal traffic patterns and the shape of the blocking weather for input. It does not require weather-affected traffic patterns that would have to be predicted by simulation. When compared to an existing optimal sector design method, the sectors produced by the new algorithm are more similar to the original sector shapes, resulting in sectors that may be more suitable for operational use because the change is not as drastic. Also, preliminary results show that this method produces sectors that can equitably distribute the workload of rerouted weather-affected traffic throughout the region where inclement weather is present. This is demonstrated by sector aircraft count distributions of simulated traffic in weather-affected regions.
Effects of ENSO on weather-type frequencies and properties at New Orleans, Louisiana, USA
McCabe, G.J.; Muller, R.A.
2002-01-01
Examination of historical climate records indicates a significant relation between the El Nin??o/Southern Oscillation (ENSO) and seasonal temperature and precipitation in Louisiana. In this study, a 40 yr record of twice daily (06:00 and 15:00 h local time) weather types are used to study the effects of ENSO variability on the local climate at New Orleans, Louisiana. Tropical Pacific sea-surface temperatures (SSTs) for the NINO3.4 region are used to define ENSO events (i.e. El Nin??o and La Nin??a events), and daily precipitation and temperature data for New Orleans are used to define weather-type precipitation and temperature properties. Data for winters (December through February) 1962-2000 are analyzed. The 39 winters are divided into 3 categories; winters with NINO3.4 SST anomalies 1??C (El Nin??o events), and neutral conditions (all other years). For each category, weather-type frequencies and properties (i.e. precipitation and temperature) are determined and analyzed. Results indicate that El Nin??o events primarily affect precipitation characteristics of weather types at New Orleans, whereas the effects of La Nin??a events are most apparent in weather-type frequencies. During El Nin??o events, precipitation for some of the weather types is greater than during neutral and La Nin??a conditions and is related to increased water vapor transport from the Tropics to the Gulf of Mexico. The changes in weather-type frequencies during La Nin??a events are indicative of a northward shift in storm tracks and/or a decrease in storm frequency in southern Louisiana.
1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...
Decay patterns of brick wall in atmospheric environment: a possible analogue to rock weathering?
NASA Astrophysics Data System (ADS)
Prikryl, Richard; Weishauptová, Zuzana; Přikrylová, Jiřina; Jablonský, Jakub
2015-04-01
This study is focused on the decay of bricks exposed in enclosing wall of the Regional maternal hospital in Prague city centre (Czech Republic). The hospital, listed as a Czech architectural monument, has been constructed from locally produced bricks in neo-Gothic style in the period of 1867-1875. The bricks of the enclosing wall show sequence of decay patterns that resemble weathering forms observable on monuments built of natural stone. This study aims to study the observed decay patterns by means of in situ mapping and by analyses of decayed material (optical microscopy, SEM/EDS, X-ray diffraction, Hg-porosimetry, water soluble salts analysis) and to interpret them based on the phase composition and other properties of bricks. Finally, the decay patterns of studied brick wall are compared to known weathering sequences on porous rocks (both on natural outcrops and on artistic monuments).
Impact of Circulation Weather Types in the study of Landslides in the Northern Lisbon region
NASA Astrophysics Data System (ADS)
Salvação, Nadia; Trigo, Ricardo; Câmara, Carlos; Zêzere, José Luis
2010-05-01
Landslides in the region north of Lisbon during the last 60 years have been induced almost entirely by rainfall, and landslide activity has been confined to very wet periods. Previous results obtained using empirical relationships between rainfall intensity and slope instability show that critical rainfall conditions for failure are not the same for different types of landslides (Zêzere et al, 2008). Shallow translational soil slips have been related to intense rainfall periods ranging from 1 to 15 days, while deep slope movements (translational slides, rotational slides and complex and composite slope movements) have been occurred in relation to longer periods of less intense rain, lasting from 30 to 90 days. The different time span is consistent with the distinct hydrological triggering conditions related to different types of landslides. Intense rainfall is responsible by the rapid growth of pore pressure and by the loss of the apparent cohesion of thin soils, resulting in failure within the soil material or at the contact with the underlying impermeable bedrock. Long lasting precipitation periods allows the steady rising of the groundwater table, thus resulting in deep failures in soils and rocks by the reduction of shear strength. Rainfall information regarding 19 important landslide events occurred between 1958 and 2001, and the knowledge of the circulation weather types (CWTs) affecting those days, allow us to study the relationship between the CWTs frequency and the occurrence of landslide episodes. We have identified 10 basic CWTs (Cyclonic, Anticyclonic and 8 directional types) following the methodology previously adopted (Trigo and DaCamara, 2000). The composites and anomalies of several meteorological fields associated to landslide events show a large precipitation anomaly in the central region of Portugal and an anomalous low-pressure system located northwest of Iberia. This pattern is similar for both shallow and deep landslides events. However, for shallow landslide events, the rainfall and sea level pressure anomalies are stronger in the first 5 and 15 days anteceding the event and practically nonexistent in the 30 days previous to the event, while deep landslide events show higher anomalies that extent backwards 30 days prior to the event. The CWTs most associated to the days with landslide events are the "wet" weather types: cyclonic (C), westerly (W) and southwesterly (SW) with 76% of the days with events having at least one of these types associated. Looking at the 30 days that antecede an event, the shallow landslides are preceded by 44% days with wet CWTs pattern, while for the deep events this number rises to 69% of wet CWTs. In any case for both type of landslide events the frequency of wet CWTs is considerably above the climatological values observed that amount just up to 28% of wet CWTs. Trigo R.M. and Da Camara C.C. (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol., 20, 1559-1581. Zezere JL, Trigo RM, Fragoso M, et al. (2008). Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic Oscillation. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 8, 3, 483-499.
NASA Astrophysics Data System (ADS)
Pérez-López, Rafael; Nieto, José M.; de la Rosa, Jesús D.; Bolívar, Juan P.
2015-10-01
This study provides geochemical data with the aim of identifying and tracing the weathering of phosphogypsum wastes stack-piled directly on salt-marshes of the Tinto River (Estuary of Huelva, SW Spain). With that purpose, different types of highly-polluted acid solutions were collected in the stack. Connection between these solutions and the estuarine environment was studied by geochemical tracers, such as rare earth elements (REE) and their North American Shale Composite (NASC)-normalized patterns and Cl/Br ratios. Phosphogypsum-related wastewaters include process water stored on the surface, pore-water contained in the phosphogypsum profile and edge outflow water emerging from inside the stack. Edge outflow waters are produced by waterlogging at the contact between phosphogypsum and the nearly impermeable marsh surface and discharge directly into the estuary. Process water shows geochemical characteristics typical of phosphate fertilizers, i.e. REE patterns with an evident enrichment of heavy-REE (HREE) with respect to middle-REE (MREE) and light-REE (LREE). By contrast, REE patterns of deeper pore-water and edge outflows are identical to those of Tinto River estuary waters, with a clear enrichment of MREE relative to LREE and HREE denoting influence of acid mine drainage. Cl/Br ratios of these solutions are very close to that of seawater, which also supports its estuarine origin. These findings clearly show that process water is not chemically connected with edge outflows through pore-waters, as was previously believed. Phosphogypsum weathering likely occurs by an upward flow of seawater from the marsh because of overpressure and permeability differences. Several recommendations are put forward in this study to route restoration actions, such as developing treatment systems to improve the quality of the edge outflow waters before discharging to the receiving environment.
Weather-forced variations of Central and East Pacific ENSO events
NASA Astrophysics Data System (ADS)
Alexander, M. A.; Newman, M.; Shin, S.
2010-12-01
It has been suggested that a possible outcome of climate change is an increase in the occurrence of “Modoki” or central Pacific El Nino events relative to canonical eastern Pacific El Nino events, and that this change may already be occurring. Such a determination, however, is complicated by possible natural variations of the two types of events. How large a change in the relative occurrence can be expected from purely internal variability? To explore this question, a “patterns-based” red noise null hypothesis is constructed from 40 years of observed seasonally-averaged SST, 20 deg C thermocline depth, and surface zonal wind stress anomalies. Patterns-based (or multivariate) red noise differs from “local” (or univariate) red noise since it allows for non-local advective processes; for example, weather noise driving surface wind stress in one location to produce an ocean response in a different location. It is shown that natural random variations of the central Pacific to east Pacific El Nino occurrence ratio are large enough that they could account for all past observed differences as well as all differences found in the SRESA1B runs of all AR4 climate models. Additionally, the correlation between Nino3 and Nino4 SST indices over 30-yr periods can range between 0.7 and 0.9 simply due to such variations in noise, with apparent multidecadal “trends” during which the value increases or decreases. Further analysis shows the different spatial patterns of “noise” (i.e., random weather forcing) that can lead to the development of central vs. eastern Pacific ENSO events or various combinations thereof.
SSSNOW Project: Helping Make Science Cool for Students
ERIC Educational Resources Information Center
Huff, Kenneth; Lange, Catherine
2010-01-01
In the atmosphere or on the ground, snow provides students with unique opportunities to discover winter weather patterns. Traditionally, when students study weather, it is limited to the collection of data one would see on a weather report. However, the interdisciplinary Students Synthesizing Snow data in Natural Objective Ways (SSSNOW) project…
Precipitation pulse dynamics of carbon sequestration and efflux in highly weatherable soils
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R.; Van Haren, J. L.; Dontsova, K.; Troch, P. A.
2013-12-01
Soils are the primary pool for terrestrial carbon on Earth, and loss of that carbon to the atmosphere or hydrosphere represents a significant efflux that can impact a host of other downstream processes. Soil respiration (Rsoil), the efflux of CO2 to the atmosphere, represents the major pathway by which carbon is lost from the soil system in more weathered soils. However, in newly formed soils, chemical weathering can significantly deplete soil CO2 concentrations. As vegetation colonizes these soils, multiple interacting and contradictory pathways evolve such that soil CO2 concentrations increase in response to plant inputs but are decreased through chemical reactions. Furthermore, abiotic drivers of soil temperature and moisture likely differentially affect these processes. Understanding the bio-geo-chemical drivers and feedbacks associated with soil CO2 production and efflux in the critical zone necessitates an integrated science approach, drawing on input from plant physiologists, bio- and geochemists, and hydrologists. Here, we created a series of 1-meter deep mesocosms filled with granular basalt that supported either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Use of multiple plant functional types allowed us to explore the impacts of plant structure (primarily rooting profiles) on critical zone function in terms of water and carbon exchange surrounding precipitation pulse dynamics. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 efflux in response to rainfall events of varying magnitude and intervening periods of drought. Five replicates of each were maintained under current ambient or projected (+4oC) air temperatures. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall and confirm differences among plant types and collected soils solution samples to quantify dissolved inorganic carbon (DIC), pH, and other solute concentrations. Importantly, we found Rsoil dynamics to be nearly in direct contrast to our classic understanding of patterns of soil CO2 efflux after rain events. Rsoil rates declined immediately upon wetting and gradually increased to pre-rain rates as the soils dried. Investigation into soil CO2 profile data showed that CO2 concentrations just below the surface declined significantly from near-ambient levels to near ~50ppm, which would directly impact rates of Rsoil. We detected differences among plant functional types in terms of rooting depth, water use, photosynthetic uptake, base rates of Rsoil, the time required to return to pre-rain rates of Rsoil, and the rates of soil weathering. Combining aboveground measurements of carbon uptake with these belowground estimates of carbon pools and efflux will allow us to make much more informed projections of carbon dynamics within highly weatherable soils across a range of global climate change projections and plant functional types.
Frequency analyses for recent regional floods in the United States
Melcher, Nick B.; Martinez, Patsy G.; ,
1996-01-01
During 1993-95, significant floods that resulted in record-high river stages, loss of life, and significant property damage occurred in the United States. The floods were caused by unique global weather patterns that produced large amounts of rain over large areas. Standard methods for flood-frequency analyses may not adequately consider the probability of recurrence of these global weather patterns.
Activities in Teaching Weather
ERIC Educational Resources Information Center
Tonn, Martin
1977-01-01
Presented is a unit composed of activities for teaching weather. Topics include cloud types and formation, simple weather instruments, and the weather station. Illustrations include a weather chart and instruments. A bibliography is given. (MA)
Rocks and Rain: orographic precipitation and the form of mountain ranges
NASA Astrophysics Data System (ADS)
Roe, G. H.; Anders, A. M.; Durran, D. R.; Montgomery, D. R.; Hallet, B.
2005-12-01
In mountainous landscapes patterns of erosion reflect patterns of precipitation that are, in turn, controlled by the orography. Ultimately therefore, the feedbacks between orography and the climate it creates are responsible for the sculpting of mountain ranges. Key questions concerning these interactions are: 1) how robust are patterns of precipitation on geologic time scales? and 2) how do those patterns affect landscape form? Since climate is by definition the statistics of weather, there is tremendous information to be gleaned from how patterns of precipitation vary between different weather events. However up to now sparse measurements and computational limitations have hampered our knowledge of such variations. For the Olympics in Washington State, a characteristic midlatitude mountain range, we report results from a high-resolution, state-of-the-art numerical weather prediction model and a dense network of precipitation gauges. Down to scales around 10 km, the patterns of precipitation are remarkably robust both storm-by-storm and year-to-year, lending confidence that they are indeed persistent on the relevant time scales. Secondly, the consequences of the coupled interactions are presented using a landscape evolution model coupled with a simple model of orographic precipitation that is able to substantially reproduce the observed precipitation patterns.
Association of weather and air pollution interactions on daily mortality in 12 Canadian cities.
Vanos, J K; Cakmak, S; Kalkstein, L S; Yagouti, Abderrahmane
It has been well established that both meteorological attributes and air pollution concentrations affect human health outcomes. We examined all cause nonaccident mortality relationships for 28 years (1981-2008) in relation to air pollution and synoptic weather type (encompassing air mass) data in 12 Canadian cities. This study first determines the likelihood of summertime extreme air pollution events within weather types using spatial synoptic classification. Second, it examines the modifying effect of weather types on the relative risk of mortality (RR) due to daily concentrations of air pollution (nitrogen dioxide, ozone, sulfur dioxide, and particulate matter <2.5 μm). We assess both single- and two-pollutant interactions to determine dependent and independent pollutant effects using the relatively new time series technique of distributed lag nonlinear modeling (DLNM). Results display dry tropical (DT) and moist tropical plus (MT+) weathers to result in a fourfold and twofold increased likelihood, respectively, of an extreme pollution event (top 5 % of pollution concentrations throughout the 28 years) occurring. We also demonstrate statistically significant effects of single-pollutant exposure on mortality ( p < 0.05) to be dependent on summer weather type, where stronger results occur in dry moderate (fair weather) and DT or MT+ weather types. The overall average single-effect RR increases due to pollutant exposure within DT and MT+ weather types are 14.9 and 11.9 %, respectively. Adjusted exposures (two-way pollutant effect estimates) generally results in decreased RR estimates, indicating that the pollutants are not independent. Adjusting for ozone significantly lowers 67 % of the single-pollutant RR estimates and reduces model variability, which demonstrates that ozone significantly controls a portion of the mortality signal from the model. Our findings demonstrate the mortality risks of air pollution exposure to differ by weather type, with increased accuracy obtained when accounting for interactive effects through adjustment for dependent pollutants using a DLNM.
NASA Astrophysics Data System (ADS)
Salinger, Michael James; Baldi, Marina; Grifoni, Daniele; Jones, Greg; Bartolini, Giorgio; Cecchi, Stefano; Messeri, Gianni; Dalla Marta, Anna; Orlandini, Simone; Dalu, Giovanni A.; Maracchi, Gianpiero
2015-12-01
Climatic factors and weather type frequencies affecting Tuscany are examined to discriminate between vintages ranked into the upper- and lower-quartile years as a consensus from six rating sources of Chianti wine during the period 1980 to 2011. These rankings represent a considerable improvement on any individual publisher ranking, displaying an overall good consensus for the best and worst vintage years. Climate variables are calculated and weather type frequencies are matched between the eight highest and the eight lowest ranked vintages in the main phenological phases of Sangiovese grapevine. Results show that higher heat units; mean, maximum and minimum temperature; and more days with temperature above 35 °C were the most important discriminators between good- and poor-quality vintages in the spring and summer growth phases, with heat units important during ripening. Precipitation influences on vintage quality are significant only during veraison where low precipitation amounts and precipitation days are important for better quality vintages. In agreement with these findings, weather type analysis shows good vintages are favoured by weather type 4 (more anticyclones over central Mediterranean Europe (CME)), giving warm dry growing season conditions. Poor vintages all relate to higher frequencies of either weather type 3, which, by producing perturbation crossing CME, favours cooler and wetter conditions, and/or weather type 7 which favours cold dry continental air masses from the east and north east over CME. This approach shows there are important weather type frequency differences between good- and poor-quality vintages. Trend analysis shows that changes in weather type frequencies are more important than any due to global warming.
Salinger, Michael James; Baldi, Marina; Grifoni, Daniele; Jones, Greg; Bartolini, Giorgio; Cecchi, Stefano; Messeri, Gianni; Dalla Marta, Anna; Orlandini, Simone; Dalu, Giovanni A; Maracchi, Gianpiero
2015-12-01
Climatic factors and weather type frequencies affecting Tuscany are examined to discriminate between vintages ranked into the upper- and lower-quartile years as a consensus from six rating sources of Chianti wine during the period 1980 to 2011. These rankings represent a considerable improvement on any individual publisher ranking, displaying an overall good consensus for the best and worst vintage years. Climate variables are calculated and weather type frequencies are matched between the eight highest and the eight lowest ranked vintages in the main phenological phases of Sangiovese grapevine. Results show that higher heat units; mean, maximum and minimum temperature; and more days with temperature above 35 °C were the most important discriminators between good- and poor-quality vintages in the spring and summer growth phases, with heat units important during ripening. Precipitation influences on vintage quality are significant only during veraison where low precipitation amounts and precipitation days are important for better quality vintages. In agreement with these findings, weather type analysis shows good vintages are favoured by weather type 4 (more anticyclones over central Mediterranean Europe (CME)), giving warm dry growing season conditions. Poor vintages all relate to higher frequencies of either weather type 3, which, by producing perturbation crossing CME, favours cooler and wetter conditions, and/or weather type 7 which favours cold dry continental air masses from the east and north east over CME. This approach shows there are important weather type frequency differences between good- and poor-quality vintages. Trend analysis shows that changes in weather type frequencies are more important than any due to global warming.
Michel, Eric S.; Jenks, Jonathan A.; Kaskie, Kyle D.; Klaver, Robert W.; Jensen, William F.
2018-01-01
Offspring survival is generally more variable than adult survival and may limit population growth. Although white-tailed deer neonate survival has been intensively investigated, recent work has emphasized how specific cover types influence neonate survival at local scales (single study area). These localized investigations have often led to inconsistences within the literature. Developing specific hypotheses describing the relationships among environmental, habitat, and landscape factors influencing white-tailed deer neonate survival at regional scales may allow for detection of generalized patterns. Therefore, we developed 11 hypotheses representing the various effects of environmental (e.g., winter and spring weather), habitat (e.g., hiding and escape cover types), and landscape factors (e.g., landscape configuration regardless of specific cover type available) on white-tailed deer neonate survival up to one-month and from one- to three-months of age. At one-month, surviving fawns experienced a warmer lowest recorded June temperature and more June precipitation than those that perished. At three-months, patch connectance (percent of patches of the corresponding patch type that are connected within a predefined distance) positively influenced survival. Our results are consistent with white-tailed deer neonate ecology: increased spring temperature and precipitation are likely associated with a flush of nutritional resources available to the mother, promoting increased lactation efficiency and neonate growth early in life. In contrast, reduced spring temperature with increased precipitation place neonates at risk to hypothermia. Increased patch connectance likely reflects increased escape cover available within a neonate’s home range after they are able to flee from predators. If suitable escape cover is available on the landscape, then managers could focus efforts towards manipulating landscape configuration (patch connectance) to promote increased neonate survival while monitoring spring weather to assess potential influences on current year survival.
Yan Boulanger; Frédéric Fabry; Alamelu Kilambi; Deepa S. Pureswaran; Brian R. Sturtevant; Rémi Saint-Amant
2017-01-01
The likely spread of the current spruce budworm (SBW; Choristoneura fumiferana [Clem.]) outbreak fromhigh to low density areas brings to the forefront a pressing need to understand its dispersal dynamics and to document mass exodus flights in relation to weather patterns. In this study, we used the weather surveillance radar of Val d'Irène in...
Variability of E. coli density and sources in an urban watershed.
Wu, J; Rees, P; Dorner, S
2011-03-01
The objective of this study was to characterize the variability of Escherichia coli density and sources in an urban watershed, particularly to focus on the influences of weather and land use. E. coli as a microbial indicator was measured at fourteen sites in four wet weather events and four dry weather conditions in the upper Blackstone River watershed. The sources of E. coli were identified by ribotyping. The results showed that wet weather led to sharp increases of E. coli densities. Interestingly, an intense storm of short duration led to a higher E. coli density than a moderate storm of long duration (p<0.01). The ribotyping patterns revealed microbial sources were mainly attributed to humans and wildlife, but varied in different weather conditions and were associated with the patterns of land use. Human sources accounted for 24.43% in wet weather but only 9.09% in dry weather. In addition, human sources were more frequently observed in residential zones (>30% of the total sources), while wildlife sources were dominant in open land and forest zones (54%). The findings provide useful information for developing optimal management strategies aimed at reducing the level of pathogens in urban watersheds.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1975-01-01
Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.
Murray, Kris A.; Skerratt, Lee F.; Garland, Stephen; Kriticos, Darren; McCallum, Hamish
2013-01-01
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline. PMID:23613783
NASA Astrophysics Data System (ADS)
Giannakaki, Paraskevi; Calanca, Pierluigi
2017-04-01
Russia has become one of the leading wheat exporters worldwide. Major breakdowns in Russian wheat production induced by extreme weather events are therefore of high significance not only for the domestic but also for the global market. Wheat production in south-western Russia, the main growing area, suffers in particular from the adverse effects of drought and heat waves. For this reason knowledge of the occurrence of this type of extreme events and of the processes that lead to adverse conditions is of paramount importance for risk management. The negative impacts of heat waves and drought are particularly severe when anomalous conditions persist in time. As an example, a blocking event in summer 2010 resulted in one of the warmest and worst drought conditions in Russia's recent history. The latter caused a decline in Russian wheat production by more than 30%, which in turn prompted the Russian government to issue an export ban that lasted until summer 2011. In view of this, the question of course arises of how much of the negative variations in Russian wheat production levels can be explained by blocking events and other features of the large-scale atmospheric circulation. Specific questions are: how often are blocking events over Russia associated with extreme high temperatures and dry conditions? Which of the teleconnection patterns are correlated with drought and heat stress conditions in the area? Answering these questions can contribute to a develop strategies for agricultural risk management. In this contribution we present results of a study that aims at characterizing the occurrence of adverse weather conditions in south-western Russia in relation to atmospheric blocking and teleconnection patterns such as East Atlantic/Western Russia pattern, the Polar/Eurasia pattern, the North Atlantic Oscillation and the Scandinavia pattern. The analysis relies on weather data for 1980-2014 from 130 stations distributed across the wheat production area. The account for similarities in the occurrence of extreme heat, stations are clustered according to 90th percentile of daily maximum temperature. The results indicate that adverse conditions in the area are significantly correlated with the occurrence of blocking events and with the phase of some teleconnection patterns.
1987-07-01
temperature increase ccrnpared to the antenna plantation while the control pole-size stand type had a -.3’ decrease. These relationships emphasize ...study of the timing of life cycle events relative to environmental cues (Barbour et al. 1980), has been used to quantitatively describe the herbaceous...successful, emphasizing the importance of ainual weather patterns on the buildup of microbial populations and their activities. These analyses indicate
What are the hydro-meteorological controls on flood characteristics?
NASA Astrophysics Data System (ADS)
Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno
2017-02-01
Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.
Adult proxy responses to a survey of children's dermal soil contact activities.
Wong, E Y; Shirai, J H; Garlock, T J; Kissel, J C
2000-01-01
Contaminated site cleanup decisions may require estimation of dermal exposures to soil. Telephone surveys represent one means of obtaining relevant activity pattern data. The initial Soil Contact Survey (SCS-I), which primarily gathered information on the activities of adults, was conducted in 1996. Data describing adult behaviors have been previously reported. Results from a second Soil Contact Survey (SCS-II), performed in 1998-1999 and focused on children's activity patterns, are reported here. Telephone surveys were used to query a randomly selected sample of U.S. households. A randomly chosen child, under the age of 18 years, was targeted in each responding household having children. Play activities as well as bathing patterns were investigated to quantify total exposure time, defined as activity time plus delay until washing. Of 680 total survey respondents, 500 (73.5%) reported that their child played outdoors on bare dirt or mixed grass and dirt surfaces. Among these "players," the median reported play frequency was 7 days/week in warm weather and 3 days/week in cold weather. Median play duration was 3 h/day in warm weather and 1 h/day in cold weather. Hand washes were reported to occur a median of 4 times per day in both warm and cold weather months. Bath or shower median frequency was seven times per week in both warm and cold weather. Finally, based on clothing choice data gathered in SCS-I, a median of about 37% of total skin surface is estimated to be exposed during young children's warm weather outdoor play.
Climatic and weather factors affecting fire occurrence and behavior
Randall P. Benson; John O. Roads; David R. Weise
2009-01-01
Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...
Prescribed burning weather in Minnesota.
Rodney W. Sando
1969-01-01
Describes the weather patterns in northern Minnesota as related to prescribed burning. The prevailing wind direction, average wind speed, most persistent wind direction, and average Buildup Index are considered in making recommendations.
Interaction effects between weather and space use on harvesting effort and patterns in red deer.
Rivrud, Inger M; Meisingset, Erling L; Loe, Leif E; Mysterud, Atle
2014-12-01
Most cervid populations in Europe and North America are managed through selective harvesting, often with age- and sex-specific quotas, with a large influence on the population growth rate. Less well understood is how prevailing weather affects harvesting selectivity and off-take indirectly through changes in individual animal and hunter behavior. The behavior and movement patterns of hunters and their prey are expected to be influenced by weather conditions. Furthermore, habitat characteristics like habitat openness are also known to affect movement patterns and harvesting vulnerability, but how much such processes affect harvest composition has not been quantified. We use harvest data from red deer (Cervus elaphus) to investigate how weather and habitat characteristics affect behavioral decisions of red deer and their hunters throughout the hunting season. More specifically, we look at how sex and age class, temperature, precipitation, moon phase, and day of week affect the probability of being harvested on farmland (open habitat), hunter effort, and the overall harvest numbers. Moon phase and day of week were the strongest predictors of hunter effort and harvest numbers, with higher effort during full moon and weekends, and higher numbers during full moon. In general, the effect of fall weather conditions and habitat characteristics on harvest effort and numbers varied through the season. Yearlings showed the highest variation in the probability of being harvested on farmland through the season, but there was no effect of sex. Our study is among the first to highlight that weather may affect harvesting patterns and off-take indirectly through animal and hunter behavior, but the interaction effects of weather and space use on hunter behavior are complicated, and seem less important than hunter preference and quotas in determining hunter selection and harvest off-take. The consideration of hunter behavior is therefore key when forming management rules for sustainable harvesting.
Interaction effects between weather and space use on harvesting effort and patterns in red deer
Rivrud, Inger M; Meisingset, Erling L; Loe, Leif E; Mysterud, Atle
2014-01-01
Most cervid populations in Europe and North America are managed through selective harvesting, often with age- and sex-specific quotas, with a large influence on the population growth rate. Less well understood is how prevailing weather affects harvesting selectivity and off-take indirectly through changes in individual animal and hunter behavior. The behavior and movement patterns of hunters and their prey are expected to be influenced by weather conditions. Furthermore, habitat characteristics like habitat openness are also known to affect movement patterns and harvesting vulnerability, but how much such processes affect harvest composition has not been quantified. We use harvest data from red deer (Cervus elaphus) to investigate how weather and habitat characteristics affect behavioral decisions of red deer and their hunters throughout the hunting season. More specifically, we look at how sex and age class, temperature, precipitation, moon phase, and day of week affect the probability of being harvested on farmland (open habitat), hunter effort, and the overall harvest numbers. Moon phase and day of week were the strongest predictors of hunter effort and harvest numbers, with higher effort during full moon and weekends, and higher numbers during full moon. In general, the effect of fall weather conditions and habitat characteristics on harvest effort and numbers varied through the season. Yearlings showed the highest variation in the probability of being harvested on farmland through the season, but there was no effect of sex. Our study is among the first to highlight that weather may affect harvesting patterns and off-take indirectly through animal and hunter behavior, but the interaction effects of weather and space use on hunter behavior are complicated, and seem less important than hunter preference and quotas in determining hunter selection and harvest off-take. The consideration of hunter behavior is therefore key when forming management rules for sustainable harvesting. PMID:25558369
Kanno, Yoichiro; Pregler, Kasey C.; Hitt, Nathaniel P.; Letcher, Benjamin H.; Hocking, Daniel; Wofford, John E.B.
2015-01-01
Our results indicate that YOY abundance is a key driver of brook trout population dynamics that is mediated by seasonal weather patterns. A reliable assessment of climate change impacts on brook trout needs to account for how alternations in seasonal weather patterns impact YOY abundance and how such relationships may differ across the range of brook trout distribution.
NASA Astrophysics Data System (ADS)
Zhao, Naizhuo; Cao, Guofeng; Vanos, Jennifer K.; Vecellio, Daniel J.
2018-01-01
The environmental drivers and mechanisms of influenza dynamics remain unclear. The recent development of influenza surveillance-particularly the emergence of digital epidemiology-provides an opportunity to further understand this puzzle as an area within applied human biometeorology. This paper investigates the short-term weather effects on human influenza activity at a synoptic scale during cold seasons. Using 10 years (2005-2014) of municipal level influenza surveillance data (an adjustment of the Google Flu Trends estimation from the Centers for Disease Control's virologic surveillance data) and daily spatial synoptic classification weather types, we explore and compare the effects of weather exposure on the influenza infection incidences in 79 cities across the USA. We find that during the cold seasons the presence of the polar [i.e., dry polar (DP) and moist polar (MP)] weather types is significantly associated with increasing influenza likelihood in 62 and 68% of the studied cities, respectively, while the presence of tropical [i.e., dry tropical (DT) and moist tropical (MT)] weather types is associated with a significantly decreasing occurrence of influenza in 56 and 43% of the cities, respectively. The MP and the DP weather types exhibit similar close positive correlations with influenza infection incidences, indicating that both cold-dry and cold-moist air provide favorable conditions for the occurrence of influenza in the cold seasons. Additionally, when tropical weather types are present, the humid (MT) and the dry (DT) weather types have similar strong impacts to inhibit the occurrence of influenza. These findings suggest that temperature is a more dominating atmospheric factor than moisture that impacts the occurrences of influenza in cold seasons.
Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight
NASA Technical Reports Server (NTRS)
Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany
2005-01-01
Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display. Measures of flight crew reactions included performance-based measures such as deviation decision accuracy, and judgment-based measures such as perceived decision confidence, workload, situation awareness, and display trust. Results demonstrated that pilots adopted a conservative reaction strategy, often choosing to deviate from weather rather than ride through it. When onboard and NEXRAD displays did not agree, flight crews reacted in a complex manner, trusting the onboard system more but using the NEXRAD system to augment their situation awareness. Distance to weather reduced situation awareness and heightened workload levels. Overall, flight crews tended to adopt a participative leadership style marked by open communication. These results suggest that future weather displays should exploit the existing benefits of NEXRAD presentation for situation awareness while retaining the display structure and logic inherent in the onboard system.
Morabito, Marco; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian F; Modesti, Pietro A
2008-07-01
Higher blood pressure (BP) values in cold than in hot months has been documented in hypertensives. These changes may potentially contribute to the observed excess winter cardiovascular mortality. However, the association with weather has always been investigated by considering the relationship with a single variable rather than considering the combination of ground weather variables characterizing a specific weather pattern (air mass (AM)). We retrospectively investigate in Florence (Italy) the relationship between BP and specific AMs in hypertensive subjects (n = 540) referred to our Hypertension Unit for 24-h ambulatory BP monitoring during the period of the year characterized by the highest weather variability (winter). Five different winter daily AMs were classified according to the combination of ground weather data (air temperature, cloud cover, relative humidity, atmospheric pressure, wind speed, and direction). Multiple variable analysis selected the AM as a significant predictor of mean 24-h BP (P < 0.01 for diastolic BP (DBP) and P < 0.05 for systolic BP (SBP)), daytime DBP (P < 0.001) and nighttime BP (P < 0.01 for both SBP and DBP), with higher BP values observed in cyclonic (unstable, cloudy, and mild weather) than in anticyclonic (settled, cloudless, and cold weather) days. When the association with 2-day sequences of AMs was considered, an increase in ambulatory BP followed a sudden day-to-day change of weather pattern going from anticyclonic to cyclonic days. The weather considered as a combination of different weather variables may affect BP. The forecast of a sudden change of AM could provide important information helpful for hypertensives during winter.
Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.
2015-01-01
Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.Read More: http://www.esajournals.org/doi/abs/10.1890/14-1989.1
Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J
2015-09-01
Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.
Vanos, Jennifer K; Hebbern, Christopher; Cakmak, Sabit
2014-02-01
Synoptic weather and ambient air quality synergistically influence human health. We report the relative risk of mortality from all non-accidental, respiratory-, and cardiovascular-related causes, associated with exposure to four air pollutants, by weather type and season, in 10 major Canadian cities for 1981 through 1999. We conducted this multi-city time-series study using Poisson generalized linear models stratified by season and each of six distinctive synoptic weather types. Statistically significant relationships of mortality due to short-term exposure to carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were found, with significant modifications of risk by weather type, season, and mortality cause. In total, 61% of the respiratory-related mortality relative risk estimates were significantly higher than for cardiovascular-related mortality. The combined effect of weather and air pollution is greatest when tropical-type weather is present in the spring or summer. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Weitnauer, C.; Beck, C.; Jacobeit, J.
2013-12-01
In the last decades the critical increase of the emission of air pollutants like nitrogen dioxide, sulfur oxides and particulate matter especially in urban areas has become a problem for the environment as well as human health. Several studies confirm a risk of high concentration episodes of particulate matter with an aerodynamic diameter < 10 μm (PM10) for the respiratory tract or cardiovascular diseases. Furthermore it is known that local meteorological and large scale atmospheric conditions are important influencing factors on local PM10 concentrations. With climate changing rapidly, these connections need to be better understood in order to provide estimates of climate change related consequences for air quality management purposes. For quantifying the link between large-scale atmospheric conditions and local PM10 concentrations circulation- and weather type classifications are used in a number of studies by using different statistical approaches. Thus far only few systematic attempts have been made to modify consisting or to develop new weather- and circulation type classifications in order to improve their ability to resolve local PM10 concentrations. In this contribution existing weather- and circulation type classifications, performed on daily 2.5 x 2.5 gridded parameters of the NCEP/NCAR reanalysis data set, are optimized with regard to their discriminative power for local PM10 concentrations at 49 Bavarian measurement sites for the period 1980 to 2011. Most of the PM10 stations are situated in urban areas covering urban background, traffic and industry related pollution regimes. The range of regimes is extended by a few rural background stations. To characterize the correspondence between the PM10 measurements of the different stations by spatial patterns, a regionalization by an s-mode principal component analysis is realized on the high-pass filtered data. The optimization of the circulation- and weather types is implemented using two representative classification approaches, a k-means cluster analysis and an objective version of the Grosswetter types. They have been run with varying spatial and temporal settings as well as modified numbers of classes. As an evaluation metric for their performance several skill scores are used. Taking into account the outcome further attempts towards the optimization of circulation type classifications are made. These are varying meteorological input parameters (e.g. geopotential height, zonal and meridional wind, specific humidity, temperature) on several pressure levels (1000, 850 and 500 hPa) and combinations of these variables. All classification variants are again evaluated. Based on these analyses it is further intended to develop robust downscaling models for estimating possible future - climate change induced - variations of local PM10 concentrations in Bavaria from scenario runs of global CMIP5 climate models.
Metapopulation Structure and Dynamics of an Endangered Butterfly
2010-01-01
the yearly variation of between-generation population change. We utilized weather data from the closest accessible NOAA weather station (43◦56′N/90◦49...patterns in the population dynamic, and tested for density-dependent growth and weather factors as potential explanatory factors of the yearly variation...followed a standard protocol including avoiding inclement weather con- ditions (Wilder 1999) and about 95% of the survey data were collected by a single
Ho, Hung Chak; Wong, Man Sing; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Bilal, Muhammad; Chan, Ta-Chien
2018-03-01
Haze is an extreme weather event that can severely increase air pollution exposure, resulting in higher burdens on human health. Few studies have explored the health effects of haze, and none have investigated the spatiotemporal interaction between temperature, air quality and urban environment that may exacerbate the adverse health effects of haze. We investigated the spatiotemporal pattern of haze effects and explored the additional effects of temperature, air pollution and urban environment on the short-term mortality risk during hazy days. We applied a Poisson regression model to daily mortality data from 2007 through 2014, to analyze the short-term mortality risk during haze events in Hong Kong. We evaluated the adverse effect on five types of cause-specific mortality after four types of haze event. We also analyzed the additional effect contributed by the spatial variability of urban environment on each type of cause-specific mortality during a specific haze event. A regular hazy day (lag 0) has higher all-cause mortality risk than a day without haze (odds ratio: 1.029 [1.009, 1.049]). We have also observed high mortality risks associated with mental disorders and diseases of the nervous system during hazy days. In addition, extreme weather and air quality contributed to haze-related mortality, while cold weather and higher ground-level ozone had stronger influences on mortality risk. Areas with a high-density environment, lower vegetation, higher anthropogenic heat, and higher PM 2.5 featured stronger effects of haze on mortality than the others. A combined influence of haze, extreme weather/air quality, and urban environment can result in extremely high mortality due to mental/behavioral disorders or diseases of the nervous system. In conclusion, we developed a data-driven technique to analyze the effects of haze on mortality. Our results target the specific dates and areas with higher mortality during haze events, which can be used for development of health warning protocols/systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent improvement and projected worsening of weather in the United States.
Egan, Patrick J; Mullin, Megan
2016-04-21
As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.
NASA Astrophysics Data System (ADS)
Trout, Joseph; Manson, J. Russell; Rios, Manny; King, David; Decicco, Nicholas
2015-04-01
Wake Vortex Turbulence is the turbulence generated by an aircraft in flight. This turbulence is created by vortices at the tips of the wing that may decay slowly and persist for several minutes after creation. The strength, formation and lifetime of the turbulence and vortices are effected by many things including the weather. Here we present the preliminary results of an investigation of low level wind fields generated by the Weather Research and Forecasting Model and an analysis of historical data. The simulations are used as inputs for the computational fluid dynamics model (OpenFoam) that will be used to investigate the effect of weather on wake turbulence. The initial results of the OpenFoam model are presented elsewhere. Presented here are the initial results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''.
NASA Astrophysics Data System (ADS)
Alvarez Castro, Maria del Carmen; Gallego, David; Trigo, Ricardo M.; García-Herrera, Ricardo; Ribera, Pedro
2015-04-01
Recently, a new instrumental index (Westerly Index or "WI") measuring the frequency of the westerlies over the English Channel has been developed for the period 1685-1750 (Wheeler et al. 2009) and further extended to the present (Barriopedro et al. 2014). This index holds a climatic signal similar to the North Atlantic Oscillation (NAO) in the temperature and precipitation over large areas of Europe. Nevertheless we are confident that the WI offers two major advantages: first the WI signatures are not restricted to the winter being significant during the entire year and second, the WI does not rely on proxy data and, as such, it is less prone to the uncertainties associated to the calibration process of the NAO reconstructions. During the last decades, regional mid-latitude circulation has also been quantified objectively through the widespread use of so-called Weather Types (WT). WT are used to identify and classify the different patterns of Sea Level Pressure configurations originating particular weather in a given area. In consequence, WT over most Western Europe should be closely related to atmospheric circulation indexes such as the WI. Here we adopted a similar WT classification of the classical WTs developed empirically by Hubert Lamb for the UK and automated by Jones et al. (1993) but centered at the English Channel latitudinal band to be compatible with the window used to define the WI (Wheeler et al., 2009). In this work we compare the long-term (1850-2003) monthly values of WI with the corresponding monthly frequency of directional weather types in the WI area. As expected, we found significant positive (negative) correlation values with WTs dominated by a westerly (easterly) component but interestingly, some quasi periodic intervals of lack of correlation have been found, suggesting an oscillating behaviour on the lack of stationarity between the large-scale north Atlantic circulation and local weather types. Wheeler, D.; García-Herrera, R.; Wilkinson, C.W. and Ward, C., 2009: Atmospheric circulation and storminess derived from Royal Navy logbooks: 1685 to 1750, Climatic Change, DOI: 10.1007/s10584-009-9732-x Barriopedro, D.; Gallego, D.; Alvarez-Castro, M.C.; Garcia-Herrera, R.; Wheeler, D.; Peña-Ortiz, C.; Barbosa, S.M.,2014: Witnessing North Atlantic westerlies variability from ships' logbooks (1685-2008). Clim Dym, 43, 939-955 Jones, P. D., Hulme, M., and Briffa, K. R. 1993: A comparison of Lamb circulation types with an objective classification scheme, Int. J. Climatol., 13, 655-663.
About the National Forecast Chart
General Weather WPC Quantitative Precipitation Forecasts for coverage, and weather type from the NWS NDFD Weather Prediction Center 5830 University Research Court College Park, Maryland 20740 Weather Prediction
NASA Astrophysics Data System (ADS)
Khansalari, Sakineh; Raziei, Tayeb; Mohebalhojeh, Ali Reza; Ahmadi-Givi, Farhang
2018-02-01
Large-scale atmospheric circulations associated with 133 moderate to heavy cold-weather precipitation events recorded at Mehrabad station in Tehran, Iran, during the period 1951-2013 are analysed. To this end, the performance of un-rotated, orthogonally rotated and obliquely rotated solutions of T-mode principal component analysis (PCA) is examined in classifying the atmospheric circulations into a few representative circulation types (CTs). The T-mode PCAs were applied to the 500-hPa geopotential height for the events in a domain from 10∘E to 70∘E and from 20∘N to 50∘N. The first six leading principal components were retained and then orthogonally and obliquely rotated using varimax and promax solutions, respectively. Statistical inter-comparison of the CTs obtained using the three solutions suggests that the obliquely rotated solution is the better choice for circulation classification in the present study. The six CTs obtained using the oblique rotation were then linked to the daily total precipitation and daily mean temperature variability at Tehran station as well as to the standardized anomalies of the daily total precipitation and mean daily temperature of a dense network of stations distributed across Iran. It is found that the CTs identified, though generally comparable in producing significant precipitation in Tehran, vary in their potential to bring cold weather and generate snowfall in Tehran specifically and in the country in general. While the first three CTs give rise to regional patterns of standardized precipitation anomalies centred in Tehran, the next three CTs leave a pronounced precipitation signature almost across the whole country. As regards the standardized temperature anomalies, with the exception of one CT that causes deep and widespread negative standardized anomalies over most parts of the country, the other CTs are characterized with a dipolar structure of a deep intrusion of cold weather to the west and prevailing warm weather to the east of the country.
NASA Technical Reports Server (NTRS)
Maslanik, J. A.
1992-01-01
Effects of wind, water vapor, and cloud liquid water on ice concentration and ice type calculated from passive microwave data are assessed through radiative transfer calculations and observations. These weather effects can cause overestimates in ice concentration and more substantial underestimates in multi-year ice percentage by decreasing polarization and by decreasing the gradient between frequencies. The effect of surface temperature and air temperature on the magnitudes of weather-related errors is small for ice concentration and substantial for multiyear ice percentage. The existing weather filter in the NASA Team Algorithm addresses only weather effects over open ocean; the additional use of local open-ocean tie points and an alternative weather correction for the marginal ice zone can further reduce errors due to weather. Ice concentrations calculated using 37 versus 18 GHz data show little difference in total ice covered area, but greater differences in intermediate concentration classes. Given the magnitude of weather-related errors in ice classification from passive microwave data, corrections for weather effects may be necessary to detect small trends in ice covered area and ice type for climate studies.
Space-Weathered Anorthosite as Spectral D-Type Material on the Martian Satellites
NASA Astrophysics Data System (ADS)
Yamamoto, S.; Watanabe, S.; Matsunaga, T.
2018-02-01
Spectral D-type asteroids are characterized by dark, red-sloped, and featureless spectra at visible and near-infrared wavelengths and are thought to be composed of rocks rich in organic compounds. The Martian satellites, Phobos and Deimos, spectrally resemble D-type asteroids, suggesting that they are captured D-type asteroids from outside the Martian system. Here we show that the spectral features of lunar space-weathered anorthosite are consistent with D-type spectra, including those of Phobos and Deimos. This can also explain the distinct spectral features on Phobos, the red and blue units, as arising from different degrees of space weathering. Thus, D-type spectra of the Martian satellites can be explained by space-weathered anorthosite, indicating that D-type spectra do not necessarily support the existence of organic compounds, which would be strong evidence for the capture scenario.
NASA Astrophysics Data System (ADS)
Moore, B. J.; Bosart, L. F.; Keyser, D.
2013-12-01
During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high-impact weather events, including relative humidity, temperature, and precipitation, demonstrates quantitatively that all three high-impact weather events are closely linked with the development of the ridge-trough pattern over North America. Moreover, results of this analysis indicate that the development of the ridge-trough pattern is modulated by DBD and cyclogenesis upstream over the central and eastern North Pacific. Specifically, ensemble members exhibiting less intense cyclogenesis and a more poleward cyclone track over the central and eastern North Pacific feature the development of a poleward-displaced ridge over the eastern North Pacific and western North America and a cut-off low over the Intermountain West, an unfavorable scenario for the occurrence the three high-impact weather events. Conversely, ensemble members exhibiting more intense cyclogenesis and a less poleward cyclone track feature persistent ridging along the western coast of North America and trough development over central North America, establishing a favorable flow pattern for the three high-impact weather events. Results demonstrate that relatively small initial differences in the large-scale flow pattern over the North Pacific among ensemble members can result in large uncertainty in the forecast downstream flow response over North America.
Statistical characterization of spatial patterns of rainfall cells in extratropical cyclones
NASA Astrophysics Data System (ADS)
Bacchi, Baldassare; Ranzi, Roberto; Borga, Marco
1996-11-01
The assumption of a particular type of distribution of rainfall cells in space is needed for the formulation of several space-time rainfall models. In this study, weather radar-derived rain rate maps are employed to evaluate different types of spatial organization of rainfall cells in storms through the use of distance functions and second-moment measures. In particular the spatial point patterns of the local maxima of rainfall intensity are compared to a completely spatially random (CSR) point process by applying an objective distance measure. For all the analyzed radar maps the CSR assumption is rejected, indicating that at the resolution of the observation considered, rainfall cells are clustered. Therefore a theoretical framework for evaluating and fitting alternative models to the CSR is needed. This paper shows how the "reduced second-moment measure" of the point pattern can be employed to estimate the parameters of a Neyman-Scott model and to evaluate the degree of adequacy to the experimental data. Some limitations of this theoretical framework, and also its effectiveness, in comparison to the use of scaling functions, are discussed.
Doppler Feature Based Classification of Wind Profiler Data
NASA Astrophysics Data System (ADS)
Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary
2017-01-01
Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.
NASA Astrophysics Data System (ADS)
Ramos, A. M.; Lorenzo, M. N.; Gimeno, L.; Nieto, R.; Añel, J. A.
2009-09-01
Several methods have been developed to rank meteorological events in terms of severity, social impact or economic impacts. These classifications are not always objective since they depend of several factors, for instance, the observation network is biased towards the densely populated urban areas against rural or oceanic areas. It is also very important to note that not all rare synoptic-scale meteorological events attract significant media attention. In this work we use a comprehensive method of classifying synoptic-scale events adapted from Hart and Grumm, 2001, to the European region (30N-60N, 30W-15E). The main motivation behind this method is that the more unusual the event (a cold outbreak, a heat wave, or a flood), for a given region, the higher ranked it must be. To do so, we use four basic meteorological variables (Height, Temperature, Wind and Specific Humidity) from NCEP reanalysis dataset over the range of 1000hPa to 200hPa at a daily basis from 1948 to 2004. The climatology used embraces the 1961-1990 period. For each variable, the analysis of raking climatological anomalies was computed taking into account the daily normalized departure from climatology at different levels. For each day (from 1948 to 2004) we have four anomaly measures, one for each variable, and another, a combined where the anomaly (total anomaly) is the average of the anomaly of the four variables. Results will be analyzed on a monthly, seasonal and annual basis. Seasonal trends and variability will also be shown. In addition, and given the extent of the database, the expected return periods associated with the anomalies are revealed. Moreover, we also use an automated version of the Lamb weather type (WT) classification scheme (Jones et al, 1993) adapted for the Galicia area (Northwestern corner of the Iberian Peninsula) by Lorenzo et al (2008) in order to compute the daily local circulation regimes in this area. By combining the corresponding daily WT with the five anomaly measures we can evaluate if there is any preferable WT responsible for high or low values of anomalies. Hart, R.E and R.H. Grumm (2001) Using normalized climatological anomalies to rank synoptic-scale events objectivily. Monthly Weather Review, 129, 2426-2442. Jones, P. D., M. Hulme, K. R. Briffa (1993) A comparison of Lamb circulation types with anobjective classification scheme. International Journal of Climatology, 13: 655- 663. Lorenzo M.N., J.J. Taboada and L.Gimeno (2008). Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). International Journal of Climatology 28(11): 1493:1505 DOI: 10.1002/joc.1646.
Effects of Climate on Co-evolution of Weathering Profiles and Hillscapes
NASA Astrophysics Data System (ADS)
Anderson, R. S.; Rajaram, H.; Anderson, S. P.
2017-12-01
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. It has recently been proposed that differences in the depths and patterns of weathering between landscapes in Colorado's Front Range and South Carolina's piedmont can be attributed to the state of stress in the rock imposed by the magnitude and orientation the regional stresses with respect to the ridgelines (St. Claire et al., 2016). We argue for the importance of the climate, and in particular, in temperate regions, the amount of recharge. We employ numerical models of hillslope evolution between bounding erosional channels, in which the degree of rock weathering governs the rate of transformation of rock to soil. As the water table drapes between the stream channels, fresh rock is brought into the weathering zone at a rate governed by the rate of incision of the channels. We track the chemical weathering of rock, represented by alteration of feldspar to clays, which in turn requires calculation of the concentration of reactive species in the water along hydrologic flow paths. We present results from analytic solutions to the flow field in which travel times can be efficiently assessed. Below the water table, flow paths are hyperbolic, taking on considerable lateral components as they veer toward the bounding channels that serve as drains to the hillslope. We find that if water is far from equilibrium with respect to weatherable minerals at the water table, as occurs in wet, slowly-eroding landscapes, deep weathering can occur well below the water table to levels approximating the base of the bounding channels. In dry climates, on the other hand, the weathering zone is limited to a shallow surface - parallel layer. These models capture the essence of the observed differences in depth to fresh rock in both wet and dry climates without appeal to the state of stress in the rock.
NASA Astrophysics Data System (ADS)
Kan, Yu; Chen, Bo; Shen, Tao; Liu, Chaoshun; Qiao, Fengxue
2017-09-01
It has been a longstanding problem for current weather/climate models to accurately predict summer heavy precipitation over the Yangtze-Huaihe Region (YHR) which is the key flood-prone area in China with intensive population and developed economy. Large uncertainty has been identified with model deficiencies in representing precipitation processes such as microphysics and cumulus parameterizations. This study focuses on examining the effects of microphysics parameterization on the simulation of different type of heavy precipitation over the YHR taking into account two different cumulus schemes. All regional persistent heavy precipitation events over the YHR during 2008-2012 are classified into three types according to their weather patterns: the type I associated with stationary front, the type II directly associated with typhoon or with its spiral rain band, and the type III associated with strong convection along the edge of the Subtropical High. Sixteen groups of experiments are conducted for three selected cases with different types and a local short-time rainstorm in Shanghai, using the WRF model with eight microphysics and two cumulus schemes. Results show that microphysics parameterization has large but different impacts on the location and intensity of regional heavy precipitation centers. The Ferrier (microphysics) -BMJ (cumulus) scheme and Thompson (microphysics) - KF (cumulus) scheme most realistically simulates the rain-bands with the center location and intensity for type I and II respectively. For type III, the Lin microphysics scheme shows advantages in regional persistent cases over YHR, while the WSM5 microphysics scheme is better in local short-term case, both with the BMJ cumulus scheme.
Identifying when weather influences life-history traits of grazing herbivores.
Sims, Michelle; Elston, David A; Larkham, Ann; Nussey, Daniel H; Albon, Steve D
2007-07-01
1. There is increasing evidence that density-independent weather effects influence life-history traits and hence the dynamics of populations of animals. Here, we present a novel statistical approach to estimate when such influences are strongest. The method is demonstrated by analyses investigating the timing of the influence of weather on the birth weight of sheep and deer. 2. The statistical technique allowed for the pattern of temporal correlation in the weather data enabling the effects of weather in many fine-scale time intervals to be investigated simultaneously. Thus, while previous studies have typically considered weather averaged across a single broad time interval during pregnancy, our approach enabled examination simultaneously of the relationships with weekly and fortnightly averages throughout the whole of pregnancy. 3. We detected a positive effect of temperature on the birth weight of deer, which is strongest in late pregnancy (mid-March to mid-April), and a negative effect of rainfall on the birthweight of sheep, which is strongest during mid-pregnancy (late January to early February). The possible mechanisms underlying these weather-birth weight relationships are discussed. 4. This study enhances our insight into the pattern of the timing of influence of weather on early development. The method is of much more general application and could provide valuable insights in other areas of ecology in which sequences of intercorrelated explanatory variables have been collected in space or in time.
Malinowska, Agnieszka H; van Strien, Arco J; Verboom, Jana; WallisdeVries, Michiel F; Opdam, Paul
2014-01-01
Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest.
Malinowska, Agnieszka H.; van Strien, Arco J.; Verboom, Jana; WallisdeVries, Michiel F.; Opdam, Paul
2014-01-01
Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest. PMID:25330414
Cheng, Allen C; Jacups, Susan P; Gal, Daniel; Mayo, Mark; Currie, Bart J
2006-04-01
Melioidosis, the infection due to the environmental organism Burkholderia pseudomallei, is endemic to northern Australia and South East Asia. It is associated with exposure to mud and pooled surface water, but environmental determinants of this disease are poorly understood. We defined case-clusters in northern Australia, determined their contribution to the observed rate of melioidosis, and explored clinical features and associated environmental factors. Using geographical information systems data, we examined clustering of melioidosis cases in time and geographical space in the Top End of the Northern Territory of Australia between 1990 and 2002 using a scan statistic. DNA macrorestriction analysis, resolved by pulsed field gel electrophoresis, was performed on isolates from patients. We defined five case-clusters involving 27 patients that occurred within 7-28 days and/or a radius of 100-300 km. Clustered cases were associated with extreme weather events or environmental contamination; no difference in the clinical pattern of disease was noted from other patients not involved in clusters. Isolates from patients linked to environmental contamination were caused by isolates with similar DNA macrorestriction patterns, but isolates from patients linked to severe weather events had more diverse DNA macrorestriction patterns. Case-clusters of melioidosis where isolates exhibit diverse DNA macrorestriction patterns in our region are linked to extreme weather events and outbreaks where isolates are predominantly of the same DNA macrorestriction pattern are linked with contamination of an environmental source.
NOAA: Strong El Niño sets the stage for 2015-2016 winter weather
El Niño, among the strongest on record, is expected to influence weather and climate patterns this NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS National Temperature. Temperature - U.S. Winter Outlook: 2015-2016 (Credit: NOAA) Forecasters at NOAA's Climate
Cold-Weather Sports and Your Family
... Videos for Educators Search English Español Cold-Weather Sports and Your Family KidsHealth / For Parents / Cold-Weather ... kids while being active. Types of Cold-Weather Sports Skiing, snowboarding, ice skating, and snowshoeing are just ...
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
ERIC Educational Resources Information Center
Forde, Evan B.
2004-01-01
Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…
ERIC Educational Resources Information Center
Forde, Evan B.
2004-01-01
Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…
Climate Shocks and Migration: An Agent-Based Modeling Approach.
Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-09-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.
Climate Shocks and Migration: An Agent-Based Modeling Approach
Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-01-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725
Resurfacing asteroids from YORP spin-up and failure
NASA Astrophysics Data System (ADS)
Graves, Kevin J.; Minton, David A.; Hirabayashi, Masatoshi; DeMeo, Francesca E.; Carry, Benoit
2018-04-01
The spectral properties of S and Q-type asteroids can change over time due to interaction with the solar wind and micrometeorite impacts in a process known as 'space weathering.' Space weathering raises the spectral slope and decreases the 1 μm absorption band depth in the spectra of S and Q-type asteroids. Over time, Q-type asteroids, which have very similar spectra to ordinary chondrite meteorites, will change into S-type asteroids. Because there are a significant number of Q-type asteroids, there must be some process which is resurfacing S-type asteroids into Q-types. In this study, we use asteroid data from the Sloan Digital Sky Survey to show a trend between the slope through the g‧, r‧, and i‧ filters, called the gri-slope, and size that holds for all populations of S and Q-type asteroids in the inner solar system, regardless of orbit. We model the evolution of a suite of asteroids in a Monte Carlo YORP rotational evolution and space weathering model. We show that spin-up and failure from YORP is one of the key resurfacing mechanisms that creates the observed weathering trends with size. By varying the non-dimensional YORP coefficient and running time of the present model over the range 475-1425 Myr, we find a range of values for the space weathering timescale, τSW ≈ 19-80 Myr at 2.2 AU. We also estimate the time to weather a newly resurfaced Q-type asteroid into an S-complex asteroid at 1 AU, τQ → S(1AU) ≈ 2-7 Myr.
NASA Astrophysics Data System (ADS)
Mika, Janos; Ivady, Anett; Fulop, Andrea; Makra, László
2010-05-01
Synoptic climatology i.e. classification of the endless variability of the everyday weather states according to the pressure configuration and frontal systems relative to the point, or region of interest has long history in meteorology. Its logical alternative, i.e. classification of weather according to the observed local weather elements was less popular until the recent times when the numerical weather forecasts became able to outline not only the synoptic situation, but the near-surface meteorological variables, as well. Nowadays the computer-based statistical facilities are able to operate with matrices of multivariate diurnal samples, as well. The paper presents an attempt to define a set of local weather types using point-wise series at five rural stations, Szombathely, Pécs, Budapest, Szeged és Debrecen in the 1961-1990 reference period. Ten local variables are used, i.e. the diurnal mean temperature, the diurnal temperature range; the cloudiness, the sunshine duration, the water vapour pressure, the precipitation in a logarithmic scale, also differing trace (below 0.1 mm) and no precipitation, the relative humidity and wind speed, including the more extremity indicators of the two latter parameters, i.e. number of hours with over 80 % relative humidity and over 15 m/s wind gusts. Factor analysis of these ten variables was performed leading to 5 fairly independent variables retained for cluster analysis to obtain the local weather types. Hierarchical cluster analysis was performed to classify the 840-930 days within each month of the 30 years period. Furthers neighbour approach was preferred based on Euclidean metrics to establish optimum number of types. The 12 months and the 5 stations exhibited slightly different results but the optimum number of the types was always between 4 and 12 which is a quite reasonable number from practical considerations. According to a further reasonable compromise, the common number of the types not too bad in either stations or months defines that the common optimum number of local weather types is nine. This set of weather types, specified for each station, was used to "explain" the possible portion of local inter-diurnal variance of seven daily urban air quality measurements, i.e. CO, NO, NO2, NOx, O3, SO2 and PM10. Another set of data for testing the types are the mortalities with chronicle illnesses, i.e. cardio-vascular and respiratory illnesses. This set of 35 years data (1971-2005) is layered for capital city (Budapest, 2 million inhabitants) and rest of the countries (max. 200 000 inhab.). The use of complex weather types is likely better than the common use of individual weather elements, e.g. diurnal mean temperature or a kind of bioclimatic index. The ability of the types to decrease the variability is also compared for both sets of target variables to the analogous ability of macrosynoptic classification by Peczely. The results are also discussed by grouping the investigated contaminants according to their origin.
47 CFR 73.314 - Field strength measurements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...
47 CFR 73.314 - Field strength measurements.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...
47 CFR 73.314 - Field strength measurements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...
47 CFR 73.314 - Field strength measurements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...
Observational evidence of European summer weather patterns predictable from spring
NASA Astrophysics Data System (ADS)
Ossó, Albert; Sutton, Rowan; Shaffrey, Len; Dong, Buwen
2018-01-01
Forecasts of summer weather patterns months in advance would be of great value for a wide range of applications. However, seasonal dynamical model forecasts for European summers have very little skill, particularly for rainfall. It has not been clear whether this low skill reflects inherent unpredictability of summer weather or, alternatively, is a consequence of weaknesses in current forecast systems. Here we analyze atmosphere and ocean observations and identify evidence that a specific pattern of summertime atmospheric circulation––the summer East Atlantic (SEA) pattern––is predictable from the previous spring. An index of North Atlantic sea-surface temperatures in March–April can predict the SEA pattern in July–August with a cross-validated correlation skill above 0.6. Our analyses show that the sea-surface temperatures influence atmospheric circulation and the position of the jet stream over the North Atlantic. The SEA pattern has a particularly strong influence on rainfall in the British Isles, which we find can also be predicted months ahead with a significant skill of 0.56. Our results have immediate application to empirical forecasts of summer rainfall for the United Kingdom, Ireland, and northern France and also suggest that current dynamical model forecast systems have large potential for improvement.
Foley, Nora K.; Ayuso, Robert A.; Simandl, G.J.; Neetz, M.
2015-01-01
The Southeastern United States contains numerous anorogenic, or A-type, granites, which constitute promising source rocks for REE-enriched ion adsorption clay deposits due to their inherently high concentrations of REE. These granites have undergone a long history of chemical weathering, resulting in thick granite-derived regoliths, akin to those of South China, which supply virtually all heavy REE and Y, and a significant portion of light REE to global markets. Detailed comparisons of granite regolith profiles formed on the Stewartsville and Striped Rock plutons, and the Robertson River batholith (Virginia) indicate that REE are mobile and can attain grades comparable to those of deposits currently mined in China. A REE-enriched parent, either A-type or I-type (highly fractionated igneous type) granite, is thought to be critical for generating the high concentrations of REE in regolith profiles. One prominent feature we recognize in many granites and mineralized regoliths is the tetrad behaviour displayed in REE chondrite-normalized patterns. Tetrad patterns in granite and regolith result from processes that promote the redistribution, enrichment, and fractionation of REE, such as late- to post- magmatic alteration of granite and silicate hydrolysis in the regolith. Thus, REE patterns showing tetrad effects may be a key for discriminating highly prospective source rocks and regoliths with potential for REE ion adsorption clay deposits.
Makra, László; Juhász, Miklós; Mika, János; Bartzokas, Aristides; Béczi, Rita; Sümeghy, Zoltán
2006-07-01
This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels.
Relationship between atmospheric circulation weather types and seasonal precipitation in Serbia
NASA Astrophysics Data System (ADS)
Putniković, Suzana; Tošić, Ivana
2017-04-01
An automated version of the Lamb weather type classification scheme was used to classify daily circulation types over Serbia. The synoptic characteristics of 26 weather types and their relative frequencies are discussed for spring and autumn, complementing research previously published by Putniković et al. (Meteorol Atmos Phys 128:649-662, 2016) for winter and summer. Trends of the circulation types are presented, as well as precipitation trends during the period 1961-2010. Precipitation was modeled by the stepwise regression at six stations, defining weather types as independent variables. The anticyclonic (A) type is the most frequent class occurring in autumn (23.87%), displaying a positive trend for spring and significant negative trend for autumn. The frequencies of anticyclonic and cyclonic (C) types are almost the same for spring: 14.33 and 14.02%, respectively. The C type shows a significant negative trend only in spring. The increasing trend of the frequency of the C types and decreasing trend of the A types are in agreement with the increasing trend of precipitation in Serbia during autumn. Results suggest that the C type affects precipitation occurrence over most of the country, while the remaining 25 types provide more negligible or regional contributions to precipitation.
Weather and climate applications for rangeland restoration planning
USDA-ARS?s Scientific Manuscript database
Rangeland ecosystems generally have an arid or semi-arid climatology, and are characterized by relatively high variability in seasonal and annual patterns of precipitation. Weather variability during seedling establishment is universally acknowledged as a principal determinant of rangeland seeding...
Effects of synoptic weather on ground-level PM2.5 concentrations in the United States
NASA Astrophysics Data System (ADS)
Liu, Ying; Zhao, Naizhuo; Vanos, Jennifer K.; Cao, Guofeng
2017-01-01
It is known that individual meteorological factors affect the concentrations of fine particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), yet the specific meteorological effects found in previous studies are largely inconsistent and even conflicting. This study investigates influences of daily and short term changes in synoptic weather on ground-level PM2.5 concentrations in a large geographical area (75 cities across the contiguous United States (U.S.)) by using ten-year (2001-2010) spatial synoptic classification (SSC) data. We find that in the spring, summer, and fall the presence of the tropical weather types (i.e., dry-tropical (DT) and moist-tropical (MT)) is likely to associate with significantly higher levels of PM2.5 as compared to an all-weather-type-day average, and the presence of the polar weather types (i.e., dry-polar (DP) and moist-polar (MP)) is associated with significantly lower PM2.5 concentrations. The short-term (day to day) changes in synoptic weather types in a region are also likely to lead to significant variance in PM2.5 concentrations. For example, the largest increase in PM2.5 concentration occurs with the synoptic weather type changing from DP-to-MT. Conversely, a MT-to-DP weather type change results in the largest decrease in PM2.5 concentrations. Compared to air temperature, the effects of atmospheric moisture on PM2.5 concentration tend to be subtle, demonstrating that in conjunction with moderate temperature, neither the dry nor the moist air (except moist-moderate (MM) in summer) are associated with significantly high or low PM2.5 concentrations. Finally, we find that the effects of the synoptic weather type on PM2.5 concentrations may vary for different seasons and geographical areas. These findings suggest that interactions between atmospheric factors and seasonal and/or geographical factors have considerable impacts on the PM2.5 concentrations, and therefore should be considered in addition to the SSC when conducting environment health assessments.
A new concept to study the effect of climate change on different flood types
NASA Astrophysics Data System (ADS)
Nissen, Katrin; Nied, Manuela; Pardowitz, Tobias; Ulbrich, Uwe; Merz, Bruno
2014-05-01
Flooding is triggered by the interaction of various processes. Especially important are the hydrological conditions prior to the event (e.g. soil saturation, snow cover) and the meteorological conditions during flood development (e.g. rainfall, temperature). Depending on these (pre-) conditions different flood types may develop such as long-rain floods, short-rain floods, flash floods, snowmelt floods and rain-on-snow floods. A new concept taking these factors into account is introduced and applied to flooding in the Elbe River basin. During the period September 1957 to August 2002, 82 flood events are identified and classified according to their flood type. The hydrological and meteorological conditions at each day during the analysis period are detemined. In case of the hydrological conditions, a soil moisture pattern classification is carried out. Soil moisture is simulated with a rainfall-runoff model driven by atmospheric observations. Days of similar soil moisture patterns are identified by a principle component analysis and a subsequent cluster analysis on the leading principal components. The meteorological conditions are identified by applying a cluster analysis to the geopotential height, temperature and humidity fields of the ERA40 reanalysis data set using the SANDRA cluster algorithm. We are able to identify specific pattern combinations of hydrological pre-conditions and meteorological conditions which favour different flood types. Based on these results it is possible to analyse the effect of climate change on different flood types. As an example we show first results obtained using an ensemble of climate scenario simulations of ECHAM5 MPIOM model, taking only the changes in the meteorological conditions into account. According to the simulations, the frequency of the meteorological patterns favouring long-rain, short-rain and flash floods will not change significantly under future climate conditions. A significant increase is, however, predicted for the amount of precipitation associated with many of the relevant meteorological patterns. The increase varies between 12 and 67% depending on the weather pattern.
Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain
NASA Astrophysics Data System (ADS)
Lorenzana, Jesús; Merino, Andrés; García-Ortega, Eduardo; Fernández-González, Sergio; Gascón, Estíbaliz; Hermida, Lucía; Sánchez, José Luis; López, Laura; Marcos, José Luis
2015-04-01
Numerical weather prediction (NWP) of precipitation is a challenge. Models predict precipitation after solving many physical processes. In particular, mesoscale NWP models have different parameterizations, such as microphysics, cumulus or radiation schemes. These facilitate, according to required spatial and temporal resolutions, precipitation fields with increasing reliability. Nevertheless, large uncertainties are inherent to precipitation forecasting. Consequently, assimilation methods are very important. The Atmospheric Physics Group at the University of León in Spain and the Castile and León Supercomputing Center carry out daily weather prediction based on the Weather Research and Forecasting (WRF) model, covering the entire Iberian Peninsula. Forecasts of severe precipitation affecting the Ebro Valley, in the southern Pyrenees range of northeastern Spain, are crucial in the decision-making process for managing reservoirs or initializing runoff models. These actions can avert floods and ensure uninterrupted economic activity in the area. We investigated a set of cases corresponding to intense or severe precipitation patterns, using a rain gauge network. Simulations were performed with a dual objective, i.e., to analyze forecast improvement using a specific assimilation method, and to study the sensitivity of model outputs to different types of assimilation data. A WRF forecast model initialized by an NCEP SST analysis was used as the control run. The assimilation was based on the Meteorological Assimilation Data Ingest System (MADIS) developed by NOAA. The MADIS data used were METAR, maritime, ACARS, radiosonde, and satellite products. The results show forecast improvement using the suggested assimilation method, and differences in the accuracy of forecast precipitation patterns varied with the assimilation data source.
NASA Technical Reports Server (NTRS)
Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused,10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.
Anyamba, Assaf; Small, Jennifer L; Britch, Seth C; Tucker, Compton J; Pak, Edwin W; Reynolds, Curt A; Crutchfield, James; Linthicum, Kenneth J
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.
Weather conditions drive dynamic habitat selection in a generalist predator.
Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B; Rahbek, Carsten
2014-01-01
Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year-round resident generalist predator, to see how this varied as a function of weather, season and availability. Use of the two most frequently used land cover types, gardens/buildings and cultivated fields varied more than 3-fold as a simple function of season and weather through linear effects of wind and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types. An opportunistic foraging strategy in a landscape with erratically appearing feeding opportunities in different land cover types, may possibly also explain decreasing selection of the two most frequently used land cover types with increasing availability.
Chemical weathering and loess inputs to soils in New Zealand's Wairarapa region
NASA Astrophysics Data System (ADS)
Lukens, C. E.; Norton, K. P.
2017-12-01
Geochemical mass-balance approaches are commonly used in soils to evaluate patterns in chemical weathering. In conjuction with cosmogenic nuclide measurements of total denudation or soil production, mass-balance approaches have been used to constrain rates of chemical weathering across a variety of landscapes. Here we present geochemical data from a series of soil pits in the Wairarapa region of New Zealand's North Island, where rates of soil production equal rates of total denudation measured using 10Be at sites nearby (i.e., the landscape is in steady state). Soil density increases with depth, consistent with steady weathering over the average soil residence time. However, soil geochemistry indicates very little chemical weathering has occurred, and immobile elements (Zr, Ti, and V) are depleted in soils relative to bedrock. This is contrary to the expected observation, wherein immobile elements should be enriched in soils relative to parent bedrock as weathered mobile solutes are progressively removed from soil. Our geochemical measurements suggest contributions from an exernal source, which has a different chemical composition than the underlying bedrock. We hypothesize that loess constitutes a substantial influx of additional material, and use a mixing model to predict geochemical patterns within soil columns. We evaluate the relative contributions of several likely loess sources, including tephra from the nearby Taupo Volcanic Center, local loess deposits formed during glacial-interglacial transitions, and far-travelling Australian dust. Using an established mass-balance approach with multiple immobile elements, we calculate the fraction of mass in soils contributed by loess to be as much as 25%. Combined with 10Be-derived estimates of soil production, we calculate average loess fluxes up to 320 t/km2/yr, which are consistent with previous estimates of loess acculumation over the late Holocene. Accounting for loess input, we find that chemical weathering fluxes are remarkably low in these soils, which sit atop fractured graywacke that likely contributes very few weatherable primary minerals. The significant loess flux in this region may have important implications for estimates of total denudation and soil production, and must be accounted for to determine patterns in chemical weathering.
Colluvial deposits as a possible weathering reservoir in uplifting mountains
NASA Astrophysics Data System (ADS)
Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre
2018-03-01
The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith during cold periods, colluvium produces most of the simulated weathering flux for a large range of erosion parameters and precipitation rate patterns. In addition to other reservoirs such as deep fractured bedrock, colluvial deposits may help to maintain a substantial and constant weathering flux in rapidly uplifting mountains during cooling periods.
Developing New Strategies for Coping with Weather: Work in Alaskan and Canadian Coastal Communities
NASA Astrophysics Data System (ADS)
Atkinson, D. E.
2014-12-01
A changing climate is manifested at ground level through the day to day weather. For all Northern residents - community, industrial, operational and response - the need to think about the weather is ever present. Northern residents, and in particular, indigenous community residents, fully understand implications of the weather, however, a comment that has been heard more often is that old ways of knowing are not as reliable as they once were. Weather patterns seem less consistent and subject to more rapid fluctuations. Compromised traditional ways of knowing puts those who need to travel or hunt at greater risk. One response to adapt to this emerging reality is to make greater use of western sources of information, such as weather data and charts provided by NOAA's National Weather Service or Environment Canada. The federal weather agencies have very large and complex forecasting regions to cover, and so one problem is that it can be difficult to provide perfectly tailored forecasts, that cover all possible problems, right down to the very local scale in the communities. Only those affected have a complete feel for their own concerns. Thus, key to a strategy to improve the utility of available weather information is a linking of local-scale manifestations of problematic weather to the larger-scale weather patterns. This is done in two ways: by direct consultation with Northern residents, and by installation of equipment to measure parameters of interest to residents, which are not already being measured. This talk will overview projects in coastal Alaska and Canada targeting this objective. The challenge of designing and conducting interviews, and then of harvesting relevant information, will be visited using examples from the three major contexts: coastal community, industrial, and operational. Examples of how local comments can be married to weather products will be presented.
Ehelepola, N D B; Ariyaratne, Kusalika; Buddhadasa, W M N P; Ratnayake, Sunil; Wickramasinghe, Malani
2015-09-24
Weather variables affect dengue transmission. This study aimed to identify a dengue weather correlation pattern in Kandy, Sri Lanka, compare the results with results of similar studies, and establish ways for better control and prevention of dengue. We collected data on reported dengue cases in Kandy and mid-year population data from 2003 to 2012, and calculated weekly incidences. We obtained daily weather data from two weather stations and converted it into weekly data. We studied correlation patterns between dengue incidence and weather variables using the wavelet time series analysis, and then calculated cross-correlation coefficients to find magnitudes of correlations. We found a positive correlation between dengue incidence and rainfall in millimeters, the number of rainy and wet days, the minimum temperature, and the night and daytime, as well as average, humidity, mostly with a five- to seven-week lag. Additionally, we found correlations between dengue incidence and maximum and average temperatures, hours of sunshine, and wind, with longer lag periods. Dengue incidences showed a negative correlation with wind run. Our results showed that rainfall, temperature, humidity, hours of sunshine, and wind are correlated with local dengue incidence. We have suggested ways to improve dengue management routines and to control it in these times of global warming. We also noticed that the results of dengue weather correlation studies can vary depending on the data analysis.
The Effect of Weather Events on Truck Traffic Patterns Using Fixed and Mobile Traffic Sensors
DOT National Transportation Integrated Search
2017-12-20
Connected vehicle applications related to road weather management and enabling systems are being designed to collect and take advantage of connected vehicle data and information transmissions to increase situational awareness, improve roadway levels ...
Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry
NASA Astrophysics Data System (ADS)
Roland, M.; Serrano-Ortiz, P.; Kowalski, A. S.; Goddéris, Y.; Sánchez-Cañete, E. P.; Ciais, P.; Domingo, F.; Cuezva, S.; Sanchez-Moral, S.; Longdoz, B.; Yakir, D.; Van Grieken, R.; Schott, J.; Cardell, C.; Janssens, I. A.
2013-07-01
CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.
The association of weather and mortality in Bangladesh from 1983–2009
Alam, Nurul; Begum, Dilruba; Streatfield, Peter Kim
2012-01-01
Introduction The association of weather and mortality have not been widely studied in subtropical monsoon regions, particularly in Bangladesh. This study aims to assess the association of weather and mortality (measured with temperature and rainfall), adjusting for time trend and seasonal patterns in Abhoynagar, Bangladesh. Material and methods A sample vital registration system (SVRS) was set up in 1982 to facilitate operational research in family planning and maternal and child health. SVRS provided data on death counts and population from 1983–2009. The Bangladesh Meteorological Department provided data on daily temperature and rainfall for the same period. Time series Poisson regression with cubic spline functions was used, allowing for over-dispersion, including lagged weather parameters, and adjusting for time trends and seasonal patterns. Analysis was carried out using R statistical software. Results Both weekly mean temperature and rainfall showed strong seasonal patterns. After adjusting for seasonal pattern and time trend, weekly mean temperatures (lag 0) below the 25th percentile and between the 25th and 75th percentiles were associated with increased mortality risk, particularly in females and adults aged 20–59 years by 2.3–2.4% for every 1°C decrease. Temperature above the 75th percentile did not increase the risk. Every 1 mm increase in rainfall up to 14 mm of weekly average rainfall over lag 0–4 weeks was associated with decreased mortality risks. Rainfall above 14 mm was associated with increased mortality risk. Conclusion The relationships between temperature, rainfall and mortality reveal the importance of understanding the current factors contributing to adaptation and acclimatization, and how these can be enhanced to reduce negative impacts from weather. PMID:23195512
Forecasting of hourly load by pattern recognition in a small area power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti-Shahrokh, A.
1982-01-01
An intuitive, logical, simple and efficient method of forecasting hourly load in a small area power system is presented. A pattern recognition approach is used in developing the forecasting model. Pattern recognition techniques are powerful tools in the field of artificial intelligence (cybernetics) and simulate the way the human brain operates to make decisions. Pattern recognition is generally used in analysis of processes where the total physical nature behind the process variation is unkown but specific kinds of measurements explain their behavior. In this research basic multivariate analyses, in conjunction with pattern recognition techniques, are used to develop a linearmore » deterministic model to forecast hourly load. This method assumes that load patterns in the same geographical area are direct results of climatological changes (weather sensitive load), and have occurred in the past as a result of similar climatic conditions. The algorithm described in here searches for the best possible pattern from a seasonal library of load and weather data in forecasting hourly load. To accommodate the unpredictability of weather and the resulting load, the basic twenty-four load pattern was divided into eight three-hour intervals. This division was made to make the model adaptive to sudden climatic changes. The proposed method offers flexible lead times of one to twenty-four hours. The results of actual data testing had indicated that this proposed method is computationally efficient, highly adaptive, with acceptable data storage size and accuracy that is comparable to many other existing methods.« less
Teaching through Trade Books: Cloud Watchers
ERIC Educational Resources Information Center
Morgan, Emily; Ansberry, Karen; Phillips-Birdsong, Colleen
2010-01-01
Weather is a topic in science that is applicable to our lives on an everyday basis. The weather often determines what we wear, where we go, and what we do. This month's column focuses on clouds and the part they play in determining our weather. In the K-3 lesson, students learn about different cloud types and sculpt each type out of shaving cream.…
Automated Detection of Fronts using a Deep Learning Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Biard, J. C.; Kunkel, K.; Racah, E.
2017-12-01
A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches very well with the truth dataset. There is a slight underestimate in total numbers in the CNN results but the spatial pattern is a close match. The categorization of front types by CNN is best for cold and occluded and worst for warm. These initial results from our ongoing development highlight the great promise of this technology.
NASA Astrophysics Data System (ADS)
Corcoran, Jonathan; Higgs, Gary; Rohde, David; Chhetri, Prem
2011-06-01
Fires in urban areas can cause significant economic, physical and psychological damage. Despite this, there has been a comparative lack of research into the spatial and temporal analysis of fire incidence in urban contexts. In this paper, we redress this gap through an exploration of the association of fire incidence to weather, calendar events and socio-economic characteristics in South-East Queensland, Australia using innovative technique termed the quad plot. Analysing trends in five fire incident types, including malicious false alarms (hoax calls), residential buildings, secondary (outdoor), vehicle and suspicious fires, results suggest that risk associated with all is greatly increased during school holidays and during long weekends. For all fire types the lowest risk of incidence was found to occur between one and six a.m. It was also found that there was a higher fire incidence in socially disadvantaged neighbourhoods and there was some evidence to suggest that there may be a compounding impact of high temperatures in such areas. We suggest that these findings may be used to guide the operations of fire services through spatial and temporal targeting to better utilise finite resources, help mitigate risk and reduce casualties.
Kovats, R. S.
2000-01-01
The El Niño-Southern Oscillation (ENSO) is the best known example of quasi-periodic natural climate variability on the interannual time scale. It comprises changes in sea temperature in the Pacific Ocean (El Niño) and changes in atmospheric pressure across the Pacific Basin (the Southern Oscillation), together with resultant effects on world weather. El Niño events occur at intervals of 2-7 years. In certain countries around the Pacific and beyond, El Niño is associated with extreme weather conditions that can cause floods and drought. Globally it is linked to an increased impact of natural disasters. There is evidence that ENSO is associated with a heightened risk of certain vector-borne diseases in specific geographical areas where weather patterns are linked with the ENSO cycle and disease control is limited. This is particularly true for malaria, but associations are also suggested in respect of epidemics of other mosquito-borne and rodent-borne diseases that can be triggered by extreme weather conditions. Seasonal climate forecasts, predicting the likelihood of weather patterns several months in advance, can be used to provide early indicators of epidemic risk, particularly for malaria. Interdisciplinary research and cooperation are required in order to reduce vulnerability to climate variability and weather extremes. PMID:11019461
Analysis of weather patterns associated with air quality degradation and potential health impacts
Emissions from anthropogenic and natural sources into the atmosphere are determined in large measure by prevailing weather conditions through complex physical, dynamical and chemical processes. Air pollution episodes are characterized by degradation in air quality as reflected by...
Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining
De Angelis, Marco; Marín Puchades, Víctor; Fraboni, Federico; Pietrantoni, Luca
2017-01-01
The factors associated with severity of the bicycle crashes may differ across different bicycle crash patterns. Therefore, it is important to identify distinct bicycle crash patterns with homogeneous attributes. The current study aimed at identifying subgroups of bicycle crashes in Italy and analyzing separately the different bicycle crash types. The present study focused on bicycle crashes that occurred in Italy during the period between 2011 and 2013. We analyzed categorical indicators corresponding to the characteristics of infrastructure (road type, road signage, and location type), road user (i.e., opponent vehicle and cyclist’s maneuver, type of collision, age and gender of the cyclist), vehicle (type of opponent vehicle), and the environmental and time period variables (time of the day, day of the week, season, pavement condition, and weather). To identify homogenous subgroups of bicycle crashes, we used latent class analysis. Using latent class analysis, the bicycle crash data set was segmented into 19 classes, which represents 19 different bicycle crash types. Logistic regression analysis was used to identify the association between class membership and severity of the bicycle crashes. Finally, association rules were conducted for each of the latent classes to uncover the factors associated with an increased likelihood of severity. Association rules highlighted different crash characteristics associated with an increased likelihood of severity for each of the 19 bicycle crash types. PMID:28158296
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
NASA Astrophysics Data System (ADS)
Li, Jingwan; Sharma, Ashish; Evans, Jason; Johnson, Fiona
2018-01-01
Addressing systematic biases in regional climate model simulations of extreme rainfall is a necessary first step before assessing changes in future rainfall extremes. Commonly used bias correction methods are designed to match statistics of the overall simulated rainfall with observations. This assumes that change in the mix of different types of extreme rainfall events (i.e. convective and non-convective) in a warmer climate is of little relevance in the estimation of overall change, an assumption that is not supported by empirical or physical evidence. This study proposes an alternative approach to account for the potential change of alternate rainfall types, characterized here by synoptic weather patterns (SPs) using self-organizing maps classification. The objective of this study is to evaluate the added influence of SPs on the bias correction, which is achieved by comparing the corrected distribution of future extreme rainfall with that using conventional quantile mapping. A comprehensive synthetic experiment is first defined to investigate the conditions under which the additional information of SPs makes a significant difference to the bias correction. Using over 600,000 synthetic cases, statistically significant differences are found to be present in 46% cases. This is followed by a case study over the Sydney region using a high-resolution run of the Weather Research and Forecasting (WRF) regional climate model, which indicates a small change in the proportions of the SPs and a statistically significant change in the extreme rainfall over the region, although the differences between the changes obtained from the two bias correction methods are not statistically significant.
Code of Federal Regulations, 2014 CFR
2014-10-01
... again in the geographic area in which the public transportation system is located; or projected changes in development patterns, demographics, or extreme weather or other climate patterns. Serious damage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... again in the geographic area in which the public transportation system is located; or projected changes in development patterns, demographics, or extreme weather or other climate patterns. Serious damage...
NASA Astrophysics Data System (ADS)
Cooke, Melanie
The substantial interannual variability and the observed warming trend of the Beaufort Sea region are important motivators for the study of regional climate and weather there. In an attempt to further our understanding of strong wind events, which can drive sea ice dynamics and storm surges, their characteristic environments at the synoptic and planetary scales are defined and analysed using global reanalysis data. A dependency on an enhanced or suppressed Aleutian low is found. This produces either a strong southeasterly or north-westerly 1000-hPa geostrophic wind event. The characteristic mid-tropospheric patterns for these two distinct event types show similarities to the positive and negative Pacific/North American teleconnection patterns, but their correlations have yet to be assessed.
Atmospheric Diabatic Heating in Different Weather States and the General Circulation
NASA Technical Reports Server (NTRS)
Rossow, William B.; Zhang, Yuanchong; Tselioudis, George
2016-01-01
Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.
NASA Astrophysics Data System (ADS)
Otero, Noelia; Sillmann, Jana; Butler, Tim
2018-03-01
A gridded, geographically extended weather type classification has been developed based on the Jenkinson-Collison (JC) classification system and used to evaluate the representation of weather types over Europe in a suite of climate model simulations. To this aim, a set of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) is compared with the circulation from two reanalysis products. Furthermore, we examine seasonal changes between simulated frequencies of weather types at present and future climate conditions. The models are in reasonably good agreement with the reanalyses, but some discrepancies occur in cyclonic days being overestimated over North, and underestimated over South Europe, while anticyclonic situations were overestimated over South, and underestimated over North Europe. Low flow conditions were generally underestimated, especially in summer over South Europe, and Westerly conditions were generally overestimated. The projected frequencies of weather types in the late twenty-first century suggest an increase of Anticyclonic days over South Europe in all seasons except summer, while Westerly days increase over North and Central Europe, particularly in winter. We find significant changes in the frequency of Low flow conditions and the Easterly type that become more frequent during the warmer seasons over Southeast and Southwest Europe, respectively. Our results indicate that in winter the Westerly type has significant impacts on positive anomalies of maximum and minimum temperature over most of Europe. Except in winter, the warmer temperatures are linked to Easterlies, Anticyclonic and Low Flow conditions, especially over the Mediterranean area. Furthermore, we show that changes in the frequency of weather types represent a minor contribution of the total change of European temperatures, which would be mainly driven by changes in the temperature anomalies associated with the weather types themselves.
NASA Astrophysics Data System (ADS)
Esteban, Pere; Beck, Christoph; Philipp, Andreas
2010-05-01
Using data associated with accidents or damages caused by snow avalanches over the eastern Pyrenees (Andorra and Catalonia) several atmospheric circulation type catalogues have been obtained. For this purpose, different circulation type classification methods based on Principal Component Analysis (T-mode and S-mode using the extreme scores) and on optimization procedures (Improved K-means and SANDRA) were applied . Considering the characteristics of the phenomena studied, not only single day circulation patterns were taken into account but also sequences of circulation types of varying length. Thus different classifications with different numbers of types and for different sequence lengths were obtained using the different classification methods. Simple between type variability, within type variability, and outlier detection procedures have been applied for selecting the best result concerning snow avalanches type classifications. Furthermore, days without occurrence of the hazards were also related to the avalanche centroids using pattern-correlations, facilitating the calculation of the anomalies between hazardous and no hazardous days, and also frequencies of occurrence of hazardous events for each circulation type. Finally, the catalogues statistically considered the best results are evaluated using the avalanche forecaster expert knowledge. Consistent explanation of snow avalanches occurrence by means of circulation sequences is obtained, but always considering results from classifications with different sequence length. This work has been developed in the framework of the COST Action 733 (Harmonisation and Applications of Weather Type Classifications for European regions).
Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches
Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D.; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel
2016-01-01
Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability. PMID:27560980
Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.
Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel
2016-01-01
Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability.
Haack, S.K.; Fogarty, L.R.; Wright, C.
2003-01-01
This study quantified Escherichia coli(EC) and enterococci (ENT) in beach waters and dominant source materials, correlated these with ambient conditions, and determined selected EC genotypes and ENT phenotypes. Bathing-water ENT criteria were exceeded more frequently than EC criteria, providing conflicting interpretations of water quality. Dominant sources of EC and ENT were bird feces (108/d/bird), storm drains (107/d), and river water (1011/d); beach sands, shallow groundwater and detritus were additional sources. Beach-water EC genotypes and ENT phenotypes formed clusters with those from all source types, reflecting diffuse inputs. Some ENT isolates had phenotypes similar to those of human pathogens and/or exhibited high-level resistance to human-use antibiotics. EC and ENT concentrations were influenced by collection time and wind direction. There was a 48-72-h lag between rainfall and elevated EC concentrations at three southern shoreline beaches, but no such lag at western and eastern shoreline beaches, reflecting the influence of beach orientation with respect to cyclic (3-5 d) summer weather patterns. In addition to local contamination sources and processes, conceptual or predictive models of Great Lakes beach water quality should consider regional weather patterns, lake hydrodynamics, and the influence of monitoring method variables (time of day, frequency).
Weathering During Glacial-Interglacial Cycles Based on Pb Isotopes at Orphan Knoll, NW Atlantic
NASA Astrophysics Data System (ADS)
Flynn, S. N.; Martin, E. E.
2017-12-01
Seawater Pb isotopes extracted from FeMn oxyhydroxide coatings on deep sea sediments preserve a record of regional variations in continental weathering intensity. Crocket et al. (2012) documented a distinct increase in seawater Pb isotopes across Termination I (TI) at IODP Sites U1302/03 on Orphan Knoll in the NW Atlantic which they attributed to an increase in weathering intensity associated with ice sheet retreat. Deglaciation during Termination II (TII) was more rapid than TI due to higher insolation forcing and elevated CO2 levels. This rapid warming followed Heinrich Stadial 11 (HS11) cooling and circulation changes, but was not interrupted by a Younger Dryas-type reversal in warming. In this study, Pb isotopic data from leachates of the <63 µm fraction of bulk sediment from TII at Sites U1302/03 are used to test whether changes in weathering are a feature of terminations and whether differences in the character of the termination translate to differences in the weathering response. We analyzed the clay/silt fraction to minimize preformed FeMn oxyhydroxides associated with IRD. All three Pb isotopic systems display similar patterns. Seawater 206Pb/204Pb values are 19.5 during MIS 6, reach a minimum of 18.7 during HS11, increase in < 1 ky to 20.6 in MIS 5e, and then vary between 19.9 - 20.5 across MIS 5e-d. In comparison to the TI study (Crocket et al., 2009), the TII HS is defined by a minimum in Pb isotopes that suggests suppressed chemical weathering during cooling and ice sheet advance. The increase in 206Pb/204Pb during TII indicates a rapid increase in weathering at high latitudes following glacial retreat. This result is consistent with a negative shift in ɛNd values during TII observed farther south on Bermuda Rise and interpreted as increased weathering of old continental material (Deaney et al. 2017). Future research on TII at Orphan Knoll includes analyses of detrital Pb isotopes to isolate the impact of changes in source material versus weathering intensity on seawater Pb isotopes, and analyses of seawater Nd isotopes to better understand how changes in circulation might impact delivery of silt/clay fractions to Orphan Knoll. Overall, trends in seawater Pb isotopes at TII illustrate that variations in weathering intensity are sensitive to the rate and magnitude of climate change.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Silica Retention and Enrichment in Open-System Chemical Weathering on Mars
NASA Technical Reports Server (NTRS)
Yen, A. S.; Ming, D. W.; Gellert, R.; Clark, B. C.; Mittlefehldt, D. W.; Morris, R. V.; Thompson, L. M.; Berger, J.
2015-01-01
Chemical signatures of weathering are evident in the Alpha Particle X-ray Spectrometer (APXS) datasets from Gusev Crater, Meridiani Planum, and Gale Crater. Comparisons across the landing sites show consistent patterns indicating silica retention and/or enrichment in open-system aqueous alteration.
Are existing irrigation salinity leaching requirement guidelines overly conservative or obsolete?
USDA-ARS?s Scientific Manuscript database
Water scarcity and increased frequency of drought, resulting from erratic weather attributable to climatic change or alterations in historical weather patterns, have caused greater scrutiny of irrigated agriculture’s demand on water resources. The traditional guidelines for the calculation of the c...
Recent weather extremes and impact agricultural production and vector-borne disease patterns
USDA-ARS?s Scientific Manuscript database
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA’s satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to ...
Investigating Anomalies in the Output Generated by the Weather Research and Forecasting (WRF) Model
NASA Astrophysics Data System (ADS)
Decicco, Nicholas; Trout, Joseph; Manson, J. Russell; Rios, Manny; King, David
2015-04-01
The Weather Research and Forecasting (WRF) model is an advanced mesoscale numerical weather prediction (NWP) model comprised of two numerical cores, the Numerical Mesoscale Modeling (NMM) core, and the Advanced Research WRF (ARW) core. An investigation was done to determine the source of erroneous output generated by the NMM core. In particular were the appearance of zero values at regularly spaced grid cells in output fields and the NMM core's evident (mis)use of static geographic information at a resolution lower than the nesting level for which the core is performing computation. A brief discussion of the high-level modular architecture of the model is presented as well as methods utilized to identify the cause of these problems. Presented here are the initial results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''.
Spatial patterns and broad-scale weather cues of beech mast seeding in Europe.
Vacchiano, Giorgio; Hacket-Pain, Andrew; Turco, Marco; Motta, Renzo; Maringer, Janet; Conedera, Marco; Drobyshev, Igor; Ascoli, Davide
2017-07-01
Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Park, J.; Hyun, C.; Cho, H.; Park, H.
2010-12-01
Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).
Unusually cold and dry winters increase mortality in Australia.
Huang, Cunrui; Chu, Cordia; Wang, Xiaoming; Barnett, Adrian G
2015-01-01
Seasonal patterns in mortality have been recognised for decades, with a marked excess of deaths in winter, yet our understanding of the causes of this phenomenon is not yet complete. Research has shown that low and high temperatures are associated with increased mortality independently of season; however, the impact of unseasonal weather on mortality has been less studied. In this study, we aimed to determine if unseasonal patterns in weather were associated with unseasonal patterns in mortality. We obtained daily temperature, humidity and mortality data from 1988 to 2009 for five major Australian cities with a range of climates. We split the seasonal patterns in temperature, humidity and mortality into their stationary and non-stationary parts. A stationary seasonal pattern is consistent from year-to-year, and a non-stationary pattern varies from year-to-year. We used Poisson regression to investigate associations between unseasonal weather and an unusual number of deaths. We found that deaths rates in Australia were 20-30% higher in winter than summer. The seasonal pattern of mortality was non-stationary, with much larger peaks in some winters. Winters that were colder or drier than a typical winter had significantly increased death risks in most cities. Conversely summers that were warmer or more humid than average showed no increase in death risks. Better understanding the occurrence and cause of seasonal variations in mortality will help with disease prevention and save lives. Copyright © 2014 Elsevier Inc. All rights reserved.
R. Sam Williams
2005-01-01
Weathering is the general term used to define the slow degradation of materials exposed to the weather. The degradation mechanism depends on the type of material, but the cause is a combination of factors found in nature: moisture, sunlight, heat/cold, chemicals, abrasion by windblown materials, and biological agents. Tall mountains weather by the complex and...
Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia
NASA Astrophysics Data System (ADS)
Farnell, C.; Rigo, T.; Pineda, N.
2017-01-01
Several studies reported sudden increases in the total lightning flash rate (intra-cloud+cloud-to-ground) preceding the occurrence of severe weather (large hail, wind gusts associated to thunderstorms and/or tornadoes). Named ;Lightning Jump;, this pattern has demonstrated to be of operational applicability in the forecasting of severe weather phenomena. The present study introduces the application of a lightning jump algorithm, with an identification of cells based solely on total lightning data, revealing that there is no need of radar data to trigger severe weather warnings. The algorithm was validated by means of a dataset severe weather events occurred in Catalonia in the period 2009-2014. Results obtained revealed very promising.
NASA Astrophysics Data System (ADS)
Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu
2017-10-01
Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation-illuviation dynamics is the main mechanism for REE accumulation in weathering crusts. Favorable exogenetic factors facilitate the accumulation of REE in regolith and preservation of the ore bodies. These include quasi-equilibrium between denudation and exhumation at regional scales, local geomorphology dominated by low-lying gentle slopes, adequate rainfall, and favorable groundwater conditions. Continuous operation of such a dynamic weathering system is essential in the formation of regolith-hosted REE deposits.
Lateral weathering gradients in glaciated catchments
NASA Astrophysics Data System (ADS)
McGuire, K. J.; Bailey, S. W.; Ross, D. S.; Strahm, B. D.; Schreiber, M. E.
2016-12-01
Mineral dissolution and the distribution of weathering products are fundamental processes that drive development and habitability of the Earth's critical zone; yet, the spatial configuration of these processes in some systems is not well understood. Feedbacks between hydrologic flows and weathering fluxes are necessary to understanding how the critical zone develops. In upland glaciated catchments of the northeastern USA, primary mineral dissolution and the distribution of weathering products are spatially distinct and predictable over short distances. Hillslopes, where shallow soils force lateral hydrologic fluxes through accumulated organic matter, produce downslope gradients in mineral depletion, weathering product accumulation, soil development, and solute chemistry. We propose that linked gradients in hydrologic flow paths, soil depth, and vegetation lead to predictable differences in the location and extent of mineral dissolution in regolith (soil, subsoil, and rock fragments) and bedrock, and that headwater catchments within the upland glaciated northeast show a common architecture across hillslopes as a result. Examples of these patterns and processes will be illustrated using observations from the Hubbard Brook Experimental Forest in New Hampshire where laterally distinct soils with strong morphological and biogeochemical gradients have been documented. Patterns in mineral depletion and product accumulation are essential in predicting how ecosystems will respond to stresses, disturbance, and management.
Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010–2012 period. We utilized 2000–2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations. PMID:24658301
NASA Astrophysics Data System (ADS)
Hsu, Chia-Hua; Cheng, Fang-Yi
2016-11-01
Yunlin County is located in the central part of western Taiwan with major emissions from the Mailiao industrial park, the Taichung Power Plants and heavy traffic. In order to understand the influence of meteorological conditions on PM2.5 concentrations in Yunlin County, we applied a two-stage cluster analysis method using the daily averaged surface winds from four air quality monitoring stations in Yunlin County to classify the weather pattern. The study period includes 1095 days from Jan 2013 to December 2015. The classification results show that the low PM2.5 concentration occurs when the synoptic weather in Taiwan is affected by the strong southwesterly monsoonal flow. The high PM2.5 concentration occurs when Taiwan is under the influence of weak synoptic weather conditions and continental high-pressure peripheral circulation. A high PM2.5 event was studied and the Weather Research and Forecasting (WRF) meteorological model was performed. The result indicated that due to being blocked by the Central Mountain Range, Yunlin County, which is situated on the leeside of the mountains, exhibits low wind speed and strong subsidence behavior that favors PM2.5 accumulation.
A dynamical systems approach to studying midlatitude weather extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide
2017-04-01
Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.
NASA Astrophysics Data System (ADS)
Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor
2015-09-01
Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.
Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor
2015-09-01
Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.
Efficient transfer of weather information to the pilot in flight
NASA Technical Reports Server (NTRS)
Mcfarland, R. H.
1982-01-01
Efficient methods for providing weather information to the pilot in flight are summarized. Use of discrete communications channels in the aeronautical, VHF band or subcarriers in the VOR navigation band are considered the best possibilities. Data rates can be provided such that inputs to the ground based transmitters from 2400 band telephone lines are easily accommodated together with additional data. The crucial weather data considered for uplinking are identified as radar reflectivity patterns relating to precipitation, spherics data, hourly sequences, nowcasts, forecasts, cloud top heights with freezing and icing conditions, the critical weather map and satellite maps. NEXRAD, the ground based, Doppler weather radar which will produce an improved weather product also encourages use of an uplink to fully utilize its capability to improve air safety.
Lee, Cameron C
2015-11-01
Previous research using varying methods has shown that the day-to-day variability in cardiovascular (CV)-related mortality is correlated with a number of different meteorological variables, though these relationships can vary geographically. This research systematically examines the relationship between anomalous winter CV-related mortality and geographically and seasonally relative multivariate surface weather types derived from a recently developed gridded weather typing classification (GWTC) for cities in varying climate regions of the United States of America (USA). Results indicate that for all locations examined, during winter, a dry and cool (DC) weather type is significantly related to increased CV-related mortality, especially in the 2 weeks immediately after it occurs, with no apparent mortality displacement. Across the USA as a whole, the peak of this relationship is a 4.1% increase in CV-related mortality at a lag of 3 days. Spike days in CV-related mortality show similar trends, being over 50% more likely 2 to 4 days after the DC type occurs. A humid and warm (HW) weather type exhibited a significant and opposite relationship to that of DC. While these results for DC and HW were statistically significant at every location examined, the magnitudes were larger in the warmer locations. Among other weather types, Warm Front Passages (WFP) were also related to significant increases in CV-related mortality, especially 1 day after they occurred. Though this link was much more varied geographically than results found with DC or HW, it suggests that sequences of multiple DC days followed by WFP may result in increased CV-related mortality.
NASA Astrophysics Data System (ADS)
Lee, Cameron C.
2015-11-01
Previous research using varying methods has shown that the day-to-day variability in cardiovascular (CV)-related mortality is correlated with a number of different meteorological variables, though these relationships can vary geographically. This research systematically examines the relationship between anomalous winter CV-related mortality and geographically and seasonally relative multivariate surface weather types derived from a recently developed gridded weather typing classification (GWTC) for cities in varying climate regions of the United States of America (USA). Results indicate that for all locations examined, during winter, a dry and cool (DC) weather type is significantly related to increased CV-related mortality, especially in the 2 weeks immediately after it occurs, with no apparent mortality displacement. Across the USA as a whole, the peak of this relationship is a 4.1% increase in CV-related mortality at a lag of 3 days. Spike days in CV-related mortality show similar trends, being over 50% more likely 2 to 4 days after the DC type occurs. A humid and warm (HW) weather type exhibited a significant and opposite relationship to that of DC. While these results for DC and HW were statistically significant at every location examined, the magnitudes were larger in the warmer locations. Among other weather types, Warm Front Passages (WFP) were also related to significant increases in CV-related mortality, especially 1 day after they occurred. Though this link was much more varied geographically than results found with DC or HW, it suggests that sequences of multiple DC days followed by WFP may result in increased CV-related mortality.
The impact of synoptic weather on UK surface ozone and implications for premature mortality
NASA Astrophysics Data System (ADS)
Pope, R. J.; Butt, E. W.; Chipperfield, M. P.; Doherty, R. M.; Fenech, S.; Schmidt, A.; Arnold, S. R.; Savage, N. H.
2016-12-01
Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.
NASA Astrophysics Data System (ADS)
Dreibrodt, Stefan; Zahrer, Jürgen; Brauer, Achim
2013-04-01
Depositional patterns of synchronously deposited varves of Lake Belauer See and Lake Poggensee (northern Germany) were studied on thin sections under the microscope comparatively. Events and trends that occurred synchronously in the lake systems were detected and interpret as limnologic responses to supra-regional extrinsic (climate) drivers. The different thresholds of the compared lake systems implied by different lake size were utilized to infer about weather conditions. For Lake Belauer See microfacies types of sub-recent varves were proved to reflect responses of certain meteorological conditions (e.g. severity of winters). A short weather anomaly at around 5950 cal BP was detected. Cold summers of about 40 successive years (probably with sudden frost events) lead to breaks of the thermal summer stratification and the associated carbonate precipitation. Instead renewed blooms of planctic diatoms occurred. The subsequent interval of the Funnel Beaker Culture seems to have experienced a period with favorable wea¬ther conditions, with warm summers and not extra-ordinary severe winters. Between ca. 5400 and 5340 cal BP an interval with pronounced warm winters is indicated. The favorable weather conditions termina¬ted abruptly at around 5275 cal BP when the weather (in particular summers) became colder. The comparison of the sediment sequences also provides evidence for the asynchronic onset of anthropogenic activity in the catchment areas of the lakes. A significant increase of minerogenic matter (quartz grains) indication soil erosion in the lake catchment started at ca. 3850 cal BC in Lake Poggensee, and at ca. 3500 cal BC in Lake Belau. Cycles of minerogenic input have been detected with duration of 20-25 years. Whether these cycles could represent slash and burn cycles has to be studied further.
Groen, Thomas A; L'Ambert, Gregory; Bellini, Romeo; Chaskopoulou, Alexandra; Petric, Dusan; Zgomba, Marija; Marrama, Laurence; Bicout, Dominique J
2017-10-26
Culex pipiens is the major vector of West Nile virus in Europe, and is causing frequent outbreaks throughout the southern part of the continent. Proper empirical modelling of the population dynamics of this species can help in understanding West Nile virus epidemiology, optimizing vector surveillance and mosquito control efforts. But modelling results may differ from place to place. In this study we look at which type of models and weather variables can be consistently used across different locations. Weekly mosquito trap collections from eight functional units located in France, Greece, Italy and Serbia for several years were combined. Additionally, rainfall, relative humidity and temperature were recorded. Correlations between lagged weather conditions and Cx. pipiens dynamics were analysed. Also seasonal autoregressive integrated moving-average (SARIMA) models were fitted to describe the temporal dynamics of Cx. pipiens and to check whether the weather variables could improve these models. Correlations were strongest between mean temperatures at short time lags, followed by relative humidity, most likely due to collinearity. Precipitation alone had weak correlations and inconsistent patterns across sites. SARIMA models could also make reasonable predictions, especially when longer time series of Cx. pipiens observations are available. Average temperature was a consistently good predictor across sites. When only short time series (~ < 4 years) of observations are available, average temperature can therefore be used to model Cx. pipiens dynamics. When longer time series (~ > 4 years) are available, SARIMAs can provide better statistical descriptions of Cx. pipiens dynamics, without the need for further weather variables. This suggests that density dependence is also an important determinant of Cx. pipiens dynamics.
Weather patterns, food security and humanitarian response in sub-Saharan Africa.
Haile, Menghestab
2005-11-29
Although considerable achievements in the global reduction of hunger and poverty have been made, progress in Africa so far has been very limited. At present, a third of the African population faces widespread hunger and chronic malnutrition and is exposed to a constant threat of acute food crisis and famine. The most affected are rural households whose livelihood is heavily dependent on traditional rainfed agriculture. Rainfall plays a major role in determining agricultural production and hence the economic and social well being of rural communities. The rainfall pattern in sub-Saharan Africa is influenced by large-scale intra-seasonal and inter-annual climate variability including occasional El Niño events in the tropical Pacific resulting in frequent extreme weather event such as droughts and floods that reduce agricultural outputs resulting in severe food shortages. Households and communities facing acute food shortages are forced to adopt coping strategies to meet the immediate food requirements of their families. These extreme responses may have adverse long-term, impacts on households' ability to have sustainable access to food as well as the environment. The HIV/AIDS crisis has also had adverse impacts on food production activities on the continent. In the absence of safety nets and appropriate financial support mechanisms, humanitarian aid is required to enable households effectively cope with emergencies and manage their limited resources more efficiently. Timely and appropriate humanitarian aid will provide households with opportunities to engage in productive and sustainable livelihood strategies. Investments in poverty reduction efforts would have better impact if complemented with timely and predictable response mechanisms that would ensure the protection of livelihoods during crisis periods whether weather or conflict-related. With an improved understanding of climate variability including El Niño, the implications of weather patterns for the food security and vulnerability of rural communities have become more predictable and can be monitored effectively. The purpose of this paper is to investigate how current advances in the understanding of climate variability, weather patterns and food security could contribute to improved humanitarian decision-making. The paper will propose new approaches for triggering humanitarian responses to weather-induced food crises.
Weather patterns, food security and humanitarian response in sub-Saharan Africa
Haile, Menghestab
2005-01-01
Although considerable achievements in the global reduction of hunger and poverty have been made, progress in Africa so far has been very limited. At present, a third of the African population faces widespread hunger and chronic malnutrition and is exposed to a constant threat of acute food crisis and famine. The most affected are rural households whose livelihood is heavily dependent on traditional rainfed agriculture. Rainfall plays a major role in determining agricultural production and hence the economic and social well being of rural communities. The rainfall pattern in sub-Saharan Africa is influenced by large-scale intra-seasonal and inter-annual climate variability including occasional El Niño events in the tropical Pacific resulting in frequent extreme weather event such as droughts and floods that reduce agricultural outputs resulting in severe food shortages. Households and communities facing acute food shortages are forced to adopt coping strategies to meet the immediate food requirements of their families. These extreme responses may have adverse long-term impacts on households' ability to have sustainable access to food as well as the environment. The HIV/AIDS crisis has also had adverse impacts on food production activities on the continent. In the absence of safety nets and appropriate financial support mechanisms, humanitarian aid is required to enable households effectively cope with emergencies and manage their limited resources more efficiently. Timely and appropriate humanitarian aid will provide households with opportunities to engage in productive and sustainable livelihood strategies. Investments in poverty reduction efforts would have better impact if complemented with timely and predictable response mechanisms that would ensure the protection of livelihoods during crisis periods whether weather or conflict-related. With an improved understanding of climate variability including El Niño, the implications of weather patterns for the food security and vulnerability of rural communities have become more predictable and can be monitored effectively. The purpose of this paper is to investigate how current advances in the understanding of climate variability, weather patterns and food security could contribute to improved humanitarian decision-making. The paper will propose new approaches for triggering humanitarian responses to weather-induced food crises. PMID:16433102
Local weather conditions have complex effects on the growth of blue tit nestlings.
Mainwaring, Mark C; Hartley, Ian R
2016-08-01
Adverse weather conditions are expected to result in impaired nestling development in birds, but empirical studies have provided equivocal support for such a relationship. This may be because the negative effects of adverse weather conditions are masked by parental effects. Globally, ambient temperatures, rainfall levels and wind speeds are all expected to increase in a changing climate and so there is a need for a better understanding of the relationship between weather conditions and nestling growth. Here, we describe a correlative study that examined the relationships between local temperatures, rainfall levels and wind speeds and the growth of individual blue tit (Cyanistes caeruleus) nestlings in relation to their hatching order and sex. We found that changes in a range of morphological characters were negatively related to both temperature and wind speed, but positively related to rainfall. These patterns were further influenced by the hatching order of the nestlings but not by nestling sex. This suggests that the predicted changes in local weather conditions may have complex effects on nestling growth, but that parents may be able to mitigate the adverse effects via adaptive parental effects. We therefore conclude that local weather conditions have complex effects on avian growth and the implications for patterns of avian growth in a changing climate are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?
NASA Astrophysics Data System (ADS)
Lantz, C.; Binzel, R. P.; DeMeo, F. E.
2018-03-01
We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.
Effects of weather on habitat selection and behavior of mallards wintering in Nebraska
Jorde, Dennis G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.
1984-01-01
Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.
TOPEX/POSEIDON - Mapping the ocean surface
NASA Technical Reports Server (NTRS)
Yamarone, C. A.; Rosell, S.; Farless, D. L.
1986-01-01
Global efforts are under way to model the earth as a complete planet so that weather patterns may be predicted on time scales of months and years. A major limitation in developing models of global weather is the inability to model the circulation of the oceans including the geostrophic surface currents. NASA will soon be initiating a satellite program to correct this deficiency by directly measuring these currents using the science of radar altimetry. Measurement of the ocean topography with broad, frequent coverage of all ocean basins for a long period of time will allow the derivation of the spatial and temporal behavior of surface ocean currents. The TOPEX/POSEIDON mission is a cooperative effort between NASA and the French Centre National d'Etudes Spatiales. This paper describes the goals of this research mission, the data type to be acquired, the satellite and sensors to be used to acquire the data, and the methods by which the data are to be processed and utilized.
14 CFR Appendix D to Part 141 - Commercial Pilot Certification Course
Code of Federal Regulations, 2011 CFR
2011-01-01
... Board; (3) Basic aerodynamics and the principles of flight; (4) Meteorology, to include recognition of critical weather situations, windshear recognition and avoidance, and the use of aeronautical weather... pattern); and (iv) 3 hours in a gyroplane in preparation for the practical test within 60 days preceding...
14 CFR Appendix D to Part 141 - Commercial Pilot Certification Course
Code of Federal Regulations, 2010 CFR
2010-01-01
... Board; (3) Basic aerodynamics and the principles of flight; (4) Meteorology, to include recognition of critical weather situations, windshear recognition and avoidance, and the use of aeronautical weather... pattern); and (iv) 3 hours in a gyroplane in preparation for the practical test within 60 days preceding...
Potential climate change impacts on fire weather in the United States
Warren E. Heilman; Ying Tang; Lifeng Luo; Shiyuan Zhong; Julie Winkler; Xindi. Bian
2015-01-01
Researchers at Michigan State University and the Forest Service's Northern Research Station worked on a joint study to examine the possible effects of future global and regional climate change on the occurrence of fire-weather patterns often associated with extreme and erratic wildfire behavior in the United States.
Margaret S. Devall; Bernard R. Parresol; S. Joseph Wright
1995-01-01
Several plant communities in central Panama, each community located near a weather station, contain trees with annual growth rings, i.e. Cordia alliodora, Pseudobombax septenatum, and Annona spraguei. Tree-ring data are particularly valuable when concomitant weather information is readily available. Patterns of...
Seasonal weather-related decision making for cattle production in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...
NASA Dryden Flight Research Center's Space Weather Needs
NASA Technical Reports Server (NTRS)
Wiley, Scott
2011-01-01
Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.
Characterization of fire regime in Sardinia (Italy)
NASA Astrophysics Data System (ADS)
Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.
2012-12-01
In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and a set of parametric and not parametric statistical tests were used to analyze the fire-weather relationships. Results showed a high inter- and intra-annual variability, also considering the different type of affected vegetation. As for other Mediterranean areas, a smaller number of large fires caused a high proportion of burned area. Land cover greatly influenced fire occurrence and fire size distribution across the landscape. Furthermore, fire activity (number of fires and area burned) showed significant correlations with weather variables, especially summer precipitation and wind, which seemed to drive the fire seasons and the fire propagation, respectively.
John, Gerald F; Han, Yuling; Clement, T Prabhakar
2016-12-15
The Deepwater Horizon (DWH) oil spill event released a large amount of sweet crude oil into the Gulf of Mexico (GOM). An unknown portion of this oil that arrived along the Alabama shoreline interacted with nearshore sediments and sank forming submerged oil mats (SOMs). A considerable amount of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), were trapped within these buried SOMs. Recent studies completed using the oil spill residues collected along the Alabama shoreline have shown that several PAHs, especially higher molecular weight PAHs (four or more aromatic rings), are slowly weathering compared to the weathering levels experienced by the oil when it was floating over the GOM. In this study we have hypothesized that the weathering rates of PAHs in SOMs have slowed down because the buried oil was isolated from direct exposure to sunlight, thus hindering the photodegradation pathway. We further hypothesized that re-exposing SOMs to sunlight can reactivate various weathering reactions. Also, SOMs contain 75-95% sand (by weight) and the entrapped sand could either block direct sunlight or form large oil agglomerates with very little exposed surface area; these processes could possibly interfere with weathering reactions. To test these hypotheses, we completed controlled experiments to study the weathering patterns of PAHs in a field recovered SOM sample after re-exposing it to sunlight. Our experimental results show that the weathering levels of several higher molecular weight PAHs have slowed down primarily due to the absence of sunlight-induced photodegradation reactions. The data also show that sand particles in SOM material could potentially interfere with photodegradation reactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Johnson, J.B.; Edwards, J.W.; Ford, W.M.
2011-01-01
Nocturnal activity patterns of northern myotis (Myotis septentrionalis) at diurnal roost trees remain largely uninvestigated. For example, the influence of reproductive status, weather, and roost tree and surrounding habitat characteristics on timing of emergence, intra-night activity, and entrance at their roost trees is poorly known. We examined nocturnal activity patterns of northern myotis maternity colonies during pregnancy and lactation at diurnal roost trees situated in areas that were and were not subjected to recent prescribed fires at the Fernow Experimental Forest, West Virginia from 2007 to 2009. According to exit counts and acoustic data, northern myotis colony sizes were similar between reproductive periods and roost tree settings. However, intra-night activity patterns differed slightly between reproductive periods and roost trees in burned and non-burned areas. Weather variables poorly explained variation in activity patterns during pregnancy, but precipitation and temperature were negatively associated with activity patterns during lactation. ?? Museum and Institute of Zoology PAS.
Relationship between sediment morphology and oil pollution along the Suez Canal beaches, Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barakat, M.A.K.; Shimy, T.M.; Mostafa, Y.M.
1996-10-01
In this study, marine surface sediments are collected from nine locations along the Suez Canal in order to investigate the relationship between the morphology of sands in the studied beaches and pollution by oil. Basically, the studied samples were analyzed by three techniques: grains-size analysis, microscopic examination, and gas chromatographic (GC) analysis. This study concluded that medium sand is the major class represented in the studied marine sediments. Pollution in these sand grains increases in the irregular grains more so than in the more rounded grains. Also, deep surface points, pitting, and fissures are considered to be good sites tomore » precipitate oil contamination. Also, the presence of iron oxides may be taken as evidence for tanker ballast washings. The heavy fraction (zircon) shows more contamination than the light fraction (quartz) in these samples. Finally, GC profiles have shown two types of samples: one typical of weathered or highly weathered crude oil patterns and the other for samples with very highly weathered profiles. The relationship obtained between morphology studies and both oil content and GC chromatogram profiles indicates that all of the studied locations are suffering from pollution of oil that is spilled while shipping petroleum through the Suez Canal.« less
Modelling wildfire activity in Iberia with different Atmospheric Circulation WTs
NASA Astrophysics Data System (ADS)
Sousa, P. M.; Trigo, R.; Pereira, M. G.; Rasilla, D.; Gouveia, C.
2012-04-01
This work focuses on the spatial and temporal variability of burnt area (BA) for the entire Iberian Peninsula (IP) and on the construction of statistical models to reproduce the inter-annual variability, based on Weather Types Classification (WTC). A common BA dataset was assembled for the first time for the entire Iberian Peninsula, by merging BA records for the 66 administrative regions of Portugal and Spain. A normalization procedure was then applied to the various size regions before performing a k-means cluster analysis to identify large areas characterized by similar fire regimes. The most compelling results were obtained for 4 clusters (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes are shown to be related with constraining factors such as topography, vegetation cover and climate conditions. The response of fire burnt surface at monthly time scales to both long-term climatic pre-conditions and short-term synoptic forcing was assessed through correlation and regression analysis using: (i) temperature and precipitation from 2 to 7 months in advance to fire peak season; (ii) synoptic weather patterns derived from 11 distinct classifications derived under the COSTaction-733. Different responses were obtained for each of the considered regions: (i) a relevant link between BA and short-term synoptic forcing (represented by monthly frequencies of WTC) was identified for all clusters; (ii) long-term climatic preconditioning was relevant for all but one cluster (Northern). Taking into account these links, we developed stepwise regression models with the aim of reproducing the observed BA series (i.e. in hindcast mode). These models were based on the best climatic and synoptic circulation predictors identified previously. All models were cross-validated and their performance varies between clusters, though models exclusively based on WTCs tend to better reproduce annual BA time series than those only based on pre-conditioning climatic information. Nevertheless, the best results are attained when both synoptic and climatic predictors are used simultaneously as predictors, in particular for the two western clusters, where correlation coefficient values are higher than 0.7. Finally, we have used WTC composite maps to characterize the typical synoptic configurations that favor high values of BA. These patterns correspond to dry and warm fluxes, associated with anticyclonic regimes, which foster fire ignition (Pereira et al., 2005). Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. COST733, 2011: "COST 733 Wiki - Harmonisation and Applications of Weather Type Classifications for European regions or COST733 spatial domains for Europe". Available at http://geo21.geo.uni-augsburg.de/cost733wiki/Cost733_Wiki_Main [accessed 1 September 2011].
Weather types and strokes in the Augsburg region (Southern Germany)
NASA Astrophysics Data System (ADS)
Beck, Christoph; Ertl, Michael; Giemsa, Esther; Jacobeit, Jucundus; Naumann, Markus; Seubert, Stefanie
2017-04-01
Strokes are one of the leading causes of morbidity and mortality worldwide and the main reason for longterm care dependency in Germany. Concerning the economical impact on patients and healthcare systems it is of particular importance to prevent this disease as well as to improve the outcome of the affected persons. Beside the primary well-known risk factors like hypertension, cigarette smoking, physical inactivity and others, also weather seems to have pronounced influence on the occurrence and frequency of strokes. Previous studies most often focused on effects of singular meteorological variables like ambient air temperature, air pressure or humidity. An advanced approach is to link the entire suite of daily weather elements classified to air mass- or weather types to cerebrovascular morbidity or mortality. In a joint pilot study bringing together climatologists, environmental scientists and physicians from the University of Augsburg and the clinical centre Augsburg, we analysed relationships between singular meteorological parameters as well as combined weather effects (e.g. weather types) and strokes in the urban area of Augsburg and the surrounding rural region. A total of 17.501 stroke admissions to Neurological Clinic and Clinical Neurophysiology at Klinikum Augsburg between 2006 and 2015 are classified to either "ischaemic" (16.354) or "haemorrhagic" (1.147) subtype according to etiology (based on the International Classification of Diseases - 10th Revision). Spearman correlations between daily frequencies of ischaemic and haemorrhagic strokes and singular atmospheric parameters (T, Tmin, Tmax, air pressure, humidity etc.) measured at the DWD (German weather service) meteorological station at Augsburg Muehlhausen are rather low. However, higher correlations are achieved when considering sub-samples of "homogenous weather conditions" derived from synoptic circulation classifications: e.g. within almost all of 10 types arising from a classification of central European mean sea level pressure fields into "Großwettertypes" (Beck 2000) the relationships between meteorological variables and stroke frequencies are increasing. Mainly temperature variables (Tmin, Tmax, Tmean) appear to be important particularly in winter and summer. Moreover distinct correlations of similar magnitude are obtained with other variables like wind speed or precipitation for specific weather types (e.g. westerly type). In how far these initial findings do really point to additional health impacts beyond temperature effects is subject of ongoing work.
Weather types in the South Shetlands (Antarctica) using a circulation type approach
NASA Astrophysics Data System (ADS)
Mora, Carla; João Rocha, Maria; Dutra, Emanuel; Trigo, Isabel; Vieira, Gonçalo; Fragoso, Marcelo; Ramos, Miguel
2010-05-01
Weather types in the South Shetlands (Antarctica) were defined using an automated method based on the Lamb Weather Type classification scheme (Jones et al. 1993). This is an objective classification originally developed for the British Isles (Jones et al., 1993) and also applied to southeast (Goodess and Palutikof 1998) and northwest Spain (Lorenzo et al, 2009), Portugal (Trigo and DaCamara 2000) and Greece (Maheras et al. 2004) with good results. Daily atmospheric circulation in the South Shetlands region from 1989 to 2009 was classified using a 16-node grid of sea level pressure data from the ERA Interim. The classification is obtained through the comparison of the magnitudes of the directional and rotational components of the geostrophic flow. Basic circulation types were combined into 10 groups of weather types: four directional types (NW, N, S and SW), three anticyclonic types (A, ASW and ANW), and three cyclonic types (C, CSW and CNW). Westerly flow and cyclonic circulation are the most frequent events throughout the year. The sea level pressure field for each weather type is presented and the synoptic characteristics are described. The analysis is based on ERA-Interim fields, including mean sea level pressure, precipitation, cloud cover, humidity and air temperature. Snow thickess modelled using HTESSEL is also considered. Analysis of variance (anova) and multivariate analysis (principal component analysis) are applied to evaluate the characteristics of each weather type. This circulation-type approach showed good results in the past for the downscaling of precipitation in other regions, and we are interested in evaluating the possibilities that the classification offers for downscaling precipitation, but also for snow and air temperature. For this we will be using observational data at test sites in Livingston and Deception islands. We are also motivated by the possibility of using the circulation-type approach as a predictor in statistical downscaling. References: Goodess CM, Palutikof JP.1998. Development of daily rainfall scenarios for southeast Spain using a Circulation-type approach to downscaling. International Journal of Climatology. 10: 1051-1083. JonesPD, Hulme M, Briffa KR. 1993. A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 13:655-663. Lorenzo M N, Iglesias I , Taboada JJ , Gómez-Gesteira M. 2009. Relationship between monthly rainfall in northwest Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. Maheras P, Tolika K, Anagnostopoulou C, Vafiadis M, Patrikas I, Flocas H. 2004. On the relationship between circulation types and changes in rainfall variability in Grece. International Journal of Climatology 24: 1695-1712. Trigo RM, DaCamara C. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology. 20: 1559-1581.
Dimensions and dynamics of citizen observatories: The case of online amateur weather networks
NASA Astrophysics Data System (ADS)
Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter
2016-04-01
Crowd-sourced environmental observations are being increasingly considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public (so-called citizen science) and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated citizen observatories as one of the oldest and most widely practiced citizen science activities. The objective of this paper is to introduce a conceptual framework that enables a systematic review of different dimensions of these mushrooming/expanding networks. These dimensions include the geographic scope and types of network participants; the network's establishment mechanism, revenue stream(s) and existing communication paradigm; efforts required by citizens and support offered by platform providers; and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run these networks, sustainability of the platforms, data ownership and level of transparency of each network. This framework is then utilized to perform a critical and normative review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) There are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks. (2) The revenue stream(s) of online amateur weather networks is one of the least discussed but most important dimensions that is crucial for the sustainability of these networks. (3) Although all of the networks included in this study have one or more explicit pattern of two-way communications, there is no sign (yet) of interactive information exchange among the triangle of weather observers, data aggregators and policy makers. KEYWORDS Citizen Science, Citizen Observatories, ICT-enabled citizen participation, online amateur weather networks
A hybrid modulation for the dissemination of weather data to aircraft
NASA Technical Reports Server (NTRS)
Akos, Dennis M.
1991-01-01
Ohio University is continuing to conduct research to improve its system for weather data dissemination to aircraft. The current experimental system transmit compressed weather radar reflectivity patterns from a ground based station to aircraft. Although an effective system, the limited frequency spectrum does not provide a channel for transmission. This introduces the idea of a hybrid modulation. The hybrid technique encodes weather data using phase modulation (PM) onto an existing aeronautical channel which employs amplitude modulation (AM) for voice signal transmission. Ideally, the two modulations are independent of one another. The planned implementation and basis of the system are the reviewed.
NASA Astrophysics Data System (ADS)
Bailey, S. W.; Ross, D. S.
2015-12-01
Primary mineral dissolution (i.e. weathering) is a critical process in forested catchments as an important consumer of acidity and CO2, the principle source of nutrients such as Ca, K, and P, as well as the source of toxic cations such as Al. Two common limitations of weathering studies are inadequate determination of mineralogic composition and insufficient sampling depth to determine location and advancement of weathering reactions. We determined mineral stocks through EPMA mapping of Al, Ca, Fe, P, and Si content of soil samples and development of an image analysis routine that assigned mineral composition based on the content of these five elements. Portions of the classified maps were confirmed by optical petrography and full elemental analysis by SEM-EDS. Samples were analyzed for soil profiles >2m depth (~1.5m past the upper boundary of the "unweathered" C horizon). Study sites spanned a range of weatherability found in catchments in glaciated northeastern USA including Winnisook, NY (sandstone parent material, 100 ppm Ca), Hubbard Brook, NH (granite, 0.9% Ca), and Sleepers River, VT (calcareous granulite, 3.5% Ca). All profiles exhibited a weathering front, or threshold above which the most reactive minerals (calcite, apatite) have been depleted. However, in all cases this threshold was below the rooting zone, and in many profiles, it was well below the C horizon interface. Catchment scale Ca exports reflect this deeper weathering source while rooting zone exchangeable Ca was highly variable, probably reflecting spatial patterns of hydrologic flowpaths which bring deeper weathering products to the surface only in certain landscape positions. These results suggest that nutrient cycling and critical loads models, which assume that ecologically relevant weathering is confined to the rooting zone, need to be refined to account for deeper weathering and spatial patterns of lateral and upward hydrologic fluxes. Similarly, recovery from cultural acidification may be limited in portions of catchments where hydrologic connections do not provide a vehicle for weathering products to recharge the biologically active portion of the subsurface.
NASA Astrophysics Data System (ADS)
Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M.
2017-02-01
In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward's hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.
Weather-responsive traffic management : real solutions for serious traffic problems.
DOT National Transportation Integrated Search
2009-04-01
This flyer describes how weather responsive traffic management (WRTM) can prevent or mitigate the effects of weather on traffic operations and reduce congestion. The three types of WRTM described in the flyer include 1) Advisory strategies that provi...
Sources and air carrier use of aviation weather information
DOT National Transportation Integrated Search
1991-06-01
This report is concerned with the use of weather information by air carriers. It : describes the type of information obtained, the sources of that information, and the : training provided to flight crews in the interpretation and use of weather infor...
Effects of Weathering on TIR Spectra and Rock Classification
NASA Astrophysics Data System (ADS)
McDowell, M. L.; Hamilton, V. E.; Riley, D.
2006-03-01
Changes in mineralogy due to weathering are detectable in the TIR and cause misclassification of rock types. We survey samples over a range of lithologies and attempt to provide a method of correction for rock identification from weathered spectra.
The Advanced Transportation Weather Information System (ATWIS)
DOT National Transportation Integrated Search
2000-01-01
Understanding and interpreting weather information can be critical to the success of any winter snow and ice removal operation. Knowing when, where and what type of deicing material to use for a particular winter weather event can be a challenge to e...
1999-01-01
The past few years have witnessed unusually warm weather, as evidenced by both mild winters and hot summers. The analysis shows that the 30-year norms--the basis of weather-related energy demand projections--do not reflect the warming trend or its regional and seasonal patterns.
Forage and weather influence day versus nighttime cow behavior and calf weaning weights on rangeland
USDA-ARS?s Scientific Manuscript database
We determined the effects of two forage allowance levels (LOW vs. HIGH) and weather conditions on day- and nighttime movement patterns of young rangeland-raised cows. We also investigated whether calf weaning weights (WW, n = 42) were significantly related to their dams' post-calving movement patter...
Adjustment of relative humidity and temperature for differences in elevation.
Owen P. Cramer
1961-01-01
The variation of fire-weather elements in mountainous terrain is complex at any one time, and the patterns vary considerably with time. During periods of serious fire weather, this variation becomes important. Much information is obtainable by local interpretation of available forecasts and observations. Optimum use of available information requires some understanding...
Tropospheric Waves, Jet Streams, and United States Weather Patterns. Resource Paper No. 11.
ERIC Educational Resources Information Center
Harman, Jay R.
Intended as a supplement to undergraduate college geography courses, this resource paper reviews the mechanism by which surface weather features are linked with the mid-atmospheric circulation within the westerly wind belt. Specifically, vertical atmospheric motions associated with certain aspects of the upper tropospheric flow, including jet…
Climate change, extreme weather events, air pollution and respiratory health in Europe.
De Sario, M; Katsouyanni, K; Michelozzi, P
2013-09-01
Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.
Modeling Patterns of Total Dissolved Solids Release from Central Appalachia, USA, Mine Spoils.
Clark, Elyse V; Zipper, Carl E; Daniels, W Lee; Orndorff, Zenah W; Keefe, Matthew J
2017-01-01
Surface mining in the central Appalachian coalfields (USA) influences water quality because the interaction of infiltrated waters and O with freshly exposed mine spoils releases elevated levels of total dissolved solids (TDS) to streams. Modeling and predicting the short- and long-term TDS release potentials of mine spoils can aid in the management of current and future mining-influenced watersheds and landscapes. In this study, the specific conductance (SC, a proxy variable for TDS) patterns of 39 mine spoils during a sequence of 40 leaching events were modeled using a five-parameter nonlinear regression. Estimated parameter values were compared to six rapid spoil assessment techniques (RSATs) to assess predictive relationships between model parameters and RSATs. Spoil leachates reached maximum values, 1108 ± 161 μS cm on average, within the first three leaching events, then declined exponentially to a breakpoint at the 16th leaching event on average. After the breakpoint, SC release remained linear, with most spoil samples exhibiting declines in SC release with successive leaching events. The SC asymptote averaged 276 ± 25 μS cm. Only three samples had SCs >500 μS cm at the end of the 40 leaching events. Model parameters varied with mine spoil rock and weathering type, and RSATs were predictive of four model parameters. Unweathered samples released higher SCs throughout the leaching period relative to weathered samples, and rock type influenced the rate of SC release. The RSATs for SC, total S, and neutralization potential may best predict certain phases of mine spoil TDS release. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
A Weather Radar Simulator for the Evaluation of Polarimetric Phased Array Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, Andrew D.; Ivic, Igor R.; Palmer, Robert D.
A radar simulator capable of generating time series data for a polarimetric phased array weather radar has been designed and implemented. The received signals are composed from a high-resolution numerical prediction weather model. Thousands of scattering centers, each with an independent randomly generated Doppler spectrum, populate the field of view of the radar. The moments of the scattering center spectra are derived from the numerical weather model, and the scattering center positions are updated based on the three-dimensional wind field. In order to accurately emulate the effects of the system-induced cross-polar contamination, the array is modeled using a complete setmore » of dual-polarization radiation patterns. The simulator offers reconfigurable element patterns and positions as well as access to independent time series data for each element, resulting in easy implementation of any beamforming method. It also allows for arbitrary waveform designs and is able to model the effects of quantization on waveform performance. Simultaneous, alternating, quasi-simultaneous, and pulse-to-pulse phase coded modes of polarimetric signal transmission have been implemented. This framework allows for realistic emulation of the effects of cross-polar fields on weather observations, as well as the evaluation of possible techniques for the mitigation of those effects.« less
Thresholds for soil cover and weathering in mountainous landscapes
NASA Astrophysics Data System (ADS)
Dixon, Jean; Benjaram, Sarah
2017-04-01
The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.
NASA Astrophysics Data System (ADS)
Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre
2017-04-01
Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si bulk rocks showed linear correlations with the SiO2:Al2O3 ratios, suggesting an alternative alteration index based on Si isotopic composition.
Modeling Child-Nature Interaction in a Nature Preschool: A Proof of Concept.
Kahn, Peter H; Weiss, Thea; Harrington, Kit
2018-01-01
This article provides a proof of concept for an approach to modeling child-nature interaction based on the idea of interaction patterns : characterizations of essential features of interaction between humans and nature, specified abstractly enough such that countless different instantiations of each one can occur - in more domestic or wild forms - given different types of nature, people, and purposes. The model draws from constructivist psychology, ecological psychology, and evolutionary psychology, and is grounded in observational data collected through a time-sampling methodology at a nature preschool. Through using a nature language that emphasizes ontogenetic and phylogenetic significance, seven keystone interaction patterns are described for this nature preschool: using one's body vigorously in nature, striking wood on wood, constructing shelter, being in solitude in nature, lying on earth, cohabiting with a wild animal , and being outside in weather . These 7 interactions patterns are then brought together with 13 other patterns published elsewhere to provide a total of 20 keystone interaction patterns that begin to fill out the model, and to show its promise. Discussion focuses on what the model aims to be in terms of both product and process, on what work the model can currently do, and how to further develop the model.
Winter Weather Tips: Understanding Alerts and Staying Safe this Season | Poster
By Jenna Seiss and Kylie Tomlin, Guest Writers, and Ashley DeVine, Staff Writer Maryland residents face the possibility of dangerous winter weather each year—from icy conditions to frigid temperatures. You may be familiar with the different types of winter weather alerts issued by the National Weather Service (NWS), but do you know what each alert means?
Asian Dust Weather Categorization with Satellite and Surface Observations
NASA Technical Reports Server (NTRS)
Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen
2011-01-01
This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.
Synoptic and Mesoscale Climatologies of Severe Local Storms for the American Midwest.
NASA Astrophysics Data System (ADS)
Arnold, David Leslie
This study investigates the synoptic and mesoscale environments associated with severe local storms (SELS) in the heart of the American Midwest. This region includes west-central Illinois, most of Indiana, the extreme western counties of Ohio, and a small part of northeastern Kentucky. The primary objectives of this study are to determine the surface and middle-tropospheric synoptic circulation patterns and thermodynamic and kinematic environments associated with SELS event types (tornadoes, hail, severe straight -line winds), and to assess the degree to which the synoptic circulation patterns and meso-beta scale kinematic and thermodynamic climatology of the Midwest differ from that of the Great Plains. A secondary objective is to investigate the possible role that land-surface atmosphere interactions play in the spatial distribution of SELS. A new subjective synoptic typing scheme is developed and applied to determine the synoptic-scale circulation patterns associated with the occurrence of SELS event types. This scheme is based on a combination of surface and middle -tropospheric patterns. Thermodynamic and kinematic parameters are analyzed to determine meso-scale environments favorable for the development of SELS. Results indicate that key synoptic-scale circulation patterns, and specific ranges of thermodynamic and kinematic parameters are related to specific SELS event types. These circulation types and ranges of thermodynamic and kinematic parameters may be used to help improve the medium-range forecasting of severe local storms. Results of the secondary objective reveal that the spatial distribution of SELS events is clustered within the study region, and most occur under a negative climate division-level soil moisture gradient; that is, a drier upwind division than the division in which the event occurs. Moreover, the spatial distribution of SELS events is compared against a map of soil types and vegetation. The resulting distribution depicts a visual correlation between the primary soil and vegetative boundaries and clusters of SELS. This supports the likely role of meso-scale land-surface-atmosphere interactions in severe weather development for humid lowlands of the Midwest United States.
URBAN WET-WEATHER FLOW MANAGEMENT: RESEARCH DIRECTIONS
There are three types of urban wet-weather flow (WWF) discharges: 1) combined-sewer overflow (CSO), which is a mixture of storm drainage and municipal-industrial wastewater discharged from combined sewers or dry-weather flow discharged from combined sewers due to clogged intercep...
Forecast and virtual weather driven plant disease risk modeling system
USDA-ARS?s Scientific Manuscript database
We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...
NASA Technical Reports Server (NTRS)
Lu, Thomas; Pham, Timothy; Liao, Jason
2011-01-01
This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.
Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia
NASA Astrophysics Data System (ADS)
Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep
2014-05-01
Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.
NASA Astrophysics Data System (ADS)
Broderick, Ciaran; Fealy, Rowan
2013-04-01
Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brent Musslewhite; Song Jin
2006-05-01
Weathering characteristics of minesoils and rooting patterns of key shrub and grass species were evaluated at sites reclaimed for 6 to 14 years from three surface coal mine operations in northwestern New Mexico and northeastern Arizona. Non-weathered minesoils were grouped into 11 classifications based on electrical conductivity (EC) and sodium adsorption ratio (SAR). Comparisons of saturated paste extracts, from non-weathered and weathered minesoils show significant (p < 0.05) reductions in SAR levels and increased EC. Weathering increased the apparent stability of saline and sodic minesoils thereby reducing concerns of aggregate slaking and clay particle dispersion. Root density of four-wing saltbushmore » (Atriplex canascens), alkali sacaton (Sporobolus airoides), and Russian wildrye (Psathyrostachys junceus) were nominally affected by increasing EC and SAR levels in minesoil. Results suggest that saline and sodic minesoils can be successfully reclaimed when covered with topsoil and seeded with salt tolerant plant species.« less
Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth
2013-01-01
Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890
NASA Astrophysics Data System (ADS)
Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen
2017-11-01
Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air pollutants. Thus, this pattern is quite favorable for the accumulation of pollutants in the YRD, resulting in higher regional mean PM10 (116.5 ± 66.9 µg m-3), PM2.5 (75.9 ± 49.9 µg m-3), and AOD (0.74) values. Moreover, this pattern is also responsible for the occurrence of most large-scale regional PM2.5 (70.4 %) and PM10 (78.3 %) pollution episodes. High wind speed and clean marine air masses may also play important roles in the mitigation of pollution in the YRD. Especially when the clean marine air masses account for a large proportion of all trajectories (i.e., when the YRD is affected by the cyclonic system or oceanic circulation), the air in the YRD has a lesser chance of being polluted. The observed correlation between weather patterns and particle pollution can provide valuable insight into making decisions about pollution control and mitigation strategies.
McFarland, Heather R.; Kendall, Steve J.; Powell, Abby
2017-01-01
Despite changes in shrub cover and weather patterns associated with climate change in the Arctic, little is known about the breeding requirements of most passerines tied to northern regions. We investigated the nesting biology and nest habitat characteristics of Smith's Longspurs (Calcarius pictus) in 2 study areas in the Brooks Range of Alaska, USA. First, we examined variation in nesting phenology in relation to local temperatures. We then characterized nesting habitat and analyzed nest-site selection for a subset of nests (n = 86) in comparison with paired random points. Finally, we estimated the daily survival rate of 257 nests found in 2007–2013 with respect to both habitat characteristics and weather variables. Nest initiation was delayed in years with snow events, heavy rain, and freezing temperatures early in the breeding season. Nests were typically found in open, low-shrub tundra, and never among tall shrubs (mean shrub height at nests = 26.8 ± 6.7 cm). We observed weak nest-site selection patterns. Considering the similarity between nest sites and paired random points, coupled with the unique social mating system of Smith's Longspurs, we suggest that habitat selection may occur at the neighborhood scale and not at the nest-site scale. The best approximating model explaining nest survival suggested a positive relationship with the numbers of days above 21°C that an individual nest experienced; there was little support for models containing habitat variables. The daily nest survival rate was high (0.972–0.982) compared with that of most passerines in forested or grassland habitats, but similar to that of passerines nesting on tundra. Considering their high nesting success and ability to delay nest initiation during inclement weather, Smith's Longspurs may be resilient to predicted changes in weather regimes on the breeding grounds. Thus, the greatest threat to breeding Smith's Longspurs associated with climate change may be the loss of low-shrub habitat types, which could significantly change the characteristics of breeding areas.
Cioffi, I; Farella, M; Chiodini, P; Ammendola, L; Capuozzo, R; Klain, C; Vollaro, S; Michelotti, A
2017-05-01
Patients with masticatory muscle pain and migraine typically report that the intensity of pain fluctuates over time and is affected by weather changes. Weather variables, such as ambient temperature and humidity, may vary significantly depending on whether the individual is outdoor or indoor. It is, therefore, important to assess these variables at the individual level using portable monitors, during everyday life. This study aimed to determine and compare the temporal patterns of pain in individuals affected with facial and head pain and to investigate its relation with weather changes. Eleven patients (27·3 ± 7·4 years) with chronic masticatory muscle pain (MP) and twenty (33·1 ± 8·7 years) with migraine headache (MH) were asked to report their current pain level on a visual analogue scale (VAS) every hour over fourteen consecutive days. The VAS scores were collected using portable data-loggers, which were also used to record temperature, atmospheric pressure and relative humidity. VAS scores varied markedly over time in both groups. Pain VAS scores fluctuate less in the MP group than in the MH group, but their mean, minimum and maximum values were higher than those of migraine patients (all P < 0·05). Pain scores <2 cm were more common in the MH than in the MP group (P < 0·001). Perceived intensity of pain was negatively associated with atmospheric pressure in the MP group and positively associated with temperature and atmospheric in the MH group. Our results reveal that patients with masticatory muscle pain and patients with migraine present typical temporal pain patterns that are influenced in a different way by weather changes. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dennison, J. E.; Lipschutz, M. E.
1987-03-01
The authors report RNAA data for 14 siderophile, lithophile and chalcophile volatile/mobile trace elements in interior portions of 45 different H4-6 chondrites (49 samples) from Victoria Land, Antarctica and 5 H5 chondrites from the Yamato Mts., Antarctica. Relative to H5 chondrites of weathering types A and B, all elements are depleted (10 at statistically significant levels) in extensively weathered (types B/C and C) samples. Chondrites of weathering types A and B seem compositionally uncompromised and as useful as contemporary falls for trace-element studies. When data distributions for these 14 trace elements in non-Antarctic H chondrite falls and unpaired samples from Victoria Land and from the Yamato Mts. (Queen Maud Land) are compared statistically, numerous significant differences are apparent. These and other differences give ample cause to doubt that the various sample populations derive from the same parent population. The observed differences do no reflect weathering, chance or other trivial causes: a preterrestrial source must be responsible.
ERIC Educational Resources Information Center
Marshall, Candice; Mogil, H. Michael
2007-01-01
Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…
Iowa DOT weather information system to support winter maintenance operations
DOT National Transportation Integrated Search
2000-01-01
Understanding and interpreting weather information can be critical to the success of any winter snow and ice removal operation. Knowing when, where and what type of deicing material to use for a particular winter weather event can be a challenge to e...
NASA Astrophysics Data System (ADS)
Madhavaraju, J.; Pacheco-Olivas, S. A.; González-León, Carlos M.; Espinoza-Maldonado, Inocente G.; Sanchez-Medrano, P. A.; Villanueva-Amadoz, U.; Monreal, Rogelio; Pi-Puig, T.; Ramírez-Montoya, Erik; Grijalva-Noriega, Francisco J.
2017-07-01
Clay mineralogy and geochemical studies were carried out on sandstone and shale samples collected from the Sierra San José section of the Morita Formation to infer the paleoclimate and paleoweathering conditions that prevailed in the source region during the deposition of these sediments. The clay mineral assemblages (fraction < 2 μm) of the Sierra San José section are composed of chlorite and illite. The abundance of illite and chlorite in the studied samples suggest that the physical weathering conditions were dominant over chemical weathering. Additionally, the illite and chlorite assemblages reflect arid or semi-arid climatic conditions in the source regions. K2O/Al2O3 ratio of shales vary between 0.15 and 0.26, which lie in the range of values for clay minerals, particularly illite composition. Likewise, sandstones vary between 0.06 and 0.13, suggesting that the clay minerals are mostly kaolinte and illite types. On the chondrite-normalized diagrams, sandstone and shale samples show enriched light rare earth elements (LREE), flat heavy rare earth elements (HREE) patterns and negative Eu anomalies. The CIA and PIA values and A-CN-K plot of shales indicate low to moderate degree of weathering in the source regions. However, the sandstones have moderate to high values of CIA and PIA suggesting a moderate to intense weathering in the source regions. The SiO2/Al2O3 ratios, bivariate and ternary plots, discriminant function diagram and elemental ratios indicate the felsic source rocks for sandstone and shale of the Morita Formation.
Industry and Government Officials Meet for Space Weather Summit
NASA Astrophysics Data System (ADS)
Intriligator, Devrie S.
2008-10-01
Commercial airlines, electric power grids, cell phones, handheld Global Positioning Systems: Although the Sun is less active due to solar minimum, the number and types of situations and technologies that can benefit from up-to-date space weather information are growing. To address this, the second annual summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's Space Weather Prediction Center (SWPC) was held on 1 May 2008 during Space Weather Workshop (SWW), in Boulder, Colo.
Climatology of salt transitions and implications for stone weathering.
Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M
2011-06-01
This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.
Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton; Serne, R Jeff; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I; Chorover, Jon
2011-10-01
Leaching behavior of Sr and Cs in the vadose zone of Hanford site (Washington) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10(-5) and 10(-3) molal representative of LO- and HI-sediment, respectively) as surrogates for (90)Sr and (137)Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.
On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.
Marques, Joana; Gonçalves, João; Oliveira, Cláudia; Favero-Longo, Sergio E; Paz-Bermúdez, Graciela; Almeida, Rubim; Prieto, Beatriz
2016-10-01
Contradictory evidence from biogeomorphological studies has increased the debate on the extent of lichen contribution to differential rock surface weathering in both natural and cultural settings. This study, undertaken in Côa Valley Archaeological Park, aimed at evaluating the effect of rock surface orientation on the weathering ability of dominant lichens. Hyphal penetration and oxalate formation at the lichen-rock interface were evaluated as proxies of physical and chemical weathering, respectively. A new protocol of pixel-based supervised image classification for the analysis of periodic acid-Schiff stained cross-sections of colonized schist revealed that hyphal spread of individual species was not influenced by surface orientation. However, hyphal spread was significantly higher in species dominant on northwest facing surfaces. An apparently opposite effect was noticed in terms of calcium oxalate accumulation at the lichen-rock interface; it was detected by Raman spectroscopy and complementary X-ray microdiffraction on southeast facing surfaces only. These results suggest that lichen-induced physical weathering may be most severe on northwest facing surfaces by means of an indirect effect of surface orientation on species abundance, and thus dependent on the species, whereas lichen-induced chemical weathering is apparently higher on southeast facing surfaces and dependent on micro-environmental conditions, giving only weak support to the hypothesis that lichens are responsible for the currently observed pattern of rock-art distribution in Côa Valley. Assumptions about the drivers of open-air rock-art distribution patterns elsewhere should also consider the micro-environmental controls of lichen-induced weathering, to avoid biased measures of lichen contribution to rock-art deterioration. © 2016 by the Ecological Society of America.
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
DOT National Transportation Integrated Search
2011-06-14
This document is the final report of an evaluation of Clarus-enabled enhanced road weather forecasting used in the Clarus Demonstrations. This report examines the use of Clarus data to enhance four types of weather models and forecasts: The Local Ana...
Severe Weather in a Changing Climate: Getting to Adaptation
NASA Astrophysics Data System (ADS)
Wuebbles, D. J.; Janssen, E.; Kunkel, K.
2011-12-01
Analyses of observation records from U.S. weather stations indicate there is an increasing trend over recent decades in certain types of severe weather, especially large precipitation events. Widespread changes in temperature extremes have been observed over the last 50 years. In particular, the number of heat waves globally (and some parts of the U.S.) has increased, and there have been widespread increases in the numbers of warm nights. Also, analyses show that we are now breaking twice as many heat records as cold records in the U.S. Since 1957, there has been an increase in the number of historically top 1% of heavy precipitation events across the U.S. Our new analyses of the repeat or reoccurrence frequencies of large precipitation storms are showing that such events are occurring more often than in the past. The pattern of precipitation change is one of increases generally at higher northern latitudes and drying in the tropics and subtropics over land. It needs to be recognized that every weather event that happens nowadays takes place in the context of the changes in the background climate system. So nothing is entirely "natural" anymore. It's a fallacy to think that individual events are caused entirely by any one thing, either natural variation or human-induced climate change. Every event is influenced by many factors. Human-induced climate change is now a factor in weather events. The changes occurring in precipitation are consistent with the analyses of our changing climate. For extreme precipitation, we know that more precipitation is falling in very heavy events. And we know key reasons why; warmer air holds more water vapor, and so when any given weather system moves through, the extra water dumps can lead to a heavy downpour. As the climate system continues to warm, models of the Earth's climate system indicate severe precipitation events will likely become more commonplace. Water vapor will continue to increase in the atmosphere along with the warming, and large precipitation events will likely increase in intensity and frequency. In the presentation, we will not only discuss the recent trends in severe weather and the projections of the impacts of climate change on severe weather in the future, but also specific examples of how this information is being used in developing and applying adaptation policies.
NASA Astrophysics Data System (ADS)
Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.
2013-12-01
work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.
NASA Technical Reports Server (NTRS)
Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.
2015-01-01
Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.
Weiler, G; Risse, M
1989-01-01
On February 8th 1988, a two-motor passenger aircraft of Metroliner type with 21 people on board entered a front of heavy weather at an altitude of 900 m and crashed after being struck by lightning which led to complete breakdown of the electrical systems on board. The site of the crash was in the marshy Ruhr meadows. The formation of the terrain enabled a subdivision into plan squares for rescue. The identification of the 21 bodies was carried out in the Essen Institute of Forensic Medicine in collaboration with the identification commission of the Federal Criminal Investigation Office. The experience and recommendations for future (possibly larger-scale) disasters derived from this are described. Furthermore, the accident pattern in the casualties typical for this air crash is discussed.
The Remote Sensing of Mineral Aerosols and their Impact on Phytoplankton Productivity
NASA Technical Reports Server (NTRS)
Tindale, Neil W.
1997-01-01
The overall objective of this experiment was to test the iron hypothesis does the addition of iron to nutrient rich surface waters enhance productivity? Our specific objectives in this experiment included sampling and studying the marine aerosol size and type (which are related to chemical reactivity) during the PlumEx cruise to determine the importance of local (Galapagos Islands) versus long-range sources of atmospheric material. Detailed results of single particle analysis of our samples are being prepared for publication in two papers. We collect aerosol samples and they have been analyzed for trace metals and other elements. We are mapped aerosol distribution and the desert source areas around the Arabian Sea region. We did record a clear relationship between the aerosol radiance and synoptic weather patterns with distinct signals over the ocean northwest and southwest of Australia. While the interpretation was limited an aerosol climatology pattern was presented.
Altering rainfall patterns through aerosol dispersion
NASA Astrophysics Data System (ADS)
Emetere, M. E.; Bakeko, M.; Onyechekwa, L.; Ayara, W.
2017-05-01
The possibility of recirculation mechanism on rainfall patterns is salient for sustenance of the human race through agricultural produce. The peculiarity of the lower atmosphere of south west region of Nigeria was explored using theoretical and experimental approach. In the theoretical approach, the reconstruction of 1D model as an extraction from the 3D aerosol dispersion model was used to examine the physics of the recirculation theory. The experimental approach which consists of obtaining dataset from ground instruments was used to provide on-site guide for developing the new recirculation theories. The data set was obtained from the Davis weather station, Nigeria Meteorological agency and Multi-angle Imaging Spectro-radiometer (MISR). We looked at the main drivers of recirculation and propounded that recirculation is a complex process which triggers a reordering of the mixing layer- a key factor for initiating the type of rainfall in this region.
NASA Astrophysics Data System (ADS)
Pineda, Luis E.; Willems, Patrick
2017-04-01
Weather and climatic characterization of rainfall extremes is both of scientific and societal value for hydrometeorogical risk management, yet discrimination of local and large-scale forcing remains challenging in data-scarce and complex terrain environments. Here, we present an analysis framework that separate weather (seasonal) regimes and climate (inter-annual) influences using data-driven process identification. The approach is based on signal-to-noise separation methods and extreme value (EV) modeling of multisite rainfall extremes. The EV models use a semi-automatic parameter learning [1] for model identification across temporal scales. At weather scale, the EV models are combined with a state-based hidden Markov model [2] to represent the spatio-temporal structure of rainfall as persistent weather states. At climatic scale, the EV models are used to decode the drivers leading to the shift of weather patterns. The decoding is performed into a climate-to-weather signal subspace, built via dimension reduction of climate model proxies (e.g. sea surface temperature and atmospheric circulation) We apply the framework to the Western Andean Ridge (WAR) in Ecuador and Peru (0-6°S) using ground data from the second half of the 20th century. We find that the meridional component of winds is what matters for the in-year and inter-annual variability of high rainfall intensities alongside the northern WAR (0-2.5°S). There, low-level southerly winds are found as advection drivers for oceanic moist of the normal-rainy season and weak/moderate the El Niño (EN) type; but, the strong EN type and its unique moisture surplus is locally advected at lowlands in the central WAR. Moreover, the coastal ridges, south of 3°S dampen meridional airflows, leaving local hygrothermal gradients to control the in-year distribution of rainfall extremes and their anomalies. Overall, we show that the framework, which does not make any prior assumption on the explanatory power of the weather and climate drivers, allows identification of well-known features of the regional climate in a purely data-driven fashion. Thus, this approach shows potential for characterization of precipitation extremes in data-scarce and orographically complex regions in which model reconstructions are the only climate proxies References [1] Mínguez, R., F.J. Méndez, C. Izaguirre, M. Menéndez, and I.J. Losada (2010), Pseudooptimal parameter selection of non-stationary generalized extreme value models for environmental variables, Environ. Modell. Softw. 25, 1592-1607. [2] Pineda, L., P. Willems (2016), Multisite Downscaling of Seasonal Predictions to Daily Rainfall Characteristics over Pacific-Andean River Basins in Ecuador and Peru using a non-homogenous hidden Markov model, J. Hydrometeor, 17(2), 481-498, doi:10.1175/JHM-D-15-0040.1, http://journals.ametsoc.org/doi/full/10.1175/JHM-D-15-0040.1
The Early Years: About the Weather
ERIC Educational Resources Information Center
Ashbrook, Peggy
2015-01-01
Observing and documenting elements of weather teach children about using tools and their senses to learn about the environment. This column discusses resources and science topics related to students in grades preK to 2. This month's issue describes an activity where students indirectly document local weather by counting outdoor clothing types worn…
Weather Fundamentals: Rain & Snow. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) gives concise explanations of the various types of precipitation and describes how the water…
extent of snow cover. In addition, satellite sensors detect ice fields and map the movement of sea and greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE SATELLITE PRODUCTS NOAA's operational weather satellite system is composed of two types of satellites: geostationary operational
Weather Fundamentals: Clouds. [Videotape].
ERIC Educational Resources Information Center
1998
The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Michalakes, J.; Vanderwende, B.
Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in windmore » plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.« less
The Effects of Space Weathering at UV Wavelengths: S-Class Asteroids
NASA Technical Reports Server (NTRS)
Hendrix, Amanda R.; Vilas, Faith
2006-01-01
We present evidence that space weathering manifests itself at near-UV wavelengths as a bluing of the spectrum, in contrast with the spectral reddening that has been seen at visible-near-IR wavelengths. Furthermore, the effects of space weathering at UV wavelengths tend to appear with less weathering than do the longer wavelength effects, suggesting that the UV wavelength range is a more sensitive indicator of weathering, and thus age. We report results from analysis of existing near-UV (approx.220-350 nm) measurements of S-type asteroids from the International Ultraviolet Explorer and the Hubble Space Telescope and comparisons with laboratory measurements of meteorites to support this hypothesis. Composite spectra of S asteroids are produced by combining UV spacecraft data with ground-based longer wavelength data. At visible-near-IR wavelengths, S-type asteroids are generally spectrally redder (and darker) than ordinary chondrite meteorites, whereas the opposite is generally true at near-UV wavelengths. Similarly, laboratory measurements of lunar samples show that lunar soils (presumably more weathered) are spectrally redder at longer wavelengths, and spectrally bluer at near-UV wavelengths, than less weathered crushed lunar rocks. The UV spectral bluing may be a result of the addition of nanophase iron to the regolith through the weathering process. The UV bluing is most prominent in the 300-400 nm range, where the strong UV absorption edge is degraded with weathering.
Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo
2016-04-01
In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298
Investigation of the effect of weather conditions on solar radiation in Brunei Darussalam
NASA Astrophysics Data System (ADS)
Yazdani, M. G.; Salam, M. A.; Rahman, Q. M.
2016-11-01
The amount of solar radiation received on the earth's surface is known to be highly influenced by the weather conditions and the geography of a particular area. This paper presents some results of an investigation that was carried out to find the effects of weather patterns on the solar radiation in Brunei Darussalam, a small country that experiences equatorial climate due to its geographical location. Weather data were collected at a suitable location in the University Brunei Darussalam (UBD) and were compared with the available data provided by the Brunei Darussalam Meteorological Services (BDMS). It has been found that the solar radiation is directly proportional to the atmospheric temperature while it is inversely proportional to the relative humidity. It has also been found that wind speed has little influence on solar radiation. Functional relationships between the solar radiation and the atmospheric temperature, and between the solar radiation and the relative humidity have also been developed from the BDMS weather data. Finally, an artificial neural network (ANN) model has been developed for training and testing the solar radiation data with the inputs of temperature and relative humidity, and a coefficient of determination of around 99% was achieved. This set of data containing all the aforementioned results may serve as a guideline on the solar radiation pattern in the geographical areas around the equator.
Ozone trends and their relationship to characteristic weather patterns.
Austin, Elena; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros
2015-01-01
Local trends in ozone concentration may differ by meteorological conditions. Furthermore, the trends occurring at the extremes of the Ozone distribution are often not reported even though these may be very different than the trend observed at the mean or median and they may be more relevant to health outcomes. Classify days of observation over a 16-year period into broad categories that capture salient daily local weather characteristics. Determine the rate of change in mean and median O3 concentrations within these different categories to assess how concentration trends are impacted by daily weather. Further examine if trends vary for observations in the extremes of the O3 distribution. We used k-means clustering to categorize days of observation based on the maximum daily temperature, standard deviation of daily temperature, mean daily ground level wind speed, mean daily water vapor pressure and mean daily sea-level barometric pressure. The five cluster solution was determined to be the appropriate one based on cluster diagnostics and cluster interpretability. Trends in cluster frequency and pollution trends within clusters were modeled using Poisson regression with penalized splines as well as quantile regression. There were five characteristic groupings identified. The frequency of days with large standard deviations in hourly temperature decreased over the observation period, whereas the frequency of warmer days with smaller deviations in temperature increased. O3 trends were significantly different within the different weather groupings. Furthermore, the rate of O3 change for the 95th percentile and 5th percentile was significantly different than the rate of change of the median for several of the weather categories.We found that O3 trends vary between different characteristic local weather patterns. O3 trends were significantly different between the different weather groupings suggesting an important interaction between changes in prevailing weather conditions and O3 concentration.
NASA Astrophysics Data System (ADS)
Spasova, Z.
2011-03-01
Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychological and emotional level has been made. Emotions affect the bio tone, working ability, and concentration; hence their significance in various domains of economic life such as health care, education, transportation, and tourism. The present pilot study was conducted in Sofia, Bulgaria over a period of eight months, using five psychological methods: Eysenck Personality Questionnaire, State-Trait Anxiety Inventory, Test for Self-assessment of the emotional state, Test for evaluation of moods and Test ''Self-confidence-Activity-Mood''. The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions in order to include a maximal number of meteorological elements in the analysis. Sixteen weather types are defined depending on the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were also considered. The results obtained by t-test showed that the different categories of weather led to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effects on human emotions - but only when a transition to the cloudy weather or weather type, classified as ''unfavorable'', has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension ''neuroticism'', has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more ''resistant'' to the weather influence on their emotions, while those who are emotionally unstable have a stronger dependence on the impacts of weather.
Influence of synoptic weather patterns on solar irradiance variability in Europe
NASA Astrophysics Data System (ADS)
Parding, Kajsa; Hinkelman, Laura; Liepert, Beate; Ackerman, Thomas; Dagestad, Knut-Frode; Asle Olseth, Jan
2014-05-01
Solar radiation is important for many aspects of existence on Earth, including the biosphere, the hydrological cycle, and creatures living on the planet. Previous studies have reported decadal trends in observational records of surface shortwave (SW) irradiance around the world, too strong to be caused by varying solar output. These observed decadal trends have been dubbed "solar dimming and brightening" and are believed to be related to changes in atmospheric aerosols and cloud cover. Because the observed solar variability coincides with qualitative air pollution histories, the dimming and brightening have become almost synonymous with shortwave attenuation by anthropogenic aerosols. However, there are indications that atmospheric circulation patterns have influenced the dimming and brightening in some regions, e.g., Alaska and Scandinavia. In this work, we focus on the role of atmospheric circulation patterns in modifying shortwave irradiance. An examination of European SW irradiance data from the Global Energy Balance Archive (GEBA) shows that while there are periods of predominantly decreasing (~1970-1985) and increasing (~1985-2007) SW irradiance, the changes are not spatially uniform within Europe and in a majority of locations not statistically significant. To establish a connection between weather patterns and sunshine, regression models of SW irradiance are fitted using a daily classification of European weather called Grosswetterlagen (GWL). The GWL reconstructions of shortwave irradiance represent the part of the solar variability that is related to large scale weather patterns, which should be effectively separated from the influence of varying anthropogenic aerosol emissions. The correlation (R) between observed and reconstruced SW irradiance is between 0.31 and 0.75, depending on station and season, all statistically significant (p<0.05, estimated with a bootstrap test). In central and eastern parts of Europe, the observed decadal SW variability is poorly represented by the GWL models, but in northern Europe, the GWL model recreates observed decadal solar variability well. This finding suggests that natural and/or anthropogenic variations in circulation patterns have influenced solar dimming and brightening to a higher degree in the north than in the rest of Europe.
Comparison of animated jet stream visualizations
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Hoffmann, Peter
2016-04-01
The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).
CO2 Jets and Wind Patterns on Mars
NASA Astrophysics Data System (ADS)
Hatcher, Chase; Aye, K.-Michael; Portyankina, Ganna
2017-10-01
In Martian winters, the poles get covered by a layer of transparent CO2 ice. In spring, sunlight causes substrate under the ice to heat up which sublimates CO2 under the ice. The accumulating gas eventually causes the ice above it to rupture and the CO2 and substrate mixture spews out like a geyser and settles back down on the surface. The shape, size, and alignment of the deposits on the surface as viewed by the HiRISE camera are related to physical processes like sublimation, weather, and wind on Mars. The jet deposits are identified by citizen scientists on a website called Planet Four. Users are shown sections of HiRISE images and asked to mark different surface features with different tools. The markings are averaged, filtered, and sorted to ensure that the data accurately represents the images. By analyzing trends in the change of different characteristics of these surface features over time, we conclude that different regions on Mars have different sublimation processes and different wind patterns. We also conclude that wind and weather patterns generally repeat from year to year, and that sediment deposits affect local weather as well.
Physical Patterns Associated with 27 April 2011 Tornado Outbreak
NASA Astrophysics Data System (ADS)
Ramos, Fernanda; Salem, Thomas
2012-02-01
The National Weather Service office in Memphis, Tennessee has aimed their efforts to improve severe tornado forecasting. Everything is not known about tornadogenesis, but one thing is: tornadoes tend to form within supercell thunderstorms. Hence, 27 April 2011 and 25 May 2011 were days when a Tornado Outbreak was expected to arise. Although 22 tornadoes struck the region on 27 April 2011, only 1 impacted the area on 25 May 2011. In order to understand both events, comparisons of their physical features were made. These parameters were studied using the Weather Event Simulator system and the NOAA/NWS Storm Prediction database. This research concentrated on the Surface Frontal Analysis, NAM40 700mb Dew-Points, NAM80 250mb Wind Speed and NAM20 500mb Vorticity images as well as 0-6 km Shear, MUCAPE and VGP mesoscale patterns. As result of this research a Dry-Line ahead of a Cold Front, Dew-points 5C and higher, and high Vorticity values^ were synoptic patterns that influenced to the formation of supercell tornadoes. Finally, MUCAPE and VGP favored the possibility of tornadoes occurrence on 25 May 2011, but shear was the factor that made 27 April 2011 a day for a Tornado Outbreak weather event.
Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.
2016-01-01
To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947
Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies
NASA Astrophysics Data System (ADS)
Chen, Yini; Zhu, Zhiwei; Luo, Ling; Zhang, Jiwei
2018-03-01
Aerosol pollution over eastern China has worsened considerably in recent years, resulting in heavy haze weather with low visibility and poor air quality. The present study investigates the characteristics of haze weather in Hangzhou city, and aims to unravel the meteorological anomalies associated with the heavy haze that occurred over Hangzhou in winter 2013/14. On the interannual timescale, because of the neutral condition of tropical sea surface temperature anomalies during winter 2013/14, no significant circulation and convection anomalies were induced over East Asia, leading to a stable atmospheric condition favorable for haze weather in Hangzhou. Besides, the shift of the polar vortex, caused by changes in surface temperature and ice cover at high latitudes, induced a barotropic anomalous circulation dipole pattern. The southerly anomaly associated with this anomalous dipole pattern hindered the transportation of cold/clear air mass from Siberia to central-eastern China, leading to abnormal haze during winter 2013/14 in Hangzhou. On the intraseasonal timescale, an eastward-propagating mid-latitude Rossby wave train altered the meridional wind anomaly over East Asia, causing the intraseasonal variability of haze weather during 2013/14 in Hangzhou.
NASA Astrophysics Data System (ADS)
Lee, Cameron C.; Sheridan, Scott C.; Barnes, Brian B.; Hu, Chuanmin; Pirhalla, Douglas E.; Ransibrahmanakul, Varis; Shein, Karsten
2017-10-01
The coastal waters of the southeastern USA contain important protected habitats and natural resources that are vulnerable to climate variability and singular weather events. Water clarity, strongly affected by atmospheric events, is linked to substantial environmental impacts throughout the region. To assess this relationship over the long-term, this study uses an artificial neural network-based time series modeling technique known as non-linear autoregressive models with exogenous input (NARX models) to explore the relationship between climate and a water clarity index (KDI) in this area and to reconstruct this index over a 66-year period. Results show that synoptic-scale circulation patterns, weather types, and precipitation all play roles in impacting water clarity to varying degrees in each region of the larger domain. In particular, turbid water is associated with transitional weather and cyclonic circulation in much of the study region. Overall, NARX model performance also varies—regionally, seasonally and interannually—with wintertime estimates of KDI along the West Florida Shelf correlating to the actual KDI at r > 0.70. Periods of extreme (high) KDI in this area coincide with notable El Niño events. An upward trend in extreme KDI events from 1948 to 2013 is also present across much of the Florida Gulf coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.
Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demandmore » within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.« less
NASA Astrophysics Data System (ADS)
Adzhieva, Aida A.; Shapovalov, Vitaliy A.; Boldyreff, Anton S.
2017-10-01
In the context of rising the frequency of natural disasters and catastrophes humanity has to develop methods and tools to ensure safe living conditions. Effectiveness of preventive measures greatly depends on quality and lead time of the forecast of disastrous natural phenomena, which is based on the amount of knowledge about natural hazards, their causes, manifestations, and impact. To prevent them it is necessary to get complete and comprehensive information about the extent of spread and severity of natural processes that can act within a defined territory. For these purposes the High Mountain Geophysical Institute developed the automated workplace for mining, analysis and archiving of radar, satellite, lightning sensors information and terrestrial (automatic weather station) weather data. The combination and aggregation of data from different sources of meteorological data provides a more informativity of the system. Satellite data shows the global cloud region in visible and infrared ranges, but have an uncertainty in terms of weather events and large time interval between the two periods of measurements, which complicates the use of this information for very short range forecasts of weather phenomena. Radar and lightning sensors data provide the detection of weather phenomena and their localization on the background of the global pattern of cloudiness in the region and have a low period measurement of atmospheric phenomena (hail, thunderstorms, showers, squalls, tornadoes). The authors have developed the improved algorithms for recognition of dangerous weather phenomena, based on the complex analysis of incoming information using the mathematical apparatus of pattern recognition.
Livingston, Kristin S.; Miller, Patricia E.; Lierhaus, Anneliese; Matheney, Travis H.; Mahan, Susan T.
2016-01-01
Objectives: Orthopaedists often speculate how weather and school schedule may influence pediatric orthopedic trauma volume, but few studies have examined this. This study aims to determine: how do weather patterns, day, month, season and public school schedule influence the daily frequency of pediatric orthopedic trauma consults and admissions? Methods: With IRB approval, orthopedic trauma data from a level 1 pediatric trauma center, including number of daily orthopedic trauma consults and admissions, were collected from July 2009 to March 2012. Historical weather data (high temperatures, precipitation and hours of daylight), along with local public school schedule data were collected for the same time period. Univariate and multivariate regression models were used to show the average number of orthopedic trauma consults and admissions as a function of weather and temporal variables. Results: High temperature, precipitation, month and day of the week significantly affected the number of daily consults and admissions. The number of consults and admissions increased by 1% for each degree increase in temperature (p=0.001 and p<0.001, respectively), and decreased by 21% for each inch of precipitation (p<0.001, p=0.006). Daily consults on snowy days decreased by an additional 16% compared to days with no precipitation. November had the lowest daily consult and admission rate, while September had the highest. Daily consult rate was lowest on Wednesdays and highest on Saturdays. Holiday schedule was not independently significant. Conclusion: Pediatric orthopedic trauma consultations and admissions are highly linked to temperature and precipitation, as well as day of the week and time of year. PMID:27990193
Livingston, Kristin S; Miller, Patricia E; Lierhaus, Anneliese; Matheney, Travis H; Mahan, Susan T
2016-01-01
Orthopaedists often speculate how weather and school schedule may influence pediatric orthopedic trauma volume, but few studies have examined this. This study aims to determine: how do weather patterns, day, month, season and public school schedule influence the daily frequency of pediatric orthopedic trauma consults and admissions? With IRB approval, orthopedic trauma data from a level 1 pediatric trauma center, including number of daily orthopedic trauma consults and admissions, were collected from July 2009 to March 2012. Historical weather data (high temperatures, precipitation and hours of daylight), along with local public school schedule data were collected for the same time period. Univariate and multivariate regression models were used to show the average number of orthopedic trauma consults and admissions as a function of weather and temporal variables. High temperature, precipitation, month and day of the week significantly affected the number of daily consults and admissions. The number of consults and admissions increased by 1% for each degree increase in temperature (p=0.001 and p<0.001, respectively), and decreased by 21% for each inch of precipitation (p<0.001, p=0.006). Daily consults on snowy days decreased by an additional 16% compared to days with no precipitation. November had the lowest daily consult and admission rate, while September had the highest. Daily consult rate was lowest on Wednesdays and highest on Saturdays. Holiday schedule was not independently significant. Pediatric orthopedic trauma consultations and admissions are highly linked to temperature and precipitation, as well as day of the week and time of year.
Connor, Ricardford R
2014-10-01
From July 2013 through June 2014, the number of active and reserve component service members treated for cold injuries (n=719) was the highest of the past five cold seasons (2009-2014). The rate of cold injury among active component personnel was also the highest of the 5-year period. Army personnel accounted for the majority (62%) of cold injuries. Frostbite was the most common type of cold injury in each of the services. Consistent with trends from previous cold seasons, service members who were female, younger than 20 years old, or of black, non-Hispanic race/ethnicity tended to have higher cold injury rates than their respective counterparts. Numbers of cases in the combat zone have decreased in the past 2 years, presumably as a result of declining numbers of personnel exposed and the changing nature of operations. The increase in numbers and the geographic distribution of cold injuries in the previous cold season are compatible with the unusual pattern of cold weather that marked Winter 2013-2014.
NASA Astrophysics Data System (ADS)
Pytlak, E.; McManamon, A.; Hughes, S. P.; Van Der Zweep, R. A.; Butcher, P.; Karafotias, C.; Beckers, J.; Welles, E.
2016-12-01
Numerous studies have documented the impacts that large scale weather patterns and climate phenomenon like the El Niño Southern Oscillation (ENSO), Pacific-North American (PNA) Pattern, and others can have on seasonal temperature and precipitation in the Columbia River Basin (CRB). While far from perfect in terms of seasonal predictability in specific locations, these intra-annual weather and climate signal do tilt the odds toward different temperature and precipitation outcomes, which in turn can have impacts on seasonal snowpacks, streamflows and water supply in large river basins like the CRB. We hypothesize that intraseasonal climate signals and long wave jet stream patterns can be objectively incorporated into what it is otherwise a climatology-based set of Ensemble Streamflow Forecasts, and can increase the predictive skill and utility of these forecasts used for mid-range hydropower planning. The Bonneville Power Administration (BPA) and Deltares have developed a subsampling-resampling method to incorporate climate mode information into the Ensemble Streamflow Prediction (ESP) forecasts (Beckers, et al., 2016). Since 2015, BPA and Deltares USA have experimented with this method in pre-operational use, using five objective multivariate climate indices that appear to have the greatest predictive value for seasonal temperature and precipitation in the CRB. The indices are used to objectively select historical weather from about twenty analog years in the 66-year (1949-2015) historical ESP set. These twenty scenarios then serve as the starting point to generate monthly synthetic weather and streamflow time series to return to a set of 66 streamflow traces. Our poster will share initial results from the 2015 and 2016 water years, which included large swings in the Quasi-Biennial Oscillation, persistent blocking jet stream patterns, and the development of a strong El Niño event. While the results are very preliminary and for only two seasons, there may be some value in incorporating objectively-identified climate signals into ESP-based streamflow forecasts.Beckers, J. V. L., Weerts, A. H., Tijdeman, E., and Welles, E.: ENSO-Conditioned Weather Resampling Method for Seasonal Ensemble Streamflow Prediction, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-72, in review, 2016.
Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Beck M.; Conner, Mary M.; Klaver, Robert W.; Bowyer, R. Terry
2011-01-01
Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, allowed us to document patterns of migration during 11 years that encompassed a wide array of environmental conditions. We used two new techniques to properly account for interval-censored data and disentangle effects of broad-scale climate, local weather patterns, and plant phenology on seasonal patterns of migration, while incorporating effects of individual life-history characteristics. Timing of autumn migration varied substantially among individual deer, but was associated with the severity of winter weather, and in particular, snow depth and cold temperatures. Migratory responses to winter weather, however, were affected by age, nutritional condition, and summer residency of individual females. Old females and those in good nutritional condition risked encountering severe weather by delaying autumn migration, and were thus risk-prone with respect to the potential loss of foraging opportunities in deep snow compared with young females and those in poor nutritional condition. Females that summered on the west side of the crest of the Sierra Nevada delayed autumn migration relative to east-side females, which supports the influence of the local environment on timing of migration. In contrast, timing of spring migration was unrelated to individual life-history characteristics, was nearly twice as synchronous as autumn migration, differed among years, was related to the southern oscillation index, and was influenced by absolute snow depth and advancing phenology of plants. Plasticity in timing of migration in response to climatic conditions and plant phenology may be an adaptive behavioral strategy, which should reduce the detrimental effects of trophic mismatches between resources and other life-history events of large herbivores. Failure to consider effects of nutrition and other life-history traits may cloud interpretation of phenological patterns of mammals and conceal relationships associated with climate change.
Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran.
Lopes, Marta S; Royo, Conxita; Alvaro, Fanny; Sanchez-Garcia, Miguel; Ozer, Emel; Ozdemir, Fatih; Karaman, Mehmet; Roustaii, Mozaffar; Jalal-Kamali, Mohammad R; Pequeno, Diego
2018-01-01
Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations [phenology and plant height (PH)] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought-resistant and avoidant wheat lines targeting specific locations.
Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran
Lopes, Marta S.; Royo, Conxita; Alvaro, Fanny; Sanchez-Garcia, Miguel; Ozer, Emel; Ozdemir, Fatih; Karaman, Mehmet; Roustaii, Mozaffar; Jalal-Kamali, Mohammad R.; Pequeno, Diego
2018-01-01
Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations [phenology and plant height (PH)] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought-resistant and avoidant wheat lines targeting specific locations. PMID:29765385
Flight response of slope-soaring birds to seasonal variation in thermal generation
Adam E. Duerr; Tricia A. Miller; Michael Lanzone; David Brandes; Jeff Cooper; Kieran O' Malley; Charles Maisonneuve; Junior A. Tremblay; Todd Katzner
2014-01-01
Animals respond to a variety of environmental cues, including weather conditions, when migrating. Understanding the relationship between weather and migration behaviour is vital to assessing time- and energy limitations of soaring birds. Different soaring modes have different efficiencies, are dependent upon different types of subsidized lift and are weather dependent...
Teaching through Trade Books: Forecasting Hazardous Conditions
ERIC Educational Resources Information Center
Royce, Christine Anne
2016-01-01
For students to know how to prepare for severe weather, they must first understand what types of weather they might experience in their location. Much of students' interactions with and learning about severe weather events will happen through printed text resources and video excerpts. Through the use of such resources, young students can begin to…
Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.
Hashim, Jamal Hisham; Hashim, Zailina
2016-03-01
The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity. © 2015 APJPH.
Impact of nowcasting on the production and processing of agricultural crops. [in the US
NASA Technical Reports Server (NTRS)
Dancer, W. S.; Tibbitts, T. W.
1973-01-01
The value was studied of improved weather information and weather forecasting to farmers, growers, and agricultural processing industries in the United States. The study was undertaken to identify the production and processing operations that could be improved with accurate and timely information on changing weather patterns. Estimates were then made of the potential savings that could be realized with accurate information about the prevailing weather and short term forecasts for up to 12 hours. This weather information has been termed nowcasting. The growing, marketing, and processing operations of the twenty most valuable crops in the United States were studied to determine those operations that are sensitive to short-term weather forecasting. Agricultural extension specialists, research scientists, growers, and representatives of processing industries were consulted and interviewed. The value of the crops included in this survey and their production levels are given. The total value for crops surveyed exceeds 24 billion dollars and represents more than 92 percent of total U.S. crop value.
Climate-soil Interactions: Global Change, Local Properties, and Ecological Sites
USDA-ARS?s Scientific Manuscript database
Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topograph...
Adverse Space Weather at the Solar Cycle Minimum
NASA Astrophysics Data System (ADS)
Baker, D. N.; Kanekal, S. G.; McCollough, J. P.; Singer, H. J.; Chappell, S. P.; Allen, J. H.
2008-05-01
It is commonly understood that many types of adverse space weather (solar flares, coronal mass ejections, geomagnetic storms) occur most commonly around the maximum of the 11-year sunspot activity cycle. Other types of well-known space weather such as relativistic electron events in the Earth's outer magnetosphere (that produce deep dielectric charging in spacecraft systems) are usually associated with the period just after sunspot maximum. At the present time, we are in the very lowest activity phase of the sunspot cycle (solar minimum). As such we would not expect much in the way of adverse space weather events. However, in early to mid-February of 2008 quite prominent solar coronal holes produced two high-speed streams that in turn stimulated very large, long-duration relativistic electron enhancements in Earth's magnetosphere. These seem to have been associated with several spacecraft operational anomalies at various spacecraft orbital locations. We describe these recent space weather events and assess their operational significance in this presentation. These results show that substantial space weather events can and do occur even during the quietest parts of the solar cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.
2011-10-01
Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the majormore » byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.« less
Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa
Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie
2017-01-01
Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474
Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa.
Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie
2017-03-14
Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth's climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.
Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean
NASA Astrophysics Data System (ADS)
Ruffault, Julien; Curt, Thomas; Martin-StPaul, Nicolas K.; Moron, Vincent; Trigo, Ricardo M.
2018-03-01
Increasing drought conditions under global warming are expected to alter the frequency and distribution of large and high-intensity wildfires. However, our understanding of the impact of increasing drought on extreme wildfires events remains incomplete. Here, we analyzed the weather conditions associated with the extreme wildfires events that occurred in Mediterranean France during the exceptionally dry summers of 2003 and 2016. We identified that these fires were related to two distinct shifts in the fire weather space towards fire weather conditions that had not been explored before and resulting from specific interactions between different types of drought and different fire weather types. In 2016, a long-lasting press drought
intensified wind-driven fires. In 2003, a hot drought
combining a heat wave with a press drought intensified heat-induced fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and lead to a higher frequency of extremes wildfires events.
Real-Time Analysis of a Sensor's Data for Automated Decision Making in an IoT-Based Smart Home.
Khan, Nida Saddaf; Ghani, Sayeed; Haider, Sajjad
2018-05-25
IoT devices frequently generate large volumes of streaming data and in order to take advantage of this data, their temporal patterns must be learned and identified. Streaming data analysis has become popular after being successfully used in many applications including forecasting electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs) have been successfully utilized in understanding the embedded interesting patterns/behaviors in the data and forecasting the future values based on it. One such pattern is modelled and learned in the present study to identify the occurrence of a specific pattern in a Water Management System (WMS). This prediction aids in making an automatic decision support system, to switch OFF a hydraulic suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output (MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been compared, for multi-step-ahead forecasting, on a sensor's streaming data. Experiments have shown that RNN has the best performance among three models and based on its prediction, a system can be implemented to make the best decision with 86% accuracy.
NASA Astrophysics Data System (ADS)
Ayscue, Emily P.
This study profiles the coastal tourism sector, a large and diverse consumer of climate and weather information. It is crucial to provide reliable, accurate and relevant resources for the climate and weather-sensitive portions of this stakeholder group in order to guide them in capitalizing on current climate and weather conditions and to prepare them for potential changes. An online survey of tourism business owners, managers and support specialists was conducted within the eight North Carolina oceanfront counties asking respondents about forecasts they use and for what purposes as well as why certain forecasts are not used. Respondents were also asked about their perceived dependency of their business on climate and weather as well as how valuable different forecasts are to their decision-making. Business types represented include: Agriculture, Outdoor Recreation, Accommodations, Food Services, Parks and Heritage, and Other. Weekly forecasts were the most popular forecasts with Monthly and Seasonal being the least used. MANOVA and ANOVA analyses revealed outdoor-oriented businesses (Agriculture and Outdoor Recreation) as perceiving themselves significantly more dependent on climate and weather than indoor-oriented ones (Food Services and Accommodations). Outdoor businesses also valued short-range forecasts significantly more than indoor businesses. This suggests a positive relationship between perceived climate and weather dependency and forecast value. The low perceived dependency and value of short-range forecasts of indoor businesses presents an opportunity to create climate and weather information resources directed at how they can capitalize on positive climate and weather forecasts and how to counter negative effects with forecasted adverse conditions. The low use of long-range forecasts among all business types can be related to the low value placed on these forecasts. However, these forecasts are still important in that they are used to make more financially risky decisions such as investment decisions.
NASA Astrophysics Data System (ADS)
Walther, A.; Jeong, J.-H.; Chen, D.
2009-04-01
Rainfall events exhibit diurnal cycle in both frequency and amount, of which phase and amplitude show substantial geographic and seasonal variation. Although the diurnal cycle of precipitation is one of the fundamental characteristics to determine local weather and climate, most of sophisticated climate models still have great deficiencies in reproducing it. Thus more exact understanding of the diurnal precipitation cycle and its mechanisms is thought to be very important to improve climate models and their prediction results. In this work we investigate the diurnal cycle of precipitation in Sweden using ground based hourly observations for 1996-2008. For the precipitation amount and frequency, mean diurnal cycles are computed, and the peak timing and amplitude of the diurnal and semi-diurnal cycle of precipitation are estimated by the harmonic analysis method. Clear mean diurnal precipitation cycles as well as distinct spatial patterns for all seasons are derived. In summer, showing the most distinct pattern, the majority of the stations show a clear rainfall maximum in the afternoon (12-18 LST) except for the coastal part of Central Sweden where we see an early-morning peak (00-06 LST) and the east coast of southern Sweden where we find a morning peak (06-12 LST). The clear afternoon peak may be due to high insolation accumulated during the day time in summer leading to a local convection activity later on that day. These coastal bands mostly consist of the stations closest to the Baltic Sea. Meso-scale convection connected to temperature differences between sea and land combined with a favorable wind pattern seems to play a role here. In the transition seasons, spring and autumn, the amplitude is weaker and the spatial pattern of peak timing is less distinct than in summer. In spring the westcoast stations have a morning peak and stations in southeastern Sweden show an afternoon peak. In autumn we see a zonal division with a clear afternoon peak in southern Sweden. This might be due to a steeply decreasing energy input from the solar insolation in the northern parts causing less convection activity but still enough insolation to cause an afternoon peak in southern Sweden. In both seasons, spring and autumn, north of 60 degrees the pattern is mixed showing early-morning, morning and afternoon peaks. The winter pattern is characterized by afternoon peaks along the eastcoast and central South Sweden and morning peaks over the most of the other parts of the country. However, the amplitude of the diurnal cycle is much weaker compared to that in summer or autumn. In order to examine the large scale circulation which might modulate the diurnal cycle, the Lamb weather types are computed based on sea level pressure fields from the NCEP/NCAR reanalysis 2 dataset with daily and 6-hourly resolution, respectively. The Lamb types based on 6-hourly SLP underline the high temporal variability of atmospheric conditions over the research area. Throughout all seasons, on about 45% of the days two or more circulation classes are different. In 6.3% (JJA) to 8.4% (DJF) of the days can observe 4 different Lamb classes. Using Lamb types with 6-hourly resolution leads to a somewhat finer classification. On average, for about one third of the days with precipitation the daily Lamb type and the appropriate 6-hourly one are different. The most frequent large-scale circulation classes coupled to precipitation events are of cyclonic or directional type. The atmospheric circulation patterns do not follow a diurnal cycle, whereas the local observed precipitation does. Knowledge about the timing of the rainfall is important in order to assign the right underlying circulation patterns to precipitation events.
NASA Astrophysics Data System (ADS)
Rivera, V. A.; Hernandez-Gonzalez, L. M.; Phillips, C. B.; Nair, A.; Negri, M. C.; Gnaedinger, K. J.; Miller, W. M.; Packman, A. I.
2017-12-01
Changing regional climate applies stresses to urban areas in the form of altered weather patterns, requiring new strategies for stormwater runoff management and flood mitigation. At the same time, the proportion of people residing in urban areas is increasing and cities are turning to greenspace as a tool for managing runoff. Gensburg Markham Prairie (GMP), located in Markham, Illinois south of Chicago, is an urban prairie nature preserve and a U.S. National Natural Landmark. Owned by Northeastern Illinois University and managed by the Nature Conservancy, GMP receives runoff from surrounding urban areas and provides valuable stormwater storage, while also hosting high biodiversity and providing critical habitat for sensitive and endemic. A successful management strategy for GMP should preserve both of these valuable ecosystem services. To understand GMP's role within the urban environment, we installed a suite of instruments in 2016 and 2017 to measure surface and groundwater levels, rainfall, soil moisture, and electrical conductivity throughout the prairie. This monitoring network includes 40 sensors collecting high frequency data (every 30 minutes). We are also collecting monthly distributed surface and groundwater samples to quantify a range of anions and cations that signal potentially detrimental anthropogenic impacts on the prairie. In addition, we are using historical and ongoing plant distribution surveys to explore the interactions between spatial patterns in vegetation and water dynamics in the prairie. The high measurement frequency and large diversity of sensor types supports holistic investigation of the response of the prairie to diverse events, including summer thunderstorms, winter road salt runoff, and spring snowmelt. The 18 months of data collected to date reveals clear patterns in response to weather events with influence from soil type and spatial variables. We are using time-series analysis with MODFLOW modelling to explore surface-groundwater interactions within the site and the effects of seasonality on the prairie's capacity for storage of stormwater runoff. This analysis supports development of management strategies to preserve the prairie's ecological diversity and provide a basis for regional-scale design of green infrastructure for flood control.
Extreme weather events and infectious disease outbreaks.
McMichael, Anthony J
2015-01-01
Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.
Seasonality and Coronary Heart Disease Deaths in United States Firefighters
Mbanu, Ibeawuchi; Wellenius, Gregory A.; Mittleman, Murray A.; Peeples, Lynne; Stallings, Leonard A.; Kales, Stefanos N.
2013-01-01
United States firefighters have a high on-duty fatality rate and coronary heart disease is the leading cause. Seasonality affects the incidence of cardiovascular events in the general population, but its effects on firefighters are unknown. We statistically examined the seasonal and annual variation of all on-duty coronary heart disease deaths among US firefighters between 1994 and 2004 using the chi-square distribution and Poisson regression model of the monthly fatality counts. We also examined the effect of ambient temperature (apparent as well as wind chill temperature) on coronary heart disease fatalities during the study span using a time-stratified, case-crossover study design. When grouped by season, we observed the distribution of the 449 coronary heart disease fatalities to show a relative peak in winter (32%) and relative nadir in spring (21%). This pattern was significantly different (p=0.005) from the expected distribution under the null hypothesis where season has no effect. The pattern persisted in additional analyses, stratifying the deaths by the type of duty in which the firefighters were engaged at the time of their deaths. In the Poisson regression model of the monthly fatality counts, the overall goodness-of-fit between the actual and predicted case counts was excellent ( χ42 = 16.63; p = 0.002). Two distinct peaks were detected, one in January-February and the other in August-September. Overall, temperature was not associated with increased risk of on-duty death. After allowing for different effects of temperature in mild/hot versus cold periods, a 1°C increase was not protective in cold weather, nor did it increase the risk of death in warmer weather. The findings of this study reveal statistical evidence for excess coronary heart disease deaths among firefighters during winter; however, the temporal pattern coronary heart disease deaths was not linked to temperature variation. We also found the seasonal pattern to be independent of duty-related risks. PMID:17701682
Image processing for hazard recognition in on-board weather radar
NASA Technical Reports Server (NTRS)
Kelly, Wallace E. (Inventor); Rand, Timothy W. (Inventor); Uckun, Serdar (Inventor); Ruokangas, Corinne C. (Inventor)
2003-01-01
A method of providing weather radar images to a user includes obtaining radar image data corresponding to a weather radar image to be displayed. The radar image data is image processed to identify a feature of the weather radar image which is potentially indicative of a hazardous weather condition. The weather radar image is displayed to the user along with a notification of the existence of the feature which is potentially indicative of the hazardous weather condition. Notification can take the form of textual information regarding the feature, including feature type and proximity information. Notification can also take the form of visually highlighting the feature, for example by forming a visual border around the feature. Other forms of notification can also be used.
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Pielke, R. A.
1985-01-01
Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.
An Experimental Approach to Understanding the Optical Effects of Space Weathering
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; Keller, Lindsay P.; Pieters, Carle M.
2007-01-01
The creation and accumulation of nanophase iron (npFe(sup 0)) is the primary mechanism by which spectra of materials exposed to the space environment incur systematic changes referred to as "space weathering." The optical effects of this npFe(sup 0) on lunar soils are well documented. Space weathering though, should occur on the surface of any planetary body that is not protected by an atmosphere. There is no reason to assume that cumulative space weathering products throughout the solar system will be the same as those found in lunar soils. In fact, these products are likely to be very dependent on the specific environmental conditions under which they were produced. We have prepared a suite of analog soils to explore the optical effects of npFe(sup 0). By varying the size and concentration of npFe(sup 0) in the analogs we found significant systematic changes in the Vis/NIR spectral properties of the materials. Smaller npFe(sup 0) (<10 nm in diameter) dramatically reddens spectra in the visible wavelengths while leaving the infrared region largely unaffected. Larger npFe(sup 0) (>40 nm in diameter) lowers the albedo across the Vis/NIR range with little change in the overall shape of the continuum. Intermediate npFe(sup 0) sizes impact the spectra in a distinct pattern that changes with concentration. The products of these controlled experiments have implications for space-weathered material throughout the inner solar system. Our results indicate that the lunar soil continuum is best modeled by npFe(sup 0) particles with bulk properties in the approx.15-25 nm size range. Larger npFe0 grains result in spectra that are similar in shape to the Mercury continuum. The continuum of S-type asteroid spectra appear to be best represented by small amounts of npFe(sup 0) that is similar to, but slightly smaller on average, than the npFe(sup 0) in lunar soils (approx.10-15 nm).
NASA Technical Reports Server (NTRS)
Hiroi, T.; Sasaki, S.; Noble, S. K.; Pieters, C. M.
2011-01-01
As the most abundance meteorites in our collections, ordinary chondrites potentially have very important implications on the origin and formation of our Solar System. In order to map the distribution of ordinary chondrite-like asteroids through remote sensing, the space weathering effects of ordinary chondrite parent bodies must be addressed through experiments and modeling. Of particular importance is the impact on distinguishing different types (H/L/LL) of ordinary chondrites. In addition, samples of asteroid Itokawa returned by the Hayabusa spacecraft may re veal the mechanism of space weathering on an LLchondrite parent body. Results of space weathering simulations on ordinary chondrites and implications for Itokawa samples are presented here.
Atmospheric circulation classification comparison based on wildfires in Portugal
NASA Astrophysics Data System (ADS)
Pereira, M. G.; Trigo, R. M.
2009-04-01
Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological variables. To achieve these objectives we consider the main classifications for Iberia developed within the framework of COST action 733 (Radan Huth et al., 2008). This European project aims to provide a wide range of atmospheric circulation classifications for Europe and sub-regions (http://www.cost733.org/) with an ambitious objective of assessing, comparing and classifying all relevant weather situations in Europe. Pereira et al. (2005) "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology,129, 11-25. Radan Huth et al. (2008) "Classifications of Atmospheric circulation patterns. Recent advances and applications". Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 105-152. doi: 10.1196/annals.1446.019. Trigo R.M., DaCamara C. (2000) "Circulation Weather Types and their impact on the precipitation regime in Portugal". Int J of Climatology, 20, 1559-1581.
NASA Technical Reports Server (NTRS)
McAdaragh, Raymon M.
2002-01-01
The capacity of the National Airspace System is being stressed due to the limits of current technologies. Because of this, the FAA and NASA are working to develop new technologies to increase the system's capacity which enhancing safety. Adverse weather has been determined to be a major factor in aircraft accidents and fatalities and the FAA and NASA have developed programs to improve aviation weather information technologies and communications for system users The Aviation Weather Information Element of the Weather Accident Prevention Project of NASA's Aviation Safety Program is currently working to develop these technologies in coordination with the FAA and industry. This paper sets forth a theoretical approach to implement these new technologies while addressing the National Airspace System (NAS) as an evolving system with Weather Information as one of its subSystems. With this approach in place, system users will be able to acquire the type of weather information that is needed based upon the type of decision-making situation and condition that is encountered. The theoretical approach addressed in this paper takes the form of a model for weather information implementation. This model addresses the use of weather information in three decision-making situations, based upon the system user's operational perspective. The model also addresses two decision-making conditions, which are based upon the need for collaboration due to the level of support offered by the weather information provided by each new product or technology. The model is proposed for use in weather information implementation in order to provide a systems approach to the NAS. Enhancements to the NAS collaborative decision-making capabilities are also suggested.
Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale
NASA Astrophysics Data System (ADS)
Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg
2017-04-01
A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a directional on-demand process common in all types of ecosystems.
NASA Astrophysics Data System (ADS)
Snyder, A.; Dietterich, T.; Selker, J. S.
2017-12-01
Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these errors to those of manually designed weather station networks in West Africa, planned by the respective host-country's meteorological agency.
NASA Astrophysics Data System (ADS)
Cascini, Leonardo; Ciurleo, Mariantonietta; Di Nocera, Silvio; Gullà, Giovanni
2015-07-01
Rainfall-induced shallow landslides involve several geo-environmental contexts and different types of soils. In clayey soils, they affect the most superficial layer, which is generally constituted by physically weathered soils characterised by a diffuse pattern of cracks. This type of landslide most commonly occurs in the form of multiple-occurrence landslide phenomena simultaneously involving large areas and thus has several consequences in terms of environmental and economic damage. Indeed, landslide susceptibility zoning is a relevant issue for land use planning and/or design purposes. This study proposes a multi-scale approach to reach this goal. The proposed approach is tested and validated over an area in southern Italy affected by widespread shallow landslides that can be classified as earth slides and earth slide-flows. Specifically, by moving from a small (1:100,000) to a medium scale (1:25,000), with the aid of heuristic and statistical methods, the approach identifies the main factors leading to landslide occurrence and effectively detects the areas potentially affected by these phenomena. Finally, at a larger scale (1:5000), deterministic methods, i.e., physically based models (TRIGRS and TRIGRS-unsaturated), allow quantitative landslide susceptibility assessment, starting from sample areas representative of those that can be affected by shallow landslides. Considering the reliability of the obtained results, the proposed approach seems useful for analysing other case studies in similar geological contexts.
Quantifying Interannual Variability for Photovoltaic Systems in PVWatts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryberg, David Severin; Freeman, Janine; Blair, Nate
2015-10-01
The National Renewable Energy Laboratory's (NREL's) PVWatts is a relatively simple tool used by industry and individuals alike to easily estimate the amount of energy a photovoltaic (PV) system will produce throughout the course of a typical year. PVWatts Version 5 has previously been shown to be able to reasonably represent an operating system's output when provided with concurrent weather data, however this type of data is not available when estimating system output during future time frames. For this purpose PVWatts uses weather data from typical meteorological year (TMY) datasets which are available on the NREL website. The TMY filesmore » represent a statistically 'typical' year which by definition excludes anomalous weather patterns and as a result may not provide sufficient quantification of project risk to the financial community. It was therefore desired to quantify the interannual variability associated with TMY files in order to improve the understanding of risk associated with these projects. To begin to understand the interannual variability of a PV project, we simulated two archetypal PV system designs, which are common in the PV industry, in PVWatts using the NSRDB's 1961-1990 historical dataset. This dataset contains measured hourly weather data and spans the thirty years from 1961-1990 for 239 locations in the United States. To note, this historical dataset was used to compose the TMY2 dataset. Using the results of these simulations we computed several statistical metrics which may be of interest to the financial community and normalized the results with respect to the TMY energy prediction at each location, so that these results could be easily translated to similar systems. This report briefly describes the simulation process used and the statistical methodology employed for this project, but otherwise focuses mainly on a sample of our results. A short discussion of these results is also provided. It is our hope that this quantification of the interannual variability of PV systems will provide a starting point for variability considerations in future PV system designs and investigations. however this type of data is not available when estimating system output during future time frames.« less
G. Sam Foster; Todd Mower; Russell Graham; Theresa B. Jain
2014-01-01
How does forest growth integrate weather, insect and disease attach, management actions, and natural disturbance? Which of these has the most impact on forest growth, composition, structure, and change? These questions have animated the activities of scientists of the Rocky Mountain Research Station (RMRS) since its earliest days, and continue to animate our research...
Ashley E. Van Beusekom; William A. Gould; A. Carolina Monmany; Azad Henareh Khalyani; Maya Quiñones; Stephen J. Fain; Maria José Andrade-Núñez; Grizelle González
2018-01-01
Abstract Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant...
Sean A. Parks; Lisa M. Holsinger; Carol Miller; Cara R. Nelson
2015-01-01
Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-...
Space weathering of small Koronis family members
NASA Astrophysics Data System (ADS)
Thomas, Cristina A.; Rivkin, Andrew S.; Trilling, David E.; Enga, Marie-therese; Grier, Jennifer A.
2011-03-01
The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160-163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259-294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9-L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1-5 km that shows the transition from Q- to S-type in the main-belt. This data set will prove crucial to our understanding of the space weathering process and its relevant timescales.
Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Feng, Cong; Cui, Mingjian
Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less
Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern
NASA Technical Reports Server (NTRS)
Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.
2013-01-01
Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.
Dynamical systems proxies of atmospheric predictability and mid-latitude extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Faranda, Davide; Caballero, Rodrigo; Yiou, Pascal
2017-04-01
Extreme weather ocurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. Many extremes (for e.g. storms, heatwaves, cold spells, heavy precipitation) are tied to specific patterns of midlatitude atmospheric circulation. The ability to identify these patterns and use them to enhance the predictability of the extremes is therefore a topic of crucial societal and economic value. We propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We use two simple dynamical systems metrics - local dimension and persistence - to identify sets of similar large-scale atmospheric flow patterns which present a coherent temporal evolution. When these patterns correspond to weather extremes, they therefore afford a particularly good forward predictability. We specifically test this technique on European winter temperatures, whose variability largely depends on the atmospheric circulation in the North Atlantic region. We find that our dynamical systems approach provides predictability of large-scale temperature extremes up to one week in advance.
1977-08-17
weather to gibbsite (plus or minus iron oxides) in well-drained, and smectite in poorly-drained, environments. Kaolinite found in the vicinity of quartz...rock and completely weathered saprolite. Quartz-rich rock types exhibit wide, gradational weathered zones and usually form kaolinite or halloysite in...free rocks is either formed by re-silication of gibbsite , or is of secondary origin (transported). Texture of the rock (aphanitic vs. phaneric) has
NASA Technical Reports Server (NTRS)
Cooley, Clayton; Billiot, Amanda; Lee, Lucas; McKee, Jake
2010-01-01
Water is in high demand for farmers regardless of where you go. Unfortunately, farmers in southern Florida have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. There is an interest by the agricultural community about the effect weather has on usable surface water, however, research into viable weather patterns during La Nina and El Nino has yet to be researched. Using rainfall accumulation data from NASA Tropical Rainfall Measurement Mission (TRMM) satellite, this project s purpose was to assess the influence of El Nino and La Nina Oscillations on sea breeze thunderstorm patterns, as well as general rainfall patterns during the summer season in South Florida. Through this research we were able to illustrate the spatial and temporal variations in rainfall accumulation for each oscillation in relation to major agricultural areas. The study period for this project is from 1998, when TRMM was first launched, to 2009. Since sea breezes in Florida typically occur in the months of May through October, these months were chosen to be the months of the study. During this time, there were five periods of El Nino and two periods of La Nina, with a neutral period separating each oscillation. In order to eliminate rainfall from systems other than sea breeze thunderstorms, only days that were conducive to the development of a sea breeze front were selected.
Modeling Child–Nature Interaction in a Nature Preschool: A Proof of Concept
Kahn, Peter H.; Weiss, Thea; Harrington, Kit
2018-01-01
This article provides a proof of concept for an approach to modeling child–nature interaction based on the idea of interaction patterns: characterizations of essential features of interaction between humans and nature, specified abstractly enough such that countless different instantiations of each one can occur – in more domestic or wild forms – given different types of nature, people, and purposes. The model draws from constructivist psychology, ecological psychology, and evolutionary psychology, and is grounded in observational data collected through a time-sampling methodology at a nature preschool. Through using a nature language that emphasizes ontogenetic and phylogenetic significance, seven keystone interaction patterns are described for this nature preschool: using one’s body vigorously in nature, striking wood on wood, constructing shelter, being in solitude in nature, lying on earth, cohabiting with a wild animal, and being outside in weather. These 7 interactions patterns are then brought together with 13 other patterns published elsewhere to provide a total of 20 keystone interaction patterns that begin to fill out the model, and to show its promise. Discussion focuses on what the model aims to be in terms of both product and process, on what work the model can currently do, and how to further develop the model. PMID:29896143
Unpuzzling American Climate: New World Experience and the Foundations of a New Science.
White, Sam
2015-09-01
In the early exploration and colonization of the Americas, Europeans encountered unfamiliar climates that challenged received ideas from classical geography. This experience drove innovative efforts to understand and explain patterns of weather and seasons in the New World. A close examination of three climatic puzzles (the habitability of the tropics, debates on the likelihood of a Northwest Passage, and the unexpectedly harsh weather in the first North American colonies) illustrates how sixteenth- and seventeenth-century observers made three intellectual breakthroughs: conceiving of climates as a distinct subject of inquiry, crossing the hitherto-separated disciplines of geography and meteorology, and developing new theories regarding the influence of prevailing winds on patterns of weather and seasons. While unquantified and unsystematic, these novel approaches promoted a new understanding of climates critical to the emergence of climate science. This study offers new insights into the foundations of climatology and the role of the New World in early modern science.
Modelling unsaturated/saturated flow in weathered profiles
NASA Astrophysics Data System (ADS)
Ireson, A. M.; Ali, M. A.; Van Der Kamp, G.
2016-12-01
Vertical weathering profiles are a common feature of many geological materials, where the fracture or macropore porosity decreases progressively below the ground surface. The weathered near surface zone (WNSZ) has an enhanced storage and permeability. When the water table is deep, the WNSZ can act to buffer recharge. When the water table is shallow, intersecting the WNSZ, transmissivity and lateral saturated flow, increase with increasing water table elevation. Such a situation exists in the glacial till dominated landscapes of the Canadian prairies, effectively resulting in dynamic patterns of subsurface connectivity. Using dual permeability hydraulic properties with vertically scaled macroporosity, we show how the WNSZ can be represented in models. The resulting model can be more parsimonious than an equivalent model with two or more discrete layers, and more physically realistic. We implement our model in PARFLOW-CLM, and apply the model to a field site in the Canadian prairies. We are able to convincingly simulate shallow groundwater dynamics, and spatio-temporal patterns of groundwater connectivity.
Codified Hashtags for Weather Warning on Twitter: an Italian Case Study
Grasso, Valentina; Crisci, Alfonso
2016-01-01
Introduction: During emergencies increasing numbers of messages are shared through social media platforms becoming a primary source of information for lay people and emergency managers. For Twitter codified hashtagging is emerging as a practical way to coordinate messages during emergencies and quickly identify relevant information. This paper considers a case study on the use of codified hashtags concerning weather warning in Italy in three different regions. Methods: From November 3rd to December 2nd 2014, tweets identified by the 3 codified hashtags #allertameteoTOS, #allertameteoLIG and #allertameteoPIE were retrieved, collecting a total of 35,558 tweets published by 7361 unique tweets authors, with the aim to assess if codified hashtags could represent an effective way to align formal and informal sources of information during weather related emergencies. An auxiliary R-package was built to lead the analytics used in this study. Authors performed a manual coding of users, hashtags and content of messages of all Twitter data considered. Results: Content analysis showed that tweets were overwhelmingly related to situational updates, with a high percentage containing geo-location information. Communication patterns of different user types were discussed for the three contexts. In accordance with previous studies, individuals showed an active participation primarily functioning as information hub during the emergency. Discussion: In the proposed cases codified hashtags have proven to be an effective tool to convey useful information on Twitter by formal and informal sources. Where institutions supported the use of the predefined hashtag in communication activities, like in Tuscany, messages were very focused, with more than 90% of tweets being situational updates. In this perspective, use of codified hashtags may potentially improve the performance of systems for automatic information retrieval and processing during disasters. Keywords: social media, emergency management, Twitter, severe weather PMID:27500010
Effect of weathering variables on the lightness of high-density polyethylene woodflour composites
Nicole M. Stark
2005-01-01
Wood-plastic lumber is promoted as a low-maintenance, high-durability product. After weathering, however, wood-plastic composites (WPCs) often fade. In the first part of this study, 50 percent woodflour-filled high- density polyethylene (HDPE) composite samples were manufactured. Composites were exposed to two accelerated weathering cycles in a xenon- arc type...
Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences
Dowdy, Andrew J.; Catto, Jennifer L.
2017-01-01
Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather. PMID:28074909
Laurel J. Haavik; Sharon A. Billings; James M. Guldin; Fred M. Stephen
2015-01-01
Forest declines are well-studied phenomena. However, recent patterns suggest that the traditional sequence of events and factors involved in forest decline are changing. Several reports in recent decades involve emergent mortality agents, many of which are native insects and diseases. In addition, changing climate and weather patterns place increasing emphasis on root...
A weathering-related origin of widespread monazite in S-type granites
NASA Astrophysics Data System (ADS)
Sawka, Wayne N.; Banfield, Jillian F.; Chappell, Bruch W.
1986-01-01
The S-type granite suites comprising more than a quarter of the extensively developed granites in the Lachlan Fold Belt, Australia, contain monazite which may be related to the chemical weathering of the sedimentary source rocks. We report a process whereby chemical weathering fixes mobile rare-earth elements (REE) in hydrous phosphate phases such as florencite and rhabdophane. This material contains up to 50 wt% LREE and occurs as very small particles (~3μm). Dehydration of these hydrous REE phases during anatexis directly yields monazite. The low solubility of phosphorus in S-type granite melts inhibits dissolution of both monazite and apatite. Refractory monazite may be thus entrained and transported in S-type granites in a manner similar to processes resulting in inherited zircon. Since both Th and the light REE are major components in monazite, materials containing this minute phase may be of widespread geochemical significance in both granites and metamorphic rocks.
NASA Astrophysics Data System (ADS)
Fritsch, J. M.; Kane, R. J.; Chelius, C. R.
1986-10-01
The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.
Weather and Climate Monitoring Protocol, Channel Islands National Park, California
McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky
2008-01-01
Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.
Conveying Global Circulation Patterns in HDTV
NASA Astrophysics Data System (ADS)
Gardiner, N.; Janowiak, J.; Kinzler, R.; Trakinski, V.
2006-12-01
The American Museum of Natural History has partnered with the National Centers for Environmental Prediction (NCEP) to educate general audiences about weather and climate using high definition video broadcasts built from half-hourly global mosaics of infrared (IR) data from five geostationary satellites. The dataset being featured was developed by NCEP to improve precipitation estimates from microwave data that have finer spatial resolution but poorer temporal coverage. The IR data span +/-60 degrees latitude and show circulation patterns at sufficient resolution to teach informal science center visitors about both weather and climate events and concepts. Design and editorial principles for this media program have been guided by lessons learned from production and annual updates of visualizations that cover eight themes in both biological and Earth system sciences. Two formative evaluations on two dates, including interviews and written surveys of 480 museum visitors ranging in age from 13 to over 60, helped refine the design and implementation of the weather and climate program and demonstrated that viewers understood the program's initial literacy objectives, including: (1) conveying the passage of time and currency of visualized data; (2) geographic relationships inherent to atmospheric circulation patterns; and (3) the authenticity of visualized data, i.e., their origin from earth-orbiting satellites. Surveys also indicated an interest and willingness to learn more about weather and climate principles and events. Expanded literacy goals guide ongoing, biweekly production and distribution of global cloud visualization pieces that reach combined audiences of approximately 10 million. Two more rounds of evaluation are planned over the next two years to assess the effectiveness of the media program in addressing these expanded literacy goals.
Skin histology and its role in heat dissipation in three pinniped species
2012-01-01
Background Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat. Methods Thorough evaluation of the skin histology in three pinniped species; the California sea lion-Zalophus californianus, the Pacific harbor seal-Phoca vitulina richardsi, and the Northern elephant seal-Mirounga angustirostris, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA). Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin. Results The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seals) follows a different pattern than skin in otariids (California sea lions). The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather. Conclusion Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits. PMID:22889205
Titan's seasonal weather patterns, associated surface modification, and geological implications
NASA Astrophysics Data System (ADS)
Turtle, E. P.; Perry, J. E.; Barnes, J. W.; McEwen, A. S.; Barbara, J. M.; Del Genio, A. D.; Hayes, A. G.; West, R. A.; Lorenz, R. D.; Schaller, E. L.; Lunine, J. I.; Ray, T. L.; Lopes, R. M. C.; Stofan, E. R.
2013-09-01
Model predictions [e.g., 1-3] and observations [e.g., 4,5] illustrate changes in Titan's weather patterns related to the seasons (Fig. 1). In two cases, surface changes were documented following large cloud outbursts (Figs. 2, 3): the first in Arrakis Planitia at high southern latitudes in Fall 2004, during Titan's late southern summer [6]; and the second at lows southern latitudes in Concordia and Hetpet Regiones, Yalaing Terra (Fig. 3), and Adiri, in Fall 2010, just over a year after Titan's northern vernal equinox [4, 7, 8]. Not only do these storms demonstrate Titan's atmospheric conditions and processes, they also have important implications for Titan's surface process, its methane cycle, and its geologic history.
Chuang, Ting-Wu; Ionides, Edward L; Knepper, Randall G; Stanuszek, William W; Walker, Edward D; Wilson, Mark L
2012-07-01
Weather is important determinant of mosquito abundance that, in turn, influences vectorborne disease dynamics. In temperate regions, transmission generally is seasonal as mosquito abundance and behavior varies with temperature, precipitation, and other meteorological factors. We investigated how such factors affected species-specific mosquito abundance patterns in Saginaw County, MI, during a 17-yr period. Systematic sampling was undertaken at 22 trapping sites from May to September, during 1989-2005, for 19,228 trap-nights and 300,770 mosquitoes in total. Aedes vexans (Meigen), Culex pipiens L. and Culex restuans Theobald, the most abundant species, were analyzed. Weather data included local daily maximum temperature, minimum temperature, total precipitation, and average relative humidity. In addition to standard statistical methods, cross-correlation mapping was used to evaluate temporal associations with various lag periods between weather variables and species-specific mosquito abundances. Overall, the average number of mosquitoes was 4.90 per trap-night for Ae. vexans, 2.12 for Cx. pipiens, and 1.23 for Cx. restuans. Statistical analysis of the considerable temporal variability in species-specific abundances indicated that precipitation and relative humidity 1 wk prior were significantly positively associated with Ae. vexans, whereas elevated maximum temperature had a negative effect during summer. Cx. pipiens abundance was positively influenced by the preceding minimum temperature in the early season but negatively associated with precipitation during summer and with maximum temperature in July and August. Cx. restuans showed the least weather association, with only relative humidity 2-24 d prior being linked positively during late spring-early summer. The recently developed analytical method applied in this study could enhance our understanding of the influences of weather variability on mosquito population dynamics.
Liang, Yan; Fung, Pui Ka; Tse, Man Fung; Hong, Hua Chang; Wong, Ming Hung
2008-11-01
The main objective of this study was to investigate occurrence of polycyclic aromatic hydrocarbons (PAHs) in the sources of the drinking water supply of Hong Kong. The main emphasis was on the Dongjiang River in mainland China which is the major source, supplying 80% of the total consumption in Hong Kong (the remaining 20% is obtained from rain water). Sediments were collected from four sites along the Dongjiang River and four reservoirs in Hong Kong during both the dry and wet weather seasons. The concentrations of total PAHs in the sediments ranged between 36 and 539 microg/kg dry wt. The lower levels were detected at the upstream site on the Dongjiang River and at the reservoirs in Hong Kong (44-85 microg/kg dry wt), while the mid- and downstream sites on the Dongjiang River were more polluted (588-658 microg/kg dry wt). Examination of the PAH profiles revealed that the mid- and downstream sections of the Dongjiang River contained high percentages of 4,5,6-ring PAHs, similar to the amounts of atmospheric particulate matter and road dust collected during the dry weather season from the Pearl River Delta region as reported in the literature. Seasonal changes were revealed in the reservoirs of Hong Kong, with higher PAH levels in the wet weather season than in the dry weather season. For those reservoirs in Hong Kong that store water from the Dongjiang River, a distinct seasonal pattern was also observed, namely, that under dry weather season conditions the PAHs found in the sediments were primarily from petrogenic source, while under wet weather season conditions they were from pyrolytic sources. No such pattern was detected in the reservoirs which stored only rain water.
An analysis of high-impact, low-predictive skill severe weather events in the northeast U.S
NASA Astrophysics Data System (ADS)
Vaughan, Matthew T.
An objective evaluation of Storm Prediction Center slight risk convective outlooks, as well as a method to identify high-impact severe weather events with poor-predictive skill are presented in this study. The objectives are to assess severe weather forecast skill over the northeast U.S. relative to the continental U.S., build a climatology of high-impact, low-predictive skill events between 1980--2013, and investigate the dynamic and thermodynamic differences between severe weather events with low-predictive skill and high-predictive skill over the northeast U.S. Severe storm reports of hail, wind, and tornadoes are used to calculate skill scores including probability of detection (POD), false alarm ratio (FAR) and threat scores (TS) for each convective outlook. Low predictive skill events are binned into low POD (type 1) and high FAR (type 2) categories to assess temporal variability of low-predictive skill events. Type 1 events were found to occur in every year of the dataset with an average of 6 events per year. Type 2 events occur less frequently and are more common in the earlier half of the study period. An event-centered composite analysis is performed on the low-predictive skill database using the National Centers for Environmental Prediction Climate Forecast System Reanalysis 0.5° gridded dataset to analyze the dynamic and thermodynamic conditions prior to high-impact severe weather events with varying predictive skill. Deep-layer vertical shear between 1000--500 hPa is found to be a significant discriminator in slight risk forecast skill where high-impact events with less than 31-kt shear have lower threat scores than high-impact events with higher shear values. Case study analysis of type 1 events suggests the environment over which severe weather occurs is characterized by high downdraft convective available potential energy, steep low-level lapse rates, and high lifting condensation level heights that contribute to an elevated risk of severe wind.
Models of Weather Impact on Air Traffic
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao
2017-01-01
Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathryn H. Greenberg; George W. Tanner
2004-08-31
Cathryn H. Greenberg and George W. Tanner. 2004. Breeding pond selection and movement patterns by eastern spadefoot toads (Scaphiopus holbrookii) in relation to weather and edaphic conditions. J. Herp. 38(4):569-577. Abstract: Eastern Spadefoot Toads (Scaphiopus holbrookii) require fish-free, isolated, ephemeral ponds for breeding but otherwise inhabit the surrounding uplands, commonly xeric longleaf pine (Pinus palustris) wiregrass (Aristida beyrichiana). Hence both pond and upland conditions can potentially affect their breeding biology, and population persistence. Hardwood invasion due to fire suppression in sandhills could alter upland and pond suitability by higher hardwood density and increased transpiration. In this paper we explore breedingmore » and neonatal emigration movements in relation to weather, hydrological conditions of ponds, and surrounding upland matrices. We use 9 years of data from continuous monitoring with drift fences and pitfall traps at 8 ephemeral ponds in 2 upland matrices: regularly-burned, savanna-like sandhills (n = 4), and hardwood-invaded sandhills (n = 4). Neither adult nor neonate captures differed between ponds within the 2 upland matrices, suggesting that they are tolerant of upland heterogeneity created by fire frequency. Explosive breeding occurred during 9 periods and in all seasons; adults were captured rarely otherwise. At a landscape-level rainfall, maximum change in barometric pressure, and an interaction between those 2 variables were significant predictors of explosive breeding. At a pond-level, rainfall, change in pond depth during the month prior to breeding, and days since a pond was last dry were significant predictors of adult captures. Transformation date, rather than weather, was associated with neonatal emigrations, which usually were complete within a week. Movement by first-captured adults and neonates was directional, but adult emigrations were apparently not always toward their origin. Our results suggest that Spadefoot Toads are highly adapted to breeding conditions and upland habitat heterogeneity created by weather patterns and fire frequency in Florida sandhills.« less
NASA Astrophysics Data System (ADS)
Vautard, Robert; Christidis, Nikolaos; Ciavarella, Andrew; Alvarez-Castro, Carmen; Bellprat, Omar; Christiansen, Bo; Colfescu, Ioana; Cowan, Tim; Doblas-Reyes, Francisco; Eden, Jonathan; Hauser, Mathias; Hegerl, Gabriele; Hempelmann, Nils; Klehmet, Katharina; Lott, Fraser; Nangini, Cathy; Orth, René; Radanovics, Sabine; Seneviratne, Sonia I.; van Oldenborgh, Geert Jan; Stott, Peter; Tett, Simon; Wilcox, Laura; Yiou, Pascal
2018-04-01
A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed sea surface temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution.
GRS evidence and the possibility of paleooceans on Mars
Dohm, J.M.; Baker, V.R.; Boynton, W.V.; Fairen, A.G.; Ferris, J.C.; Finch, M.; Furfaro, R.; Hare, T.M.; Janes, D.M.; Kargel, J.S.; Karunatillake, S.; Keller, J.; Kerry, K.; Kim, K.J.; Komatsu, G.; Mahaney, W.C.; Schulze-Makuch, D.; Marinangeli, L.; Ori, G.G.; Ruiz, J.; Wheelock, S.J.
2009-01-01
The Gamma Ray Spectrometer (Mars Odyssey spacecraft) has revealed elemental distributions of potassium (K), thorium (Th), and iron (Fe) on Mars that require fractionation of K (and possibly Th and Fe) consistent with aqueous activity. This includes weathering, evolution of soils, and transport, sorting, and deposition, as well as with the location of first-order geomorphological demarcations identified as possible paleoocean boundaries. The element abundances occur in patterns consistent with weathering in situ and possible presence of relict or exhumed paleosols, deposition of weathered materials (salts and clastic minerals), and weathering/transport under neutral to acidic brines. The abundances are explained by hydrogeology consistent with the possibly overlapping alternatives of paleooceans and/or heterogeneous rock compositions from diverse provenances (e.g., differing igneous compositions). ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Fulvio, Daniele; Perna, Davide; Ieva, Simone; Brunetto, Rosario; Kanuchova, Zuzana; Blanco, Carlo; Strazzulla, Giovanni; Dotto, Elisabetta
2016-01-01
Among main belt asteroids, V-types belonging to Vesta's dynamical family are known as `Vestoids' while those lying outside Vesta's family as `non-Vestoids'. V-types have also been found within the population of Near Earth Asteroids (NEAs). Several questions on Vesta, the V-types, and the Howardite-Eucrite-Diogenite meteorites are still unsolved, such as the genesis of each class/subclass, their evolution and mutual relationship, and the existence of other basaltic parent bodies. We present new NIR (0.8-2.4 μm) spectroscopic observations of seven non-Vestoids, carried out at the Telescopio Nazionale Galileo (TNG - INAF). We derived a number of spectral parameters (BI and BII centres, band separations, and BI slopes) and compared them with available spectra of V-types belonging to different subclasses (102 V-types in total), to highlight possible spectral differences useful to shed light on the questions mentioned above. We also considered the data from ion irradiation experiments performed on different samples of eucrites, simulating space weathering effects. Net discrepancies are seen for the BI slope distributions: NEAs show a distribution strongly different from all other V-type subclasses. Ion irradiation experiments induce strong effects on BI slope values and, as irradiation proceeds, the BI slope of eucrites quickly increases, changing the overall aspect of their VIS-NIR spectra (0.4-2.5 μm). Space weathering may explain the whole range of spectral slopes observed for all V-type subclasses. An exception is represented by NEAs, where moderate space weathering effects are evidenced. We propose that this is due to tidal perturbations exposing `fresh' unweathered surface grains during close encounters with the Earth, as previously found for Q-type NEAs.
Win(d)-Win(d) Solutions for wind developers and bats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hein, Cris; Schirmacher, Michael; Arnett, Ed
Bat Conservation International initiated a multi-year, pre-construction study in mid-summer 2009 to investigate patterns of bat activity and evaluate the use of acoustic monitoring to predict mortality of bats at the proposed Resolute Wind Energy Project (RWEP) in east-central Wyoming. The primary objectives of this study were to: (1) determine levels and patterns of activity for three phonic groups of bats (high-frequency emitting bats, low-frequency emitting bats, and hoary bats) using the proposed wind facility prior to construction of turbines; (2) determine if bat activity can be predicted based on weather patterns; correlate bat activity with weather variables; and (3)more » combine results from this study with those from similar efforts to determine if indices of pre-construction bat activity can be used to predict post-construction bat fatalities at proposed wind facilities. We report results from two years of pre-construction data collection.« less
Slingsby, Jasper A; Merow, Cory; Aiello-Lammens, Matthew; Allsopp, Nicky; Hall, Stuart; Kilroy Mollmann, Hayley; Turner, Ross; Wilson, Adam M; Silander, John A
2017-05-02
Prolonged periods of extreme heat or drought in the first year after fire affect the resilience and diversity of fire-dependent ecosystems by inhibiting seed germination or increasing mortality of seedlings and resprouting individuals. This interaction between weather and fire is of growing concern as climate changes, particularly in systems subject to stand-replacing crown fires, such as most Mediterranean-type ecosystems. We examined the longest running set of permanent vegetation plots in the Fynbos of South Africa (44 y), finding a significant decline in the diversity of plots driven by increasingly severe postfire summer weather events (number of consecutive days with high temperatures and no rain) and legacy effects of historical woody alien plant densities 30 y after clearing. Species that resprout after fire and/or have graminoid or herb growth forms were particularly affected by postfire weather, whereas all species were sensitive to invasive plants. Observed differences in the response of functional types to extreme postfire weather could drive major shifts in ecosystem structure and function such as altered fire behavior, hydrology, and carbon storage. An estimated 0.5 °C increase in maximum temperature tolerance of the species sets unique to each survey further suggests selection for species adapted to hotter conditions. Taken together, our results show climate change impacts on biodiversity in the hyperdiverse Cape Floristic Region and demonstrate an important interaction between extreme weather and disturbance by fire that may make flammable ecosystems particularly sensitive to climate change.
NASA Astrophysics Data System (ADS)
Spasova, Z.
2010-09-01
Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions, while those who are emotionally unstable have a stronger dependence to the impacts of the weather.
Geochemistry of loess-paleosol sediments of Kashmir Valley, India: Provenance and weathering
NASA Astrophysics Data System (ADS)
Ahmad, Ishtiaq; Chandra, Rakesh
2013-04-01
Middle to Late Pleistocene loess-paleosol sediments of Kashmir Valley, India, were analyzed for major, trace and REE elements in order to determine their chemical composition, provenance and intensity of palaeo-weathering of the source rocks. These sediments are generally enriched with Fe2O3, MgO, MnO, TiO2, Y, Ni, Cu, Zn, Th, U, Sc, V and Co while contents of SiO2, K2O, Na2O, P2O5, Sr, Nb and Hf are lower than the UCC. Chondrite normalized REE patterns are characterized by moderate enrichment of LREEs, relatively flat HREE pattern (GdCN/YbCN = 1.93-2.31) and lack of prominent negative Eu anomaly (Eu/Eu* = 0.73-1.01, average = 0.81). PAAS normalized REE are characterized by slightly higher LREE, depleted HREE and positive Eu anomaly. Various provenance discrimination diagrams reveal that the Kashmir Loess-Paleosol sediments are derived from the mixed source rocks suggesting large provenance with variable geological settings, which apparently have undergone weak to moderate recycling processes. Weathering indices such as CIA, CIW and PIA values (71.87, 83.83 and 80.57 respectively) and A-CN-K diagram imply weak to moderate weathering of the source material.
Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.
Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T
2015-10-01
Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.
Van Hennekeler, K; Jones, R E; Skerratt, L F; Muzari, M O; Fitzpatrick, L A
2011-03-01
Information on the daily activity patterns of tabanid flies is important in the development of strategies that decrease the risk of pathogens transmitted by them. In addition, this information is useful to maximize numbers of tabanids trapped during short-term studies and to target feeding behavior studies of certain tabanid species to their times of peak activity. The current study examined the effects of various meteorological factors on the daily activity patterns of common tropical species of tabanids in north Queensland. Each species studied responded differently to weather factors. Tabanus townsvilli Ricardo (Diptera: Tabanidae) was most active during late morning and early afternoon, whereas Pseudotabanus silvester (Bergroth) and Tabanus pallipennis Macquart were most active in the late afternoon. Tabanus dorsobimaculatus Macquart was most active in the morning and early afternoon. Data on daily activity patterns of tabanid flies indicates that in an area such as Townsville, North Queensland, where several species of tabanid are present concurrently in high numbers, the overlapping periods of high activity for these species indicate a high risk of pathogen transmission for most of the day (10.00-19.00 hours). Similarly, because each species responds differently to weather variables, only extreme weather conditions are likely to inhibit activity of all species. These data also indicate that for maximal results, trapping and feeding behavior studies should be tailored to the preferred activity period of the species under investigation. © 2010 The Authors. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.
Variation of rain intensity and drop size distribution with General Weather Patterns (GWL)
NASA Astrophysics Data System (ADS)
Ghada, Wael; Buras, Allan; Lüpke, Marvin; Menzel, Annette
2017-04-01
Short-duration rainfall extremes may cause flash floods in certain catchments (e.g. cities or fast responding watersheds) and pose a great risk to affected communities. In order to predict their occurrence under future climate change scenarios, their link to atmospheric circulation patterns needs to be well understood. We used a comprehensive data set of meteorological data (temperature, rain gauge precipitation) and precipitation spectra measured by a disdrometer (OTT PARSIVEL) between October 2008 and June 2010 at Freising, southern Germany. For the 21 months of the study period, we integrated the disdrometer spectra over intervals of 10 minutes to correspond to the temporal resolution of the weather station data and discarded measurements with air temperatures below 0°C. Daily General Weather Patterns ("Großwetterlagen", GWL) were downloaded from the website of the German Meteorological Service. Out of the 29 GWL, 14 were included in the analysis for which we had at least 12 rain events during our study period. For the definition of a rain event, we tested different lengths of minimum inter-event times and chose 30 min as a good compromise between number and length of resulting events; rain events started when more than 0.001 mm/h (sensitivity of the disdrometer) were recorded. The length of the rain events ranged between 10 min and 28 h (median 130 min) with the maximum rain intensity recorded being 134 mm/h on 24-07-2009. Seasonal differences were identified for rain event average intensities and maximum intensities per event. The influence of GWL on rain properties such as rain intensity and drop size distribution per time step and per event was investigated based on the above mentioned rain event definition. Pairwise Wilcoxon-tests revealed that higher rain intensity and larger drops were associated with the GWL "Low over the British Isles" (TB), whereas low rain intensities and less drops per interval were associated with the GWL "High over Central Europe" (HM). "Trough over Central Europe" (TRM) was linked to smaller drops and "High Scandinavia-Iceland, Trough C. Europe" (HNFZ) had fewer drops per time step when compared to other GWL types. We also investigated the intra-event behavior regarding fluctuations in rain intensity, rain drop counts, and drop size distribution with time. When combined with predictions of circulation patterns, our analysis provides a detailed insight into the characteristics of rain events under different future climate scenarios, but definitively an extended measurement period and more measurement locations are needed for validation.
Weather impacts on leisure activities in Halifax, Nova Scotia
NASA Astrophysics Data System (ADS)
Spinney, Jamie E. L.; Millward, Hugh
2011-03-01
The aim of this study was to investigate the impact of daily atmospheric weather conditions on daily leisure activity engagement, with a focus on physically active leisure. The methods capitalize on time diary data that were collected in Halifax, Nova Scotia to calculate objective measures of leisure activity engagement. Daily meteorological data from Environment Canada and daily sunrise and sunset times from the National Research Council of Canada are used to develop objective measures of the natural atmospheric environment. The time diary data were merged with the meteorological data in order to quantify the statistical association between daily weather conditions and the type, participation rate, frequency, and duration of leisure activity engagement. The results indicate that inclement and uncomfortable weather conditions, especially relating to thermal comfort and mechanical comfort, pose barriers to physically active leisure engagement, while promoting sedentary and home-based leisure activities. Overall, daily weather conditions exhibit modest, but significant, effects on leisure activity engagement; the strongest associations being for outdoor active sports and outdoor active leisure time budgets. In conclusion, weather conditions influence the type, participation rate, frequency, and duration of leisure activity engagement, which is an important consideration for health-promotion programming.
NASA Astrophysics Data System (ADS)
Reed, S.; Cleveland, C. C.; Davidson, E. A.; Townsend, A. R.
2013-12-01
During leaf senescence, nutrient rich compounds are transported to other parts of the plant and this 'resorption' recycles nutrients for future growth, reducing losses of potentially limiting nutrients. Variations in leaf chemistry resulting from nutrient resorption also directly affect litter quality, in turn, regulating decomposition rates and soil nutrient availability. Here we investigated stoichiometric patterns of nitrogen (N) and phosphorus (P) resorption efficiency at multiple spatial scales. First, we assembled a global database to explore nutrient resorption among and within biomes and to examine potential relationships between resorption stoichiometry and ecosystem nutrient status. Next, we used a forest regeneration chronosequence in Brazil to assess how resorption stoichiometry linked with a suite of other nutrient cycling measures and with ideas of how nutrient limitation may change over secondary forest regrowth. Finally, we measured N:P resorption ratios of six canopy tree species in a Costa Rican tropical forest. We calculated species-specific resorption ratios and compared them with patterns in leaf litter and topsoil nutrient concentrations. At the global scale, N:P resorption ratios increased with latitude and decreased with mean annual temperature (MAT) and precipitation (MAP; P<0.001 for each). In particular, we observed a notable switch across latitudes: N:P resorption ratios were generally <1 in latitudes <23° and >1 in latitudes >23°. Focusing on tropical sites in our global dataset we found that, despite fewer data and a restricted latitudinal range, a significant relationship between latitude and N:P resorption ratios persisted (P<0.001). In contrast, tropical N:P resorption ratios did not vary with MAT (P=0.965) and the relationship with MAP was only marginally significant (P=0.089). Data suggest that soil type, at least in part, helps explain N:P resorption patterns across tropical latitudes: plants on more weathered soils (Oxisols and Ultisols) resorbed much more P relative to N and weathered soils were proportionally more abundant at the lowest latitudes. In our assessment of nutrient resorption along an Amazon Basin chronosequence of regenerating forests, where previous work reported a transition from apparent N limitation in younger forests to P limitation in mature forests, we found N resorption was highest in the youngest forest, whereas P resorption was greatest in the mature forest. Over the course of succession, N resorption efficiency leveled off but P resorption continued to increase with forest age. In Costa Rica, though we found species-specific patterns in resorption, data support the idea that lowland tropical forest plants on highly weathered soils resorb more P relative to N. Together, these data highlight how stoichiometric perspectives can help distill the complexity of coupled biogeochemical cycles and suggest that nutrient resorption ratios offer a complementary metric for assessing nutrient limitation in terrestrial ecosystems.
AWE: Aviation Weather Data Visualization Environment
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.
2000-01-01
The two official sources for aviation weather reports both provide weather information to a pilot in a textual format. A number of systems have recently become available to help pilots with the visualization task by providing much of the data graphically. However, two types of aviation weather data are still not being presented graphically. These are airport-specific current weather reports (known as meteorological observations, or METARs) and forecast weather reports (known as terminal area forecasts, or TAFs). Our system, Aviation Weather Environment (AWE), presents intuitive graphical displays for both METARs and TAFs, as well as winds aloft forecasts. We start with a computer-generated textual aviation weather briefing. We map this briefing onto a cartographic grid specific to the pilot's area of interest. The pilot is able to obtain aviation-specific weather for the entire area or for his specific route. The route, altitude, true airspeed, and proposed departure time can each be modified in AWE. Integral visual display of these three elements of weather reports makes AWE a useful planning tool, as well as a weather briefing tool.
NASA Astrophysics Data System (ADS)
Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome
2016-04-01
A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation, as expected, with a pronounced transition occurring at about 1000 mm/yr MAP. We speculate that relatively stiff, sub-horizontal layers that are interbedded with weathered material, may explain the discrepancy between both lower seismic velocities (in the field and the laboratory) and lower unconfined compressive strength, and the interpreted high strength exhibited by the seismic slope response during the Kiholo Bay earthquake. This observation has important consequences on the type of landslides observed in the 2006 earthquake, as well as the landslides that can be expected in future earthquakes.
The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong.
Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung
2015-03-01
It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.
The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong
NASA Astrophysics Data System (ADS)
Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung
2015-03-01
It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.
USDA-ARS?s Scientific Manuscript database
CLIGEN (CLImate GENerator) is a widely used stochastic weather generator to simulate continuous daily precipitation and storm pattern information for hydrological and soil erosion models. Although CLIGEN has been tested in several regions in the world, thoroughly assessment before applying it to Chi...
Pilliod, David S; Welty, Justin L; Arkle, Robert S
2017-10-01
Larger, more frequent wildfires in arid and semi-arid ecosystems have been associated with invasion by non-native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time-lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26-year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non-native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non-native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years' growth. Consequently, multiyear weather patterns, including precipitation in the previous 1-3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35-year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.
Pilliod, David S.; Welty, Justin; Arkle, Robert
2017-01-01
Larger, more frequent wildfires in arid and semi-arid ecosystems have been associated with invasion by non-native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time-lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26-year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non-native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non-native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years’ growth. Consequently, multiyear weather patterns, including precipitation in the previous 1–3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35-year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.
Two daily smoke maxima in eighteenth century London air
NASA Astrophysics Data System (ADS)
Harrison, R. Giles
Varied electrostatics experiments followed Benjamin Franklin's pioneering atmospheric investigations. In Knightsbridge, Central London, John Read (1726-1814) installed a sensing rod in the upper part of his house and, using a pith ball electrometer and Franklin chimes, monitored atmospheric electricity from 1789 to 1791. Atmospheric electricity is sensitive to weather and smoke pollution. In calm weather conditions, Read observed two daily electrification maxima in moderate weather, around 9 am and 7 pm. This is likely to represent a double diurnal cycle in urban smoke. Before the motor car and steam railways, one source of the double maximum smoke pattern was the daily routine of fire lighting for domestic heating.
Nonlinear response of mid-latitude weather to the changing Arctic
NASA Astrophysics Data System (ADS)
Overland, James E.; Dethloff, Klaus; Francis, Jennifer A.; Hall, Richard J.; Hanna, Edward; Kim, Seong-Joong; Screen, James A.; Shepherd, Theodore G.; Vihma, Timo
2016-11-01
Are continuing changes in the Arctic influencing wind patterns and the occurrence of extreme weather events in northern mid-latitudes? The chaotic nature of atmospheric circulation precludes easy answers. The topic is a major science challenge, as continued Arctic temperature increases are an inevitable aspect of anthropogenic climate change. We propose a perspective that rejects simple cause-and-effect pathways and notes diagnostic challenges in interpreting atmospheric dynamics. We present a way forward based on understanding multiple processes that lead to uncertainties in Arctic and mid-latitude weather and climate linkages. We emphasize community coordination for both scientific progress and communication to a broader public.
Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya
2014-05-01
Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own treatment system for sewage and sullage and the untreated wastes are discharged into these old sewer pipes and ultimately the wastes reach the water bodies. In this context, decentralized treatment of sewage, sullage, and garbage by individual houses/establishments/hotels/hospitals is a better option for the developing countries. With the rapid developmental activities, and due to the variation of precipitation due to climate change, it is highly essential to provide proper waste treatment/augmentation facilities in urban lake system because a slight variation in the weather pattern can result in serious implications in the already polluted water bodies.
Winter weather demand considerations.
DOT National Transportation Integrated Search
2015-04-01
Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...
Translating weather extremes into the future - a case for Norway
NASA Astrophysics Data System (ADS)
Sillmann, Jana; Mueller, Malte; Gjertsen, Uta; Haarsma, Rein; Hazeleger, Wilco; Amundsen, Helene
2017-04-01
We introduce a new project "Translating weather extremes into the future - a case for Norway" (TWEX - http://www.cicero.uio.no/en/twex). In TWEX, we take a novel "Tales of future weather" approach in which we use future scenarios tailored to a specific region and stakeholder in order to gain a more realistic picture of what future weather extremes might look like in a particular context. We focus on hydroclimatic extremes associated with a particular circulation pattern (so-called "Atmospheric River") leading to heavy rainfall in fall and winter along the West Coast of Norway and causing high-impact floods in Norwegian communities. We translate selected past events into the future (e.g., 2090) by using an approach very similar to what is used today for weather prediction. The data generated in TWEX will be distributed by standard (weather prediction) communication channels of the Norwegian Meteorological Institute and thus, will be accessible by end-user in a well-known data format for analyzing the impact of the events in the future and support decision-making on hazard prevention and adaptation planning.
Wang, Xi-Ling; Yang, Lin; He, Dai-Hai; Chiu, Alice Py; Chan, Kwok-Hung; Chan, King-Pan; Zhou, Maigeng; Wong, Chit-Ming; Guo, Qing; Hu, Wenbiao
2017-06-01
Weather factors have long been considered as key sources for regional heterogeneity of influenza seasonal patterns. As influenza peaks coincide with both high and low temperature in subtropical cities, weather factors may nonlinearly or interactively affect influenza activity. This study aims to assess the nonlinear and interactive effects of weather factors with influenza activity and compare the responses of influenza epidemic to weather factors in two subtropical regions of southern China (Shanghai and Hong Kong) and one temperate province of Canada (British Columbia). Weekly data on influenza activity and weather factors (i.e., mean temperature and relative humidity (RH)) were obtained from pertinent government departments for the three regions. Absolute humidity (AH) was measured by vapor pressure (VP), which could be converted from temperature and RH. Generalized additive models were used to assess the exposure-response relationship between weather factors and influenza virus activity. Interactions of weather factors were further assessed by bivariate response models and stratification analyses. The exposure-response curves of temperature and VP, but not RH, were consistent among three regions/cities. Bivariate response model revealed a significant interactive effect between temperature (or VP) and RH (P < 0.05). Influenza peaked at low temperature or high temperature with high RH. Temperature and VP are important weather factors in developing a universal model to explain seasonal outbreaks of influenza. However, further research is needed to assess the association between weather factors and influenza activity in a wider context of social and environmental conditions.
Impacts of future changes in weather condition on U.S. transportation
NASA Astrophysics Data System (ADS)
Ashfaq, M.; Pagan, B. R.; Bonds, B. W.; Rastogi, D.
2016-12-01
High-resolution near-term climate projections suggest an intensification of the regional hydrological cycle over the U.S., leading to stronger and more frequent precipitation events. Increase in precipitation extremes is driven by both warm season convection driven rainstorms and frontal based cold season snowstorms. Results also indicate that future warming is driven more by hot extremes, as decrease in cold extremes is three times less than increase in hot extremes. While projected changes may likely impact the transportation system across the U.S., accurate estimation of such impacts requires knowledge of changes in precipitation types (rain, snow, ice, freezing rain). Here we apply four commonly used precipitation typing algorithms to determine different types of precipitation in an 11-memebr high-resolution (18 km) climate projections dataset that covers 40 years (1966-2005) in the baseline and 40 years (2011-2050) in the future period under Representative Concentration Pathway 8.5. The results are compared with the NARR-based precipitation classification in the historical period at the county level. Documented weather related county level fatal crash data for the CONUS and non-fatal crash data for selected states in the eastern half of the U.S. is compiled to develop the historical baseline for the impact of weather conditions on transportation. Further analysis is carried out to understand the ability of an ensemble of high-resolution simulations to produce different precipitation types in the baseline period, potential changes in the occurrence of each type of weather condition in the future period and that how such changes may impact road conditions, vehicle crashes and human fatalities. Additional analysis will also be explored to understand the impact of changes in winter weather conditions on the cost associated with road maintenance.
Weather types and the regime of wildfires in Portugal
NASA Astrophysics Data System (ADS)
Pereira, M. G.; Trigo, R. M.; Dacamara, C. C.
2009-04-01
An objective classification scheme, as developed by Trigo and DaCamara (2000), was applied to classify the daily atmospheric circulation affecting Portugal between 1980 and 2007 into a set of 10 basic weather types (WTs). The classification scheme relies on a set of atmospheric circulation indices, namely southerly flow (SF), westerly flow (WF), total flow (F), southerly shear vorticity (ZS), westerly shear vorticity (ZW) and total vorticity (Z). The weather-typing approach, together with surfacemeteorological variables (e.g. intensity and direction of geostrophic wind, maximum and minimum temperature and precipitation) were then associated to wildfire events as recorded in the official Portuguese fire database consisting of information on each fire occurred in the 18 districts of Continental Portugal within the same period (>450.000 events). The objective of this study is to explore the dependence of wildfire activity on weather and climate and then evaluate the potential of WTs to discriminate among recorded wildfires on what respects to their occurrence and development. Results show that days characterised by surface flow with an eastern component (i.e. NE, E and SE) account for a high percentage of daily burnt area, as opposed to surface westerly flow (NW, W and SW), which represents about a quarter of the total number of days but only accounts for a very low percentage of active fires and of burnt area. Meteorological variables such as minimum and maximum temperatures, that are closely associated to surface wind intensity and direction, also present a good ability to discriminate between the different types of fire events.. Trigo R.M., DaCamara C. (2000) "Circulation Weather Types and their impact on the precipitation regime in Portugal". Int J of Climatology, 20, 1559-1581.
Evaluation of Factors Influencing the Groundwater Chemistry in a Small Tropical Island of Malaysia
Kura, Nura Umar; Ramli, Mohammad Firuz; Sulaiman, Wan Nur Azmin; Ibrahim, Shaharin; Aris, Ahmad Zaharin; Mustapha, Adamu
2013-01-01
Groun in a very complex way. In this work, multivariate statistical analysis was used to evaluate the factors controlling the groundwater chemistry of Kapas Island (Malaysia). Principal component analysis (P dwater chemistry of small tropical islands is influenced by many factors, such as recharge, weathering and seawater intrusion, among others, which interact with each other CA) was applied to 17 hydrochemical parameters from 108 groundwater samples obtained from 18 sampling sites. PCA extracted four PCs, namely seawater intrusion, redox reaction, anthropogenic pollution and weather factors, which collectively were responsible for more than 87% of the total variance of the island’s hydrochemistry. The cluster analysis indicated that three factors (weather, redox reaction and seawater intrusion) controlled the hydrochemistry of the area, and the variables were allocated to three groups based on similarity. A Piper diagram classified the island’s water types into Ca-HCO3 water type, Na-HCO3 water type, Na-SO4-Cl water type and Na-Cl water type, indicating recharge, mixed, weathering and leached from sewage and seawater intrusion, respectively. This work will provide policy makers and land managers with knowledge of the precise water quality problems affecting the island and can also serve as a guide for hydrochemistry assessments of other islands that share similar characteristics with the island in question. PMID:23648442
Modeling habitat and environmental factors affecting mosquito abundance in Chesapeake, Virginia
NASA Astrophysics Data System (ADS)
Bellows, Alan Scott
The models I present in this dissertation were designed to enable mosquito control agencies in the mid-Atlantic region that oversee large jurisdictions to rapidly track the spatial and temporal distributions of mosquito species, especially those species known to be vectors of eastern equine encephalitis and West Nile virus. I was able to keep these models streamlined, user-friendly, and not cost-prohibitive using empirically based digital data to analyze mosquito-abundance patterns in real landscapes. This research is presented in three major chapters: (II) a series of semi-static habitat suitability indices (HSI) grounded on well-documented associations between mosquito abundance and environmental variables, (III) a dynamic model for predicting both spatial and temporal mosquito abundance based on a topographic soil moisture index and recent weather patterns, and (IV) a set of protocols laid out to aid mosquito control agencies for the use of these models. The HSIs (Chapter II) were based on relationships of mosquitoes to digital surrogates of soil moisture and vegetation characteristics. These models grouped mosquitoes species derived from similarities in habitat requirements, life-cycle type, and vector competence. Quantification of relationships was determined using multiple linear regression models. As in Chapter II, relationships between mosquito abundance and environmental factors in Chapter III were quantified using regression models. However, because this model was, in part, a function of changes in weather patterns, it enables the prediction of both 'where' and 'when' mosquito outbreaks are likely to occur. This model is distinctive among similar studies in the literature because of my use of NOAA's NEXRAD Doppler radar (3-hr precipitation accumulation data) to quantify the spatial and temporal distributions in precipitation accumulation. \\ Chapter IV is unique among the chapters in this dissertation because in lieu of presenting new research, it summarizes the preprocessing steps and analyses used in the HSIs and the dynamic, weather-based, model generated in Chapters II and III. The purpose of this chapter is to provide the reader and potential users with the necessary protocols for modeling the spatial and temporal abundances and distributions of mosquitoes, with emphasis on Culiseta melanura, in a real-world landscape of the mid-Atlantic region. This chapter also provides enhancements that could easily be incorporated into an environmentally sensitive integrated pest management program.
Deep Learning for Discovery of Atmospheric Mountain Waves in MODIS and GPS Data
NASA Astrophysics Data System (ADS)
Pankratius, V.; Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.
2017-12-01
Airflow over mountains can produce gravity waves, called lee waves, which can generate atmospheric turbulence. Since this turbulence poses dangers to aviation, it is critical to identify such regions reliably in an automated fashion. This work leverages two sources of data to go beyond an ad-hoc human visual approach for such identification: MODIS imagery containing cloud patterns formed by lee waves, and patterns in GPS signals resulting from the transmission through atmospheric turbulence due to lee waves. We demonstrate a novel machine learning approach that fuses these two data types to detect atmospheric turbulence associated with lee waves. A convolutional neural network is trained on MODIS tile images to automatically classify the lee wave cloud patterns with 96% correct classifications on a validation set of 20,000 MODIS 64x64 tiles over a test region in the Sierra Nevada Mountains. Signals from GPS stations of the Plate Boundary Observatory are used for feature extraction related to lee waves, in order to improve the confidence of a detection in the MODIS imagery at a given position. To our knowledge, this is the first technique to combine these images and time series data types to improve the spatial and temporal resolutions for large-scale measurements of lee wave formations. First results of this work show great potential for improving weather condition monitoring, hazard and cloud pattern detection, as well as GPS navigation uncertainties. We acknowledge support from NASA AISTNNX15AG84G (PI Pankratius), NASA NNX14AQ03G (PI Herring), and NSF ACI1442997 (PI Pankratius).
Modeling activity patterns of wildlife using time-series analysis.
Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo
2017-04-01
The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.
NOAA-L satellite arrives at Vandenberg AFB
NASA Technical Reports Server (NTRS)
2000-01-01
A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite arrives at Vandenberg Air Force Base, Calif. It is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. KSC00vafbdig007
2000-06-30
At the launch tower, Vandenberg Air Force Base, Calif., the second stage of a Titan II rocket is lifted to vertical. The Titan will power the launch of a National Oceanic and Atmospheric Administration (NOAA-L) satellite scheduled no earlier than Sept. 12. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate
NASA Technical Reports Server (NTRS)
1975-01-01
The level, intensity, nature and impact of man's activities upon weather and climatic changes are explored. It is shown that industrialization leads to increased CO2 levels, atmospheric dust content and land surfaces changes. This in turn causes global climatic interactions which results in a general cooling trend. Global cooperation is advocated to stem environmental degradation and weather pattern interruption by the use of corrective mechanisms.
North Atlantic weather regimes: A synoptic study of phase space. M.S. Thesis
NASA Technical Reports Server (NTRS)
Orrhede, Anna Karin
1990-01-01
In the phase space of weather, low frequency variability (LFV) of the atmosphere can be captured in a large scale subspace, where a trajectory connects consecutive large scale weather maps, thus revealing flow changes and recurrences. Using this approach, Vautard applied the trajectory speed minimization method (Vautard and Legras) to atmospheric data. From 37 winters of 700 mb geopotential height anomalies over the North Atlantic and the adjacent land masses, four persistent and recurrent weather patterns, interpreted as weather regimes, were discernable: a blocking regime, a zonal regime, a Greenland anticyclone regime, and an Atlantic regime. These regimes are studied further in terms of maintenance and transitions. A regime survey unveils preferences regarding event durations and precursors for the onset or break of an event. The transition frequencies between regimes vary, and together with the transition times, suggest the existence of easier transition routes. These matters are more systematically studied using complete synoptic map sequences from a number of events.
Chemical weathering as a mechanism for the climatic control of bedrock river incision
NASA Astrophysics Data System (ADS)
Murphy, Brendan P.; Johnson, Joel P. L.; Gasparini, Nicole M.; Sklar, Leonard S.
2016-04-01
Feedbacks between climate, erosion and tectonics influence the rates of chemical weathering reactions, which can consume atmospheric CO2 and modulate global climate. However, quantitative predictions for the coupling of these feedbacks are limited because the specific mechanisms by which climate controls erosion are poorly understood. Here we show that climate-dependent chemical weathering controls the erodibility of bedrock-floored rivers across a rainfall gradient on the Big Island of Hawai‘i. Field data demonstrate that the physical strength of bedrock in streambeds varies with the degree of chemical weathering, which increases systematically with local rainfall rate. We find that incorporating the quantified relationships between local rainfall and erodibility into a commonly used river incision model is necessary to predict the rates and patterns of downcutting of these rivers. In contrast to using only precipitation-dependent river discharge to explain the climatic control of bedrock river incision, the mechanism of chemical weathering can explain strong coupling between local climate and river incision.
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
East African weathering dynamics controlled by vegetation-climate feedbacks
Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.
2017-01-01
Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.
NASA Astrophysics Data System (ADS)
Zampieri, M.; Toreti, A.; Schindler, A.; Scoccimarro, E.; Gualdi, S.
2017-04-01
We analyze the influence of the Atlantic sea surface temperature multi-decadal variability on the day-by-day sequence of large-scale atmospheric circulation patterns (i.e. the ;weather regimes;) over the Euro-Atlantic region. In particular, we examine of occurrence of weather regimes from 1871 to present. This analysis is conducted by applying a clustering technique on the daily mean sea level pressure field provided by the 20th Century Reanalysis project, which was successfully applied in other studies focused on the Atlantic Multi-decadal Oscillation (AMO). In spring and summer, results show significant changes in the frequencies of certain weather regimes associated with the phase shifts of the AMO. These changes are consistent with the seasonal surface pressure, precipitation, and temperature anomalies associated with the AMO shifts in Europe.
Iron-sulfur mineralogy of Mars - Magmatic evolution and chemical weathering products
NASA Technical Reports Server (NTRS)
Burns, Roger G.; Fisher, Duncan S.
1990-01-01
Models are developed for the magmatic evolution and the oxidative weathering of sulfide minerals on Mars, based on petrogenetic associations among komatiitic rock types, Viking geochemical data, SNC meteorites, and terrestrial Fi-Ni deposits. The weathering model was tested by exposing komatiitic pyrrhotites and olivines to sulfuric acid solutions, with or without dissolved ferric iron, and identifying the reaction products by Moessbauer spectroscopy. The results suggest that, on Mars, acidic groundwater has induced oxidative weathering of pyrrhotite, yielding FeS2 and then FeOOH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Corrected data are presented for the P50 Redesign figure for nursing homes in the following documents in the series entitled Budget Percentiles for Baseline and Redesigned Commercial Type Buildings: For Cities with TRY Weather Tapes, Based on Price Weighing Factors (PWF), and Based on Resource Utilization Factors (RUF). (MCW)
NASA Astrophysics Data System (ADS)
Cheng, Chad Shouquan; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been applied in Environment Canada to analyze climatic change impacts on various meteorological/hydrological risks, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the hazardous events, (2) statistical downscaling to provide station-scale future climate information, and (3) estimates of changes in frequency and magnitude of future hazardous meteorological/hydrological events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and various linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This paper will briefly summarize these research projects, focusing on the modeling exercise and results.
NASA Astrophysics Data System (ADS)
Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping
Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river pollution control and effective water resources management.
It Takes Two to Tango: Arctic Influence on Mid-Latitude Weather is State-Dependent
NASA Astrophysics Data System (ADS)
Francis, J. A.; Vavrus, S. J.; Cohen, J. L.
2016-12-01
Since the late 1990s the Arctic has been warming two to three times faster than mid-latitude regions, a phenomenon known as Arctic amplification (AA). During the first half of 2016, AA reached a new record high value. This disproportionate warming is expected to influence the large-scale atmospheric circulation of the northern hemisphere, but understanding exactly how, where, when, and under what conditions has been an active and controversial topic of research. Observational studies of the atmospheric response are challenged by the short record of AA in a noisy environment, while modeling efforts have produced mixed results owing in part to deficiencies in both capturing the full signal of AA and simulating highly amplified atmospheric features (such as blocks, cut-off lows, and sharp ridging). Despite these challenges, progress in understanding the effects of AA on mid-latitude weather has been steady. In this presentation, we will discuss a new hypothesis and supporting evidence suggesting that the influence of regional AA depends on the background state of the large-scale circulation. Long-lived sea-surface temperature patterns in mid-latitudes, such as the Pacific Decadal Oscillation, favor particular ridge/trough configurations that affect the magnitude of AA's influence on weather patterns. These relationships vary both regionally and seasonally. As AA continues to strengthen with unabated rising concentrations of greenhouse gases, the mechanisms by which AA affects mid-latitude weather, particularly extreme events, may become clearer. The record-breaking AA of 2016 and associated extreme mid-latitude weather events may be a preview of the "new normal" in a warmer world.
Data Mining for Understanding and Impriving Decision-Making Affecting Ground Delay Programs
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao Xun; Sridhar, Banavar
2013-01-01
The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions. The work reported in this paper is focused on ground delay programs. Data mining algorithms have the potential to develop associations between weather patterns and the corresponding ground delay program responses. If successful, they can be used to improve and standardize TFM decision resulting in better predictability of traffic flows on days with reliable weather forecasts. The approach here seeks to develop a set of data mining and machine learning models and apply them to historical archives of weather observations and forecasts and TFM initiatives to determine the extent to which the theory can predict and explain the observed traffic flow behaviors.
NASA Astrophysics Data System (ADS)
You, Ting; Wu, Renguang; Huang, Gang
2018-02-01
We compared the regional synoptic patterns and local meteorological conditions during persistent and non-persistent pollution events in Beijing using US NCEP-Department of Energy reanalysis outputs and observations from meteorological stations. The analysis focused on the impacts of high-frequency (period < 90 days) variations in meteorological conditions on persistent pollution events (those lasting for at least 3 days). Persistent pollution events tended to occur in association with slow-moving weather systems producing stagnant weather conditions, whereas rapidly moving weather systems caused a dramatic change in the local weather conditions so that the pollution event was short-lived. Although Beijing was under the influence of anomalous southerly winds in all four seasons during pollution events, notable differences were identified in the regional patterns of sea-level pressure and local anomalies in relative humidity among persistent pollution events in different seasons. A region of lower pressure was present to the north of Beijing in spring, fall, and winter, whereas regions of lower and higher pressures were observed northwest and southeast of Beijing, respectively, in summer. The relative humidity near Beijing was higher in fall and winter, but lower in spring and summer. These differences may explain the seasonal dependence of the relationship between air pollution and the local meteorological variables. Our analysis showed that the temperature inversion in the lower troposphere played an important part in the occurrence of air pollution under stagnant weather conditions. Some results from this study are based on a limited number of events and thus require validation using more data.
USDA-ARS?s Scientific Manuscript database
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases in the United States. Epidemiological regions were determined based on epidemic patterns, cropping systems, geographic barriers, weather patterns, and inoculum exchanges. Areas where Ps...
Electro-optical seasonal weather and gender data collection
NASA Astrophysics Data System (ADS)
McCoppin, Ryan; Koester, Nathan; Rude, Howard N.; Rizki, Mateen; Tamburino, Louis; Freeman, Andrew; Mendoza-Schrock, Olga
2013-05-01
This paper describes the process used to collect the Seasonal Weather And Gender (SWAG) dataset; an electro-optical dataset of human subjects that can be used to develop advanced gender classification algorithms. Several novel features characterize this ongoing effort (1) the human subjects self-label their gender by performing a specific action during the data collection and (2) the data collection will span months and even years resulting in a dataset containing realistic levels and types of clothing corresponding to the various seasons and weather conditions. It is envisioned that this type of data will support the development and evaluation of more robust gender classification systems that are capable of accurate gender recognition under extended operating conditions.
Controls on salt mobility and storage in the weathered dolerites of north-east Tasmania, Australia
NASA Astrophysics Data System (ADS)
Sweeney, Margaret; Moore, Leah
2014-05-01
Changes in land use and vegetation due to agriculture, forestry practices and urbanisation can mobilise naturally occurring salts in the landscape and accelerate the expression of land and water salinisation, potentially threatening built and natural assets. Some salts are released during rock weathering or are derived from marine sediments or wind-blown dust, but in Tasmania most originate from salt dissolved in rainfall that is concentrated during evaporation. The volume of salts deposited over north-east Tasmania from precipitation exceeds 70kg/ha/year. The dominant lithology of the salt affected regions in Tasmania is dolerite which breaks down to form secondary minerals including: smectite and kaolinite clays and Fe-bearing sesquioxides. The weathering of Tasmanian dolerites, sampled from fresh corestones, weathering rinds and sequentially through the soil horizon, has been examined petrographically and geochemically. The EC1:5 increases with weathering to a maximum 4.9 dS/m and decreases in the pedogenic zone. This confirms field observations that deeply weathered dolerite can serve as a significant store for salt in the landscape. The water associated with dolerite weathering is typically a bicarbonate fluid. The pH1:5 decreases as the samples weather and increases in the pedogenic zone. Clay content increases with distance from corestones (sandy clay loam to heavy clay), and this is also reflected in the density (2.6-1.3 gm/cm3) and loss on ignition (1.3-13.3 wt%). The patterns for Na are complicated as it is enriched through NaCl accession and removed during the weathering of plagioclase. The net enrichment of Cl (up to 5239 ppm) implies decoupling of Cl from Na during weathering. Potassium, Ca and Sr are mobilised from the profile as plagioclase weathers, and silica is progressively lost from the profile with the weathering of silicate phases. Iron is initially mobilised with the weathering of pyroxene and mafic accessory minerals, but is rapidly fixed in the weathering profile as Fe-oxides (hematite, goethite) in veinlets and in association with secondary clays. Pedogenic processes mobilise iron near the land surface. Elements that remain immobile during weathering are Nb, Zr and Ti which partition in resistant accessory phases including zircon. Ongoing X-Ray diffraction and microprobe analysis will further characterise the regolith materials that comprise the salt stores in the landscape. Complementary analysis of rainwater chemistry to determine the patterns and volumes of salt deposition from atmospheric aerosols will allow more accurate quantification of the salt flux in north-east Tasmania. Exploring the complex interactions of biophysical parameters such as rainfall, soil, geology, vegetation and hydrology, the study area can be divided into Hydrogeological Landscape (HGL) units. Preparation of an HGL characterisation for the study area and development of a detailed landscape evolution model will provide an understanding of how regolith materials are distributed in the landscape, how and where salt is stored and how water moves through or over the materials. Describing the association of dolerite with salinity will enable evaluation of land management in other dolerite (or basalt) dominated landscapes.
Conceptual Models of Frontal Cyclones.
ERIC Educational Resources Information Center
Eagleman, Joe R.
1981-01-01
This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)
ENSO Weather and Coral Bleaching on the Great Barrier Reef, Australia
NASA Astrophysics Data System (ADS)
McGowan, Hamish; Theobald, Alison
2017-10-01
The most devastating mass coral bleaching has occurred during El Niño events, with bleaching reported to be a direct result of increased sea surface temperatures (SSTs). However, El Niño itself does not cause SSTs to rise in all regions that experience bleaching. Nor is the upper ocean warming trend of 0.11°C per decade since 1971, attributed to global warming, sufficient alone to exceed the thermal tolerance of corals. Here we show that weather patterns during El Niño that result in reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures, play a crucial role in determining the extent and location of coral bleaching on the world's largest coral reef system, the World Heritage Great Barrier Reef (GBR), Australia. Accordingly, synoptic-scale weather patterns and local atmosphere-ocean feedbacks related to El Niño-Southern Oscillation (ENSO) and not large-scale SST warming due to El Niño alone and/or global warming are often the cause of coral bleaching on the GBR.
Climate change and infectious diseases in North America: the road ahead.
Greer, Amy; Ng, Victoria; Fisman, David
2008-03-11
Global climate change is inevitable--the combustion of fossil fuels has resulted in a buildup of greenhouse gases within the atmosphere, causing unprecedented changes to the earth's climate. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change suggests that North America will experience marked changes in weather patterns in coming decades, including warmer temperatures and increased rainfall, summertime droughts and extreme weather events (e.g., tornadoes and hurricanes). Although these events may have direct consequences for health (e.g., injuries and displacement of populations due to thermal stress), they are also likely to cause important changes in the incidence and distribution of infectious diseases, including vector-borne and zoonotic diseases, water-and food-borne diseases and diseases with environmental reservoirs (e.g., endemic fungal diseases). Changes in weather patterns and ecosystems, and health consequences of climate change will probably be most severe in far northern regions (e.g., the Arctic). We provide an overview of the expected nature and direction of such changes, which pose current and future challenges to health care providers and public health agencies.
Climate change and infectious diseases in North America: the road ahead
Greer, Amy; Ng, Victoria; Fisman, David
2008-01-01
Global climate change is inevitable — the combustion of fossil fuels has resulted in a buildup of greenhouse gases within the atmosphere, causing unprecedented changes to the earth's climate. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change suggests that North America will experience marked changes in weather patterns in coming decades, including warmer temperatures and increased rainfall, summertime droughts and extreme weather events (e.g., tornadoes and hurricanes). Although these events may have direct consequences for health (e.g., injuries and displacement of populations due to thermal stress), they are also likely to cause important changes in the incidence and distribution of infectious diseases, including vector-borne and zoonotic diseases, water-and food-borne diseases and diseases with environmental reservoirs (e.g., endemic fungal diseases). Changes in weather patterns and ecosystems, and health consequences of climate change will probably be most severe in far northern regions (e.g., the Arctic). We provide an overview of the expected nature and direction of such changes, which pose current and future challenges to health care providers and public health agencies. PMID:18332386
Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar
NASA Technical Reports Server (NTRS)
Kunkel, Matthew W.
1992-01-01
A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.
El Niño and its impact on fire weather conditions in Alaska
Hess, Jason C.; Scott, Carven A.; Hufford, Gary L.; Fleming, Michael D.
2001-01-01
Examining the relationship of El Niño to weather patterns in Alaska shows wide climate variances that depend on the teleconnection between the tropics and the northern latitudes. However, the weather patterns exhibited in Alaska during and just after moderate to strong El Niño episodes are generally consistent: above normal temperature and precipitation along the Alaskan coast, and above normal temperature and below normal precipitation in the interior, especially through the winter. The warm, dry conditions in the Alaskan interior increase summer wildfire potential. Statistics on the area burned since 1940 show that 15 out of 17 of the biggest fire years occurred during a moderate to strong El Niño episode. These 15 years account for nearly 63% of the total area burned over the last 58 years. Evidence points to increased dry thunderstorms and associated lightning activity during an El Niño episode; the percentage of total area burned by lightning caused fires during five episodes increased from a normal of less than 40% to a high of about 96%.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.
2018-03-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.
NASA Technical Reports Server (NTRS)
Noguchi, T.; Nakamura, T.; Zolensky, Michael E.; Tanaka, M.; Hashimoto, T.; Konno, M.; Nakato, A.; Ogami, T.; Fujimura, A.; Abe, M.;
2011-01-01
Surface materials on airless solar system bodies exposed to interplanetary space are gradually changed their visible to near-infrared reflectance spectra by the process called "space weathering", which makes the spectra darker and redder. Hapke et al. proposed a model of space weathering: vapor deposition of nanophase reduced iron (npFe(sup 0)) on the surfaces of the grains within the very surface of lunar regolith. This model has been proved by detailed observation of the surfaces of the lunar soil grains by transmission electron microscope (TEM). They demonstrated that npFe(sup 0) was formed by a combination of vapor deposition and irradiation effects. In other words, both micrometeorite impacts and irradiation by solar wind and galactic cosmic ray play roles on the space weathering on the Moon. Because there is a continuum of reflectance spectra from those of Q-type asteroids (almost the same as those of ordinary chondrites) to those of S-type asteroids, it is strongly suggested that reflectance spectra of asteroids composed of ordinary chondrite-like materials were modified over time to those of S-type asteroids due to space weathering. It is predicted that a small amount of npFe(sup 0) on the surface of grains in the asteroidal regolith composed of ordinary chondrite-like materials is the main agent of asteroidal space weathering.
Towards the challenging REE exploration in Indonesia
NASA Astrophysics Data System (ADS)
Setiawan, Iwan
2018-02-01
Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.
Relationship between glacier melting and atmospheric circulation in the southeast Siberia
NASA Astrophysics Data System (ADS)
Osipova, O. P.; Osipov, E. Y.
2018-01-01
The interaction between climate and cryosphere is a key issue in recent years. Changes in surface mass balance of mountain glaciers closely correspond to differential changes in atmospheric circulation. Mountain glaciers in southeast Siberia located on East Sayan, Baikalsky and Kodar ridges have been continuously shrinking since the end of the Little Ice Age. In this study we used daily synoptic weather maps (Irkutsk Center of Hydrometeorology and Environmental Monitoring), 500 hPa, 700 hPa and 850 hPa geopotential height and air temperature data of NCEP/NCAR reanalysis to assess relationships between atmospheric circulation patterns and the sum of positive temperature (SPT), a predictor of summer ice/snow ablation. Results show that increased SPT (ablation) is generally associated with anticyclones and anticyclonic pressure fields (with cloudless weather conditions) and warm atmospheric fronts. Decreased SPT (ablation) is strongly correlated with cyclones and cyclonic type pressure fields, cold atmospheric fronts and air advections. Significant correlations have been found between ablation and cyclonic/anticyclonic activity. Revealed decreasing trends in the SPT in three glaciarized ridges at the beginning of the 21st century led to changes of air temperature and snow/ice melt climates.
Chaâbane, Mabrouk; Azri, Chafai; Medhioub, Khaled
2012-01-01
Atmospheric and climatic data measured at Thala site (Tunisia) for a long-time period (1977–2001) are used to analyse the monthly, seasonal, and annual variations of the aerosol optical depth at 1 μm wavelength. We have shown that aerosol and microphysical properties and the dominating aerosol types depend on seasons. A comparison of the seasonal cycle of aerosol optical characteristics at Thala site showed that the contribution of long-range transported particles is expected to be larger in summer as a consequence of the weather stability typical of this season. Also, the winter decrease in atmospheric turbidity may result from increases in relative humidity and decreases in temperature, leading to increased particle size and mass and increased fall and deposition velocities. The spring and autumn weather patterns usually carry fine dust and sand particles for the desert area to Thala region. The annual behaviour of the aerosol optical depth recorded a period of stead increase started in 1986 until 2001. Trends in atmospheric turbidity after 1988 could be explained other ways by the contribution of the eruption of Mount Pinatubo in 1991 and by local or regional changes in climate or in aerosol emissions. PMID:22629150
Chaâbane, Mabrouk; Azri, Chafai; Medhioub, Khaled
2012-01-01
Atmospheric and climatic data measured at Thala site (Tunisia) for a long-time period (1977-2001) are used to analyse the monthly, seasonal, and annual variations of the aerosol optical depth at 1 μm wavelength. We have shown that aerosol and microphysical properties and the dominating aerosol types depend on seasons. A comparison of the seasonal cycle of aerosol optical characteristics at Thala site showed that the contribution of long-range transported particles is expected to be larger in summer as a consequence of the weather stability typical of this season. Also, the winter decrease in atmospheric turbidity may result from increases in relative humidity and decreases in temperature, leading to increased particle size and mass and increased fall and deposition velocities. The spring and autumn weather patterns usually carry fine dust and sand particles for the desert area to Thala region. The annual behaviour of the aerosol optical depth recorded a period of stead increase started in 1986 until 2001. Trends in atmospheric turbidity after 1988 could be explained other ways by the contribution of the eruption of Mount Pinatubo in 1991 and by local or regional changes in climate or in aerosol emissions.
Podur, Justin J; Martell, David L
2009-07-01
Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.
Exploring the use of weathering indexes in an alluvial fan chronology
NASA Astrophysics Data System (ADS)
Hardenbicker, Ulrike; Watanabe, Makiko; Kotowich, Roberta
2015-04-01
Alluvial fan sediments can act as an archive of local environmental history. Two borehole cores (FN 350 cm and AG 850cm) from Holocene alluvial fans located in the Qu'Appelle Valley in southern Saskatchewan were analyzed in order to identify how changes in land use of upland catchment plateaus modified the pattern and rate of sediment delivery to the fan. Due to the lack of material for radiometric dating a chronology of depositional events within the alluvial fans was established by using lithostratigraphy data of soils and sediments. In order to establish a more detailed relative chronology we evaluated if weathering indexes (the Parker Index, the CaO/ZrO2 molar ratio, the Product Index) originally developed for studies of in situ weathering of bedrock, are suitable to assess sediment weathering within alluvial fan sediments. To quantify the degree of weathering within the sediment samples the three indexes of weathering were calculated using the proportions of elements measure by Energy Dispersive X-ray Spectroscopy and there is an inverse relationship between weathering index and sample age. For further statistical analyses the fan sediments were classified into three groups: a sheet flow facies of well sorted silt loam and sandy loam textures, bed load facies characterized by high sand and gravel content and layers with high organic matter in combination with higher clay content indicative of in situ weathering and soil development. First results show that the Product Index may be the most suitable weathering index to indicate weathering or input of less weathered sediment within the sheet flow and bed load facies. In general, the weathering indexes do not take into account complexities of the weathering processes nor the overall environmental conditions in an alluvial fan. But chemical weathering indexes accompanied by geophysical and geo-chemical information have value, especially when the amount of sample material is limited.
Linville, John W; Schumann, Douglas; Aston, Christopher; Defibaugh-Chavez, Stephanie; Seebohm, Scott; Touhey, Lucy
2016-12-01
A six sigma fishbone analysis approach was used to develop a machine learning model in SAS, Version 9.4, by using stepwise linear regression. The model evaluated the effect of a wide variety of variables, including slaughter establishment operational measures, normal (30-year average) weather, and extreme weather events on the rate of Salmonella -positive carcasses in young chicken slaughter establishments. Food Safety and Inspection Service (FSIS) verification carcass sampling data, as well as corresponding data from the National Oceanographic and Atmospheric Administration and the Federal Emergency Management Agency, from September 2011 through April 2015, were included in the model. The results of the modeling show that in addition to basic establishment operations, normal weather patterns, differences from normal and disaster events, including time lag weather and disaster variables, played a role in explaining the Salmonella percent positive that varied by slaughter volume quartile. Findings show that weather and disaster events should be considered as explanatory variables when assessing pathogen-related prevalence analysis or research and slaughter operational controls. The apparent significance of time lag weather variables suggested that at least some of the impact on Salmonella rates occurred after the weather events, which may offer opportunities for FSIS or the poultry industry to implement interventions to mitigate those effects.
Comparison of tibial shaft ski fractures in children and adults.
Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji
2014-09-01
To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P < 0.0001). Type A fractures were more dominant in children (73 cases, 72.3%) than in adults (39 cases, 53.4%). There was significantly more ER in children than in adults (P < 0.0001). Among children, female patients had significantly more IR than ER; in contrast, among adults, women were injured by ER. We found significant differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.
Nitrogen release from rock and soil under simulated field conditions
Holloway, J.M.; Dahlgren, R.A.; Casey, W.H.
2001-01-01
A laboratory study was performed to simulate field weathering and nitrogen release from bedrock in a setting where geologic nitrogen has been suspected to be a large local source of nitrate. Two rock types containing nitrogen, slate (1370 mg N kg-1) and greenstone (480 mg N kg-1), were used along with saprolite and BC horizon sand from soils derived from these rock types. The fresh rock and weathered material were used in batch reactors that were leached every 30 days over 6 months to simulate a single wet season. Nitrogen was released from rock and soil materials at rates between 10-20 and 10-19 mo1 N cm-2 s-1. Results from the laboratory dissolution experiments were compared to in situ soil solutions and available mineral nitrogen pools from the BC horizon of both soils. Concentrations of mineral nitrogen (NO3- + NH4+) in soil solutions reached the highest levels at the beginning of the rainy season and progressively decreased with increased leaching. This seasonal pattern was repeated for the available mineral nitrogen pool that was extracted using a KCl solution. Estimates based on these laboratory release rates bracket stream water NO3-N fluxes and changes in the available mineral nitrogen pool over the active leaching period. These results confirm that geologic nitrogen, when present, may be a large and reactive pool that may contribute as a non-point source of nitrate contamination to surface and ground waters. ?? 2001 Elsevier Science B.V. All rights reserved.
Radome having integral heating and impedance matching elements
NASA Astrophysics Data System (ADS)
Lopez, Alfred R.
1992-04-01
An antenna radome includes a dielectric member shaped to protect an antenna from environmental conditions, and a plurality of conductors fixed in relation to a major surface of the dielectric member in a predetermined pattern so that the member with the conductors provides a lower reflection coefficient to incident electromagnetic waves at the operating wavelength of the antenna than in the absence of the conductors. Means are provided for causing a desired heating current to flow through the conductors, thereby enabling sufficient heat to be generated in the dielectric member to de-ice the radome during severe weather conditions. A specific embodiment of the radome of the invention is described for use with an antenna of the type used in a microwave landing system.
OVERVIEW OF EPA'S WET-WEATHER FLOW RESEARCH PROGRAM
Surface waters receive three types of urban wet-weather flow discharges: combined-sewer overflow (CSO), stormwater, and sanitary-sewer overflow (SSO); all are principally untreated discharges that occur during storm-flow events. WWFs have proven to generate a substantial amount o...
2010-08-16
A researcher points out the trajectory of a weather pattern on a computer monitor during a flight aboard the NASA DC-8 aircraft, Tuesday, Aug. 17, 2010, over the Gulf of Mexico. Sceintists and researchers flew Tuesday to study weather as part of the Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
2000-06-27
A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite is moved inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket
2000-06-27
Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the uncrating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket
Climate Prediction Center - ENSO FAQ
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Additional Links General Questions about El Niño and La Niña What is climate variability? What are El Niño . Impacts How do El Niño and La Niña influence the U.S. Winter weather patterns? How do El Niño and La
Dynamic soil properties in response to anthropogenic disturbance
NASA Astrophysics Data System (ADS)
Vanacker, Veerle; Ortega, Raúl
2013-04-01
Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns
NASA Astrophysics Data System (ADS)
Wehner, Michael; Pall, Pardeep; Zarzycki, Colin; Stone, Daithi
2016-04-01
Probabilistic extreme event attribution is especially difficult for weather events that are caused by extremely rare large-scale meteorological patterns. Traditional modeling techniques have involved using ensembles of climate models, either fully coupled or with prescribed ocean and sea ice. Ensemble sizes for the latter case ranges from several 100 to tens of thousand. However, even if the simulations are constrained by the observed ocean state, the requisite large-scale meteorological pattern may not occur frequently enough or even at all in free running climate model simulations. We present a method to ensure that simulated events similar to the observed event are modeled with enough fidelity that robust statistics can be determined given the large scale meteorological conditions. By initializing suitably constrained short term ensemble hindcasts of both the actual weather system and a counterfactual weather system where the human interference in the climate system is removed, the human contribution to the magnitude of the event can be determined. However, the change (if any) in the probability of an event of the observed magnitude is conditional not only on the state of the ocean/sea ice system but also on the prescribed initial conditions determined by the causal large scale meteorological pattern. We will discuss the implications of this technique through two examples; the 2013 Colorado flood and the 2014 Typhoon Haiyan.
Use of multiple den sites by Eurasian badgers, Meles meles, in a Mediterranean habitat.
Loureiro, Filipa; Rosalino, Luís Miguel; Macdonald, David W; Santos-Reis, Margarida
2007-10-01
Den sites are a conspicuous feature of Eurasian badgers, Meles meles, and in many environments include large communal burrows used by several group members. In Serra de Grândola, southwest Portugal, nine badgers from three social groups were captured and radio collared from 2000 to 2004. A total of 1,787 locations of badgers in their resting sites were registered along with a brief description of the type of site and weather conditions. Resting sites were grouped according to structure (burrows, shrubs, rocks, hollow trees and man-made structures) and function (main, secondary and occasional). Although main setts were the most frequently used shelter (62.25%), an average of 14 (SD 7.55) resting sites were used in each territory. The pattern of use varied seasonally, showing differences according to sex and social group. Overall, females used more than twice as many occasional resting sites as did males. Generally burrows, predominantly main setts, were most frequently used during winter and autumn, whilst non-burrow shelters were preferred during spring and summer, when the weather was hot, dry and not windy. Proximity to food patches had no apparent influence on the location of resting sites. Our results offered no support for the foraging-related hypotheses that multiple resting sites are a means of conserving energy or of maintaining proximity to rich food patches. We suggest that other factors such as thermoregulation needs, disturbance, and reproductive status, could be influencing the observed pattern of resting-site use by badgers in Serra de Grândola.
NASA Astrophysics Data System (ADS)
Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.
2015-07-01
Synoptic meteorology can have a significant influence on UK air quality. Cyclonic (anticyclonic) conditions lead to the dispersion (accumulation) of air pollutants away from (over) source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to determine the controlling factors. We show that AQUM successfully captures the observed relationships, when sampled under the Lamb Weather Types, an objective classification of midday UK circulation patterns. By using a range of idealised NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK column NO2 field can be explained by the idealised model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.
A Metagenomic Survey of Serpentinites and Nearby Soils in Taiwan
NASA Astrophysics Data System (ADS)
Li, K. Y.; Hsu, Y. W.; Chen, Y. W.; Huang, T. Y.; Shih, Y. J.; Chen, J. S.; Hsu, B. M.
2016-12-01
The serpentinite of Taiwan is originated from the subduction zone of the Eurasian plate and the Philippine Sea plate. Many small bodies of serpentinite are scattered around the lands of the East Rift Valley, which are also one of the major agricultural areas in Taiwan. Since microbial communities play a role both on weathering process and soil recovery, uncovering the microbial compositions in serpentinites and surrounding soils may help people to understand the roles of microorganisms on serpentinites during the nature weathering process. In this study, microorganisms growing on the surface of serpentinites, in the surrounding soil, and agriculture soils that are miles of horizontal distance away from serpentinite were collected. Next generation sequencing (NGS) was carried out to examine the metagenomics of uncultured microbial community in these samples. The metagenomics were further clustered into operational taxonomic units (OTUs) to analyze relative abundance, heatmap of OTUs, and principal coordinates analysis (PCoA). Our data revealed the different types of geographic material had their own distinct structures of microbial community. In serpentinites, the heatmaps based on the phylogenetic pattern showed that the OTUs distributions were similar in phyla of Bacteroidetes, Cyanobacteria, Proteobacteria, Verrucomicrobia, and WPS-1/WPS-2. On the other hand, the heatmaps of phylogenetic pattern of agriculture soils showed that the OTUs distributions in phyla of Chloroflexi, Acidobacteria, Actinobacteria, WPS-1/WPS-2, and Proteobacteria were similar. In soil nearby the serpentinite, some clusters of OTUs in phyla of Bacteroidetes, Cyanobacteria, and WPS-1/WPS-2 have disappeared. Our data provided evidence regarding kinetic evolutions of microbial communities in different geographic materials.
Weather Impact on Airport Arrival Meter Fix Throughput
NASA Technical Reports Server (NTRS)
Wang, Yao
2017-01-01
Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.
Aoki, Haruhito; O'Hata, Nozomu; Kohno, Terushige; Morikawa, Tsuguo; Seki, Jun
2012-05-01
Few prospective epidemiological studies on soccer match injuries have collected continuous data using subjects from the same group. To investigate long-term injury-induced changes during official matches in the professional Japanese soccer league. Descriptive epidemiological study. Acute injuries during official matches among top-division Japanese professional soccer leaguers were prospectively collected from 1993 to 2007. Injuries preventing player participation for 7 days or more were defined as a reportable injury. Interseasonal variations of injury rate (IR: injuries/1000/player hours) and injury pattern (type, location, circumstances, severity, injury time, positional role, and relationship to weather) were analyzed. Throughout the study period, 2947 injuries from 3984 matches occurred. Mean annual IR was 21.77/1000 player hours, and annual variance showed gradual decrement throughout the study period. The proportion of injury type and location were not significantly changed. Sprain and contusion as injury type and thigh and ankle joint as location were the most common in every season. Contact-related injuries comprised 73.3% on average and were observed to occur more frequently during the last 15 minutes and extra time of match play. The proportion of foul play-related injuries showed a clear declining trend. The proportion of severe injury showed a sporadic increase from 2001 to 2004. The second, fifth, and sixth 15-minute match segments showed a higher IR. Goalkeepers had a lower IR versus other field players. Matches on rainy days resulted in a lower IR than did those held under other weather conditions. Long-term surveillance and statistical feedback of injury characteristics to organization members were considered effective in improving safer play awareness among players and for referees to reduce injury incidence, particularly foul play-related injuries.
Prediction of CMEs and Type II Bursts from Sun to Earth
NASA Astrophysics Data System (ADS)
Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.
2017-12-01
Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.
Pilot age and error in air taxi crashes.
Rebok, George W; Qiang, Yandong; Baker, Susan P; Li, Guohua
2009-07-01
The associations of pilot error with the type of flight operations and basic weather conditions are well documented. The correlation between pilot characteristics and error is less clear. This study aims to examine whether pilot age is associated with the prevalence and patterns of pilot error in air taxi crashes. Investigation reports from the National Transportation Safety Board for crashes involving non-scheduled Part 135 operations (i.e., air taxis) in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Crash circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Of the 1751 air taxi crashes studied, 28% resulted from mechanical failure, 25% from loss of control at landing or takeoff, 7% from visual flight rule conditions into instrument meteorological conditions, 7% from fuel starvation, 5% from taxiing, and 28% from other causes. Crashes among older pilots were more likely to occur during the daytime rather than at night and off airport than on airport. The patterns of pilot error in air taxi crashes were similar across age groups. Of the errors identified, 27% were flawed decisions, 26% were inattentiveness, 23% mishandled aircraft kinetics, 15% mishandled wind and/or runway conditions, and 11% were others. Pilot age is associated with crash circumstances but not with the prevalence and patterns of pilot error in air taxi crashes. Lack of age-related differences in pilot error may be attributable to the "safe worker effect."
NASA Astrophysics Data System (ADS)
Andretta, Thomas A.
The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward flow regimes in Idaho which form under low Froude number (stable blocked flow) in a post cold-frontal environment. The SPCZ is a weak baroclinic feature. The formation of the zone is independent of the vertical wind shear in the middle to upper troposphere. With a grid scale of 4 km, the WRF-ARW model adequately reproduces the post cold-frontal environment, windward and leeward convergence zones, relative vertical vorticity belts, and precipitation bands in several SPCZ cases. The vertical structure of the SPCZ reveals upright reflectivity towers with circulations that tilt slightly with height into the colder air aloft. Topographic sensitivity analyses of the SPCZ indicate that the terrain-driven circulations and resulting snow bands are more defined at the finer terrain scales. The ambient horizontal wind shear in the tributary valleys of the Central Mountains creates potential vorticity (PV) banners. The PV banner maintenance and strength are directly tied to the terrain resolution. An environment of convective instability sometimes occurs as a layer of air is lifted along the gentle elevation rise of the eastern Magic Valley and lower plain. An environment of inertial instability forms within the anticyclonic (negative) vorticity belts in the upper plain. Potential symmetric instability (PSI) may be released in a moist environment near the vorticity banners. The planetary boundary layer perturbed by the SPCZ inside the Snake River Plain is characterized by a deeper mixed layer with stronger vertical motions relative to a PBL in a sheltered valley outside the plain. Finally, a 10-year antecedent synoptic climatology of 78 SPCZ events reveals two pattern types: Type N (wet and warm) and Type S (dry and cold). The 40° N parallel divides these two synoptic patterns.
Weather during bloom affects pollination and yield of highbush blueberry.
Tuell, Julianna K; Isaacs, Rufus
2010-06-01
Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.
Using Predictive Analytics to Predict Power Outages from Severe Weather
NASA Astrophysics Data System (ADS)
Wanik, D. W.; Anagnostou, E. N.; Hartman, B.; Frediani, M. E.; Astitha, M.
2015-12-01
The distribution of reliable power is essential to businesses, public services, and our daily lives. With the growing abundance of data being collected and created by industry (i.e. outage data), government agencies (i.e. land cover), and academia (i.e. weather forecasts), we can begin to tackle problems that previously seemed too complex to solve. In this session, we will present newly developed tools to aid decision-support challenges at electric distribution utilities that must mitigate, prepare for, respond to and recover from severe weather. We will show a performance evaluation of outage predictive models built for Eversource Energy (formerly Connecticut Light & Power) for storms of all types (i.e. blizzards, thunderstorms and hurricanes) and magnitudes (from 20 to >15,000 outages). High resolution weather simulations (simulated with the Weather and Research Forecast Model) were joined with utility outage data to calibrate four types of models: a decision tree (DT), random forest (RF), boosted gradient tree (BT) and an ensemble (ENS) decision tree regression that combined predictions from DT, RF and BT. The study shows that the ENS model forced with weather, infrastructure and land cover data was superior to the other models we evaluated, especially in terms of predicting the spatial distribution of outages. This research has the potential to be used for other critical infrastructure systems (such as telecommunications, drinking water and gas distribution networks), and can be readily expanded to the entire New England region to facilitate better planning and coordination among decision-makers when severe weather strikes.
Influence of Different Factors on Relative Air Humidity in Zaragoza, Spain
NASA Astrophysics Data System (ADS)
Cuadrat, José M.
2015-03-01
In this study, the spatial patterns of relative air humidity and its relation to urban, geographical and meteorological factors in the city of Zaragoza (Spain) is discussed. We created a relative humidity database by means of 32 urban transects. Data were taken on different days and with different weather types. This data set was used to map the mean spatial distribution of urban dry island (UDI). Using stepwise multiple regression analysis and Landsat ETM+ images the relationships between mean UDI and the main geographic-urban factors: topography, land cover and surface reflectivity, have been analyzed. Different spatial patterns of UDI were determined using Principal Component Analysis (Varimax rotation). The three components extracted accounted for 91% of the total variance. PC1 accounted for the most general patterns (similar to mean UDI); PC2 showed a shift of dry areas to the SE and PC3 a shift to NW. Using data on wind direction in Zaragoza, we have found that the displacement of dry areas to the SE (PC 2) was greater during NW winds while the shift to the NW (PC 3) was produced mainly by SE winds.
Preventing cold-related morbidity and mortality in a changing climate
Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O
2011-01-01
Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a person’s vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693
Pattern recognition of satellite cloud imagery for improved weather prediction
NASA Technical Reports Server (NTRS)
Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.
1986-01-01
The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.
Temporal variability patterns in solar radiation estimations
NASA Astrophysics Data System (ADS)
Vindel, José M.; Navarro, Ana A.; Valenzuela, Rita X.; Zarzalejo, Luis F.
2016-06-01
In this work, solar radiation estimations obtained from a satellite and a numerical weather prediction model in mainland Spain have been compared. Similar comparisons have been formerly carried out, but in this case, the methodology used is different: the temporal variability of both sources of estimation has been compared with the annual evolution of the radiation associated to the different study climate zones. The methodology is based on obtaining behavior patterns, using a Principal Component Analysis, following the annual evolution of solar radiation estimations. Indeed, the adjustment degree to these patterns in each point (assessed from maps of correlation) may be associated with the annual radiation variation (assessed from the interquartile range), which is associated, in turn, to different climate zones. In addition, the goodness of each estimation source has been assessed comparing it with data obtained from the radiation measurements in ground by pyranometers. For the study, radiation data from Satellite Application Facilities and data corresponding to the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts have been used.
TECA: Petascale pattern recognition for climate science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat, .; Byna, Surendra; Vishwanath, Venkatram
Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBMmore » BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.« less
Accelerated weathering of tough shales : final report.
DOT National Transportation Integrated Search
1977-01-01
The purpose of this study was to find or develop a test that would identify a very tough but relatively rapid weathering type of shale that has caused problems when used in embankments as rock. Eight shales, including the problem shale, were collecte...
Joshua B. Johnson; John W. Edwards; W. Mark Ford
2011-01-01
Nocturnal activity patterns of northern myotis (Myotis septentrionalis) at diurnal roost trees remain largely uninvestigated. For example, the influence of reproductive status, weather, and roost tree and surrounding habitat characteristics on timing of emergence, intra-night activity, and entrance at their roost trees is poorly known. We examined...
Patterns of Internet Usage in the Philippines
ERIC Educational Resources Information Center
Labucay, Iremae D.
2014-01-01
This chapter reports on the patterns of Internet use in the Philippines using survey data gathered by Social Weather Stations (SWS), a social research institute in the Philippines. As of March 2014, Internet usage rose to 35 percent of the population compared to 9 percent in 1998. However, the data indicates the presence of digital divide in…
NASA Astrophysics Data System (ADS)
Maffre, Pierre; Ladant, Jean-Baptiste; Moquet, Jean-Sébastien; Carretier, Sébastien; Labat, David; Goddéris, Yves
2018-07-01
The role of mountains in the geological evolution of the carbon cycle has been intensively debated for the last decades. Mountains are thought to increase the local physical erosion, which in turns promotes silicate weathering, organic carbon transport and burial, and release of sulfuric acid by dissolution of sulfides. In this contribution, we explore the impact of mountain ranges on silicate weathering. Mountains modify the global pattern of atmospheric circulation as well as the local erosion conditions. Using an IPCC-class climate model, we first estimate the climatic impact of mountains by comparing the present day climate with the climate when all the continents are assumed to be flat. We then use these climate output to calculate weathering changes when mountains are present or absent, using standard expression for physical erosion and a 1D vertical model for rock weathering. We found that large-scale climate changes and enhanced rock supply by erosion due to mountain uplift have opposite effect, with similar orders of magnitude. A thorough testing of the weathering model parameters by data-model comparison shows that best-fit parameterizations lead to a decrease of weathering rate in the absence of mountain by about 20%. However, we demonstrate that solutions predicting an increase in weathering in the absence of mountain cannot be excluded. A clear discrimination between the solutions predicting an increase or a decrease in global weathering is pending on the improvement of the existing global databases for silicate weathering. Nevertheless, imposing a constant and homogeneous erosion rate for models without relief, we found that weathering decrease becomes unequivocal for very low erosion rates (below 10 t/km2/yr). We conclude that further monitoring of continental silicate weathering should be performed with a spatial distribution allowing to discriminate between the various continental landscapes (mountains, plains …).