2013-09-30
data from the IABP ); 2.) Forecasting weather and sea ice conditions; 3.) Forcing, assimilation and validation of global weather and climate models ...International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP Dr. Ignatius G. Rigor Polar...ice motion. These observations are assimilated into Numerical Weather Prediction (NWP) models that are used to forecast weather on synoptic time
Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
André, Nicolas; Grande, Manuel
2016-04-01
Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.
Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
Grande, Manuel; Andre, Nicolas
2016-07-01
Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.
ESA SSA Programme in support of Space Weather forecasting
NASA Astrophysics Data System (ADS)
Luntama, J.; Glover, A.; Hilgers, A. M.
2010-12-01
In 2009 European Space Agency (ESA) started a new programme called Space Situational Awareness (SSA) Preparatory Programme. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The SSA Preparatory Program will establish the initial elements that will eventually lead into the full deployment of the European SSA services. The SWE Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010 will include a selected subset of these services based on pre-existing space weather applications and services in Europe. This paper will present the key characteristics of the SSA SWE system that is currently being designed. The presentation will focus on the system characteristics that support space weather forecasting and the related services. The presentation will show results from the analysis of the existing European assets and the identified development needs in the mid and long term future to ensure forecasting capability for the services requested the by SSA SWE users. The analysis covers the future SSA SWE space segment and the service development needs for the ground segment.
NASA Astrophysics Data System (ADS)
Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.
2014-01-01
A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.
The World Meteorological Organization Focus on Urban Issues
NASA Astrophysics Data System (ADS)
Terblanche, D. E.
2015-12-01
Many of the milestones of human development can be traced back to people assembled in urban settings where economies of scale, competition and social interaction stimulated innovation. Considering that more than half the global pollution now lives in cities and towns and that most of the growth in the global pollution in the remainder of this century will continue to take place in the urban environment, the question could be asked whether humankind will continue to capitalize on the traditional benefits of city life to find solutions for growing environmental challenges? In the past cities developed organically. They evolved through trial and error into livable environments. Things have now changed. The global population is larger, urbanization is rapid, pressure on Earth's limited resources is constraining and we are faced with a changing climate. If cities are now allowed to develop in a haphazard manner, the fight for survival in the city will overshadow its entrepreneurial spirit. It is for this reason that the 11th Sustainable Development Goal will focus on: 'Making cities and human settlements inclusive, safe, resilient and sustainable'. There is now a window of opportunity for weather, climate, water and environmental scientists to contribute towards a more sustainable urban future by ensuring that science based services form an integrated part of urban planning, development and management. WMO recognizes that rapid urbanization will require new types of new and enhanced services. Such integrated urban weather, environment and climate services will assist cities to deal better with hazards such as storm surge, flooding, heat waves, and air pollution episodes, especially in a changing climate. From a research perspective the World Climate Research Programme, the World Weather Research Programme and the Global Atmosphere Watch Programme all have a unique contribution to make in this regard.
NASA Astrophysics Data System (ADS)
Chiarini, Paola
2013-11-01
Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7) of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic "Security of space assets from space weather events" of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic "Exploitation of space science and exploration data", which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth's surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects' outcomes.
Heat Balance Limits in Football Uniforms: How Different Uniform Ensembles Alter the Equation.
ERIC Educational Resources Information Center
Kulka, Hasha J.; Kenney, W. Larry
2002-01-01
Because football season becomes dangerous when warm weather collides with the need for protective gear, researchers investigated critical heat balance limits in non-heat- acclimatized men who wore various football uniform ensembles and exercised at 35 percent VO2 max in a programmable environmental chamber. The air temperature and humidity limits…
AFFECTS - Advanced Forecast For Ensuring Communications Through Space
NASA Astrophysics Data System (ADS)
Bothmer, Volker
2013-04-01
Through the AFFECTS project funded by the European Union's 7th Framework Programme, European and US scientists develop an advanced proto-type space weather warning system to safeguard the operation of telecommunication and navigation systems on Earth to the threat of solar storms. The project is led by the University of Göttingen's Institute for Astrophysics and comprises worldwide leading research and academic institutions and industrial enterprises from Germany, Belgium, Ukraine, Norway and the United States. The key objectives of the AFFECTS project are: State-of-the-art analysis and modelling of the Sun-Earth chain of effects on the Earth's ionosphere and their subsequent impacts on communication systems based on multipoint space observations and complementary ground-based data. Development of a prototype space weather early warning system and reliable space weather forecasts, with specific emphasis on ionospheric applications. Dissemination of new space weather products and services to end users, the scientific community and general public. The presentation summarizes the project highlights, with special emphasis on the developed space weather forecast tools.
Impact of extreme weather events and climate change for health and social care systems.
Curtis, Sarah; Fair, Alistair; Wistow, Jonathan; Val, Dimitri V; Oven, Katie
2017-12-05
This review, commissioned by the Research Councils UK Living With Environmental Change (LWEC) programme, concerns research on the impacts on health and social care systems in the United Kingdom of extreme weather events, under conditions of climate change. Extreme weather events considered include heatwaves, coldwaves and flooding. Using a structured review method, we consider evidence regarding the currently observed and anticipated future impacts of extreme weather on health and social care systems and the potential of preparedness and adaptation measures that may enhance resilience. We highlight a number of general conclusions which are likely to be of international relevance, although the review focussed on the situation in the UK. Extreme weather events impact the operation of health services through the effects on built, social and institutional infrastructures which support health and health care, and also because of changes in service demand as extreme weather impacts on human health. Strategic planning for extreme weather and impacts on the care system should be sensitive to within country variations. Adaptation will require changes to built infrastructure systems (including transport and utilities as well as individual care facilities) and also to institutional and social infrastructure supporting the health care system. Care sector organisations, communities and individuals need to adapt their practices to improve resilience of health and health care to extreme weather. Preparedness and emergency response strategies call for action extending beyond the emergency response services, to include health and social care providers more generally.
ESA SSA Space Weather Services Supporting Space Surveillance and Tracking
NASA Astrophysics Data System (ADS)
Luntama, Juha-Pekka; Glover, Alexi; Hilgers, Alain; Fletcher, Emmet
2012-07-01
ESA Space Situational Awareness (SSA) Preparatory Programme was started in 2009. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The Space Weather (SWE) Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010. This presentation provides an overview of the ESA SSA SWE services focused on supporting the Space Surveillance and Tracking users. This services include estimates of the atmospheric drag and archive and forecasts of the geomagnetic and solar indices. In addition, the SSA SWE system will provide nowcasts of the ionospheric group delay to support mitigation of the ionospheric impact on radar signals. The paper will discuss the user requirements for the services, the data requirements and the foreseen development needs for the ESA SSA SWE system before the full service capability is available.
JPRS Report, Nuclear Developments
1989-06-28
the Industrial Devel- opment Corporation, the Department of Posts and Tele- communications , the weather bureau, the Department of Trade and...Industry, the SABC [South African Broad- casting Corporation] and the academic space research community had been appointed to keep up with space- related...wanted to launch its own space programme for communication , commercial, industrial and military purposes. JPRS-TND-89-013 28 June 1989 CHINA
The International Arctic Buoy Programme (IABP)
NASA Astrophysics Data System (ADS)
Rigor, I. G.; Ortmeyer, M.
2003-12-01
The Arctic has undergone dramatic changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the International Arctic Buoy Programme (IABP). For example, IABP data were fundamental to Walsh et al. (1996) showing that atmospheric pressure has decreased, Rigor et al. (2000) showing that air temperatures have increased, and to Proshutinsky and Johnson (1997); Steele and Boyd, (1998); Kwok, (2000); and Rigor et al. (2002) showing that the clockwise circulation of sea ice and the ocean has weakened. All these results relied heavily on data from the IABP. In addition to supporting these studies of climate change, the IABP observations are also used to forecast weather and ice conditions, validate satellite retrievals of environmental variables, to force, validate and initialize numerical models. Over 350 papers have been written using data from the IABP. The observations and datasets of the IABP data are one of the cornerstones for environmental forecasting and research in the Arctic.
Historical Time Series of Extreme Convective Weather in Finland
NASA Astrophysics Data System (ADS)
Laurila, T. K.; Mäkelä, A.; Rauhala, J.; Olsson, T.; Jylhä, K.
2016-12-01
Thunderstorms, lightning, tornadoes, downbursts, large hail and heavy precipitation are well-known for their impacts to human life. In the high latitudes as in Finland, these hazardous warm season convective weather events are focused in the summer season, roughly from May to September with peak in the midsummer. The position of Finland between the maritime Atlantic and the continental Asian climate zones makes possible large variability in weather in general which reflects also to the occurrence of severe weather; the hot, moist and extremely unstable air masses sometimes reach Finland and makes possible for the occurrence of extreme and devastating weather events. Compared to lower latitudes, the Finnish climate of severe convection is "moderate" and contains a large year-to-year variation; however, behind the modest annual average is hidden the climate of severe weather events that practically every year cause large economical losses and sometimes even losses of life. Because of the increased vulnerability of our modern society, these episodes have gained recently plenty of interest. During the decades, the Finnish Meteorological Institute (FMI) has collected observations and damage descriptions of severe weather episodes in Finland; thunderstorm days (1887-present), annual number of lightning flashes (1960-present), tornados (1796-present), large hail (1930-present), heavy rainfall (1922-present). The research findings show e.g. that a severe weather event may occur practically anywhere in the country, although in general the probability of occurrence is smaller in the Northern Finland. This study, funded by the Finnish Research Programme on Nuclear Power Plant Safety (SAFIR), combines the individual Finnish severe weather time series' and examines their trends, cross-correlation and correlations with other atmospheric parameters. Furthermore, a numerical weather model (HARMONIE) simulation is performed for a historical severe weather case for analyzing how well the present state-of-the-art models grasp these small-scale weather phenomena. Our results give important background for estimating the Finnish severe weather climate in the future.
Negative CO2 emissions via enhanced silicate weathering in coastal environments
Montserrat, Francesc
2017-01-01
Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts—both positive and negative—from the released weathering products. PMID:28381634
Weather Effects on Crop Diseases in Eastern Germany
NASA Astrophysics Data System (ADS)
Conradt, Tobias
2017-04-01
Since the 1970s there are several long-term monitoring programmes for plant diseases and pests in Germany. Within the framework of a national research project, some otherwise confidential databases comprising 77 111 samples from numerous sites accross Eastern Germany could be accessed and analysed. The pest data covered leaf rust (Puccinia triticina) and powdery mildew (Blumeria graminis) in winter wheat, aphids (Aphididae, four genera) on wheat and other cereal crops, late blight (Phytophthora infestans) in potatoes, and pollen beetles (Brassicogethes aeneus) on rape. These data were complemented by daily weather observations from the German Weather Service (DWD). In a first step, Pearson correlations between weather variables and pest frequencies were calculated for seasonal time periods of different start months and durations and ordered into so-called correlograms. This revealed principal weather effects on disease spread - e. g. that wind is favourable for mildew throughout the year or that rape pollen beetles like it warm, but not during wintertime. Secondly, the pest frequency samples were found to resemble gamma distributions, and a generalised linear model was fitted to describe their parameter shift depending on end-of-winter temperatures for aphids on cereals. The method clearly shows potential for systematic pest risk assessments regarding climate change.
Performance of the operational high-resolution numerical weather predictions of the Daphne project
NASA Astrophysics Data System (ADS)
Tegoulias, Ioannis; Pytharoulis, Ioannis; Karacostas, Theodore; Kartsios, Stergios; Kotsopoulos, Stelios; Bampzelis, Dimitrios
2015-04-01
In the framework of the DAPHNE project, the Department of Meteorology and Climatology (http://meteo.geo.auth.gr) of the Aristotle University of Thessaloniki, Greece, utilizes the nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW) in order to produce high-resolution weather forecasts over Thessaly in central Greece. The aim of the DAPHNE project is to tackle the problem of drought in this area by means of Weather Modification. Cloud seeding assists the convective clouds to produce rain more efficiently or reduce hailstone size in favour of raindrops. The most favourable conditions for such a weather modification program in Thessaly occur in the period from March to October when convective clouds are triggered more frequently. Three model domains, using 2-way telescoping nesting, cover: i) Europe, the Mediterranean sea and northern Africa (D01), ii) Greece (D02) and iii) the wider region of Thessaly (D03; at selected periods) at horizontal grid-spacings of 15km, 5km and 1km, respectively. This research work intents to describe the atmospheric model setup and analyse its performance during a selected period of the operational phase of the project. The statistical evaluation of the high-resolution operational forecasts is performed using surface observations, gridded fields and radar data. Well established point verification methods combined with novel object based upon these methods, provide in depth analysis of the model skill. Spatial characteristics are adequately captured but a variable time lag between forecast and observation is noted. Acknowledgments: This research work has been co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013)
NASA Astrophysics Data System (ADS)
Hansen, P. J. K.
2009-09-01
Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education. Pål J. Kirkeby Hansen Faculty of Education and International Studies, Oslo University College (PalKirkeby.Hansen@lui.hio.no) The Knowledge Promotion is the latest curriculum reform in Norwegian compulsory and upper secondary education implemented autumn 2006. The greenhouse effect, the increased greenhouse effect and the importance of the ozone layer are topics in Natural Science upper secondary year 1, but only in Programme for General Studies, chosen by less than 50% of the students. In Geography the same cohort learns about ocean and air currents and their impact on climate, and in particular conditions influencing the weather and climate in Norway. If the students during year 1 get interested in further education in weather, ocean, climate or other geosciences topics, they could continue their education on Programme for Specialization in General Studies and choose the new science subject Geosciences at years 2 and/or 3. Among many geo-topics, Geosciences contains: climate, weather, water circulation, glaciers, atmospheric currents, weather forecasts, variations in the ozone layer, climatic development from the latest Ice Age, climate change - causes, effects and challenges, surface and deep-sea currents in oceans - causes and consequences for the climate, el Niño and la Niña - causes and influence on the climate. The students are supposed to make extensive investigations of different geosciences-parameters on their own in an outdoor field using different tools of geosciences, and on the Internet and other media, and present the results. One serious problem introducing a new subject in upper secondary education is who are able to teach this subject. We who developed the curriculum on mission of the education ministry, had first of all teachers with a degree in natural geography in mind. To empower other interested teachers, for instance with degree in meteorology, oceanography, hydrology, geology or physics, we have given extensive in-service training and should during 2009 be able to offer further education from ½ to 1 year. The school year 2007/2008 was the first with Geosciences as an optional choice. Ca.80 schools of max. 300 were able to give GX a 3 hours/week course, and/or G1 a 5 h/w course. In 2008/2009 it is 92 schools, and the advanced level 5 h/w course G2 has been introduced in many schools. G2 is open to all, but chosen almost only by students with G1. X1 students accomplished the ever first national written exam in G2 in May 2009. Geosciences were introduced as an idea from the education minister, not as result of pressure from the grassroot. She wanted students to have more science subjects to choose among in upper secondary education. She hoped that Geosciences should be a vehicle for introducing new groups of students to science, and perhaps bring them to science studies on higher levels later on. We, who developed the curriculum and are also responsible for the national exam in G2. We are of course very curious about both responses from the schools on the curriculum and the exam, and on the students' attitudes, work and learning outcome. That's why we are setting up a science education research programme from spring 2009. The further education and research programmes are made possible because of a sponsorship (EUR 1.2mill.) to our Geo-Programme 2008-2013 from the Norwegian oil and gas company StatoilHydro. 1 Unknown till May 2009
Integrated Modelling in CRUCIAL Science Education
NASA Astrophysics Data System (ADS)
Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey
2017-04-01
The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and discussed.
Evaluation of numerical weather predictions performed in the context of the project DAPHNE
NASA Astrophysics Data System (ADS)
Tegoulias, Ioannis; Pytharoulis, Ioannis; Bampzelis, Dimitris; Karacostas, Theodore
2014-05-01
The region of Thessaly in central Greece is one of the main areas of agricultural production in Greece. Severe weather phenomena affect the agricultural production in this region with adverse effects for farmers and the national economy. For this reason the project DAPHNE aims at tackling the problem of drought by means of weather modification through the development of the necessary tools to support the application of a rainfall enhancement program. In the present study the numerical weather prediction system WRF-ARW is used, in order to assess its ability to represent extreme weather phenomena in the region of Thessaly. WRF is integrated in three domains covering Europe, Eastern Mediterranean and Central-Northern Greece (Thessaly and a large part of Macedonia) using telescoping nesting with grid spacing of 15km, 5km and 1.667km, respectively. The cases examined span throughout the transitional and warm period (April to September) of the years 2008 to 2013, including days with thunderstorm activity. Model results are evaluated against all available surface observations and radar products, taking into account the spatial characteristics and intensity of the storms. Preliminary results indicate a good level of agreement between the simulated and observed fields as far as the standard parameters (such as temperature, humidity and precipitation) are concerned. Moreover, the model generally exhibits a potential to represent the occurrence of the convective activity, but not its exact spatiotemporal characteristics. Acknowledgements This research work has been co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013)
Space Weather effects on airline communications in the high latitude regions
NASA Astrophysics Data System (ADS)
Honary, Farideh
2014-05-01
Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection
The International Arctic Buoy Programme (IABP) - An International Polar Year Every Year
NASA Astrophysics Data System (ADS)
Hanna, M.; Rigor, I.; Ortmeyer, M.; Haas, C.
2004-12-01
A network of automatic data buoys to monitor synoptic-scale fields of sea level pressure (SLP), surface air temperature (SAT), and ice motion throughout the Arctic Ocean was recommended by the U.S. National Academy of Sciences in 1974. Based on the Academy's recommendation, the Arctic Ocean Buoy Program was established by the Polar Science Center, Applied Physics Laboratory (APL), University of Washington, in 1978 to support the Global Weather Experiment. Operations began in early 1979, and the program continued through 1990 under funding from various agencies. In 1991, the International Arctic Buoy Programme (IABP) succeeded the Arctic Ocean Buoy Program, but the basic objective remains - to maintain a network of drifting buoys on the Arctic Ocean to provide meteorological and oceanographic data for real-time operational requirements and research purposes including support to the World Climate Research Programme and the World Weather Watch Programme. The IABP currently has 37 buoys deployed on the Arctic Ocean. Most of the buoys measure SLP and SAT, but many buoys are enhanced to measure other geophysical variables such as sea ice thickness, ocean temperature and salinity. This observational array is maintained by the 20 Participants from 10 different countries, who support the program through contributions of buoys, deployment logistics, and other services. The observations from the IABP are posted on the Global Telecommunications System for operational use, are archived at the World Data Center for Glaciology at the National Snow and Ice Data Center (http://nsidc.org), and can also be obtained from the IABP web server for research (http://iabp.apl.washington.edu). The observations from the IABP have been essential for: 1.) Monitoring Arctic and global climate change; 2.) Forecasting weather and sea ice conditions; 3.) Forcing, assimilation and validation of global weather and climate models; 4.) Validation of satellite data; etc. As of 2003, over 450 papers have been written using the observations collected by the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change, i.e. many of the changes in Arctic climate were first observed or explained using data from the IABP. The IABP is also evolving to better support the operational and research requirements of the community. For example, some of the Participants of the IABP have been deploying buoys which not only measure SLP and SAT, but also ocean currents, temperatures and salinity. Other buoys have been enhanced to measure the ice mass balance (IMB) using thermistor strings and pingers aimed at the top and bottom of the sea ice. Some of these ocean and IMB buoys are deployed in close proximity to each other in order to provide a myriad of concurrent observations at a few points across the Arctic Ocean. From these data we can also estimate time variations in other geophysical variables such as oceanic heat storage and heat flux. These stations provide critical atmospheric, ice, and upper ocean hydrographic measurements that cannot be obtained by other means. The Arctic and global climate system is changing. These changes threaten our native cultures and ecosystems, but may also provide economic and social opportunities. In order to understand and respond to these changes, we need to sustain our current observational systems, and for the Arctic, the IABP provides the longest continuing record of observations.
ESA Earth Observation missions at the service of geoscience
NASA Astrophysics Data System (ADS)
Aschbacher, Josef
2017-04-01
The intervention will present ESA's Earth Observation programmes and their relevance to geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and boundary conditions. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific endeavours. Meteorological satellites help to predict the weather and feature the most mature application of Earth observation. Over the last four decades satellites have been radically improving the accuracy of weather forecasts by providing unique and indispensable input data to numerical computation models. In addition, Essential Climate Variables (ECV) are constantly monitored within ESA's Climate Change Initiative in order to create a long-term record of key geophysical parameters. All of these activities can only be carried out in international cooperation. Accordingly, ESA maintains long-standing partnerships with other space agencies and relevant institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges as well as to requirements resulting from political priorities, such as the United Nations' Sustainable Development Goals.
The ESA Space Weather Applications Pilot Project
NASA Astrophysics Data System (ADS)
Glover, A.; Hilgers, A.; Daly, E.
Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field
2012-09-30
International Arctic Buoy Programme ( IABP ) A US Interagency Arctic Buoy Programme (USIABP) contribution to the IABP Dr. Ignatius G. Rigor Polar...observations of surface meteorology and ice motion. These observations are assimilated into Numerical Weather Prediction (NWP) models that are used to...distribution of sea ice. Over the Arctic Ocean, this fundamental observing network is maintained by the IABP , and is a critical component of the
NASA Astrophysics Data System (ADS)
Vicari, Rosa; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2014-05-01
The frequency and damages caused by pluvial floods in European cities are expected to increase as a consequence of climate change and urban development. New solutions are needed at local level to cope with extreme storm events and to reduce risks and costs on populations and infrastructures, in particular in disadvantaged urban areas. The HM&Co team (LEESU & Chair 'Hydrology for Resilient Cities' sponsored by Veolia) aims to develop resilient urban systems with the help of innovative technologies, tools and practices based in particular on the use of high-resolution data, simulations, forecasts and management. Indeed, the availability of fine-scale rainfall data, due to the improved reliability of recent low-cost weather radars, opens up prospects for new forms of local urban flood risk management, which requires exchange of information with local actors and their full cooperation with researchers. This demands a large collaboration ranging from regional to international levels, e.g. the RadX@IdF project (Regional Council of Paris Region), the RainGain project (EU Interreg programme) and Blue Green Dream project (Climate-KIC programme), TOMACS (World Meteorological Organisation). These research projects and programmes include awareness raising and capacity building activities aimed to stimulate cooperation between scientists, professionals (e.g. water managers, urban planners) and beneficiaries (e.g. concerned citizens, policy makers). A dialogue between these actors is indeed needed to bring together the know-how from different countries and areas of expertise, avoid fragmentation and link it to the needs of the local stakeholders. Without this "conductive environment", research results risk to remain unexploited. After a general description of the background communication needs, this presentation will illustrate the outreach practices that are carried out by the HM&Co team. The major challenges will be also discussed, some examples are: narrating research uncertainty and its open issues as a virtuous process, aligning diverging objectives and approaches in a common vision, making an innovative technology visible to the public and managing rumours on security issues, bridging the gap between scientific discourses from an international academic community and operational discourses from local communities.
ESA situational awareness of space weather
NASA Astrophysics Data System (ADS)
Luntama, Juha-Pekka; Glover, Alexi; Keil, Ralf; Kraft, Stefan; Lupi, Adriano
2016-07-01
ESA SSA Period 2 started at the beginning of 2013 and will last until the end of 2016. For the Space Weather Segment, transition to Period 2 introduced an increasing amount of development of new space weather service capability in addition to networking existing European assets. This transition was started already towards the end of SSA Period 1 with the initiation of the SSA Space Weather Segment architecture definition studies and activities enhancing existing space weather assets. The objective of Period 2 has been to initiate SWE space segment developments in the form of hosted payload missions and further expand the federated service network. A strong focus has been placed on demonstration and testing of European capabilities in the range of SWE service domains with a view to establishing core products which can form the basis of SWE service provision during SSA Period 3. This focus has been particularly addressed in the SSA Expert Service Centre (ESC) Definition and Development activity that was started in September 2015. This presentation will cover the current status of the SSA SWE Segment and the achievements during SSA Programme Periods 1 and 2. Particular attention is given to the federated approach that allow building the end user services on the best European expertise. The presentation will also outline the plans for the Space Weather capability development in the framework of the ESA SSA Programme in 2017-2020.
The ESA Nanosatellite Beacons for Space Weather Monitoring Study
NASA Astrophysics Data System (ADS)
Hapgood, M.; Eckersley, S.; Lundin, R.; Kluge, M.
2008-09-01
This paper will present final results from this ESA-funded study that has investigated how current and emerging concepts for nanosats may be used to monitor space weather conditions and provide improved access to data needed for space weather services. The study has reviewed requirements developed in previous ESA space weather studies to establish a set of service and measurements requirements appropriate to nanosat solutions. The output is conveniently represented as a set of five distinct classes of nanosat constellations, each in different orbit locations and which can address a specific group of measurement requirements. One example driving requirement for several of the constellations was the need for real-time data reception. Given this background, the study then iterated a set of instrument and spacecraft solutions to address each of the nanosat constellations from the requirements. Indeed, iteration has proved to be a critical aspect of the study. The instrument solutions have driven a refinement of requirements through assessment of whether or not the physical parameters to be measured dictate instrument components too large for a nanosat. In addition, the study has also reviewed miniaturization trends for instruments relevant to space weather monitoring by nanosats, looking at the near, mid and far-term timescales. Within the spacecraft solutions the study reviewed key technology trends relevant to space weather monitoring by nanosats: (a) micro and nano-technology devices for spacecraft communications, navigation, propulsion and power, and (b) development and flight experience with nanosats for science and for engineering demonstration. These requirements and solutions were then subject to an iterative system and mission analysis including key mission design issues (e.g. launch/transfer, mission geometry, instrument accommodation, numbers of spacecraft, communications architectures, de-orbit, nanosat reliability and constellation robustness) and the impact of nanosat fundamental limitations (e.g. mass, volume/size, power, communications). As a result, top-level Strawman mission concepts were developed for each constellation, and ROM costs were derived for programme development, operation and maintenance over a ten-year period. Nanosat reliability and constellation robustness were shown to be a key driver in deriving mission costs. In parallel with the mission analysis the study results have been reviewed to identify key issues that determine the prospects for a space weather nanosat programme and to make recommendations on measures to enable implementation of such a programme. As a follow-on to this study, a student MSc project was initiated by Astrium at Cranfield University to analyse a potential space weather precursor demonstration mission in GTO (one of the recommendations from this ESA study), composing of a reduced constellation of nanosats, launched on ASAP or some other low cost method. The demonstration would include: 1/ Low cost multiple manufacture techniques for a fully industrial nanosat constellation programme 2/ Real time datalinks and fully operational mission for space weather 3/ Miniaturised payloads to fit in a nanosat for space weather monitoring: 4/ Other possible demonstrations of advanced technology The aim was to comply with ESA demonstration mission (i.e. PROBA-type) requirements, to be representative on issues such as cost and risk
Tamayo Uria, Ibon; Mateu Mahiques, Jorge; Mughini Gras, Lapo
2013-06-01
Urban Norway rats are challenging pests, posing significant health and economic threats. Implementing ecologically based integrated rodent management (EBIRM) programmes relies primarily on the understanding of ecological relationships between rodents and their environments, with emphasis on the processes influencing rodent populations in the target ecosystem. We investigated the temporal distribution of urban Norway rat infestations in Madrid, Spain, and tested for the association of such infestations with temperature, relative humidity and precipitation by fitting a multivariate Poisson generalized linear model to a 3-year (2006-2008) daily time series of 4,689 Norway rat sightings. Norway rat infestations showed a marked seasonality, peaking in the summer. Most Norway rat sightings were reported on Mondays. Minimum temperature and relative humidity were positively associated with Norway rat infestation, whereas the association with precipitation was negative. The time series was adequately explained by the model. We identified previously unrecognized time periods that are more prone to Norway rat infestation than others and generated hypotheses about the association between weather, human outdoor activity, resource availability, rodent activity and population size. This provided local authorities engaged in preserving urban ecosystem health with basic research information to predict future rodent outbreaks and support the implementation of EBIRM programmes in urban areas.
NASA Astrophysics Data System (ADS)
Vicari, Rosa; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2014-05-01
The combined effects of climate change and increasing urbanisation call for new solutions to achieve urban resiliency to extreme weather. The research projects carried out by the HM&Co team (LEESU & Chair 'Hydrology for Resilient Cities' sponsored by Veolia) need to be supported by communication activities aimed to support community capacity building and cooperation between scientists and their partners and stakeholders. While outreach activities are becoming an integral part of many research projects on climate adaptation, their evaluation is scarce, rather optional, very limited. This work aims to develop quantitative and qualitative evaluation of science communication and to design corresponding assessment tools. It will be examined how evaluation can eventually improve the quality, efficiency and impact of communication activities in enhancing collaboration between scientists, professionals (e.g. water managers, urban planners) and beneficiaries (e.g. concerned citizens, policy makers). The research takes hold on several case studies on projects and programs aiming to increase the resiliency of cities to extreme weather: French projects and programmes such as RadX@IdF and Chair "Hydrology for a resilient city", European projects such as Climate KIC Blue Green Dream and Interreg NWE IVB RainGain and worldwide collaborations (e.g. TOMACS). The evaluation techniques and tools developed in the framework of this work are intended to become a useful support for engineers and researchers involved in projects on urban hydrology where resilience to extreme weather events relies also on effective communication processes between the above mentioned social actors. In particular, one of the purposes of this work is to highlight how auto-evaluation can improve on-going communication activities and create a virtuous circle of planning/implementation/evaluation. This research has links with those on the development of exploration techniques of the unstructured social big data, with a particular focus on digital communications.
The International Arctic Buoy Programme (IABP): A Cornerstone of the Arctic Observing Network
2008-09-01
SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE The International Arctic Buoy Programme ( IABP ): A...Prescribed by ANSI Std Z39-18 The International Arctic Buoy Programme ( IABP ): A Cornerstone of the Arctic Observing Network Ignatius G. Rigor...changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the IABP (http
The Climate Variability & Predictability (CVP) Program at NOAA - DYNAMO Recent Project Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.; Higgins, W.
2013-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), and the U.S. Global Change Research Program (USGCRP). The CVP program sits within the Earth System Science (ESS) Division at NOAA's Climate Program Office. Dynamics of the Madden-Julian Oscillation (DYNAMO): The Indian Ocean is one of Earth's most sensitive regions because the interactions between ocean and atmosphere there have a discernable effect on global climate patterns. The tropical weather that brews in that region can move eastward along the equator and reverberate around the globe, shaping weather and climate in far-off places. The vehicle for this variability is a phenomenon called the Madden-Julian Oscillation, or MJO. The MJO, which originates over the Indian Ocean roughly every 30 to 90 days, is known to influence the Asian and Australian monsoons. It can also enhance hurricane activity in the northeast Pacific and Gulf of Mexico, trigger torrential rainfall along the west coast of North America, and affect the onset of El Niño. CVP-funded scientists participated in the DYNAMO field campaign in 2011-12. Results from this international campaign are expected to improve researcher's insights into this influential phenomenon. A better understanding of the processes governing MJO is an essential step toward improving their representations in numerical models and improving MJO simulation and prediction. Recent results from CVP-funded projects will be summarized in this poster.
Gasperi, J; Moilleron, R; Chebbo, G
2006-01-01
In Paris, the OPUR research programme created an experimental on-site observatory of urban pollutant loads in combined sewer systems in order to characterise the dry and wet weather flows at different spatial scales. This article presents the first results on the spatial variability of the polycyclic aromatic hydrocarbon (PAH) load during wet weather flow (WWF). At the scale of a rain event, investigations revealed that (i) PAH concentrations were relatively homogenous whatever the spatial scale and were greater than those of the dry weather flow (DWF), (ii) PAH distributions between dissolved and particulate phases were constant, and (iii) PAH fingerprints exhibited a similar pattern for all catchments. Moreover, an evaluation of the contribution of DWF, runoff and erosion of sewer deposits to WWF load was established. According to the hypothesis on the runoff concentration, the contributions were evaluated at 14, 8 and 78%, respectively, at the scale of the Marais catchment. For all the catchments, the runoff contribution was found quite constant and evaluated at approximately 10%. The DWF contribution seems to increase with the catchment area, contrary to the sewer erosion contribution, which seems to decrease. However, this latter still remains an important source of pollution. These first trends should be confirmed and completed by more investigations of rain events.
The impact of climate change on the epidemiology and control of Rift Valley fever.
Martin, V; Chevalier, V; Ceccato, P; Anyamba, A; De Simone, L; Lubroth, J; de La Rocque, S; Domenech, J
2008-08-01
Climate change is likely to change the frequency of extreme weather events, such as tropical cyclones, floods, droughts and hurricanes, and may destabilise and weaken the ecosystem services upon which human society depends. Climate change is also expected to affect animal, human and plant health via indirect pathways: it is likely that the geography of infectious diseases and pests will be altered, including the distribution of vector-borne diseases, such as Rift Valley fever, yellow fever, malaria and dengue, which are highly sensitive to climatic conditions. Extreme weather events might then create the necessary conditions for Rift Valley fever to expand its geographical range northwards and cross the Mediterranean and Arabian seas, with an unexpected impact on the animal and human health of newly affected countries. Strengthening global, regional and national early warning systems is crucial, as are co-ordinated research programmes and subsequent prevention and intervention measures.
Toward seamless weather-climate and environmental prediction
NASA Astrophysics Data System (ADS)
Brunet, Gilbert
2016-04-01
Over the last decade or so, predicting the weather, climate and atmospheric composition has emerged as one of the most important areas of scientific endeavor. This is partly because the remarkable increase in skill of current weather forecasts has made society more and more dependent on them day to day for a whole range of decision making. And it is partly because climate change is now widely accepted and the realization is growing rapidly that it will affect every person in the world profoundly, either directly or indirectly. One of the important endeavors of our societies is to remain at the cutting-edge of modelling and predicting the evolution of the fully coupled environmental system: atmosphere (weather and composition), oceans, land surface (physical and biological), and cryosphere. This effort will provide an increasingly accurate and reliable service across all the socio-economic sectors that are vulnerable to the effects of adverse weather and climatic conditions, whether now or in the future. This emerging challenge was at the center of the World Weather Open Science Conference (Montreal, 2014).The outcomes of the conference are described in the World Meteorological Organization (WMO) book: Seamless Prediction of the Earth System: from Minutes to Months, (G. Brunet, S. Jones, P. Ruti Eds., WMO-No. 1156, 2015). It is freely available on line at the WMO website. We will discuss some of the outcomes of the conference for the WMO World Weather Research Programme (WWRP) and Global Atmospheric Watch (GAW) long term goals and provide examples of seamless modelling and prediction across a range of timescales at convective and sub-kilometer scales for regional coupled forecasting applications at Environment and Climate Change Canada (ECCC).
Sustainable Arctic observing network for predicting weather extremes in mid-latitudes
NASA Astrophysics Data System (ADS)
Inoue, J.; Sato, K.; Yamazaki, A.
2016-12-01
Routine atmospheric observations within and over the Arctic Ocean are very expensive and difficult to conduct because of factors such as logistics and the harsh environment. Nevertheless, the great benefit of such observations is their contribution to an improvement of skills of weather predictions over the Arctic and mid-latitudes. The Year of Polar Prediction (YOPP) from mid-2017 to mid-2019 proposed by the World Weather Research Programme - Polar Prediction Project (WWRP-PPP) would be the best opportunity to address the issues. The combination of observations and data assimilation is an effective way to understand the predictability of weather extremes in mid-latitudes. This talk presents the current activities related to PPP based on international special radiosonde observing network in the Arctic, and challenges toward YOPP. Comparing with summer and winter cases, the additional observations over the Arctic during winter were more effective for improving the predicting skills of weather extremes because the impact of the observations would be carried toward the mid-latitudes by the stronger jet stream and its frequent meanderings. During summer, on the other hand, the impact of extra observations was localized over the Arctic region but still important for precise weather forecasts over the Arctic Ocean, contributing to safe navigation along the Northern Sea Route. To consolidate the sustainable Arctic radiosonde observing network, increasing the frequency of observations at Arctic coastal stations, instead of commissioning special observations from ships and ice camps, would be a feasible way. In fact, several existing stations facing the Arctic Ocean have already increased the frequency of observations during winter and/or summer.
Effects of terrestrial UV radiation on selected outdoor materials: an interdisciplinary approach
NASA Astrophysics Data System (ADS)
Heikkilä, A.; Kazadzis, S.; Tolonen-Kivimäki, O.; Meinander, O.; Lindfors, A.; Lakkala, K.; Koskela, T.; Kaurola, J.; Sormanen, A.; Kärhä, P.; Naula-Iltanen, A.; Syrjälä, S.; Kaunismaa, M.; Juhola, J.; Ture, T.; Feister, U.; Kouremeti, N.; Bais, A.; Vilaplana, J. M.; Rodriguez, J. J.; Guirado, C.; Cuevas, E.; Koskinen, J.
2009-08-01
Modern polymeric materials possess an ever increasing potential in a large variety of outdoor objects and structures offering an alternative for many traditional materials. In outdoor applications, however, polymers are subject to a phenomenon called weathering. This is primarily observed as unwanted property changes: yellowing or fading, chalking, blistering, and even severe erosion of the material surface. One of the major weathering factors is UV radiation. In spring 2005, the Finnish Meteorological Institute with its research and industrial partners launched a five-year material research project named UVEMA (UV radiation Effects on MAterials). Within the framework of the project, a weathering network of seven European sites was established. The network extends from the Canary Islands of Spain (latitude 28.5°N) to the Lapland of Finland (latitude 67.4°N), covering a wide range of UV radiation conditions. Since autumn 2005, the sites of the network have been maintaining weathering platforms of specimens of different kinds of polymeric materials. At the same time, the sites have been maintaining their long-term monitoring programmes for spectrally resolved UV radiation. Within UVEMA, these data are used for explaining the differences between the degradation rates of the materials at each site and for correlating the UV conditions in accelerated ageing tests to those under the Sun. We will present the objectives of the UVEMA project aiming at deeper understanding of the ageing of polymers and more reliable assessments for their service life time. Methodologies adopted within the project and the first results of the project will be summarized.
The CAMI Project - Weather and Climate Services for Caribbean Food Security
NASA Astrophysics Data System (ADS)
Trotman, Adrian; Van Meerbeeck, Cedric
2013-04-01
Food security is major focus of Caribbean governments, with production being of particular concern. For the past three decades, Caribbean agriculture has been declining in relative importance, both in terms of its contribution to GDP and its share of the labour force. One of the problems Caribbean agriculture faces is the destructive impacts from weather and climate extremes. These include flood, drought, extreme temperatures, and strong winds from tropical cyclones. Other potential disasters, such as from pests and diseases attacks, are also weather and climate driven. These make weather and climate information critically important to decision-making in agriculture in the Caribbean region. In an effort to help reduce weather and climate related risks to the food security sector, The Caribbean Institute for Meteorology and Hydrology, along with its partners the Caribbean Agricultural Research and Development Institute, the World Meteorological Organization (WMO) and ten National Meteorological Services from within the Caribbean Community launched and implemented the Caribbean Agrometeorological Initiative (CAMI). From 2010 to 2013, CAMI set out to provide relevant information to farmers, and the industry in general, for decision and policy making. The project is funded by the European Union through the Science and Technology Programme of the African, Caribbean and Pacific Group of Countries' (ACP). The overarching objective of CAMI was to increase and sustain agricultural productivity at the farm level in the Caribbean region through improved applications of weather and climate information, using an integrated and coordinated approach. Currently, this is done through (i) provision of relevant climate information appropriately disseminated, (ii) predictions on seasonal rainfall and temperature, (iii) support for improved irrigation management, (iv) the development of strategically selected weather-driven pest and disease models, (v) use of crop simulation models, (vi) training of staff of National Meteorological Services (NMS) and two relevant regional research institutions (vi) and the staging of forums for farmers and Agriculture Extension officers. With its innovative actions and generated products, the thrusts of CAMI link well to the components of the WMO's Global Framework for Climate Services.
GEOSS interoperability for Weather, Ocean and Water
NASA Astrophysics Data System (ADS)
Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian
2013-04-01
"Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of forecast skill and concluded that the use of a multi-model forecast is beneficial. Long term analysis of individual centres, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), has been conducted in the past. However, no long term and large scale study has been performed so far with inclusion of different global numerical models. Here we present some initial results from such a study.
Progress in space weather predictions and applications
NASA Astrophysics Data System (ADS)
Lundstedt, H.
The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.
Coordination and Data Management of the International Arctic Buoy Programme (IABP)
2002-09-30
for forcing, validation and assimilation into numerical climate models , and for forecasting weather and ice conditions. TRANSITIONS Using IABP ...Coordination and Data Management of the International Arctic Buoy Programme ( IABP ) Ignatius G. Rigor 1013 NE 40th Street Polar Science Center...analyzed geophysical fields. APPROACH The IABP is a collaboration between 25 different institutions from 8 different countries, which work together
ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch
NASA Astrophysics Data System (ADS)
Straume, Anne Grete; Elfving, Anders; Wernham, Denny; de Bruin, Frank; Kanitz, Thomas; Schuettemeyer, Dirk; Bismarck, Jonas von; Buscaglione, Fabio; Lecrenier, O.; McGoldrick, Phil
2018-04-01
ESA's Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus), was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP) and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK), and the instrument prime is Airbus Defence & Space France (ADS-F).
NASA Astrophysics Data System (ADS)
Pytharoulis, Ioannis; Tegoulias, Ioannis; Karacostas, Theodore; Kotsopoulos, Stylianos; Kartsios, Stergios; Bampzelis, Dimitrios
2015-04-01
The Thessaly plain, which is located in central Greece, has a vital role in the financial life of the country, because of its significant agricultural production. The aim of DAPHNE project (http://www.daphne-meteo.gr) is to tackle the problem of drought in this area by means of Weather Modification in convective clouds. This problem is reinforced by the increase of population and the water demand for irrigation, especially during the warm period of the year. The nonhydrostatic Weather Research and Forecasting model (WRF), is utilized for research and operational purposes of DAPHNE project. The WRF output fields are employed by the partners in order to provide high-resolution meteorological guidance and plan the project's operations. The model domains cover: i) Europe, the Mediterranean sea and northern Africa, ii) Greece and iii) the wider region of Thessaly (at selected periods), at horizontal grid-spacings of 15km, 5km and 1km, respectively, using 2-way telescoping nesting. The aim of this research work is to investigate the model performance in relation to the prevailing upper-air synoptic circulation. The statistical evaluation of the high-resolution operational forecasts of near-surface and upper air fields is performed at a selected period of the operational phase of the project using surface observations, gridded fields and weather radar data. The verification is based on gridded, point and object oriented techniques. The 10 upper-air circulation types, which describe the prevailing conditions over Greece, are employed in the synoptic classification. This methodology allows the identification of model errors that occur and/or are maximized at specific synoptic conditions and may otherwise be obscured in aggregate statistics. Preliminary analysis indicates that the largest errors are associated with cyclonic conditions. Acknowledgments This research work of Daphne project (11SYN_8_1088) is co-funded by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" in the framework of the Operational Programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013).
NASA Astrophysics Data System (ADS)
Ediang, Okuku
2016-07-01
The distributive pattern of disaster due to severe climate events over the coast of West Africa especially Nigeria was examined using yearly mean disaster due to severe climatic events for the period of 30 years (1981-2010) from the marine stations in the coastal region of Nigeria. Graphical and isohyetal analyses were used to look into the patter of severe weather events over the area considered and to see if the severe weather events is increasing or not in the coast of West Africa especially the Nigerian coast and how to mitigate ,were policy relating to severe weather events are discussed. The paper conclude that due to the nature of coast of West Africa and Nigeria in particular, it enjoys longer severe weather events season than dry during the wet season, it is common to observe periods of enhanced or suppressed convective activity to persist over the wide areas for somedays. This paper also contributes to the wealth of knowledge already existing on Indigenous people play major roles in preserving the ecosystem especially during severe weather events . This has resulted in the recent calls for the integration of indigenous knowledge systems into global knowledge system strategies. Until now, integrating local knowledge systems into severe weather events and climate change concerns is not a completely new idea. A comprehensive review of literature using electronic and non-electronic databases formed the methodology. The paper conclude also by drawing the attention that by targeting Promoting indigenous people's participation in severe weather events and climate change issues is an important initiative towards adaptation and sustainable development in Africa and around the world. It is increasingly realized that the global knowledge system has dominated research, policies and programmes that address current severe weather events and climate change's challenges,mitigation and adaptation strategies.
NASA Astrophysics Data System (ADS)
Anastasiadis, Anastasios; Daglis, Ioannis A.; Balasis, George; Papadimitriou, Constantinos; Tsaoussidis, Vassilios; Diamantopoulos, Sotirios
2014-05-01
Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The availability of multi-spacecraft distributed observation methods and adaptive mission architectures require computationally intensive analysis methods. Moreover, accurate space weather forecasting and future space exploration far from Earth will be in need of real-time data distribution and assimilation technologies. The FP7-Space collaborative research project "Space-Data Routers" (SDR) relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications. SDR unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable addressing outstanding science questions related to space weather, through the provision of simultaneous real-time data sampling at multiple points in space. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.
NASA Astrophysics Data System (ADS)
Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas
2017-06-01
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.
KNMI DataLab experiences in serving data-driven innovations
NASA Astrophysics Data System (ADS)
Noteboom, Jan Willem; Sluiter, Raymond
2016-04-01
Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.
Operational Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
André, Nicolas; Grande, Manuel
2017-04-01
Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI, http://www.europlanet-2020-ri.eu) includes an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will provide at the end of 2017 12 services distributed over 4 different service domains - 1) Prediction, 2) Detection, 3) Modelling, 4) Alerts. These services include 1.1) A 1D MHD solar wind prediction tool, 1.2) Extensions of a Propagation Tool, 1.3) A meteor showers prediction tool, 1.4) A cometary tail crossing prediction tool, 2.1) Detection of lunar impacts, 2.2) Detection of giant planet fireballs, 2.3) Detection of cometary tail events, 3.1) A Transplanet model of magnetosphere-ionosphere coupling, 3.2) A model of the Mars radiation environment, 3.3.) A model of giant planet magnetodisc, 3.4) A model of Jupiter's thermosphere, 4) A VO-event based alert system. We will detail in the present paper some of these services with a particular emphasis on those already operational at the time of the presentation (1.1, 1.2, 1.3, 2.2, 3.1, 4). The proposed Planetary Space Weather Services will be accessible to the research community, amateur astronomers as well as to industrial partners planning for space missions dedicated in particular to the following key planetary environments: Mars, in support of ESA's ExoMars missions; comets, building on the success of the ESA Rosetta mission; and outer planets, in preparation for the ESA JUpiter ICy moon Explorer (JUICE). These services will also be augmented by the future Solar Orbiter and BepiColombo observations. This new facility will not only have an impact on planetary space missions but will also allow the hardness of spacecraft and their components to be evaluated under variety of known conditions, particularly radiation conditions, extending their knownflight-worthiness for terrestrial applications. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.
NASA Technical Reports Server (NTRS)
Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.
1990-01-01
The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.
The UCAR Africa Initiative: Enabling African Solutions to African Needs
NASA Astrophysics Data System (ADS)
Pandya, R.; Bruintjes, R.; Foote, B.; Heck, S.; Hermann, S.; Hoswell, L.; Konate, M.; Kucera, P.; Laing, A.; Lamptey, B.; Moncrieff, M.; Ramamurthy, M.; Roberts, R.; Spangler, T.; Traoré, A.; Yoksas, T.; Warner, T.
2007-12-01
The University Corporation for Atmospheric Research (UCAR) Africa Initiative (AI) is a coordinated effort aimed at building sustainable partnerships between UCAR and African institutions in order to pursue research and applications for the benefit of the African people. The initiative is based on four fundamental operating principles, concisely summarized by the overall philosophy of enabling African solutions to African needs. The four principles are: • Collaborate with African institutions • Focus on institutional capacity building and research support • Explore science research themes critical to Africa and important for the world • Leverage the research infrastructure in UCAR to add value These principles are realized in a set of pilot activities, chosen for their high probability of short-term results and ability to set the stage for longer-term collaboration. The three pilot activities are listed below. 1. A modest radar network and data-distribution system in Mali and Burkina Faso, including a data-sharing MOU between the Mail and Burkina Faso Weather Services. 2. A partnership among UCAR, the Ghana Meteorological Agency, and the Ghana university community to develop an operational Weather Research and Forecasting (WRF) model for West Africa. The output is used by researchers and operational forecasters in Africa. Model output is also part of a demonstration project that aims to allow humanitarian agencies to share geo-referenced information in Africa via a web portal. 3. A workshop in Ouagadougou, Burkina Faso from April 2-6, 2007, with the theme Improving Lives by Understanding Weather. The workshop, co-organized with Programme SAAGA and the Commité Permanent Inter-Etats de Lutte Contre la Sécheresse dans le Sahel (CILSS), included over 80 participants from 18 countries, and produced a set of recommendations for continued collaboration. Our presentation will provide an update of these pilot activities and point to future directions. Recognizing that there are already a number of universities and government agencies leading efforts to contribute to atmospheric- science capacity building in Africa, we want to begin a discussion regarding how UCAR projects can align with such pre-existing efforts.
Predictability of heavy sub-hourly precipitation amounts for a weather radar based nowcasting system
NASA Astrophysics Data System (ADS)
Bech, Joan; Berenguer, Marc
2015-04-01
Heavy precipitation events and subsequent flash floods are one of the most dramatic hazards in many regions such as the Mediterranean basin as recently stressed in the HyMeX (HYdrological cycle in the Mediterranean EXperiment) international programme. The focus of this study is to assess the quality of very short range (below 3 hour lead times) precipitation forecasts based on weather radar nowcasting system. Specific nowcasting amounts of 10 and 30 minutes generated with a nowcasting technique (Berenguer et al 2005, 2011) are compared against raingauge observations and also weather radar precipitation estimates observed over Catalonia (NE Spain) using data from the Meteorological Service of Catalonia and the Water Catalan Agency. Results allow to discuss the feasibility of issuing warnings for different precipitation amounts and lead times for a number of case studies, including very intense convective events with 30minute precipitation amounts exceeding 40 mm (Bech et al 2005, 2011). As indicated by a number of verification scores single based radar precipitation nowcasts decrease their skill quickly with increasing lead times and rainfall thresholds. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa0nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radar based nowcasting technique. Journal of Hydrometeorology 6: 532-549 http://dx.doi.org/10.1175/JHM433.1 Berenguer M, D Sempere, G Pegram, 2011: SBMcast - An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. Journal of Hydrology 404: 226-240 http://dx.doi.org/10.1016/j.jhydrol.2011.04.033
NASA Astrophysics Data System (ADS)
Liemohn, M. W.; Welling, D. T.; De Zeeuw, D.; Kuznetsova, M. M.; Rastaetter, L.; Ganushkina, N. Y.; Ilie, R.; Toth, G.; Gombosi, T. I.; van der Holst, B.
2016-12-01
The ground-based magnetometer index Dst is a decent measure of the near-Earth current systems, in particular those in the storm-time inner magnetosphere. The ability of a large-scale, physics-based model to reproduce, or even predict, this index is therefore a tangible measure of the overall validity of the code for space weather research and space weather operational usage. Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst. Various quantitative measures are presented to assess the goodness of fit between the models and observations. In particular, correlation coefficients, RMSE and prediction efficiency are calculated and discussed. In addition, contingency tables are presented, demonstrating the ability of the model to predict "disturbed times" as defined by Dst values below some critical threshold. It is shown that the SWMF run with the inner magnetosphere model is significantly better at reproducing storm-time values, with prediction efficiencies above 0.25 and Heidke skill scores above 0.5. This work was funded by NASA and NSF grants, and the European Union's Horizon 2020 research and innovation programme under grant agreement 637302 PROGRESS.
A 50-year precipitation analysis over Europe at 5.5km within the UERRA project
NASA Astrophysics Data System (ADS)
Bazile, Eric; Abida, Rachid; Soci, Cornel; Verrelle, Antoine; Szczypta, Camille; Le Moigne, Patrick
2017-04-01
The UERRA project is a 4-year project (2014-2017) financed by the European Union under its 7th Framework Programme SPACE. One of its main objectives is to provide a 50-year reanalysis dataset of surface essential climate variables (ECV) at 5.5km grid at European scale, together with, as much as possible, uncertainty estimates. One of the ECV is the precipitation and this variable is of essential interest in weather forecasting, climate study and to "drive" hydrological model for water management, or agrometeorology. After a brief description of the method used for the precipitation analysis (Soci et al. 2016)during this project, the preliminary results will be presented. The estimation of uncertainties will be also discussed associated with the problem of the evolution of the observation density network and its impact on the long term series. Additional information about the UERRA project can be found at http://www.uerra.eu The research leading to these results has received funding from the European Union, Seventh Framework Programme (FP7-SPACE-2013-1) under grant agreement no 607193.
Space-based societal applications—Relevance in developing countries
NASA Astrophysics Data System (ADS)
Bhaskaranarayana, A.; Varadarajan, C.; Hegde, V. S.
2009-11-01
Space technology has the vast potential for addressing a variety of societal problems of the developing countries, particularly in the areas of communication, education and health sectors, land and water resources management, disaster management and weather forecasting. Both remote sensing and communication technologies can be used to achieve this goal. With its primary emphasis on application of space technology, on an end-to-end basis, towards national development, the Indian Space Programme has distinguished itself as one of the most cost-effective and development-oriented space programmes in the world. Developing nations are faced with the enormous task of carrying development-oriented education to the masses at the lower strata of their societies. One important feature of these populations is their large number and the spread over vast and remote areas of these nations, making the reaching out to them a difficult task. Satellite communication (Satcom) technology offers the unique capability of simultaneously reaching out to very large numbers, spread over vast areas, including the remote corners of the country. It is a strong tool to support development education. India has been amongst the first few nations to explore and put to use the Satcom technology for education and development-oriented services to the rural masses. Most of the developing countries have inadequate infrastructure to provide proper medical care to the rural population. Availability of specialist doctors in rural areas is a major bottleneck. Use of Satcom and information technology to connect rural clinics to urban hospitals through telemedicine systems is one of the solutions; and India has embarked upon an effective satellite-based telemedicine programme. Space technology is also useful in disaster warning and management related applications. Use of satellite systems and beacons for locating the distressed units on land, sea or air is well known to us. Indian Space Research Organisation (ISRO) is already a part of the International initiative called Satellite Aided Search and Rescue System. The programme to set up satellite-based Village Resource Centres (VRCs) across India, for providing a variety of services relevant to the rural communities, is also a unique societal application of space technology. The VRCs are envisaged as single window delivery mechanism for a variety of space-based products and services, such as tele-education; telemedicine; information on natural resources for planning and development at local level; interactive advisories on agriculture, fisheries, land and water resources management, livestock management, etc.; interactive vocational training towards alternative livelihood; e-governance; weather information; etc. This paper describes the various possibilities and potentials of Satcom and Remote Sensing technologies for societal applications. The initiatives taken by Indian Space Research Organisation in this direction are highlighted.
Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes
2015-01-01
Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups. PMID:25688013
Zimbabwe's success story in education and health: will it weather economic structural adjustment?
Tumwine, J K
1992-12-01
The beginning of the 1980s saw the birth of Zimbabwe as a result of a protracted liberation war. It coincided with global interest in primary health care, the concept of universal primary school education and, unfortunately, moves towards economic stabilization and structural adjustment programmes. Economic structural adjustment was adopted by several sub Saharan African countries with dire consequences for the poor and vulnerable. Zimbabwe's commitment to social justice and to equitable distribution of resources demonstrated a practical move away from the culture of rhetoric so characteristic of many governments and non-governmental organisations and agencies. This commitment has been translated into impressive improvements in health and education. Current evidence shows that education has had a positive impact on health and related areas like contraceptive use, child mortality and the nutrition status of children. Conversely nutrition and health conditions among school children are important determinants of educational outcomes. Hitherto Zimbabwe's economy has been sufficiently strong to avoid excessive dependence on the International Monetary Fund, the World Bank and other foreign financial institutions. Unfortunately, however, the current economic recession together with economic structural adjustment programmes are beginning to have a negative impact on health and education. Will true synergism between health and education weather these structural problems? It seems that the people and government of Zimbabwe have the capacity and resolve to weather such a storm.
STEREO Space Weather and the Space Weather Beacon
NASA Technical Reports Server (NTRS)
Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.
2007-01-01
The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.
NASA Astrophysics Data System (ADS)
Peuch, V. H.
2016-12-01
Operational environmental services are a reality today, as exemplified by the Copernicus Atmospheric Monitoring Service in Europe. Air quality forecasts, information on the long-range transport of dust or of fire plumes or on greenhouse gas fluxes have become reliable enough to be considered by decision makers and to be communicated broadly -making our societies more informed about the changing environment and about the direct link between human activities, atmospheric composition, weather and climate. Many aspects of the value-adding information chains that have been built over the years share commonalities with Numerical Weather Prediction: global and regional numerical models, reflecting both the level of understanding of physical and chemical processes in the atmosphere and the contemporary computing capabilities, are used to blend observations from different in situ and, increasingly, Earth Observation sources. Significantly, the World Meteorological Organisation has recently added a new component to the Global Atmospheric Watch programme in the form of a Science Advisory Group on "Applications". The main objectives of this group are to develop a portfolio of products and services related to atmospheric composition and to demonstrate particularly the usefulness of exchanging chemical observational data in Near-Real-Time. Exchanging best practices worldwide and facilitating the set-up of new applications are also among the activities. Having operational applications does not imply that research efforts to improve environmental monitoring and forecasting services have become obsolete. Quite the contrary: feedbacks and increasingly demanding requirements from users are stimulating steady progress. The last part of the talk will support the idea that atmospheric compositions services are not only an application or an extension of weather services but contribute now also to the core of them. Atmospheric composition information has become indeed of high interest for modelling physical processes and assimilation of meteorological information. There are also exciting developments regarding the medium- to extended range prediction skill, with potential sources of predictability yet to be fully understood and harnessed.
NASA Astrophysics Data System (ADS)
Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo
2015-04-01
With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.
A graphical weather system design for the NASA transport systems research vehicle B-737
NASA Technical Reports Server (NTRS)
Scanlon, Charles H.
1992-01-01
A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.
The Critical Role of the Research Community in Space Weather Planning and Execution
NASA Astrophysics Data System (ADS)
Robinson, Robert M.; Behnke, Richard A.; Moretto, Therese
2018-03-01
The explosion of interest in space weather in the last 25 years has been due to a confluence of efforts all over the globe, motivated by the recognition that events on the Sun and the consequent conditions in interplanetary space and Earth's magnetosphere, ionosphere, and thermosphere can have serious impacts on vital technological systems. The fundamental research conducted at universities, government laboratories, and in the private sector has led to tremendous improvements in the ability to forecast space weather events and predict their impacts on human technology and health. The mobilization of the research community that made this progress possible was the result of a series of actions taken by the National Science Foundation (NSF) to build a national program aimed at space weather. The path forward for space weather is to build on those successes through continued involvement of the research community and support for programs aimed at strengthening basic research and education in academia, the private sector, and government laboratories. Investments in space weather are most effective when applied at the intersection of research and applications. Thus, to achieve the goals set forth originally by the National Space Weather Program, the research community must be fully engaged in the planning, implementation, and execution of space weather activities, currently being coordinated by the Space Weather Operations, Research, and Mitigation Subcommittee under the National Science and Technology Council.
High performance equipped mirrors for MTG FCI-TA and IRS-FTO
NASA Astrophysics Data System (ADS)
Kazakov, T.; San Juan, J. L.; Serrano, J.; Moreno, J.; González, D.; Rodríguez, G.; López, D.; Vázquez, E.; Aivar, J.; Motos, A.; Rahmouni, Christophe; Imperiali, Stephan; Fappani, Denis
2017-09-01
The Meteosat Third Generation (MTG) Programme is being realised through the well established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit.
NASA Astrophysics Data System (ADS)
Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.
2000-06-01
Climatic processes, operating at a range of scales, drive energy fluxes at the glacier surface which control meltwater generation and ultimately runoff. Nevertheless, to date, most glacier microclimate research has been both temporally (short-term) and spatially (single station) restricted. This paper addresses this knowledge gap by reporting on a detailed, empirical study which characterizes spatio-temporal variations in and linkages between glacier microclimate, surface energy and mass exchanges within a small glacierized cirque (Taillon Glacier, French Pyrénées) over two melt seasons. Data collected at five automatic weather stations (AWSs) and over ablation stake networks suggest that topoclimates, altitude and transient snowline position primarily determine the distribution of glacier energy receipt and, in turn, snow- and ice-melt patterns. Generally net radiation is the dominant energy source, followed by sensible heat, while latent heat is an energy sink. However, the magnitude and partitioning of energy balance terms, and consequently ablation, vary across the glacier both seasonally and with prevailing weather conditions. Importantly, this paper demonstrates that such monitoring programmes are required to truly represent and provide a sound basis for modelling glacier energy and mass-balances in both space and time.
The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center
NASA Astrophysics Data System (ADS)
Singer, H. J.
2017-12-01
The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.
Progress in the Research of Fatigue of Weathering Steel after Corrosion
NASA Astrophysics Data System (ADS)
Jianyu, Liang; Jian, Yao; Youwu, Xu
2017-12-01
Weathering steel has a good corrosion resistance in the atmosphere, and the application of weathering steel in civil structure also reduces the cost of painting and maintenance. It is also possible for the bare weathering steel to bear the fatigue load with a rust layer. This paper summarizes the fatigue researches after corrosion of weathering steel, including the shape of specimens, failure modes of fatigue and the conclusions obtained through experimental investigations. It is also introduced the fatigue model of weathering steel after corrosion, which can be useful for the engineering application or further researches.
NASA Astrophysics Data System (ADS)
Hesse, M.; Kuznetsova, M. M.; Birn, J.; Pulkkinen, A. A.
2013-12-01
Space weather is different from terrestrial weather in an essential way. Terrestrial weather has benefitted from a long history of research, which has led to a deep and detailed level of understanding. In comparison, space weather is scientifically in its infancy. Many key processes in the causal chains from processes on the Sun to space weather effects in various locations in the heliosphere remain either poorly understood or not understood at all. Space weather is therefore, and will remain in the foreseeable future, primarily a research field. Extensive further research efforts are needed before we can reasonably expect the precision and fidelity of weather forecasts. For space weather within the Earth's magnetosphere, the coupling between solar wind and magnetosphere is of crucial importance. While past research has provided answers, often on qualitative levels, to some of the most fundamental questions, answers to some of the latter and the ability to predict quantitatively remain elusive. This presentation will provide an overview of pertinent aspects of solar wind-magnetospheric coupling, its importance for space weather near the Earth, and it will analyze the state of our ability to describe and predict its efficiency. It will conclude with a discussion of research activities, which are aimed at improving our ability to quantitatively forecast coupling processes.
How safe are HEMS-programmes in Germany? A retrospective analysis.
Thies, Karl-Christian; Sep, Daan; Derksen, Remon
2006-03-01
Recent accidents with helicopter emergency medical service (HEMS) aircraft raise the question how safe HEMS in Germany is and how accidents could be prevented. We surveyed all German HEMS-programmes and reviewed the data of the German Aviation Authority regarding accidents with HEMS. An average German HEMS-programme encounters one accident leading to at least severe damage or loss of the helicopter in 26 operating years, one accident resulting in casualties in 65 operating years and one fatal accident in 111 operating years. The major causes of accidents were obstacle strikes during landing at the scene. Flying in bad weather conditions and lack of discipline were other factors contributing to HEMS-accidents. HEMS-safety could be improved by special training programmes for pilots and HEMS-crewmembers to address the factors listed above. Safety training for doctors is recommended but we did not find support for the notion of changing the doctor's legal position of a passenger to a HEMS-crewmember.
Atmospheric monitoring and model applications at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Keilhauer, Bianca
2015-03-01
The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.
Numerical Weather Predictions Evaluation Using Spatial Verification Methods
NASA Astrophysics Data System (ADS)
Tegoulias, I.; Pytharoulis, I.; Kotsopoulos, S.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2014-12-01
During the last years high-resolution numerical weather prediction simulations have been used to examine meteorological events with increased convective activity. Traditional verification methods do not provide the desired level of information to evaluate those high-resolution simulations. To assess those limitations new spatial verification methods have been proposed. In the present study an attempt is made to estimate the ability of the WRF model (WRF -ARW ver3.5.1) to reproduce selected days with high convective activity during the year 2010 using those feature-based verification methods. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. By alternating microphysics (Ferrier, WSM6, Goddard), boundary layer (YSU, MYJ) and cumulus convection (Kain--Fritsch, BMJ) schemes, a set of twelve model setups is obtained. The results of those simulations are evaluated against data obtained using a C-Band (5cm) radar located at the centre of the innermost domain. Spatial characteristics are well captured but with a variable time lag between simulation results and radar data. Acknowledgements: This research is cofinanced by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007--2013).
Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center
NASA Astrophysics Data System (ADS)
Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.
2012-12-01
Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.
Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes
2015-04-05
Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Health-sector responses to address the impacts of climate change in Nepal.
Dhimal, Meghnath; Dhimal, Mandira Lamichhane; Pote-Shrestha, Raja Ram; Groneberg, David A; Kuch, Ulrich
2017-09-01
Nepal is highly vulnerable to global climate change, despite its negligible emission of global greenhouse gases. The vulnerable climate-sensitive sectors identified in Nepal's National Adaptation Programme of Action (NAPA) to Climate Change 2010 include agriculture, forestry, water, energy, public health, urbanization and infrastructure, and climate-induced disasters. In addition, analyses carried out as part of the NAPA process have indicated that the impacts of climate change in Nepal are not gender neutral. Vector-borne diseases, diarrhoeal diseases including cholera, malnutrition, cardiorespiratory diseases, psychological stress, and health effects and injuries related to extreme weather are major climate-sensitive health risks in the country. In recent years, research has been done in Nepal in order to understand the changing epidemiology of diseases and generate evidence for decision-making. Based on this evidence, the experience of programme managers, and regular surveillance data, the Government of Nepal has mainstreamed issues related to climate change in development plans, policies and programmes. In particular, the Government of Nepal has addressed climate-sensitive health risks. In addition to the NAPA report, several policy documents have been launched, including the Climate Change Policy 2011; the Nepal Health Sector Programme - Implementation Plan II (NHSP-IP 2) 2010-2015; the National Health Policy 2014; the National Health Sector Strategy 2015-2020 and its implementation plan (2016-2021); and the Health National Adaptation Plan (H-NAP): climate change and health strategy and action plan (2016-2020). However, the translation of these policies and plans of action into tangible action on the ground is still in its infancy in Nepal. Despite this, the health sector's response to addressing the impact of climate change in Nepal may be taken as a good example for other low- and middle-income countries.
NASA Space Weather Center Services: Potential for Space Weather Research
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.
2012-01-01
The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.
Operational Space Weather Activities in the US
NASA Astrophysics Data System (ADS)
Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert
2016-07-01
We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.
ESA SSA Space Radiation Expert Service Centre: the Importance of Community Feedback
NASA Astrophysics Data System (ADS)
Crosby, Norma; Dierckxsens, Mark; Kruglanski, Michel; De Donder, Erwin; Calders, Stijn; Messios, Neophytos; Glover, Alexi
2017-04-01
End-users in a wide range of sectors both in space and on the ground are affected by space weather. In the frame of its Space Situational Awareness (SSA) programme (http://swe.ssa.esa.int/) the European Space Agency (ESA) is establishing a Space Weather (SWE) Service Network to support end-users in three ways: mitigate the effects of space weather on their systems, reduce costs, and improve reliability. Almost 40 expert groups from institutes and organisations across Europe contribute to this Network organised in five Expert Service Centres (ESCs) - Solar Weather, Heliospheric Weather, Space Radiation, Ionospheric Weather, Geomagnetic Conditions. To understand the end-user needs, the ESCs are supported by the SSCC (SSA Space Weather Coordination Centre) that offers first line support to the end-users. Here we present the mission of the Space Radiation ESC (R-ESC) (http://swe.ssa.esa.int/space-radiation) and the space domain services it supports. Furthermore, we describe how the R-ESC project complements past and ongoing projects both on national level as well as international (e.g. EU projects), emphasizing the importance of inter-disciplinary communication between different communities ranging from scientists, engineers to end-users. Such collaboration is needed if basic science is to be used most efficiently for the development of products and tools that provide end-users with what they actually need. Additionally, feedback from the various communities (projects) is also essential when defining future projects.
Space Weather Forecasting and Supporting Research in the USA
NASA Astrophysics Data System (ADS)
Pevtsov, A. A.
2017-12-01
In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.
Child and adolescent injury as a result of falls from buildings and structures.
Pressley, J C; Barlow, B
2005-10-01
To examine incidence, demographic risk factors, and patterns of injury resulting from falls from buildings and structures in areas with and without a legislation based prevention programme. The Health Care Cost and Utilization Project (KID-HCUP) was used to produce national estimates of hospital admissions due to falls from buildings in the US. Areas of New York with and without window guard legislation were identified through the New York Statewide Planning and Research Cooperative System (SPARCS). Children and adolescents aged 0-18 years. Legislation based window fall prevention programme with enforcement. Hospitalization for injury as a result of falls from buildings and structures in areas with and without enforced mandatory window guard legislation. New York City has a higher proportion of the population residing in multi-family dwellings with 10 or more units compared with the nation (53.8% v 12.6%, p<0.0001), but the incidence of injury resulting from falls from buildings is nearly half that observed in the US. For young children, warm weather risks begin earlier and extend later than previously reported. Incidence in very young minority children is nearly twice that of whites. Nearly 90% of children aged 0--4 years fall at home, but the proportion decreases linearly with age. Window guards are associated with reduced injury resulting from falls from buildings and should be mandated in multi-family dwellings where small children reside. Prevention programmes for young children should be initiated in early spring and continued through fall.
NASA Astrophysics Data System (ADS)
Kraft, S.; Puschmann, K. G.; Luntama, J. P.
2017-09-01
As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.
NASA Astrophysics Data System (ADS)
von Blanckenburg, Friedhelm; Bouchez, Julien; Bouman, Caludia; Kamber, Balz; Gaillardet, Jérôme; Gorbushina, Anna; James, Rachael; Oelkers, Eric; Tesmer, Maja; Ashton, John
2015-04-01
The Marie Curie Initial Training Network »Isotopic Tools as Novel Sensors of Earth Surfaces Resources - IsoNose« is an alliance of eight international partners and five associated partners from science and industry. The project is coordinated at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and will run until February 2018. In the last 15 years advances in novel mass-spectrometric methods have opened opportunities to identify "isotopic fingerprints" of virtually all metals and to make use of the complete information contained in these fingerprints. The understanding developed with these new tools will ultimately guide the exploitation of Earth surface environments. However, progress in bringing these methods to end-users depends on a multi transfer of knowledge between (1) isotope Geochemistry and Microbiology, Environmental Sciences (2), Economic Geology and (3) instrument developers and users in the development of user-friendly and new mass spectrometric methods. IsoNose will focus on three major Earth surface resources: soil, water and metals. These resources are currently being exploited to an unprecedented extent and their efficient management is essential for future sustainable development. Novel stable isotope techniques will disclose the processes generating (e.g. weathering, mineral ore formation) and destroying (e.g. erosion, pollution) these resources. Within this field the following questions will be addressed and answered: - How do novel stable isotope signatures characterize weathering processes? - How do novel stable isotope signatures trace water transport? - How to use novel stable isotope as environmental tracers? - How to use novel stable isotope for detecting and exploring metal ores? - How to improve analytical capabilities and develop robust routine applications for novel stable isotopes? Starting from the central questions mentioned above the IsoNose activities are organized in five scientific work packages: 1. Making soil from rock 2. Dissolved metals in the global water cycle 3. Human influence on metal cycling 4. Innovations in metal ore exploration 5. New analytical tools Acknowledgement: The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° [608069].
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.
2015-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik
2016-07-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
Space Weather Services of Korea
NASA Astrophysics Data System (ADS)
Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.
2016-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).
High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...
NASA Astrophysics Data System (ADS)
Muehlhausen, Thorsten; Kreuz, Michael; Temme, Annette; Nokkala, Marko; Nurmi, Pertti; Perrels, Adriaan; Hyvarinen, Otto; Yuga, Ilkka; Pylkko, Pirkko; Kral, Stephan; Schaetter, Frank; Bartsch, Mariana; Wiens, Marcus; Michaelides, Silas; Tymvios, Filippos; Papadakis, Matheos; Athanasatos, Spyros
2014-05-01
The European transport system has shown various degrees of vulnerability to external shocks such as severe weather events, which have partially or, in some cases, totally shut down part of the transport system. Under climate change conditions, the identification of Best Practices within the European area and the proposal of short, medium and long term solutions in order to deal with induced disruptions are vital to upkeep the efficiency and integrity of the European transport network. The MOWE-IT (Management of weather events in the transport system) project is a continuation of the work performed in up-to-date European projects such as the EWENT, WEATHER and ECCONET projects. Its aim is to identify such existing best practices and to develop methodologies in order to assist transport operators, authorities and transport system users to mitigate the impact of natural disasters and extreme weather phenomena on transport system performance. While the MOWE-IT project covers a wide number of transportation modes such as road, rail, marine transport, aviation and inland waterways, in this current work, an overview of the project's work performed in the aviation sector in Europe is presented. The MOWE-IT project is funded by the European Union, under its 7th Framework Programme (TRANSPORT SUPPORT ACTIONS).
by Apr 12, 2018 Seeking public comments on the Hurricane Weather and Research Forecasting (HWRF) and Weather & Research Forecast No Changes on NOAAPORT NWS SCN 17-80 July 25, 2017 Upgrade GLW Upgrade June 9, 2015 HWRF Model Upgrade The Hurricane Weather and Research Forecast (HWRF) model will be
The Graduate School of Climate Sciences, University of Bern
NASA Astrophysics Data System (ADS)
Martin, L.
2012-04-01
The Graduate School of Climate Sciences, University of Bern, offers a specialised M.Sc. and a Ph.D. study programme in climate sciences. The graduate school has a highly interdisciplinary profile involving not only natural sciences, but also humanities/history, economics and law. The ten participating institutes with a total of 45 academics provide expertise in long-term climate variability, climate modelling, climate reconstruction, predictability of the future climate and extreme events, the impact of climate change on ecosystems and climate risks for society and economy. The graduate school is fully compliant with the Bologna Accords and collaborates closely with the sister institution C2SM at ETH Zurich by, e.g., jointly organised lectures. There are currently 23 master and 37 doctoral students in the programme. These originate from the University of Bern (28 %), from other Swiss universities (30 %) and from foreign universities (42 %). Comprehensive information about the Graduate School of Climate Sciences is available at http://www.climatestudies.unibe.ch . The M.Sc. in Climate Sciences programme (120 ECTS credits) is designed to attract students from all disciplines in natural sciences and offers them a tailor-made curriculum to reach their career aspirations. The students make their own course selection according to their profile envisaged (specialised versus broad education) and ideally already guided by a job perspective. Selecting the courses and the topic of the master thesis they specialise in one of five fields: climate and earth system science; atmospheric science; economics; economic, social and environmental history; statistics. Several courses are organised jointly with public authorities and the private industry, e.g. from experts working in the insurance business, in weather forecasting or in environmental pollution control. This provides the students hands-on experience and contacts to future employers. The master thesis (60 ECTS) involves the students in an ongoing research project and gives them the opportunity to collaborate with experienced scientists in a team. Alternatively, a short thesis (30 ECTS) may be combined with an internship (30 ECTS) at another university, in the private sector or in the administration. A bachelor degree in any field of science at university level (B.A. for specialisation in economics or history) or an equivalent degree is required for admission to the M.Sc. programme. The teaching language is English. The Ph.D. in Climate Sciences is research oriented and consists mainly of 3 to 4 years full time work in a project within one of the institutes involved in the Graduate School of Climate Sciences. The Ph.D. programme is research oriented and has a compulsory module of 12 ECTS credits containing workshops (professional skills), a summer school, an international conference, colloquia, seminars and optionally lectures. The compulsory module gives the Ph.D. students the opportunity to build up their own network in the local and international research community. The Ph.D. thesis is usually written in the form of research articles in international peer reviewed journals. A M.Sc. or an equivalent academic degree is conditional for admission to the Ph.D. programme.
The USWRP Workshop on the Weather Research Needs of the Private Sector.
NASA Astrophysics Data System (ADS)
Pielke, Roger A., Jr.; Abraham, Jim; Abrams, Elliot; Block, Jim; Carbone, Richard; Chang, David; Droegemeier, Kelvin; Emanuel, Kerry; Friday, Elbert W. Joe, Jr.; Gall, Robert; Gaynor, John; Getz, Rodger R.; Glickman, Todd; Hoggatt, Bradley; Hooke, William H.; Johnson, Edward R.; Kalnay, Eugenia; Kimpel, James Jeff; Kocin, Paul; Marler, Byron; Morss, Rebecca; Nathan, Ravi; Nelson, Steve; Pielke, Roger, Sr.; Pirone, Maria; Prater, Erwin; Qualley, Warren; Simmons, Kevin; Smith, Michael; Thomson, John; Wilson, Greg
2003-07-01
Private sector meteorology is a rapidly growing enterprise. It has been estimated that the provision of weather information has, by some estimates, a global market totaling in the billions of dollars. Further, the decisions based on such information could easily total trillions of dollars in the U.S. economy alone. The private sector clearly plays an important, and growing, role at the interface of weather research and the weather information needs of society. To date, little information has been paid to the connections of the meteorological research community and the scientific needs of the private sector. Thus, the time is ripe to stimulate a more active dialogue between what is generally considered the "basic" research community of physical and social scientists and those individuals and businesses that provide weather information to myriad customers across the U.S. economy. In December 2000, the U.S. Weather Research Program (supported by NSF, NOAA, NASA, and the U.S. Navy) sponsored a workshop in Palm Springs, California, to bring together weather researchers and representatives of private sector meteorology to discuss needs, wants, opportunities, and challenges and how to enhance the linkages between the two relatively detached communities. The workshop focused on developing a better understanding of the relations of research and private sector meteorology, which ultimately means a better understanding of one of the important connections of research and societal needs.
Towards a National Space Weather Predictive Capability
NASA Astrophysics Data System (ADS)
Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.
2014-12-01
National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.
CCMC: bringing space weather awareness to the next generation
NASA Astrophysics Data System (ADS)
Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.
2017-12-01
Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.
International Collaboration in the field of GNSS-Meteorology and Climate Monitoring
NASA Astrophysics Data System (ADS)
Jones, J.; Guerova, G.; Dousa, J.; Bock, O.; Elgered, G.; Vedel, H.; Pottiaux, E.; de Haan, S.; Pacione, R.; Dick, G.; Wang, J.; Gutman, S. I.; Wickert, J.; Rannat, K.; Liu, G.; Braun, J. J.; Shoji, Y.
2012-12-01
International collaboration in the field of GNSS-meteorology and climate monitoring is essential, as severe weather and climate change have no respect for national boundaries. The use of Global Navigation Satellite Systems (GNSS) for meteorological purposes is an established atmospheric observing technique, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is currently under-sampled and obtaining and exploiting more high-quality humidity observations is essential to severe weather forecasting and climate monitoring. A proposed EU COST Action (http://www.cost.eu) will address new and improved capabilities from concurrent developments in both GNSS and atmospheric communities to improve (short-range) weather forecasts and climate projections. For the first time, the synergy of the three GNSS systems, GPS, GLONASS and Galileo, will be used to develop new, advanced tropospheric products, stimulating the full potential exploitation of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time severe weather monitoring and forecasting to climate research. The Action will work in close collaboration with the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), GNSS Precipitable Water Task Team (TT). GRUAN is a global reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. GRUAN observations will provide long-term, high-quality data to determine climatic trends and to constrain and validate data from space-based remote sensors. Ground-based GNSS PW was identified as a Priority 1 measurement for GRUAN, and the GNSS-PW TT's goal is to develop explicit guidance on hardware, software and data management practices to obtain GNSS PW measurements of consistent quality at all GRUAN sites. The GRUAN GNSS-PW TT and the proposed COST Action will look to expand the international framework already in place with the European E-GVAP programme to facilitate global collaboration to facilitate knowledge and data exchange.
NASA Astrophysics Data System (ADS)
Underwood, Craig I.; Sweeting, Martin, , Sir
2002-01-01
Over the past 20 years the University of Surrey has gained significant experience in the use of commercial-off-the-shelf (COTS) devices operating in low-Earth orbit through the design, manufacture, launch and operation of more than a dozen "UoSAT" micro-satellites. The deleterious effects of the ionising radiation environment is of particular concern when using COTS technologies in space, and over the last decade, particular emphasis has been given to a programme of monitoring "space weather" in terms of the high energy proton and heavy-ion cosmic-ray environment these spacecraft encounter, and to observing and analysing its effects - particularly with regard to single-event effects - upon the COTS devices on-board. The extended period of research has enabled a wide variety of conditions to be observed ranging across an entire solar cycle. This paper reports on the environment and effects observed, and describes the various methodologies that have been used to minimise the risk associated with the use of COTS devices in space. The practical importance of resilient error-detection and correction coding schemes to protect spacecraft data and control software is shown, as is the need for adequate levels of shielding against total ionising radiation dose. The relative effects of Galactic-Cosmic-Rays (GCRs), Solar Proton Events (SPEs) and trapped proton environments in Low-Earth orbit are discussed, and more recent flight data extends these observations out to very high orbit - approx 60,000 km altitude. As well as gaining practical data on space weather and its effects on advanced electronics, the research has resulted in the design and construction of a series of inexpensive, compact, and low- power particle detectors, which are capable of providing routine environmental "health" warnings for future operational spacecraft. Low cost micro-satellites have proven to be ideal vehicles for quick response and cost effective space technology verification missions, where environmental data has been gathered with regard to providing practical engineering data on systems' performance and reliability.
Road weather management performance measures : a way to measure achievement.
DOT National Transportation Integrated Search
2010-04-01
This flyer describes the Road Weather Management Performance Measures that will help the Road Weather Management Program (RWMP) maximize the use of available road weather information and technologies; expand road weather research and development effo...
NASA Technical Reports Server (NTRS)
Chan, William N.; Kopardekar, Parimal H.; Carmichael, Bruce; Cornman, Larry
2017-01-01
Presentation highlighting how weather affected UAS operations during the UTM field tests. Research to develop UAS weather translation models with a description of current and future work for UTM weather.
NASA Astrophysics Data System (ADS)
Fisher, G.; Jones, B.
2006-12-01
The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.
NASA Astrophysics Data System (ADS)
Moritz, R. E.; Rigor, I.
2006-12-01
ABSTRACT: The Arctic Buoy Program was initiated in 1978 to measure surface air pressure, surface temperature and sea-ice motion in the Arctic Ocean, on the space and time scales of synoptic weather systems, and to make the data available for research, forecasting and operations. The program, subsequently renamed the International Arctic Buoy Programme (IABP), has endured and expanded over the past 28 years. A hallmark of the IABP is the production, dissemination and archival of research-quality datasets and analyses. These datasets have been used by the authors of over 500 papers on meteorolgy, sea-ice physics, oceanography, air-sea interactions, climate, remote sensing and other topics. Elements of the IABP are described briefly, including measurements, analysis, data dissemination and data archival. Selected highlights of the research applications are reviewed, including ice dynamics, ocean-ice modeling, low-frequency variability of Arctic air-sea-ice circulation, and recent changes in the age, thickness and extent of Arctic Sea-ice. The extended temporal coverage of the data disseminated on the Environmental Working Group CD's is important for interpreting results in the context of climate.
Towards a National Space Weather Predictive Capability
NASA Astrophysics Data System (ADS)
Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.
2015-12-01
National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.
2013-12-01
Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.
Fullana, Judit; Pallisera, Maria; Català, Elena; Puyalto, Carolina
2017-07-01
This article presents the results of evaluating a research training programme aimed at developing the skills of people with intellectual disabilities to actively participate in inclusive research. The present authors opted for a responsive approach to evaluation, using a combination of interviews, questionnaires and focus groups to gather information on the views of students, trainers and members of the research team regarding how the programme progressed, the learning achieved and participants' satisfaction with the programme. The evaluation showed that most of the participants were satisfied with the programme and provided guidelines for planning contents and materials, demonstrating the usefulness of these types of programme in constructing the research group and empowering people with intellectual disabilities to participate in research. The evaluation revealed that the programme had been a positive social experience that fostered interest in lifelong learning for people with intellectual disabilities. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
De Nardin, C. M.; Dasso, S.; Gonzalez-Esparza, A.
2016-12-01
The present work is an outline of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, Americo
2016-07-01
The present work is a synopsis of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.
The Road Weather Bulletin : Road Weather Management Publications and Training Materials
DOT National Transportation Integrated Search
2011-01-01
This document summarizes results from the Road Weather Policy Forum held November 8-9, 2010 in Washington, D.C. The agenda outlines a research framework, broad research needs, and the various roles and responsibilities of several stakeholder sectors.
Creating a comprehensive quality-controlled dataset of severe weather occurrence in Europe
NASA Astrophysics Data System (ADS)
Groenemeijer, P.; Kühne, T.; Liang, Z.; Holzer, A.; Feuerstein, B.; Dotzek, N.
2010-09-01
Ground-truth quality-controlled data on severe weather occurrence is required for meaningful research on severe weather hazards. Such data are collected by observation networks of several authorities in Europe, most prominently the National Hydrometeorological Institutes (NHMS). However, some events challenge the capabilities of such conventional networks by their isolated and short-lived nature. These rare and very localized but extreme events include thunderstorm wind gusts, large hail and tornadoes and are poorly resolved by synoptic observations. Moreover, their detection by remote-sensing techniques such as radar and satellites is in development and has proven to be difficult. Using the fact that all across across Europe there are many people with a special personal or professional interest in such events, who are typically organized in associations, allows pursuing a different strategy. Data delivered to the European Severe Weather Database is recorded and quality controlled by ESSL and a large number of partners including the Hydrometeorological Institutes of Germany, Finland, Austria, Italy and Bulgaria. Additionally, nine associations of storm spotters and centres of expertise in these and other countries are involved. The two categories of organizations (NHMSes/other) each have different privileges in the quality control procedure, which involves assigning a quality level of QC0+ (plausibility checked), QC1 (confirmed by reliable sources) or QC2 (verified) to each of the reports. Within the EWENT project funded by the EU 7th framework programme, the RegioExakt project funded by the German Ministry of Education and Research, and with support from the German Weather Service (DWD), several enhancements of the ESWD have been and will be carried out. Completed enhancements include the creation of an interface that allows partner organizations to upload data automatically, in the case of our German partner "Skywarn Germany" in near-real time. Moreover, the database's web-interface has been translated into 14 European languages. At the time of writing, a nowcast-mode to the web interface, which renders the ESWD a convenient tool for meteorologists in forecast centres, is being developed. In the near future, within the EWENT project, an extension of the data set with several other isolated but extreme events including avalanches, landslides, heavy snowfall and extremely powerful lightning flashes, is foreseen. The resulting ESWD dataset, that grows at a rate of 4000-5000 events per year, is used for wide range of purposes including the validation of remote-sensing techniques, forecast verification studies, projections of the future severe storm climate, and risk assessments. Its users include scientists working for EUMETSAT, NASA, NSSL, DLR, and several reinsurance companies.
NASA Astrophysics Data System (ADS)
Biebow, N.; Lembke-Jene, L.; Wolff-Boenisch, B.; Bergamasco, A.; De Santis, L.; Eldholm, O.; Mevel, C.; Willmott, V.; Thiede, J.
2011-12-01
Despite significant advances in Arctic and Antarctic marine science over the past years, the polar Southern Ocean remains a formidable frontier due to challenging technical and operational requirements. Thus, key data and observations from this important region are still missing or lack adequate lateral and temporal coverage, especially from time slots outside optimal weather seasons and ice conditions. These barriers combined with the obligation to efficiently use financial resources and funding for expeditions call for new approaches to create optimally equipped, but cost-effective infrastructures. These must serve the international science community in a dedicated long-term mode and enable participation in multi-disciplinary expeditions, with secured access to optimally equipped marine platforms for world-class research in a wide range of Antarctic science topics. The high operational and technical performance capacity of a future joint European Research Icebreaker and Deep-sea Drilling Vessel (the AURORA BOREALIS concept) aims at integrating still separately operating national science programmes with different strategic priorities into joint development of long-term research missions with international cooperation both in Arctic and Antarctica. The icebreaker is planned to enable, as a worldwide first, autonomous year-round operations in the central Arctic and polar Southern Ocean, including severest ice conditions in winter, and serving all polar marine disciplines. It will facilitate the implementation of atmospheric, oceanographic, cryospheric or geophysical observatories for long-term monitoring of the polar environment. Access to the biosphere and hydrosphere e.g. beneath ice shelves or in remote regions is made possible by acting as advanced deployment platform for instruments, robotic and autonomous vehicles and ship-based air operations. In addition to a report on the long-term strategic science and operational planning objectives, we describe foreseen on- and offshore science support infrastructure, recommended operational and scientific support structures and the relevance of AURORA BOREALIS for other present and future Antarctic science programmes and initiatives.
U.S. National / Naval Ice Center (NIC) Support to Naval and Maritime Operations
2011-06-20
States and Canadian governments. • International Arctic Buoy Programme ( IABP ) Global participants working together to maintain a network of... Modeling Surface Observations Satellite Air Recon Data Fusion Derived Data Automation Direct Data Dissemination TODAY’S CHALLENGES...and AUVs • Improve modeling and forecasting capabilities (OTSR/WEAX) • More trained ice analysts, ice pilots, and Arctic marine weather forecasters
WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model
Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak
2012-01-01
A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...
About the National Forecast Chart
General Weather WPC Quantitative Precipitation Forecasts for coverage, and weather type from the NWS NDFD Weather Prediction Center 5830 University Research Court College Park, Maryland 20740 Weather Prediction
Developing Researching Managers and Relevant Research--The "Executive Research Programme"
ERIC Educational Resources Information Center
Werr, Andreas; Strannegård, Lars
2014-01-01
The current paper argues for bridging the "relevance gap" in management research and education by creating educational programmes that bring together experienced managers and management researchers. In the "Executive Research Programme" discussed in this paper, managers were paired up with researchers to conduct a collaborative…
NASA Astrophysics Data System (ADS)
Hirsikko, Anne; Brus, David; O'Connor, Ewan J.; Filioglou, Maria; Komppula, Mika; Romakkaniemi, Sami
2017-04-01
In the high and mid latitudes super-cooled liquid water layers are frequently observed on top of clouds. These layers are difficult to forecast with numerical weather prediction models, even though, they have strong influence on atmospheric radiative properties, cloud microphysical properties, and subsequently, precipitation. This work investigates properties of super-cooled liquid water layer topped sub-arctic clouds and precipitation observed with ground-based in-situ (cloud probes) and remote-sensing (a cloud radar, Doppler and multi-wavelength lidars) instrumentation during two-month long Pallas Cloud Experiment (PaCE 2015) in autumn 2015. Analysis is based on standard Cloudnet scheme supplemented with new retrieval products of the specific clouds and their properties. Combination of two scales of observation provides new information on properties of clouds and precipitation in the sub-arctic Pallas region. Current status of results will be presented during the conference. The authors acknowledge financial support by the Academy of Finland (Centre of Excellence Programme, grant no 272041; and ICINA project, grant no 285068), the ACTRIS2 - European Union's Horizon 2020 research and innovation programme under grant agreement No 654109, the KONE foundation, and the EU FP7 project BACCHUS (grant no 603445).
Overview of NASA Heliophysics and the Science of Space Weather
NASA Astrophysics Data System (ADS)
Talaat, E. R.
2017-12-01
In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.
NSF's Perspective on Space Weather Research for Building Forecasting Capabilities
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.
2017-12-01
Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.
Space Weather Research: Indian perspective
NASA Astrophysics Data System (ADS)
Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.
2016-12-01
Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.
NASA Technical Reports Server (NTRS)
Maier, Launa; Huddleston, Lisa; Smith, Kristin
2016-01-01
This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.
2015-02-01
WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi
2010-01-01
The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi
2010-01-01
The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.
NASA Astrophysics Data System (ADS)
Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.
2015-12-01
Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.
NASA Astrophysics Data System (ADS)
De Nardin, C. M.; Gonzalez-Esparza, A.; Dasso, S.
2015-12-01
We present an overview on the Space Weather in Latin America, highlighting the main findings from our review the recent advances in the space science investigations in Latin America focusing in the solar-terrestrial interactions, modernly named space weather, which leaded to the creation of forecast centers. Despite recognizing advances in the space research over the whole Latin America, this review is restricted to the evolution observed in three countries (Argentina, Brazil and Mexico) only, due to the fact that these countries have recently developed operational center for monitoring the space weather. The work starts with briefly mentioning the first groups that started the space science in Latin America. The current status and research interest of such groups are then described together with the most referenced works and the challenges for the next decade to solve space weather puzzles. A small inventory of the networks and collaborations being built is also described. Finally, the decision process for spinning off the space weather prediction centers from the space science groups is reported with an interpretation of the reason/opportunities that lead to it. Lastly, the constraints for the progress in the space weather monitoring, research, and forecast are listed with recommendations to overcome them.
Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review
NASA Technical Reports Server (NTRS)
Kreins, E. R. (Editor)
1979-01-01
The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.
NASA/MSFC FY-80 Atmospheric Processes Research Review
NASA Technical Reports Server (NTRS)
Turner, R. E. (Compiler)
1980-01-01
Three general areas of research were discussed: Global Weather, Upper Atmosphere, and Severe Storms and Local Weather. Research project summaries, in narrative outline form, stating objectives, significant accomplishments, and recommendations for future research are presented.
Between the Rock and a Hard Place: The CCMC as a Transit Station Between Modelers and Forecasters
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.
Hauck, Yvonne L; Lewis, Lucy; Bayes, Sara; Keyes, Louise
2015-09-01
Having the research capacity to identify problems, create new knowledge and most importantly translate this knowledge into practice is essential within health care. Midwifery, as well as other health professions in Australia, is challenged in building its research capacity to contribute evidence to inform clinical practice. The aim of this project was to evaluate an innovative Graduate Midwifery Research Intern Programme offered at a tertiary obstetric hospital in Western Australia, to determine what was working well and how the programme could be improved. A case study approach was used to gain feedback from graduate midwives within a Graduate Research Intern (GRI) Programme. In addition outcomes were compiled of all projects the GRI midwives contributed to. Six GRI midwives participated in a survey comprising of four open ended questions to provide feedback about the programme. Findings confirm that the GRI programme increased the graduates understanding of how research works, its capacity to define a problem, generate new knowledge and inform clinical practice. The GRI midwives' feedback suggested the programme opened their thinking to future study and gave them enhanced insight into women's experiences around childbirth. To grow our knowledge as a professional group, midwives must develop and promote programmes to build our pool of research capable midwives. By sharing our programme evaluation we hope to entice other clinical settings to consider the value in replicating such a programme within their context. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
The Otis Weather Test Facility at Otis ANGB, Falmouth, MA : an aviation weather resource
DOT National Transportation Integrated Search
2004-10-06
The Otis Weather Test Facility (WTF) is located on the US Air National Guard Base, Cape Cod, MA. The Facility was originally established by the US Air Force Cambridge Research Laboratory [now Air Force Research Laboratory (AFRL)] in 1974 to develop a...
World weather program: Plan for fiscal year 1972
NASA Technical Reports Server (NTRS)
1971-01-01
The World Weather Program which is composed of the World Weather Watch, the Global Atmospheric Research Program, and the Systems Design and Technological Development Program is presented. The U.S. effort for improving the national weather services through advances in science, technology and expanded international cooperation during FY 72 are described. The activities of the global Atmospheric Research Program for last year are highlighted and fiscal summary of U.S. programs is included.
Sun-to-Earth Analysis of a Major Geoeffective Solar Eruption within the Framework of the
NASA Astrophysics Data System (ADS)
Patsourakos, S.; Vlahos, L.; Georgoulis, M.; Tziotziou, K.; Nindos, A.; Podladchikova, O.; Vourlidas, A.; Anastasiadis, A.; Sandberg, I.; Tsinganos, K.; Daglis, I.; Hillaris, A.; Preka-Papadema, P.; Sarris, M.; Sarris, T.
2013-09-01
Transient expulsions of gigantic clouds of solar coronal plasma into the interplanetary space in the form of Coronal Mass Ejections (CMEs) and sudden, intense flashes of electromagnetic radiation, solar flares, are well-established drivers of the variable Space Weather. Given the innate, intricate links and connections between the solar drivers and their geomagnetic effects, synergistic efforts assembling all pieces of the puzzle along the Sun-Earth line are required to advance our understanding of the physics of Space Weather. This is precisely the focal point of the Hellenic National Space Weather Research Network (HNSWRN) under the THALIS Programme. Within the HNSWRN framework, we present here the first results from a coordinated multi-instrument case study of a major solar eruption (X5.4 and X1.3 flares associated with two ultra-fast (>2000 km/s) CMEs) which were launched early on 7 March 2012 and triggered an intense geomagnetic storm (min Dst =-147 nT) approximately two days afterwards. Several elements of the associated phenomena, such as the flare and CME, EUV wave, WL shock, proton and electron event, interplanetary type II radio burst, ICME and magnetic cloud and their spatiotemporal relationships and connections are studied all way from Sun to Earth. To this end, we make use of satellite data from a flotilla of solar, heliospheric and magnetospheric missions and monitors (e.g., SDO, STEREO, WIND, ACE, Herschel, Planck and INTEGRAL). We also present our first steps toward formulating a cohesive physical scenario to explain the string of the observables and to assess the various physical mechanisms than enabled and gave rise to the significant geoeffectiveness of the eruption.
NASA Astrophysics Data System (ADS)
Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas
2017-04-01
Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.
Could Malaria Control Programmes be Timed to Coincide with Onset of Rainfall?
Komen, Kibii
2017-06-01
Malaria cases in South Africa's Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (-0.02, -0.01, -0.02, -0.00) and temperature (-46.61, -47.46, -48.14, -36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a 'malaria season'. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.
Applications of LANCE Data at SPoRT
NASA Technical Reports Server (NTRS)
Molthan, Andrew
2014-01-01
Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society
Evaluation of regional climate simulations for air quality modelling purposes
NASA Astrophysics Data System (ADS)
Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand
2013-05-01
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
Space Weather Products at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.
2010-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.
Guthrie, Susan; Bienkowska-Gibbs, Teresa; Manville, Catriona; Pollitt, Alexandra; Kirtley, Anne; Wooding, Steven
2015-08-01
The National Institute for Health Research (NIHR) Health Technology Assessment (HTA) programme supports research tailored to the needs of NHS decision-makers, patients and clinicians. This study reviewed the impact of the programme, from 2003 to 2013, on health, clinical practice, health policy, the economy and academia. It also considered how HTA could maintain and increase its impact. Interviews (n = 20): senior stakeholders from academia, policy-making organisations and the HTA programme. Bibliometric analysis: citation analysis of publications arising from HTA programme-funded research. Researchfish survey: electronic survey of all HTA grant holders. Payback case studies (n = 12): in-depth case studies of HTA programme-funded research. We make the following observations about the impact, and routes to impact, of the HTA programme: it has had an impact on patients, primarily through changes in guidelines, but also directly (e.g. changing clinical practice); it has had an impact on UK health policy, through providing high-quality scientific evidence - its close relationships with the National Institute for Health and Care Excellence (NICE) and the National Screening Committee (NSC) contributed to the observed impact on health policy, although in some instances other organisations may better facilitate impact; HTA research is used outside the UK by other HTA organisations and systematic reviewers - the programme has an impact on HTA practice internationally as a leader in HTA research methods and the funding of HTA research; the work of the programme is of high academic quality - the Health Technology Assessment journal ensures that the vast majority of HTA programme-funded research is published in full, while the HTA programme still encourages publication in other peer-reviewed journals; academics agree that the programme has played an important role in building and retaining HTA research capacity in the UK; the HTA programme has played a role in increasing the focus on effectiveness and cost-effectiveness in medicine - it has also contributed to increasingly positive attitudes towards HTA research both within the research community and the NHS; and the HTA focuses resources on research that is of value to patients and the UK NHS, which would not otherwise be funded (e.g. where there is no commercial incentive to undertake research). The programme should consider the following to maintain and increase its impact: providing targeted support for dissemination, focusing resources when important results are unlikely to be implemented by other stakeholders, particularly when findings challenge vested interests; maintaining close relationships with NICE and the NSC, but also considering other potential users of HTA research; maintaining flexibility and good relationships with researchers, giving particular consideration to the Technology Assessment Report (TAR) programme and the potential for learning between TAR centres; maintaining the academic quality of the work and the focus on NHS need; considering funding research on the short-term costs of the implementation of new health technologies; improving the monitoring and evaluation of whether or not patient and public involvement influences research; improve the transparency of the priority-setting process; and continuing to monitor the impact and value of the programme to inform its future scientific and administrative development.
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
NASA Technical Reports Server (NTRS)
1978-01-01
Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.
Predicting Space Weather: Challenges for Research and Operations
NASA Astrophysics Data System (ADS)
Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.
2013-12-01
Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.
Space Weather Model Testing And Validation At The Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Hesse, M.; Kuznetsova, M.; Rastaetter, L.; Falasca, A.; Keller, K.; Reitan, P.
The Community Coordinated Modeling Center (CCMC) is a multi-agency partner- ship aimed at the creation of next generation space weather models. The goal of the CCMC is to undertake the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to pro- vide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With aStar initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Tran- sition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and devel- opment accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate.
An Automated Weather Research and Forecasting (WRF)-Based Nowcasting System: Software Description
2013-10-01
14. ABSTRACT A Web service /Web interface software package has been engineered to address the need for an automated means to run the Weather Research...An Automated Weather Research and Forecasting (WRF)- Based Nowcasting System: Software Description by Stephen F. Kirby, Brian P. Reen, and...Based Nowcasting System: Software Description Stephen F. Kirby, Brian P. Reen, and Robert E. Dumais Jr. Computational and Information Sciences
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.
2017-12-01
The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.
Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; McGrath, P.B.; Burns, C.W.
1996-12-31
Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less
ERIC Educational Resources Information Center
Grace, Marcus; Rietdijk, Willeke; Garrett, Caro; Griffiths, Janice
2015-01-01
This article presents an independent evaluation of the Action Research for Physics (ARP) programme, a nationwide professional development programme which trains teachers to use action research to increase student interest in physics and encourage them to take post-compulsory physics. The impact of the programme was explored from the perspective of…
Driver, Simon; Irwin, Kelley; Woolsey, Anne; Pawlowski, Jill
2012-01-01
To describe the processes involved with developing and implementing a physical activity-based health promotion programme for people with a brain injury, summarize previous health promotion research efforts and provide an actual example of a programme entitled P.A.C.E, a 'Physical Activity Centred Education' programme. REASONING BEHIND LITERATURE SELECTION: Brain injury is a serious public health issue due to the incidence, complexity and high healthcare costs. Health promotion programmes that incorporate physical activity have been shown to improve the health of people with a disability. However, if programmes are to be successful they have to be appropriately designed, otherwise individuals will not adopt and maintain the desired health behaviours. Readers will have an understanding of (1) how a theoretical framework drives programme development, (2) the strategies required to facilitate behaviour change, (3) how previous research supports the use of a physical activity-based health promotion programme and (4) how to implement a programme. Future research ideas are provided so as to stimulate research in the area of physical activity-based health promotion programmes for people with a brain injury.
Progress in preliminary studies at Ottana Solar Facility
NASA Astrophysics Data System (ADS)
Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.
2016-05-01
The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.
Arctic Observing Experiment (AOX) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigor, Ignatius; Johnson, Jim; Motz, Emily
Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support formore » research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).« less
NASA Astrophysics Data System (ADS)
Bhonsle, R. V.; et al.
2006-11-01
The Department of Physics, Shivaji University has started M.Sc. (Physics) degree course with a specialization in space science with effect from 1991. Emphasis has been given to the subject of Solar-terrestrial Physics, Astronomy and Astrophysics. The Indian Institute of Geomagnetism, Mumbai and The Physical Research Laboratory, Ahmedabad gave considerable help in starting teaching and research activities by providing instrumentation for experiments related to solar-terrestrial physics. Presently we have Solar Microwave Radiometer, Night Airglow Photometer, Proton Precession Magnetometer, Partial Reflection Radar, Satellite Radio Scintillometer, Automatic Weather Station, Earthquake Prediction and Detection equipments. In addition, there is a Celestron 5” Telescope for optical observations of the Sun, Planets and other celestial phenomena like comets, eclipses etc. With the addition of optical filters such as H-alpha (6563Ao) and Helium-I (10830Ao) filters, solar flares and coronal holes can be monitored using ground based optical telescope. In order to make the experimental setup more complete, a research project proposal is being submitted to DST Govt. of India requesting funds for a Digital Ionosonde, GPS System, Riometer and a Flux-gate Magnetometer and a ST Radar for measurements of wind velocity, waves and turbulence phenomena in the stratosphere and troposphere. This proposed ST Radar and Partial Reflection Radar data can yield valuable data on the dynamics of the middle atmosphere, which is important for the study of sun-weather relationship including chemical and environmental processes in the middle atmosphere. When all the above experiments become operational; a database for STP events can be created with the financial help from DST. Such a database will be a significant contribution from Shivaji University, consistent with the programme of the International Heliophysical Year sponsored by UN/NASA and DST Govt. of India.
The National Institute for Health Research Leadership Programme
Jones, Molly Morgan; Wamae, Watu; Fry, Caroline Viola; Kennie, Tom; Chataway, Joanna
2012-01-01
Abstract RAND Europe evaluated the National Institute for Health Research (NIHR) Leadership Programme in an effort to help the English Department of Health consider the extent to which the programme has helped to foster NIHR's aims, extract lessons for the future, and develop plans for the next phase of the leadership programme. Successful delivery of high-quality health research requires not only an effective research base, but also a system of leadership supporting it. However, research leaders are not often given the opportunity, nor do they have the time, to attend formal leadership or management training programmes. This is unfortunate because research has shown that leadership training can have a hugely beneficial effect on an organisation. Therefore, the evaluation has a particular interest in understanding the role of the programme as a science policy intervention and will use its expertise in science policy analysis to consider this element alongside other, more traditional, measures of evaluation. PMID:28083231
Arduino Based Weather Monitoring Telemetry System Using NRF24L01+
NASA Astrophysics Data System (ADS)
Sidqi, Rafi; Rio Rynaldo, Bagus; Hadi Suroso, Satya; Firmansyah, Rifqi
2018-04-01
Abstract-Weather is an important part of the natural environment, thus knowing weather information is needed before doing activity. The main purpose of this research was to develop a weather monitoring system which capable to transmit weather data via radio frequency by using nRF24L01+ 2,4GHz radio module. This research implement Arduino UNO as the main controller of the system which send data wirelessly using the radio module and received by a receiver system. Received data then logged and displayed using a Graphical User Interface on a personal computer. Test and experiment result show that the system was able to transmit weather data via radio wave with maximum transmitting range of 32 meters.
[The SGO Health Research Promotion Program. XIII. Evaluation of the section 'Addiction Research'].
van Rees-Wortelboer, M M
1999-01-02
As a part of the SGO Health Research Promotion Programme a research programme on addiction research was realized. Aim of the programme was to strengthen and concentrate the Dutch research into addiction. Within the Amsterdam Institute for Addiction Research (AIAR), a structural collaboration between the Jellinek Treatment Centre for Addiction, the University of Amsterdam and the Academic Hospital of the University of Amsterdam, strategic research programmes were developed on the borderland of addiction and psychiatry, notably 'Clinical epidemiology addiction' and 'Developmental disorders, addiction and psychotraumas'. The institution of a co-ordinating platform of research groups conducting socio-epidemiological addiction research improved the co-ordination of research lines in this field.
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.
2017-12-01
The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).
Space data routers: Space networking for enhancing data exploitation for space weather applications
NASA Astrophysics Data System (ADS)
Daglis, I.; Anastasiadis, A.; Balasis, G.; Paronis, D.; Diamantopoulos, S.
2013-09-01
Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The project “Space-Data Routers” relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable to address outstanding science questions related to space weather, by providing simultaneous real- time sampling of space plasmas from multiple points with cost-effective means and measuring of phenomena with higher resolution and better coverage. This work has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement No 263330 (project title: Space-Data Routers for Exploiting Space Data). This presentation reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.
Retrieval and Validation of Zenith and Slant Path Delays From the Irish GPS Network
NASA Astrophysics Data System (ADS)
Hanafin, Jennifer; Jennings, S. Gerard; O'Dowd, Colin; McGrath, Ray; Whelan, Eoin
2010-05-01
Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications has been the focus of a number of Europe-wide networks and projects, most recently the EUMETNET GPS water vapour programme. The results presented here are from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. These two receivers supplement the existing Ordnance Survey Ireland active network of 17 permanent ground-based receivers. A system to retrieve column-integrated atmospheric water vapour from the data provided by this network has been developed, based on the GPS Analysis at MIT (GAMIT) software package. The data quality of the zenith retrievals has been assessed using co-located radiosondes at the Valentia site and observations from a microwave profiling radiometer at the Mace Head site. Validation of the slant path retrievals requires a numerical weather prediction model and HIRLAM (High-Resolution Limited Area Model) version 7.2, the current operational forecast model in use at Met Éireann for the region, has been used for this validation work. Results from the data processing and comparisons with the independent observations and model will be presented.
NOAA's weather forecasts go hyper-local with next-generation weather
model NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS with next-generation weather model New model will help forecasters predict a storm's path, timing and intensity better than ever September 30, 2014 This is a comparison of two weather forecast models looking
Weathering and landscape evolution
NASA Astrophysics Data System (ADS)
Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.
2005-04-01
In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.
NASA Astrophysics Data System (ADS)
Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.
2012-12-01
Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;
NASA Astrophysics Data System (ADS)
Mahoney, W. P., III
2015-12-01
For more than 30 years, the Research Applications Laboratory (RAL) of the National Center for Atmospheric Research (NCAR) has conducted fundamental and applied research focused on developing decision support tools spanning multiple end-user groups representing a variety of economic sectors. Technology transfer is a primary mission of the laboratory where innovation is a key attribute and multidisciplinary research and development are the norm. Application areas include, aviation, surface transportation, wind and solar energy prediction, climate, weather and health, numerical weather prediction, biological and chemical plume dispersion for homeland security, flood prediction and water resource management, soil condition and crop maturity prediction among other application areas. The majority of the developed capabilities have been operationalized by the public, private, and academic sectors. Several commercial companies have been successfully formed around the technologies (e.g., Weather Information Technologies, Inc., Peak Weather Resources, Inc., and Global Weather Corporation) and many existing companies have improved their products by utilizing the RAL-developed weather system advancements (The Weather Channel, WSI, Schneider Electric, Xcel Energy, United Airlines, Vaisala, Panasonic, Idaho Power, etc.). The economic benefit estimates of implementing these technologies have ranged from billions of dollars in avoided commercial aircraft accidents over the last 30 years to 10s of millions of dollars of annual savings by state departments of transportation via more efficient ice and snow maintenance operations. Research and development at RAL is connected to the Broader Impacts Criterion of NSF and its focus on research that results in significant economic or societal impact. This talk will describe our research-to-operations process and discuss several technology transfer examples that have led to commercial opportunities.
Hunskaar, Steinar; Breivik, Jarle; Siebke, Maje; Tømmerås, Karin; Figenschau, Kristian; Hansen, John-Bjarne
2009-01-01
Background The Medical Student Research Programme is a national education and grant scheme for medical students who wish to carry out research in parallel with their studies. The purpose of the programme is to increase recruitment of people with a standard medical degree to medical research. The Research Programme was established in 2002 and underwent a thorough evaluation during the spring of 2007. The evaluation should investigate if the programme had fulfilled its objectives of increased recruitment to medical research, in addition to the students' and supervisors' satisfaction of the programme, and unwanted differences between the universities. Methods Data was collected from students, supervisors and administrative staff via web-based questionnaires. Information about admission, implementation, results achieved and satisfaction was analysed and compared between the four Norwegian medical schools. In addition, the position of the scheme in relation to the national Quality Reform of Higher Education was analysed. Results At the end of 2006, the Medical Student Research Programme had recruited 265 medical students to research. These consisted of 214 active students, 35 who had completed their studies and only 17 who had dropped out. Both students and supervisors were generally very satisfied with the scheme, including the curriculum, the results achieved and the administrative service. The majority of students wanted to continue their research towards a PhD and, of those who had completed the Medical Student Research Programme, practically all had published one or several scientific papers. The survey showed only small differences between the four medical schools, despite their choice of somewhat different solutions in terms of administration and organisation. The Medical Student Research Programme satisfies the majority of the demands of the Quality Reform, however as an integrated research programme aimed at a PhD it presupposes access to PhD courses before the completion of medical studies, as well as the ability to include undergraduate scientific work in a PhD thesis. Conclusion The Medical Student Research Programme has led to an increase in the recruitment of graduated physicians to medical research in Norway. It will only be possible to evaluate whether this in turn will result in a larger number of PhDs in 3–5 years; this will also depend on the access to grants and fellowships. PMID:19602226
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila
2015-01-01
The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.
Effects of Honours Programme Participation in Higher Education: A Propensity Score Matching Approach
ERIC Educational Resources Information Center
Kool, Ada; Mainhard, Tim; Jaarsma, Debbie; van Beukelen, Peter; Brekelmans, Mieke
2017-01-01
Honours programmes have become part of higher education systems around the globe, and an increasing number of students are enrolled in such programmes. So far, effects of these programmes are largely under-researched. Two gaps in previous research on the effects of such programmes were addressed: (1) most studies lack a comparable control group of…
Space Weather Modeling Services at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael
2006-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse M.
2005-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires dose collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
Space Weather Models at the CCMC And Their Capabilities
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2007-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.
RISK MANAGEMENT RESEARCH PLAN FOR WET WEATHER FLOWS
This plan was prepared by the National Risk Management Research Laboratory (NRMRL) of EPA's Office of Research and Development (ORD) to guide the risk management aspects of the urban wet weather flow (WWF) research for the next five years. There are three types of urban WWF dis...
Three Dimensional Spherical Display Systems and McIDAS: Tools for Science, Education and Outreach
NASA Astrophysics Data System (ADS)
Kohrs, R.; Mooney, M. E.
2010-12-01
The Space Science and Engineering Center (SSEC) and Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin are now using a 3D spherical display system and their Man computer Data Access System (McIDAS)-X and McIDAS-V as outreach tools to demonstrate how scientists and forecasters utilize satellite imagery to monitor weather and climate. Our outreach program displays orbits and data coverage of geostationary and polar satellites and demonstrates how each is beneficial for the remote sensing of Earth. Global composites of visible, infrared and water vapor images illustrate how satellite instruments collect data from different bands of the electromagnetic spectrum to monitor global weather patterns 24 hours a day. Captivating animations on spherical display systems are proving to be much more intuitive than traditional 2D displays, enabling audiences to view satellites orbiting above real-time weather systems circulating the entire globe. Complimenting the 3D spherical display system are the UNIX-based McIDAS-X and Java-based McIDAS-V software packages. McIDAS is used to composite the real-time global satellite data and create other weather related derived products. Client and server techniques used by these software packages provide the opportunity to continually update the real-time content on our globe. The enhanced functionality of McIDAS-V extends our outreach program by allowing in-depth interactive 4-dimensional views of the imagery previously viewed on the 3D spherical display system. An important goal of our outreach program is the promotion of remote sensing research and technology at SSEC and CIMSS. The 3D spherical display system has quickly become a popular tool to convey societal benefits of these endeavors. Audiences of all ages instinctively relate to recent weather events which keeps them engaged in spherical display presentations. McIDAS facilitates further exploration of the science behind the weather phenomena. Audience feedback fuels the collaborative efforts of outreach specialists and computer programmers which provides continuous evolution of the 3D displays and McIDAS. This iterative presentation strategy is proving to be beneficial to our outreach program as seen by the success of our workshops, educational lectures and temporary exhibits at high visibility venues such as Madison Children’s Museum, the Milwaukee Public Museum and EAA AirVenture Museum. 3D Spherical Display System and McIDAS-V depiction of Hurricane Wilma
NASA Astrophysics Data System (ADS)
Neis, Patrick; Smit, Herman G. J.; Rohs, Susanne; Rolf, Christian; Krämer, Martina; Ebert, Volker; Buchholz, Bernhard; Bundke, Ulrich; Finger, Fanny; Klingebiel, Marcus; Petzold, Andreas
2015-04-01
Water vapour is a major parameter in weather prediction and climate research but the interaction between the water vapour in the upper troposphere and lowermost stratosphere (UT/LS) and tropopause dynamics are not well understood. A continuous measurement of upper tropospheric humidity (UTH) is difficult because the abundance of UTH is highly variable on spatial and temporal scales that cannot be resolved, neither by the global radiosondes network nor by satellites. Since 1994, data with high spatial and temporal resolution for relative humidity are provided by the in-situ measurements aboard civil passenger aircraft from the MOZAIC/IAGOS-programme (www.iagos.org). The data set emerging from this long-term observation effort builds the backbone of the ongoing in-situ UTH climatology and trend analyses. In order to assess the validity of the long-term water vapour data and its limitations, an analysis of the humidity data sets of two field campaigns is presented. The validation of applied measurement methods, i.e. the MOZAIC/IAGOS Capacitive Hygrometer, is valued on the basis of the aircraft campaigns CIRRUS-III (2006) and AIRTOSS-ICE (2013), where research-grade water vapour instruments were operated simultaneously to the MOZAIC/IAGOS Capacitive Hygrometers. The performance of the MOZAIC Capacitive Hygrometer (MCH; operated from 1994 to 2014 on MOZAIC aircraft) and the advanced IAGOS Capacitive Hygrometer (ICH; operated since 2011 on IAGOS aircraft) are explored in clear sky, in the vicinity of and inside cirrus clouds as a blind intercomparison to the research-grade water vapour instruments. From these intercomparisons the qualification of the Capacitive Hygrometer for the use in long-term observation programmes is successfully demonstrated and the continuation of high data quality is confirmed for the transition from MCH to ICH. In particular the Capacitive Hygrometer response time to changes in relative humidity could be determined for the full range of temperatures in the comparison against the research-grade instruments.
Vehicular-networking- and road-weather-related research in Sodankylä
NASA Astrophysics Data System (ADS)
Sukuvaara, Timo; Mäenpää, Kari; Ylitalo, Riika
2016-10-01
Vehicular-networking- and especially safety-related wireless vehicular services have been under intensive research for almost a decade now. Only in recent years has road weather information also been acknowledged to play an important role when aiming to reduce traffic accidents and fatalities via intelligent transport systems (ITSs). Part of the progress can be seen as a result of the Finnish Meteorological Institute's (FMI) long-term research work in Sodankylä within the topic, originally started in 2006. Within multiple research projects, the FMI Arctic Research Centre has been developing wireless vehicular networking and road weather services, in co-operation with the FMI meteorological services team in Helsinki. At the beginning the wireless communication was conducted with traditional Wi-Fi type local area networking, but during the development the system has evolved into a hybrid communication system of a combined vehicular ad hoc networking (VANET) system with special IEEE 802.11p protocol and supporting cellular networking based on a commercial 3G network, not forgetting support for Wi-Fi-based devices also. For piloting purposes and further research, we have established a special combined road weather station (RWS) and roadside unit (RSU), to interact with vehicles as a service hotspot. In the RWS-RSU we have chosen to build support to all major approaches, IEEE 802.11, traditional Wi-Fi and cellular 3G. We employ road weather systems of FMI, along with RWS and vehicle data gathered from vehicles, in the up-to-date localized weather data delivered in real time. IEEE 802.11p vehicular networking is supported with Wi-Fi and 3G communications. This paper briefly introduces the research work related to vehicular networking and road weather services conducted in Sodankylä, as well as the research project involved in this work. The current status of instrumentation, available services and capabilities are presented in order to formulate a clear general view of the research field.
Linking Space Weather Science and Decision Making (Invited)
NASA Astrophysics Data System (ADS)
Fisher, G. M.
2009-12-01
Linking scientific knowledge to decision making is a challenge for both the science and policy communities. In particular, in the field of space weather, there are unique challenges such as decision makers may not know that space has weather that poses risks to our technologically-dependent economy. Additionally, in an era of limited funds for scientific research, hazards posed by other natural disasters such as flooding and earthquakes are by contrast well known to policy makers, further making the importance of space weather research and monitoring a tough sell. Today, with industries and individuals more dependent on the Global Positioning System, wireless technology, and satellites than ever before, any disruption or inaccuracy can result in severe economic impacts. Therefore, it is highly important to understand how space weather science can most benefit society. The key to connecting research to decision making is to ensure that the information is salient, credible, and legitimate. To achieve this, scientists need to understand the decision makers' perspectives, including their language and culture, and recognize that their needs may evolve. This presentation will take a closer look at the steps required to make space weather research, models, and forecasts useful to decision makers and ultimately, benefit society.
Program (USAP) sister projects focusing on observational Antarctic meteorological research, providing real -Madison Antarctic Meteorological Research Center & Automatic Weather Stations Project The Antarctic Meteorological Research Center (AMRC) and Automatic Weather Station (AWS) program are United States Antarctic
An object-based approach to weather analysis and its applications
NASA Astrophysics Data System (ADS)
Troemel, Silke; Diederich, Malte; Horvath, Akos; Simmer, Clemens; Kumjian, Matthew
2013-04-01
The research group 'Object-based Analysis and SEamless prediction' (OASE) within the Hans Ertel Centre for Weather Research programme (HErZ) pursues an object-based approach to weather analysis. The object-based tracking approach adopts the Lagrange perspective by identifying and following the development of convective events over the course of their lifetime. Prerequisites of the object-based analysis are a high-resolved observational data base and a tracking algorithm. A near real-time radar and satellite remote sensing-driven 3D observation-microphysics composite covering Germany, currently under development, contains gridded observations and estimated microphysical quantities. A 3D scale-space tracking identifies convective rain events in the dual-composite and monitors the development over the course of their lifetime. The OASE-group exploits the object-based approach in several fields of application: (1) For a better understanding and analysis of precipitation processes responsible for extreme weather events, (2) in nowcasting, (3) as a novel approach for validation of meso-γ atmospheric models, and (4) in data assimilation. Results from the different fields of application will be presented. The basic idea of the object-based approach is to identify a small set of radar- and satellite derived descriptors which characterize the temporal development of precipitation systems which constitute the objects. So-called proxies of the precipitation process are e.g. the temporal change of the brightband, vertically extensive columns of enhanced differential reflectivity ZDR or the cloud top temperature and heights identified in the 4D field of ground-based radar reflectivities and satellite retrievals generated by a cell during its life time. They quantify (micro-) physical differences among rain events and relate to the precipitation yield. Analyses on the informative content of ZDR columns as precursor for storm evolution for example will be presented to demonstrate the use of such system-oriented predictors for nowcasting. Columns of differential reflectivity ZDR measured by polarimetric weather radars are prominent signatures associated with thunderstorm updrafts. Since greater vertical velocities can loft larger drops and water-coated ice particles to higher altitudes above the environmental freezing level, the integrated ZDR column above the freezing level increases with increasing updraft intensity. Validation of atmospheric models concerning precipitation representation or prediction is usually confined to comparisons of precipitation fields or their temporal and spatial statistics. A comparison of the rain rates alone, however, does not immediately explain discrepancies between models and observations, because similar rain rates might be produced by different processes. Within the event-based approach for validation of models both observed and modeled rain events are analyzed by means of proxies of the precipitation process. Both sets of descriptors represent the basis for model validation since different leading descriptors - in a statistical sense- hint at process formulations potentially responsible for model failures.
Weather Forecaster Understanding of Climate Models
NASA Astrophysics Data System (ADS)
Bol, A.; Kiehl, J. T.; Abshire, W. E.
2013-12-01
Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.
2012-01-01
NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.
2014-04-01
hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid sigma...hydrostatic pressure vertical coordinate, which are the 33 same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid 34 sigma...Weather Research and Forecasting 79 ( WRF ) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 coordinate. In
Engaging Undergraduate Students in Space Weather Research at a 2- Year College
NASA Astrophysics Data System (ADS)
Damas, M. C.
2017-07-01
The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, has been very successful at engaging undergraduate students in space weather research for the past ten years. Recently, it received two awards to support student research and education in solar and atmospheric physics under the umbrella discipline of space weather. Through these awards, students receive stipends during the academic year and summer to engage in scientific research. Students also have the opportunity to complete a summer internship at NASA and at other partner institutions. Funding also supports the development of course materials and tools in space weather. Educational materials development and the challenges of engaging students in research as early as their first year will be discussed. Once funding is over, how is the program sustained? Sustaining such a program, as well as how to implement it at other universities will also be discussed.
Road weather forecast quality analysis : project summary
DOT National Transportation Integrated Search
2006-03-01
The purpose of this research is to enhance the use of KDOTs Roadway Weather : Information System by improving the weather forecasts themselves and raising the level of : confidence in these forecasts.
Child and adolescent injury as a result of falls from buildings and structures
Pressley, J; Barlow, B
2005-01-01
Design and setting: The Health Care Cost and Utilization Project (KID-HCUP) was used to produce national estimates of hospital admissions due to falls from buildings in the US. Areas of New York with and without window guard legislation were identified through the New York Statewide Planning and Research Cooperative System (SPARCS). Subjects: Children and adolescents aged 0–18 years. Interventions: Legislation based window fall prevention programme with enforcement. Main outcome measures: Hospitalization for injury as a result of falls from buildings and structures in areas with and without enforced mandatory window guard legislation. Results: New York City has a higher proportion of the population residing in multifamily dwellings with 10 or more units compared with the nation (53.8% v 12.6%, p<0.0001), but the incidence of injury resulting from falls from buildings is nearly half that observed in the US. For young children, warm weather risks begin earlier and extend later than previously reported. Incidence in very young minority children is nearly twice that of whites. Nearly 90% of children aged 0–4 years fall at home, but the proportion decreases linearly with age. Conclusions: Window guards are associated with reduced injury resulting from falls from buildings and should be mandated in multifamily dwellings where small children reside. Prevention programmes for young children should be initiated in early spring and continued through fall. PMID:16203834
High environmental temperature and preterm birth: a review of the evidence.
Carolan-Olah, Mary; Frankowska, Dorota
2014-01-01
to examine the evidence in relation to preterm birth and high environmental temperature. this review was conducted against a background of global warming and an escalation in the frequency and severity of hot weather together with a rising preterm birth rate. electronic health databases such as: SCOPUS, MEDLINE, CINAHL, EMBASE and Maternity and Infant Care were searched for research articles, that examined preterm birth and high environmental temperature. Further searches were based on the reference lists of located articles. Keywords included a search term for preterm birth (preterm birth, preterm, premature, <37 weeks, gestation) and a search term for hot weather (heatwaves, heat-waves, global warming, climate change, extreme heat, hot weather, high temperature, ambient temperature). A total of 159 papers were retrieved in this way. Of these publications, eight met inclusion criteria. data were extracted and organised under the following headings: study design; dataset and sample; gestational age and effect of environmental heat on preterm birth. Critical Appraisal Skills Programme (CASP) guidelines were used to appraise study quality. in this review, the weight of evidence supported an association between high environmental temperature and preterm birth. However, the degree of association varied considerably, and it is not clear what factors influence this relationship. Differing definitions of preterm birth may also add to lack of clarity. preterm birth is an increasingly common and debilitating condition that affects a substantial portion of infants. Rates appear to be linked to high environmental temperature, and more especially heat stress, which may be experienced during extreme heat or following a sudden rise in temperature. When this happens, the body may be unable to adapt quickly to the change. As global warming continues, the incidence of high environmental temperature and dramatic temperature changes are also increasing. This situation makes it important that research effort is directed to understanding the degree of association and the mechanism by which high temperature and temperature increases impact on preterm birth. Research is also warranted into the development of more effective cooling practices to ameliorate the effects of heat stress. In the meantime, it is important that pregnant women are advised to take special precautions to avoid heat stress and to keep cool when there are sudden increases in temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Ruiter, Marleen; Hudson, Paul; de Ruig, Lars; Kuik, Onno; Botzen, Wouter
2017-04-01
This paper provides an analysis of the insurance schemes that cover extreme weather events in twelve different EU countries and the risk reduction incentives offered by these schemes. Economic impacts of extreme weather events in many regions in Europe and elsewhere are on the rise due to climate change and increasing exposure as driven by urban development. In an attempt to manage impacts from extreme weather events, natural disaster insurance schemes can provide incentives for taking measures that limit weather-related risks. Insurance companies can influence public risk management policies and risk-reducing behaviour of policyholders by "rewarding behaviour that reduces risks and potential damages" (Botzen and Van den Bergh, 2008, p. 417). Examples of insurance market systems that directly or indirectly aim to incentivize risk reduction with varying degrees of success are: the U.S. National Flood Insurance Programme; the French Catastrophes Naturelles system; and the U.K. Flood Re program which requires certain levels of protection standards for properties to be insurable. In our analysis, we distinguish between four different disaster types (i.e. coastal and fluvial floods, droughts and storms) and three different sectors (i.e. residential, commercial and agriculture). The selected case studies also provide a wide coverage of different insurance market structures, including public, private and public-private insurance provision, and different methods of coping with extreme loss events, such as re-insurance, governmental aid and catastrophe bonds. The analysis of existing mechanisms for risk reduction incentives provides recommendations about incentivizing adaptive behaviour, in order to assist policy makers and other stakeholders in designing more effective insurance schemes for extreme weather risks.
Weather and atmosphere observation with the ATOM all-sky camera
NASA Astrophysics Data System (ADS)
Jankowsky, Felix; Wagner, Stefan
2015-03-01
The Automatic Telescope for Optical Monitoring (ATOM) for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.
Research for Environmental Stewardship and Conservation at the APTRU
USDA-ARS?s Scientific Manuscript database
Research methods for mitigation of off-target spray drift, remote sensing for precision crop management, and irrigation and tillage methods are presented. Research for mitigation of off target spray drift includes development of sophisticated weather apparatus to determine weather conditions unfavor...
Growing Up Fast: Stress Exposure and Subjective "Weathering" in Emerging Adulthood
ERIC Educational Resources Information Center
Foster, Holly; Hagan, John; Brooks-Gunn, Jeanne
2008-01-01
We examine "subjective weathering" among females entering adulthood, using three waves of a national study. Subjective weathering is a social psychological component of aging that is associated with "physical weathering" previously observed in research on physical health. We examine the influence of stressors from childhood and adolescence on…
UCAR group urges STORM program
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
A blue-ribbon panel of scientists has proposed a decade-long, $1 billion program to improve forecasting operations and research of regional and local hazardous weather. The panel, appointed by the University Corporation for Atmospheric Research (UCAR), believes that the program could reduce the $20-billion annual cost of damage from severe weather by $1 billion per year.The primary aim of the program is to ‘enable weather services, public and private, to observe and predict stormscale weather phenomena— such as squall lines, thunderstorms, flash floods, local heavy snows, or tornadoes—with the accuracy and reliability to protect the public, serve the national economy, and meet defense requirements,’ as explained in the report, The National STORM (Stormscale Operational and Research Meteorology) Program: A Call to Action. Stormscale phenomena also include nonviolent weather: freezing rain, dense ground fog, low-lying clouds that disrupt ground or air traffic, persistent temperature inversions, and strong nocturnal cooling that may produce killing frost.
ESF EUROCORES Programmes In Geosciences And Environmental Sciences
NASA Astrophysics Data System (ADS)
Jonckheere, I. G.
2007-12-01
In close cooperation with its Member Organisations, the European Science Foundation (ESF) has launched since late 2003 a series of European Collaborative Research (EUROCORES) Programmes. Their aim is to enable researchers in different European countries to develop cooperation and scientific synergy in areas where European scale and scope are required in a global context. The EUROCORES Scheme provides an open, flexible and transparent framework that allows national science funding and science performing agencies to join forces to support excellent European-led research, following a selection among many science-driven suggestions for new Programmes themes submitted by the scientific community. The EUROCORES instrument represents the first large scale attempt of national research (funding) agencies to act together against fragmentation, asynchronicity and duplication of research (funding) within Europe. There are presently 7 EUROCORES Programmes specifically dealing with cutting edge science in the fields of Earth, Climate and Environmental Sciences. The EUROCORES Programmes consist of a number of international, multidisciplinary collaborative research projects running for 3-4 years, selected through independent peer review. Under the overall responsibility of the participating funding agencies, those projects are coordinated and networked together through the scientific guidance of a Scientific Committee, with the support of a Programme Coordinator, responsible at ESF for providing planning, logistics, and the integration and dissemination of science. Strong links are aimed for with other major international programmes and initiatives worldwide. In this framework, linkage to IYPE would be of major interest for the scientific communities involved. Each Programme mobilises 5 to 13 million Euros in direct science funding from 9 to 27 national agencies from 8 to 20 countries. Additional funding for coordination, networking and dissemination is allocated by the ESF through these distinctive research initiatives, to build on the national research efforts and contribute to the capacity building, in relation with typically about 15-20 post-doc positions and/or PhD studentships supported nationally within each Programme. Typical networking activities are topical workshops, open sessions in a larger conference, Programme conference, (summer / winter) schools, exchange visits across projects or programmes. Overall, EUROCORES Programmes are supported by more than 60 national agencies from 30 countries and by the European Science Foundation (ESF) with support by the European Commission, DG Research (Sixth Framework Programme, contract ERAS-CT-2003-980409). In the framework of AGU, a series of present EUROCORES Programmes in the field of Geosciences and Environmental Sciences are presented (e.g., EuroDIVERSITY, EuroDEEP, EUROMARGINS, EuroCLIMATE, and EuroMinScI).
NASA Technical Reports Server (NTRS)
1995-01-01
WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg. Bureau of French Education.
Official instructional materials for the first three years (grades 4-6) of the Manitoba Department of Education's core French language program consist of units in geography, weather and calendars, holidays, and music designed for each of the three instructional levels. The units on geography focus on Manitoba and Canada. Units on the calendar and…
Storm Prediction Center Fire Weather Forecasts
Archive NOAA Weather Radio Research Non-op. Products Forecast Tools Svr. Tstm. Events SPC Publications SPC Composite Maps Fire Weather Graphical Composite Maps Forecast and observational maps for various fire
Characteristics of Operational Space Weather Forecasting: Observations and Models
NASA Astrophysics Data System (ADS)
Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim
2015-04-01
In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.
OVERVIEW OF WET-WEATHER RESEARCH PROGRAM
This paper presents an overview of EPA,s wet-weather flow (WWF) research program, which was expanded in October 1995 with the establishment of the Urban Watershed Management Branch at Edison, New Jersey. Research priorities for 1998-1999 are presented as well as efforts to col...
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Hesse, M.; Falasca, A.; Johnson, J.; Keller, K.; Kuznetsova, M.; Rastaetter, L.
2003-04-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership aimed at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With a Star (LWS) initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. We will demonstrate the capabilities of models resident at CCMC via the analysis of a geomagnetic storm, driven by a shock in the solar wind.
NASA Astrophysics Data System (ADS)
Carr, Gemma; Loucks, Daniel Pete; Blaschke, Alfred Paul; Bucher, Christian; Farnleitner, Andreas; Fürnkranz-Prskawetz, Alexia; Parajka, Juraj; Pfeifer, Norbert; Rechberger, Helmut; Wagner, Wolfgang; Zessner, Matthias; Blöschl, Günter
2015-04-01
The interdisciplinary postgraduate research and education programme - the Vienna Doctoral Programme on Water Resource Systems - was initiated in 2009. To date, 35 research students, three post-docs and ten faculty members have been engaged in the Programme, from ten research fields (aquatic microbiology, hydrology, hydro-climatology, hydro-geology, mathematical economics, photogrammetry, remote sensing, resource management, structural mechanics, and water quality). The Programme aims to develop research students with the capacity to work across the disciplines, to conduct cutting edge research and foster an international perspective. To do this, a variety of mechanisms are adopted that include research cluster groups, joint study sites, joint supervision, a basic study programme and a research semester abroad. The Programme offers a unique case study to explore if and how these mechanisms lead to research and education outcomes. Outcomes are grouped according to whether they are tangible (publications with co-authors from more than one research field, analysis of graduate profiles and career destinations) or non-tangible (interaction between researchers, networks and trust). A mixed methods approach that includes bibliometric analysis combined with interviews with students is applied. Bibliometric analysis shows that as the Programme has evolved the amount of multi-disciplinary work has increased (32% of the 203 full papers produced by the programme's researchers have authors from more than one research field). Network analysis to explore which research fields collaborate most frequently show that hydrology plays a significant role and has collaborated with seven of the ten research fields. Hydrology researchers seem to interact the most strongly with other research fields as they contribute understanding on water system processes. Network analysis to explore which individuals collaborate shows that much joint work takes place through the five research cluster groups (water resource management, land-surface processes, Hydrological Open Air Laboratory, water and health, modelling and risk). Student interviews highlight that trust between colleagues and supervisors, and the role of spaces for interaction (joint study sites, cluster group meetings, shared offices etc.) are important for joint work. Graduate analysis shows that students develop skills and confidence to work across disciplines through collaborating on their doctoral research. Working collaboratively during the doctorate appears to be strongly correlated with continuing to work in this way after graduation.
Wine biotechnology in South Africa: towards a systems approach to wine science.
Moore, John P; Divol, Benoit; Young, Philip R; Nieuwoudt, Hélène H; Ramburan, Viresh; du Toit, Maret; Bauer, Florian F; Vivier, Melané A
2008-11-01
The wine industry in South Africa is over three centuries old and over the last decade has reemerged as a significant competitor in world wine markets. The Institute for Wine Biotechnology (IWBT) was established in partnership with the Department of Viticulture and Oenology at Stellenbosch University to foster basic fundamental research in the wine sciences leading to applications in the broader wine and grapevine industries. This review focuses on the different research programmes of the Institute (grapevine, yeast and bacteria biotechnology programmes, and chemical-analytical research), commercialisation activities (SunBio) and new initiatives to integrate the various research disciplines. An important focus of future research is the Wine Science Research Niche Area programme, which connects the different research thrusts of the IWBT and of several research partners in viticulture, oenology, food science and chemistry. This 'Functional Wine-omics' programme uses a systems biology approach to wine-related organisms. The data generated within the programme will be integrated with other data sets from viticulture, oenology, analytical chemistry and the sensory sciences through chemometrics and other statistical tools. The aim of the programme is to model aspects of the wine making process, from the vineyard to the finished product.
Performance of weathered steel guardrail in NC.
DOT National Transportation Integrated Search
2011-05-23
Weathered steel beam guardrail is a popular alternative to galvanized steel guardrail as an aesthetic solution that blends in with the surrounding natural environment. A research study from New Hampshire found that weathered steel guardrail deteriora...
SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...
NASA/MSFC FY-81 Atmospheric Processes Research Review
NASA Technical Reports Server (NTRS)
Turner, R. E. (Compiler)
1981-01-01
Progress in ongoing research programs and future plans for satellite investigations into global weather, upper atmospheric phenomena, and severe storms and local weather are summarized. Principle investigators and publications since June 1980 are listed.
Eastwood, Jonathan P
2008-12-13
The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.
2010-01-01
Seemingly not . Repeated measures analysis of variance (ANOVA) for posttest - pretest score gain x training product interaction yielded a non-significant...Code 15. Supplemental Notes Work was accomplished under approved task AM-A-07-HRR-521 16. Abstract This research has two main...1 Purpose of This Research
Space Weather Studies at Istanbul Technical University
NASA Astrophysics Data System (ADS)
Kaymaz, Zerefsan
2016-07-01
This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.
ERIC Educational Resources Information Center
Engelbrecht, Johann; Harding, Ansie; Potgieter, Marietjie
2014-01-01
Academic development (AD) programmes for students not complying with the entrance requirements of mainstream programmes in science have been running at a number of universities in South Africa. In this study we contribute to the debate on criteria for the success of AD programmes, specifically in the context of research-intensive universities in…
Numerical Model Simulation of Atmosphere above A.C. Airport
NASA Astrophysics Data System (ADS)
Lutes, Tiffany; Trout, Joseph
2014-03-01
In this research project, the Weather Research & Forecasting (WRF) model from the National Center for Atmospheric Research (NCAR) is used to investigate past and present weather conditions. The Atlantic City Airport area in southern New Jersey is the area of interest. Long-term hourly data is analyzed and model simulations are created. By inputting high resolution surface data, a more accurate picture of the effects of different weather conditions will be portrayed. Currently, the impact of gridded model runs is being tested, and the impact of surface characteristics is being investigated.
Introduction to violent Sun-Earth connection events of October-November 2003
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Barbieri, L.; Cliver, E. W.; Lu, G.; Plunkett, S. P.; Skoug, R. M.
2005-09-01
The solar-terrestrial events of late October and early November 2003, popularly referred to as the Halloween storms, represent the best observed cases of extreme space weather activity observed to date and have generated research covering multiple aspects of solar eruptions and their space weather effects. In the following article, which serves as an abstract for this collective research, we present highlights taken from 61 of the 74 papers from the Journal of Geophysical Research, Geophysical Research Letters, and Space Weather which are linked under this special issue. (An overview of the 13 associated papers published in Geophysics Research Letters is given in the work of Gopalswamy et al. (2005a)).
... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public
NASA Astrophysics Data System (ADS)
Keul, A.; Holzer, A. M.; Wostal, T.
2010-09-01
Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general, regional, singular and average data sets, between infotainment and alarm. To dig deeper for media-relevant results, user studies should move out of the laboratory into the life of the lay users. Reference: 2009, Keul, A.G., Holzer, A.M., Sterzinger, P., Rudolf, S., Reinmüller, A. & Messerklinger, S.; Are Austrian radio weather warnings user-friendly?, Proceedings, 5thECSS Landshut, p. 133.
NASA Technical Reports Server (NTRS)
Peters, Mark; Boisvert, Ben; Escala, Diego
2009-01-01
Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation weather research area: the explicit integration of aviation weather forecasts with NAS structure to improve the effectiveness and timeliness of weather impact mitigation plans. Our insights are based on operational experiences with Lincoln Laboratory-developed integrated weather sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic weather forecasts. Lincoln Laboratory studies and prototype demonstrations in this area are helping to define the weather-assimilated decision-making system that is envisioned as a key capability for the multi-agency Next Generation Air Transportation System [1]. The Laboratory's work in this area has involved continuing, operations-based evolution of both weather forecasts and models for weather impacts on the NAS. Our experience has been that the development of usable ATM technologies that address weather impacts must proceed via rapid prototyping at facilities whose users are highly motivated to participate in system evolution.
Archibald, Douglas; Hogg, William; Lemelin, Jacques; Dahrouge, Simone; St Jean, Mireille; Boucher, François
2017-10-23
Despite the apparent benefits to teaching, many faculty members are reluctant to participate in medical education research (MER) for a variety of reasons. In addition to the further demand on their time, physicians often lack the confidence to initiate MER projects and require more support in the form of funding, structure and guidance. These obstacles have contributed to a decline in physician participation in MER as well as to a perceived decay in its quality. As a countermeasure to encourage physicians to undertake research, the Department of Family Medicine at the University of Ottawa implemented a programme in which physicians receive the funding, coaching and support staff necessary to complete a 2-year research project. The programme is intended primarily for first-time researchers and is meant to serve as a gateway to a research career funded by external grants. Since its inception in 2010, the Program for Innovation in Medical Education (PIME) has supported 16 new clinician investigators across 14 projects. We performed a programme evaluation 3 years after the programme launched to assess its utility to participants. This evaluation employed semi-structured interviews with physicians who performed a research project within the programme. Programme participants stated that their confidence in conducting research had improved and that they felt well supported throughout their project. They appreciated the collaborative nature of the programme and remarked that it had improved their willingness to solicit the expertise of others. Finally, the programme allowed participants to develop in the scholarly role expected by family physicians in Canada. The PIME may serve as a helpful model for institutions seeking to engage faculty physicians in Medical Education Research and to thereby enhance the teaching received by their medical learners.
Advances in road weather research
DOT National Transportation Integrated Search
2003-01-01
Nearly a billion hours and seven thousand lives are lost each year due to the effects of adverse weather on the nations highways. To address this national challenge, the transportation and weather communities have joined forces to define needs and...
NASA Dryden Flight Research Center's Space Weather Needs
NASA Technical Reports Server (NTRS)
Wiley, Scott
2011-01-01
Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.
Research on best practices for winter weather operations.
DOT National Transportation Integrated Search
2012-10-01
There is a growing need to identify actionable practices relative to winter weather operations. Because of the : potential and inherent hazards during cold weather, it has become increasingly important to ensure that these : practices can be effectiv...
NASA Astrophysics Data System (ADS)
Westberg, David; Soja, Amber; Stackhouse, Paul, Jr.
2010-05-01
Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Boreal systems contain the largest pool of terrestrial carbon, and Russia holds 2/3 of the global boreal forests. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Meteorological parameters influence fire danger and fire is a catalyst for ecosystem change. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. Our data consists of NASA Langley Research Center (LaRC)-derived fire weather indices (FWI) and National Climatic Data Center (NCDC) surface station-derived FWI on a domain from 50°N-80°N latitude and 70°E-170°W longitude and the fire season from April through October for the years of 1999, 2002, and 2004. Both of these are calculated using the Canadian Forest Service (CFS) FWI, which is based on local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The large-scale (1°) LaRC product uses NASA Goddard Earth Observing System version 4 (GEOS-4) reanalysis and NASA Global Precipitation Climatology Project (GEOS-4/GPCP) data to calculate FWI. CFS Natural Resources Canada uses Geographic Information Systems (GIS) to interpolate NCDC station data and calculate FWI. We compare the LaRC GEOS- 4/GPCP FWI and CFS NCDC FWI based on their fraction of 1° grid boxes that contain satellite-derived fire counts and area burned to the domain total number of 1° grid boxes with a common FWI category (very low to extreme). These are separated by International Geosphere-Biosphere Programme (IGBP) 1°x1° resolution vegetation types to determine and compare fire regimes in each FWI/ecosystem class and to estimate the fraction of each of the 18 IGBP ecosystems burned, which are dependent on the FWI. On days with fire counts, the domain total of 1°x1° grid boxes with and without daily fire counts and area burned are totaled. The fraction of 1° grid boxes with fire counts and area burned to the total number of 1° grid boxes having common FWI category and vegetation type are accumulated, and a daily mean for the burning season is calculated. The mean fire counts and mean area burned plots appear to be well related. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to assess fire weather danger and fire regimes, so these data can be confidently used to predict future fire regimes using large-scale fire weather data. Specifically, we related large-scale fire weather, area burned, and the amount of fire-induced ecosystem change. Both the LaRC and CFS FWI showed gradual linear increase in fraction of grid boxes with fire counts and area burned with increasing FWI category, with an exponential increase in the higher FWI categories in some cases, for the majority of the vegetation types. Our analysis shows a direct correlation between increased fire activity and increased FWI, independent of time or the severity of the fire season. During normal and extreme fire seasons, we noticed the fraction of fire counts and area burned per 1° grid box increased with increasing FWI rating. Given this analysis, we are confident large-scale weather and climate data, in this case from the GEOS-4 reanalysis and the GPCP data sets, can be used to accurately assess future fire potential. This increases confidence in the ability of large-scale IPCC weather and climate scenarios to predict future fire regimes in boreal regions.
COLLECTION SYSTEM SOLIDS CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents an historical overview of the sewer-solids control projects conducted by the Wet-Weather Flow Research Program of the US EPA. Research includes studies of the causes of sewer-solids deposition and development/evaluation of control methods that can prevent sewe...
Weathering Grade Classification of Granite Stone Monument Using Reflectance Spectroscopy
NASA Astrophysics Data System (ADS)
Hyun, C.; Roh, T.; Choi, M.; Park, H.
2009-05-01
Stone monument has been placed in field and exposed to rain and wind. This outdoor environment and air pollution induced weathering of stone monument. Weathering grade classification is necessary to manage and conserve stone monuments. Visual interpretation by geologist and laboratory experiments using specimens fallen off from the monument to avoid damage on the monument have been applied to classify weathering grade conventionally. Rocks and minerals absorb some particular wavelength ranges of electromagnetic energy by electronic process and vibrational process of composing elements and these phenomena produce intrinsic diagnostic spectral reflectance curve. Non-destructive technique for weathering degree assessment measures those diagnostic absorption features of weathering products and converts the depths of features related to abundance of the materials to relative weathering degree. We selected granite outcrop to apply conventional six folded weathering grade classification method using Schmidt hammer rebound teste. The correlations between Schmidt hammer rebound values and absorption depths of iron oxides such as ferric oxide in the vicinity of 0.9 micrometer wavelength and clay minerals such as illite and kaolinite in the vicinity of 2.2 micrometer wavelength, representative weathering products of granite, were analyzed. The Schmidt hammer rebound value decreased according to increase of absorption depths induced from those weathering products. Weathering grade classification on the granite stone monument was conducted by using absorption depths of weathering products This research is supported from National Research Institute of Cultural Heritage and we appreciate for this.
Transforming research for food and health in Europe.
McCarthy, M
2012-10-01
Eating causes up to a quarter of premature deaths from chronic diseases in Europe through poor diet and excess consumption. FAHRE (Food and Health Research in Europe) was funded to determine needs and gaps in research structures and programmes. Most food research links towards agriculture and the environmental sciences, whereas most health research links towards clinical diseases, biochemical pathways and biology. Research on food and health together includes food safety research addressing biological and chemical contaminants, and biotechnology research supporting clinical nutrition. Research for healthy eating must draw on social and behavioural sciences for studies of policy, regulation and interventions. The food industry, across production, retail and catering, must be part of the research programme, and civil society. Better coordination and improved levels of funding are needed in the coming European research programme 'Horizon 2020', and national programmes linked in the Joint Programming Initiative. Transforming the research agenda can give great benefits to Europe's citizens.
Hydrogel research in Germany: the priority programme, Intelligent Hydrogels
NASA Astrophysics Data System (ADS)
Wallmersperger, Thomas; Sadowski, Gabriele
2009-03-01
The priority programme "Intelligent Hydrogels" was established by the German Research Foundation (DFG) in 2006 in order to strengthen the hydrogel-related research in Germany. The programme is being coordinated by Gabriele Sadowski, Technische Universität Dortmund. The aim of this priority programme is to develop new methods for the synthesis and characterization of smart hydrogels and to develop new modelling strategies in order to a) prepare the hydrogels for special applications and/or b) to develop and extend their capabilities for any desired use. In this programme, 73 scientists (36 professors and 37 scientific assistants/PhD students) from all over Germany are involved, working in 23 projects.
76 FR 186 - Notice of Buy American Waiver Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... (Recovery Act), Public Law 111-5, 123 Stat. 115, 303 (2009), with respect to the purchase of the weather facsimile machine that will be used in the Alaska Region Research Vessel (ARRV). A weather facsimile (weather fax) is an electronic machine designed to automatically receive near-real time marine weather...
Advanced Architectures for Modern Weather/Multifunction Radars
2017-03-01
Advanced Architectures for Modern Weather /Multifunction Radars Caleb Fulton The University of Oklahoma Advanced Radar Research Center Norman...and all of them are addressing the need to lower cost while improving beamforming flexibility in future weather radar systems that will be tasked...with multiple non- weather functions. Keywords: Phased arrays, digital beamforming, multifunction radar. Introduction and Overview As the performance
Transforming the "Valley of Death" into a "Valley of Opportunity"
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Merceret, Francis J.; O'Brien, T. P.; Roeder, William P.; Huddleston, Lisa L.; Bauman, William H., III
2014-01-01
Transitioning technology from research to operations (23 R2O) is difficult. The problem's importance is exemplified in the literature and in every failed attempt to do so. Although the R2O gap is often called the "valley of death", a recent a Space Weather editorial called it a "Valley of Opportunity". There are significant opportunities for space weather organizations to learn from the terrestrial experience. Dedicated R2O organizations like those of the various NOAA testbeds and collaborative "proving ground" projects take common approaches to improving terrestrial weather forecasting through the early transition of research capabilities into the operational environment. Here we present experience-proven principles for the establishment and operation of similar space weather organizations, public or private. These principles were developed and currently being demonstrated by NASA at the Applied Meteorology Unit (AMU) and the Short-term Prediction Research and Transition (SPoRT) Center. The AMU was established in 1991 jointly by NASA, the U.S. Air Force (USAF) and the National Weather Service (NWS) to provide tools and techniques for improving weather support to the Space Shuttle Program (Madura et al., 2011). The primary customers were the USAF 45th Weather Squadron (45 WS) and the NWS Spaceflight Meteorology Group (SMG who provided the weather observing and forecast support for Shuttle operations). SPoRT was established in 2002 to transition NASA satellite and remote-sensing technology to the NWS. The continuing success of these organizations suggests the common principles guiding them may be valuable for similar endeavors in the space weather arena.
Weather conditions: a neglected factor in human salivary cortisol research?
NASA Astrophysics Data System (ADS)
Milas, Goran; Šupe-Domić, Daniela; Drmić-Hofman, Irena; Rumora, Lada; Klarić, Irena Martinović
2018-02-01
There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.
Käser, Michael; Maure, Christine; Halpaap, Beatrice M M; Vahedi, Mahnaz; Yamaka, Sara; Launois, Pascal; Casamitjana, Núria
2016-05-01
Between August 2012 and April 2013 the Career Development Fellowship programme of the Special Programme for Research and Training in Tropical Diseases (World Health Organization) underwent an external evaluation to assess its past performance and determine recommendations for future programme development and continuous performance improvement. The programme provides a year-long training experience for qualified researchers from low and middle income countries at pharmaceutical companies or product development partnerships. Independent evaluators from the Swiss Tropical and Public Health Institute and the Barcelona Institute for Global Health used a results-based methodology to review the programme. Data were gathered through document review, surveys, and interviews with a range of programme participants. The final evaluation report found the Career Development Fellowship to be relevant to organizers' and programme objectives, efficient in its operations, and effective in its training scheme, which was found to address needs and gaps for both fellows and their home institutions. Evaluators found that the programme has the potential for impact and sustainability beyond the programme period, especially with the successful reintegration of fellows into their home institutions, through which newly-developed skills can be shared at the institutional level. Recommendations included the development of a scheme to support the re-integration of fellows into their home institutions post-fellowship and to seek partnerships to facilitate the scaling-up of the programme. The impact of the Professional Membership Scheme, an online professional development tool launched through the programme, beyond the scope of the Career Development Fellowship programme itself to other applications, has been identified as a positive unintended outcome. The results of this evaluation may be of interest for other efforts in the field of research capacity strengthening in LMICs or, generally, to other professional development schemes of a similar structure.
NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System
NASA Astrophysics Data System (ADS)
Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.
2016-12-01
Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.
An international survey of cerebral palsy registers and surveillance systems
Goldsmith, Shona; McIntyre, Sarah; Smithers-Sheedy, Hayley; Blair, Eve; Cans, Christine; Watson, Linda; Yeargin-Allsopp, Marshalyn
2016-01-01
AIM To describe cerebral palsy (CP) surveillance programmes and identify similarities and differences in governance and funding, aims and scope, definition, inclusion/exclusion criteria, ascertainment and data collection, to enhance the potential for research collaboration. METHOD Representatives from 38 CP surveillance programmes were invited to participate in an online survey and submit their data collection forms. Descriptive statistics were used to summarize information submitted. RESULTS Twenty-seven surveillance programmes participated (25 functioning registers, two closed owing to lack of funding). Their aims spanned five domains: resource for CP research, surveillance, aetiology/prevention, service planning, and information provision (in descending order of frequency). Published definitions guided decision making for the definition of CP and case eligibility for most programmes. Consent, case identification, and data collection methods varied widely. Ten key data items were collected by all programmes and a further seven by at least 80% of programmes. All programmes reported an interest in research collaboration. INTERPRETATION Despite variability in methodologies, similarities exist across programmes in terms of their aims, definitions, and data collected. These findings will facilitate harmonization of data and collaborative research efforts, which are so necessary on account of the heterogeneity and relatively low prevalence of CP. PMID:26781543
NASA/MSFC FY-82 atmospheric processes research review
NASA Technical Reports Server (NTRS)
Turner, R. E. (Compiler)
1982-01-01
The NASA/MSFC FY-82 Atmospheric Processes Research Program was reviewed. The review covered research tasks in the areas of upper atmosphere, global weather, and severe storms and local weather. Also included was research on aviation safety environmental hazards. The research project summaries, in narrative outline form, supplied by the individual investigators together with the agenda and other information about the review are presented.
Impacts of Typhoon Megi (2010) on the South China Sea
2014-06-01
investigations. To obtain realistic typhoon-strength atmospheric forcing, the EASNFS applied typhoon-resolving Weather Research and Forecasting ( WRF ) model wind...EASNFS applied typhoon-resolving Weather Research and Forecasting ( WRF ) model wind field blended with global weather forecast winds from the U.S. Navy...only 1C. Sequential SST snapshots, of which only a Figure 1. The EASNFS model domain with topography and an inset covered by WRF model. Typhoon Megi’s
Simulation of a weather radar display for over-water airborne radar approaches
NASA Technical Reports Server (NTRS)
Clary, G. R.
1983-01-01
Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.
A new framework for designing programmes of assessment
Van der Vleuten, C. P. M.; Schuwirth, L. W. T.
2009-01-01
Research on assessment in medical education has strongly focused on individual measurement instruments and their psychometric quality. Without detracting from the value of this research, such an approach is not sufficient to high quality assessment of competence as a whole. A programmatic approach is advocated which presupposes criteria for designing comprehensive assessment programmes and for assuring their quality. The paucity of research with relevance to programmatic assessment, and especially its development, prompted us to embark on a research project to develop design principles for programmes of assessment. We conducted focus group interviews to explore the experiences and views of nine assessment experts concerning good practices and new ideas about theoretical and practical issues in programmes of assessment. The discussion was analysed, mapping all aspects relevant for design onto a framework, which was iteratively adjusted to fit the data until saturation was reached. The overarching framework for designing programmes of assessment consists of six assessment programme dimensions: Goals, Programme in Action, Support, Documenting, Improving and Accounting. The model described in this paper can help to frame programmes of assessment; it not only provides a common language, but also a comprehensive picture of the dimensions to be covered when formulating design principles. It helps identifying areas concerning assessment in which ample research and development has been done. But, more importantly, it also helps to detect underserved areas. A guiding principle in design of assessment programmes is fitness for purpose. High quality assessment can only be defined in terms of its goals. PMID:19821042
A new framework for designing programmes of assessment.
Dijkstra, J; Van der Vleuten, C P M; Schuwirth, L W T
2010-08-01
Research on assessment in medical education has strongly focused on individual measurement instruments and their psychometric quality. Without detracting from the value of this research, such an approach is not sufficient to high quality assessment of competence as a whole. A programmatic approach is advocated which presupposes criteria for designing comprehensive assessment programmes and for assuring their quality. The paucity of research with relevance to programmatic assessment, and especially its development, prompted us to embark on a research project to develop design principles for programmes of assessment. We conducted focus group interviews to explore the experiences and views of nine assessment experts concerning good practices and new ideas about theoretical and practical issues in programmes of assessment. The discussion was analysed, mapping all aspects relevant for design onto a framework, which was iteratively adjusted to fit the data until saturation was reached. The overarching framework for designing programmes of assessment consists of six assessment programme dimensions: Goals, Programme in Action, Support, Documenting, Improving and Accounting. The model described in this paper can help to frame programmes of assessment; it not only provides a common language, but also a comprehensive picture of the dimensions to be covered when formulating design principles. It helps identifying areas concerning assessment in which ample research and development has been done. But, more importantly, it also helps to detect underserved areas. A guiding principle in design of assessment programmes is fitness for purpose. High quality assessment can only be defined in terms of its goals.
Initiating an Action Research Programme for University EFL Teachers: Early Experiences and Responses
ERIC Educational Resources Information Center
Burns, Anne; Westmacott, Anne; Ferrer, Antonieta Hidalgo
2016-01-01
Accounts of how teacher educators begin to plan, develop, and support action research programmes for language teachers are rare, as are descriptions of the responses of the teachers who participate. This article documents and analyses the initial processes of introducing and supporting a new programme of action research for language teachers at…
ERIC Educational Resources Information Center
Zehetmeier, Stefan; Andreitz, Irina; Erlacher, Willibald; Rauch, Franz
2015-01-01
This paper deals with the topic of professional development programmes' impact. Concepts and ideas of action research, constructivism, and systems theory are used as a theoretical framework and are combined to describe and analyse an exemplary professional development programme in Austria. Empirical findings from both quantitative and qualitative…
ERIC Educational Resources Information Center
Mitsis, Ann
2015-01-01
There are many challenges that undergraduate students face when studying an honours research degree. Honours programmes though traditionally considered within the business discipline as a loss leader, nevertheless, form a direct entry requirement for PhD programmes. The honours degree can be considered a formative research programme for student…
Review on space weather in Latin America. 1. The beginning from space science research
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo
2016-11-01
The present work is the first of a three-part review on space weather in Latin America. It comprises the evolution of several Latin American institutions investing in space science since the 1960s, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this review is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues.
NASA Astrophysics Data System (ADS)
Tomczyk, Aleksandra; Ewertowski, Marek; White, Piran; Kasprzak, Leszek
2016-04-01
The dual role of many Protected Natural Areas in providing benefits for both conservation and recreation poses challenges for management. Although recreation-based damage to ecosystems can occur very quickly, restoration can take many years. The protection of conservation interests at the same as providing for recreation requires decisions to be made about how to prioritise and direct management actions. Trails are commonly used to divert visitors from the most important areas of a site, but high visitor pressure can lead to increases in trail width and a concomitant increase in soil erosion. Here we use detailed field data on condition of recreational trails in Gorce National Park, Poland, as the basis for a regression tree analysis to determine the factors influencing trail deterioration, and link specific trail impacts with environmental, use related and managerial factors. We distinguished 12 types of trails, characterised by four levels of degradation: (1) trails with an acceptable level of degradation; (2) threatened trails; (3) damaged trails; and (4) heavily damaged trails. Damaged trails were the most vulnerable of all trails and should be prioritised for appropriate conservation and restoration. We also proposed five types of monitoring of recreational trail conditions: (1) rapid inventory of negative impacts; (2) monitoring visitor numbers and variation in type of use; (3) change-oriented monitoring focusing on sections of trail which were subjected to changes in type or level of use or subjected to extreme weather events; (4) monitoring of dynamics of trail conditions; and (5) full assessment of trail conditions, to be carried out every 10-15 years. The application of the proposed framework can enhance the ability of Park managers to prioritise their trail management activities, enhancing trail conditions and visitor safety, while minimising adverse impacts on the conservation value of the ecosystem. A.M.T. was supported by the Polish Ministry of Science and Higher Education under Grant 927/MOB/2012/0 ("Mobility Plus" program). P.C.L. White received funding under a UK Natural Environment Research Council grant (NE/K001620/1), with support from the Biodiversity and Ecosystem Service Sustainability (BESS) programme. BESS is a six-year programme (2011-2017) funded by the UK Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC) as part of the UK's Living with Environmental Change. (LWEC) programme.
NASA Technical Reports Server (NTRS)
Latorella, Kara A.; Chamberlain, James P.
2002-01-01
Weather is a significant factor in General Aviation (GA) accidents and fatality rates. Graphical Weather Information Systems (GWISs) for the flight deck are appropriate technologies for mitigating the difficulties GA pilots have with current aviation weather information sources. This paper describes usability evaluations of a prototype GWIS by 12 GA pilots after using the system in flights towards convective weather. We provide design guidance for GWISs and discuss further research required to support weather situation awareness and in-flight decision making for GA pilots.
NASA Astrophysics Data System (ADS)
Salmon, Neil A.; Mason, Ian; Wilkinson, Peter; Taylor, Chris; Scicluna, Peter
2010-10-01
The first passive millimetre wave (PMMW) imagery is presented from two proof-of-concept aperture synthesis demonstrators, developed to investigate the use of aperture synthesis for personnel security screening and all weather flying at 94 GHz, and satellite based earth observation at 183 GHz [1]. Emission from point noise sources and discharge tubes are used to examine the coherence on system baselines and to measure the point spread functions, making comparisons with theory. Image quality is examined using near field aperture synthesis and G-matrix calibration imaging algorithms. The radiometric sensitivity is measured using the emission from absorbers at elevated temperatures acting as extended sources and compared with theory. Capabilities of the latest Field Programmable Gate Arrays (FPGA) technologies for aperture synthesis PMMW imaging in all-weather and security screening applications are examined.
Fostering research aptitude among high school students through space weather competition
NASA Astrophysics Data System (ADS)
Abdullah, M.; Majid, R. A.; Bais, B.; Bahri, N. S.; Asillam, M. F.
2018-01-01
Cultivating research culture at an early stage is important for capacity building in a community. The high school level is the appropriate stage for research to be introduced because of students' competitive nature. Participation in the space weather competition is one of the ways in which research aptitude can be fostered in high school students in Malaysia. Accordingly, this paper presents how research elements were introduced to the students at the high school level through their participation in the space weather competition. The competition required the students to build a system to detect the presence of solar flares by utilizing VLF signals reflected from the ionosphere. The space weather competition started off with proposal writing for the space weather related project where the students were required to execute extensive literature review on the given topic. Additionally, the students were also required to conduct the experiments and analyse the data. Results obtained from data analysis were then validated by the students through various other observations that they had to carry out. At the end of the competition, students were expected to write a comprehensive technical report. Through this competition, the students learnt how to conduct research in accordance to the guidelines provided through the step by step approach exposed to them. Ultimately, this project revealed that the students were able to conduct research on their own with minimal guidance and that participation in the competition not only generated enjoyment in learning but also their interest in science and research.
NASA Astrophysics Data System (ADS)
Ferreira, B.
2014-12-01
When the public think about natural hazards, space weather is not the first thing to come to mind. Yet, though uncommon, extreme space weather events can have an economic impact similar to that of large floods or earthquakes. Although there have been efforts across various sectors of society to communicate this topic, many people are still quite confused about it, having only a limited understanding of the relevance of space weather in their daily lives. As such, it is crucial to properly communicate this topic to a variety of audiences. This article explores why we should communicate space weather research, how it can be framed for different audiences and how researchers, science communicators, policy makers and the public can raise awareness of the topic.
Wilkinson, Jeremy; Beegle-Krause, C J; Evers, Karl-Ulrich; Hughes, Nick; Lewis, Alun; Reed, Mark; Wadhams, Peter
2017-12-01
Renewed political and commercial interest in the resources of the Arctic, the reduction in the extent and thickness of sea ice, and the recent failings that led to the Deepwater Horizon oil spill, have prompted industry and its regulatory agencies, governments, local communities and NGOs to look at all aspects of Arctic oil spill countermeasures with fresh eyes. This paper provides an overview of present oil spill response capabilities and technologies for ice-covered waters, as well as under potential future conditions driven by a changing climate. Though not an exhaustive review, we provide the key research results for oil spill response from knowledge accumulated over many decades, including significant review papers that have been prepared as well as results from recent laboratory tests, field programmes and modelling work. The three main areas covered by the review are as follows: oil weathering and modelling; oil detection and monitoring; and oil spill response techniques.
Improving the Accuracy of Estimation of Climate Extremes
NASA Astrophysics Data System (ADS)
Zolina, Olga; Detemmerman, Valery; Trenberth, Kevin E.
2010-12-01
Workshop on Metrics and Methodologies of Estimation of Extreme Climate Events; Paris, France, 27-29 September 2010; Climate projections point toward more frequent and intense weather and climate extremes such as heat waves, droughts, and floods, in a warmer climate. These projections, together with recent extreme climate events, including flooding in Pakistan and the heat wave and wildfires in Russia, highlight the need for improved risk assessments to help decision makers and the public. But accurate analysis and prediction of risk of extreme climate events require new methodologies and information from diverse disciplines. A recent workshop sponsored by the World Climate Research Programme (WCRP) and hosted at United Nations Educational, Scientific and Cultural Organization (UNESCO) headquarters in France brought together, for the first time, a unique mix of climatologists, statisticians, meteorologists, oceanographers, social scientists, and risk managers (such as those from insurance companies) who sought ways to improve scientists' ability to characterize and predict climate extremes in a changing climate.
Public health research systems in the European union
2011-01-01
Background Strengthening health research is an important objective for international health organisations, but there has been less attention to support for health research in Europe. We describe the public-health (population and organisational level) research systems in the 27 European Union countries. Methods We developed a typology for describing health research structures based on funding streams and strategies. We drew data from internet sources and asked country informants to review these for consistency and completeness. The structures were described as organograms and narratives in country profiles for each of the 27 EU member states. National public-health research structures included public and independent funding organisations, 'mixed' institutions (which receive funds, and both use and allocate them) and provider institutions. Results Most health research is funded through ministries of science or science councils (and sometimes foundations), while parliaments and regions may also contribute. National institutes of public health are usually funded by ministries of health. Many national research organisations both determine research programmes and undertake health research, but there is a move towards public-health sciences within the universities, and a transition from internal grants to competitive funding. Of 27 national research strategies, 17 referred to health and 11 to public health themes. Although all countries had strategies for public health itself, we found little coherence in public-health research programmes. The European Commission has country contact points for both EU research and health programmes, but they do not coordinate with national health-research programmes. Conclusions Public-health research is broadly distributed across programmes in EU countries. Better understanding of research structures, programmes and results would improve recognition for public health in Europe, and contribute to practice. EU ministries of health should give greater attention to national public-health research strategies and programmes, and the European Union and the World Health Organisation can provide coordination and support. PMID:21970897
Hoa, N B; Nhung, N V; Kumar, A M V; Harries, A D
2016-12-21
In April 2009, an operational research fellow was placed within the Viet Nam National Tuberculosis Control Programme (NTP). Over the 6 years from 2010 to 2015, the OR fellow co-authored 21 tuberculosis research papers (as principal author in 15 [71%]). This constituted 23% of the 91 tuberculosis papers published in Viet Nam during this period. Of the 21 published papers, 16 (76%) contributed to changes in policy ( n = 8) and practice ( n = 8), and these in turn improved programme performance. Many papers also contributed important evidence for better programme planning. Highly motivated OR fellows embedded within NTPs can facilitate high-quality research and research uptake.
The aim for this research is to evaluate the ability of the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological, e.g. evaporation (ET), soil moisture (SM), runoff, and baseflow. First, the VIC mo...
TRACON controller weather information needs : I. literature review.
DOT National Transportation Integrated Search
2003-01-01
This report is the first in a series on the use of weather information by Terminal Radar Approach Control (TRACON) controllers and weather displays for the cockpit. The document provides a literature review with an emphasis on research relating to th...
DOT National Transportation Integrated Search
2017-01-01
Using a combination of simulation and field studies, the research team found that agencies can achieve slight improvements by adjusting their traffic signal timing plans during adverse weather conditions. Agencies can detect when adverse weather cond...
Marjanovic, Sonja; Cochrane, Gavin; Manville, Catriona; Harte, Emma; Chataway, Joanna; Jones, Molly Morgan
2016-01-29
In early 2012, the National Institute for Health Research (NIHR) leadership programme was re-commissioned for a further three years following an evaluation by RAND Europe. During this new phase of the programme, we conducted a real-time evaluation, the aim of which was to allow for reflection on and adjustment of the programme on an on-going basis as events unfold. This approach also allowed for participants on the programme to contribute to and positively engage in the evaluation. The study aimed to understand the outputs and impacts from the programme, and to test the underlying assumptions behind the NIHR Leadership Programme as a science policy intervention. Evidence on outputs and impacts of the programme were collected around the motivations and expectations of participants, programme design and individual-, institutional- and system-level impacts.
Communicating space weather to policymakers and the wider public
NASA Astrophysics Data System (ADS)
Ferreira, Bárbara
2014-05-01
As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco
2012-01-01
Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.
Preventing cold-related morbidity and mortality in a changing climate
Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O
2011-01-01
Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a person’s vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693
NASA Astrophysics Data System (ADS)
Molthan, A.; Case, J.; Venner, J.; Moreno-Madriñán, M. J.; Delgado, F.
2012-12-01
Over the past two years, scientists in the Earth Science Office at NASA's Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real-time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA's Short-term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface- and satellite-based observations.
A portable station for recording fire weather data
John R. Murray; Clive M. Countryman
1968-01-01
A portable station for recording fire weather data has been developed for use in wildland fires, prescribed burns, evaluating sites for fire weather stations, and fire research. Housed in a mechanic's tool box, the station weighs about 60 pounds. One man can have it ready to operate in about 15 minutes. The unit can record five weather variables, but additional...
Where to find weather and climatic data for forest research studies and management planning.
Donald A. Haines
1977-01-01
Forest-range research or operational study designs should include the possible effects of weather and climate. This document describes the meteorological observational networks, the data available from them, and where the information is stored.
20th National Solar Physics Meeting
NASA Astrophysics Data System (ADS)
Dorotovic, Ivan
2010-12-01
These proceedings (ISBN: 978-80-85221-68-8) provide an overview of current research on solar physics, geophysics and space weather in the astronomical, geophysical and space physics institutions in the Slovak Republic and the Czech Republic. Several researchers from other countries participated in the meeting as well. The different parts address: solar interior, solar photosphere, chromosphere, corona, total solar eclipses, space weather, instrumentation. Most of the papers are published in Slovak and Czech, respectively. The proceedings are intended for researchers, graduate and PhD. students, workers of astronomical observatories interested in solar physics, geophysics and space weather.
Hanney, Steve; Greenhalgh, Trisha; Blatch-Jones, Amanda; Glover, Matthew; Raftery, James
2017-03-28
We sought to analyse the impacts found, and the methods used, in a series of assessments of programmes and portfolios of health research consisting of multiple projects. We analysed a sample of 36 impact studies of multi-project research programmes, selected from a wider sample of impact studies included in two narrative systematic reviews published in 2007 and 2016. We included impact studies in which the individual projects in a programme had been assessed for wider impact, especially on policy or practice, and where findings had been described in such a way that allowed them to be collated and compared. Included programmes were highly diverse in terms of location (11 different countries plus two multi-country ones), number of component projects (8 to 178), nature of the programme, research field, mode of funding, time between completion and impact assessment, methods used to assess impact, and level of impact identified. Thirty-one studies reported on policy impact, 17 on clinician behaviour or informing clinical practice, three on a combined category such as policy and clinician impact, and 12 on wider elements of impact (health gain, patient benefit, improved care or other benefits to the healthcare system). In those multi-programme projects that assessed the respective categories, the percentage of projects that reported some impact was policy 35% (range 5-100%), practice 32% (10-69%), combined category 64% (60-67%), and health gain/health services 27% (6-48%). Variations in levels of impact achieved partly reflected differences in the types of programme, levels of collaboration with users, and methods and timing of impact assessment. Most commonly, principal investigators were surveyed; some studies involved desk research and some interviews with investigators and/or stakeholders. Most studies used a conceptual framework such as the Payback Framework. One study attempted to assess the monetary value of a research programme's health gain. The widespread impact reported for some multi-project programmes, including needs-led and collaborative ones, could potentially be used to promote further research funding. Moves towards greater standardisation of assessment methods could address existing inconsistencies and better inform strategic decisions about research investment; however, unresolved issues about such moves remain.
JPRS Report Science & Technology Japan STA 1988 White Paper Part 2.
1989-12-13
artificial insemination . In connection with the "Progress of Life Sciences and Their Harmony With Mankind and Society," a theme whose importance is pointed...Research Dept. The Weather Satellite Research Department has been reorganized into the Weather Satellite / Monitoring System Research Dept. The...research on undersea greening technology (creation of seaweed farms using artificial light), and 3) research on tech- nology for probing and breeding
Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.
2012-01-01
A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs.
Evaluation of quality improvement programmes
Ovretveit, J; Gustafson, D
2002-01-01
In response to increasing concerns about quality, many countries are carrying out large scale programmes which include national quality strategies, hospital programmes, and quality accreditation, assessment and review processes. Increasing amounts of resources are being devoted to these interventions, but do they ensure or improve quality of care? There is little research evidence as to their effectiveness or the conditions for maximum effectiveness. Reasons for the lack of evaluation research include the methodological challenges of measuring outcomes and attributing causality to these complex, changing, long term social interventions to organisations or health systems, which themselves are complex and changing. However, methods are available which can be used to evaluate these programmes and which can provide decision makers with research based guidance on how to plan and implement them. This paper describes the research challenges, the methods which can be used, and gives examples and guidance for future research. It emphasises the important contribution which such research can make to improving the effectiveness of these programmes and to developing the science of quality improvement. PMID:12486994
Penders, Bart; Vos, Rein; Horstman, Klasien
2009-11-01
Solving complex problems in large-scale research programmes requires cooperation and division of labour. Simultaneously, large-scale problem solving also gives rise to unintended side effects. Based upon 5 years of researching two large-scale nutrigenomic research programmes, we argue that problems are fragmented in order to be solved. These sub-problems are given priority for practical reasons and in the process of solving them, various changes are introduced in each sub-problem. Combined with additional diversity as a result of interdisciplinarity, this makes reassembling the original and overall goal of the research programme less likely. In the case of nutrigenomics and health, this produces a diversification of health. As a result, the public health goal of contemporary nutrition science is not reached in the large-scale research programmes we studied. Large-scale research programmes are very successful in producing scientific publications and new knowledge; however, in reaching their political goals they often are less successful.
ERIC Educational Resources Information Center
Hazenberg, R.; Seddon, F.; Denny, S.
2015-01-01
This paper reports research that engaged in the evaluation of an intervention programme designed to enhance the employability of a group of unemployed graduates. The evaluation adopted a quasi-experimental intervention research method employing a general self-efficacy scale, which had been validated in prior research. Results revealed that…
ERIC Educational Resources Information Center
Milano, Chloe; Lawless, Aileen; Eades, Elaine
2015-01-01
This account explores the role of action learning during and after an educational programme. We focus on the final stage of a master's programme and the insider research that is a key feature in many UK universities. Researching within one's own organization should lead to individual and organizational learning. However, there is relatively little…
Mentoring health researchers globally: Diverse experiences, programmes, challenges and responses.
Cole, Donald C; Johnson, Nancy; Mejia, Raul; McCullough, Hazel; Turcotte-Tremblay, Anne-Marie; Barnoya, Joaquin; Falabella Luco, María Soledad
2016-10-01
Mentoring experiences and programmes are becoming increasingly recognised as important by those engaged in capacity strengthening in global health research. Using a primarily qualitative study design, we studied three experiences of mentorship and eight mentorship programmes for early career global health researchers based in high-income and low- and middle-income countries. For the latter, we drew upon programme materials, existing unpublished data and more formal mixed-method evaluations, supplemented by individual email questionnaire responses. Research team members wrote stories, and the team assembled and analysed them for key themes. Across the diverse experiences and programmes, key emergent themes included: great mentors inspire others in an inter-generational cascade, mentorship is transformative in personal and professional development and involves reciprocity, and finding the right balance in mentoring relationships and programmes includes responding creatively to failure. Among the challenges encountered were: struggling for more level playing fields for new health researchers globally, changing mindsets in institutions that do not have a culture of mentorship and building collaboration not competition. Mentoring networks spanning institutions and countries using multiple virtual and face-to-face methods are a potential avenue for fostering organisational cultures supporting quality mentorship in global health research.
Mentoring health researchers globally: Diverse experiences, programmes, challenges and responses
Cole, Donald C.; Johnson, Nancy; Mejia, Raul; McCullough, Hazel; Turcotte-Tremblay, Anne-Marie; Barnoya, Joaquin; Falabella Luco, (María) Soledad
2016-01-01
ABSTRACT Mentoring experiences and programmes are becoming increasingly recognised as important by those engaged in capacity strengthening in global health research. Using a primarily qualitative study design, we studied three experiences of mentorship and eight mentorship programmes for early career global health researchers based in high-income and low- and middle-income countries. For the latter, we drew upon programme materials, existing unpublished data and more formal mixed-method evaluations, supplemented by individual email questionnaire responses. Research team members wrote stories, and the team assembled and analysed them for key themes. Across the diverse experiences and programmes, key emergent themes included: great mentors inspire others in an inter-generational cascade, mentorship is transformative in personal and professional development and involves reciprocity, and finding the right balance in mentoring relationships and programmes includes responding creatively to failure. Among the challenges encountered were: struggling for more level playing fields for new health researchers globally, changing mindsets in institutions that do not have a culture of mentorship and building collaboration not competition. Mentoring networks spanning institutions and countries using multiple virtual and face-to-face methods are a potential avenue for fostering organisational cultures supporting quality mentorship in global health research. PMID:26234691
Satellite Delivery of Aviation Weather Data
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Haendel, Richard
2001-01-01
With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.
NASA Technical Reports Server (NTRS)
Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)
2002-01-01
Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.
Joseph, Gillian M; Skinner, Mark W; Yantzi, Nicole M
2013-08-01
This paper addresses the gap in health services and policy research about the implications of everyday weather for health care work. Building on previous research on the weather-related challenges of caregiving in homes and communities, it examines the experiences of 'seasonal bad weather' for health care workers in long-term care institutions. It features a hermeneutic phenomenology analysis of six transcripts from interviews with nurses and personal support workers from a qualitative study of institutional long-term care work in rural Canada. Focussing on van Manen's existential themes of lived experience (body, relations, space, time), the analysis reveals important contradictions between the lived experiences of health care workers coping with bad weather and long-term care policies and practices that mitigate weather-related risk and vulnerability. The findings contribute to the growing concern for rural health issues particularly the neglected experiences of rural health providers and, in doing so, offer insight into the recent call for greater attention to the geographies of health care work. Copyright © 2012 Elsevier Ltd. All rights reserved.
Implementation of weather stations at Ghanaian high schools
NASA Astrophysics Data System (ADS)
Pieron, M.
2012-04-01
The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is an initiative that aims to develop a dense weather observation network in Sub-Sahara Africa. The ambition is to have 20.000 low-cost innovative weather stations in place in 2015. An increased amount of weather data is locally required to provide stakeholders that are dependent on the weather, such as farmers and fishermen, with accurate forecasts. As a first proof of concept, showing that sensors can be built at costs lower than commercially available, a disdrometer was developed. In parallel with the design of the measurement instruments, a high school curriculum is developed that covers environmental sciences. In order to find out which requirements the TAHMO weather station and accompanying educational materials should meet for optimal use at Junior High Schools research was done at Ghanaian schools. Useful insights regarding the future African context of the weather station and requirements for an implementation strategy were obtained during workshops with teachers and students, visits to WMO observatories and case studies regarding use of educational materials. The poster presents the conclusions of this research, which is part of the bigger TAHMO framework.
Quality assurance of weather data for agricultural system model input
USDA-ARS?s Scientific Manuscript database
It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...
Climate change may alter regional weather extremes resulting in a range of environmental impacts including changes in air quality, water quality and availability, energy demands, agriculture, and ecology. Dynamical downscaling simulations were conducted with the Weather Research...
INVESTIGATION OF DRY-WEATHER POLLUTANT ENTRIES INTO STORM-DRAINAGE SYSTEMS
This article describes the results of a series of research tasks to develop a procedure to investigate non-stormwater (dry-weather) entries into storm drainage systems. Dry-weather flows discharging from storm drainage systems can contribute significant pollutant loadings to rece...
URBAN WET-WEATHER FLOW MANAGEMENT: RESEARCH DIRECTIONS
There are three types of urban wet-weather flow (WWF) discharges: 1) combined-sewer overflow (CSO), which is a mixture of storm drainage and municipal-industrial wastewater discharged from combined sewers or dry-weather flow discharged from combined sewers due to clogged intercep...
Infrasonic Influences of Tornados and Cyclonic Weather Systems
NASA Astrophysics Data System (ADS)
Cook, Tessa
2014-03-01
Infrasound waves travel through the air at approximately 340 m/s at sea level, while experiencing low levels of friction, allowing the waves to travel over larger distances. When seismic waves travel through unconsolidated soil, the waves slow down to approximately 340 m/s. Because the speeds of waves in the air and ground are similar, a more effective transfer of energy from the atmosphere to the ground can occur. Large ring lasers can be utilized for detecting sources of infrasound traveling through the ground by measuring anomalies in the frequency difference between their two counter-rotating beams. Sources of infrasound include tornados and other cyclonic weather systems. The way systems create waves that transfer to the ground is unknown and will be continued in further research; this research has focused on attempting to isolate the time that the ring laser detected anomalies in order to investigate if these anomalies may be contributed to isolatable weather systems. Furthermore, this research analyzed the frequencies detected in each of the anomalies and compared the frequencies with various characteristics of each weather system, such as tornado width, wind speeds, and system development. This research may be beneficial for monitoring gravity waves and weather systems.
Geospace monitoring for space weather research and operation
NASA Astrophysics Data System (ADS)
Nagatsuma, Tsutomu
2017-10-01
Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.
Accelerating the carbon cycle: the ethics of enhanced weathering.
Lawford-Smith, H; Currie, A
2017-04-01
Enhanced weathering, in comparison to other geoengineering measures, creates the possibility of a reduced cost, reduced impact way of decreasing atmospheric carbon, with positive knock-on effects such as decreased oceanic acidity. We argue that ethical concerns have a place alongside empirical, political and social factors as we consider how to best respond to the critical challenge that anthropogenic climate change poses. We review these concerns, considering the ethical issues that arise (or would arise) in the large-scale deployment of enhanced weathering. We discuss post-implementation scenarios, failures of collective action, the distribution of risk and externalities and redress for damage. We also discuss issues surrounding 'dirty hands' (taking conventionally immoral action to avoid having to take action that is even worse), whether enhanced weathering research might present a moral hazard, the importance of international governance and the notion that the implementation of large-scale enhanced weathering would reveal problematic hubris. Ethics and scientific research interrelate in complex ways: some ethical considerations caution against research and implementation, while others encourage them. Indeed, the ethical perspective encourages us to think more carefully about how, and what types of, geoengineering should be researched and implemented. © 2017 The Author(s).
Space and ground segment performance of the FORMOSAT-3/COSMIC mission: four years in orbit
NASA Astrophysics Data System (ADS)
Fong, C.-J.; Whiteley, D.; Yang, E.; Cook, K.; Chu, V.; Schreiner, B.; Ector, D.; Wilczynski, P.; Liu, T.-Y.; Yen, N.
2011-01-01
The FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission consisting of six Low-Earth-Orbit (LEO) satellites is the world's first demonstration constellation using radio occultation signals from Global Positioning System (GPS) satellites. The radio occultation signals are retrieved in near real-time for global weather/climate monitoring, numerical weather prediction, and space weather research. The mission has processed on average 1400 to 1800 high-quality atmospheric sounding profiles per day. The atmospheric radio occultation soundings data are assimilated into operational numerical weather prediction models for global weather prediction, including typhoon/hurricane/cyclone forecasts. The radio occultation data has shown a positive impact on weather predictions at many national weather forecast centers. A proposed follow-on mission transitions the program from the current experimental research system to a significantly improved real-time operational system, which will reliably provide 8000 radio occultation soundings per day. The follow-on mission as planned will consist of 12 satellites with a data latency of 45 min, which will provide greatly enhanced opportunities for operational forecasts and scientific research. This paper will address the FORMOSAT-3/COSMIC system and mission overview, the spacecraft and ground system performance after four years in orbit, the lessons learned from the encountered technical challenges and observations, and the expected design improvements for the new spacecraft and ground system.
The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.
2016-01-01
The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.
National Centers for Environmental Prediction
Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Hurricane Weather Research and Forecast System ANALYSIS FORECAST MODEL GSI Gridpoint Statistical Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 Page Author
National Centers for Environmental Prediction
Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar WEATHER RESEARCH and FORECASTING HMON HMON - OPERATIONAL HURRICANE FORECASTING WAVEWATCH III WAVEWATCH III Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court
This research project was administered by the EPA Office of Research and Development and funded by Office of Water; Office of Policy, Economics and Innovation; and Office of Research and Development. Blending is the practice of diverting a part of peak wet-weather flows at wa...
Assessing Individual Weather Risk-Taking and Its Role in Modeling Likelihood of Hurricane Evacuation
NASA Astrophysics Data System (ADS)
Stewart, A. E.
2017-12-01
This research focuses upon measuring an individual's level of perceived risk of different severe and extreme weather conditions using a new self-report measure, the Weather Risk-Taking Scale (WRTS). For 32 severe and extreme situations in which people could perform an unsafe behavior (e. g., remaining outside with lightning striking close by, driving over roadways covered with water, not evacuating ahead of an approaching hurricane, etc.), people rated: 1.their likelihood of performing the behavior, 2. The perceived risk of performing the behavior, 3. the expected benefits of performing the behavior, and 4. whether the behavior has actually been performed in the past. Initial development research with the measure using 246 undergraduate students examined its psychometric properties and found that it was internally consistent (Cronbach's a ranged from .87 to .93 for the four scales) and that the scales possessed good temporal (test-retest) reliability (r's ranged from .84 to .91). A second regression study involving 86 undergraduate students found that taking weather risks was associated with having taken similar risks in one's past and with the personality trait of sensation-seeking. Being more attentive to the weather and perceiving its risks when it became extreme was associated with lower likelihoods of taking weather risks (overall regression model, R2adj = 0.60). A third study involving 334 people examined the contributions of weather risk perceptions and risk-taking in modeling the self-reported likelihood of complying with a recommended evacuation ahead of a hurricane. Here, higher perceptions of hurricane risks and lower perceived benefits of risk-taking along with fear of severe weather and hurricane personal self-efficacy ratings were all statistically significant contributors to the likelihood of evacuating ahead of a hurricane. Psychological rootedness and attachment to one's home also tend to predict lack of evacuation. This research highlights the contributions that a psychological approach can offer in understanding preparations for severe weather. This approach also suggests that a great deal of individual variation exists in weather-protective behaviors, which may explain in part why some people take weather-related risks despite receiving warnings for severe weather.
URBAN WET-WEATHER FLOWS LITERATURE REVIEW 2000
This paper is an urban wet weather flow (WWF) literature reviews for the year of 1999. The reviews were originally published in the annual literature review issues of Water Environment Research. Over the past year, many people were involved in preparing these urban wet weather f...
NASA Astrophysics Data System (ADS)
Shibata, K.; Kurokawa, H.
The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction
ERIC Educational Resources Information Center
Ogbiji, Joseph Etiongbie; Ogbiji, Sylvanus Achua
2016-01-01
This research focuses on identifying policy gaps in the implementation of Universal Basic Education (UBE) programme in Nigeria, with Cross River State being the study area. The three research questions used for the research center on the extent of the freeness of the UBE, the extent to which the programme has stimulated educational consciousness…
Mahendradhata, Yodi; Probandari, Ari; Widjanarko, Bagoes; Riono, Pandu; Mustikawati, Dyah; Tiemersma, Edine W.; Alisjahbana, Bachti
2014-01-01
There is growing recognition that operational research (OR) should be embedded into national disease control programmes. However, much of the current OR capacity building schemes are still predominantly driven by international agencies with limited integration into national disease control programmes. We demonstrated that it is possible to achieve a more sustainable capacity building effort across the country by establishing an OR group within the national tuberculosis (TB) control programme in Indonesia. Key challenges identified include long-term financial support, limited number of scientific publications, and difficulties in documenting impact on programmatic performance. External evaluation has expressed concerns in regard to utilisation of OR in policy making. Efforts to address this concern have been introduced recently and led to indications of increased utilisation of research evidence in policy making by the national TB control programme. Embedding OR in national disease control programmes is key in establishing an evidence-based disease control programme. PMID:25361728
A personal perspective on modelling the climate system.
Palmer, T N
2016-04-01
Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s.
Challenges for Transitioning Science Research to Space Weather Applications
NASA Technical Reports Server (NTRS)
Spann, James
2013-01-01
Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.
Assessing and Adapting Scientific Results for Space Weather Research to Operations (R2O)
NASA Astrophysics Data System (ADS)
Thompson, B. J.; Friedl, L.; Halford, A. J.; Mays, M. L.; Pulkkinen, A. A.; Singer, H. J.; Stehr, J. W.
2017-12-01
Why doesn't a solid scientific paper necessarily result in a tangible improvement in space weather capability? A well-known challenge in space weather forecasting is investing effort to turn the results of basic scientific research into operational knowledge. This process is commonly known as "Research to Operations," abbreviated R2O. There are several aspects of this process: 1) How relevant is the scientific result to a particular space weather process? 2) If fully utilized, how much will that result improve the reliability of the forecast for the associated process? 3) How much effort will this transition require? Is it already in a relatively usable form, or will it require a great deal of adaptation? 4) How much burden will be placed on forecasters? Is it "plug-and-play" or will it require effort to operate? 5) How can robust space weather forecasting identify challenges for new research? This presentation will cover several approaches that have potential utility in assessing scientific results for use in space weather research. The demonstration of utility is the first step, relating to the establishment of metrics to ensure that there will be a clear benefit to the end user. The presentation will then move to means of determining cost vs. benefit, (where cost involves the full effort required to transition the science to forecasting, and benefit concerns the improvement of forecast reliability), and conclude with a discussion of the role of end users and forecasters in driving further innovation via "O2R."
Investigating Anomalies in the Output Generated by the Weather Research and Forecasting (WRF) Model
NASA Astrophysics Data System (ADS)
Decicco, Nicholas; Trout, Joseph; Manson, J. Russell; Rios, Manny; King, David
2015-04-01
The Weather Research and Forecasting (WRF) model is an advanced mesoscale numerical weather prediction (NWP) model comprised of two numerical cores, the Numerical Mesoscale Modeling (NMM) core, and the Advanced Research WRF (ARW) core. An investigation was done to determine the source of erroneous output generated by the NMM core. In particular were the appearance of zero values at regularly spaced grid cells in output fields and the NMM core's evident (mis)use of static geographic information at a resolution lower than the nesting level for which the core is performing computation. A brief discussion of the high-level modular architecture of the model is presented as well as methods utilized to identify the cause of these problems. Presented here are the initial results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''.
NASA Astrophysics Data System (ADS)
Dawson, Lorna; Bestwick, Charles
2013-04-01
The Strategic Research Programme focuses on the delivery of outputs and outcomes within the major policy agenda areas of climate change, land use and food security, and to impact on the 'Wealthier', 'Healthier' and 'Greener' strategic objectives of the Scottish Government. The research is delivered through two programmes: 'Environmental Change' and 'Food, Land and People'; the core strength of which is the collaboration between the Scottish Government's Main Research Providers-The James Hutton Institute, the Moredun Research Institute, Rowett Institute of Nutrition and Health University of Aberdeen, Scotland's Rural College, Biomathematics and Statistics Scotland and The Royal Botanic Gardens Edinburgh. The research actively seeks to inform and be informed by stakeholders from policy, farming, land use, water and energy supply, food production and manufacturing, non-governmental organisations, voluntary organisations, community groups and general public. This presentation will provide an overview of the programme's interdisciplinary research, through examples from across the programme's themes. Examples will exemplify impact within the Strategic Programme's priorities of supporting policy and practice, contributing to economic growth and innovation, enhancing collaborative and multidisciplinary research, growing scientific resilience and delivering scientific excellence. http://www.scotland.gov.uk/Topics/Research/About/EBAR/StrategicResearch/future-research-strategy/Themes/ http://www.knowledgescotland.org/news.php?article_id=295
The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1985-01-01
A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.
The Weather Forecast Using Data Mining Research Based on Cloud Computing.
NASA Astrophysics Data System (ADS)
Wang, ZhanJie; Mazharul Mujib, A. B. M.
2017-10-01
Weather forecasting has been an important application in meteorology and one of the most scientifically and technologically challenging problem around the world. In my study, we have analyzed the use of data mining techniques in forecasting weather. This paper proposes a modern method to develop a service oriented architecture for the weather information systems which forecast weather using these data mining techniques. This can be carried out by using Artificial Neural Network and Decision tree Algorithms and meteorological data collected in Specific time. Algorithm has presented the best results to generate classification rules for the mean weather variables. The results showed that these data mining techniques can be enough for weather forecasting.
The Effects of Virtual Weather on Presence
NASA Astrophysics Data System (ADS)
Wissmath, Bartholomäus; Weibel, David; Mast, Fred W.
In modern societies people tend to spend more time in front of computer screens than outdoors. Along with an increasing degree of realism displayed in digital environments, simulated weather appears more and more realistic and more often implemented in digital environments. Research has found that the actual weather influences behavior and mood. In this paper we experimentally examine the effects of virtual weather on the sense of presence. Thereby we found individuals (N=30) to immerse deeper in digital environments displaying fair weather conditions than in environments displaying bad weather. We also investigate whether virtual weather can influence behavior. The possible implications of theses findings for presence theory as well as digital environment designers will be discussed.
Teaching and Learning National Transformation Programme
ERIC Educational Resources Information Center
Browne, Liz
2006-01-01
This article reports on a research project undertaken on behalf of the Standards Unit to research the impact of the Teaching and Learning National Transformation Programme for the Learning and Skills sector. The transformational programme is best described as having three enablers, namely teaching and learning resources to support practitioners,…
Recent improvement and projected worsening of weather in the United States.
Egan, Patrick J; Mullin, Megan
2016-04-21
As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.
HIV-Stigma in Nigeria: Review of Research Studies, Policies, and Programmes
Odimegwu, Clifford O.; Alabi, Olatunji O.
2017-01-01
Nigeria has about 3.8 million people living with HIV, the second largest globally. Stigma and discrimination are major barriers to testing, treatment uptake, and adherence. In this review, we synthesized information on research studies, policies, and programmes related to HIV-stigma in Nigeria. This was with a view to identify critical areas that research and programmes must address in order to accelerate the progress towards zero (new infections, discrimination, and death) target by year 2030. Existing studies were mostly devoted to stigma assessment using varieties of measures. Research, policies, and programmes in the past two decades have made very useful contributions to stigma reduction. We identified the need for a consistent, valid, and objective measure of stigma at different levels of the HIV response. Nigeria does not lack relevant policies; what needs to be strengthened are design, planning, implementation, monitoring, and evaluation of context-specific stigma reduction programmes. PMID:29445545
The effort to increase the space weather forecasting accuracy in KSWC
NASA Astrophysics Data System (ADS)
Choi, J. S.
2017-12-01
The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.
Space Weather Outreach: Connection to STEM Standards
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.
2008-12-01
Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.
de Jong, Jean Philippe; van Zwieten, Myra C B; Willems, Dick L
2013-04-01
In recent years, to protect the rights and welfare of human subjects, institutions in the USA have begun to set up programmes to monitor ongoing medical research. These programmes provide routine, onsite oversight, and thus go beyond existing oversight such as investigating suspected misconduct or reviewing paperwork provided by investigators. However, because of a lack of guidelines and evidence, institutions have had little guidance in setting up their programmes. To help institutions make the right choices, we used interviews and document analysis to study how and why 11 US institutions have set up their monitoring programmes. Although these programmes varied considerably, we were able to distinguish two general types. 'Compliance' programmes on the one hand were part of the institutional review board office and set up to ensure compliance with regulations. Investigators' participation was mandatory. Monitors focused on documentation. Investigators could be disciplined, and could be obliged to take corrective actions. 'Quality-improvement' programmes on the other hand were part of a separate office. Investigators requested to be monitored. Monitors focused more on actual research conduct. Investigators and other parties received feedback on how to improve the research process. Although both types of programmes have their drawbacks and advantages, we argue that if institutions want to set up monitoring programmes, quality improvement is the better choice: it can help foster an atmosphere of trust between investigators and the institutional review board, and can help raise the standards for the protection of human subjects.
Building capacity in Clinical Epidemiology in Africa: experiences from Masters programmes.
Young, Taryn; Naude, Celeste; Brodovcky, Tania; Esterhuizen, Tonya
2017-02-27
To describe and contrast programmatic offering of Clinical Epidemiology Masters programmes in Africa, to evaluate experiences of graduates and faculty, and assess if graduates are playing roles in research, practice and teaching of Clinical Epidemiology. We searched and identified relevant programmes, reviewed programmatic documentation, interviewed convenors and surveyed graduates. Participants provided informed consent, interviews with faculty were recorded and transcribed for analysis purposes, and graduates participated in an online survey. Five structured Masters programmes requiring health science professionals to complete modules and research projects were assessed. Demand for programmes was high. Graduates enjoyed the variety of modules, preferred blended teaching, and regarded assessments as fair. Graduates felt that career paths were not obvious after graduating. Despite this, some have gone on to promote and teach evidence-based health care, and conduct and disseminate research. Areas of concern raised by faculty were quality assurance; research project initiation, implementation and supervisory capacity; staff availability; funding to support implementation and lack of experiential learning. Although faced with challenges, these programmes build capacity of health professionals to practice in an evidence-informed way, and conduct rigorous research, which are central to advancing the practice of Clinical Epidemiology in Africa.
Research progress of extreme climate and its vegetation response
NASA Astrophysics Data System (ADS)
Cui, Xiaolin; Wei, Xiaoqing; Wang, Tao
2017-08-01
The IPCC’s fifth assessment report indicates that climate warming is unquestionable, the frequency and intensity of extreme weather events may increase, and extreme weather events can destroy the growth conditions of vegetation that is otherwise in a stable condition. Therefore, it is essential to research the formation of extreme weather events and its ecological response, both in terms scientific development and the needs of societal development. This paper mainly examines these issues from the following aspects: (1) the definition of extreme climate events and the methods of studying the associated response of vegetation; (2) the research progress on extreme climate events and their vegetation response; and (3) the future direction of research on extreme climate and its vegetation response.
Lanzerotti to Head New AGU Journal on Space Weather
NASA Astrophysics Data System (ADS)
Lifland, Jonathan
Louis J. Lanzerotti has been named editor of a new AGU online publication devoted to the emerging field of near-Earth space conditions and their effects on technical systems. Space Weather: The International Journal of Research and Applications, will be the first journal dedicated solely to the subject, and will include peer-reviewed research, as well as news, features, and opinion articles. A quarterly magazine digest will also be published from the online edition and distributed free of charge to space weather professionals. Lanzerotti, a longtime AGU member who was elected an AGU Fellow in 1985, is currently a consulting physicist at Lucent Technologies Bell Laboratories, and a distinguished research professor at the New Jersey Institute of Technology. He also serves on the governing board of the American Institute of Physics. He is author or co-author of more than 500 publications, including many related to space weather and its effects on communications.
Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center
NASA Astrophysics Data System (ADS)
Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz
2013-03-01
Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/
NASA Astrophysics Data System (ADS)
Park, Ki-Jun; jung, jihoon
2014-05-01
Recently, social interests and concerns regarding weather risk are gradually growing with increase in frequency of unusual phenomena. Actually, the threat to many vulnerable industries (sensitive to climate conditions) such as agriculture, architecture, logistics, transportation, clothing, home appliance, and food is increasing. According to climate change scenario reports published by National Institute of Meteorological Research (NIMR) in 2012, temperature and precipitation are expected to increase by 4.8% and 13.2% respectively with current status of CO2 emissions (RCP 8.5) at the end of the 21st century. Furthermore, most of areas in Korea except some mountainous areas are also expected to shift from temperate climate to subtropical climate. In the context of climate change, the intensity of severe weathers such as heavy rainfalls and droughts is enhanced, which, in turn, increases the necessity and importance of weather insurance. However, most insurance market is small and limited to policy insurance like crop disaster insurance, and natural disaster insurance in Korea. The reason for poor and small weather insurance market could result from the lack of recognition of weather risk management even though all economic components (firms, governments, and households) are significantly influenced by weather. However, fortunately, new renewable energy and leisure industry which are vulnerable to weather risk are in a long term uptrend and the interest of weather risk is also getting larger and larger in Korea. So, in the long run, growth potential of weather insurance market in Korea might be higher than ever. Therefore, in this study, the capacity of power generation per hour and hourly wind speed are analyzed to develop and test weather insurance index for wind power, and then the effectiveness of weather insurance index are investigated and the guidance will be derived to objectively calculate the weather insurance index.
Pilot Convective Weather Decision Making in En Route Airspace
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Gooding, Cary L.; Shelley, Alexandra E.; Duong, Constance G.; Johnson, Walter W.
2012-01-01
The present research investigates characteristics exhibited in pilot convective weather decision making in en route airspace. In a part-task study, pilots performed weather avoidance under various encounter scenarios. Results showed that the margins of safety that pilots maintain from storms are as fluid as deviation decisions themselves.
Workshop Report on Space Weather Risks and Society
NASA Technical Reports Server (NTRS)
Langhoff, Stephanie R.; Straume, Tore
2012-01-01
As technological innovations produce new capabilities, complexities, and interdependencies, our susceptibility to the societal impacts of space weather increase. There is real concern in the scientific community that our infrastructure would be at significant risk if a major geomagnetic storm should occur. To discuss the societal impacts of space weather, we brought together an interdisciplinary group of subject matter experts and societal stakeholders to participate in a workshop entitled Space Weather Risks and Society. The workshop was held at Ames Research Center (ARC) on 15-16 October 2011. The workshop was co-sponsored by NASA Ames Research Center (ARC), the Lockheed Martin Advanced Technology Center (LMATC), the Space Weather Prediction Center (SWPC, part of the National Oceanic and Atmospheric Administration NOAA), and the Rutherford Appleton Laboratory (RAL, part of the UK Science and Technology Facilities Council STFC). The workshop is part of a series of informal weekend workshops hosted by Center Director Pete Worden.
The EuroDIVERSITY Programme: Challenges of Biodiversity Science in Europe
NASA Astrophysics Data System (ADS)
Jonckheere, I.
2009-04-01
In close cooperation with its Member Organisations, the European Science Foundation (ESF) has launched since late 2003 a series of European Collaborative Research (EUROCORES) Programmes. Their aim is to enable researchers in different European countries to develop cooperation and scientific synergy in areas where European scale and scope are required in a global context. The EUROCORES instrument represents the first large scale attempt of national research (funding) agencies to act together against fragmentation, asynchronicity and duplication of research (funding) within Europe. Although covering all scientific fields, there are presently 13 EUROCORES Programmes dealing with cutting edge science in the fields of Earth, Climate and Environmental Sciences. The aim of the EuroDIVERSITY Programme is to support the emergence of an integrated biodiversity science based on an understanding of fundamental ecological and social processes that drive biodiversity changes and their impacts on ecosystem functioning and society. Ecological systems across the globe are being threatened or transformed at unprecedented rates from local to global scales due to the ever-increasing human domination of natural ecosystems. In particular, massive biodiversity changes are currently taking place, and this trend is expected to continue over the coming decades, driven by the increasing extension and globalisation of human affairs. The EuroDIVERSITY Programme meets the research need triggered by the increasing human footprint worldwide with a focus on generalisations across particular systems and on the generation and validation of theory relevant to experimental and empirical data. The EURODIVERSITY Programme tries to bridge the gaps between the natural and social sciences, between research work on terrestrial, freshwater and marine ecosystems, and between research work on plants, animals and micro-organisms. The Programme was launched in April 2006 and includes 10 international, multidisciplinary collaborative research projects, which are expected to contribute to this goal by initiating or strengthening major collaborative research efforts. Some projects are dealing primarily with microbial diversity (COMIX, METHECO, MiCROSYSTEMS), others try to investigate the biogeochemistry in grassland and forest ecosystems (BEGIN, BioCycle), the landscape and community ecology of biodiversity changes (ASSEMBLE, AGRIPOPES, EcoTRADE), and others focus on the diversity in freshwater (BIOPOOL, MOLARCH). In 2009, the EuroDIVERSITY Programme will integrate the different European research teams involved with collaborative field work campaigns over Europe, international workshops and conferences, as well as joint peer-review publications. For more information about the Programme and its activities, please check the Programme website: www.esf.org/eurodiversity
Audio-Visual Situational Awareness for General Aviation Pilots
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Clancy, Daniel (Technical Monitor)
2001-01-01
Weather is one of the major causes of general aviation accidents. Researchers are addressing this problem from various perspectives including improving meteorological forecasting techniques, collecting additional weather data automatically via on-board sensors and "flight" modems, and improving weather data dissemination and presentation. We approach the problem from the improved presentation perspective and propose weather visualization and interaction methods tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment (AWE), utilizes information visualization techniques, a direct manipulation graphical interface, and a speech-based interface to improve a pilot's situational awareness of relevant weather data. The system design is based on a user study and feedback from pilots.
Hogben, Matthew; Hood, Julia; Collins, Dayne; McFarlane, Mary
2013-11-01
Systematic analysis of STD programme data contributes to a national portrait of sexually transmitted disease (STD) prevention activities, including research and evaluation specifically designed to optimise programme efficiency and impact. We analysed the narrative of the 2009 annual progress reports of the US Comprehensive STD Prevention Systems cooperative agreement for 58 STD programmes, concentrating on programme characteristics and partnerships. Programmes described 516 unique partnerships with a median of seven organisations cited per STD programme. Non-profit organisations (including service providers) were most frequently cited. Higher gonorrhoea morbidity was associated with reporting more partnerships; budget problems were associated with reporting fewer. Challenges to engaging in partnerships included budget constraints, staff turnover and low interest. Data provide a source of information for judging progress in programme collaboration and for informing a sustained programme-focused research and evaluation agenda.
Lessons learnt on implementing an interdisciplinary doctoral programme in water sciences
NASA Astrophysics Data System (ADS)
Carr, Gemma; Loucks, Daniel Pete; Blaschke, Alfred Paul; Bucher, Christian; Farnleitner, Andreas; Fürnkranz-Prskawetz, Alexia; Parajka, Juraj; Pfeifer, Norbert; Rechberger, Helmut; Wagner, Wolfgang; Zessner, Matthias; Blöschl, Günter
2015-04-01
Using the Vienna Doctoral Programme on Water Resource Systems as a case study, this work describes how the characteristics of the programme can be evaluated to identify which process features are important for developing interdisciplinary research at the doctoral level. The Programme has been running since 2009, and to date has engaged 35 research students, three post-docs and ten faculty members from ten research fields (aquatic microbiology, hydrology, hydro-climatology, hydro-geology, mathematical economics, photogrammetry, remote sensing, resource management, structural mechanics, and water quality). Collaborative, multi-disciplinary research is encouraged and supported through various mechanisms - shared offices, study programme, research cluster groups that hold regular meetings, joint study sites, annual and six-month symposia that bring all members of the programme together, seminar series, joint supervision, and social events. Interviews were conducted with 12 students and recent graduates to explore individual experiences of doing interdisciplinary research within the Programme, and to identify which mechanisms are perceived to be of the greatest benefit for collaborative work. Analysis revealed four important process features. Firstly, students noted that joint supervision and supervisors who are motivated to collaborate are essential for multi-disciplinary collaborative work. Secondly, interviewees described that they work with the people they sit close to or see most regularly. Physical places for collaboration between different discipline researchers such as shared offices and shared study sites are therefore important. Thirdly, the costs and benefits to doing interdisciplinary work were highlighted. Students make a trade-off when deciding if their time investment to develop their understanding of a new research field will support them in addressing their research question. The personal characteristics of the researcher seem to be particularly relevant to this decision making process and need to be considered during student selection. Finally, communication skills are critical. Students noted that they need to be able to understand what each other are doing in order to work together and the symposia and research cluster meetings are good places for developing these skills.
The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong.
Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung
2015-03-01
It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.
The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong
NASA Astrophysics Data System (ADS)
Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung
2015-03-01
It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.
Mentees' Views of a Structured Mentoring Programme at Unisa
ERIC Educational Resources Information Center
Schulze, S.
2010-01-01
The Management of one college at Unisa initiated a structured mentoring programme to develop researchers, among others. This article reports the views of 43 mentees of the programme one year after implementation. The research design was a survey. The items in a questionnaire were influenced by the self-efficacy theory and the constructivist views…
Zachariah, R; Reid, T; Srinath, S; Chakaya, J; Legins, K; Karunakara, U; Harries, A D
2011-11-01
Very limited operational research (OR) emerges from programme settings in low-income countries where the greatest burden of disease lies. The price paid for this void includes a lack of understanding of how health systems are actually functioning, not knowing what works and what does not, and an inability to propose adapted and innovative solutions to programme problems. We use the National Tuberculosis Control Programme as an example to advocate for strong programme-level leadership to steer OR and build viable relationships between programme managers, researchers and policy makers. We highlight the need to create a stimulating environment for conducting OR and identify some of the main practical challenges and enabling factors at programme level. We focus on the important role of an OR focal point within programmes and practical approaches to training that can deliver timely and quantifiable outputs. Finally, we emphasise the need to measure successful OR leadership development at programme level and we propose parameters by which this can be assessed. This paper 1) provides reasons why programmes should take the lead in coordinating and directing OR, 2) identifies the practical challenges and enabling factors for implementing, managing and sustaining OR and 3) proposes parameters for measuring successful leadership capacity development in OR.
Definition of International GPM GV Research Program
NASA Technical Reports Server (NTRS)
Smith, Eric A.
2003-01-01
The Global Precipitation Measurement (GPM) Mission will consist of a constellation of rain-measuring satellites, the main member of which (the core satellite) will serve as the measurement reference to the other members of the constellation. The core satellite is being developed jointly by the National Aeronautics and Space Administration (NASA) and the newly-named Japan Aerospace Exploration Agency (JAXA -- previously NASDA) along with its government partner, the Communications Research Laboratory (CRL). The GPM mission was proposed as a follow-up mission to the Tropical Rainfall Measuring Mission (TRMM) by both NASA and NASDA based on the unparalleled scientific success of TRMM, and has recently been joined by the European Space Agency (ESA) via its formulation of the European GPM mission (i.e., EGPM). GPM is an ambitious mission designed to produce accurate and frequent global observations of precipitation (both rain and snow) made possible by replacing the TRMM satellite with the new core satellite carrying an advanced radar-radiometer system, and serving as the centerpiece for the constellation of some eight (8) additional satellites being provided through international cooperation. The core satellite is to be flown up to high latitudes (inclined some 65-70 degrees), and will carry a Ku/Ka-band, nadir-scanning, dual-frequency precipitation radar (DPR) that is being developed by JAXA and CRL, along with a large aperture, extended frequency-range, conically-scanning passive microwave radiometer being developed by NASA and its industrial partners. Each constellation satellite will also carry some type of multi-channel passive microwave radiometer (as well as a multi-beam Ka-band radar in the case of EGPM) whose rain estimates will be calibrated and referenced to those made by the core satellite, producing for the first time fully-global, continuous, and bias-free precipitation datasets. GPM data will be delivered in near-realtime, taking a major step toward the operational use of precipitation information for model initialization and data assimilation in a number of application areas such as hazardous weather forecasting, flood warning, fresh water resource assessment, and crop growth prediction. In addition, GPM data will complement the now-existing global temperature record, allowing for improved assessments of climate change, particularly those processes in which the global water cycle both forces and responds to climatic drifts in global temperature conditions. A foremost element of this international constellation mission is a parallel international ground validation (GV) network. This GV network is needed to determine uncertainties in the rain retrievals, critical for application of the retrieval information in weather and hydrometeorological modeling and climate diagnostics, as well as assurances that the satellite retrievals of surface rainfall are consistent with those actually measured at the surface. The key aspects of this network is that it must be worldwide and created through the GPM partnership process. Therefore the network will consist of a confederation of government agencies, academic organizations, private institutions, and individual scientists from a collection of nations who have initiated the process by gathering in Abingdon to develop the fundamentals of the international GPM GV research programme. Therefore in keeping with our responsibilities as the front-runners of the programme, the main objectives of this workshop are: (1) to present and share opinions on interests, perspectives, and concerns about GPM GV research; (2) to examine the conceptual and/or planned GPM GV site templates from NASA, NASDA, ESA, and other partners; (3) to define the main scientific objectives of the international GPM GV research programme; (4) to formulate a preliminary set of international GPM GV science and measurement requirements; and (5) to convene a Steering Committee to aid the organization of the GPM GV program, to document its science implementation plans, and to aid planning for follow-up GPM GV meetings.
"Using" Computer Graphic Representations to Promote Learning in Elementary Science Courses
ERIC Educational Resources Information Center
Lazaros, Edward J.; Spotts, Thomas H.
2009-01-01
This interdisciplinary activity promotes science, technology, and language arts and is well suited for upper elementary grade students. In the activity, students' research about a teacher-assigned weather phenomenon facilitates their study of the weather. When they have completed their research, students word process a paper summarizing their…
Potential climate change impacts on fire weather in the United States
Warren E. Heilman; Ying Tang; Lifeng Luo; Shiyuan Zhong; Julie Winkler; Xindi. Bian
2015-01-01
Researchers at Michigan State University and the Forest Service's Northern Research Station worked on a joint study to examine the possible effects of future global and regional climate change on the occurrence of fire-weather patterns often associated with extreme and erratic wildfire behavior in the United States.
NASA Astrophysics Data System (ADS)
Harper, K.
2015-12-01
At the end of World War II, Nobel Prize-winning chemist Irving Langmuir and his team at the General Electric Research Laboratory in Schenectady, New York, were doing advanced research on cloaking smokes and aircraft icing for the US military. Trying to determine why some clouds precipitated while others did not, Langmuir concluded that non-precipitating clouds were lacking "ice nuclei" that would gather up cloud droplets until they became large enough to fall out of the cloud. If they could find an artificial substitute, it would be possible to modify clouds and the weather. Dry ice particles did the trick, military funding followed, and cloud busting commenced. But a handful of entrepreneurial meteorologists saw a different purpose: enhancing precipitation and preventing hail damage. The commercialization of weather modification was underway, with cloud seeding enhancing rainfall east of the Cascades, in the Desert Southwest, and even in the watersheds serving New York City. Hail busting took off in the Dakotas, and snowpack enhancement got a boost in Montana. Basic cloud physics research very quickly became commercial weather modification, fulfilling a postwar desire to use science and technology to control nature and creating an opening for meteorologists to provide a variety of specialized services to businesses whose profits depend on the weather.
Third Space Weather Summit Held for Industry and Government Agencies
NASA Astrophysics Data System (ADS)
Intriligator, Devrie S.
2009-12-01
The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.
Rainmakers: why bad weather means good productivity.
Lee, Jooa Julia; Gino, Francesca; Staats, Bradley R
2014-05-01
People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Contrary to conventional wisdom, we predict and find that bad weather increases individual productivity and that it does so by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individuals appear to focus more on their work than on alternate outdoor activities. We investigate the proposed relationship between worse weather and higher productivity through 4 studies: (a) field data on employees' productivity from a bank in Japan, (b) 2 studies from an online labor market in the United States, and (c) a laboratory experiment. Our findings suggest that worker productivity is higher on bad-, rather than good-, weather days and that cognitive distractions associated with good weather may explain the relationship. We discuss the theoretical and practical implications of our research. (c) 2014 APA, all rights reserved.
Caldwell, Sarah E M; Mays, Nicholas
2012-10-15
The publication of Best research for best health in 2006 and the "ring-fencing" of health research funding in England marked the start of a period of change for health research governance and the structure of research funding in England. One response to bridging the 'second translational gap' between research knowledge and clinical practice was the establishment of nine Collaborations for Leadership in Applied Health Research and Care (CLAHRCs). The goal of this paper is to assess how national-level understanding of the aims and objectives of the CLAHRCs translated into local implementation and practice in North West London. This study uses a variation of Goffman's frame analysis to trace the development of the initial national CLAHRC policy to its implementation at three levels. Data collection and analysis were qualitative through interviews, document analysis and embedded research. Analysis at the macro (national policy), meso (national programme) and micro (North West London) levels shows a significant common understanding of the aims and objectives of the policy and programme. Local level implementation in North West London was also consistent with these. The macro-meso-micro frame analysis is a useful way of studying the transition of a policy from high-level idea to programme in action. It could be used to identify differences at a local (micro) level in the implementation of multi-site programmes that would help understand differences in programme effectiveness.
An examination of concussion education programmes: a scoping review methodology.
Caron, Jeffrey G; Bloom, Gordon A; Falcão, William R; Sweet, Shane N
2015-10-01
The primary purpose was to review the literature on concussion education programmes. The secondary purpose was to inform knowledge translation strategies for concussion researchers and practitioners. Research on concussion education programmes is relatively new. As a result, the current study implemented a scoping review methodology, which is a type of literary search used to provide a preliminary assessment of the size and scope of a body of literature, as well as identify strengths, weaknesses and gaps in the research. A five-stage process for conducting a scoping review was followed for this study: (a) identifying the research questions, (b) identifying relevant studies, (c) identifying the study selection criteria, (d) charting the data and (e) reporting the results. Concussion education programmes have been developed and implemented with populations ranging in age from 9 to 49 years and have used interactive oral presentations, educational videos and computer-based learning programmes. Although the content of these programmes varied, the topics generally addressed salient aspects of concussion injury and recovery. Quantitative instruments have been the preferred methods for assessment. Education programmes aimed at improving participants' long-term concussion knowledge, behaviours and attitudes of concussions are needed. Researchers must consider using a knowledge translation framework to enhance concussion education programmes. The application of such a framework can lead to novel and interesting ways of disseminating information about concussive injury and recovery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Process evaluation improves delivery of a nutrition-sensitive agriculture programme in Burkina Faso.
Nielsen, Jennifer N; Olney, Deanna K; Ouedraogo, Marcellin; Pedehombga, Abdoulaye; Rouamba, Hippolyte; Yago-Wienne, Fanny
2017-12-26
Evidence is emerging from rigorous evaluations about the effectiveness of nutrition-sensitive agriculture programmes in improving nutritional outcomes. Additional evidence can elucidate how different programme components and pathways contribute and can be optimized for impact. The International Food Policy Research Institute, with Helen Keller International, designed a comprehensive framework to evaluate the delivery, utilization, and impact of Helen Keller International's enhanced homestead food production programme in Burkina Faso. After 18 months of implementation, a process evaluation was conducted to examine programme impact pathways, using key informant and semistructured interviews with implementing agents and beneficiaries, and with residents of control communities. Data were analyzed by International Food Policy Research Institute and reviewed with project managers and partners through multiple workshops to identify opportunities to strengthen implementation. Findings illuminated gaps between intended and actual delivery schemes, including input constraints, knowledge gaps among community agents in agriculture and young child nutrition practices, and lower than expected activity by community volunteers. In response, staff developed measures to overcome water constraints and expand vegetable and poultry production, retrained volunteers in certain techniques of food production and counselling for nutrition behaviour change, added small incentives to motivate volunteers, and shaped both immediate and long-term changes to the programme model. Working closely with International Food Policy Research Institute on the evaluation activities also expanded the repertoire of research methods and skills of Helen Keller International staff. Process evaluation can strengthen programme delivery, utilization, and design. Collaboration between researchers and implementers can improve programme effectiveness, project staff capacity, and advance delivery science. © 2017 John Wiley & Sons Ltd.
Applications of Earth Remote Sensing in Response to Meteorological Disasters
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Bell, Jordan R.; Schultz, Lori A.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.
2013-01-01
NASA's Short--term Predic1on Research and Transi1on (SPoRT) Center supports the transi1on of unique NASA and NOAA research activities to the operational weather forecasing community. Our primary partners are NOAA's National Weather Service, their Weather Forecast Offices (WFOs), and National Centers. These organizations predict natural hazards and also assist in the disaster assessment process, benefiting from remotely sensed data. In 2013, SPoRT continued to transition high resolution satellite imagery, derived products, and value--added analysis to WFO partners and NASA's Applied Sciences Program.
Research relative to weather radar measurement techniques
NASA Technical Reports Server (NTRS)
Smith, Paul L.
1992-01-01
Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.
G. Sam Foster; Todd Mower; Russell Graham; Theresa B. Jain
2014-01-01
How does forest growth integrate weather, insect and disease attach, management actions, and natural disturbance? Which of these has the most impact on forest growth, composition, structure, and change? These questions have animated the activities of scientists of the Rocky Mountain Research Station (RMRS) since its earliest days, and continue to animate our research...
A Computational Architecture for Programmable Automation Research
NASA Astrophysics Data System (ADS)
Taylor, Russell H.; Korein, James U.; Maier, Georg E.; Durfee, Lawrence F.
1987-03-01
This short paper describes recent work at the IBM T. J. Watson Research Center directed at developing a highly flexible computational architecture for research on sensor-based programmable automation. The system described here has been designed with a focus on dynamic configurability, layered user inter-faces and incorporation of sensor-based real time operations into new commands. It is these features which distinguish it from earlier work. The system is cur-rently being implemented at IBM for research purposes and internal use and is an outgrowth of programmable automation research which has been ongoing since 1972 [e.g., 1, 2, 3, 4, 5, 6] .
Programmes and calls for public health research in European countries.
Conceição, Claudia; Grimaud, Olivier; McCarthy, Mark; Barnhoorn, Floris; Sammut, Marvic; Saliba, Amanda; Katreniakova, Zuzana; Narkauskaité, Laura
2013-11-01
Public health research, at population and organizational level, needs to be identified independently within 'health' research from biomedicine and life sciences. In PHIRE (Public Health Innovation and Research in Europe), we investigated the extent and character of public health research calls and programmes in European countries. Country respondents, identified through national member associations of the European Public Health Association completed a standardized recording instrument. Public health research was defined, and the call period limited to the latest full year (2010). Of the 30 countries included (EU 27 plus Iceland, Norway and Switzerland), there were reports for 25 countries A simple classification of the calls was developed. There were 75 calls and programmes included. Of these, 41 (55%) together were in France and the UK, and 34 in a further 14 countries, while 9 countries reported there were no calls or programmes opened in 2010. Calls were categorized across diseases, behaviours, determinants, services and methodologies. Some calls were broad, while others--particularly in the countries with several calls--were more detailed towards specific issues. Levels of funding varied markedly and were difficult to define. Where stated, in 32 responses, 19 calls were only open to national applicants and 13 from abroad. Most European countries have competitive programmes and calls relevant for public health research, but they are poorly identified. Only a minority of countries present a wide range of topics and specific fields. Effort is needed to develop classifications for public health programmes and calls for public health research, improve information (including financial) collection to enable systematic comparisons and build greater recognition of public health research within research communities, with national and European research funding organizations, and for practitioners and policymakers.
Structured Doctoral Education in Hannover - Joint Programme IMPRS-GW and geo-Q RTG
NASA Astrophysics Data System (ADS)
Kawazoe, Fumiko; Bruns, Sandra
2018-02-01
Two structured doctoral programmes that we have in Hannover, the IMPRS on Gravitational Wave Astronomy and SFB on relativistic geodesy and gravimetry with quantum sensors geo-Q, have not only become major resources for education in each field but have also started to provide substantial synergy to members of both programmes. Our strong crossdisciplinary approach to create a joint programme has received excellent feedback not only from researchers inside the programme but also from various external committee. Building on experience that we have acquired over the last decade, we propose to set up a common doctoral programme within the international gravitational wave astronomy and physics. We envisage that with a common doctoral programme we will create a strong team of young researchers who will carry on building a strong network of third generation gravitational wave detectors and observatories.
Thunderstorm Research International Program (TRIP 77) report to management
NASA Technical Reports Server (NTRS)
Taiani, A. J.
1977-01-01
A post analysis of the previous day's weather, followed by the day's forecast and an outlook on weather conditions for the following day is given. The normal NOAA weather charts were used, complemented by the latest GOES satellite pictures, the latest rawinsonde sounding, and the computer-derived thunderstorm probability forecasts associated with the sounding.
Edwin Grant Dexter: an early researcher in human behavioral biometeorology.
Stewart, Alan E
2015-06-01
Edwin Grant Dexter (1868-1938) was one of the first researchers to study empirically the effects of specific weather conditions on human behavior. Dexter (1904) published his findings in a book, Weather influences. The author's purposes in this article were to (1) describe briefly Dexter's professional life and examine the historical contexts and motivations that led Dexter to conduct some of the first empirical behavioral biometeorological studies of the time, (2) describe the methods Dexter used to examine weather-behavior relationships and briefly characterize the results that he reported in Weather influences, and (3) provide a historical analysis of Dexter's work and assess its significance for human behavioral biometeorology. Dexter's Weather influences, while demonstrating an exemplary approach to weather, health, and behavior relationships, came at the end of a long era of such studies, as health, social, and meteorological sciences were turning to different paradigms to advance their fields. For these reasons, Dexter's approach and contributions may not have been fully recognized at the time and are, consequently, worthy of consideration by contemporary biometeorologists.
Edwin Grant Dexter: an early researcher in human behavioral biometeorology
NASA Astrophysics Data System (ADS)
Stewart, Alan E.
2015-06-01
Edwin Grant Dexter (1868-1938) was one of the first researchers to study empirically the effects of specific weather conditions on human behavior. Dexter (1904) published his findings in a book, Weather influences. The author's purposes in this article were to (1) describe briefly Dexter's professional life and examine the historical contexts and motivations that led Dexter to conduct some of the first empirical behavioral biometeorological studies of the time, (2) describe the methods Dexter used to examine weather-behavior relationships and briefly characterize the results that he reported in Weather influences, and (3) provide a historical analysis of Dexter's work and assess its significance for human behavioral biometeorology. Dexter's Weather influences, while demonstrating an exemplary approach to weather, health, and behavior relationships, came at the end of a long era of such studies, as health, social, and meteorological sciences were turning to different paradigms to advance their fields. For these reasons, Dexter's approach and contributions may not have been fully recognized at the time and are, consequently, worthy of consideration by contemporary biometeorologists.
Mitchell, Steven; Cockcroft, Anne; Andersson, Neil
2011-12-21
Maps can portray trends, patterns, and spatial differences that might be overlooked in tabular data and are now widely used in health research. Little has been reported about the process of using maps to communicate epidemiological findings. Population weighted raster maps show colour changes over the study area. Similar to the rasters of barometric pressure in a weather map, data are the health occurrence--a peak on the map represents a higher value of the indicator in question. The population relevance of each sentinel site, as determined in the stratified last stage random sample, combines with geography (inverse-distance weighting) to provide a population-weighted extension of each colour. This transforms the map to show population space rather than simply geographic space. Maps allowed discussion of strategies to reduce violence against women in a context of political sensitivity about quoting summary indicator figures. Time-series maps showed planners how experiences of health services had deteriorated despite a reform programme; where in a country HIV risk behaviours were improving; and how knowledge of an economic development programme quickly fell off across a region. Change maps highlighted where indicators were improving and where they were deteriorating. Maps of potential impact of interventions, based on multivariate modelling, displayed how partial and full implementation of programmes could improve outcomes across a country. Scale depends on context. To support local planning, district maps or local government authority maps of health indicators were more useful than national maps; but multinational maps of outcomes were more useful for regional institutions. Mapping was useful to illustrate in which districts enrolment in religious schools--a rare occurrence--was more prevalent. Population weighted raster maps can present social audit findings in an accessible and compelling way, increasing the use of evidence by planners with limited numeracy skills or little time to look at evidence. Maps complement epidemiological analysis, but they are not a substitute. Much less do they substitute for rigorous epidemiological designs, like randomised controlled trials.
The relevance and legibility of radio/TV weather reports to the Austrian public
NASA Astrophysics Data System (ADS)
Keul, A. G.; Holzer, A. M.
2013-03-01
The communicative quality of media weather reports, especially warnings, can be evaluated by user research. It is an interdisciplinary field, still uncoordinated after 35 years. The authors suggest to shift from a cognitive learning model to news processing, qualitative discourse and usability models as the media audience is in an edutainment situation where it acts highly selective. A series of field surveys 2008-2011 tested the relevance and legibility of Austrian radio and television weather reports on fair weather and in warning situations. 247 laypeople heard/saw original, mostly up-to-date radio/TV weather reports and recalled personally relevant data. Also, a questionnaire on weather knowledge was answered by 237 Austrians. Several research hypotheses were tested. The main results were (a) a relatively high level of meteorological knowledge of the general population, with interest and participation of German-speaking migrants, (b) a pluralistic media usage with TV, radio and internet as the leading media, (c) higher interest and attention (also for local weather) after warnings, but a risk of more false recalls after long warnings, (d) more recall problems with radio messages and a wish that the weather elements should always appear in the same order to faciliate processing for the audience. In their narrow time windows, radio/TV weather reports should concentrate on main features (synoptic situation, tomorrow's temperature and precipitation, possible warnings), keep a verbal “speed limit” and restrict show elements to serve the active, selective, multioptional, multicultural audience.
ERIC Educational Resources Information Center
Hennessy, Sara; Dragovic, Tatjana; Warwick, Paul
2018-01-01
The study reported in this article investigated the influence of a research-informed, school-based, professional development workshop programme on the quality of classroom dialogue using the interactive whiteboard (IWB). The programme aimed to develop a dialogic approach to teaching and learning mediated through more interactive uses of the IWB,…
ERIC Educational Resources Information Center
Kitawi, Alfred Kirigha
2014-01-01
This research examined the issue of community capacity development in a university. The main way communities were empowered was through the education management programmes offered at Strathmore University in Nairobi, Kenya. The research is among the first to examine the issue of community capacity development through university programmes. The…
ERIC Educational Resources Information Center
White, Linda A.; Prentice, Susan; Perlman, Michal
2015-01-01
An expanding body of research demonstrates that high quality early childhood education and care (ECEC) programmes generate positive outcomes for children; in response, policy makers in a number of countries are making significant programme investments. No research consensus, however, has emerged around the specific types of policy intervention…
Foreign Language Teachers' Professional Development through Peer Observation Programme
ERIC Educational Resources Information Center
Dos Santos, Luis Miguel
2016-01-01
The purpose of the research is to explore the development of peer-observation programme for the use of an extension language school in Hong Kong. The research objectives were to explore teachers' perceptions on a peer observation programme as a means to improve teaching practice, examine how teachers make sense of the peer observation programme…
The Incredible Years Parent Training Programme in Tauranga: A Research Summary
ERIC Educational Resources Information Center
Hamilton, Michelle; Litterick-Biggs, Angela
2008-01-01
The Incredible Years parent training programme is a research-based therapy which aims to help families improve the behaviour of children with conduct difficulties in the early years, while the behaviour is malleable (Webster-Stratton & Reid, 2003). The short-term goals of the programme are to reduce conduct problems in children by increasing…
Breslin, L
2001-08-01
Since 1987, successive framework programmes have contributed to strengthen European food research through the establishment of networks between research institutions, universities and companies from various European countries. In the FAIR programme (1994-1998), 118 research projects comprising nearly 1,000 participants from the European Union and Associated States have been supported in the food area with a European funding of about [symbol: see text] 108 million. Within the Quality of Life and Management of Living Resources programme (1998-2002), food research is mostly supported within the key action 'food, nutrition and health' with a budget of [symbol: see text] 290 million. After the first four deadlines, 735 eligible research proposals have already been received. Further to their evaluation by a panel of independent experts, 108 proposals have been funded or selected for funding representing a total contribution of about [symbol: see text] 168 million. Among those, several clusters of projects are now running on important topics such as probiotics, coeliac diseases, mycotoxins, GMO, safety and food for the elderly. In addition, technology stimulation measures are largely benefiting SMEs to foster their innovation potential. In January 2000, the European Commission adopted a Communication entitled "Towards the European Research Area (ERA)" with the objective to contribute to developing better framework conditions for research in Europe. On 21 February 2001, the Commission adopted proposals to be submitted to the European Parliament and Council for the next framework programme for research and innovation (2002-2006). The new framework programme that is becoming one of the financial instruments of the ERA aims at catalysing the integration of European research by: strengthening of links between the Community research effort and national and regional research policies; concentrating on a limited number of priority fields or research to which activities at the Union level can add real value. One of the seven priority areas, entitled 'food safety and health risks', is intended to help establish the integrated scientific and technological bases needed to develop a system of production and distribution of safe and healthy food and control food-related risks, relying in particular on biotechnology tools, as well as health risks associated with environmental changes. A total budget of [symbol: see text] 600 million is proposed for this priority. In the priority areas, the new framework programme will work mainly by supporting the development of cooperation within networks of excellence bringing together the best research capabilities in Europe's regions to conduct common research programmes and integrated projects involving public and private partners, with clearly stated scientific and technological objectives.
Selection of magister learners in nursing science at the Rand Afrikaans University.
Botes, A
2001-05-01
Selection of learners implies that candidates are assessed according to criteria with the purpose of selecting the most suitable learners for the course. A magister qualification is on level 8A of the National Qualifications Framework (NQF). The purpose of a magister qualification in Nursing is the development of advanced research, clinical, professional, managerial, educational, leadership and consultative abilities (knowledge, skills, values and attitudes) for the promotion of individual, family, group and community health. From the above introduction it becomes clear that there is a high expectations of a person with a magister qualification. Such a person should be a specialist, scientist, leader and role model in the profession. A magister programme is human-power intensive as well as capital intensive for both the learner and higher education institutions. It is therefore important to select learners with the ability to achieve the outcomes of the programme. Limited research has been conducted on the selection of post graduate learners. This leads to the question whether the current selection criteria (undergraduate mark and the mark in Research Methodology) are reasonable predictors of success for the magister programmes. In order to answer this question, hypotheses with the following variables were formulated. Achievement/success in the magister programme as reflected by The mark for the dissertation or mini-dissertation. The level of input by the supervisor during the magister programme. The quality of the research article reflecting the research in the magister programme. Undergraduate mark Mark for Research Methodology In order to test the hypotheses a quantitative correlation design was used incorporating documented data of 74 magister graduates. Descriptive and inferential data analysis (Pearson's correlation coefficient, ANOVA and multivariate test) were used. The findings showed Research Methodology to be the best indicator of success in the magister programmes.
Beyond Constructivism: The Progressive Research Programme into Learning Science
ERIC Educational Resources Information Center
Taber, Keith S.
2006-01-01
In this paper, it is suggested that while there are a variety of frames or perspectives that guide research into learning science, a pre-paradigmatic field need not be a "free-for-all". Lakatos suggested that academic research fields were characterised by research programmes (RP), which offered heuristic guidance to researchers, and which…
Using Weather Types to Understand and Communicate Weather and Climate Impacts
NASA Astrophysics Data System (ADS)
Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.
2017-12-01
A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.
Lessons from the evaluation of the UK's NHS R&D Implementation Methods Programme
Soper, Bryony; Hanney, Stephen R
2007-01-01
Background Concern about the effective use of research was a major factor behind the creation of the NHS R&D Programme in 1991. In 1994, an advisory group was established to identify research priorities in research implementation. The Implementation Methods Programme (IMP) flowed from this, and its commissioning group funded 36 projects. In 2000 responsibility for the programme passed to the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D, which asked the Health Economics Research Group (HERG), Brunel University, to conduct an evaluation in 2002. By then most projects had been completed. This evaluation was intended to cover: the quality of outputs, lessons to be learnt about the communication strategy and the commissioning process, and the benefits from the projects. Methods We adopted a wide range of quantitative and qualitative methods. They included: documentary analysis, interviews with key actors, questionnaires to the funded lead researchers, questionnaires to potential users, and desk analysis. Results Quantitative assessment of outputs and dissemination revealed that the IMP funded useful research projects, some of which had considerable impact against the various categories in the HERG payback model, such as publications, further research, research training, impact on health policy, and clinical practice. Qualitative findings from interviews with advisory and commissioning group members indicated that when the IMP was established, implementation research was a relatively unexplored field. This was reflected in the understanding brought to their roles by members of the advisory and commissioning groups, in the way priorities for research were chosen and developed, and in how the research projects were commissioned. The ideological and methodological debates associated with these decisions have continued among those working in this field. The need for an effective communication strategy for the programme as a whole was particularly important. However, such a strategy was never developed, making it difficult to establish the general influence of the IMP as a programme. Conclusion Our findings about the impact of the work funded, and the difficulties faced by those developing the IMP, have implications for the development of strategic programmes of research in general, as well as for the development of more effective research in this field. PMID:17309803
The Use of Radar Imagery in Climatological Research. Resource Paper No. 21.
ERIC Educational Resources Information Center
Williams, Aaron, Jr.
Intended to supplement undergraduate college geography courses, this resource paper investigates the need and use of radar in weather phenomena research. Radar can be used to study weather phenomena over a wide area, thus improving the results of statistical analyses previously limited by inadequate data. Radar techniques are also useful for…
1983-08-01
the resting metabolic heat will be dissipated through the clothing with the remaining 25% lost through the respiratory tract and insensible sweating...AD-A258 410 PHYSIOLOGICAL EVALUATION OF Al (EXTREME-COLD-WEATHER) AND A2 (BUOYANT, INTERMEDIATE-COLD-WEATHER) JACKETS NAVY CLOTHING AND TEXTILE...Navy Clothing and Textile Research Facility 523-003-30-06 21 Strathmore Road 523-003-30-08 Natick, MA 01760 11. CONTROLLING OFFICE NAME AND ADDRESS
Nyirenda, Deborah; Makawa, Tamara Chipasula; Chapita, Greyson; Mdalla, Chisomo; Nkolokosa, Mzati; O'byrne, Thomasena; Heyderman, Robert; Desmond, Nicola
2018-02-01
Radio is an effective source of health information in many resource poor countries. In Malawi, 53% of households own radios however few radio programmes in Malawi focus on health issues in the context of medical research. An interactive health-talk radio programme ' Umoyo nkukambirana' was introduced by Malawi-Liverpool-Wellcome Trust Clinical Research Programme on a national radio station. The aim was to increase awareness of health and medical research, and improve engagement between researchers, healthcare workers and the public. The content and presentation were developed through participatory community consultations. Focus Group Discussions were conducted with established Radio Listening Clubs whilst quantitative data was collected using toll free FrontlineSMS to explore national response. A total of 277 to 695 SMS (Median: 477) were received per theme. The majority of SMS were received from men (64%) and mainly from rural areas (54%). The programme improved knowledge of medical research, health and dispelled misconceptions. This study suggests that the radio may be an effective means of increasing the exposure of men to health information in resource poor settings.
Nyirenda, Deborah; Makawa, Tamara Chipasula; Chapita, Greyson; Mdalla, Chisomo; Nkolokosa, Mzati; O’byrne, Thomasena; Heyderman, Robert; Desmond, Nicola
2016-01-01
Radio is an effective source of health information in many resource poor countries. In Malawi, 53% of households own radios however few radio programmes in Malawi focus on health issues in the context of medical research. An interactive health-talk radio programme ‘Umoyo nkukambirana’ was introduced by Malawi-Liverpool-Wellcome Trust Clinical Research Programme on a national radio station. The aim was to increase awareness of health and medical research, and improve engagement between researchers, healthcare workers and the public. The content and presentation were developed through participatory community consultations. Focus Group Discussions were conducted with established Radio Listening Clubs whilst quantitative data was collected using toll free FrontlineSMS to explore national response. A total of 277 to 695 SMS (Median: 477) were received per theme. The majority of SMS were received from men (64%) and mainly from rural areas (54%). The programme improved knowledge of medical research, health and dispelled misconceptions. This study suggests that the radio may be an effective means of increasing the exposure of men to health information in resource poor settings. PMID:27365364
NASA Astrophysics Data System (ADS)
Jung, Jae-Won; Kim, Sang-Woo; Shim, Jae-Kwan; Kwak, Kyung-Hwan
2017-04-01
The Weather Information Service Engine (WISE), launched project of the Korea Meteorological Administration (KMA), aims to operate the urban meteorological observation network from 2012 to 2019 and to test and operate the application weather service (e.g., flash flood, road weather, city ecology, city microclimate, dispersion of hazardous substance etc.) in 2019 through the development of Advanced Storm-scale Analysis Prediction System(ASAPS) for the production of storm-scale hazard weather monitoring and prediction system. The WISE institute has completed construction of 31 urban meteorological observation cities in Seoul metropolitan area and has built a real-time test operation and verification system by improving the ASAPS that produces 1 km and 6 hour forecast information based on the 5 km forecast information of KMA. Field measurements of 2016 WISE Urban Summer Observation Campaign (WUSOC 2016) was conducted in the Seoul metropolitan area of South Korea from August 22 to October 14, 2016. Involving over 70 researchers from more than 12 environmental and atmospheric science research groups in South Korea, WUSOC2016 focused on special observations, severe rain storm observations using mobile observation car and radiosonde, wind profile observations using Wind Doppler Lidar and radiosonde, etc., around the Seoul metropolitan area. WUSOC2016 purpose at data quality control, accuracy verification, usability check, and quality improvement of ASAPS at observation stations constructed in WISE. In addition, we intend to contribute to the activation of urban fusion weather research and risk weather research through joint observation and data sharing.
Improving Predictions and Management of Hydrological Extremes
NASA Astrophysics Data System (ADS)
Wijngaard, Janet; Liggins, Felicity; Hurk, Bart vd; Lavers, David; Magnusson, Linus; Bouwer, Laurens; Weerts, Albrecht; Kjellström, Erik; Mañez, Maria; Ramos, Maria-Helena; Hananel, Cedric; Ercin, Ertug; Hunink, Johannes; Klein, Bastian; Pouget, Laurent; de Moel, Hans
2017-04-01
The EU Roadmap on Climate Services can be seen as a result of convergence between society's call for "actionable research" and the climate research community's provision of tailored data, information and knowledge. Although weather and climate have distinct definitions, a strong link between weather and climate services does exist but, to date, this link has not been explored extensively. Stakeholders being interviewed in the context of the Roadmap consider changes in our climate as distant, long-term impacts that are difficult to consider in present-day decision making, a process usually dominated by their daily experience with handling adverse weather and extreme events. However, it could be argued that this experience is a rich source of inspiration to increase society's resilience to an unknown future. The European research project, IMPREX, is built on the notion that "experience in managing present day weather extremes can help us anticipate the consequences of future climate variability and change". This presentation illustrates how IMPREX is building the link between the providers and users of information and services addressing both the weather and climate timescales. For different stakeholders in key economic sectors the needs and vulnerabilities in their daily practice are discussed, followed by an analysis of how weather and climate (W&C) services could contribute to the demands that arise from this. Examples of case studies showing the relevance of the tailored W&C information in users' operations will be included.
Constructing Data Albums for Significant Severe Weather Events
NASA Technical Reports Server (NTRS)
Greene, Ethan; Zavodsky, Bradley; Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Bakare, Rohan; Basyal, Sabin; Conover, Helen
2014-01-01
There is need in the research community for weather-related case studies to improve prediction of and recovery after convective thunderstorms that produce damaging winds, hail, and tornadoes. One of the largest continuing challenges in any Earth Science investigation is the discovery of and access to useful science content from the increasingly large volumes of available Earth Science data. The Information Technology and Systems Center at the University of Alabama in Huntsville has developed a software system called Noesis 2.0 that can be used to produce Data Albums for weather events relevant to NASA Earth Science researchers. Noesis is an Internet search tool that combines relevant storm research, pictures and videos of an event or event aftermath, web pages containing news reports and official storm summaries, background information about damage, injuries, and deaths, and NASA datasets from field campaigns and satellites into a "one-stop shop" database. The Data Album concept has been previously applied to hurricane cases from 2010 to present. The objective of this paper is to extend that Hurricane Data Album concept to focus on development of an ontology for significant severe weather to aid in selecting appropriate NASA datasets for inclusion in a severe weather Data Album. Recent severe weather events in Moore and El Reno, Oklahoma will be analyzed as an example of how these events can be incorporated into a Data Album.
Climate Change in the Pacific Islands
NASA Astrophysics Data System (ADS)
Hamnett, Michael P.
Climate change have been a major concern among Pacific Islanders since the late 1990s. During that period, Time Magazine featured a cover story that read: Say Goodbye to the Marshall Islands, Kiribati, and Tuvalu from sea level rise. Since that time, the South Pacific Regional Environment Programme, UN and government agencies and academic researchers have been assessing the impacts of long-term climate change and seasonal to inter-annual climate variability on the Pacific Islands. The consensus is that long-term climate change will result in more extreme weather and tidal events including droughts, floods, tropical cyclones, coastal erosion, and salt water inundation. Extreme weather events already occur in the Pacific Islands and they are patterned. El Niño Southern Oscillation (ENSO) events impact rainfall, tropical cyclone and tidal patterns. In 2000, the first National Assessment of the Consequences of Climate Variability and Change concluded that long-term climate change will result in more El Niño events or a more El Niño like climate every year. The bad news is that will mean more natural disasters. The good news is that El Niño events can be predicted and people can prepare for them. The reallly bad news is that some Pacific Islands are already becoming uninhabitable because of erosion of land or the loss of fresh water from droughts and salt water intrusion. Many of the most vulnerable countries already overseas populations in New Zealand, the US, or larger Pacific Island countries. For some Pacific Islander abandoning their home countries will be their only option.
Solving the African Climate Observation Puzzle, and Concurrently Building Capacity
NASA Astrophysics Data System (ADS)
Selker, J. S.; Van De Giesen, N.; Annor, F. O.; Hochreutener, R.; Jachens, E. R.
2017-12-01
The Trans-African Hydro-Meteorological Observatory (TAHMO.org) is directly addressing basic issues of climate observation, climate science, and education through a novel public-private partnership. With 500 stations now reporting from over 20 African countries, TAHMO is the largest single source of continental-scale weather and climate data for Africa. Working directly with national meteorological agencies, TAHMO first builds local human capacity and real-time data to the host country. TAHMO also provides all of these data free of charge to all researchers and teams seeking to develop peer-reviewed scientific contributions. This will be the basis of a whole new level of observation-informed science for the African continent. Most TAHMO stations are housed at African schools, with a local host-teacher who attends to basic day-to-day cleaning. These schools also receive free curricular support providing geographic, mathematical, statistical, hydrologic, and meteorological lessons that connect student to their environment and creates climate-aware citizens, which we believe is the most fundamental element of developing a climate-resilient society. Installation of these stations have been made possible through the support of private companies like IBM and development programmes through the Global Resilience Partnership, World Bank, USAID among others. The availability of these new data sets will help generate more accurate weather forecasts which will be made freely available across the African continent. TAHMO leverages low-cost cell phone data transmission with solid-state sensor technology (provided by the METER corporation) to provide a cost-effective, sustainable, and transformative solution to the climate observation gap in Africa.
Successfully Transitioning Science Research to Space Weather Applications
NASA Technical Reports Server (NTRS)
Spann, James
2012-01-01
The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.
2014-01-01
Introduction Governments in different countries have committed to better use of evidence from research in policy. Although many programmes are directed at assisting agencies to better use research, there have been few tests of the effectiveness of such programmes. This paper describes the protocol for SPIRIT (Supporting Policy In health with Research: an Intervention Trial), a trial designed to test the effectiveness of a multifaceted programme to build organisational capacity for the use of research evidence in policy and programme development. The primary aim is to determine whether SPIRIT results in an increase in the extent to which research and research expertise is sought, appraised, generated and used in the development of specific policy products produced by health policy agencies. Methods and analysis A stepped wedge cluster randomised trial involving six health policy agencies located in Sydney, Australia. Policy agencies are the unit of randomisation and intervention. Agencies were randomly allocated to one of three start dates (steps) to receive the 1-year intervention programme, underpinned by an action framework. The SPIRIT intervention is tailored to suit the interests and needs of each agency and includes audit, feedback and goal setting; a leadership programme; staff training; the opportunity to test systems to assist in the use of research in policies; and exchange with researchers. Outcome measures will be collected at each agency every 6 months for 30 months (starting at the beginning of step 1). Ethics and dissemination Ethics approval was granted by the University of Western Sydney Human Research and Ethics Committee HREC Approval H8855. The findings of this study will be disseminated broadly through peer-reviewed publications and presentations at conferences and used to inform future strategies. PMID:24989620
Activity of Science and Operational Research of NICT Space Weather
NASA Astrophysics Data System (ADS)
Ishii, Mamoru; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Tsugawa, Takuya; Kubo, Yuki
Operational space weather forecast is for contribution to social infrastructure than for academic interests. These user need will determine the target of research, e.g., the precision level, spatial and temporal resolution and/or required lead time. We, NICT, aim two target in the present mid-term strategic plan, which are (1) forecast of ionospheric disturbance influencing to satellite positioning, and (2) forecast of disturbance in radiation belt influencing to satellite operation. We have our own observation network and develop empirical and numerical models for achieving each target. However in actual situation, it is much difficult to know the user needs quantitatively. Most of space weather phenomena makes the performance of social infrastructure poor, for example disconnect of HF communication, increase of GNSS error. Most of organizations related to these operation are negative to open these information. We have personal interviews to solve this issue. In this interview, we try to collect incident information related to space weather in each field, and to retrieve which space weather information is necessary for users. In this presentation we will introduce our research and corresponding new service, in addition to our recent scientific results.
Four top tier challenges for Space Weather Research for the next decade
NASA Astrophysics Data System (ADS)
Spann, James
2017-04-01
The science of space weather is that which (1) develops the knowledge and understanding to predict conditions in space that impact life and society, and (2) leads to operational solutions that protect assets and systems to the benefit of society. Advances over the past decades in this area of research have yielded amazing discoveries and significant strides toward fulfilling the promise of an operational solution to space weather, and have facilitated the enterprise to make its way into the realm of national and international policy. Even if the resources, technologies, and political will were available to take advantage of this progress, our current lack of understanding of space weather would prevent the implementation of a fully operational system. This talk will highlight four distinct areas of research that, if fully understood, could enable operational solutions to space weather impacts, given sufficient resources and political will. These areas are (a) trigger of solar variability, (b) acceleration of mass and energy in interplanetary space, (c) geoeffectiveness of solar wind, and (d) ionospheric variability. A brief description, technical challenges, and possible pathways to resolution will be offered for each of these areas.
New Technologies for Weather Accident Prevention
NASA Technical Reports Server (NTRS)
Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.
2005-01-01
Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.
Forecast and Warning Services of the National Weather Service Introduction Quantitative precipitation future which is an active area of research currently. 2) Evaluate HPN performance for forecast periods
Perraton, L; Machotka, Z; Gibbs, C; Mahar, C; Kennedy, K; Grimmer, K
2017-07-01
Assisting physiotherapists to implement research evidence into clinical practice is essential to ensure the quality of practice and encourage lifelong learning and professional progression. However, many physiotherapists report barriers to implementing research, and there is little evidence regarding the sustainability of intended evidence-based practice (EBP) behaviours following EBP education programmes. This paper reports on intended and actual long-term EBP behaviours of physiotherapy students who completed an intensive EBP training programme embedded within a post-graduate coursework programme. An intensive 3-week course in quantitative health research methods and EBP was delivered annually from 2007 to 2014 as part of the programme to national and international students. Following the course, students were asked about their intention of using evidence to inform their future clinical practice. An online survey was used to evaluate EBP behaviours of graduates. Of a possible total of 202 students, contact details for 193 students were sourced, and 65 students responded to the survey (34% response rate). At course completion, 174 students (86%) indicated that they intended to use research to guide their clinical decisions at least once a week. At follow-up, most graduates reported frequently using research to inform their clinical practice; indicated by a mean score of 6.5 (±1.9) from a possible range of 0 (not at all) to 10 (all the time). On average, students reported spending 2.2 (±2.2) hours accessing and reading research evidence per week. The most common barriers to implementing evidence were lack of time, limited access to evidence sources and a perceived lack of generalizability of research findings to specific patient groups. Graduates of an intensive EBP training programme embedded within an existing post-graduate physiotherapy programme regularly implemented EBP in clinical practice. Barriers to evidence implementation were time, access to research and perceived lack of generalizability of research findings. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Time to publication for NIHR HTA programme-funded research: a cohort study
Chinnery, Fay; Young, Amanda; Goodman, Jennie; Ashton-Key, Martin; Milne, Ruairidh
2013-01-01
Objective To assess the time to publication of primary research and evidence syntheses funded by the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) Programme published as a monograph in Health Technology Assessment and as a journal article in the wider biomedical literature. Study design Retrospective cohort study. Setting Primary research and evidence synthesis projects funded by the HTA Programme were included in the cohort if they were registered in the NIHR research programmes database and was planned to submit the draft final report for publication in Health Technology Assessment on or before 9 December 2011. Main outcome measures The median time to publication and publication at 30 months in Health Technology Assessment and in an external journal were determined by searching the NIHR research programmes database and HTA Programme website. Results Of 458 included projects, 184 (40.2%) were primary research projects and 274 (59.8%) were evidence syntheses. A total of 155 primary research projects had a completion date; the median time to publication was 23 months (26.5 and 35.5 months to publish a monograph and to publish in an external journal, respectively) and 69% were published within 30 months. The median time to publication of HTA-funded trials (n=126) was 24 months and 67.5% were published within 30 months. Among the evidence syntheses with a protocol online date (n=223), the median time to publication was 25.5 months (28 months to publication as a monograph), but only 44.4% of evidence synthesis projects were published in an external journal. 65% of evidence synthesis studies had been published within 30.0 months. Conclusions Research funded by the HTA Programme publishes promptly. The importance of Health Technology Assessment was highlighted as the median time to publication was 9 months shorter for a monograph than an external journal article. PMID:24285634
Towards an Ethics of "Research Programmes" in Special Education
ERIC Educational Resources Information Center
Hausstatter, Rune Sarromaa; Connolley, Steven
2007-01-01
This article presents an analysis of the different perspectives and ideologies within the evolving field of special education research. This examination has claimed that Imre Lakatos' notion of "research programmes", which allows for a plurality of directions of research, provides a valuable guide for understanding the development and current…
Vocabulary Knowledge and Growth in Immersion and Regular Language-Learning Programmes in Hong Kong
ERIC Educational Resources Information Center
Lo, Yuen Yi; Murphy, Victoria A.
2010-01-01
The aim of this study was to investigate vocabulary knowledge and growth across two different language-learning programmes in Hong Kong. The two programmes compared were English immersion programmes (IM) and regular English second-language programmes (RL2). While previous research has identified an overall advantage to IM with respect to language…
2017-07-01
forecasts and observations on a common grid, which enables the application a number of different spatial verification methods that reveal various...forecasts of continuous meteorological variables using categorical and object-based methods . White Sands Missile Range (NM): Army Research Laboratory (US... Research version of the Weather Research and Forecasting Model adapted for generating short-range nowcasts and gridded observations produced by the
2012-01-01
Background The publication of Best research for best health in 2006 and the “ring-fencing” of health research funding in England marked the start of a period of change for health research governance and the structure of research funding in England. One response to bridging the ‘second translational gap’ between research knowledge and clinical practice was the establishment of nine Collaborations for Leadership in Applied Health Research and Care (CLAHRCs). The goal of this paper is to assess how national-level understanding of the aims and objectives of the CLAHRCs translated into local implementation and practice in North West London. Methods This study uses a variation of Goffman’s frame analysis to trace the development of the initial national CLAHRC policy to its implementation at three levels. Data collection and analysis were qualitative through interviews, document analysis and embedded research. Results Analysis at the macro (national policy), meso (national programme) and micro (North West London) levels shows a significant common understanding of the aims and objectives of the policy and programme. Local level implementation in North West London was also consistent with these. Conclusions The macro-meso-micro frame analysis is a useful way of studying the transition of a policy from high-level idea to programme in action. It could be used to identify differences at a local (micro) level in the implementation of multi-site programmes that would help understand differences in programme effectiveness. PMID:23067208
Simulation of Martian EVA at the Mars Society Arctic Research Station
NASA Astrophysics Data System (ADS)
Pletser, V.; Zubrin, R.; Quinn, K.
The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.
The W(h)ine Club: Women Finding Joy in Academic Work
ERIC Educational Resources Information Center
Selepe, Mosa; Grobler, Christa; Dicks, Emsie; Oldewage-Theron, Wilna
2012-01-01
The W(h)ine Club is a multidisciplinary women's research team which has been working together for the past 10 years. The idea for this Viewpoint piece grew as we participated in a Women in Research programme. The aim of the programme was to improve academic publications among women. A group of us in the programme found ourselves repeatedly…
ERIC Educational Resources Information Center
Ingleby, Ewan; Gibby, Caroline
2016-01-01
This article is based on research on a foundation degree programme in paralegal education in England. The content explores the pedagogical benefits of this academic programme with its work-related focus. The research has been completed with academic tutors and students who are associated with a foundation degree programme in paralegal education in…
Roger D. Hungerford; Joyce A. Schlieter
1984-01-01
Presents weather data summaries (1934-82) for most of the weather stations within the Coram Experimental Forest (a Biosphere Reserve) in northwestern Montana and for three stations adjacent to the Forest. These data aid in the interpretation of silvicultural and other biological research, particularly the relationships of climatological variations to forest growth and...
Weather-related indices of autumn–winter Dabbling Duck abundance in Middle North America
Michael L. Schummer; Richard Kaminski; Andrew H. Raedeke; David A. Graber
2010-01-01
Research on effects of key weather stimuli influencing waterfowl migration during autumn and winter is limited. We investigated relationships between changes in relative abundances of mallard (Anas platyrhynchos) and other dabbling ducks (Anas spp.) and weather variables at midlatitude locations in North America. We used waterfowl survey data from Missouri Conservation...
Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond
2015-01-01
The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.
AEOLUS mission: the latest preparations before launch
NASA Astrophysics Data System (ADS)
Culoma, A.; Elfving, A.; Meynart, R.; Straume, A.; Wernham, D.
2017-09-01
The European Space Agency is developing a direct detection Doppler Wind Lidar for measuring wind profiles from space. The main objective of Aeolus is to provide tropospheric and lower stratospheric wind profiles globally for the improvement of weather forecast on short and medium term. Aeolus data are expected to greatly contribute to weather and air quality monitoring and to scientific advances in atmospheric dynamics. The UV Lidar instrument, ALADIN, will deliver horizontally-projected single line-of-sight wind profiles from the Doppler shift of molecular and particle backscatter. The development of the AEOLUS mission passed a major milestone with the integration of the full instrument and its functional and performance tests in 2016 and a 6-month life test of the spare UV laser transmitter. The satellite has been assembled and has successfully been subjected to a programme of functional and environmental (vibration, acoustic, shock, EMC) tests. The preparation of thermal vacuum testing, including instrument performance in vacuum, is close to completion.
Fudge, Jessie
2016-01-01
Context: Hypothermia and frostbite injuries occur in cold weather activities and sporting events. Evidence Acquisition: A PubMed search was used to identify original research and review articles related to cold, frostbite, and hypothermia. Inclusion was based on their relevance to prevention and treatment of cold-related injuries in sports and outdoor activities. Dates of review articles were limited to those published after 2010. No date limit was set for the most recent consensus statements or original research. Study Design: Clinical review. Level of Evidence: Level 5. Results: Frostbite and hypothermia are well-documented entities with good prevention strategies and prehospital treatment recommendations that have changed very little with time. A layered approach to clothing is the best way to prevent injury and respond to weather changes. Each athlete, defined as a participant in a cold weather sport or activity, will respond to cold differently depending on anthropometric measurements and underlying medical risk factors. An understanding of wind-chill temperatures, wetness, and the weather forecast allows athletes and event coordinators to properly respond to changing weather conditions. At the first sign of a freezing cold injury, ensure warm, dry clothes and move to a protected environment. Conclusion: Cold injuries can be prevented, and cold weather activities are safe with proper education, preparation, and response to changing weather conditions or injury. PMID:26857732
ERIC Educational Resources Information Center
Portwood, Derek
2007-01-01
Work-based learning's preoccupation with developing award-bearing programmes has affected the scope and style of work-based research. While offering development opportunities for work-based research, the emphasis of work-based learning programmes on the individual learner has curtailed the use of collaborative research. This article explores how…
ERIC Educational Resources Information Center
Barratt-Pugh, Llandis Gareth
2012-01-01
During 2008-2011, the National Centre for Vocational Education Research (NCVER) funded a programme to build Australian VET research capacity and rejuvenate what has been seen as the existing "greying" researcher pool. This paper is a reflective narrative about experiences of constructing the programme with a specific focus on the…
Promoting EFL Teacher Research Engagement through a Research Support Programme
ERIC Educational Resources Information Center
Al-Maamari, Faisal; Al-Aamri, Kamla; Khammash, Samar; Al-Wahaibi, Munira
2017-01-01
Existing initiatives purporting to promote teacher research are often found to be inadequate to encourage EFL teachers to engage in research due to the fact that they impose a top down, expert model approach to research engagement. This study reports on a pioneering programme at Sultan Qaboos University Language Centre in the Sultanate of Oman…
GOES-S Mission Science Briefing
2018-02-27
In the Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. Briefing participants from left are: Steve Cole of NASA Communications; Dan Lindsey, GOES-R senior scientific advisor for NOAA; Louis Uccellini, director of the National Weather Service for NOAA; Jim Roberts, a scientist with the Earth System Research Laboratory's Office of Atmospheric Research for NOAA; Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, and George Morrow, deputy director of NASA's Goddard Space Flight Center in Greenbelt, Maryland. GOES-S is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco
2012-01-01
Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.
Updates on CCMC Activities and GSFC Space Weather Services
NASA Technical Reports Server (NTRS)
Zhengm Y.; Hesse, M.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Maddox, M.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Lee, H.;
2011-01-01
In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.
Research on Application of Automatic Weather Station Based on Internet of Things
NASA Astrophysics Data System (ADS)
Jianyun, Chen; Yunfan, Sun; Chunyan, Lin
2017-12-01
In this paper, the Internet of Things is briefly introduced, and then its application in the weather station is studied. A method of data acquisition and transmission based on NB-iot communication mode is proposed, Introduction of Internet of things technology, Sensor digital and independent power supply as the technical basis, In the construction of Automatic To realize the intelligent interconnection of the automatic weather station, and then to form an automatic weather station based on the Internet of things. A network structure of automatic weather station based on Internet of things technology is constructed to realize the independent operation of intelligent sensors and wireless data transmission. Research on networking data collection and dissemination of meteorological data, through the data platform for data analysis, the preliminary work of meteorological information publishing standards, networking of meteorological information receiving terminal provides the data interface, to the wisdom of the city, the wisdom of the purpose of the meteorological service.
Evaluating an education/training module to foster knowledge of cockpit weather technology.
Cobbett, Erin A; Blickensderfer, Elizabeth L; Lanicci, John
2014-10-01
Previous research has indicated that general aviation (GA) pilots may use the sophisticated meteorological information available to them via a variety of Next-Generation Weather Radar (NEXRAD) based weather products in a manner that actually decreases flight safety. The current study examined an education/training method designed to enable GA pilots to use NEXRAD-based products effectively in convective weather situations. The training method was lecture combined with paper-based scenario exercises. A multivariate analysis of variance revealed that subjects in the training condition performed significantly better than did subjects in the control condition on several knowledge and attitude measures. Subjects in the training condition improved from a mean score of 66% to 80% on the radar-knowledge test and from 62% to 75% on the scenario-knowledge test. Although additional research is needed, these results demonstrated that pilots can benefit from a well-designed education/training program involving specific areas of aviation weather-related knowledge.
NASA Astrophysics Data System (ADS)
Trout, Joseph; Manson, J. Russell; Rios, Manny; King, David; Decicco, Nicholas
2015-04-01
Wake Vortex Turbulence is the turbulence generated by an aircraft in flight. This turbulence is created by vortices at the tips of the wing that may decay slowly and persist for several minutes after creation. The strength, formation and lifetime of the turbulence and vortices are effected by many things including the weather. Here we present the preliminary results of an investigation of low level wind fields generated by the Weather Research and Forecasting Model and an analysis of historical data. The simulations are used as inputs for the computational fluid dynamics model (OpenFoam) that will be used to investigate the effect of weather on wake turbulence. The initial results of the OpenFoam model are presented elsewhere. Presented here are the initial results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''.
The EISCAT_3D Project in Norway: E3DN
NASA Astrophysics Data System (ADS)
La Hoz, C.; Oksavik, K.
2013-12-01
EISCAT_3D (E3D) is a project to build the next generation of incoherent scatter radars endowed with 3-dimensional scalar and vector capabilities that will replace the current EISCAT radars in Northern Scandinavia. One active (transmitting) site in Norway and four passive (receiving) sites in the Nordic countries will provide 3-D vector imaging capabilities by rapid scanning and multi-beam forming. The unprecedented flexibility of the solid-state transmitter with high duty-cycle, arbitrary wave-forming and polarisation and its pulsed power of 10 MW will provide unrivalled experimental capabilities to investigate the highly non-stationary and non-homogeneous state of the polar upper atmosphere. Aperture Synthesis Imaging Radar (ASIR) will to endow E3D with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. The Norwegian scientific programme is inspired by the pioneer polar scientist Kristian Birkeland (picture) and includes pressing questions on polar upper atmospheric research, among others: (Q1) How to proceed beyond the present simplistic, static, stationary and homogeneous analysis of upper atmospheric and ionospheric processes? (Q2) How does space weather affect ionospheric processes and how to support modelling and space weather services? (Q3) How to advance fundamental plasma physics by employing the ionosphere as a natural plasma physics laboratory? (Q4) How does the influx of extraterrestrial material interact with the upper atmosphere and where does the material originate from? (Q5) How does solar activity couple from geospace into the lower atmosphere and climate system, and does this energy change the wave forcing of geospace from below? Kristian Birkeland, Norwegian scientist and pioneer in polar and auroral research.
Caffrey, Louise; Mattingley, Helena; Williamson, Catherine; McKevitt, Christopher
2016-01-01
Objectives Gender inequity has persisted in academic medicine. Yet equity is vital for countries to achieve their full potential in terms of translational research and patient benefit. This study sought to understand how the gender equity programme, Athena SWAN, can be enabled and constrained by interactions between the programme and the context it is implemented into, and whether these interactions might produce unintended consequences. Design Multimethod qualitative case studies using a realist evaluation approach. Setting 5 departments from a university medical school hosting a Translational Research Organisation. Participants 25 hours of observations of gender equality committee meetings, 16 in-depth interviews with Heads of Departments, Committee Leads and key personnel involved in the initiative. 4 focus groups with 15 postdoctoral researchers, lecturers and senior lecturers. Results The implementation of Athena SWAN principles was reported to have created social space to address gender inequity and to have highlighted problematic practices to staff. However, a number of factors reduced the programme's potential to impact gender inequity. Gender inequity was reproduced in the programme's enactment as female staff was undertaking a disproportionate amount of Athena SWAN work, with potential negative impacts on individual women's career progression. Early career researchers experienced problems accessing Athena SWAN initiatives. Furthermore, the impact of the programme was perceived to be undermined by wider institutional practices, national policies and societal norms, which are beyond the programme's remit. Conclusions Gender equity programmes have the potential to address inequity. However, paradoxically, they can also unintentionally reproduce and reinforce gender inequity through their enactment. Potential programme impacts may be undermined by barriers to staff availing of career development and training initiatives, and by wider institutional practices, national policies and societal norms. PMID:27609850
Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center
NASA Technical Reports Server (NTRS)
Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary
2009-01-01
This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.
Education in astronomy and solar-terrestrial relations in science research environment
NASA Astrophysics Data System (ADS)
Stoeva, Penka; Stoev, Alexey
In recent years, more and more attention is paid to educational programmes, which are closely connected with the process of scientific research. Such programmes are developed in collab-oration and included in the schools, universities and scientific institutes in Bulgaria. They are also used in the organization of public events aimed to demonstrate beauty, relevance and significance of Space and Earth science to the whole world. During the last four years, So-lar-Terrestrial Influences Institute of the Bulgarian Academy of Sciences, and the Yuri Gagarin Public Astronomical Observatory and Planetarium, Stara Zagora succeeded to build an ex-cellent partnership, working on the International Heliophysical year and International Year of Astronomy -global efforts initiated by the UNESCO and the International Astronomical Union (IAU) to help the citizens of the world rediscover their place in the Universe. They organized and tutored all the Astronomical Observatories and Planetaria, and teachers from all around Bulgaria to participate in the world initiatives Solar Week, Sun-Earth Day,Yuri's Night, World Astronomy day and World Space week, and use them in the process of education and public outreach. After the official closing of the International Heliophysical year, the IHY follow-on activities in Bulgaria continued and were devoted to the International Year of Astronomy 2009. A lot of lectures, public talks and exhibitions have been organized. Stara Zagora became a host of IHY Space Weather Monitor -SID (Sudden Ionospheric Disturbances), numerous of educational materials have been adapted and translated in Bulgarian. Cycle of lectures "Epock of Great astronomical discoveries", devoted to the International Year of Astronomy was given in April 2009 in the Stara Zagora Art Gallery. Participation in the cornerstone projects of the International Year of Astronomy 2009 was organized: "100 hours of Astronomy" -ob-servations with small telescopes in the period of 5 -9 April 2009 -more than 5000 people were happy to observe the Sun, Moon, Venus and other celestial objects; "The Galileoscope"; "Galilean Nights" -encourages everybody to go out to the streets and observe the cosmos; "Dark Skies Awareness" -Measuring of the light pollution level above the region of Stara Zagora; "Astronomy and World Heritage" -archaeoastronomical research of megalithic mon-uments and sanctuaries -examples of ancient observatories for observations of solar extreme rises, sets and meridional culminations; history of the first modern astronomical observatory in Bulgaria; "Galileo Teacher Training Program" -Teaching the teachers. At the beginning of every school year teacher-training course is conducted on astronomy and astrophysics. This year they will actively use telescopes to observe the sky with students; "Universe Awareness" -a lot of games and observations, modeling, exhibitions and parties are organized. "From Earth to the Universe" Exhibitions of astronomical photographs from space and ground based telescopes. Astronomy Olympiads -scientific teaching is improved when the students engaged in doing real science on real data. Fifteen years we participate in the International Astronomy Olympiad and our students win medals. Observarion of solar eclipses is an example of educa-tion in science research environment. We were happy to observe the longest for the last 2000 years total solar eclipse on July 22, 2009, in TianHuangPing, China, at 900m above the sea level. Immediately after the end of this unique phenomenon, images of the eclipsed Sun were sent in Bulgaria. Cooperations -we have good international and national cooperations with a lot of Institutes, Universities, organizations and mass media -radio, TV, magazines, news-papers Information and press conferences about the events have been regularly made available for journalists. With the experience we gained from the IHY and IYA initiatives, being a host of a SID Monitor, we focus on the new International Space Weather Initiative (ISWI) aimed to continue the study of universal processes in the solar system and to contribute to understanding the impacts of Space Weather on Earth and the near-Earth environment.
NASA Technical Reports Server (NTRS)
1985-01-01
An assessment of the status of research using Global Weather Experiment (GWE) data and of the progress in meeting the objectives of the GWE, i.e., better knowledge and understanding of the atmosphere in order to provide more useful weather prediction services. Volume Two consists of a compilation of the papers presented during the workshop. These cover studies that addressed GWE research objectives and utilized GWE information. The titles in Part 2 of this volume include General Circulation Planetary Waves, Interhemispheric, Cross-Equatorial Exchange, Global Aspects of Monsoons, Midlatitude-Tropical Interactions During Monsoons, Stratosphere, Southern Hemisphere, Parameterization, Design of Observations, Oceanography, Future Possibilities, Research Gaps, with an Appendix.
A Rationale for Mixed Methods (Integrative) Research Programmes in Education
ERIC Educational Resources Information Center
Niaz, Mansoor
2008-01-01
Recent research shows that research programmes (quantitative, qualitative and mixed) in education are not displaced (as suggested by Kuhn) but rather lead to integration. The objective of this study is to present a rationale for mixed methods (integrative) research programs based on contemporary philosophy of science (Lakatos, Giere, Cartwright,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.
This report presents results from the national survey of weatherization recipients. This research was one component of the retrospective and Recovery Act evaluations of the U.S. Department of Energy s Weatherization Assistance Program. Survey respondents were randomly selected from a nationally representative sample of weatherization recipients. The respondents and a comparison group were surveyed just prior to receiving their energy audits and then again approximately 18 months post-weatherization. This report focuses on budget issues faced by WAP households pre- and post-weatherization, whether household energy behaviors changed from pre- to post, the effectiveness of approaches to client energy education, and usemore » and knowledge about thermostats.« less
Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis
2015-09-01
Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of
ERIC Educational Resources Information Center
Culross, Rita; Tarver, Emily
2011-01-01
This is the summary of a series of research studies into the International Baccalaureate (IB) Diploma Programme (DP) in the USA, beginning with the investigation of how the first class of IB DP graduates in an individual school perceived the impacts and benefits of the programme, through further investigations of teacher perceptions of the…
Roos, Ronel; Myezwa, Hellen; van Aswegen, Helena
2015-01-01
The promotion of physical activity is encouraged in people living with HIV and AIDS (PLWHA) as a means of promoting wellness and health. Adherence to programmes that promote exercise is often reduced, and home-based programmes are suggested to improve adherence. This study investigated the personal and environmental factors that cause barriers and facilitators of physical activity in a home-based pedometer walking programme as a means of highlighting adherence challenges. An observational study nested in a randomised controlled trial was conducted in a cohort of South African PLWHA on antiretroviral therapy over a six-month period. Descriptive analysis and qualitative content analysis of 42 participants who underwent physical activity modification assisted with data review. The mean age of the sample was 38.7 (±8.9) years, consisted mostly of women (n = 35; 83.3%) who were employed (n = 19; 45.2%) but earning very little (less than R500 per month) and often single or widowed (n = 23; 54.8%). Barriers to physical activity identified included physical complaints, e.g., low-energy levels; psychological complaints, e.g., stress levels; family responsibility, e.g., being primary caregivers; the physical environment, e.g., adverse weather conditions; social environment, e.g., domestic abuse and crime; and workplace, e.g., being in a sedentary job. Facilitators of physical activity included support and encouragement from friends and family, religious practices during worship and community environment, e.g., having access to parks and sport fields. The study is of benefit as it highlights personal and environmental factors that need to be considered when developing or implementing a home-based walking programme in PLWHA.
Energetic Particles in the Inner Heliosphere
NASA Astrophysics Data System (ADS)
Malandraki, Olga
2016-07-01
Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.
Impact of Probabilistic Weather on Flight Routing Decisions
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel
2006-01-01
Flight delays in the United States have been found to increase year after year, along with the increase in air traffic. During the four-month period from May through August of 2005, weather related delays accounted for roughly 70% of all reported delays, The current weather prediction in tactical (within 2 hours) timeframe is at manageable levels, however, the state of forecasting weather for strategic (2-6 hours) timeframe is still not dependable for long-term planning. In the absence of reliable severe weather forecasts, the decision-making for flights longer than two hours is challenging. This paper deals with an approach of using probabilistic weather prediction for Traffic Flow Management use, and a general method using this prediction for estimating expected values of flight length and delays in the National Airspace System (NAS). The current state-of-the-art convective weather forecasting is employed to aid the decision makers in arriving at decisions for traffic flow and flight planing. The six-agency effort working on the Next Generation Air Transportation System (NGATS) have considered weather-assimilated decision-making as one of the principal foci out of a list of eight. The weather Integrated Product Team has considered integrated weather information and improved aviation weather forecasts as two of the main efforts (Ref. 1, 2). Recently, research has focused on the concept of operations for strategic traffic flow management (Ref. 3) and how weather data can be integrated for improved decision-making for efficient traffic management initiatives (Ref. 4, 5). An overview of the weather data needs and benefits of various participants in the air traffic system along with available products can be found in Ref. 6. Previous work related to use of weather data in identifying and categorizing pilot intrusions into severe weather regions (Ref. 7, 8) has demonstrated a need for better forecasting in the strategic planning timeframes and moving towards a probabilistic description of weather (Ref. 9). This paper focuses on. specified probability in a local region for flight intrusion/deviation decision-making. The process uses a probabilistic weather description, implements that in a air traffic assessment system to study trajectories of aircraft crossing a cut-off probability contour. This value would be useful for meteorologists in creating optimum distribution profiles for severe weather, Once available, the expected values of flight path and aggregate delays are calculated for efficient operations. The current research, however, does not deal with the issue of multiple cell encounters, as well as echo tops, and will be a topic of future work.
Communicating Science; a collaborative approach through Art, Dance, Music and Science
NASA Astrophysics Data System (ADS)
Smart, Sarah-Jane; Mortimer, Hugh
2016-04-01
A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be developed by a Creative Learning specialist with input from RAL Space scientists and engineers, the RAL Space communication and outreach group and Alexander Whitley Dance Company. The programme will be piloted in selected East London schools and then, following evaluation, be rolled out to several schools across the UK.
Whitmore, Susan C.; Grefsheim, Suzanne F.; Rankin, Jocelyn A.
2008-01-01
Background The informationist programme at the Library of the National Institutes of Health (NIH) in Bethesda, MD, USA has grown to 14 informationists working with 40 clinical and basic science research teams. Purpose This case report, intended to contribute to the literature on informationist programmes, describes the NIH informationist programme including implementation experiences, the informationists' training programme, their job responsibilities and programme outcomes. Brief description The NIH informationist programme was designed to enhance the library's service capacity. Over time, the steps for introducing the service to new groups were formalized to ensure support by leadership, the team being served and the library. Job responsibilities also evolved from traditional library roles to a wide range of knowledge management activities. The commitment by the informationist, the team and the library to continuous learning is critical to the programme's success. Results/outcomes NIH scientists reported that informationists saved them time and contributed to teamwork with expert searching and point-of-need instruction. Process evaluation helped refine the programme. Evaluation method High-level, preliminary outcomes were identified from a survey of scientists receiving informationist services, along with key informant interviews. Process evaluation examined service implementation, informationists' training, and service components. Anecdotal evidence has also indicated a favorable response to the programme. PMID:18494648
Whitmore, Susan C; Grefsheim, Suzanne F; Rankin, Jocelyn A
2008-06-01
The informationist programme at the Library of the National Institutes of Health (NIH) in Bethesda, MD, USA has grown to 14 informationists working with 40 clinical and basic science research teams. This case report, intended to contribute to the literature on informationist programmes, describes the NIH informationist programme, including implementation experiences, the informationists' training programme, their job responsibilities and programme outcomes. The NIH informationist programme was designed to enhance the library's service capacity. Over time, the steps for introducing the service to new groups were formalized to ensure support by leadership, the team being served and the library. Job responsibilities also evolved from traditional library roles to a wide range of knowledge management activities. The commitment by the informationist, the team and the library to continuous learning is critical to the programme's success. RESULTS / OUTCOMES: NIH scientists reported that informationists saved them time and contributed to teamwork with expert searching and point-of-need instruction. Process evaluation helped refine the programme. High-level, preliminary outcomes were identified from a survey of scientists receiving informationist services, along with key informant interviews. Process evaluation examined service implementation, informationists' training and service components. Anecdotal evidence has also indicated a favourable response to the programme.
PHIRE (Public Health Innovation and Research in Europe): methods, structures and evaluation.
Barnhoorn, Floris; McCarthy, Mark; Devillé, Walter; Alexanderson, Kristina; Voss, Margaretha; Conceição, Claudia
2013-11-01
Public Health Innovation and Research in Europe (PHIRE), building on previous European collaborative projects, was developed to assess national uptake and impacts of European public health innovations, to describe national public health research programmes, strategies and structures and to develop participation of researchers through the organizational structures of the European Public Health Association (EUPHA). This article describes the methods used. PHIRE was led by EUPHA with seven partner organisations over 30 months. It was conceived to engage the organisation of EUPHA--working through its thematic Sections, and through its national public health associations--and assess innovation and research across 30 European countries. Public health research was defined broadly as health research at population and organisational level. There were seven Work Packages (three covering coordination and four for technical aspects) led by partners and coordinated through management meetings. Seven EUPHA Sections identified eight innovations within the projects funded by the Public Health Programme of the European Commission Directorate for Health and Consumers. Country informants, identified through EUPHA thematic Sections, reported on national uptake of the innovations in eight public health projects supported by the European Union Public Health Programme. Four PHIRE partners, each taking a regional sector of Europe, worked with the public health associations and other informants to describe public health research programmes, calls and systems. A classification was created for the national public health research programmes and calls in 2010. The internal and external evaluations were supportive. PHIRE described public health innovations and research across Europe through national experts. More work is needed to conceptualize and define public health 'innovations' and to develop theories and methods for the assessment of their uptake and impacts at country and cross-country levels. More attention to methods to describe and assess national public health research programmes, strategies and structures--contributing to development of the European Research Area.
A Teacher Competence Development Programme for Supporting Students' Reflection Skills
ERIC Educational Resources Information Center
Dekker-Groen, Agaath M.; van der Schaaf, Marieke F.; Stokking, Karel M.
2013-01-01
This study aimed to evaluate a training programme for Dutch teachers in six institutes for nursing education to support students' reflection skills. The research question was: what are the feasibility, quality and effects of the programme? The training programme focused on four competences of teachers regarding instructing, guiding, giving…
REBOUND: A Media-Based Life Skills and Risk Education Programme
ERIC Educational Resources Information Center
Kröninger-Jungaberle, Henrik; Nagy, Ede; von Heyden, Maximilian; DuBois, Fletcher
2015-01-01
Background: REBOUND is a novel media-based life skills and risk education programme developed for 14- to 25-year olds in school, university or youth group settings. This paper outlines the programme's rationale, curriculum and implementation. It provides information of relevance to researchers, programme developers and policymakers. Methods/design…
Stakeholder Perspectives: CLIL Programme Management in Estonia
ERIC Educational Resources Information Center
Mehisto, Peeter; Asser, Hiie
2007-01-01
In 2000, Estonia launched a voluntary Estonian language CLIL programme for seven year-olds in four Russian-medium schools. The programme has expanded rapidly to a total of 48 kindergartens and schools. This paper reports on research into stakeholder perspectives on programme management. In addition to surveying parents, teachers, vice-principals…
Using Bullying Incident Density to Evaluate the Olweus Bullying Prevention Programme
ERIC Educational Resources Information Center
Black, Sally A.; Jackson, Ericka
2007-01-01
Bullying negatively impacts the mental and physical health of student victims, bullies and bystanders. The Olweus Bullying Prevention Programme is an internationally recognized school based programme demonstrated effective in research. The purpose of this study was to determine if the Bullying Prevention Programme was effective for urban youth…
Silos to Symphonies? Hopes and Challenges Implementing Multicultural Programme Infusion
ERIC Educational Resources Information Center
Liu, Laura B.; Milman, Natalie B.
2013-01-01
The need to infuse multicultural education (ME) across teacher preparation programmes is well documented by research, yet institutions are at very different stages in this endeavour. While most programmes demonstrate a segregated approach to ME, confining diversity to specialty courses, ME programme infusion places diversity, equity and social…
Sustainable Schools Programmes: What Influence on Schools and How Do We Know?
ERIC Educational Resources Information Center
Rickinson, Mark; Hall, Matthew; Reid, Alan
2016-01-01
This paper focuses on our experience of researching the influence of ResourceSmart Schools, a sustainable schools programme in Victoria, Australia. Drawing on ideas from programme theory and realist synthesis, we illustrate and reflect upon our approach to conceptualising, investigating and generating evidence about the programme's…
NASA Technical Reports Server (NTRS)
Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.
2010-01-01
The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards from NASA, the National Weather Association, and two citations from the Navy's Center of Excellence for Best Manufacturing Practices. This paper will present the AMU's proven methods and explain how they may be applied by other organizations to effectively transition research into operations.
New Satellite Constellation Uses Radio Occultation to Monitor Space Weather
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2006-05-01
A constellation of six satellites, expected to enhance space weather research, improve terrestrial meteorology forecasts, and monitor climate change, were launched 15 April from Vandenberg Air Force Base, Calif.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingmann, P.; Readings, C. J.; Knott, K.
For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observationsmore » of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)« less
Comparative ratings of 1951 forest fire weather in western Oregon.
Owen P. Cramer; Robert Kirkpatrick
1951-01-01
The 1951 forest fire weather in western Oregon is generally conceded to have been unusually severe. In order to compare this season with others, this report uses a scheme for rating fire seasons recently developed by the Fire Research section of the Experiment Station, The rating is based on indices of three weather characteristics which generally control burning...
R. Sam Williams
2005-01-01
Contrary to what might be called popular myth, research shows that allowing exterior wood surfaces to weather before applying paint does not help the cause of long-term coating performance. Instead, weathering prior to painting has been shown to contribute significantly to premature failure of the finish due to loss of adhesion.
1997-05-01
with respect to weather modification. Publicizing these efforts is necessary in order to eliminate all traces of " cloak and dagger " efforts tainting...theater, the Japanese used the weather to conceal their approach to the Hawaiian Islands, enhancing their surprise attack on Pearl Harbor. There... attack is different than previous researcher goals. Therefore, future experiments would have to be tailored for the new objective of hiding military
NOAA: Strong El Niño sets the stage for 2015-2016 winter weather
El Niño, among the strongest on record, is expected to influence weather and climate patterns this NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS National Temperature. Temperature - U.S. Winter Outlook: 2015-2016 (Credit: NOAA) Forecasters at NOAA's Climate
The Gates Malaria Partnership: a consortium approach to malaria research and capacity development.
Greenwood, Brian; Bhasin, Amit; Targett, Geoffrey
2012-05-01
Recently, there has been a major increase in financial support for malaria control. Most of these funds have, appropriately, been spent on the tools needed for effective prevention and treatment of malaria such as insecticide-treated bed nets, indoor residual spraying and artemisinin combination therapy. There has been less investment in the training of the scientists from malaria-endemic countries needed to support these large and increasingly complex malaria control programmes, especially in Africa. In 2000, with support from the Bill & Melinda Gates Foundation, the Gates Malaria Partnership was established to support postgraduate training of African scientists wishing to pursue a career in malaria research. The programme had three research capacity development components: a PhD fellowship programme, a postdoctoral fellowship programme and a laboratory infrastructure programme. During an 8-year period, 36 African PhD students and six postdoctoral fellows were supported, and two research laboratories were built in Tanzania. Some of the lessons learnt during this project--such as the need to improve PhD supervision in African universities and to provide better support for postdoctoral fellows--are now being applied to a successor malaria research capacity development programme, the Malaria Capacity Development Consortium, and may be of interest to other groups involved in improving postgraduate training in health sciences in African universities. © 2012 Blackwell Publishing Ltd.
Stochastic Parameterization: Toward a New View of Weather and Climate Models
Berner, Judith; Achatz, Ulrich; Batté, Lauriane; ...
2017-03-31
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
Aviation Weather Information Communications Study (AWIN). Phase 1 and 2
NASA Technical Reports Server (NTRS)
Ball, J. W.; Herron, R. G.; Nozawa, E. T.; Thomas, E. A.; Witchey, R. D.
2000-01-01
This two part study examines the communication requirements to provide weather information in the cockpit as well as public and private communication systems available to address the requirements. Ongoing research projects combined with user needs for weather related information are used to identify and describe potential weather products that address decision support in three time frames: Far-Term Strategic, Near-Term Strategic and Tactical. Data requirements of these future products are identified and quantified. Communications systems and technologies available in the public as well as private sector are analyzed to identify potential solutions. Recommendations for further research identify cost, performance, and safety benefits to justify the investment. The study concludes that not all weather information has the same level of urgency to safety-of-flight and some information is more critical to one category of flight than another. Specific weather products need to be matched with communication systems with appropriate levels of reliability to support the criticality of the information. Available bandwidth for highly critical information should be preserved and dedicated to safety. Meanwhile, systems designed for in-flight-entertainment and other passenger/crew services could be used to support less critical information that is used only for planning and economic decision support.
Stochastic Parameterization: Toward a New View of Weather and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berner, Judith; Achatz, Ulrich; Batté, Lauriane
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
a Weather Monitoring System for Application to Apple and Corn Production
NASA Astrophysics Data System (ADS)
Stirm, Walter Leroy
Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.
[Memorandum prevention research - research areas and methods].
Walter, U; Nöcker, G; Plaumann, M; Linden, S; Pott, E; Koch, U; Pawils, S; Altgeld, T; Dierks, M L; Frahsa, A; Jahn, I; Krauth, C; Pomp, M; Rehaag, R; Robra, B P; Süß, W; Töppich, J; Trojan, A; von Unger, H; Wildner, M; Wright, M
2012-10-01
From 2004 to 2012, the German Ministry of Education and Research (BMBF) established its first funding programme for the promotion of prevention research. 60 projects on primary prevention and health promotion and the meta-project entitled "Cooperation for Sustainable Prevention Research" (KNP) received BMBF grants under this programme during this period. The experience and knowledge gained and recommendations arising from the research funded under this programme are compiled in memorandum format. The "Memorandum on Prevention Research - Research Areas and Methods" highlights 5 research areas that are considered to be especially relevant from the perspective of the involved scientists and practice partners.The promotion of structural development and sustainability enhancement in disease prevention and health promotion are central areas that should branch out from existing nuclei of crystallization. Improving the health competence of the population and of specific subpopulations is another major area. Research in these areas should contribute to the development of theoretical concepts and to the empirical testing of these concepts. The transfer of knowledge for effective use of developed disease prevention and health promotion programmes and measures is still a scarcely researched area. Among other things, studies of the transfer of programmes from one context to another, analyses of the coop-eration between politics and science, and the continued theoretical and conceptual development of transfer research are needed. Long-term data on the effects of intervention studies are also needed for proper evaluation of sustainability. The latter dem-onstrates the importance of method development in disease prevention and health promotion research as an area that should receive separate funding and support. This research should include, in particular, studies of the efficacy of complex interventions, health economic analyses, and participative health research. © Georg Thieme Verlag KG Stuttgart · New York.
Recent Applications of Space Weather Research to NASA Space Missions
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.
2013-01-01
Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.
Using Virtualization to Integrate Weather, Climate, and Coastal Science Education
NASA Astrophysics Data System (ADS)
Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.
2012-12-01
To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a single ready-to-use package. Thus, the previous ornery task of setting up and compiling these tools becomes obsolete and the research, educator or student can focus on using the tools to study the interactions between weather, climate and the coastal environment. The incorporation of WRF into the CSEVA has been designed to be synergistic with the extensive online tutorials and biannual tutorials hosted by NCAR. Included are working examples of the idealized test simulations provided with WRF (2D sea breeze and squalls, a large eddy simulation, a Held and Suarez simulation, etc.) To demonstrate the integration of weather, coastal and coastal science education, example applications are being developed to demonstrate how the system can be used to couple a coastal and estuarine circulation, transport and storm surge model with downscale reanalysis weather and future climate predictions. Documentation, tutorials and the enhanced CSEVA itself will be found on the web at: http://cseva.coastal.ufl.edu.
COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction
NASA Astrophysics Data System (ADS)
Lai-Chen, C.
Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate weather analysis for forecasting and decreasing the damage of the disasters over the area concerned.
A personal perspective on modelling the climate system
Palmer, T. N.
2016-01-01
Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s. PMID:27274686
ERIC Educational Resources Information Center
Outhwaite, Deborah
2018-01-01
This article analyses the flow-line around the methodology used inside an educational research process that was originally established to examine the expansion of the International Baccalaureate's Diploma Programme (IBDP) in England. This article analyses the research question, then assesses the research focus, aims and objectives. The article…
ERIC Educational Resources Information Center
Creemers, Bert P. M.; And Others
The International School Effectiveness Research Programme (ISERP) is an example of the exchange of research and research results in the field of educational effectiveness. It aims to build on existing models of good practice and to avoid the variations in approach that limit the transferability of data within and between countries. A number of…
ERIC Educational Resources Information Center
Fullana, Judit; Pallisera, Maria; Català, Elena; Puyalto, Carolina
2017-01-01
Background: This article presents the results of evaluating a research training programme aimed at developing the skills of people with intellectual disabilities to actively participate in inclusive research. Methods: The present authors opted for a responsive approach to evaluation, using a combination of interviews, questionnaires and focus…
ERIC Educational Resources Information Center
Primeri, Emilia; Reale, Emanuela
2012-01-01
This article describes the effects of participating in European Union Framework Programmes (EUFPs) at the level of research units and researchers. We consider EUFPs as policy instruments that contribute to the Europeanisation of academic research and study the changes they produce with respect to: 1) the organisation and activities of Departments,…
Teaching advanced science concepts through Freshman Research Immersion
NASA Astrophysics Data System (ADS)
Wahila, M. J.; Amey-Proper, J.; Jones, W. E.; Stamp, N.; Piper, L. F. J.
2017-03-01
We have developed a new introductory physics/chemistry programme that teaches advanced science topics and practical laboratory skills to freshmen undergraduate students through the use of student-led, bona fide research activities. While many recent attempts to improve college-level physics education have focused on integrating interactive demonstrations and activities into traditional passive lectures, we have taken the idea of active-learning several steps further. Working in conjunction with several research faculty at Binghamton University, we have created a programme that puts undergraduate students on an accelerated path towards working in real research laboratories performing publishable research. Herein, we describe in detail the programme goals, structure, and educational content, and report on our promising initial student outcomes.
A review of the effect of traffic and weather characteristics on road safety.
Theofilatos, Athanasios; Yannis, George
2014-11-01
Taking into consideration the increasing availability of real-time traffic data and stimulated by the importance of proactive safety management, this paper attempts to provide a review of the effect of traffic and weather characteristics on road safety, identify the gaps and discuss the needs for further research. Despite the existence of generally mixed evidence on the effect of traffic parameters, a few patterns can be observed. For instance, traffic flow seems to have a non-linear relationship with accident rates, even though some studies suggest linear relationship with accidents. On the other hand, increased speed limits have found to have a straightforward positive relationship with accident occurrence. Regarding weather effects, the effect of precipitation is quite consistent and leads generally to increased accident frequency but does not seem to have a consistent effect on severity. The impact of other weather parameters on safety, such as visibility, wind speed and temperature is not found straightforward so far. The increasing use of real-time data not only makes easier to identify the safety impact of traffic and weather characteristics, but most importantly makes possible the identification of their combined effect. The more systematic use of these real-time data may address several of the research gaps identified in this research. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis
2017-01-01
The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''
Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts
NASA Technical Reports Server (NTRS)
Kozlowski, Danielle; Zavodsky, Bradley
2011-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model that does not contain AIRS profiles.
WWOSC 2014: research needs for better health resilience to weather hazards.
Jancloes, Michel; Anderson, Vidya; Gosselin, Pierre; Mee, Carol; Chong, Nicholas J
2015-03-05
The first World Weather Open Science Conference (WWOSC, held from 17-21 August 2014 in Montreal, Québec), provided an open forum where the experience and perspective of a variety of weather information providers and users was combined with the latest application advances in social sciences. A special session devoted to health focused on how best the most recent weather information and communication technologies (ICT) could improve the health emergency responses to disasters resulting from natural hazards. Speakers from a plenary presentation and its corresponding panel shared lessons learnt from different international multidisciplinary initiatives against weather-related epidemics, such as malaria, leptospirosis and meningitis and from public health responses to floods and heat waves such as in Ontario and Quebec, Canada. Participants could bear witness to recent progress made in the use of forecasting tools and in the application of increased spatiotemporal resolutions in the management of weather related health risks through anticipative interventions, early alert and warning and early responses especially by vulnerable groups. There was an agreement that resilience to weather hazards is best developed based on evidence of their health impact and when, at local level, there is a close interaction between health care providers, epidemiologists, climate services, public health authorities and communities. Using near real time health data (such as hospital admission, disease incidence monitoring…) combined with weather information has been recommended to appraise the relevance of decisions and the effectiveness of interventions and to make adjustments when needed. It also helps appraising how people may be more or less vulnerable to a particular hazard depending on the resilience infrastructures and services. This session was mainly attended by climate, environment and social scientists from North American and European countries. Producing a commentary appears to be an effective way to share this session's conclusions to research institutions and public health experts worldwide. It also advocates for better linking operational research and decision making and for appraising the impact of ICT and public health interventions on health.
The Effects of Two Different Instructional Programmes on Literacy Skills of Kindergarten Children
ERIC Educational Resources Information Center
Gahwaji, Nahla M.
2016-01-01
Lately, research exploring the effects of tutorial instructional programmes and educational games on literacy skills of kindergarten children has attracted large number of educational technology researchers and practitioners. Even though overwhelming research literature on the subject is available, the majority of this existing work is designed…
Graduate Attribute Development and Employment Outcomes: Tracking PhD Graduates
ERIC Educational Resources Information Center
Manathunga, Catherine; Pitt, Rachael; Critchley, Christa
2009-01-01
The provision of diversified research training is regarded as one of the most significant contributions made by the Australian Cooperative Research Centres (CRC) programme [Howard Partners 2003, Evaluation of the cooperative research centres programme, Department of Education, Science and Training, Canberra, ACT]. Yet, a systematic evaluation of…
Re-Situation Challenges for International Students "Becoming" Researchers
ERIC Educational Resources Information Center
Franken, Margaret
2012-01-01
This paper presents data generated during a semester-long programme to support international students from countries in Melanesia and Asia embarking on masters research in education in a New Zealand university. All were scholarship recipients. The researcher-and facilitator-of the programme, was interested in documenting and understanding the…
Mentoring Beginning Teachers in Primary Schools: Research Review
ERIC Educational Resources Information Center
Spooner-Lane, Rebecca
2017-01-01
While mentoring programmes have proven to be successful in reducing attrition and improving teaching ability in beginning teachers, there remains a lack of research delineating the key components of effective mentoring programmes in primary education. This integrative research review examines empirical studies conducted since 2000 on the nature…
ERIC Educational Resources Information Center
Chrysostomou, Marianna; Symeonidou, Simoni
2017-01-01
This paper reports on the findings of an action research project that took place in a primary school in Cyprus. A professional development programme was devised with contributions from teachers involved in the research. The programme was aimed at helping teachers to map the difficulties they encounter when working with their students on…
NASA Astrophysics Data System (ADS)
Elija Bleher, Bärbel; Schmid, Hans Peter; Scholz, Beate
2015-04-01
The Helmholtz Research School MICMoR (Mechanisms and Interactions of Climate Change in Mountain Regions) offers a structured graduate programme for doctoral students in the field of climate change research. It is hosted by the Institute of Meteorology and Climate Research (KIT/IMK-IFU) in Garmisch-Partenkirchen, in collaboration with 7 Bavarian partner universities and research institutions. Hence, MICMoR brings together a considerably large network with currently 20 doctoral students and 55 scientists. MICMoR offers scientific and professional skills training, provides a state-of-the-art supervision concept, and fosters international exchange and interdisciplinary collaboration. In order to develop and advance its programme, MICMoR has committed itself to a self-imposed mid-term review in its third year, to monitor to which extent its original objectives have been reached, and to explore and identify where MICMoR has room for improvement. The evaluation especially focused on recruitment, supervision, training, networking and cooperation. Carried out by an external expert (Beate Scholz from scholz ctc), the evaluation was based on a mixed methods approach, i.e. combining a quantitative survey involving all doctoral candidates as well as their supervisors and focus groups with different MICMoR stakeholders. The evaluation has brought forward some highly interesting results, pinpointing challenges and opportunities of setting up a structured doctoral programme. Overall, the evaluation proved to be a useful tool for evidence-based programme and policy planning, and demonstrated a high level of satisfaction of supervisors and fellows. Supervision, with facets ranging from disciplinary feedback to career advice, is demanding and requires strong commitment and adequate human resources development by all parties involved. Thus, MICMoR plans to offer mentor coaching and calls on supervisors and mentors to form a community of learners with their doctoral students. To realize this vision, a long way lies ahead for all participants. Here, the evaluation provided useful suggestions on how to best use scarce time resources. Due to the fact that MICMoR's fellowships provide only supplemental funding for its fellows to participate in the programme, their base funding (salaries, stipends) needs to be secured independently, e.g. through project funds. However, this created a significant challenge as doctoral topics were determined more by the projects' research questions than by the research school's research focus. To improve this situation, MICMoR introduced some full stipends in its third year. We conclude that, in order to successfully run an interdisciplinary, multi-network research school, sufficient funds for its general framework, but also for doctoral stipends/salaries are needed to obtain a more accurate fit between the programme's research focus and the doctoral topics. Furthermore, a high level of commitment and identification with the programme of both, doctoral students and their supervisors, is required. Finally, regular review and programme assessment are essential for tailored programme development and strategy planning.
Developing consumer involvement in rural HIV primary care programmes.
Mamary, Edward M; Toevs, Kim; Burnworth, Karla B; Becker, Lin
2004-06-01
As part of a broader medical and psychosocial needs assessment in a rural region of northern California, USA, five focus groups were conducted to explore innovative approaches to creating a system of consumer involvement in the delivery of HIV primary care services in the region. A total of five focus groups (n = 30) were conducted with clients from three of five counties in the region with the highest number of HIV patients receiving primary care. Participants were recruited by their HIV case managers. They were adults living with HIV, who were receiving health care, and who resided in a rural mountain region of northern California. Group discussions explored ideas for new strategies and examined traditional methods of consumer involvement, considering ways they could be adapted for a rural environment. Recommendations for consumer involvement included a multi-method approach consisting of traditional written surveys, a formal advisory group, and monthly consumer led social support/informal input groups. Specific challenges discussed included winter weather conditions, transportation barriers, physical limitations, confidentiality concerns, and needs for social support and education. A multiple-method approach would ensure more comprehensive consumer involvement in the programme planning process. It is also evident that methods for incorporating consumer involvement must be adapted to the specific context and circumstances of a given programme.
Learning in and beyond Small Business Advisory Programmes
ERIC Educational Resources Information Center
Parker, Rachel Louise; Hine, Damian
2012-01-01
The purpose of this paper is to analyse how participants learn in small business advisory programmes and to explore the impact of these learning programmes on the development of reflective learning dispositions in participants. The research involves two case studies of small business advisory programmes in Queensland, a state of Australia. One…
Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C
2017-10-01
This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).
NASA Astrophysics Data System (ADS)
Ebner, Daniel M.
After the devastating tornadoes in Joplin, MO and in the Deep South in 2011, it seemed appropriate to look at the impact that broadcast meteorologists (and their TV coverage) have on their viewers during severe weather events. Broadcast meteorologists play a vital role in the severe weather warning process and in persuading the public to take the appropriate actions during severe weather. This research was done by developing a survey that addressed the following questions: 1) Is the media doing everything they can persuade viewers to take shelter and protect themselves and their property?; 2) What do you do when a tornado warning is issued?; 3) Is there anything broadcast meteorologists can do or say that will make you take immediate action during severe weather? The survey was disseminated through television markets in Missouri. The goal of this research was to find new, improved and different ways of "connecting" with viewing during severe weather coverage. After looking at the results, we want to see if there are specific words, images or anything else a broadcaster can do that will trigger a response by viewers to take cover. It is my hope the results and analyses from this survey will provide broadcast meteorologists with new and improved techniques to connect with the public and to assist them in making an informed decision during severe weather events.
Operational Space Weather in USAF Education
NASA Astrophysics Data System (ADS)
Smithtro, C.; Quigley, S.
2006-12-01
Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.
Introducing a quality improvement programme to primary healthcare teams
Hearnshaw, H.; Reddish, S.; Carlyle, D.; Baker, R.; Robertson, N.
1998-01-01
OBJECTIVES: To evaluate a programme in which quality improvement was facilitated, based on principles of total quality management, in primary healthcare teams, and to determine its feasibility, acceptability, effectiveness, and the duration of its effect. METHOD: Primary healthcare teams in Leicestershire (n = 147) were invited to take part in the facilitated programme. The programme comprised seven team meetings, led by a researcher, plus up to two facilitated meetings of quality improvement subgroups, appointed by each team to consider specific quality issues. OUTCOME MEASURES: To assess the effect and feasibility of the programme on improving the quality of care provided, the individual quality improvement projects undertaken by the teams were documented and opportunities for improvement were noted at each session by the facilitator. The programme's acceptability was assessed with questionnaires issued in the final session to each participant. To assess the long term impact on teams, interviews with team members were conducted 3 years after the programme ended. RESULTS: 10 of the 27 teams that initially expressed interest in the programme agreed to take part, and six started the programme. Of these, five completed their quality improvement projects and used several different quality tools, and three completed all seven sessions of the programme. The programme was assessed as appropriate and acceptable by the participants. Three years later, the changes made during the programme were still in place in three of the six teams. Four teams had decided to undertake the local quality monitoring programme, resourced and supported by the Health Authority. CONCLUSIONS: The facilitated programme was feasible, acceptable, and effective for a few primary healthcare teams. The outcomes of the programme can be sustained. Research is needed on the characteristics of teams likely to be successful in the introduction and maintenance of quality improvement programmes. PMID:10339022
Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios
NASA Technical Reports Server (NTRS)
Latorella, Kara A.; Chamberlain, James P.
2002-01-01
We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.
An abridged history of federal involvement in space weather forecasting
NASA Astrophysics Data System (ADS)
Caldwell, Becaja; McCarron, Eoin; Jonas, Seth
2017-10-01
Public awareness of space weather and its adverse effects on critical infrastructure systems, services, and technologies (e.g., the electric grid, telecommunications, and satellites) has grown through recent media coverage and scientific research. However, federal interest and involvement in space weather dates back to the decades between World War I and World War II when the National Bureau of Standards led efforts to observe, forecast, and provide warnings of space weather events that could interfere with high-frequency radio transmissions. The efforts to observe and predict space weather continued through the 1960s during the rise of the Cold War and into the present with U.S. government efforts to prepare the nation for space weather events. This paper provides a brief overview of the history of federal involvement in space weather forecasting from World War II, through the Apollo Program, and into the present.
GOES-S Mission Science Briefing
2018-02-27
In the Kennedy Space Center's Press Site auditorium, Jim Roberts, a scientist with the Earth System Research Laboratory's Office of Atmospheric Research for NOAA, left, and Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, speak to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.
New insight into Earth's weather through studies of Sun's magnetic fields
NASA Technical Reports Server (NTRS)
1990-01-01
Solar Vector Magnetograph is used to predict solar flares, and other activities associated with sun spots. This research provides new understanding about weather on the Earth, and solar-related conditions in orbit.
Aeroacoustics research in Europe: The CEAS-ASC report on 2012 highlights
NASA Astrophysics Data System (ADS)
Bodén, H.; Efraimsson, G.
2013-12-01
The Council of European Aerospace Societies (CEAS) Aeroacoustics Specialists Committee (ASC) supports and promotes the interests of the scientific and industrial aeroacoustics community on an European scale and European aeronautics activities internationally. In this context, "aeroacoustics" encompasses all aerospace acoustics and related areas. Each year the committee highlights some of the research and development projects in Europe. This paper is a report on highlights of aeroacoustics research in Europe in 2012, compiled from information provided to the ASC of the CEAS. During 2012, a number of research programmes involving aeroacoustics were funded by the European Commission. Some of the highlights from these programmes are summarized in this paper, as well as highlights from other programmes funded by national programmes or by industry. Enquiries concerning all contributions should be addressed to the authors who are given at the end of each subsection.
International Polar Research and Space Weather
NASA Astrophysics Data System (ADS)
Lanzerotti, Louis J.
2009-02-01
The fiftieth anniversary of the International Geophysical Year (IGY), currently celebrated in the 2007-2009 International Polar Year (IPY), highlights space weather's heritage from polar research. The polar regions were still very much "terra incognito" 50 years ago. At the same time, communications technologies had significantly advanced since the time of the second IPY, in 1932-1933. Yet even before the second IPY, several directors of international meteorological services stated in a 1928 resolution that "increased knowledge [of the polar regions] will be of practical application to problems connected with terrestrial magnetism, marine and aerial navigation, wireless telegraphy and weather forecasting" (see http://scaa.usask.ca/gallery/northern/currie/en_polaryear.shtml).
NASA Technical Reports Server (NTRS)
Hilderman, Don R.
2006-01-01
The purpose of the NASA Glenn Research Center Weather Information Communications (WINCOMM) project was to develop advanced communications and information technologies to enable the high-quality and timely dissemination of strategic weather information between the flight deck and ground users as well as tactical turbulence hazard information between relevant aircraft and to the ground. This report will document and reference accomplishments on the dissemination of weather information during the en route phase of flight from ground-based weather information providers to the flight deck (ground-to-air), from airborne meteorological sensors to ground users (air-to-ground), and weather turbulence and icing hazard information between relevant aircraft (air-to-air). In addition, references in this report will demonstrate the architecture necessary to implement and perform successful transmission and reception of weather information to the cockpit, show that weather information flow does not impact "normal" traffic, demonstrate the feasibility of operational implementation, and lay foundation for future data link development.
Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem
2016-01-01
With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10-14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to understand the influence of urban design and built environment on SB in children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Cathy
2014-04-30
This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less
NASA Astrophysics Data System (ADS)
Watari, S.; Morikawa, Y.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Kato, H.; Shimojo, S.; Murata, K. T.
2010-12-01
In the Solar-Terrestrial Physics (STP) field, spatio-temporal resolution of computer simulations is getting higher and higher because of tremendous advancement of supercomputers. A more advanced technology is Grid Computing that integrates distributed computational resources to provide scalable computing resources. In the simulation research, it is effective that a researcher oneself designs his physical model, performs calculations with a supercomputer, and analyzes and visualizes for consideration by a familiar method. A supercomputer is far from an analysis and visualization environment. In general, a researcher analyzes and visualizes in the workstation (WS) managed at hand because the installation and the operation of software in the WS are easy. Therefore, it is necessary to copy the data from the supercomputer to WS manually. Time necessary for the data transfer through long delay network disturbs high-accuracy simulations actually. In terms of usefulness, integrating a supercomputer and an analysis and visualization environment seamlessly with a researcher's familiar method is important. NICT has been developing a cloud computing environment (NICT Space Weather Cloud). In the NICT Space Weather Cloud, disk servers are located near its supercomputer and WSs for data analysis and visualization. They are connected to JGN2plus that is high-speed network for research and development. Distributed virtual high-capacity storage is also constructed by Grid Datafarm (Gfarm v2). Huge-size data output from the supercomputer is transferred to the virtual storage through JGN2plus. A researcher can concentrate on the research by a familiar method without regard to distance between a supercomputer and an analysis and visualization environment. Now, total 16 disk servers are setup in NICT headquarters (at Koganei, Tokyo), JGN2plus NOC (at Otemachi, Tokyo), Okinawa Subtropical Environment Remote-Sensing Center, and Cybermedia Center, Osaka University. They are connected on JGN2plus, and they constitute 1PB (physical size) virtual storage by Gfarm v2. These disk servers are connected with supercomputers of NICT and Osaka University. A system that data output from the supercomputers are automatically transferred to the virtual storage had been built up. Transfer rate is about 50 GB/hrs by actual measurement. It is estimated that the performance is reasonable for a certain simulation and analysis for reconstruction of coronal magnetic field. This research is assumed an experiment of the system, and the verification of practicality is advanced at the same time. Herein we introduce an overview of the space weather cloud system so far we have developed. We also demonstrate several scientific results using the space weather cloud system. We also introduce several web applications of the cloud as a service of the space weather cloud, which is named as "e-SpaceWeather" (e-SW). The e-SW provides with a variety of space weather online services from many aspects.
AWE: Aviation Weather Data Visualization Environment
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)
2000-01-01
Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.
Arnold, Lauren D; Barnoya, Joaquin; Gharzouzi, Eduardo N; Benson, Peter; Colditz, Graham A
2014-04-01
Guatemala is experiencing an increasing burden of cancer but lacks capacity for cancer prevention, control and research. In partnership with a medical school in the United States of America, a multidisciplinary Cancer Control Research Training Institute was developed at the Instituto de Cancerología (INCAN) in Guatemala City. This institute provided a year-long training programme for clinicians that focused on research methods in population health and sociocultural anthropology. The programme included didactic experiences in Guatemala and the United States as well as applied training in which participants developed research protocols responsive to Guatemala's cancer needs. Although INCAN is the point of referral and service for Guatemala's cancer patients, the institute's administration is also interested in increasing cancer research - with a focus on population health. INCAN is thus a resource for capacity building within the context of cancer prevention and control. Trainees increased their self-efficacy for the design and conduct of research. Value-added benefits included establishment of an annual cancer seminar and workshops in cancer pathology and qualitative analysis. INCAN has recently incorporated some of the programme's components into its residency training and established a research department. A training programme for clinicians can build cancer research capacity in low- and middle-income countries. Training in population-based research methods will enable countries such as Guatemala to gather country-specific data. Once collected, such data can be used to assess the burden of cancer-related disease, guide policy for reducing it and identify priority areas for cancer prevention and treatment.
Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm
NASA Astrophysics Data System (ADS)
von Larcher, Th; Klein, R.
2012-04-01
Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.
Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather
NASA Technical Reports Server (NTRS)
Spann, James
2012-01-01
Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.
ERIC Educational Resources Information Center
Van Zyl Slabbert, F., Ed.; And Others
In view of the sweeping political and social changes in South Africa, the Human Sciences Research Council and other agencies established the Co-operative Research Programme: South African Youth, a program to undertake research on the problems, challenges, and opportunities facing South African youth. This report presents the information base of…
ERIC Educational Resources Information Center
Suissa; Judith
2006-01-01
This paper is a reflective account of the experience of designing and teaching a philosophy module as part of a research training programme for students studying for research degrees in education. In the course of the discussion, I address various problems and questions to do with the relationship between philosophy and educational research, the…
Educating for ethical leadership through web-based coaching.
Eide, Tom; Dulmen, Sandra van; Eide, Hilde
2016-12-01
Ethical leadership is important for developing ethical healthcare practice. However, there is little research-based knowledge on how to stimulate and educate for ethical leadership. The aim was to develop and investigate the feasibility of a 6-week web-based, ethical leadership educational programme and learn from participants' experience. Training programme and research design: A training programme was developed consisting of (1) a practice part, where the participating middle managers developed and ran an ethics project in their own departments aiming at enhancing the ethical mindfulness of the organizational culture, and (2) a web-based reflection part, including online reflections and coaching while executing the ethics project. Focus group interviews were used to explore the participants' experiences with and the feasibility of the training. Participants and research context: Nine middle managers were recruited from a part-time master's programme in leadership in Oslo, Norway. The research context was the participating leaders' work situation during the 6 weeks of training. Ethical considerations: Participation was voluntary, data anonymized and the confidentiality of the participating leaders/students and their institutions maintained. No patient or medical information was involved. Eight of the nine recruited leaders completed the programme. They evaluated the training programme as efficient and supportive, with the written, situational feedback/coaching as the most important element, enhancing reflection and motivation, counteracting a feeling of loneliness and promoting the execution of change. The findings seem consistent with the basic assumptions behind the educational design, based partly on e-health research, feedback studies and organizational ethics methodology, partly on theories on workplace learning, reflection, recognition and motivation. The training programme seems feasible. It should be adjusted according to participants' proposals and tested further in a large-scale study.
Why students leave in the UK: an integrative review of the international research literature.
Cameron, Joan; Roxburgh, Michelle; Taylor, Julie; Lauder, William
2011-04-01
The purpose of this integrative review of the literature was to find and review international research studies that explored student attrition to determine what is known about the topic and to identify gaps in the research with a view to addressing the situation in the UK. Attrition from nursing programmes is a serious problem in the UK. It is recognised as a complex phenomenon, not attributable to a single cause. Regardless of actual attrition rates and trends, departments of nursing are challenged to perform in a business-like manner. Consequently, every student lost to a programme of study equates to a financial penalty for the department and to the future workforce and community. Integrative review of the literature. Using electronic databases and specific search terms, 18 articles were identified and reviewed. Findings from the identified international research literature were analysed using qualitative content analysis. Four broad themes that accounted for factors of relevance to attrition were identified: Social, Prediction, Programme and Personal. Retention studies are fraught with methodological problems. These include incomplete or inaccurate data and low response rates. Attrition early in programmes may be attributed to a failure to understand the roles of nurses in contemporary societies. This has led to dissatisfaction with programmes and academic failure, as students may underestimate the intellectual demands of their programmes. Attrition later in the programme may be attributed to a combination of personal factors that culminate in a personal crisis. The research literature suggests that stereotyping of nurses is a major factor in attrition. Both professions need to find ways of communicating contemporary roles to wider society. © 2010 Blackwell Publishing Ltd.
Brown, Angela; Dewing, Jan; Crookes, Patrick
2016-07-01
To present for wider debate a conceptual model for clinical leadership development in pre-registration nursing programmes and a proposed implementation plan. Globally, leadership in nursing has become a significant issue. Whilst there is continued support for leadership preparation in pre-registration nursing programmes, there have been very few published accounts of curriculum content and/or pedagogical approaches that foster clinical leadership development in pre-registration nursing. A doctoral research study has resulted in the creation of an overarching model for clinical leadership. A multi-method research study using theoretical and empirical literature 1974-2015, a focus group, expert opinion and a national on-line survey. A conceptual model of clinical leadership development in pre-registration nursing programme is presented, including the infinity loop of clinical leadership, an integral curriculum thread and a conceptual model: a curriculum-pedagogy nexus for clinical leadership. In order to test out usability and evaluate effectiveness, a multi method programme of research in one school of nursing in Australia is outlined. Implementation of the proposed conceptual model for clinical leadership development in pre-registration nursing programmes and a programme of (post-doctoral) research will contribute to what is known about curriculum content and pedagogy for nurse academics. Importantly, for nursing students and the profession as a whole, there is a clearer expectation of what clinical leadership might look like in the novice registered nurse. For nurse academics a model is offered for consideration in curriculum design and implementation with an evaluation strategy that could be replicated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vallières, Frédérique; Hyland, Philip; Murphy, Jamie; Hansen, Maj; Shevlin, Mark; Elklit, Ask; Ceannt, Ruth; Armour, Cherie; Wiedemann, Nana; Munk, Mette; Dinesen, Cecilie; O’Hare, Geraldine; Cunningham, Twylla; Askerod, Ditte; Spitz, Pernille; Blackwell, Noeline; McCarthy, Angela; O’Dowd, Leonie; Scott, Shirley; Reid, Tracey; Mokake, Andreas; Halpin, Rory; Perera, Camila; Gleeson, Christina; Frost, Rachel; Flanagan, Natalie; Aldamman, Kinan; Tamrakar, Trina; Louison Vang, Maria; Sherwood, Larissa; Travers, Áine; Haahr-Pedersen, Ida; Walshe, Catherine; McDonagh, Tracey; Bramsen, Rikke Holm
2018-01-01
ABSTRACT In this paper we present a description of the Horizon2020, Marie Skłodowska-Curie Action funded, research and training programme CONTEXT: COllaborative Network for Training and EXcellence in psychoTraumatology. The three objectives of the programme are put forward, each of which refers to a key component of the CONTEXT programme. First, we summarize the 12 individual research projects that will take place across three priority populations: (i) refugees and asylum seekers, (ii) first responders, and (iii) perpetrators and survivors of childhood and gender-based violence. Second, we detail the mentoring and training programme central to CONTEXT. Finally, we describe how the research, together with the training, will contribute towards better policy, guidelines, and practice within the field of psychotraumatology. PMID:29372015
Vallières, Frédérique; Hyland, Philip; Murphy, Jamie; Hansen, Maj; Shevlin, Mark; Elklit, Ask; Ceannt, Ruth; Armour, Cherie; Wiedemann, Nana; Munk, Mette; Dinesen, Cecilie; O'Hare, Geraldine; Cunningham, Twylla; Askerod, Ditte; Spitz, Pernille; Blackwell, Noeline; McCarthy, Angela; O'Dowd, Leonie; Scott, Shirley; Reid, Tracey; Mokake, Andreas; Halpin, Rory; Perera, Camila; Gleeson, Christina; Frost, Rachel; Flanagan, Natalie; Aldamman, Kinan; Tamrakar, Trina; Louison Vang, Maria; Sherwood, Larissa; Travers, Áine; Haahr-Pedersen, Ida; Walshe, Catherine; McDonagh, Tracey; Bramsen, Rikke Holm
2018-01-01
In this paper we present a description of the Horizon2020, Marie Skłodowska-Curie Action funded, research and training programme CONTEXT: COllaborative Network for Training and EXcellence in psychoTraumatology. The three objectives of the programme are put forward, each of which refers to a key component of the CONTEXT programme. First, we summarize the 12 individual research projects that will take place across three priority populations: (i) refugees and asylum seekers, (ii) first responders, and (iii) perpetrators and survivors of childhood and gender-based violence. Second, we detail the mentoring and training programme central to CONTEXT. Finally, we describe how the research, together with the training, will contribute towards better policy, guidelines, and practice within the field of psychotraumatology.
NASA Astrophysics Data System (ADS)
Bostrom, A.; Lashof, D.
2004-12-01
For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.
Improving Predictions and Management of Hydrological Extremes through Climate Services
NASA Astrophysics Data System (ADS)
van den Hurk, Bart; Wijngaard, Janet; Pappenberger, Florian; Bouwer, Laurens; Weerts, Albrecht; Buontempo, Carlo; Doescher, Ralf; Manez, Maria; Ramos, Maria-Helena; Hananel, Cedric; Ercin, Ertug; Hunink, Johannes; Klein, Bastian; Pouget, Laurent; Ward, Philip
2016-04-01
The EU Roadmap on Climate Services can be seen as a result of convergence between the society's call for "actionable research", and the climate research community providing tailored data, information and knowledge. However, although weather and climate have clearly distinct definitions, a strong link between weather and climate services exists that is not explored extensively. Stakeholders being interviewed in the context of the Roadmap consider climate as a far distant long term feature that is difficult to consider in present-day decision taking, which is dominated by daily experience with handling extreme events. It is argued that this experience is a rich source of inspiration to increase society's resilience to an unknown future. A newly started European research project, IMPREX, is built on the notion that "experience in managing current day weather extremes is the best learning school to anticipate consequences of future climate". This paper illustrates possible ways to increase the link between information and services addressing weather and climate time scales by discussing the underlying concepts of IMPREX and its expected outcome.
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
Selected abstracts on aviation weather hazard research
DOT National Transportation Integrated Search
1996-01-01
This paper consists of bibliographic information and abstracts for literature on the topics of weather-related aviation hazards. These abstracts were selected from reports written for the ASR-9, ITWS, TDWR programs, sponsored by the Federal Aviation ...
Baselining current road weather information : final report
DOT National Transportation Integrated Search
2009-06-10
This final report contains research findings on the characterization of the quality and value of road weather information resources used by members of the surface transportation community in their decision-making process. The objectives of the projec...
75 FR 8044 - Summer Undergraduate Research Program Extension of Due Date for Proposals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
...: Due to extreme weather conditions in the Mid-Atlantic United States, NIST is extending the deadline.... Eastern Time, Tuesday, February 16, 2010. Due to extreme weather conditions and associated power outages...
Mobility of rare earth element in hydrothermal process and weathering product: a review
NASA Astrophysics Data System (ADS)
Lintjewas, L.; Setiawan, I.
2018-02-01
The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.
Cockpit weather graphics using mobile satellite communications
NASA Astrophysics Data System (ADS)
Seth, Shashi
Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.
Cockpit weather graphics using mobile satellite communications
NASA Technical Reports Server (NTRS)
Seth, Shashi
1993-01-01
Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.
Potential Technologies for Assessing Risk Associated with a Mesoscale Forecast
2015-10-01
American GFS models, and informally applied on the Weather Research and Forecasting ( WRF ) model. The current CI equation is as follows...Reen B, Penc R. Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) model using a Geographic Information System (GIS). J...Forecast model ( WRF -ARW) with extensions that might include finer terrain resolutions and more detailed representations of the underlying atmospheric
Potential Vorticity Analysis of Low Level Thunderstorm Dynamics in an Idealized Supercell Simulation
2009-03-01
Severe Weather, Supercell, Weather Research and Forecasting Model , Advanced WRF 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...27 A. ADVANCED RESEARCH WRF MODEL .................................................27 1. Data, Model Setup, and Methodology...03/11/2006 GFS model run. Top row: 11/12Z initialization. Middle row: 12 hour forecast valid at 12/00Z. Bottom row: 24 hour forecast valid at
Do Computerised Training Programmes Designed to Improve Working Memory Work?
ERIC Educational Resources Information Center
Apter, Brian J. B.
2012-01-01
A critical review of working memory training research during the last 10 years is provided. Particular attention is given to research that has attempted to investigate the efficacy of commercially marketed computerised training programmes such as "Cogmed" and "Jungle Memory". Claimed benefits are questioned on the basis that research methodologies…
Ashford Teaching Alliance Research Champion: Evaluation Report and Executive Summary
ERIC Educational Resources Information Center
Griggs, Julia; Speight, Svetlana; Farias, Javiera Cartagena
2016-01-01
The Ashford Teaching Alliance (ATA) Research Champion project ("the programme") was a pilot intervention aimed at developing teaching expertise and practice by promoting the use of educational research in decision-making and teacher practice. The programme ran for one academic year (2014/2015) in five schools within the ATA. Delivery was…
ERIC Educational Resources Information Center
Julie, Cyril; Mikalsen, Oyvind; Persens, Jan
2005-01-01
This paper explores how an aid-funded Ph.D.-programme in mathematics education instituted in some Southern African Development Community countries measures up to issues related to research capacity development projects. The research capacity development programme is described and reflected against mutual benefit, relevance, sustainability and…
Matryoshka Project: lessons learned about early intervention in psychosis programme development.
Cheng, Chiachen; Dewa, Carolyn S; Goering, Paula
2011-02-01
This part of the Matryoshka project sought to understand the processes with which early intervention in psychosis (EIP) programmes were implemented and developed. The goals were to understand the key influences of programme implementation in the context of rapid EIP service growth and lack of specific provincial guidelines. Sampling was purposive and data were collected with semi-structured interviews. Five Matryoshka Project programmes were successfully contacted. All interviews were conducted by phone, recorded and transcribed verbatim. Emerging themes were analysed iteratively and discussed among authors. Key themes were validated with participants. The new EIP services were significantly influenced by the provincial EIP network, advocacy groups and clinical mentors. EIP programme decision makers often relied on each other for guidance. Although the research evidence assisted programme decision makers to develop an effective EIP model for their region, implementation was often shaped by funding constraints. Programmes adapted their EIP models according to funding and local service characteristics. The lack of specific guidelines may have allowed innovation; programme creativity and diversity is consistent with EIP values. Despite the challenges related to geography and staffing, programmes experienced important successes such as partnerships across sectors, quality clinical service and the ability to engage hard-to-serve clientele. Although important, research evidence played only a secondary role. Relationships among providers and services, coupled with the dedication of front-line staff, were more critical to knowledge exchange than written documents alone. These findings stress the importance of researcher-front-line relationships to the adoption of evidence-informed practice. © 2011 Blackwell Publishing Asia Pty Ltd.
Shao, Jung-Hua; Chen, Su-Hui
2016-12-01
To develop a dietary self-management programme for salt-, fluid-, fat- and cholesterol-intake behaviours for older adults with low literacy and heart disease and evaluate the feasibility and acceptability of the programme. Eating behaviours such as fluid, salt, fat and cholesterol intake are an important factor related to heart disease outcomes. People with low literacy have difficulty following recommended health behaviours, but limited research has investigated intervention programmes for this population. Programme development and pilot testing its feasibility and acceptability. Recommendations were also collected from participants and the research assistant for future large-scale interventions. The study had two phases. Phase I consisted of programme development based on previous qualitative findings, a systematic review of the literature, clinical practice experience and expert opinion. In Phase II, we pilot tested the programme from January - June 2014 in a convenience sample of 10 older adults with low literacy, heart disease and recruited from a medical centre in northern Taiwan. Pilot testing showed that our programme was feasible and acceptable to older adults with low literacy and heart disease. Moreover, the final version of the programme was revised based on participants' and the research assistant's recommendations. Our study results suggest that with guidance and assistance, older adults with low literacy and heart disease can be motivated to take action for their health and are empowered by learning how to self-manage their heart-healthy eating behaviours. © 2016 John Wiley & Sons Ltd.
European Association of Echocardiography: Research Grant Programme.
Gargani, Luna; Muraru, Denisa; Badano, Luigi P; Lancellotti, Patrizio; Sicari, Rosa
2012-01-01
The European Society of Cardiology (ESC) offers a variety of grants/fellowships to help young professionals in the field of cardiological training or research activities throughout Europe. The number of grants has significantly increased in recent years with contributions from the Associations, Working Groups and Councils of the ESC. The European Association of Echocardiography (EAE) is a registered branch of the ESC and actively takes part in this initiative. One of the aims of EAE is to promote excellence in research in cardiovascular ultrasound and other imaging modalities in Europe. Therefore, since 2008, the EAE offers a Research Grant Programme to help young doctors to obtain research experience in a high standard academic centre (or similar institution oriented to clinical or pre-clinical research) in an ESC member country other than their own. This programme can be considered as a valorization of the geographical mobility as well as cultural exchanges and professional practice in the field of cardiovascular imaging. The programme has been very successful so far, therefore in 2012 the EAE has increased its offer to two grants of 25,000 euros per annum each.
The UK Academic Foundation Programmes: are the objectives being met?
Ologunde, R; Sismey, G; Kelley, T
2018-03-01
Background Since the Academic Foundation Programme was established in the UK in 2005 a number of trainees have participated in this programme; however, there are few published national data on the experiences of these academic trainees. We aimed to assess the perceived value and challenges of training on the AFP. Methods In March 2017, an anonymous electronic questionnaire was distributed to all Academic Foundation Programme trainees in the UK, via their local foundation school administrators. Fifty-six respondents completed the survey from 9 out of the 15 Academic Units of Application. Of these, 82% were undertaking a research based Academic Foundation Programme; however, 41% reported not having access to any training on research methods and governance. Sixty-six percent reported they were aware of the aims and expected outcomes of the Academic Foundation Programme, but the self-reported achievement of academic compendium outcomes was relatively low. Sixty-three percent rated the quality of their experience on the Academic Foundation Programme as excellent or good and 75% reported that they intended to continue in academia. Most trainees (64%) reported that the completion of a postgraduate qualification as part of their Academic Foundation Programme would improve the programme. Conclusion The Academic Foundation Programme plays a valuable role in trainees' development and preparing them for a career in academia. However, the objectives of the programme are currently not being uniformly achieved. Furthermore, trainees feel there remains room for improvement in the design of the programme.
NASA Astrophysics Data System (ADS)
Kucera, Paul; Steinson, Martin
2017-04-01
Accurate and reliable real-time monitoring and dissemination of observations of surface weather conditions is critical for a variety of societal applications. Applications that provide local and regional information about temperature, precipitation, moisture, and winds, for example, are important for agriculture, water resource monitoring, health, and monitoring of hazard weather conditions. In many regions of the World, surface weather stations are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation in sparsely observed regions of the world. The project is focused on improving weather observations for environmental monitoring and early warning alert systems on a regional to global scale. Instrumentation that has been developed use innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. The goal of the project is to make the weather station designs, software, and processing tools an open community resource. The weather stations can be built locally by agencies, through educational institutions, and residential communities as a citizen effort to augment existing networks to improve detection of natural hazards for disaster risk reduction. The presentation will provide an overview of the open source weather station technology and evaluation of sensor observations for the initial networks that have been deployed in Africa.
ERIC Educational Resources Information Center
Jung, Youngok; Zuniga, Stephen; Howes, Carollee; Jeon, Hyun-Joo; Parrish, Deborah; Quick, Heather; Manship, Karen; Hauser, Alison
2016-01-01
Noting the lack of research on how early childhood education (ECE) programmes within family literacy programmes influence Latino children's early language and literacy development, this study examined key features of ECE programmes, specifically teacher-child interactions and child engagement in language and literacy activities and how these…
ERIC Educational Resources Information Center
Severiens, Sabine; Meeuwisse, Marieke; Born, Marise
2015-01-01
Past research has shown that, under certain conditions, student-centred and small-scale course programmes result in more academic success. The present study investigates these conditions in further detail. It is examined whether, in comparison to a course programme that is relatively more lecture-based, a student-centred course programme promotes…
NASA Astrophysics Data System (ADS)
Hewer, Micah J.; Scott, Daniel J.; Gough, William A.
2017-10-01
Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.
Hewer, Micah J; Scott, Daniel J; Gough, William A
2017-10-01
Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.
NOAA research finds new way to identify which El Niño events will have
atmospheric El Niño signal that is very strongly associated with U.S. winter weather impacts. Download here weather impacts. Ed Harrison, Ph.D. of the NOAA Pacific Marine Environmental Laboratory in Seattle and University of Washington, co-authored the paper. "When it comes to El Niño's weather impacts, we are
Overview of NASA MSFC and UAH Space Weather Modeling and Data Efforts
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard
2016-01-01
Marshall Space Flight Center, along with its industry and academia neighbors, has a long history of space environment model development and testing. Space weather efforts include research, testing, model development, environment definition, anomaly investigation, and operational support. This presentation will highlight a few of the current space weather activities being performed at Marshall and through collaborative efforts with University of Alabama in Huntsville scientists.
The National Space Weather Program: Two decades of interagency partnership and accomplishments
NASA Astrophysics Data System (ADS)
Bonadonna, Michael; Lanzerotti, Louis; Stailey, Judson
2017-01-01
This paper describes the development of the United States National Space Weather Program (NSWP) from early interests in space environmental phenomena and their impact through the culmination of the program in 2015. Over its 21 year run, the NSWP facilitated substantial improvements in the capabilities of Federal Space Weather services and fostered broad and enduring partnerships with industry and the academic community within the U.S. and internationally. Under the management of the Office of the Federal Coordinator for Meteorological Services and Supporting Research a coalition of 10 federal agencies worked together from 1994 to 2015 to advance the national space weather enterprise. The paper describes key events and accomplishments of the NSWP interagency partnership while recognizing the great achievements made by the individual agencies. In order to provide context, the paper also discusses several important events outside the NSWP purview. Some of these external events influenced the course of the NSWP, while others were encouraged by the NSWP partnership. Following the establishment of the Space Weather Operations, Research, and Mitigation Task Force of the National Science and Technology Council in the White House and the deactivation of the NSWP Council, the agencies now play a supporting role in the national effort as the federal engagement in the National Space Weather Partnership graduates to a higher level.
Exploring Space Physics Concepts Using Simulation Results
NASA Astrophysics Data System (ADS)
Gross, N. A.
2008-05-01
The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.
Caffrey, Louise; Wyatt, David; Fudge, Nina; Mattingley, Helena; Williamson, Catherine; McKevitt, Christopher
2016-09-08
Gender inequity has persisted in academic medicine. Yet equity is vital for countries to achieve their full potential in terms of translational research and patient benefit. This study sought to understand how the gender equity programme, Athena SWAN, can be enabled and constrained by interactions between the programme and the context it is implemented into, and whether these interactions might produce unintended consequences. Multimethod qualitative case studies using a realist evaluation approach. 5 departments from a university medical school hosting a Translational Research Organisation. 25 hours of observations of gender equality committee meetings, 16 in-depth interviews with Heads of Departments, Committee Leads and key personnel involved in the initiative. 4 focus groups with 15 postdoctoral researchers, lecturers and senior lecturers. The implementation of Athena SWAN principles was reported to have created social space to address gender inequity and to have highlighted problematic practices to staff. However, a number of factors reduced the programme's potential to impact gender inequity. Gender inequity was reproduced in the programme's enactment as female staff was undertaking a disproportionate amount of Athena SWAN work, with potential negative impacts on individual women's career progression. Early career researchers experienced problems accessing Athena SWAN initiatives. Furthermore, the impact of the programme was perceived to be undermined by wider institutional practices, national policies and societal norms, which are beyond the programme's remit. Gender equity programmes have the potential to address inequity. However, paradoxically, they can also unintentionally reproduce and reinforce gender inequity through their enactment. Potential programme impacts may be undermined by barriers to staff availing of career development and training initiatives, and by wider institutional practices, national policies and societal norms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Salway, Sarah; Piercy, Hilary; Chowbey, Punita; Brewins, Louise; Dhoot, Permjeet
2013-10-01
To determine whether an intervention designed to enhance research capacity among commissioners in the area of ethnicity and health was feasible and impactful, and to identify programme elements that might usefully be replicated elsewhere. How healthcare commissioners should be equipped to understand and address multiethnic needs has received little attention to-date. Being able to mobilise and apply evidence is a central element of the commissioning process that requires development. Researching ethnicity and health is widely recognised as challenging and several prior interventions have aimed to enhance competence in this area. These have, however, predominantly taken place in North America and have not been evaluated in detail. An innovative research capacity development programme was delivered to public health staff within a large healthcare commissioning organisation in England. Evaluation methodology drew on 'pluralistic' evaluation principles and included formative and summative elements. Participant evaluation forms gave immediate feedback during the programme. Participants also provided feedback at two weeks and 12 months after the programme ended. In addition, one participant and one facilitator provided reflective accounts of the programme's strengths and weaknesses, and programme impact was traced through ongoing partnership work. The programme was well received and had a tangible impact on knowledge, confidence and practice for most participants. Factors important to success included: embedding learning within the participants' work context; ensuring a balance between theory and practical tips to enhance confidence; and having sustained interaction between trainers and participants. Despite positive signs, the challenging nature of the topic was highlighted, as were wider structural and cultural factors that impede progress in this area. Although it is unrealistic to expect such programmes to have a major impact on commissioning practices, they may well make an important contribution to raising the confidence and competence of staff to undertake work in this area.
Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors
NASA Astrophysics Data System (ADS)
Ham, J. M.
2013-12-01
Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).
2012-01-01
Background Improving health in Africa is a high priority internationally. Inadequate research capacity to produce local, relevant research has been identified as a limitation to improved population health. Increasing attention is being paid to the higher education sector in Africa as a method of addressing this; evidence that such investment is having the desired impact is required. A 1998 3-year investment by the Special Programme for Research and Training in Tropical Diseases (TDR) in research training at the School of Public Health, University of the Witwatersrand, South Africa was reviewed to assess its' impact. Methods A descriptive cross-sectional survey of the 70 students registered for the masters programme in epidemiology & biostatistics from 2000-2005 was conducted. Data were collected from self-administered questionnaires. Results Sixty percent (42/70) of students responded. At the time of the survey 19% of respondents changed their country of residence after completion of the masters course, 14% migrated within Africa and 5% migrated out of Africa. Approximately half (47%) were employed as researchers and 38% worked in research institutions. Sixty percent reported research output, and four graduates were pursuing PhD studies. Government subsidy to higher education institutions, investments of the University of the Witwatersrand in successful programmes and ongoing bursaries for students to cover tuition fees were important for sustainability. Conclusions Investing in African institutions to improve research training capacity resulted in the retention of graduates in Africa in research positions and produced research output. Training programmes can be sustained when national governments invest in higher education and where that funding is judiciously applied. Challenges remain if funding for students bursaries is not available. PMID:22475629
How accurate are the weather forecasts for Bierun (southern Poland)?
NASA Astrophysics Data System (ADS)
Gawor, J.
2012-04-01
Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why are some weather elements easier to verify than others? 5) What factors may contribute to the quality of the weather forecast?
Hanigan, Ivan; Hall, Gillian; Dear, Keith B G
2006-09-13
To explain the possible effects of exposure to weather conditions on population health outcomes, weather data need to be calculated at a level in space and time that is appropriate for the health data. There are various ways of estimating exposure values from raw data collected at weather stations but the rationale for using one technique rather than another; the significance of the difference in the values obtained; and the effect these have on a research question are factors often not explicitly considered. In this study we compare different techniques for allocating weather data observations to small geographical areas and different options for weighting averages of these observations when calculating estimates of daily precipitation and temperature for Australian Postal Areas. Options that weight observations based on distance from population centroids and population size are more computationally intensive but give estimates that conceptually are more closely related to the experience of the population. Options based on values derived from sites internal to postal areas, or from nearest neighbour sites--that is, using proximity polygons around weather stations intersected with postal areas--tended to include fewer stations' observations in their estimates, and missing values were common. Options based on observations from stations within 50 kilometres radius of centroids and weighting of data by distance from centroids gave more complete estimates. Using the geographic centroid of the postal area gave estimates that differed slightly from the population weighted centroids and the population weighted average of sub-unit estimates. To calculate daily weather exposure values for analysis of health outcome data for small areas, the use of data from weather stations internal to the area only, or from neighbouring weather stations (allocated by the use of proximity polygons), is too limited. The most appropriate method conceptually is the use of weather data from sites within 50 kilometres radius of the area weighted to population centres, but a simpler acceptable option is to weight to the geographic centroid.
Cuisance, Dominique; Antoine Rioux, Jean
2004-09-01
Following alarming statements (French Senate, Académie des Sciences) on the present situation concerning entomology and systematics in France, the Conseil Général Vétérinaire designated one of us (D.C.) to carry out a survey on the status of medical and veterinary entomology (MVE) with respect to research orientations and university curricula. Around 100 participants, including scientists, teachers and several directors of research and educational bodies, were interviewed and filled in questionnaires for this survey. On the basis of the results, it was concluded that the deterioration of MVE in France is associated with: (1) the hasty reorganisation of training and research in the life sciences, leading to the disappearance of several disciplines. Hence, the postgraduate DEA degree in entomology was eliminated, and even the name 'entomology' no longer appears in teaching programmes or on research contracts; (2) France's withdrawal from action research programmes in developing countries. Although these programmes were efficient in controlling outbreaks of major endemic diseases, integrated pest and vector management programmes have been replaced by basic health care ('Health for everyone in 2000') and vaccination programmes; (3) the general shift from field to laboratory research, focused mainly on molecular mechanisms. The survey results confirmed generally acknowledged trends concerning many points and highlighted several specific problems, such as the disappearance of systematics experts. Several potential solutions are proposed.
NASA Technical Reports Server (NTRS)
Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.
2000-01-01
In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.
Optics outreach in Irish context
NASA Astrophysics Data System (ADS)
McHugh, Emer; Smith, Arlene
2009-06-01
The Applied Optics Group, National University of Ireland Galway is a research centre involved in programmes that cover a wide variety of topics in applied optics and imaging science, including smart optics, adaptive optics, optical scattering and propagation, and engineering optics. The Group have also developed significant outreach programmes both in Primary and Post-Primary schools. It is recognised that there is a need for innovation in Science Education in Ireland and we are committed to working extensively with schools. The main aim of these outreach programmes is to increase awareness and interest in science with students and enhance the communication skills of the researchers working in the Group. The education outreach team works closely with the relevant teachers in both Primary and Post-Primary schools to design and develop learning initiatives to match the needs of the target group of students. The learning programmes are usually delivered in the participating schools during normal class time by a team of Applied Optics specialists. We are involved in running these programmes in both Primary and Post-Primary schools where the programmes are tailored to the curriculum and concentrating on optics and light. The students may also visit the Groups research centre where presentations and laboratory tours are arranged.
NASA Technical Reports Server (NTRS)
Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard;
2012-01-01
The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.
Results of the Clarus Regional Demonstrations : Evaluation of Enhanced Road Weather Forecasting
DOT National Transportation Integrated Search
2012-01-01
The Clarus Initiative is a research effort of the U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office and the Federal Highway Administrations Road Weather Management Program to develop and demonstrate an integ...
Evaluation of weathering steel overhead sign structures in West Virginia.
DOT National Transportation Integrated Search
2014-06-01
This report presents the results and findings of the research work aimed at evaluating 82 weathering steel sign : structures in Charleston Interstate System in West Virginia. Twenty-six comprehensive inspection forms were : developed to objectively e...
Road Weather Management Program : connected vehicle-infrastructure research. Final Report
DOT National Transportation Integrated Search
2016-04-30
This report provides insight into how existing vehicle sensor data (e.g., location, heading, road surface and atmospheric conditions) can be utilized by the CVI environment to support transportation safety through road-weather applications. Of specia...
NASA Astrophysics Data System (ADS)
Gomez-Heras, Miguel; Ortega-Becerril, Jose A.; López-Martínez, Jerónimo; Oliva-Urcia, Belén; Maestro, Adolfo
2017-04-01
The conservation of both natural and cultural heritage is regarded as a priority for humankind and it is therefore recognised by the UNESCO since the Convention Concerning the Protection of the World Cultural and Natural Heritage in 1972. The International Union of Geological Sciences launched in 1995 in collaboration with UNESCO the Global Geosites programme to create an inventory of geological heritage sites. Although the conservation of Geosites may face different issues to those of stone-built cultural heritage, much could be learnt from techniques initially used to characterise weathering and material decay in stone-built cultural heritage. This is especially the case for portable Non-Destructive Techniques (NDT). Portable NDT allow characterising on-site the degree of material decay and are, therefore, a good way to assess the state of conservation of certain Geosites whose relevance lies on localised features. Geosites chosen for the outstanding occurrence of dinosaur ichnites, such as those in the Cameros Massif (north-western part of the Iberian Range, Spain), are a good example of this. This communication explores the potential of portable NDT to characterise the state of decay and susceptibility to further decay of dinosaur ichnites in the Cameros Massif. These techniques included: Ultrasound Pulse Velocity determination, Leeb hardness rebound test, colour determination by means of a spectrophotometer and thermal imaging obtained with an infrared camera. Results will show the potential of these techniques to characterise differential weathering patterns in both individual ichnites as well as on tracks in addition to assessing the possible effects of conservation strategies on the long-term preservation of the mentioned Geosites. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914
NASA Astrophysics Data System (ADS)
Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.
2017-12-01
Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro
2017-04-01
To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.
Potentialities of ensemble strategies for flood forecasting over the Milano urban area
NASA Astrophysics Data System (ADS)
Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Homar, Víctor; Romero, Romu; Lombardi, Gabriele; Mancini, Marco
2016-08-01
Analysis of ensemble forecasting strategies, which can provide a tangible backing for flood early warning procedures and mitigation measures over the Mediterranean region, is one of the fundamental motivations of the international HyMeX programme. Here, we examine two severe hydrometeorological episodes that affected the Milano urban area and for which the complex flood protection system of the city did not completely succeed. Indeed, flood damage have exponentially increased during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. First, we examine how land-use changes due to urban development have altered the hydrological response to intense rainfalls. Second, we test a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. Accurate forecasts of deep moist convection and extreme precipitation are difficult to be predicted due to uncertainties arising from the numeric weather prediction (NWP) physical parameterizations and high sensitivity to misrepresentation of the atmospheric state; however, two hydrological ensemble prediction systems (HEPS) have been designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. No substantial differences in skill have been found between both ensemble strategies when considering an enhanced diversity of IC/LBCs for the perturbed initial conditions ensemble. Furthermore, no additional benefits have been found by considering more frequent LBCs in a mixed physics ensemble, as ensemble spread seems to be reduced. These findings could help to design the most appropriate ensemble strategies before these hydrometeorological extremes, given the computational cost of running such advanced HEPSs for operational purposes.
IAEA activities related to radiation biology and health effects of radiation.
Wondergem, Jan; Rosenblatt, Eduardo
2012-03-01
The IAEA is involved in capacity building with regard to the radiobiological sciences in its member states through its technical cooperation programme. Research projects/programmes are normally carried out within the framework of coordinated research projects (CRPs). Under this programme, two CRPs have been approved which are relevant to nuclear/radiation accidents: (1) stem cell therapeutics to modify radiation-induced damage to normal tissue, and (2) strengthening biological dosimetry in IAEA member states.
Open Virtual Worlds as Pedagogical Research Tools: Learning from the Schome Park Programme
NASA Astrophysics Data System (ADS)
Twining, Peter; Peachey, Anna
This paper introduces the term Open Virtual Worlds and argues that they are ‘unclaimed educational spaces’, which provide a valuable tool for researching pedagogy. Having explored these claims the way in which Teen Second Life® virtual world was used for pedagogical experimentation in the initial phases of the Schome Park Programme is described. Four sets of pedagogical dimensions that emerged are presented and illustrated with examples from the Schome Park Programme.
The impact of Sun-weather research on forecasting
NASA Technical Reports Server (NTRS)
Larsen, M. F.
1979-01-01
The possible impact of Sun-weather research on forecasting is examined. The type of knowledge of the effect is evaluated to determine if it is in a form that can be used for forecasting purposes. It is concluded that the present understanding of the effect does not lend itself readily to applications for forecast purposes. The limits of present predictive skill are examined and it is found that skill is most lacking for prediction of the smallest scales of atmospheric motion. However, it is not expected that Sun-weather research will have any significant impact on forecasting the smaller scales since predictability at these scales is limited by the finite grid size resolution and the time scales of turbulent diffusion. The predictability limits for the largest scales are on the order of several weeks although presently only a one week forecast is achievable.
Convective Weather Avoidance with Uncertain Weather Forecasts
NASA Technical Reports Server (NTRS)
Karahan, Sinan; Windhorst, Robert D.
2009-01-01
Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots are likely to avoid. The automated system periodically updates forecasts and reassesses rerouting decisions in order to account for changing weather predictions. The main objectives are to reroute flights to avoid convective weather regions and determine the resulting complexity due to rerouting. The eventual goal is to control and reduce complexity while rerouting flights during the 20 minute - 2 hour planning period. A three-hour simulation is conducted using 4800 flights in the national airspace. The study compares several metrics against a baseline scenario using the same traffic and weather but with rerouting disabled. The results show that rerouting can have a negative impact on congestion in some sectors, as expected. The rerouting system provides accurate measurements of the resulting complexity in the congested sectors. Furthermore, although rerouting is performed only in the 20-minute - 2-hour range, it results in a 30% reduction in encounters with nowcast weather polygons (100% being the ideal for perfectly predictable and accurate weather). In the simulations, rerouting was performed for the 20-minute - 2-hour flight time horizon, and for the en-route segment of air traffic. The implementation uses CWAM, a set of polygons that represent probabilities of pilot deviation around weather. The algorithms were implemented in a software-based air traffic simulation system. Initial results of the system's performance and effectiveness were encouraging. Simulation results showed that when flights were rerouted in the 20-minute - 2-hour flight time horizon of air traffic, there were fewer weather encounters in the first 20 minutes than for flights that were not rerouted. Some preliminary results were also obtained that showed that rerouting will also increase complexity. More simulations will be conducted in order to report conclusive results on the effects of rerouting on complexity. Thus, the use of the 20-minute - 2-hour flight time horizon weather avoidance teniques performed in the simulation is expected to provide benefits for short-term weather avoidance.
Rojas, David; Grierson, Lawrence; Mylopoulos, Maria; Trbovich, Patricia; Bagli, Darius; Brydges, Ryan
2018-04-01
We evaluate programmes in health professions education (HPE) to determine their effectiveness and value. Programme evaluation has evolved from use of reductionist frameworks to those addressing the complex interactions between programme factors. Researchers in HPE have recently suggested a 'holistic programme evaluation' aiming to better describe and understand the implications of 'emergent processes and outcomes'. We propose a programme evaluation framework informed by principles and tools from systems engineering. Systems engineers conceptualise complexity and emergent elements in unique ways that may complement and extend contemporary programme evaluations in HPE. We demonstrate how the abstract decomposition space (ADS), an engineering knowledge elicitation tool, provides the foundation for a systems engineering informed programme evaluation designed to capture both planned and emergent programme elements. We translate the ADS tool to use education-oriented language, and describe how evaluators can use it to create a programme-specific ADS through iterative refinement. We provide a conceptualisation of emergent elements and an equation that evaluators can use to identify the emergent elements in their programme. Using our framework, evaluators can analyse programmes not as isolated units with planned processes and planned outcomes, but as unfolding, complex interactive systems that will exhibit emergent processes and emergent outcomes. Subsequent analysis of these emergent elements will inform the evaluator as they seek to optimise and improve the programme. Our proposed systems engineering informed programme evaluation framework provides principles and tools for analysing the implications of planned and emergent elements, as well as their potential interactions. We acknowledge that our framework is preliminary and will require application and constant refinement. We suggest that our framework will also advance our understanding of the construct of 'emergence' in HPE research. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Promoting Interdisciplinary Education: The Vienna Doctoral Programme on Water Resource Systems
NASA Astrophysics Data System (ADS)
Blöschl, Günter; Bucher, Christian; Carr, Gemma; Farnleitner, Andreas; Rechberger, Helmut; Wagner, Wolfgang; Zessner, Matthias
2010-05-01
An interdisciplinary approach is often described as a valuable strategy to assist in overcoming the existing and emerging challenges to water resource management. The development of educational approaches to instil a culture of interdisciplinarity in the future generation of water resource professionals will help to meet this strategic need. The Vienna Doctoral Programme on Water Resource Systems demonstrates how the adoption of an interdisciplinary education framework has been applied to a graduate programme in the water sciences. The interdisciplinary approach aims to provide doctoral research students with an understanding of the wide spectrum of processes relevant to water resource systems. This will enable them to bring together a range of ideas, strategies and methods to their current research and future careers. The education programme also aims to teach the softer skills required for successful interdisciplinary work such as the ability to communicate clearly with non-specialist professionals and the capacity to listen to and accommodate suggestions from experts in different disciplines, which have often not traditionally been grouped together. The Vienna Doctoral Programme achieves these aims through teaching an appreciation for a wide variety of approaches including laboratory analysis, field studies and numerical methods across the fields of hydrology, remote sensing, hydrogeology, structural mechanics, microbiology, water quality and resource management. Teaching takes the form of a detailed study programme on topics such as socio-economic concepts, resource and river basin management, modelling and simulation methods, health related water quality targets, urban water management, spatial data from remote sensing and basics for stochastic mechanics. Courses are also held by internationally recognised top scientists, and a guest scientist seminar series allows doctoral researchers to profit from the expertise of senior researchers from around the world. Through a structured one-on-one mentoring programme close interaction is ensured between the students and the internationally reputed staff of the programme. This gives the opportunity for the encouragement of interdisciplinary thinking at the individual level. Interdisciplinarity also evolves passively through interactions between the doctoral students in their daily research work, during journal clubs, meetings, workshops and courses. A total of 22 doctoral students are enrolled in the programme at any time which allows for cross-fertilisation across the wide range of research projects. Finally, the programme is holistic, incorporating all aspects of the hydrological system at the catchment and multi-catchment scale. The ultimate aim is to provide an education programme which not only equips the students with an understanding of the need for interdisciplinarity, but also with the skills required to deliver interdisciplinary work in keeping with the holistic catchment management paradigm adopted by the hydrological science community.