Sample records for weather systems study

  1. Aviation Weather Information Requirements Study

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.; Stancil, Charles E.; Eckert, Clifford A.; Brown, Susan M.; Gimmestad, Gary G.; Richards, Mark A.; Schaffner, Philip R. (Technical Monitor)

    2000-01-01

    The Aviation Safety Program (AvSP) has as its goal an improvement in aviation safety by a factor of 5 over the next 10 years and a factor of 10 over the next 20 years. Since weather has a big impact on aviation safety and is associated with 30% of all aviation accidents, Weather Accident Prevention (WxAP) is a major element under this program. The Aviation Weather Information (AWIN) Distribution and Presentation project is one of three projects under this element. This report contains the findings of a study conducted by the Georgia Tech Research Institute (GTRI) under the Enhanced Weather Products effort, which is a task under AWIN. The study examines current aviation weather products and there application. The study goes on to identify deficiencies in the current system and to define requirements for aviation weather products that would lead to an increase in safety. The study also provides an overview the current set of sensors applied to the collection of aviation weather information. New, modified, or fused sensor systems are identified which could be applied in improving the current set of weather products and in addressing the deficiencies defined in the report. In addition, the study addresses and recommends possible sensors for inclusion in an electronic pilot reporting (EPIREP) system.

  2. Application of dynamical systems theory to global weather phenomena revealed by satellite imagery

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel; Tang, Chung-Muh

    1989-01-01

    Theoretical studies of low frequency and seasonal weather variability; dynamical properties of observational and general circulation model (GCM)-generated records; effects of the hydrologic cycle and latent heat release on extratropical weather; and Earth-system science studies are summarized.

  3. Weather in the cockpit : priorities, sources, delivery, and needs in the next generation air transportation system.

    DOT National Transportation Integrated Search

    2012-07-01

    A study was conducted to identify/verify weather factors important to the conduct of aviation activities and : that would be important to consider in systems intended to operate within the NextGen environment. The : study reviewed weather-information...

  4. Using Space Weather for Enhanced, Extreme Terrestrial Weather Predictions.

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Lee, T. A., III

    2017-12-01

    Considering the complexities of the Sun-Earth system, the impacts of space weather to weather here on Earth are not fully understood. This study attempts to analyze this interrelationship by providing a theoretical framework for studying the varied modalities of solar inclination and explores the extent to which they contribute, both in formation and intensity, to extreme terrestrial weather. Using basic topologic and ontology engineering concepts (TOEC), the transdisciplinary syntaxes of space physics, geophysics, and meteorology are analyzed as a seamless interrelated system. This paper reports this investigation's initial findings and examines the validity of the question "Does space weather contribute to extreme weather on Earth, and if so, to what degree?"

  5. A study of ASRS reports involving general aviation and weather encounters

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Roach, D. E.; Griffin, W. C.

    1981-01-01

    Consideration is given to the nature and characteristics of problems involving dissemination of weather information, use of this information by pilots, its adequacy for the purpose intended, the ability of the air traffic control system to cope with weather related incidents, and the various aspects of pilot behavior, aircraft equipment, and NAVAIDS affecting flights in which weather figures. It is concluded from the study that skill and training deficiencies of general aviation pilots are not major factors in weather related occurrences, nor is lack of aircraft equipment. Major problem causes are identified with timely and easily interpreted weather information, judgement and attitude factors of pilots, and the functioning of the air traffic control system.

  6. Active microwave sensing of the atmosphere, chapter 4

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The use of active microwave systems to study atmospheric phenomena is studied. Atmospheric pollution, weather prediction, climate and weather modification, weather danger and disaster warning, and atmospheric processes and interactions are covered.

  7. Thresholds for soil cover and weathering in mountainous landscapes

    NASA Astrophysics Data System (ADS)

    Dixon, Jean; Benjaram, Sarah

    2017-04-01

    The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.

  8. Implications of Contingency Planning Support for Weather and Icing Information

    NASA Technical Reports Server (NTRS)

    Vigeant-Langlois, Laurence; Hansman, R. John, Jr.

    2003-01-01

    A human-centered systems analysis was applied to the adverse aircraft weather encounter problem in order to identify desirable functions of weather and icing information. The importance of contingency planning was identified as emerging from a system safety design methodology as well as from results of other aviation decision-making studies. The relationship between contingency planning support and information on regions clear of adverse weather was investigated in a scenario- based analysis. A rapid prototype example of the key elements in the depiction of icing conditions was developed in a case study, and the implications for the components of the icing information system were articulated.

  9. Analysis of Spatial Autocorrelation for Optimal Observation Network in Korea

    NASA Astrophysics Data System (ADS)

    Park, S.; Lee, S.; Lee, E.; Park, S. K.

    2016-12-01

    Many studies for improving prediction of high-impact weather have been implemented, such as THORPEX (The Observing System Research and Predictability Experiment), FASTEX (Fronts and Atlantic Storm-Track Experiment), NORPEX (North Pacific Experiment), WSR/NOAA (Winter Storm Reconnaissance), and DOTSTAR (Dropwindsonde Observations for Typhoon Surveillance near the TAiwan Region). One of most important objectives in these studies is to find effects of observation on forecast, and to establish optimal observation network. However, there are lack of such studies on Korea, although Korean peninsula exhibits a highly complex terrain so it is difficult to predict its weather phenomena. Through building the future optimal observation network, it is necessary to increase utilization of numerical weather prediction and improve monitoring·tracking·prediction skills of high-impact weather in Korea. Therefore, we will perform preliminary study to understand the spatial scale for an expansion of observation system through Spatial Autocorrelation (SAC) analysis. In additions, we will develop a testbed system to design an optimal observation network. Analysis is conducted with Automatic Weather System (AWS) rainfall data, global upper air grid observation (i.e., temperature, pressure, humidity), Himawari satellite data (i.e., water vapor) during 2013-2015 of Korea. This study will provide a guideline to construct observation network for not only improving weather prediction skill but also cost-effectiveness.

  10. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots are likely to avoid. The automated system periodically updates forecasts and reassesses rerouting decisions in order to account for changing weather predictions. The main objectives are to reroute flights to avoid convective weather regions and determine the resulting complexity due to rerouting. The eventual goal is to control and reduce complexity while rerouting flights during the 20 minute - 2 hour planning period. A three-hour simulation is conducted using 4800 flights in the national airspace. The study compares several metrics against a baseline scenario using the same traffic and weather but with rerouting disabled. The results show that rerouting can have a negative impact on congestion in some sectors, as expected. The rerouting system provides accurate measurements of the resulting complexity in the congested sectors. Furthermore, although rerouting is performed only in the 20-minute - 2-hour range, it results in a 30% reduction in encounters with nowcast weather polygons (100% being the ideal for perfectly predictable and accurate weather). In the simulations, rerouting was performed for the 20-minute - 2-hour flight time horizon, and for the en-route segment of air traffic. The implementation uses CWAM, a set of polygons that represent probabilities of pilot deviation around weather. The algorithms were implemented in a software-based air traffic simulation system. Initial results of the system's performance and effectiveness were encouraging. Simulation results showed that when flights were rerouted in the 20-minute - 2-hour flight time horizon of air traffic, there were fewer weather encounters in the first 20 minutes than for flights that were not rerouted. Some preliminary results were also obtained that showed that rerouting will also increase complexity. More simulations will be conducted in order to report conclusive results on the effects of rerouting on complexity. Thus, the use of the 20-minute - 2-hour flight time horizon weather avoidance teniques performed in the simulation is expected to provide benefits for short-term weather avoidance.

  11. Aviation Weather Information Communications Study (AWIN). Phase 1 and 2

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Herron, R. G.; Nozawa, E. T.; Thomas, E. A.; Witchey, R. D.

    2000-01-01

    This two part study examines the communication requirements to provide weather information in the cockpit as well as public and private communication systems available to address the requirements. Ongoing research projects combined with user needs for weather related information are used to identify and describe potential weather products that address decision support in three time frames: Far-Term Strategic, Near-Term Strategic and Tactical. Data requirements of these future products are identified and quantified. Communications systems and technologies available in the public as well as private sector are analyzed to identify potential solutions. Recommendations for further research identify cost, performance, and safety benefits to justify the investment. The study concludes that not all weather information has the same level of urgency to safety-of-flight and some information is more critical to one category of flight than another. Specific weather products need to be matched with communication systems with appropriate levels of reliability to support the criticality of the information. Available bandwidth for highly critical information should be preserved and dedicated to safety. Meanwhile, systems designed for in-flight-entertainment and other passenger/crew services could be used to support less critical information that is used only for planning and economic decision support.

  12. Audio-Visual Situational Awareness for General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Weather is one of the major causes of general aviation accidents. Researchers are addressing this problem from various perspectives including improving meteorological forecasting techniques, collecting additional weather data automatically via on-board sensors and "flight" modems, and improving weather data dissemination and presentation. We approach the problem from the improved presentation perspective and propose weather visualization and interaction methods tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment (AWE), utilizes information visualization techniques, a direct manipulation graphical interface, and a speech-based interface to improve a pilot's situational awareness of relevant weather data. The system design is based on a user study and feedback from pilots.

  13. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  14. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  15. A graphical weather system design for the NASA transport systems research vehicle B-737

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.

  16. Improving the Wyoming Road Weather Information System

    DOT National Transportation Integrated Search

    1998-11-01

    A two-year study of the Wyoming Road Weather Information System (RWIS) indicated that the system will facilitate and improve maintenance operations and enhance the safety and convenience of highway travel if certain critical improvements are made. Wi...

  17. Systems Study of an Automated Fire Weather Data System

    NASA Technical Reports Server (NTRS)

    Nishioka, K.

    1974-01-01

    A sensor system applicable to an automated weather station was developed. The sensor provides automated fire weather data which correlates with manual readings. The equipment and methods are applied as an aid to the surveillance and protection of wildlands from fire damage. The continuous readings provided by the sensor system make it possible to determine the periods of time that the wilderness areas should be closed to the public to minimize the possibilities of fire.

  18. Federal Aviation Administration weather program to improve aviation safety

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  19. Systems and methods for supplemental weather information presentation on a display

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor)

    2010-01-01

    An embodiment of the supplemental weather display system presents supplemental weather information on a display in a craft. An exemplary embodiment receives the supplemental weather information from a remote source, determines a location of the supplemental weather information relative to the craft, receives weather information from an on-board radar system, and integrates the supplemental weather information with the weather information received from the on-board radar system.

  20. Weather monitoring and forecasting over eastern Attica (Greece) in the frame of FLIRE project

    NASA Astrophysics Data System (ADS)

    Kotroni, Vassiliki; Lagouvardos, Konstantinos; Chrysoulakis, Nektarios; Makropoulos, Christtos; Mimikou, Maria; Papathanasiou, Chrysoula; Poursanidis, Dimitris

    2015-04-01

    In the frame of FLIRE project a Decision Support System has been built with the aim to support decision making of Civil Protection Agencies and local stakeholders in the area of east Attica (Greece), in the cases of forest fires and floods. In this presentation we focus on a specific action that focuses on the provision of high resolution short-term weather forecasting data as well as of dense meteorological observations over the study area. Both weather forecasts and observations serve as an input in the Weather Information Management Tool (WIMT) of the Decision Support System. We focus on: (a) the description of the adopted strategy for setting-up the operational weather forecasting chain that provides the weather forecasts for the FLIRE project needs, (b) the presentation of the surface network station that provides real-time weather monitoring of the study area and (c) the strategy adopted for issuing smart alerts for thunderstorm forecasting based of real-time lightning observations as well as satellite observations.

  1. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  2. Weather Observers: A Manipulative Augmented Reality System for Weather Simulations at Home, in the Classroom, and at a Museum

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chien-Yu; Wang, Yau-Zng

    2016-01-01

    This study focused on how to enhance the interactivity and usefulness of augmented reality (AR) by integrating manipulative interactive tools with a real-world environment. A manipulative AR (MAR) system, which included 3D interactive models and manipulative aids, was designed and developed to teach the unit "Understanding Weather" in a…

  3. Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Sather, N.

    2012-06-01

    NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.

  4. Evaluating impacts of different longitudinal driver assistance systems on reducing multi-vehicle rear-end crashes during small-scale inclement weather.

    PubMed

    Li, Ye; Xing, Lu; Wang, Wei; Wang, Hao; Dong, Changyin; Liu, Shanwen

    2017-10-01

    Multi-vehicle rear-end (MVRE) crashes during small-scale inclement (SSI) weather cause high fatality rates on freeways, which cannot be solved by traditional speed limit strategies. This study aimed to reduce MVRE crash risks during SSI weather using different longitudinal driver assistance systems (LDAS). The impact factors on MVRE crashes during SSI weather were firstly analyzed. Then, four LDAS, including Forward collision warning (FCW), Autonomous emergency braking (AEB), Adaptive cruise control (ACC) and Cooperative ACC (CACC), were modeled based on a unified platform, the Intelligent Driver Model (IDM). Simulation experiments were designed and a large number of simulations were then conducted to evaluate safety effects of different LDAS. Results indicate that the FCW and ACC system have poor performance on reducing MVRE crashes during SSI weather. The slight improvement of sight distance of FCW and the limitation of perception-reaction time of ACC lead the failure of avoiding MVRE crashes in most scenarios. The AEB system has the better effect due to automatic perception and reaction, as well as performing the full brake when encountering SSI weather. The CACC system has the best performance because wireless communication provides a larger sight distance and a shorter time delay at the sub-second level. Sensitivity analyses also indicated that the larger number of vehicles and speed changes after encountering SSI weather have negative impacts on safety performances. Results of this study provide useful information for accident prevention during SSI weather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Weather & Climate. Science Syllabus for Middle and Junior High Schools. Block E.

    ERIC Educational Resources Information Center

    Geer, Ira W.

    This syllabus is divided into three sections and three appendices. The first section lists program objectives with corresponding performance criteria for seven areas of weather/climate study: (1) broad-scale weather systems; (2) local weather; (3) the atmospheric environment; (4) energy and motion in the atmosphere; (5) water in the atmosphere;…

  6. Integration of Weather Data into Airspace and Traffic Operations Simulation (ATOS) for Trajectory- Based Operations Research

    NASA Technical Reports Server (NTRS)

    Peters, Mark; Boisvert, Ben; Escala, Diego

    2009-01-01

    Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation weather research area: the explicit integration of aviation weather forecasts with NAS structure to improve the effectiveness and timeliness of weather impact mitigation plans. Our insights are based on operational experiences with Lincoln Laboratory-developed integrated weather sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic weather forecasts. Lincoln Laboratory studies and prototype demonstrations in this area are helping to define the weather-assimilated decision-making system that is envisioned as a key capability for the multi-agency Next Generation Air Transportation System [1]. The Laboratory's work in this area has involved continuing, operations-based evolution of both weather forecasts and models for weather impacts on the NAS. Our experience has been that the development of usable ATM technologies that address weather impacts must proceed via rapid prototyping at facilities whose users are highly motivated to participate in system evolution.

  7. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  8. Improving the Health Forecasting Alert System for Cold Weather and Heat-Waves In England: A Proof-of-Concept Using Temperature-Mortality Relationships

    PubMed Central

    Masato, Giacomo; Bone, Angie; Charlton-Perez, Andrew; Cavany, Sean; Neal, Robert; Dankers, Rutger; Dacre, Helen; Carmichael, Katie; Murray, Virginia

    2015-01-01

    Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use. PMID:26431427

  9. Improving the Health Forecasting Alert System for Cold Weather and Heat-Waves In England: A Proof-of-Concept Using Temperature-Mortality Relationships.

    PubMed

    Masato, Giacomo; Bone, Angie; Charlton-Perez, Andrew; Cavany, Sean; Neal, Robert; Dankers, Rutger; Dacre, Helen; Carmichael, Katie; Murray, Virginia

    2015-01-01

    In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  10. Improving the Wyoming road weather information system

    DOT National Transportation Integrated Search

    1998-11-01

    Studies in other states and countries have shown that Road Weather Information Systems (RWIS) can improve the efficiency of snow and ice control operations and reduce accidents. The RWIS network in Wyoming is presently comprised of 27 roadside weathe...

  11. Pilot's Automated Weather Support System (PAWSS) concepts demonstration project. Phase 1: Pilot's weather information requirements and implications for weather data systems design

    NASA Technical Reports Server (NTRS)

    Crabill, Norman L.; Dash, Ernie R.

    1991-01-01

    The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described.

  12. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  13. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  14. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  15. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.

  16. Winds and Weather, Teacher's Edition. Probing the Natural World/3.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Dept. of Science Education.

    The teacher's edtion for the Intermediate Science Curriculum Study Level III unit entitled "Winds and Weather" provides instructions for teachers for examining some principles underlying thermal convention, weather observation, closed systems, moisture and cloud formation, the heated-air model, and fronts. A brief introduction dealing…

  17. Design of all-weather celestial navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  18. Use of observational and model-derived fields and regime model output statistics in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.; Pielke, R. A.

    1985-01-01

    Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.

  19. Review of the institutional issues relating to road weather information systems (RWIS)

    DOT National Transportation Integrated Search

    1998-08-01

    This project, funded by the Aurora Program, aimed to identify and document institutional issues relating to the implementation and development of Road Weather Information Systems (RWIS). For the purposes of this study, RWIS can be briefly defined as ...

  20. Weather or Not To Teach Junior High Meteorology.

    ERIC Educational Resources Information Center

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  1. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs.

  2. Comparison of Selected Weather Translation Products

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2017-01-01

    Weather is a primary contributor to the air traffic delays within the National Airspace System (NAS). At present, it is the individual decision makers who use weather information and assess its operational impact in creating effective air traffic management solutions. As a result, the estimation of the impact of forecast weather and the quality of ATM response relies on the skill and experience level of the decision maker. FAA Weather-ATM working groups have developed a Weather-ATM integration framework that consists of weather collection, weather translation, ATM impact conversion and ATM decision support. Some weather translation measures have been developed for hypothetical operations such as decentralized free flight, whereas others are meant to be relevant in current operations. This paper does comparative study of two different weather translation products relevant in current operations and finds that these products have strong correlation with each other. Given inaccuracies in prediction of weather, these differences would not be expected to be of significance in statistical study of a large number of decisions made with a look-ahead time of two hours or more.

  3. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  4. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 25.961...

  5. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 25.961...

  6. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 25.961...

  7. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 25.961...

  8. Large-Scale, Extratropical Weather Systems within Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2013-04-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  9. Large-Scale Extratropical Weather Systems in Mars' Atmosphere

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2013-01-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  10. Weather chains during the 2013/2014 winter and their significance for seasonal prediction

    NASA Astrophysics Data System (ADS)

    Davies, Huw C.

    2015-11-01

    Day-to-day weather forecasting has improved substantially over the past few decades. In contrast, progress in seasonal prediction outside the tropics has been meagre and mixed. On seasonal timescales, the constraining influence of the initial atmospheric state is weak, and the internal variability associated with transient weather systems tends to be large compared with the nuanced influence of anomalies in external forcing. Current research and operational activities focus on exploring and exploiting potential links between external anomalies and seasonal-mean climate patterns. Here I examine reanalysed meteorological data sets for the unusual winter 2013/2014, with drought and freezing conditions juxtaposed over North America and severe wet and stormy weather over parts of Europe, to study the role of weather systems and their transient upper-tropospheric flow patterns. I find that the amplitude, recurrence and location of these transient patterns account directly for the corresponding anomalous seasonal-mean patterns. They occurred episodically and sequentially, were linked dynamically, and exhibited some circumpolar connectivity. I conclude that the upper-tropospheric components of transient weather systems are significant for understanding and predicting seasonal weather patterns, whereas the role of external factors is more subtle.

  11. Cockpit display of hazardous weather information

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Wanke, Craig

    1991-01-01

    Information transfer and display issues associated with the dissemination of hazardous weather warnings are studied in the context of wind shear alerts. Operational and developmental wind shear detection systems are briefly reviewed. The July 11, 1988 microburst events observed as part of the Denver Terminal Doppler Weather Radar (TDWR) operational evaluation are analyzed in terms of information transfer and the effectiveness of the microburst alerts. Information transfer, message content and display issues associated with microburst alerts generated from ground based sources (Doppler Radar, Low Level Wind Shear Alert System, and Pilot Reports) are evaluated by means fo pilot opinion surveys and part task simulator studies.

  12. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  13. The Weather Forecast Using Data Mining Research Based on Cloud Computing.

    NASA Astrophysics Data System (ADS)

    Wang, ZhanJie; Mazharul Mujib, A. B. M.

    2017-10-01

    Weather forecasting has been an important application in meteorology and one of the most scientifically and technologically challenging problem around the world. In my study, we have analyzed the use of data mining techniques in forecasting weather. This paper proposes a modern method to develop a service oriented architecture for the weather information systems which forecast weather using these data mining techniques. This can be carried out by using Artificial Neural Network and Decision tree Algorithms and meteorological data collected in Specific time. Algorithm has presented the best results to generate classification rules for the mean weather variables. The results showed that these data mining techniques can be enough for weather forecasting.

  14. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark

    2011-01-01

    The AMU Team began four new tasks in this quarter: (1) began work to improve the AMU-developed tool that provides the launch weather officers information on peak wind speeds that helps them assess their launch commit criteria; (2) began updating lightning climatologies for airfields around central Florida. These climatologies help National Weather Service and Air Force forecasters determine the probability of lightning occurrence at these sites; (3) began a study for the 30th Weather Squadron at Vandenberg Air Force Base in California to determine if precursors can be found in weather observations to help the forecasters determine when they will get strong wind gusts in their northern towers; and (4) began work to update the AMU-developed severe weather tool with more data and possibly improve its performance using a new statistical technique. Include is a section of summaries and detail reporting on the quarterly tasks: (1) Peak Wind Tool for user Meteorological Interactive Data Display System (LCC), Phase IV, (2) Situational Lightning climatologies for Central Florida, Phase V, (3) Vandenberg AFB North Base Wind Study and (4) Upgrade Summer Severe Weather Tool Meteorological Interactive Data Display System (MIDDS).

  15. Michigan Department of Transportation (MDOT) weather responsive traveler information (Wx-TINFO) system.

    DOT National Transportation Integrated Search

    2016-01-01

    FHWAs Road Weather Management Program partnered with MDOT to develop a weather responsive traveler information system called Wx-TINFO. The system, shown below, integrates multiple weather data sources into one program, enabling Transportation Oper...

  16. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    NASA Technical Reports Server (NTRS)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  17. General-aviation's view of progress in the aviation weather system

    NASA Technical Reports Server (NTRS)

    Lundgren, Douglas J.

    1988-01-01

    For all its activity statistics, general-aviation is the most vulnerable to hazardous weather. Of concern to the general aviation industry are: (1) the slow pace of getting units of the Automated Weather Observation System (AWOS) to the field; (2) the efforts of the National Weather Service to withdraw from both the observation and dissemination roles of the aviation weather system; (3) the need for more observation points to improve the accuracy of terminal and area forecasts; (4) the need for improvements in all area forecasts, terminal forecasts, and winds aloft forecasts; (5) slow progress in cockpit weather displays; (6) the erosion of transcribed weather broadcasts (TWEB) and other deficiencies in weather information dissemination; (7) the need to push to make the Direct User Access Terminal (DUAT) a reality; and (7) the need to improve severe weather (thunderstorm) warning systems.

  18. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  19. Regolith formation rate from U-series nuclides: Implications from the study of a spheroidal weathering profile in the Rio Icacos watershed (Puerto Rico)

    NASA Astrophysics Data System (ADS)

    Chabaux, F.; Blaes, E.; Stille, P.; di Chiara Roupert, R.; Pelt, E.; Dosseto, A.; Ma, L.; Buss, H. L.; Brantley, S. L.

    2013-01-01

    A 2 m-thick spheroidal weathering profile, developed on a quartz diorite in the Rio Icacos watershed (Luquillo Mountains, eastern Puerto Rico), was analyzed for major and trace element concentrations, Sr and Nd isotopic ratios and U-series nuclides (238U-234U-230Th-226Ra). In this profile a 40 cm thick soil horizon is overlying a 150 cm thick saprolite which is separated from the basal corestone by a ˜40 cm thick rindlet zone. The Sr and Nd isotopic variations along the whole profile imply that, in addition to geochemical fractionations associated to water-rock interactions, the geochemical budget of the profile is influenced by a significant accretion of atmospheric dusts. The mineralogical and geochemical variations along the profile also confirm that the weathering front does not progress continuously from the top to the base of the profile. The upper part of the profile is probably associated with a different weathering system (lateral weathering of upper corestones) than the lower part, which consists of the basal corestone, the associated rindlet system and the saprolite in contact with these rindlets. Consequently, the determination of weathering rates from 238U-234U-230Th-226Ra disequilibrium in a series of samples collected along a vertical depth profile can only be attempted for samples collected in the lower part of the profile, i.e. the rindlet zone and the lower saprolite. Similar propagation rates were derived for the rindlet system and the saprolite by using classical models involving loss and gain processes for all nuclides to interpret the variation of U-series nuclides in the rindlet-saprolite subsystem. The consistency of these weathering rates with average weathering and erosion rates derived via other methods for the whole watershed provides a new and independent argument that, in the Rio Icacos watershed, the weathering system has reached a geomorphologic steady-state. Our study also indicates that even in environments with differential weathering, such as observed for the Puerto Rico site, the radioactive disequilibrium between the nuclides of a single radioactive series (here 238U-234U-230Th-226Ra) can still be interpreted in terms of a simplified scenario of congruent weathering. Incidentally, the U-Th-Ra disequilibrium in the corestone samples confirms that the outermost part of the corestone is already weathered.

  20. Real-time assessment of fog-related crashes using airport weather data: a feasibility analysis.

    PubMed

    Ahmed, Mohamed M; Abdel-Aty, Mohamed; Lee, Jaeyoung; Yu, Rongjie

    2014-11-01

    The effect of reduction of visibility on crash occurrence has recently been a major concern. Although visibility detection systems can help to mitigate the increased hazard of limited-visibility, such systems are not widely implemented and many locations with no systems are experiencing considerable number of fatal crashes due to reduction in visibility caused by fog and inclement weather. On the other hand, airports' weather stations continuously monitor all climate parameters in real-time, and the gathered data may be utilized to mitigate the increased risk for the adjacent roadways. This study aims to examine the viability of using airport weather information in real-time road crash risk assessment in locations with recurrent fog problems. Bayesian logistic regression was utilized to link six years (2005-2010) of historical crash data to real-time weather information collected from eight airports in the State of Florida, roadway characteristics and aggregate traffic parameters. The results from this research indicate that real-time weather data collected from adjacent airports are good predictors to assess increased risk on highways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Implications of Automotive and Trucking On-Board Information Systems for General Aviation Cockpit Weather Systems

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2002-01-01

    In this study, current characteristics and future developments of Intelligent Transportation Systems (ITS) in the automobile and trucking industry are investigated to identify the possible implications of such systems for General Aviation (GA) cockpit weather systems. First, ITS are explained based on tracing their historical development in various countries. Then, current systems and the enabling communication technologies are discussed. Finally, a market analysis for GA is included.

  2. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.

  3. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  4. Effects of weathering on performance of intumescent coatings for structure fire protection in the wildland-urban interface

    NASA Astrophysics Data System (ADS)

    Bahrani, Babak

    The objective of this study was to investigate the effects of weathering on the performance of intumescent fire-retardant coatings on wooden products. The weathering effects included primary (solar irradiation, moisture, and temperature) and secondary (environmental contaminants) parameters at various time intervals. Wildland urban interface (WUI) fires have been an increasing threat to lives and properties. Existing solutions to mitigate the damages caused by WUI fires include protecting the structures from ignition and minimizing the fire spread from one structure to another. These solutions can be divided into two general categories: active fire protection systems and passive fire protection systems. Passive systems are either using pre-applied wetting agents (water, gel, or foam) or adding an extra layer (composite wraps or coatings). Fire-retardant coating treatment methods can be divided into impregnated (penetrant) and intumescent categories. Intumescent coatings are easy to apply, economical, and have a better appearance in comparison to other passive fire protection methods, and are the main focus of this study. There have been limited studies conducted on the application of intumescent coatings on wooden structures and their performance after long-term weathering exposure. The main concerns of weathering effects are: 1) the reduction of ignition resistance of the coating layer after weathering; and 2) the fire properties of coatings after weathering since coatings might contribute as a combustible fuel and assist the fire growth after ignition. Three intumescent coatings were selected and exposed to natural weathering conditions in three different time intervals. Two types of tests were performed on the specimens: a combustibility test consisted of a bench-scale performance evaluation using a Cone Calorimeter, and a thermal decomposition test using Simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) method (also known as SDT). For each coating type and weathering period, three different radiative heat flux levels were used in the combustibility tests. Data obtained from the tests, including flammability and thermal properties, were gathered, analyzed, and compared to non-weathered specimens. The results revealed visible effects of weathering on pre (and up to)-ignition flammability and intumescent properties, especially decreases in Time-to-Ignition (TTI), Time-to-Intumescence (tintu.), and (maximum) Intumescence Height (Hintu.) values in weathered specimens. These results showed that the ignition resistance of the coating layers decreased after weathering exposure. On the other hand, the obtained results from weathered specimens for the post-ignition flammability properties, especially Peak Heat Release Rate (PHRR) and Effective Heat of Combustion (EHC) did not show a significant difference in comparison to the non-weathered samples. These results demonstrated that the weathered coating layer would not likely to act as an additional combustible fuel to increase fire spread.

  5. Impact of Probabilistic Weather on Flight Routing Decisions

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel

    2006-01-01

    Flight delays in the United States have been found to increase year after year, along with the increase in air traffic. During the four-month period from May through August of 2005, weather related delays accounted for roughly 70% of all reported delays, The current weather prediction in tactical (within 2 hours) timeframe is at manageable levels, however, the state of forecasting weather for strategic (2-6 hours) timeframe is still not dependable for long-term planning. In the absence of reliable severe weather forecasts, the decision-making for flights longer than two hours is challenging. This paper deals with an approach of using probabilistic weather prediction for Traffic Flow Management use, and a general method using this prediction for estimating expected values of flight length and delays in the National Airspace System (NAS). The current state-of-the-art convective weather forecasting is employed to aid the decision makers in arriving at decisions for traffic flow and flight planing. The six-agency effort working on the Next Generation Air Transportation System (NGATS) have considered weather-assimilated decision-making as one of the principal foci out of a list of eight. The weather Integrated Product Team has considered integrated weather information and improved aviation weather forecasts as two of the main efforts (Ref. 1, 2). Recently, research has focused on the concept of operations for strategic traffic flow management (Ref. 3) and how weather data can be integrated for improved decision-making for efficient traffic management initiatives (Ref. 4, 5). An overview of the weather data needs and benefits of various participants in the air traffic system along with available products can be found in Ref. 6. Previous work related to use of weather data in identifying and categorizing pilot intrusions into severe weather regions (Ref. 7, 8) has demonstrated a need for better forecasting in the strategic planning timeframes and moving towards a probabilistic description of weather (Ref. 9). This paper focuses on. specified probability in a local region for flight intrusion/deviation decision-making. The process uses a probabilistic weather description, implements that in a air traffic assessment system to study trajectories of aircraft crossing a cut-off probability contour. This value would be useful for meteorologists in creating optimum distribution profiles for severe weather, Once available, the expected values of flight path and aggregate delays are calculated for efficient operations. The current research, however, does not deal with the issue of multiple cell encounters, as well as echo tops, and will be a topic of future work.

  6. Space Weathering in Houston: A Role for the Experimental Impact Laboratory at JSC

    NASA Technical Reports Server (NTRS)

    Cintala, M. J.; Keller, L. P.; Christoffersen, R.; Hoerz, F.

    2015-01-01

    The effective investigation of space weathering demands an interdisciplinary approach that is at least as diversified as any other in planetary science. Because it is a macroscopic process affecting all bodies in the solar system, impact and its resulting shock effects must be given detailed attention in this regard. Direct observation of the effects of impact is most readily done for the Moon, but it still remains difficult for other bodies in the solar system. Analyses of meteorites and precious returned samples provide clues for space weathering on asteroids, but many deductions arising from those studies must still be considered circumstantial. Theoretical work is also indispensable, but it can only go as far as the sometimes meager data allow. Experimentation, however, can permit near real-time study of myriad processes that could contribute to space weathering. This contribution describes some of the capabilities of the Johnson Space Center's Experimental Impact Laboratory (EIL) and how they might help in understanding the space weathering process.

  7. Data mining and gap analysis for weather responsive traffic management studies.

    DOT National Transportation Integrated Search

    2010-12-01

    Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the : delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, : hurric...

  8. Development of a Wake Vortex Spacing System for Airport Capacity Enhancement and Delay Reduction

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; OConnor, Cornelius J.

    2000-01-01

    The Terminal Area Productivity project has developed the technologies required (weather measurement, wake prediction, and wake measurement) to determine the aircraft spacing needed to prevent wake vortex encounters in various weather conditions. The system performs weather measurements, predicts bounds on wake vortex behavior in those conditions, derives safe wake spacing criteria, and validates the wake predictions with wake vortex measurements. System performance to date indicates that the potential runway arrival rate increase with Aircraft VOrtex Spacing System (AVOSS), considering common path effects and ATC delivery variance, is 5% to 12% depending on the ratio of large and heavy aircraft. The concept demonstration system, using early generation algorithms and minimal optimization, is performing the wake predictions with adequate robustness such that only 4 hard exceedances have been observed in 1235 wake validation cases. This performance demonstrates the feasibility of predicting wake behavior bounds with multiple uncertainties present, including the unknown aircraft weight and speed, weather persistence between the wake prediction and the observations, and the location of the weather sensors several kilometers from the approach location. A concept for the use of the AVOSS system for parallel runway operations has been suggested, and an initial study at the JFK International Airport suggests that a simplified AVOSS system can be successfully operated using only a single lidar as both the weather sensor and the wake validation instrument. Such a selfcontained AVOSS would be suitable for wake separation close to the airport, as is required for parallel approach concepts such as SOIA.

  9. 76 FR 67018 - Notice to Manufacturers of Airport In-Pavement Stationary Runway Weather Information Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ...-Pavement Stationary Runway Weather Information Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of In-Pavement Stationary Runway Weather Information Systems... waivers to foreign manufacturers of Active or Passive In- Pavement Stationary Runway Weather Information...

  10. Toward a Concept of Operations for Aviation Weather Information Implementation in the Evolving National Airspace System

    NASA Technical Reports Server (NTRS)

    McAdaragh, Raymon M.

    2002-01-01

    The capacity of the National Airspace System is being stressed due to the limits of current technologies. Because of this, the FAA and NASA are working to develop new technologies to increase the system's capacity which enhancing safety. Adverse weather has been determined to be a major factor in aircraft accidents and fatalities and the FAA and NASA have developed programs to improve aviation weather information technologies and communications for system users The Aviation Weather Information Element of the Weather Accident Prevention Project of NASA's Aviation Safety Program is currently working to develop these technologies in coordination with the FAA and industry. This paper sets forth a theoretical approach to implement these new technologies while addressing the National Airspace System (NAS) as an evolving system with Weather Information as one of its subSystems. With this approach in place, system users will be able to acquire the type of weather information that is needed based upon the type of decision-making situation and condition that is encountered. The theoretical approach addressed in this paper takes the form of a model for weather information implementation. This model addresses the use of weather information in three decision-making situations, based upon the system user's operational perspective. The model also addresses two decision-making conditions, which are based upon the need for collaboration due to the level of support offered by the weather information provided by each new product or technology. The model is proposed for use in weather information implementation in order to provide a systems approach to the NAS. Enhancements to the NAS collaborative decision-making capabilities are also suggested.

  11. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.

    PubMed

    Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G

    2016-02-01

    Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.

  12. Probabilistic Harmonic Analysis on Distributed Photovoltaic Integration Considering Typical Weather Scenarios

    NASA Astrophysics Data System (ADS)

    Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang

    2017-05-01

    Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.

  13. General Aviation Cockpit Weather Information System Simulation Studies

    NASA Technical Reports Server (NTRS)

    McAdaragh, Ray; Novacek, Paul

    2003-01-01

    This viewgraph presentation provides information on two experiments on the effectiveness of a cockpit weather information system on a simulated general aviation flight. The presentation covers the simulation hardware configuration, the display device screen layout, a mission scenario, conclusions, and recommendations. The second experiment, with its own scenario and conclusions, is a follow-on experiment.

  14. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  15. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    PubMed

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  16. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  17. CAWSES Related Projects in Japan : Grant-in-Aid for Creative Scientific Research ügBasic Study of Space Weather Predictionüh and CHAIN (Continuous H Alpha Imaging Network)

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Kurokawa, H.

    The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction

  18. Studies of satellite support to weather modification in the western US region

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; Grant, L. O.; Vonderhaar, T. H.

    1978-01-01

    The applications of meteorological satellite data to both summer and winter weather modification programs are addressed. Appraisals of the capability of satellites to assess seedability, to provide real-time operational support, and to assist in the post-experiment analysis of a seeding experiment led to the incorporation of satellite observing systems as a major component in the Bureau of Reclamations weather modification activities. Satellite observations are an integral part of the South Park Area cumulus experiment (SPACE) which aims to formulate a quantitative hypothesis for enhancing precipitation from orographically induced summertime mesoscale convective systems (orogenic mesoscale systems). Progress is reported in using satellite observations to assist in classifying the important mesoscale systems, and in defining their frequency and coverage, and potential area of effect. Satellite studies of severe storms are also covered.

  19. Assessment of Montana road weather information system : final report

    DOT National Transportation Integrated Search

    2017-01-01

    Weather presents considerable challenges to highway agencies both in terms of safety and operations. State transportation agencies have developed road weather information systems (RWIS) to address such challenges. Road weather information has been us...

  20. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  1. Updates on CCMC Activities and GSFC Space Weather Services

    NASA Technical Reports Server (NTRS)

    Zhengm Y.; Hesse, M.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Maddox, M.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Lee, H.; hide

    2011-01-01

    In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.

  2. The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems

    DTIC Science & Technology

    1999-09-30

    The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Environmental Technology Laboratory...formulation, and numerical prediction of the life cycles of synoptic-scale and mesoscale extratropical weather systems, including the influence of planetary...scale inter-annual and intra-seasonal variability on their evolution. These weather systems include: extratropical oceanic and land-falling cyclones

  3. Graphical Weather Information System Evaluation: Usability, Perceived Utility, and Preferences from General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    Weather is a significant factor in General Aviation (GA) accidents and fatality rates. Graphical Weather Information Systems (GWISs) for the flight deck are appropriate technologies for mitigating the difficulties GA pilots have with current aviation weather information sources. This paper describes usability evaluations of a prototype GWIS by 12 GA pilots after using the system in flights towards convective weather. We provide design guidance for GWISs and discuss further research required to support weather situation awareness and in-flight decision making for GA pilots.

  4. Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    NASA Astrophysics Data System (ADS)

    Calabrese, Salvatore; Parolari, Anthony J.; Porporato, Amilcare

    2017-10-01

    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates.

  5. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  6. Roadway weather information system and automatic vehicle location (AVL) coordination.

    DOT National Transportation Integrated Search

    2011-02-28

    Roadway Weather Information System and Automatic Vehicle Location Coordination involves the : development of an Inclement Weather Console that provides a new capability for the state of Oklahoma : to monitor weather-related roadway conditions. The go...

  7. Final report of the operation and demonstration test of short-range weather forecasting decision support within an advanced transportation weather information system (#Safe)

    DOT National Transportation Integrated Search

    2006-04-01

    The purpose of the Advanced Transportation Weather Information System (ATWIS) was to provide en-route weather forecasts and road condition information to the traveling public across North Dakota and South Dakota. ATWIS was the first system to develop...

  8. Arduino Based Weather Monitoring Telemetry System Using NRF24L01+

    NASA Astrophysics Data System (ADS)

    Sidqi, Rafi; Rio Rynaldo, Bagus; Hadi Suroso, Satya; Firmansyah, Rifqi

    2018-04-01

    Abstract-Weather is an important part of the natural environment, thus knowing weather information is needed before doing activity. The main purpose of this research was to develop a weather monitoring system which capable to transmit weather data via radio frequency by using nRF24L01+ 2,4GHz radio module. This research implement Arduino UNO as the main controller of the system which send data wirelessly using the radio module and received by a receiver system. Received data then logged and displayed using a Graphical User Interface on a personal computer. Test and experiment result show that the system was able to transmit weather data via radio wave with maximum transmitting range of 32 meters.

  9. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  10. SIMULATION-BASED WEATHER NORMALIZATION APPROACH TO STUDY THE IMPACT OF WEATHER ON ENERGY USE OF BUILDINGS IN THE U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Wang, Na

    Weather normalization is a crucial task in several applications related to building energy conservation such as retrofit measurements and energy rating. This paper documents preliminary results found from an effort to determine a set of weather adjustment coefficients that can be used to smooth out impacts of weather on energy use of buildings in 1020 weather location sites available in the U.S. The U.S. Department of Energy (DOE) commercial reference building models are adopted as hypothetical models with standard operations to deliver consistency in modeling. The correlation between building envelop design, HVAC system design and properties for different building typesmore » and the change in heating and cooling energy consumption caused by variations in weather is examined.« less

  11. Large-Scale, Synoptic-Period Weather Systems in Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M.

    2013-10-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts associated with its waxing and waning seasonal polar ice caps. The imposition of this strong meridional temperature gradient supports intense eastward-traveling, synoptic-period weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. These disturbances grow, mature and decay within the east-west varying seasonal-mean middle and high-latitude westerly jet stream (i.e., the polar vortex) on the planet. Near the surface, such weather disturbances indicated distinctive, spiraling "comma"-shaped dust cloud structures of large scale, and scimitar-shaped dust fronts, indicative of processes associated with cyclo- and fronto-genesis. The weather systems are most intense during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances appear to be significantly more vigorous than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). Regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this atmospheric aerosol. A brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by various modeling studies (i.e., ranging from highly simplified, mechanistic and fully complex global circulation modeling investigations) that we are pursuing. In particular, transport of scalar quantities (e.g., tracers and high-order dynamically revealing diagnostic fields) are investigated. A discussion of outstanding issues and future modeling pursuits is offered related to Mars' extratropical traveling weather systems.

  12. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  13. Impacts from urban water systems on receiving waters - How to account for severe wet-weather events in LCA?

    PubMed

    Risch, Eva; Gasperi, Johnny; Gromaire, Marie-Christine; Chebbo, Ghassan; Azimi, Sam; Rocher, Vincent; Roux, Philippe; Rosenbaum, Ralph K; Sinfort, Carole

    2018-01-01

    Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts of freshwater eutrophication and ecotoxicity compared to those arising from treated effluents. At the rain event scale the wet-weather contributions to these impacts are even more significant, accounting for example for up to 62% of the total impact on freshwater ecotoxicity. This also allowed investigating and discussing the ecotoxicity contribution of each class of pollutants among the broad range of inventoried substances. Finally, with such significant contributions of pollutant loads and associated impacts from wet-weather events, further research is required to better include temporally-differentiated emissions when evaluating eutrophication and ecotoxicity. This will provide a better understanding of how the performance of an UWS system affects the receiving environment for given local weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Advances in Optimizing Weather Driven Electric Power Systems.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  15. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...

  16. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 27.961...

  17. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 29.961...

  18. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 27.961...

  19. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 27.961...

  20. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 29.961...

  1. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 27.961...

  2. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 29.961...

  3. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...

  4. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 29.961...

  5. Implementation guidelines for road weather information systems

    DOT National Transportation Integrated Search

    1997-11-01

    The report presents guidelines for implementing road weather information systems (RWIS). These guidelines will assist highway agency personnel with the planning, installation, and maintenance of road weather information systems for either ice or high...

  6. Using Artificial Intelligence to Inform Pilots of Weather

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2006-01-01

    An automated system to assist a General Aviation (GA) pilot in improving situational awareness of weather in flight is now undergoing development. This development is prompted by the observation that most fatal GA accidents are attributable to loss of weather awareness. Loss of weather awareness, in turn, has been attributed to the difficulty of interpreting traditional preflight weather briefings and the difficulty of both obtaining and interpreting traditional in-flight weather briefings. The developmental automated system not only improves weather awareness but also substantially reduces the time a pilot must spend in acquiring and maintaining weather awareness.

  7. Measuring weather for aviation safety in the 1980's

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  8. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  9. Exploring adaptations to climate change with stakeholders: A participatory method to design grassland-based farming systems.

    PubMed

    Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger

    2017-05-15

    Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    NASA Astrophysics Data System (ADS)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate weather analysis for forecasting and decreasing the damage of the disasters over the area concerned.

  11. The Perils of Space Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoff

    The Sun’s continuous bombardment of the Earth with high-energy electrons, protons, and other nuclei results in space weather that can wreak havoc on the nation’s satellites, aircraft, communications networks, navigation systems, and the electric power grid. Because of the potential for space weather to so critically impact national security, Los Alamos National Laboratory has been studying it for decades, designing and building space-based sensors to detect emissions from potential nuclear events here on Earth and to study natural and man-made radiation in space.

  12. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  13. Pikalert(R) System Vehicle Data Translator (VDT) Utilizing Integrated Mobile Observations Pikalert VDT Enhancements, Operations, & Maintenance

    DOT National Transportation Integrated Search

    2017-03-24

    The Pikalert System provides high precision road weather guidance. It assesses current weather and road conditions based on observations from connected vehicles, road weather information stations, radar, and weather model analysis fields. It also for...

  14. Collaboration Between Government and Commercial Space Weather Information Providers

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie

    2007-10-01

    Many systems and situations require up-to-date space weather information. These include navigation systems in cars, boats, and commercial freight; the specific location information needed for construction and oil drilling; communications; airline navigation; avionic systems; and passengers and personnel on polar airline flights. Thus, as the world's industries become increasingly more reliant on satellite data and more vulnerable to space weather conditions, new collaborations will have to be formed between commercial providers of space weather information and the government scientists who monitor space weather.

  15. Modeling rock weathering in small watersheds

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2014-05-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and Van der Weijden, 2012a, 2014), which integrates topographic, hydrologic, rock structure and chemical data to calculate weathering rates at the watershed scale, validated the conceptual models in the River Sordo basin, a small watershed located in the Marão cordillera (North of Portugal). The coupling of weathering, groundwater flow and landscape evolution analyses, as accomplished in this study, is innovative and represents a remarkable achievement towards regionalization of rock weathering at the watershed scale. The River Sordo basin occupies an area of approximately 51.2 km2 and was shaped on granite and metassediment terrains between the altitudes 185-1300 m. The groundwater flow system is composed of recharge areas located at elevations >700 m, identified on the basis of δ18O data. Discharge cells comprehend terminations of local, intermediate and regional flow systems, identified on the basis of spring density patterns, infiltration depth estimates based on 87Sr/86Sr data, and spatial distributions of groundwater pH and natural mineralization. Intermediate and regional flow systems, defined where infiltration depths >125 m, develop solely along the contact zone between granites and metassediments, because fractures in this region are profound and their density is very large. Weathering is accelerated where rocks are covered by thick soils, being five times faster relative to sectors of the basin where rocks are covered by thin soils. Differential weathering of bare and soil-mantled rock is also revealed by the spatial distribution of calculated aquifer hydraulic diffusivities and groundwater travel times.

  16. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science

    NASA Technical Reports Server (NTRS)

    Steele, Colleen (Editor); Steele, Colleen; Ryan, William F.

    1995-01-01

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level course of the project and activities developed by the teachers. The publication was developed to provide teachers with a comprehensive approach to using satellite imagery to enhance science education. The teacher's guide is divided into topical chapters and enables teachers to expand their knowledge of the atmosphere, common weather patterns, and remote sensing. Topics include: weather systems and satellite imagery including mid-latitude weather systems; wave motion and the general circulation; cyclonic disturbances and baroclinic instability; clouds; additional common weather patterns; satellite images and the internet; environmental satellites; orbits; and ground station set-up. Activities are listed by suggested grade level and include the following topics: using weather symbols; forecasting the weather; cloud families and identification; classification of cloud types through infrared Automatic Picture Transmission (APT) imagery; comparison of visible and infrared imagery; cold fronts; to ski or not to ski (imagery as a decision making tool), infrared and visible satellite images; thunderstorms; looping satellite images; hurricanes; intertropical convergence zone; and using weather satellite images to enhance a study of the Chesapeake Bay. A list of resources is also included.

  17. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  18. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  19. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  20. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  1. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  2. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    NASA Astrophysics Data System (ADS)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  3. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  4. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  5. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  6. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  7. 15 CFR 946.5 - Change in operations-commissioning and decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.5 Change in operations—commissioning and decommissioning. (a) Before commissioning any new NEXRAD or ASOS weather observation system...; technical coordination with weather service users has been completed; and the system satisfactorily supports...

  8. OS Aviation Information

    Science.gov Websites

    Aviation Weather Program is to couple the art and science of meteorology to enhance the safe and efficient significant weather forecasts crossing international boundaries. Keeping Our National Airspace System Safe The System Newsletter Aviation Weather Center (AWC) Alaska Aviation Weather Unit (AAWU) Space Environment

  9. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  10. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  11. Integration of Weather Avoidance and Traffic Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  12. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds

    NASA Astrophysics Data System (ADS)

    Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-12-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale. At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.

  13. An Initial Study of the Sensitivity of Aircraft Vortex Spacing System (AVOSS) Spacing Sensitivity to Weather and Configuration Input Parameters

    NASA Technical Reports Server (NTRS)

    Riddick, Stephen E.; Hinton, David A.

    2000-01-01

    A study has been performed on a computer code modeling an aircraft wake vortex spacing system during final approach. This code represents an initial engineering model of a system to calculate reduced approach separation criteria needed to increase airport productivity. This report evaluates model sensitivity toward various weather conditions (crosswind, crosswind variance, turbulent kinetic energy, and thermal gradient), code configurations (approach corridor option, and wake demise definition), and post-processing techniques (rounding of provided spacing values, and controller time variance).

  14. INNOVATIVE URBAN WET-WEATHER FLOW MANAGEMENT SYSTEMS

    EPA Science Inventory

    This report describes innovative methods to improve wet weather flow (WWF) management systems, that provide drainage services at the same time as decreasing stormwater pollutant discharges, for urban developments of the 21st century. Traditionally, wet-weather collection systems...

  15. Microscopic analysis of traffic flow in inclement weather.

    DOT National Transportation Integrated Search

    2009-11-01

    Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, hurricanes...

  16. Characteristics of Operational Space Weather Forecasting: Observations and Models

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim

    2015-04-01

    In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.

  17. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  18. The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems

    DTIC Science & Technology

    2003-09-30

    The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Office of Weather and Air Quality...predictability of extratropical cyclones. APPROACH My approach toward achieving the above objectives has been to foster national and...TITLE AND SUBTITLE The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  19. A new precipitation and meteorological drought climatology based on weather patterns

    NASA Astrophysics Data System (ADS)

    Richardson, D.; Fowler, H. J.; Kilsby, C. G.; Neal, R.

    2017-12-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterise the broad-scale atmospheric circulation over a given region. An analysis of regional UK precipitation and meteorological drought climatology with respect to a set of objectively defined weather patterns is presented. This classification system, introduced last year, is currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. The classification consists of 30 daily patterns derived from North Atlantic Ocean and European mean sea level pressure data. Clustering these 30 patterns yields another set of eight patterns that are intended for use in longer-range applications. Weather pattern definitions and daily occurrences are mapped to the commonly-used Lamb Weather Types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Drought index series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for different drought index thresholds, representing dry, wet and drought conditions. The set of 30 weather patterns is shown to be adequate for precipitation-based analyses in the UK, although the smaller set of clustered patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in the context of precipitation studies. Weather patterns associated with drought over the different UK regions are identified. This has potential forecasting application - if a model (e.g. a global seasonal forecast model) can predict weather pattern occurrences then regional drought outlooks may be derived from the forecasted weather patterns.

  20. Introduction of the Mobile Platform for the Meteorological Observations in Seoul Metropolitan City of Korea

    NASA Astrophysics Data System (ADS)

    Baek, K. T.; Lee, S.; Kang, M.; Lee, G.

    2016-12-01

    Traffic accidents due to adverse weather such as fog, heavy rainfall, flooding and road surface freezing have been increasing in Korea. To reduce damages caused by the severe weather on the road, a forecast service of combined real-time road-wise weather and the traffic situation is required. Conventional stationary meteorological observations in sparse location system are limited to observe the detailed road environment. For this reason, a mobile meteorological observation platform has been coupled in Weather Information Service Engine (WISE) which is the prototype of urban-scale high resolution weather prediction system in Seoul metropolitan area of Korea in early August 2016. The instruments onboard are designed to measure 15 meteorological parameters; pressure, temperature, relative humidity, precipitation, up/down net radiation, up/down longwave radiation, up/down shortwave radiation, road surface condition, friction coefficient, water depth, wind direction and speed. The observations from mobile platform show a distinctive advantage of data collection in need for road conditions and inputs for the numerical forecast model. In this study, we introduce and examine the feasibility of mobile observations in urban weather prediction and applications.

  1. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 8. System Specification

    DTIC Science & Technology

    1976-03-01

    Service , CSE, Scott AFB, IL 62225. aws, usaf ltr dtd 8 jul 1976 >- a. CD SYSTEM DEVELOPMENT CORPORATION 1/ 2500 Colorado Avenue Santa Monica...Government Agen-TfAf* 17 MAR 1976 cies only. Other requests for this document ’-^ must be referred to Air Weather Service /CSi^,, Scott Air Force...Air Force Communica- tions Service must be clear’y defined. The appropriate Air Force Conmunications Service Agency should be responsible for the

  2. Road Weather Systems [SD .WMV (720x480/29fps/25.2 MB)

    DOT National Transportation Integrated Search

    2009-01-01

    Iowas road weather information system at work. The Iowa DOT will install new sensors and upgrades to most road weather information system (RWIS) sites. These include: : color cameras, new precipitation sensors, new speed sensors, revised weathervi...

  3. National Energy with Weather System Simultator (NEWS) Sets Bounds on Cost Effective Wind and Solar PV Deployment in the USA without the Use of Storage.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. In 2009, we began a large-scale investigation into the characteristics of weather-driven renewables. The project utilized the best available weather data assimilation model to compute high spatial and temporal resolution power datasets for the renewable resources of wind and solar PV. The weather model used is the Rapid Update Cycle for the years of 2006-2008. The team also collated a detailed electrical load dataset for the contiguous USA from the Federal Energy Regulatory Commission for the same three-year period. The coincident time series of electrical load and weather data allows the possibility of temporally correlated computations for optimal design over large geographic areas. The past two years have seen the development of a cost optimization mathematic model that designs electric power systems. The model plans the system and dispatches it on an hourly timescale. The system is designed to be reliable, reduce carbon, reduce variability of renewable resources and move the electricity about the whole domain. The system built would create the infrastructure needed to reduce carbon emissions to 0 by 2050. The advantages of the system is reduced water demain, dual incomes for farmers, jobs for construction of the infrastructure, and price stability for energy. One important simplified test that was run included existing US carbon free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. The study also showed how the price of natural gas fuel influenced the optimal system designed.

  4. System designed for issuing landslide alerts in the San Francisco Bay area

    USGS Publications Warehouse

    Finley, D.

    1987-01-01

    A system for forecasting landslides during major storms has been developed for the San Francisco Bay area by the U.S Geological Survey and was successfully tested during heavy storms in the bay area during February 1986. Based on the forecasts provided by the USGS, the National Weather Service (NWS) included landslide warnings in its regular weather forecasts or in special weather statements transmitted to local radio and television stations and other news media. USGS scientists said the landslide forecasting and warning system for the San Francisco Bay area can be used as a prototype in developing similar systems for other parts of the Nation susceptible to landsliding. Studies show damage from landslides in the United States averages an estimated $1.5 billion per year. 

  5. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display. Measures of flight crew reactions included performance-based measures such as deviation decision accuracy, and judgment-based measures such as perceived decision confidence, workload, situation awareness, and display trust. Results demonstrated that pilots adopted a conservative reaction strategy, often choosing to deviate from weather rather than ride through it. When onboard and NEXRAD displays did not agree, flight crews reacted in a complex manner, trusting the onboard system more but using the NEXRAD system to augment their situation awareness. Distance to weather reduced situation awareness and heightened workload levels. Overall, flight crews tended to adopt a participative leadership style marked by open communication. These results suggest that future weather displays should exploit the existing benefits of NEXRAD presentation for situation awareness while retaining the display structure and logic inherent in the onboard system.

  6. The role of synoptic weather variability in Greenland ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Radic, V.

    2017-12-01

    Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations between seasonal mean GrIS velocities and the frequency or intensity of storms during the season.

  7. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz

    2013-03-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/

  8. Introduction to the Space Weather Monitoring System at KASI

    NASA Astrophysics Data System (ADS)

    Baek, J.; Choi, S.; Kim, Y.; Cho, K.; Bong, S.; Lee, J.; Kwak, Y.; Hwang, J.; Park, Y.; Hwang, E.

    2014-05-01

    We have developed the Space Weather Monitoring System (SWMS) at the Korea Astronomy and Space Science Institute (KASI). Since 2007, the system has continuously evolved into a better system. The SWMS consists of several subsystems: applications which acquire and process observational data, servers which run the applications, data storage, and display facilities which show the space weather information. The applications collect solar and space weather data from domestic and oversea sites. The collected data are converted to other format and/or visualized in real time as graphs and illustrations. We manage 3 data acquisition and processing servers, a file service server, a web server, and 3 sets of storage systems. We have developed 30 applications for a variety of data, and the volume of data is about 5.5 GB per day. We provide our customers with space weather contents displayed at the Space Weather Monitoring Lab (SWML) using web services.

  9. Web-based Weather Expert System (WES) for Space Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  10. Prediction of Weather Impacted Airport Capacity using Ensemble Learning

    NASA Technical Reports Server (NTRS)

    Wang, Yao Xun

    2011-01-01

    Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.

  11. Quality assurance of weather data for agricultural system model input

    USDA-ARS?s Scientific Manuscript database

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  12. Integrating Clarus data in traffic signal system operation : a survivable real-time weather-responsive system.

    DOT National Transportation Integrated Search

    2011-07-11

    This report presents a prototype of a secure, dependable, real-time weather-responsive traffic signal system. The prototype executes two tasks: 1) accesses weather information that provides near real-time atmospheric and pavement surface condition ob...

  13. INVESTIGATION OF DRY-WEATHER POLLUTANT ENTRIES INTO STORM-DRAINAGE SYSTEMS

    EPA Science Inventory

    This article describes the results of a series of research tasks to develop a procedure to investigate non-stormwater (dry-weather) entries into storm drainage systems. Dry-weather flows discharging from storm drainage systems can contribute significant pollutant loadings to rece...

  14. High resolution solar observations in the context of space weather prediction

    NASA Astrophysics Data System (ADS)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  15. Cockpit display of hazardous weather information

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Wanke, Craig

    1990-01-01

    Information transfer and display issues associated with the dissemination of hazardous weather warnings are studied in the context of windshear alerts. Operational and developmental windshear detection systems are briefly reviewed. The July 11, 1988 microburst events observed as part of the Denver Terminal Doppler Weather Radar (TDWR) operational evaluation are analyzed in terms of information transfer and the effectiveness of the microburst alerts. Information transfer, message content and display issues associated with microburst alerts generated from ground based sources are evaluated by means of pilot opinion surveys and part task simulator studies.

  16. North Europe power transmission system vulnerability during extreme space weather

    NASA Astrophysics Data System (ADS)

    Piccinelli, Roberta; Krausmann, Elisabeth

    2018-01-01

    Space weather driven by solar activity can induce geomagnetic disturbances at the Earth's surface that can affect power transmission systems. Variations in the geomagnetic field result in geomagnetically induced currents that can enter the system through its grounding connections, saturate transformers and lead to system instability and possibly collapse. This study analyzes the impact of extreme space weather on the northern part of the European power transmission grid for different transformer designs to understand its vulnerability in case of an extreme event. The behavior of the system was analyzed in its operational mode during a severe geomagnetic storm, and mitigation measures, like line compensation, were also considered. These measures change the topology of the system, thus varying the path of geomagnetically induced currents and inducing a local imbalance in the voltage stability superimposed on the grid operational flow. Our analysis shows that the North European power transmission system is fairly robust against extreme space weather events. When considering transformers more vulnerable to geomagnetic storms, only few episodes of instability were found in correspondence with an existing voltage instability due to the underlying system load. The presence of mitigation measures limited the areas of the network in which bus voltage instabilities arise with respect to the system in which mitigation measures are absent.

  17. Human-Centered Systems Analysis of Aircraft Separation from Adverse Weather: Implications for Icing Remote Sensing

    NASA Technical Reports Server (NTRS)

    Vigeant-Langlois, Laurence; Hansman, R. John, Jr.

    2003-01-01

    The objective of this project was to propose a means to improve aviation weather information, training procedures based on a human-centered systems approach. Methodology: cognitive analysis of pilot's tasks; trajectory-based approach to weather information; contingency planning support; and implications for improving weather information.

  18. The Czech Hydrometeorological Institute's severe storm nowcasting system

    NASA Astrophysics Data System (ADS)

    Novak, Petr

    2007-02-01

    To satisfy requirements for operational severe weather monitoring and prediction, the Czech Hydrometeorological Institute (CHMI) has developed a severe storm nowcasting system which uses weather radar data as its primary data source. Previous CHMI studies identified two methods of radar echo prediction, which were then implemented during 2003 into the Czech weather radar network operational weather processor. The applications put into operations were the Continuity Tracking Radar Echoes by Correlation (COTREC) algorithm, and an application that predicts future radar fields using the wind field derived from the geopotential at 700 hPa calculated from a local numerical weather prediction model (ALADIN). To ensure timely delivery of the prediction products to the users, the forecasts are implemented into a web-based viewer (JSMeteoView) that has been developed by the CHMI Radar Department. At present, this viewer is used by all CHMI forecast offices for versatile visualization of radar and other meteorological data (Meteosat, lightning detection, NWP LAM output, SYNOP data) in the Internet/Intranet environment, and the viewer has detailed geographical navigation capabilities.

  19. Resilient Grid Operational Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, Donatella

    Extreme weather-related disturbances, such as hurricanes, are a leading cause of grid outages historically. Although physical asset hardening is perhaps the most common way to mitigate the impacts of severe weather, operational strategies may be deployed to limit the extent of societal and economic losses associated with weather-related physical damage.1 The purpose of this study is to examine bulk power-system operational strategies that can be deployed to mitigate the impact of severe weather disruptions caused by hurricanes, thereby increasing grid resilience to maintain continuity of critical infrastructure during extreme weather. To estimate the impacts of resilient grid operational strategies, Losmore » Alamos National Laboratory (LANL) developed a framework for hurricane probabilistic risk analysis (PRA). The probabilistic nature of this framework allows us to estimate the probability distribution of likely impacts, as opposed to the worst-case impacts. The project scope does not include strategies that are not operations related, such as transmission system hardening (e.g., undergrounding, transmission tower reinforcement and substation flood protection) and solutions in the distribution network.« less

  20. GFDL's unified regional-global weather-climate modeling system with variable resolution capability for severe weather predictions and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Lin, S. J.

    2015-12-01

    The NOAA/Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions (e.g., tornado outbreak events and cat-5 hurricanes) and ultra-high-resolution (1-km) regional climate simulations within a consistent global modeling framework. The fundation of this flexible regional-global modeling system is the non-hydrostatic extension of the vertically Lagrangian dynamical core (Lin 2004, Monthly Weather Review) known in the community as FV3 (finite-volume on the cubed-sphere). Because of its flexability and computational efficiency, the FV3 is one of the final candidates of NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched (single) grid capability, a two-way (regional-global) multiple nested grid capability, and the combination of the stretched and two-way nests, so as to make convection-resolving regional climate simulation within a consistent global modeling system feasible using today's High Performance Computing System. One of our main scientific goals is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornadoes using a global model that was originally designed for century long climate simulations. As a unified weather-climate modeling system, we evaluated the performance of the model with horizontal resolution ranging from 1 km to as low as 200 km. In particular, for downscaling studies, we have developed various tests to ensure that the large-scale circulation within the global varaible resolution system is well simulated while at the same time the small-scale can be accurately captured within the targeted high resolution region.

  1. Characteristics of the overflow pollution of storm drains with inappropriate sewage entry.

    PubMed

    Yin, Hailong; Lu, Yi; Xu, Zuxin; Li, Huaizheng; Schwegler, Benedict R

    2017-02-01

    To probe the overflow pollution of separate storm drains with inappropriate sewage entries, in terms of the relationship between sewage entries and the corresponding dry-weather and wet-weather overflow, the monitoring activities were conducted in a storm drainage system in the Shanghai downtown area (374 ha). In this study site, samples from inappropriately entered dry-weather sewage and the overflow due to storm pumps operation on dry-weather and wet-weather days were collected and then monitored for six water quality constituents. It was found that overflow concentrations of dry-weather period could be higher than those of wet-weather period; under wet-weather period, the overflow concentrations of storm drains were close to or even higher than that of combined sewers. Relatively strong first flush mostly occurred under heavy rain that satisfied critical rainfall amount, maximum rainfall intensity, and maximum pumping discharge, while almost no first flush effect or only weak first flush effect was found for the other rainfall events. Such phenomenon was attributed to lower in-line pipe storage as compared to that of the combined sewers, and serious sediment accumulation within the storm pipes due to sewage entry. For this kind of system, treating a continuous overflow rate is a better strategy than treating the maximum amount of early part of the overflow. Correcting the key inappropriate sewage entries into storm drains should also be focused.

  2. Precipitation Measurements From Space: Workshop report. An element of the climate observing system study

    NASA Technical Reports Server (NTRS)

    Atlas, D. (Editor); Thiele, O. W. (Editor)

    1981-01-01

    Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed.

  3. The acid and alkalinity budgets of weathering in the Andes-Amazon system: Insights into the erosional control of global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Torres, Mark A.; West, A. Joshua; Clark, Kathryn E.; Paris, Guillaume; Bouchez, Julien; Ponton, Camilo; Feakins, Sarah J.; Galy, Valier; Adkins, Jess F.

    2016-09-01

    The correlation between chemical weathering fluxes and denudation rates suggests that tectonic activity can force variations in atmospheric pCO2 by modulating weathering fluxes. However, the effect of weathering on pCO2 is not solely determined by the total mass flux. Instead, the effect of weathering on pCO2 also depends upon the balance between 1) alkalinity generation by carbonate and silicate mineral dissolution and 2) sulfuric acid generation by the oxidation of sulfide minerals. In this study, we explore how the balance between acid and alkalinity generation varies with tectonic uplift to better understand the links between tectonics and the long-term carbon cycle. To trace weathering reactions across the transition from the Peruvian Andes to the Amazonian foreland basin, we measured a suite of elemental concentrations (Na, K, Ca, Mg, Sr, Si, Li, SO4, and Cl) and isotopic ratios (87Sr/86Sr and δ34S) on both dissolved and solid phase samples. Using an inverse model, we quantitatively link systematic changes in solute geochemistry with elevation to downstream declines in sulfuric acid weathering as well as the proportion of cations sourced from silicates. With a new carbonate-system framework, we show that weathering in the Andes Mountains is a CO2 source whereas foreland weathering is a CO2 sink. These results are consistent with the theoretical expectation that the ratio of sulfide oxidation to silicate weathering increases with increasing erosion. Altogether, our results suggest that the effect of tectonically-enhanced weathering on atmospheric pCO2 is strongly modulated by sulfide mineral oxidation.

  4. Evaluation of Software Simulation of Road Weather Information System.

    DOT National Transportation Integrated Search

    2016-09-01

    A road weather information system (RWIS) is a combination of technologies that collects, transmits, models, and disseminates weather and road condition information. Sensors measure a range of weatherrelated conditions, including pavement temperatur...

  5. [Identifying dry-weather flow and pollution load sources of separate storm sewer systems with different degrees of illicit discharge].

    PubMed

    Meng, Ying-ying; Feng, Cang; Li, Tian; Wang, Ling

    2009-12-01

    Dry-weather flow quantity and quality of three representative separate storm sewer systems in Shanghai-H, G, N were studied. Based on survey of operating status of the pumping stations as well as characteristics of the drainage systems, it was obtained that the interception sewage volumes per unit area in the three systems were 3610 m3/(km2 x d), 1550 m3/(km2 x d), 2970 m3/(km2 x d) respectively; the sanitary wastewater included accounted for 25%, 85% and 71% respectively; the interception volume of H was mainly composed of infiltrated underground water, so the dry-weather flow pollution was slighter, and the interception volumes of G, N were both mainly composed of sanitary wastewater, so the dry-weather which were flow pollution was relatively serious. The water characteristics of potential illicit discharge sources of dry-weather which were flow-grey water, black water and underground water were preliminarily explored, so that treating three parameters-LAS/ NH4+ -N, NH4+ -N/K, Mg/K as tracer parameters of grey water, black water and underground water was put forward. Moreover, the water characteristics of grey water and sanitary wastewater including black water were summarized: the feature of grey water was LAS/NH4+ -N > 0.2, NH4+ -N/K <1, and sanitary wastewater was LAS/NH4+ -N < 0.2, NH4+ -N/K >1. Based on the above, the applications of flow chart method and CMBM method in dry-weather flow detection of monitored storm systems were preliminarily discussed, and the results were basically same as that obtained in flow quantity and quality comprehensive analysis. The research results and methods can provide guidance for analysis and diagnosis of dry-weather flow sources and subsequent reconstruction projects in similar separate storm sewer systems at home.

  6. Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils

    USDA-ARS?s Scientific Manuscript database

    The objective of the paper is to study the temporal variations of the subsurface soil properties due to seasonal and weather effects using a combination of a new seismic surface method and an existing acoustic probe system. A laser Doppler vibrometer (LDV) based multi-channel analysis of surface wav...

  7. The Local Ensemble Transform Kalman Filter with the Weather Research and Forecasting Model: Experiments with Real Observations

    NASA Astrophysics Data System (ADS)

    Miyoshi, Takemasa; Kunii, Masaru

    2012-03-01

    The local ensemble transform Kalman filter (LETKF) is implemented with the Weather Research and Forecasting (WRF) model, and real observations are assimilated to assess the newly-developed WRF-LETKF system. The WRF model is a widely-used mesoscale numerical weather prediction model, and the LETKF is an ensemble Kalman filter (EnKF) algorithm particularly efficient in parallel computer architecture. This study aims to provide the basis of future research on mesoscale data assimilation using the WRF-LETKF system, an additional testbed to the existing EnKF systems with the WRF model used in the previous studies. The particular LETKF system adopted in this study is based on the system initially developed in 2004 and has been continuously improved through theoretical studies and wide applications to many kinds of dynamical models including realistic geophysical models. Most recent and important improvements include an adaptive covariance inflation scheme which considers the spatial and temporal inhomogeneity of inflation parameters. Experiments show that the LETKF successfully assimilates real observations and that adaptive inflation is advantageous. Additional experiments with various ensemble sizes show that using more ensemble members improves the analyses consistently.

  8. Solar Disinfection of Pseudomonas aeruginosa in Harvested Rainwater: A Step towards Potability of Rainwater

    PubMed Central

    Amin, Muhammad T.; Nawaz, Mohsin; Amin, Muhammad N.; Han, Mooyoung

    2014-01-01

    Efficiency of solar based disinfection of Pseudomonas aeruginosa (P. aeruginosa) in rooftop harvested rainwater was evaluated aiming the potability of rainwater. The rainwater samples were exposed to direct sunlight for about 8–9 hours and the effects of water temperature (°C), sunlight irradiance (W/m2), different rear surfaces of polyethylene terephthalate bottles, variable microbial concentrations, pH and turbidity were observed on P. aeruginosa inactivation at different weathers. In simple solar disinfection (SODIS), the complete inactivation of P. aeruginosa was obtained only under sunny weather conditions (>50°C and >700 W/m2) with absorptive rear surface. Solar collector disinfection (SOCODIS) system, used to improve the efficiency of simple SODIS under mild and weak weather, completely inactivated the P. aeruginosa by enhancing the disinfection efficiency of about 20% only at mild weather. Both SODIS and SOCODIS systems, however, were found inefficient at weak weather. Different initial concentrations of P. aeruginosa and/or Escherichia coli had little effects on the disinfection efficiency except for the SODIS with highest initial concentrations. The inactivation of P. aeruginosa increased by about 10–15% by lowering the initial pH values from 10 to 3. A high initial turbidity, adjusted by adding kaolin, adversely affected the efficiency of both systems and a decrease, about 15–25%; in inactivation of P. aeruginosa was observed. The kinetics of this study was investigated by Geeraerd Model for highlighting the best disinfection system based on reaction rate constant. The unique detailed investigation of P. aeruginosa disinfection with sunlight based disinfection systems under different weather conditions and variable parameters will help researchers to understand and further improve the newly invented SOCODIS system. PMID:24595188

  9. Development of a WRF-RTFDDA-based high-resolution hybrid data-assimilation and forecasting system toward to operation in the Middle East

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.

    2012-12-01

    Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.

  10. Seasat-A ASVT: Commercial demonstration experiments. Results analysis methodology for the Seasat-A case studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The SEASAT-A commercial demonstration program ASVT is described. The program consists of a set of experiments involving the evaluation of a real time data distributions system, the SEASAT-A user data distribution system, that provides the capability for near real time dissemination of ocean conditions and weather data products from the U.S. Navy Fleet Numerical Weather Central to a selected set of commercial and industrial users and case studies, performed by commercial and industrial users, using the data gathered by SEASAT-A during its operational life. The impact of the SEASAT-A data on business operations is evaluated by the commercial and industrial users. The approach followed in the performance of the case studies, and the methodology used in the analysis and integration of the case study results to estimate the actual and potential economic benefits of improved ocean condition and weather forecast data are described.

  11. Aviation weather : FAA and the National Weather Service are considering plans to consolidate weather service offices, but face significant challenges.

    DOT National Transportation Integrated Search

    2009-07-01

    The National Weather Services (NWS) weather products are a vital component of the Federal Aviation Administrations (FAA) air traffic control system. In addition to providing aviation weather products developed at its own facilities, NWS also pr...

  12. Design and Realization of Silhouette Operation Platform Based on GIS

    NASA Astrophysics Data System (ADS)

    Fu, Jia; Cui, Xinqiang; Yuan, Zhengteng

    2018-01-01

    Artificial weather effects after several generations of unremitting efforts in many provinces, municipalities and districts have become a regular business to serve the community. In the actual operation of the actual impact of weather operations, onsite job terminal system functional integration is not high, such as the operation process cumbersome operation instructions unreasonable, the weather data lag, the data form of a single factor and other factors seriously affect the weather conditions, Sexual and intuitive improvement. Therefore, this paper adopts the Android system as the carrier for the design and implementation of the silhouette intelligent terminal system. The intelligent terminal system has carried on the preliminary deployment trial in the real-time intelligent command system which realizes the weather operation in a province, and has formed a centralized, unified and digital artificial influence in combination with the self-developed multi-function server system platform and the remote centre command system Weather operation communication network, to achieve intelligent terminal and remote centre commander between the efficient, timely and stable information exchange, improve the shadow of the economic and social benefits, basically reached the initial design purpose.

  13. Space Weather Needs of an Evolving Customer Base (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, B.; Viereck, R. A.; Onsager, T. G.

    2013-12-01

    Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.

  14. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  15. The Future of Planetary Climate Modeling and Weather Prediction

    NASA Technical Reports Server (NTRS)

    Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.

    2017-01-01

    Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.

  16. Concept for an International Standard related to Space Weather Effects on Space Systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances in scientific and engineering understanding. We present a draft outline that can be used as the basis for such a standard.

  17. CLIMATE CHANGE EFFECTS ON ECOSYSTEM SERVICES AND HUMAN HEALTH

    EPA Science Inventory

    Human health and well-being are and will be affected by climate change, both directly through changes in extreme weather events and indirectly through weather induced changes in societal systems and their supporting ecosystems. The goal of this study was to develop and apply a b...

  18. Weather Observation Systems and Efficiency of Fighting Forest Fires

    NASA Astrophysics Data System (ADS)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  19. The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States.

    NASA Astrophysics Data System (ADS)

    Fritsch, J. M.; Kane, R. J.; Chelius, C. R.

    1986-10-01

    The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.

  20. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  1. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  2. The Federal Aviation Administration/Massachusetts Institute of Technology (FAA/MIT) Lincoln Laboratory Doppler weather radar program

    NASA Technical Reports Server (NTRS)

    Evans, James E.

    1988-01-01

    The program focuses on providing real-time information on hazardous aviation weather to end users such as air traffic control and pilots. Existing systems will soon be replaced by a Next Generation Weather Radar (NEXRAD), which will be concerned with detecting such hazards as heavy rain and hail, turbulence, low-altitude wind shear, and mesocyclones and tornadoes. Other systems in process are the Central Weather Processor (CWP), and the terminal Doppler weather radar (TDWR). Weather measurements near Memphis are central to ongoing work, especially in the area of microbursts and wind shear.

  3. Enhanced road weather forecasting : Clarus regional demonstrations.

    DOT National Transportation Integrated Search

    2011-01-01

    The quality of road weather forecasts has major impacts on users of surface transportation systems and managers of those systems. Improving the quality involves the ability to provide accurate, route-specific road weather information (e.g., timing an...

  4. Road weather information systems : enabling proactive maintenance practices in Washington state

    DOT National Transportation Integrated Search

    2002-03-01

    Washington State Department of Transportation's (WSDOT) rWeather program has significantly integrated and expanded the capabilities of road weather information systems (RWIS) in the state, enabling proactive winter maintenance practices and better-in...

  5. Validating the Airspace Concept Evaluation System for Different Weather Days

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Meyn, Larry

    2006-01-01

    This paper extends the process for validating the Airspace Concept Evaluation System using real-world historical flight operational data. System inputs such as flight plans and airport en-route capacities, are generated and processed to create a realistic reproduction of a single day's operations within the National Airspace System. System outputs such as airport throughput, delays, and en-route sector loads are then compared to real world operational metrics and delay statistics for the reproduced day. The process is repeated for 4 historical days with high and low traffic volume and delay attributed to weather. These 4 days are simulated using default en-route capacities and variable en-route capacities used to emulate weather. The validation results show that default enroute capacity simulations are closer to real-world data for low weather days than high weather days. The use of reduced variable enroute capacities adds a large delay bias to ACES but delay trends between weather days are better represented.

  6. Economic Value of Weather and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.

    1997-06-01

    Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.

  7. COLLECTION SYSTEM SOLIDS CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents an historical overview of the sewer-solids control projects conducted by the Wet-Weather Flow Research Program of the US EPA. Research includes studies of the causes of sewer-solids deposition and development/evaluation of control methods that can prevent sewe...

  8. Use of the LANDSAT-2 Data Collection System in the Colorado River Basin Weather Modification Program. [San Juan Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Kahan, A. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The LANDSAT data collection system has proven itself to be a valuable tool for control of cloud seeding operations and for verification of weather forecasts. These platforms have proven to be reliable weather resistant units suitable for the collection of hydrometeorological data from remote severe weather environments. The detailed design of the wind speed and direction system and the wire-wrapping of the logic boards were completed.

  9. A dynamical systems approach to studying midlatitude weather extremes

    NASA Astrophysics Data System (ADS)

    Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide

    2017-04-01

    Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.

  10. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    USGS Publications Warehouse

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale.At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.

  11. Probing the Depths of Space Weathering: A Cross-sectional View of Lunar Rock 76015

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; Keller, L. P.; Stroud, Rhonda

    2007-01-01

    The term "space weathering" refers to the cumulative effects of several processes operating at the surface of any solar system body not protected by a thick atmosphere. These processes include cosmic and solar ray irradiation, solar wind implantation and sputtering, as well as melting and vaporization due to micrometeorite bombardment. Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied using SEM and TEM. It is a noritic breccia with both "glazed" (smooth glassy) and "classic" (microcratered and pancake-bearing) patina coatings. Previous TEM work on 76015 relied on ultramicrotomy to prepare cross sections of the patina coating, but these sections were limited by the "chatter" and loss of material in these brittle samples. Here we have used a focused ion beam (FIB) instrument to prepare cross sections in which the delicate stratigraphy of the patina coating is beautifully preserved.

  12. A climatological study of the associated weather events to Cut-off low systems in the Southwestern Europe and Northern Africa

    NASA Astrophysics Data System (ADS)

    Nieto, R.; Gimeno, L.; de La Torre, L.; Tesouro, M.; Añel, J.; Ribera, P.

    2003-04-01

    Cut-off low-pressure systems-COLS- are usually closed circulations at middle and upper troposphere developed from a deep trough in the westerlies. As general rule troposphere below COLs is unstable and convective severe events can occur as a function of the surface conditions. COLs can bring moderate to heavy rainfall over large areas. In particular they are among the most important weather systems that affect Southern Europe and Northern Africa and responsible for some of the most catastrophic weather events in terms of precipitation rate. In this study we identify COLs systems in Southwestern Europe and Northern Africa for a 41-year period (1958 to 1998) using an approach based in imposing the three main physical characteristics of the conceptual model of COL (a. closed circulation and minimum of geopotential, minimum of equivalent thickness, and two two baroclinic zones, one in front of the low and the other behind the low). Data from NCAR-NCEP reanalysis were used. The objective was to check the expected weather events according to the conceptual model of COL in an area where precipitation due to COL is relevant. In general terms results confirm expected weather events: a frontal cloud band on the leading edge of an upper level low that is usually thick enough to produce precipitation. Over cold surface there is no convection, and therefore no showers occur. Over Sea, moderate to heavy showery precipitation is frequent. The heaviest precipitation occur when convective cells are observed in the centre and over warm ocean, fall flash flood is frequent.

  13. The importance of terrestrial weathering for climate system modelling on extended timescales: a study with the UVic ESCM

    NASA Astrophysics Data System (ADS)

    Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence

    2016-04-01

    The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the role of the weathering negative feedback mechanism on multi-millennial timescales.

  14. Network connectivity paradigm for the large data produced by weather radar systems

    NASA Astrophysics Data System (ADS)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  15. Weather adjustment using seemingly unrelated regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noll, T.A.

    1995-05-01

    Seemingly unrelated regression (SUR) is a system estimation technique that accounts for time-contemporaneous correlation between individual equations within a system of equations. SUR is suited to weather adjustment estimations when the estimation is: (1) composed of a system of equations and (2) the system of equations represents either different weather stations, different sales sectors or a combination of different weather stations and different sales sectors. SUR utilizes the cross-equation error values to develop more accurate estimates of the system coefficients than are obtained using ordinary least-squares (OLS) estimation. SUR estimates can be generated using a variety of statistical software packagesmore » including MicroTSP and SAS.« less

  16. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  17. Satellite Delivery of Aviation Weather Data

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Haendel, Richard

    2001-01-01

    With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.

  18. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    NASA Technical Reports Server (NTRS)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  19. Ensemble superparameterization versus stochastic parameterization: A comparison of model uncertainty representation in tropical weather prediction

    NASA Astrophysics Data System (ADS)

    Subramanian, Aneesh C.; Palmer, Tim N.

    2017-06-01

    Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.Plain Language SummaryProbabilistic weather forecasts, especially for tropical weather, is still a significant challenge for global weather forecasting systems. Expressing uncertainty along with weather forecasts is important for informed decision making. Hence, we explore the use of a relatively new approach in using super-parameterization, where a cloud resolving model is embedded within a global model, in probabilistic tropical weather forecasts at medium range. We show that this approach helps improve modeling uncertainty in forecasts of certain features such as precipitation magnitude and location better, but forecasts of tropical winds are not necessarily improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3851','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3851"><span>Phase II (baseline) report for the Greater Yellowstone Regional Traveler and Weather Information System (GYRTWIS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-09-11</p> <p>In an effort to make road and weather information more readily available to travelers and maintenance personnel, Montana is implementing the Greater Yellowstone Regional Traveler and Weather Information System (GYRTWIS). GYRTWIS replaces the existing...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM53D2241N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM53D2241N"><span>Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.</p> <p>2013-12-01</p> <p>There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AdSpR..36.2516L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AdSpR..36.2516L"><span>Progress in space weather predictions and applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundstedt, H.</p> <p></p> <p>The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760011661','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760011661"><span>Weather and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1975-01-01</p> <p>Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29219105','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29219105"><span>Impact of extreme weather events and climate change for health and social care systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Curtis, Sarah; Fair, Alistair; Wistow, Jonathan; Val, Dimitri V; Oven, Katie</p> <p>2017-12-05</p> <p>This review, commissioned by the Research Councils UK Living With Environmental Change (LWEC) programme, concerns research on the impacts on health and social care systems in the United Kingdom of extreme weather events, under conditions of climate change. Extreme weather events considered include heatwaves, coldwaves and flooding. Using a structured review method, we consider evidence regarding the currently observed and anticipated future impacts of extreme weather on health and social care systems and the potential of preparedness and adaptation measures that may enhance resilience. We highlight a number of general conclusions which are likely to be of international relevance, although the review focussed on the situation in the UK. Extreme weather events impact the operation of health services through the effects on built, social and institutional infrastructures which support health and health care, and also because of changes in service demand as extreme weather impacts on human health. Strategic planning for extreme weather and impacts on the care system should be sensitive to within country variations. Adaptation will require changes to built infrastructure systems (including transport and utilities as well as individual care facilities) and also to institutional and social infrastructure supporting the health care system. Care sector organisations, communities and individuals need to adapt their practices to improve resilience of health and health care to extreme weather. Preparedness and emergency response strategies call for action extending beyond the emergency response services, to include health and social care providers more generally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AMTD....4..599F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AMTD....4..599F"><span>Space and ground segment performance of the FORMOSAT-3/COSMIC mission: four years in orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fong, C.-J.; Whiteley, D.; Yang, E.; Cook, K.; Chu, V.; Schreiner, B.; Ector, D.; Wilczynski, P.; Liu, T.-Y.; Yen, N.</p> <p>2011-01-01</p> <p>The FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission consisting of six Low-Earth-Orbit (LEO) satellites is the world's first demonstration constellation using radio occultation signals from Global Positioning System (GPS) satellites. The radio occultation signals are retrieved in near real-time for global weather/climate monitoring, numerical weather prediction, and space weather research. The mission has processed on average 1400 to 1800 high-quality atmospheric sounding profiles per day. The atmospheric radio occultation soundings data are assimilated into operational numerical weather prediction models for global weather prediction, including typhoon/hurricane/cyclone forecasts. The radio occultation data has shown a positive impact on weather predictions at many national weather forecast centers. A proposed follow-on mission transitions the program from the current experimental research system to a significantly improved real-time operational system, which will reliably provide 8000 radio occultation soundings per day. The follow-on mission as planned will consist of 12 satellites with a data latency of 45 min, which will provide greatly enhanced opportunities for operational forecasts and scientific research. This paper will address the FORMOSAT-3/COSMIC system and mission overview, the spacecraft and ground system performance after four years in orbit, the lessons learned from the encountered technical challenges and observations, and the expected design improvements for the new spacecraft and ground system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17606003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17606003A"><span>Application of Lidar and other profiling techniques to study the impact that Severe weather hazards have on the New York City built environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arend, Mark; Campmier, Mark; Fernandez, Aris; Moshary, Fred</p> <p>2018-04-01</p> <p>The complexity of urban boundary layer dynamics poses challenges to those responsible for the design and regulation of buildings and structures in the urban environment. Lidar systems in the New York City Metropolitan region have been used extensively to study urban boundary layer dynamics. These systems, in conjunction with other sensing platforms can provide an observatory to perform research and analysis of turbulent and inclement weather patterns of interest to developers and agencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005982','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005982"><span>Preliminary Observing System Simulation Experiments for Doppler Wind Lidars Deployed on the International Space Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kemp, E.; Jacob, J.; Rosenberg, R.; Jusem, J. C.; Emmitt, G. D.; Wood, S.; Greco, L. P.; Riishojgaard, L. P.; Masutani, M.; Ma, Z.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140005982'); toggleEditAbsImage('author_20140005982_show'); toggleEditAbsImage('author_20140005982_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140005982_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140005982_hide"></p> <p>2013-01-01</p> <p>NASA Goddard Space Flight Center's Software Systems Support Office (SSSO) is participating in a multi-agency study of the impact of assimilating Doppler wind lidar observations on numerical weather prediction. Funded by NASA's Earth Science Technology Office, SSSO has worked with Simpson Weather Associates to produce time series of synthetic lidar observations mimicking the OAWL and WISSCR lidar instruments deployed on the International Space Station. In addition, SSSO has worked to assimilate a portion of these observations those drawn from the NASA fvGCM Nature Run into the NASA GEOS-DAS global weather prediction system in a series of Observing System Simulation Experiments (OSSEs). These OSSEs will complement parallel OSSEs prepared by the Joint Center for Satellite Data Assimilation and by NOAA's Atlantic Oceanographic and Meteorological Laboratory. In this talk, we will describe our procedure and provide available OSSE results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010008274','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010008274"><span>AWE: Aviation Weather Data Visualization Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spirkovska, Lilly; Lodha, Suresh K.</p> <p>2000-01-01</p> <p>The two official sources for aviation weather reports both provide weather information to a pilot in a textual format. A number of systems have recently become available to help pilots with the visualization task by providing much of the data graphically. However, two types of aviation weather data are still not being presented graphically. These are airport-specific current weather reports (known as meteorological observations, or METARs) and forecast weather reports (known as terminal area forecasts, or TAFs). Our system, Aviation Weather Environment (AWE), presents intuitive graphical displays for both METARs and TAFs, as well as winds aloft forecasts. We start with a computer-generated textual aviation weather briefing. We map this briefing onto a cartographic grid specific to the pilot's area of interest. The pilot is able to obtain aviation-specific weather for the entire area or for his specific route. The route, altitude, true airspeed, and proposed departure time can each be modified in AWE. Integral visual display of these three elements of weather reports makes AWE a useful planning tool, as well as a weather briefing tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030020310&hterms=Prevention+situational&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DPrevention%2Bsituational','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030020310&hterms=Prevention+situational&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DPrevention%2Bsituational"><span>NASA Langley WINN System Operational Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jonsson, Jon</p> <p>2003-01-01</p> <p>An operational assessment of the NASA Langley Weather Information Network (WINN) System is presented. The objectives of this program include: 1) Determine if near real-time weather information presented on the flight deck improves pilot situational awareness of weather; and 2) Identify pilot interface issues related to the use of WINN system during test flights. This paper is in viewgraph form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810007126','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810007126"><span>World weather program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1980-01-01</p> <p>A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=248375','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=248375"><span>Forecast and virtual weather driven plant disease risk modeling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880015722','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880015722"><span>Automation of surface observations program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Short, Steve E.</p> <p>1988-01-01</p> <p>At present, surface weather observing methods are still largely manual and labor intensive. Through the nationwide implementation of Automated Surface Observing Systems (ASOS), this situation can be improved. Two ASOS capability levels are planned. The first is a basic-level system which will automatically observe the weather parameters essential for aviation operations and will operate either with or without supplemental contributions by an observer. The second is a more fully automated, stand-alone system which will observe and report the full range of weather parameters and will operate primarily in the unattended mode. Approximately 250 systems are planned by the end of the decade. When deployed, these systems will generate the standard hourly and special long-line transmitted weather observations, as well as provide continuous weather information direct to airport users. Specific ASOS configurations will vary depending upon whether the operation is unattended, minimally attended, or fully attended. The major functions of ASOS are data collection, data processing, product distribution, and system control. The program phases of development, demonstration, production system acquisition, and operational implementation are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28932771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28932771"><span>Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palme, M; Inostroza, L; Villacreses, G; Lobato, A; Carrasco, C</p> <p>2017-10-01</p> <p>This data article presents files supporting calculation for urban heat island (UHI) inclusion in building performance simulation (BPS). Methodology is used in the research article "From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect" (Palme et al., 2017) [1]. In this research, a Geographical Information System (GIS) study is done in order to statistically represent the most important urban scenarios of four South-American cities (Guayaquil, Lima, Antofagasta and Valparaíso). Then, a Principal Component Analysis (PCA) is done to obtain reference Urban Tissues Categories (UTC) to be used in urban weather simulation. The urban weather files are generated by using the Urban Weather Generator (UWG) software (version 4.1 beta). Finally, BPS is run out with the Transient System Simulation (TRNSYS) software (version 17). In this data paper, four sets of data are presented: 1) PCA data (excel) to explain how to group different urban samples in representative UTC; 2) UWG data (text) to reproduce the Urban Weather Generation for the UTC used in the four cities (4 UTC in Lima, Guayaquil, Antofagasta and 5 UTC in Valparaíso); 3) weather data (text) with the resulting rural and urban weather; 4) BPS models (text) data containing the TRNSYS models (four building models).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27801079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27801079"><span>Resolution of Probabilistic Weather Forecasts with Application in Disease Management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hughes, G; McRoberts, N; Burnett, F J</p> <p>2017-02-01</p> <p>Predictive systems in disease management often incorporate weather data among the disease risk factors, and sometimes this comes in the form of forecast weather data rather than observed weather data. In such cases, it is useful to have an evaluation of the operational weather forecast, in addition to the evaluation of the disease forecasts provided by the predictive system. Typically, weather forecasts and disease forecasts are evaluated using different methodologies. However, the information theoretic quantity expected mutual information provides a basis for evaluating both kinds of forecast. Expected mutual information is an appropriate metric for the average performance of a predictive system over a set of forecasts. Both relative entropy (a divergence, measuring information gain) and specific information (an entropy difference, measuring change in uncertainty) provide a basis for the assessment of individual forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513709R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513709R"><span>GEOSS interoperability for Weather, Ocean and Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian</p> <p>2013-04-01</p> <p>"Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of forecast skill and concluded that the use of a multi-model forecast is beneficial. Long term analysis of individual centres, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), has been conducted in the past. However, no long term and large scale study has been performed so far with inclusion of different global numerical models. Here we present some initial results from such a study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPA23A..04V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPA23A..04V"><span>Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.</p> <p>2013-12-01</p> <p>Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space weather and this influences our forecasts. In this presentation, I will discuss the unique challenges that space weather forecasters face when explaining what we know and what we don't know about space weather events to customers and policy makers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN31A0060N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN31A0060N"><span>Weather Augmented Risk Determination (WARD) System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.</p> <p>2017-12-01</p> <p>Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves labor productivity (e.g., farming) and work stoppage due to weather conditions (e.g., transportation, agriculture industry).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28230267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28230267"><span>The Economic Impact of Space Weather: Where Do We Stand?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eastwood, J P; Biffis, E; Hapgood, M A; Green, L; Bisi, M M; Bentley, R D; Wicks, R; McKinnell, L-A; Gibbs, M; Burnett, C</p> <p>2017-02-01</p> <p>Space weather describes the way in which the Sun, and conditions in space more generally, impact human activity and technology both in space and on the ground. It is now well understood that space weather represents a significant threat to infrastructure resilience, and is a source of risk that is wide-ranging in its impact and the pathways by which this impact may occur. Although space weather is growing rapidly as a field, work rigorously assessing the overall economic cost of space weather appears to be in its infancy. Here, we provide an initial literature review to gather and assess the quality of any published assessments of space weather impacts and socioeconomic studies. Generally speaking, there is a good volume of scientific peer-reviewed literature detailing the likelihood and statistics of different types of space weather phenomena. These phenomena all typically exhibit "power-law" behavior in their severity. The literature on documented impacts is not as extensive, with many case studies, but few statistical studies. The literature on the economic impacts of space weather is rather sparse and not as well developed when compared to the other sections, most probably due to the somewhat limited data that are available from end-users. The major risk is attached to power distribution systems and there is disagreement as to the severity of the technological footprint. This strongly controls the economic impact. Consequently, urgent work is required to better quantify the risk of future space weather events. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020082970&hterms=tethered+balloons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtethered%2Bballoons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020082970&hterms=tethered+balloons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtethered%2Bballoons"><span>North American Observing Systems: An Interagency Group Runs Tests at the NCCS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Some 250,000 weather reports are collected by the National Weather Service (NWS) every day. Important measurements are taken by satellites, weather balloons, ground weather stations, airplanes, oceangoing ships, and tethered ocean buoys. Local or global weather models rely on these reports to provide the raw data used as initial conditions for the models to produce a weather prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980107900','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980107900"><span>The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Benoit, P. H.; Akridge, J. M. C.; Sears, D. W. G.; Bland, P. A.</p> <p>1995-01-01</p> <p>Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830005431','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830005431"><span>MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.</p> <p>1981-01-01</p> <p>The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910007197','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910007197"><span>Nonlinear dynamics of global atmospheric and Earth-system processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel</p> <p>1990-01-01</p> <p>Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850009758','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850009758"><span>The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chamberlin, R.</p> <p>1985-01-01</p> <p>A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13e4028B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13e4028B"><span>The changing sensitivity of power systems to meteorological drivers: a case study of Great Britain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.</p> <p>2018-05-01</p> <p>The increasing use of intermittent renewable generation (such as wind) is increasing the exposure of national power systems to meteorological variability. This study identifies how the integration of wind power in one particular country (Great Britain, GB) is affecting the overall sensitivity of the power system to weather using three key metrics: total annual energy requirement, peak residual load (from sources other than wind) and wind power curtailment. The present-day level of wind power capacity (approximately 15 GW) is shown to have already changed the power system’s overall sensitivity to weather in terms of the total annual energy requirement, from a temperature- to a wind-dominated regime (which occurred with 6GW of installed wind power capacity). Peak residual load from sources other than wind also shows a similar shift. The associated changes in the synoptic- and large-scale meteorological drivers associated with each metric are identified and discussed. In a period where power systems are changing rapidly, it is therefore argued that past experience of the weather impacts on the GB power system may not be a good guide for the impact on the present or near-future power system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..429R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..429R"><span>The waviness of the extratropical jet and daily weather extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan</p> <p>2016-04-01</p> <p>In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP31B0993B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP31B0993B"><span>Soil chemical weathering under morphologic and climatic controls in the Northern Rockies, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benjaram, S. S.; Dixon, J. L.</p> <p>2015-12-01</p> <p>Climate influences soil weathering via moisture availability and temperatures, but globally physical erosion rate appears to be a more important control on weathering rate than climate. Understanding these links requires investigation into landscapes where the climate's influence on weathering is discernable despite the signal of physical erosion rate—in kinetically limited regimes. However, in these systems, rapid erosion rates and complex morphologies add complexity and heterogeneity to soil weathering. To investigate the dual controls of landscape morphology and climate on chemical weathering, we quantify soil distribution, thickness, and weathering extent by focusing on catchments within two adjacent mountain ranges in the Northern Rockies. The Bitterroot Mtns present previously-glaciated valleys with steep ridges and high present-day MAP, which contrast with the drier and more gentle, nonglaciated hillslopes of the Sapphire Mtns to the east. We use field and remotely sensed data to quantify soil distribution and thickness, and elemental geochemistry to measure the variability of chemical weathering across these systems.Mean slopes in the Bitterroots are ~1.3x higher than those in our Sapphire catchment, leading to large differences in soil distribution. Initial mapping of soils using remotely sensed data and rock exposure indices (REI) indicate that ~50% of the Bitterroot system is bare of soil, compared to <5% in the Sapphire system. REIs are distinct between these systems, with ~10˚ difference in slope thresholds for soil cover. Additionally, field data indicate that sparse soils of the Bitterroots are significantly thinner than those in Sapphire system (B=17±2cm, n=161; S=32±3, n=31). Initial XRF data suggest soil weathering intensity is more than two times greater in the Sapphires. These results suggest that the morphologic landscape legacy left by now-extinct glaciers imposes a kinetic limitation on soil weathering, even despite high modern moisture availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.4801P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.4801P"><span>Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara</p> <p>2016-06-01</p> <p>Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911680S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911680S"><span>Analysis of biases from parallel observations of co-located manual and automatic weather stations in Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sopaheluwakan, Ardhasena; Fajariana, Yuaning; Satyaningsih, Ratna; Aprilina, Kharisma; Astuti Nuraini, Tri; Ummiyatul Badriyah, Imelda; Lukita Sari, Dyah; Haryoko, Urip</p> <p>2017-04-01</p> <p>Inhomogeneities are often found in long records of climate data. These can occur because of various reasons, among others such as relocation of observation site, changes in observation method, and the transition to automated instruments. Changes to these automated systems are inevitable, and it is taking place worldwide in many of the National Meteorological Services. However this shift of observational practice must be done cautiously and a sufficient period of parallel observation of co-located manual and automated systems should take place as suggested by the World Meteorological Organization. With a sufficient parallel observation period, biases between the two systems can be analyzed. In this study we analyze the biases of a yearlong parallel observation of manual and automatic weather stations in 30 locations in Indonesia. The location of the sites spans from east to west of approximately 45 longitudinal degrees covering different climate characteristics and geographical settings. We study measurements taken by both sensors for temperature and rainfall parameters. We found that the biases from both systems vary from place to place and are more dependent to the setting of the instrument rather than to the climatic and geographical factors. For instance, daytime observations of the automatic weather stations are found to be consistently higher than the manual observation, and vice versa night time observations of the automatic weather stations are lower than the manual observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSA43A1613T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSA43A1613T"><span>A Milestone in Commercial Space Weather: USTAR Center for Space Weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.</p> <p>2009-12-01</p> <p>As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920008749','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920008749"><span>A hybrid modulation for the dissemination of weather data to aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Akos, Dennis M.</p> <p>1991-01-01</p> <p>Ohio University is continuing to conduct research to improve its system for weather data dissemination to aircraft. The current experimental system transmit compressed weather radar reflectivity patterns from a ground based station to aircraft. Although an effective system, the limited frequency spectrum does not provide a channel for transmission. This introduces the idea of a hybrid modulation. The hybrid technique encodes weather data using phase modulation (PM) onto an existing aeronautical channel which employs amplitude modulation (AM) for voice signal transmission. Ideally, the two modulations are independent of one another. The planned implementation and basis of the system are the reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH21F..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH21F..04K"><span>Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kusano, K.</p> <p>2016-12-01</p> <p>Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/28633','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/28633"><span>A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCabe, Gregory J.</p> <p>1990-01-01</p> <p>A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/24673','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/24673"><span>Evaluation of a variable speed limit system for wet and extreme weather conditions : phase 1 report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-06-01</p> <p>Weather presents considerable challenges to the highway system, both in terms of safety and operations. From a safety standpoint, weather (i.e. precipitation in the form of rain, snow or ice) reduces pavement friction, thus increasing the potential f...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9880E..17K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9880E..17K"><span>Multi-spectrum-based enhanced synthetic vision system for aircraft DVE operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kashyap, Sudesh K.; Naidu, V. P. S.; Shanthakumar, N.</p> <p>2016-04-01</p> <p>This paper focus on R&D being carried out at CSIR-NAL on Enhanced Synthetic Vision System (ESVS) for Indian regional transport aircraft to enhance all weather operational capabilities with safety and pilot Situation Awareness (SA) improvements. Flight simulator has been developed to study ESVS related technologies and to develop ESVS operational concepts for all weather approach and landing and to provide quantitative and qualitative information that could be used to develop criteria for all-weather approach and landing at regional airports in India. Enhanced Vision System (EVS) hardware prototype with long wave Infrared sensor and low light CMOS camera is used to carry out few field trials on ground vehicle at airport runway at different visibility conditions. Data acquisition and playback system has been developed to capture EVS sensor data (image) in time synch with test vehicle inertial navigation data during EVS field experiments and to playback the experimental data on ESVS flight simulator for ESVS research and concept studies. Efforts are on to conduct EVS flight experiments on CSIR-NAL research aircraft HANSA in Degraded Visual Environment (DVE).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050182051&hterms=traffic+flow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtraffic%2Bflow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050182051&hterms=traffic+flow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtraffic%2Bflow"><span>National Airspace System Delay Estimation Using Weather Weighted Traffic Counts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chatterji, Gano B.; Sridhar, Banavar</p> <p>2004-01-01</p> <p>Assessment of National Airspace System performance, which is usually measured in terms of delays resulting from the application of traffic flow management initiatives in response to weather conditions, volume, equipment outages and runway conditions, is needed both for guiding flow control decisions during the day of operations and for post operations analysis. Comparison of the actual delay, resulting from the traffic flow management initiatives, with the expected delay, based on traffic demand and other conditions, provides the assessment of the National Airspace System performance. This paper provides a method for estimating delay using the expected traffic demand and weather. In order to identify the cause of delays, 517 days of National Airspace System delay data reported by the Federal Aviation Administration s Operations Network were analyzed. This analysis shows that weather is the most important causal factor for delays followed by equipment and runway delays. Guided by these results, the concept of weather weighted traffic counts as a measure of system delay is described. Examples are given to show the variation of these counts as a function of time of the day. The various datasets, consisting of aircraft position data, enroute severe weather data, surface wind speed and visibility data, reported delay data and number of aircraft handled by the Centers data, and their sources are described. The procedure for selecting reference days on which traffic was minimally impacted by weather is described. Different traffic demand on each reference day of the week, determined by analysis of 42 days of traffic and delay data, was used as the expected traffic demand for each day of the week. Next, the method for computing the weather weighted traffic counts using the expected traffic demand, derived from reference days, and the expanded regions around severe weather cells is discussed. It is shown via a numerical example that this approach improves the dynamic range of the weather weighted traffic counts considerably. Time histories of these new weather weighted traffic counts are used for synthesizing two statistical features, six histogram features and six time domain features. In addition to these enroute weather features, two surface weather features of number of major airports in the United States with high mean winds and low mean visibility are also described. A least squares procedure for establishing a functional relation between the features, using combinations of these features, and system delays is explored using 36 days of data. Best correlations between the estimated delays using the functional relation and the actual delays provided by the Operations Network are obtained with two different combinations of features: 1) six time domain features of weather weighted traffic counts plus two surface weather features, and 2) six histogram features and mean of weather weighted traffic counts along with the two surface weather features. Correlation coefficient values of 0.73 and 0.83 were found in these two instances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790015713','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790015713"><span>Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1978-01-01</p> <p>Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060009999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060009999"><span>Severe Weather Forecast Decision Aid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III; Wheeler, Mark M.; Short, David A.</p> <p>2005-01-01</p> <p>This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002693','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002693"><span>Impact of Tactical and Strategic Weather Avoidance on Separation Assurance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Refai, Mohamad S.; Windhorst, Robert</p> <p>2011-01-01</p> <p>The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers that start far ahead of encountering a weather cell when rerouting around weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.earthmagazine.org/content/february-2016-table-contents','USGSPUBS'); return false;" href="http://www.earthmagazine.org/content/february-2016-table-contents"><span>Weathering a Perfect Storm from Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Love, Jeffrey J.</p> <p>2016-01-01</p> <p>Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011720','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011720"><span>Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook</p> <p>2012-01-01</p> <p>The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC51G..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC51G..01E"><span>Past and future weather-induced risk in crop production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.</p> <p>2016-12-01</p> <p>Drought-induced agricultural loss is one of the most costly impacts of extreme weather and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme Weather and Global Food System Resilience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/25953','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/25953"><span>Road weather management best practices : version 3.0.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-01-01</p> <p>The impacts of weather on the nations road system greatly affect safety, mobility, and productivity. Weather affects roadway safety through increased crash risk, as well as exposure to weather-related hazards. On average 7,130 fatalities and 629,0...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000024932','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000024932"><span>Simulation of a Real-Time Local Data Integration System over East-Central Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Case, Jonathan</p> <p>1999-01-01</p> <p>The Applied Meteorology Unit (AMU) simulated a real-time configuration of a Local Data Integration System (LDIS) using data from 15-28 February 1999. The objectives were to assess the utility of a simulated real-time LDIS, evaluate and extrapolate system performance to identify the hardware necessary to run a real-time LDIS, and determine the sensitivities of LDIS. The ultimate goal for running LDIS is to generate analysis products that enhance short-range (less than 6 h) weather forecasts issued in support of the 45th Weather Squadron, Spaceflight Meteorology Group, and Melbourne National Weather Service operational requirements. The simulation used the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) software on an IBM RS/6000 workstation with a 67-MHz processor. This configuration ran in real-time, but not sufficiently fast for operational requirements. Thus, the AMU recommends a workstation with a 200-MHz processor and 512 megabytes of memory to run the AMU's configuration of LDIS in real-time. This report presents results from two case studies and several data sensitivity experiments. ADAS demonstrates utility through its ability to depict high-resolution cloud and wind features in a variety of weather situations. The sensitivity experiments illustrate the influence of disparate data on the resulting ADAS analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003298','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003298"><span>Space Weathering on Icy Satellites in the Outer Solar System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.</p> <p>2014-01-01</p> <p>Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002Geomo..47..211P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002Geomo..47..211P"><span>Geomorphology's role in the study of weathering of cultural stone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pope, Gregory A.; Meierding, Thomas C.; Paradise, Thomas R.</p> <p>2002-10-01</p> <p>Great monumental places—Petra, Giza, Angkor, Stonehenge, Tikal, Macchu Picchu, Rapa Nui, to name a few—are links to our cultural past. They evoke a sense of wonderment for their aesthetic fascination if not for their seeming permanence over both cultural and physical landscapes. However, as with natural landforms, human constructs are subject to weathering and erosion. Indeed, many of our cultural resources suffer from serious deterioration, some natural, some enhanced by human impact. Groups from the United Nations to local civic and tourism assemblies are deeply interested in maintaining and preserving such cultural resources, from simple rock art to great temples. Geomorphologists trained in interacting systems, process and response to thresholds, rates of change over time, and spatial variation of weathering processes and effects are able to offer insight into how deterioration occurs and what can be done to ameliorate the impact. Review of recent literature and case studies presented here demonstrate methodological and theoretical advances that have resulted from the study of cultural stone weathering. Because the stone was carved at a known date to a "baseline" or zero-datum level, some of the simplest methods (e.g., assessing surface weathering features or measuring surface recession in the field) provide useful data on weathering rates and processes. Such data are difficult or impossible to obtain in "natural" settings. Cultural stone weathering studies demonstrate the importance of biotic and saline weathering agents and the significance of weathering factors such as exposure (microclimate) and human impact. More sophisticated methods confirm these observations, but also reveal discrepancies between field and laboratory studies. This brings up two important caveats for conservators and geomorphologists. For the conservator, are laboratory and natural setting studies really analogous and useful for assessing stone damage? For the geomorphologist, does cultural stone data have any real relevance to the natural environment? These are questions for future research and debate. In any event, cultural stone weathering studies have been productive for both geomorphologists and conservators. Continued collaboration and communication between the geomorphic, historic preservation, archaeological, and engineering research communities are encouraged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001890','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001890"><span>Successfully Transitioning Science Research to Space Weather Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spann, James</p> <p>2012-01-01</p> <p>The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED51A0880D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED51A0880D"><span>Using Virtualization to Integrate Weather, Climate, and Coastal Science Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.</p> <p>2012-12-01</p> <p>To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a single ready-to-use package. Thus, the previous ornery task of setting up and compiling these tools becomes obsolete and the research, educator or student can focus on using the tools to study the interactions between weather, climate and the coastal environment. The incorporation of WRF into the CSEVA has been designed to be synergistic with the extensive online tutorials and biannual tutorials hosted by NCAR. Included are working examples of the idealized test simulations provided with WRF (2D sea breeze and squalls, a large eddy simulation, a Held and Suarez simulation, etc.) To demonstrate the integration of weather, coastal and coastal science education, example applications are being developed to demonstrate how the system can be used to couple a coastal and estuarine circulation, transport and storm surge model with downscale reanalysis weather and future climate predictions. Documentation, tutorials and the enhanced CSEVA itself will be found on the web at: http://cseva.coastal.ufl.edu.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5648279-detecting-climate-variations-change-new-challenges-observing-data-management-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5648279-detecting-climate-variations-change-new-challenges-observing-data-management-systems"><span>Detecting climate variations and change: New challenges for observing and data management systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Karl, T.R.; Quayle, R.G.; Groisman, P.Ya.</p> <p>1993-08-01</p> <p>Several essential aspects of weather observing and the management of weather data related to improving knowledge of climate variations and change in the surface boundary layer and the consequences for socioeconomic and biogeophysical systems, are discussed. The issues include long-term homogeneous time series of routine weather observations; time- and space-scale resolution of datasets derived from the observations; information about observing systems, data collection systems, and data reduction algorithms; and the enhancement of weather observing systems to serve as climate observing systems. Although much has been learned from existing weather networks and methods of data management, the system is far frommore » perfect. Several vital areas have not received adequate attention. Particular improvements are needed in the interaction between network designers and climatologists; operational analyses that focus on detecting and documenting outliers and time-dependent biases within datasets; developing the means to cope with and minimize potential inhomogeneities in weather observing systems; and authoritative documentation of how various aspects of climate have or have not changed. In this last area, close attention must be given to time and space resolution of the data. In many instances the time and space resolution requirements for understanding why the climate changes are not synonymous with understanding how it has changed or varied. This is particularly true within the surface boundary layer. A standard global daily/monthly climate message should also be introduced to supplement current Global Telecommunication System's CLIMAT data. Overall, a call is made for improvements in routine weather observing, data management, and analysis systems. Routine observations have provided (and will continue to provide) most of the information regarding how the climate has changed during the last 100 years affecting where we live, work, and grow our food. 58 refs., 8 figs., 1 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.394M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.394M"><span>AN overview of the FLYSAFE datalink solution for the exchange of weather information: supporting aircrew decision making processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mirza, A.; Drouin, A.</p> <p>2009-09-01</p> <p>FLYSAFE is an Integrated Project of the 6th framework of the European Commission with the aim to improve flight safety through the development of an avionics solution the Next Generation Integrated Surveillance System (NGISS), which is supported by a ground based network of Weather Information Management Systems (WIMS) and access points in the form of the Ground Weather Processor (GWP). The NGISS provides information to the flight crew on the three major external hazards for aviation: weather, air traffic and terrain. The NGISS has the capability of displaying data about all three hazards on a single display screen, facilitating rapid appreciation of the situation by the flight crew. Weather Information Management Systems (WIMS) were developed to provide the NGISS and the flight crew with weather related information on in-flight icing, thunderstorms and clear-air turbulence. These products are generated on the ground from observations and model forecasts. WIMS will supply relevant information on three different scales: global, regional and local (over airport Terminal Manoeuvring Area). The Ground Weather Processor is a client-server architecture that utilises open source components, which include a geospatial database and web feature services. The GWP stores Weather Objects generated by the WIMS. An aviation user can retrieve on-demand all Weather Objects that intersect the volume of space that is of interest to them. The Weather Objects are fused with in-situ observation data and can be used by the flight management system to propose a route to avoid the hazard. In addition they can be used to display the current hazardous weather to the Flight Crew thereby raising their awareness. Within the FLYSAFE program, around 120 hours of flight trials were performed during February 2008 and August 2008. Two aircraft were involved each with separate objectives: - to assess FLYSAFE's innovative solutions for the data-link, on-board data-fusion and data-display and data-updates during flight; - to evaluate the new weather information management systems (in-flight icing and thunderstorms) using in-situ measurements recorded on-board the test aircraft. In this presentation we will focus on the data link solution to uplink the Weather Objects to the NGISS. As part of the solution, a brief description is given on how grid data created by the WIMS are transformed to Weather Objects; which describe the weather hazard and are formatted using the Geospatial Mark-up Language.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000110530&hterms=information+technology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dinformation%2Btechnology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000110530&hterms=information+technology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dinformation%2Btechnology"><span>Estimating The Rate of Technology Adoption for Cockpit Weather Information Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kauffmann, Paul; Stough, H. P.</p> <p>2000-01-01</p> <p>In February 1997, President Clinton announced a national goal to reduce the weather related fatal accident rate for aviation by 80% in ten years. To support that goal, NASA established an Aviation Weather Information Distribution and Presentation Project to develop technologies that will provide timely and intuitive information to pilots, dispatchers, and air traffic controllers. This information should enable the detection and avoidance of atmospheric hazards and support an improvement in the fatal accident rate related to weather. A critical issue in the success of NASA's weather information program is the rate at which the market place will adopt this new weather information technology. This paper examines that question by developing estimated adoption curves for weather information systems in five critical aviation segments: commercial, commuter, business, general aviation, and rotorcraft. The paper begins with development of general product descriptions. Using this data, key adopters are surveyed and estimates of adoption rates are obtained. These estimates are regressed to develop adoption curves and equations for weather related information systems. The paper demonstrates the use of adoption rate curves in product development and research planning to improve managerial decision processes and resource allocation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780016689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780016689"><span>Accelerated/abbreviated test methods, study 4 of task 3 (encapsulation) of the low-cost silicon solar array project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kolyer, J. M.; Mann, N. R.</p> <p>1978-01-01</p> <p>Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..213E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..213E"><span>Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ersöz, Timur; Topal, Tamer</p> <p>2017-04-01</p> <p>Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H51J1520G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H51J1520G"><span>Measuring U-series Disequilibrium in Weathering Rinds to Study the Influence of Environmental Factors to Weathering Rates in Tropical Basse-Terre Island (French Guadeloupe)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, J.; Ma, L.; Sak, P. B.; Gaillardet, J.; Chabaux, F. J.; Brantley, S. L.</p> <p>2015-12-01</p> <p>Chemical weathering is a critical process to global CO2 consumption, river/ocean chemistry, and nutrient import to biosphere. Weathering rinds experience minimal physical erosion and provide a well-constrained system to study the chemical weathering process. Here, we applied U-series disequilibrium dating method to study weathering advance rates on the wet side of Basse-Terre Island, French Guadeloupe, aiming to understand the role of the precipitation in controlling weathering rates and elucidate the behavior and immobilization mechanisms of U-series isotopes during rind formation. Six weathering clasts from 5 watersheds with mean annual precipitation varying from 2000 to 3000 mm/yr were measured for U-series isotope ratios and major element compositions on linear core-to-rind transects. One sample experienced complete core-to-rind transformation, while the rest clasts contain both rinds and unweathered cores. Our results show that the unweathered cores are under U-series secular equilibrium, while all the rind materials show significant U-series disequilibrium. For most rinds, linear core-to-rind increases of (230Th/232Th) activity ratios suggest a simple continuous U addition history. However, (234U/238U) and (238U/232Th) trends in several clasts show evidences of remobilization of Uranium besides the U addition, complicating the use of U-series dating method. The similarity between U/Th ratios and major elements trends like Fe, Al, P in some transects and the ongoing leaching experiments suggest that redox and organic colloids could control the mobilization of U-series isotopes in the rinds. Rind formation ages and weathering advance rate (0.07-0.29mm/kyr) were calculated for those rinds with a simple U-addition history. Our preliminary results show that local precipitation gradient significantly influenced the weathering advance rate, revealing the potential of estimating weathering advance rates at a large spatial scale using the U-series dating method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15555061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15555061"><span>Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Weather-based prediction systems perform comparably to early detection systems in identifying times for interventions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Teklehaimanot, Hailay D; Schwartz, Joel; Teklehaimanot, Awash; Lipsitch, Marc</p> <p>2004-11-19</p> <p>Timely and accurate information about the onset of malaria epidemics is essential for effective control activities in epidemic-prone regions. Early warning methods that provide earlier alerts (usually by the use of weather variables) may permit control measures to interrupt transmission earlier in the epidemic, perhaps at the expense of some level of accuracy. Expected case numbers were modeled using a Poisson regression with lagged weather factors in a 4th-degree polynomial distributed lag model. For each week, the numbers of malaria cases were predicted using coefficients obtained using all years except that for which the prediction was being made. The effectiveness of alerts generated by the prediction system was compared against that of alerts based on observed cases. The usefulness of the prediction system was evaluated in cold and hot districts. The system predicts the overall pattern of cases well, yet underestimates the height of the largest peaks. Relative to alerts triggered by observed cases, the alerts triggered by the predicted number of cases performed slightly worse, within 5% of the detection system. The prediction-based alerts were able to prevent 10-25% more cases at a given sensitivity in cold districts than in hot ones. The prediction of malaria cases using lagged weather performed well in identifying periods of increased malaria cases. Weather-derived predictions identified epidemics with reasonable accuracy and better timeliness than early detection systems; therefore, the prediction of malarial epidemics using weather is a plausible alternative to early detection systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3256','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3256"><span>Integration of weather information in transportation management center operations : self-evaluation and planning guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-06-30</p> <p>The Federal Highway Administrations Road Weather Management Program is helping to reduce the adverse impacts of weather on the transportation system by assisting agencies in integrating weather information and technologies into their daily Transpo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3591','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3591"><span>South Dakota Department of Transportation (SDDOT) regional traveler information system for weather responsive traffic management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-01-01</p> <p>FHWAs Road Weather Management Program partnered with the South Dakota DOT to develop and implement a Weather Responsive Traffic Management (WRTM) strategy that involves mobile data collection and traveler information dissemination during weather e...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA101342','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA101342"><span>The Design Implementation of an Operational, Computer Based Weather Radar System,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-01-01</p> <p>AN OPERATIONAL, COMPUTER-BASED WEATHER RADAR SYSTEM Authors: A P Ball, J L Clarke, M J O’Brien A H Shaw , S E Trigg and T A Voller ’Original contains...A ’Ball, J L/Clarke, MJ/O’Brien A H , Shaw , S E Trigg and T A Voller SUMMARY Inis memorand,,m describes the work of the RSRE Weather Radar Division in...IMPLEMENTATION OF AN OPERATIONAL, COMPUTER BASED WEATHER RADAR SYSTEM A P Ball, J L Clarke, M J O’Brien, A H Shaw , S E Trigg and T A Voller CONTENTS 1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070005092','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070005092"><span>An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo</p> <p>2007-01-01</p> <p>Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790015357','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790015357"><span>Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1979-01-01</p> <p>The results of a study for Task 3 of the Low Cost Solar Array Project, directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicon based materials, are reported. Results of the following are discussed: (1) weather-ometer stressing vs. weathering history of silicon and silicon modified materials; (2) humidity/temperature cycling exposure; (3) exposure at high humidity/high temperature; (4) outdoor exposure stress; (5) thermal cycling stress; and (6) UV screening agents. The plans for the next quarter are outlined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030015806','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030015806"><span>A Product Development Decision Model for Cockpit Weather Information System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)</p> <p>2003-01-01</p> <p>There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030020879&hterms=product+mix&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dproduct%2Bmix','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030020879&hterms=product+mix&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dproduct%2Bmix"><span>A Product Development Decision Model for Cockpit Weather Information Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin</p> <p>2003-01-01</p> <p>There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980000357&hterms=PWV&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPWV','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980000357&hterms=PWV&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPWV"><span>Strategies for Near Real Time Estimation of Precipitable Water Vapor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bar-Sever, Yoaz E.</p> <p>1996-01-01</p> <p>Traditionally used for high precision geodesy, the GPS system has recently emerged as an equally powerful tool in atmospheric studies, in particular, climatology and meteorology. There are several products of GPS-based systems that are of interest to climatologists and meteorologists. One of the most useful is the GPS-based estimate of the amount of Precipitable Water Vapor (PWV) in the troposphere. Water vapor is an important variable in the study of climate changes and atmospheric convection (Yuan et al., 1993), and is of crucial importance for severe weather forecasting and operational numerical weather prediction (Kuo et al., 1993).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020042351','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020042351"><span>The Effects of Aviation Weather Information Systems on General Aviation Weather Information Systems on General Pilots' Workload</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scerbo, Mark; Coyne, Joseph; Burt, Jennifer L. (Technical Monitor)</p> <p>2002-01-01</p> <p>My work at NASA Langley has focused around Aviation Weather Information CAWING displays. The majority of my time at LYRIC has been spent on the Workload and Relative Position (WaRP) Study. The goal of this project is to determine how an AWIN display at various positions within the cockpit affects pilot performance and workload. The project is being conducted in Languages Cessna 206H research aircraft. During the past year the design of the experiment was finalized and approved. Despite facing several delays the data collection was completed in early February. Alter the completion of the data collection an extensive data entry task began. This required recording air speed, altitude, course heading, bank angle, and vertical speed information from videos of the primary flight displays. This data was then used to determine root mean square error (RMSE) for each experimental condition. In addition to the performance data (RMSE) taken from flight path deviation, the study also collected data on pilot;s accuracy in reporting weather information, and a subjective rating of workload from the pilot. The data for this experiment is currently being analyzed. Overall the current experiment should help to determine potential costs and benefits associated with AWIN displays. The data will be used to determine if a private pilot can safely fly a general aviation aircraft while operating a weather display. Clearly a display that adds to the pilot#s already heavy workload represents a potential problem. The study will compare the use of an AWIN display to conventional means of acquiring weather data. The placement of the display within the cockpit (i.e., either on the yoke, kneeboard, or panel) will be also compared in terms of workload, performance, and pilot preference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC52C..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC52C..05W"><span>Studying Weather and Climate Extremes in a Non-stationary Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Z.</p> <p>2010-12-01</p> <p>The study of weather and climate extremes often uses the theory of extreme values. Such a detection method has a major problem: to obtain the probability distribution of extremes, one has to implicitly assume the Earth’s climate is stationary over a long period within which the climatology is defined. While such detection makes some sense in a purely statistical view of stationary processes, it can lead to misleading statistical properties of weather and climate extremes caused by long term climate variability and change, and may also cause enormous difficulty in attributing and predicting these extremes. To alleviate this problem, here we report a novel non-stationary framework for studying weather and climate extremes in a non-stationary framework. In this new framework, the weather and climate extremes will be defined as timescale-dependent quantities derived from the anomalies with respect to non-stationary climatologies of different timescales. With this non-stationary framework, the non-stationary and nonlinear nature of climate system will be taken into account; and the attribution and the prediction of weather and climate extremes can then be separated into 1) the change of the statistical properties of the weather and climate extremes themselves and 2) the background climate variability and change. The new non-stationary framework will use the ensemble empirical mode decomposition (EEMD) method, which is a recent major improvement of the Hilbert-Huang Transform for time-frequency analysis. Using this tool, we will adaptively decompose various weather and climate data from observation and climate models in terms of the components of the various natural timescales contained in the data. With such decompositions, the non-stationary statistical properties (both spatial and temporal) of weather and climate anomalies and of their corresponding climatologies will be analyzed and documented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A21E0181Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A21E0181Y"><span>Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.</p> <p>2015-12-01</p> <p>Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be followed in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.178..114A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.178..114A"><span>Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Axisa, Duncan; DeFelice, Tom P.</p> <p>2016-09-01</p> <p>Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5795821','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5795821"><span>Study of the Weathering Process of Gasoline by eNose</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aliaño-González, María José; Ayuso, Jesús; Palma, Miguel; Barroso, Carmelo G.</p> <p>2018-01-01</p> <p>In a fire investigation the rapid detection of the presence of ignitable liquids like gasoline is of great importance as it allows appropriate treatment of the remains, the identification of prevention methods and detects the possible presence of an arsonist. In some cases, analysts cannot access the fire scene in the first few hours due to the dangers involved in the situation and, as a consequence, phenomena such as weathering start. Ignitable liquid weathering is an evaporation process that results in an increase in the abundance of non-volatile compounds relative to volatile compounds, and this process changes the chemical composition. In the present work, the weathering of samples of gasoline at different times (from 0 h to a month) has been studied using an electronic nose (eNose). The influence of the volume used (40 µL and 80 µL) and the type of support (cork, wood, paper and cotton sheet) has been studied. Chemometric tools have been used with the aim of ascertaining the weathering time for which the developed method is capable of detecting the presence of gasoline. The eNose was able to discriminate samples of weathered gasoline. The support used for the samples did not seem to have an influence on the detection and the system. PMID:29304020</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41D2305J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41D2305J"><span>Relationship of Ground-level Ozone with Synoptic Weather Conditions in the Midwestern U.S.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jing, P.</p> <p>2017-12-01</p> <p>This study investigates the relationship between ground-level ozone (O3) and synoptic weather conditions in the Midwestern U.S. over the period 1990-2015 using the air quality data obtained from the U.S. EPA Air Quality System (AQS) and meteorological data from NASA's Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The results show that among the six different types of Spatial Synoptic Classification (SSC) weather, the occurrence of dry tropical (DT) weather conditions is most likely to lead to high O3 concentrations. The summertime O3 concentrations in the Midwest decreased at an average rate of 0.7 ppb yr-1 in the 95th percentiles from 1990 to 2015 in response to NO2 emission controls. However, O3 has become more dependent on temperature since 2008 and this was accompanied by more frequent DT weather and air stagnation. The results have implications for the likely effect of future climate change on O3 as a result of modified synoptic weather conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34408','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34408"><span>Caltrans WeatherShare Phase II System: An Application of Systems and Software Engineering Process to Project Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-08-25</p> <p>In cooperation with the California Department of Transportation, Montana State University's Western Transportation Institute has developed the WeatherShare Phase II system by applying Systems Engineering and Software Engineering processes. The system...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19657150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19657150"><span>Separate and combined sewer systems: a long-term modelling approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mannina, Giorgio; Viviani, Gaspare</p> <p>2009-01-01</p> <p>Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002425','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002425"><span>Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pellish, Jonathan</p> <p>2017-01-01</p> <p>Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.tmp...76J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.tmp...76J"><span>Evaluating the applicability of using daily forecasts from seasonal prediction systems (SPSs) for agriculture: a case study of Nepal's Terai with the NCEP CFSv2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jha, Prakash K.; Athanasiadis, Panos; Gualdi, Silvio; Trabucco, Antonio; Mereu, Valentina; Shelia, Vakhtang; Hoogenboom, Gerrit</p> <p>2018-03-01</p> <p>Ensemble forecasts from dynamic seasonal prediction systems (SPSs) have the potential to improve decision-making for crop management to help cope with interannual weather variability. Because the reliability of crop yield predictions based on seasonal weather forecasts depends on the quality of the forecasts, it is essential to evaluate forecasts prior to agricultural applications. This study analyses the potential of Climate Forecast System version 2 (CFSv2) in predicting the Indian summer monsoon (ISM) for producing meteorological variables relevant to crop modeling. The focus area was Nepal's Terai region, and the local hindcasts were compared with weather station and reanalysis data. The results showed that the CFSv2 model accurately predicts monthly anomalies of daily maximum and minimum air temperature (Tmax and Tmin) as well as incoming total surface solar radiation (Srad). However, the daily climatologies of the respective CFSv2 hindcasts exhibit significant systematic biases compared to weather station data. The CFSv2 is less capable of predicting monthly precipitation anomalies and simulating the respective intra-seasonal variability over the growing season. Nevertheless, the observed daily climatologies of precipitation fall within the ensemble spread of the respective daily climatologies of CFSv2 hindcasts. These limitations in the CFSv2 seasonal forecasts, primarily in precipitation, restrict the potential application for predicting the interannual variability of crop yield associated with weather variability. Despite these limitations, ensemble averaging of the simulated yield using all CFSv2 members after applying bias correction may lead to satisfactory yield predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14529203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14529203"><span>Weatherwise: evaluation of a cue-based training approach for the recognition of deteriorating weather conditions during flight.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wiggins, Mark; O'Hare, David</p> <p>2003-01-01</p> <p>Inappropriate and ineffective weather-related decision making continues to account for a significant proportion of general aviation fatalities in the United States and elsewhere. This study details the evaluation of a computer-based training system that was developed to provide visual pilots with the skills necessary to recognize and respond to the cues associated with deteriorating weather conditions during flight. A total of 66 pilots were assigned to one of two groups, and the evaluation process was undertaken at both a self-report and performance level. At the self-report level, the results suggested that pilots were more likely to use the cues following exposure to the training program. From a performance perspective, there is evidence to suggest that cue-based training can improve the timeliness of weather-related decision making during visual flight rules flight. Actual or potential applications of this research include the development of computer-based training systems for fault diagnosis in complex industrial environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA589390','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA589390"><span>An Automated Weather Research and Forecasting (WRF)-Based Nowcasting System: Software Description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-10-01</p> <p>14. ABSTRACT A Web service /Web interface software package has been engineered to address the need for an automated means to run the Weather Research...An Automated Weather Research and Forecasting (WRF)- Based Nowcasting System: Software Description by Stephen F. Kirby, Brian P. Reen, and...Based Nowcasting System: Software Description Stephen F. Kirby, Brian P. Reen, and Robert E. Dumais Jr. Computational and Information Sciences</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000109728&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000109728&hterms=mit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmit"><span>Issues Involved in the Development of an Open Standard for Data Link of Aviation Weather Information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grappel, R. D.</p> <p>2000-01-01</p> <p>This paper describes how an effective and efficient data link system for the dissemination of aviation weather information could be constructed. The system is built upon existing 'open standard' foundations drawn from current aviation and computer technologies. Issues of communications protocols and application data formats are discussed. The proposed aviation weather data link system is dependent of the actual link mechanism selected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC51E1238J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC51E1238J"><span>Modeling Future Fire danger over North America in a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jain, P.; Paimazumder, D.; Done, J.; Flannigan, M.</p> <p>2016-12-01</p> <p>Fire danger ratings are used to determine wildfire potential due to weather and climate factors. The Fire Weather Index (FWI), part of the Canadian Forest Fire Danger Rating System (CFFDRS), incorporates temperature, relative humidity, windspeed and precipitation to give a daily fire danger rating that is used by wildfire management agencies in an operational context. Studies using GCM output have shown that future wildfire danger will increase in a warming climate. However, these studies are somewhat limited by the coarse spatial resolution (typically 100-400km) and temporal resolution (typically 6-hourly to monthly) of the model output. Future wildfire potential over North America based on FWI is calculated using output from the Weather, Research and Forecasting (WRF) model, which is used to downscale future climate scenarios from the bias-corrected Community Climate System Model (CCSM) under RCP8.5 scenarios at a spatial resolution of 36km. We consider five eleven year time slices: 1990-2000, 2020-2030, 2030-2040, 2050-2060 and 2080-2090. The dynamically downscaled simulation improves determination of future extreme weather by improving both spatial and temporal resolution over most GCM models. To characterize extreme fire weather we calculate annual numbers of spread days (days for which FWI > 19) and annual 99th percentile of FWI. Additionally, an extreme value analysis based on the peaks-over-threshold method allows us to calculate the return values for extreme FWI values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016HESS...20.4707Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016HESS...20.4707Z"><span>Coupled hydro-meteorological modelling on a HPC platform for high-resolution extreme weather impact study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Dehua; Echendu, Shirley; Xuan, Yunqing; Webster, Mike; Cluckie, Ian</p> <p>2016-11-01</p> <p>Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2-3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030012584','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030012584"><span>Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chamberlain, James P.; Latorella, Kara A.</p> <p>2001-01-01</p> <p>This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25511881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25511881"><span>Influenza-like illness in a Vietnamese province: epidemiology in correlation with weather factors and determinants from the surveillance system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Minh An, Dao Thi; Ngoc, Nguyen Thi Bich; Nilsson, Maria</p> <p>2014-01-01</p> <p>Seasonal influenza affects from 5 to 15% of the world's population annually and causes an estimated 250,000-500,000 deaths worldwide. The World Health Organization (WHO) recommends 'sentinel surveillance' for influenza-like illness (ILI) because it is simple and calls for standardized methods at a relatively low cost that can be implemented throughout the world. In Vietnam, ILI is a key priority for public health also because of its annually recurring temporal pattern. Two major factors, on which the spread of influenza depends, are the strain of the virus and its rate of mutation, since flu strains constantly mutate as they compete with host immune systems. In the context of global climate change, the role of climatic factors has been discussed, as they may significantly contribute to the cause of large outbreaks of ILI. 1) To describe the epidemiology of ILI in Ha Nam province, Vietnam; 2) to seek scientific evidence on the association of ILI occurrence with weather factors in Ha Nam province; and 3) to analyze factors from the Ha Nam ILI surveillance system that contribute to explaining the correlation between the ILI and the weather factors. A data set of 89,270 monthly reported ILI cases from 2008 to 2012 in Ha Nam was used to describe ILI epidemiological characteristics. Spearman correlation analyses between ILI cases and weather factors were conducted to identify which preceding period of months and weather patterns influenced the occurrence of ILI cases. Ten in-depth interviews with health workers in charge of recording and reporting ILI cases at different levels of the ILI surveillance system were conducted to gain a deeper understanding of factors contributing to explaining the relation between the ILI and the weather factors. The results indicated that the ILI occurred annually in all districts of the Ha Nam province in the five studied years. An epidemic occurred in 2009 with the number of cases three times higher than the average threshold. There was a relation between the ILI cases in the previous 1 month with ILI cases of the following month. A seasonal cycle of ILI and correlation between weather elements were not clearly detected. A qualitative study showed that the number of ILI cases reported by the Provincial Preventive Medicine Centre (PPMC) in Ha Nam might not have reflected the accurate number of seasonal ILI occurring in this area. This was due to three gaps in the ILI surveillance system that initially were detected through key in-depth interviews in the Duy Tien and Binh Luc districts. They reported inconsistent ways of recording and reporting ILI cases among communes, lack of ILI survey forms, and irregular and delayed feedback from the PPMC. There were no clear patterns of association between weather factors and ILI cases detected from the five studied years. The number of ILI cases reported by the PPMC in Ha Nam may not reflect adequately the actual number of seasonal ILI occurring in this area due to three weak points in the ILI surveillance system initially detected through the case of the Duy Tien and Binh Luc districts. These three weak points of the system should be examined by a study conducted in the remaining districts in Ha Nam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.304M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.304M"><span>Environmental Information for the U.S. Next Generation Air Transportation System (NextGen)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murray, J.; Miner, C.; Pace, D.; Minnis, P.; Mecikalski, J.; Feltz, W.; Johnson, D.; Iskendarian, H.; Haynes, J.</p> <p>2009-09-01</p> <p>It is estimated that weather is responsible for approximately 70% of all air traffic delays and cancellations in the United States. Annually, this produces an overall economic loss of nearly 40B. The FAA and NASA have determined that weather impacts and other environmental constraints on the U.S. National Airspace System (NAS) will increase to the point of system unsustainability unless the NAS is radically transformed. A Next Generation Air Transportation System (NextGen) is planned to accommodate the anticipated demand for increased system capacity and the super-density operations that this transformation will entail. The heart of the environmental information component that is being developed for NextGen will be a 4-dimensional data cube which will include a single authoritative source comprising probabilistic weather information for NextGen Air Traffic Management (ATM) systems. Aviation weather constraints and safety hazards typically comprise meso-scale, storm-scale and microscale observables that can significantly impact both terminal and enroute aviation operations. With these operational impacts in mind, functional and performance requirements for the NextGen weather system were established which require significant improvements in observation and forecasting capabilities. This will include satellite observations from geostationary and/or polar-orbiting hyperspectral sounders, multi-spectral imagers, lightning mappers, space weather monitors and other environmental observing systems. It will also require improved in situ and remotely sensed observations from ground-based and airborne systems. These observations will be used to better understand and to develop forecasting applications for convective weather, in-flight icing, turbulence, ceilings and visibility, volcanic ash, space weather and the environmental impacts of aviation. Cutting-edge collaborative research efforts and results from NASA, NOAA and the FAA which address these phenomena are summarized. In 2003, a Joint Planning and Development Office (JPDO) was established by public law to meet the significant challenges that NextGen presents. JPDO partners were chartered which include, but are not limited to, the Federal Aviation Administration (FAA), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD) and broad elements of academia and the aviation industry. This paper provides the aviation meteorology community with useful insight on salient NextGen environmental information requirements that have been developed by the JPDO Weather Working Group's Environmental Information Team. These efforts will help to define observation and forecast systems needed to support NextGen and to develop the operational applications for NextGen aviation weather information. Another major goal of this paper is to inform the international weather community of our research progress and plans for NextGen, to foster research collaboration with our colleagues, and to exchange information to maximize success of NextGen, SESAR and related initiatives world-wide.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001854','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001854"><span>Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.</p> <p>2012-01-01</p> <p>The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003351','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003351"><span>Weather Forecasting Systems and Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)</p> <p>2014-01-01</p> <p>A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OAP....26..300S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OAP....26..300S"><span>Space Weather and the State of Cardiovascular System of a Healthy Human Being</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samsonov, S. N.; Manykina, V. I.; Krymsky, G. F.; Petrova, P. G.; Palshina, A. M.; Vishnevsky, V. V.</p> <p></p> <p>The term "space weather" characterizes a state of the near-Earth environmental space. An organism of human being represents an open system so the change of conditions in the environment including the near-Earth environmental space influences the health state of a human being.In recent years many works devoted to the effect of space weather on the life on the Earth, and the degree of such effect has been represented from a zero-order up to apocalypse. To reveal a real effect of space weather on the health of human being the international Russian- Ukrainian experiment "Geliomed" is carried out since 2005 (http://geliomed.immsp.kiev.ua) [Vishnevsky et al., 2009]. The analysis of observational set of data has allowed to show a synchronism and globality of such effect (simultaneous manifestation of space weather parameters in a state of cardiovascular system of volunteer groups removed from each other at a distance over 6000 km). The response of volunteer' cardiovascular system to the changes of space weather parameters were observed even at insignificant values of the Earth's geomagnetic field. But even at very considerable disturbances of space weather parameters a human being healthy did not feel painful symptoms though measurements of objective physiological indices showed their changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA113131','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA113131"><span>Proceedings: Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems (5th) Held on 31 March-2 April 1981.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-12-01</p> <p>STUDIES PROJECT MODIFICATION JFK JOHN F. KENNEDY AIRPORT PATWAS PILOT AUTOMATIC TELEPHONE WEATHER ANSWERING SERVICE JPL JET PROPULSION LABORATORY PDP...wing aircraft, helicopters, and cruise sorship directed at Atmospheric Electricity missiles. The AEHP concepts developed will apply Hazards Protection...atmospheric electricity simulators. 90 THE JOINT AIRPORT WEATHER STUDIES PROJECT John McCarthy National Center for Atmospheric Research Several people raised</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.crh.noaa.gov/greatlakes','SCIGOVWS'); return false;" href="http://www.crh.noaa.gov/greatlakes"><span>Great Lakes Maps - NOAA's National Weather Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>Coastal</em> Forecast System) Waves (GLERL Great Lakes <em>Coastal</em> Forecast System) Ice Cover (GLERL Great Lakes <em>Coastal</em> Forecast System) NOAA's National Weather Service Central Region Headquarters Regional Office 7220</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020083270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020083270"><span>Earth Observation Services Weather Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012902','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012902"><span>Alteration of Lunar Rock Surfaces through Interaction with the Space Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.</p> <p>2014-01-01</p> <p>Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EOSTr..94..313F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EOSTr..94..313F"><span>Field Studies Delve Into the Intricacies of Mountain Weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernando, Harindra J. S.; Pardyjak, Eric R.</p> <p>2013-09-01</p> <p>Mountain meteorology, in particular weather prediction in complex (rugged) terrain, is emerging as an important topic for science and society. Large urban settlements such as Los Angeles, Hong Kong, and Rio de Janeiro have grown within or in the shadow of complex terrain, and managing the air quality of such cities requires a good understanding of the air flow patterns that spill off of mountains. On a daily time scale, the interconnected engineered and natural systems that sustain urban metabolism and quality of life are affected by weather [Fernando, 2010]. Further, recent military engagements in remote mountainous areas have heightened the need for better weather predictions—alpine warfare is considered to be one of the most dangerous types of combat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002900','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002900"><span>Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond</p> <p>2015-01-01</p> <p>The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023415','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023415"><span>Space Weather, Geomagnetic Disturbances and Impact on the High-Voltage Transmission Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pullkkinen, A.</p> <p>2011-01-01</p> <p>Geomagnetically induced currents (GIC) affecting the performance of high-voltage power transmission systems are one of the most significant hazards space weather poses on the operability of critical US infrastructure. The severity of the threat was emphasized, for example, in two recent reports: the National Research Council (NRC) report "Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report" and the North American Electric Reliability Corporation (NERC) report "HighImpact, Low-Frequency Event Risk to the North American Bulk Power System." The NRC and NERC reports demonstrated the important national security dimension of space weather and GIC and called for comprehensive actions to forecast and mitigate the hazard. In this paper we will give a brief overview of space weather storms and accompanying geomagnetic storm events that lead to GIC. We will also review the fundamental principles of how GIC can impact the power transmission systems. Space weather has been a subject of great scientific advances that have changed the wonder of the past to a quantitative field of physics with true predictive power of today. NASA's Solar Shield system aimed at forecasting of GIC in the North American high-voltage power transmission system can be considered as one of the ultimate fruits of those advances. We will review the fundamental principles of the Solar Shield system and provide our view of the way forward in the science of GIC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070013861&hterms=regional+impacts+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dregional%2Bimpacts%2Bclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070013861&hterms=regional+impacts+climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dregional%2Bimpacts%2Bclimate%2Bchange"><span>The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William</p> <p>2007-01-01</p> <p>The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS, intelligent use of the quality indicators, and forecast verification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23500567','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23500567"><span>Carrier mounted bacterial consortium facilitates oil remediation in the marine environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Simons, Keryn L; Sheppard, Petra J; Adetutu, Eric M; Kadali, Krishna; Juhasz, Albert L; Manefield, Mike; Sarma, Priyangshu M; Lal, Banwari; Ball, Andrew S</p> <p>2013-04-01</p> <p>Marine oil pollution can result in the persistent presence of weathered oil. Currently, removal of weathered oil is reliant on chemical dispersants and physical removal, causing further disruption. In contrast few studies have examined the potential of an environmentally sustainable method using a hydrocarbon degrading microbial community attached to a carrier. Here, we used a tank mesocosm system (50 l) to follow the degradation of weathered oil (10 g l(-1)) using a bacterial consortium mobilised onto different carrier materials (alginate or shell grit). GCMS analysis demonstrated that the extent of hydrocarbon degradation was dependent upon the carrier material. Augmentation of shell grit with nutrients and exogenous hydrocarbon degraders resulted in 75±14% removal of >C32 hydrocarbons after 12 weeks compared to 20±14% for the alginate carrier. This study demonstrated the effectiveness of a biostimulated and bioaugmented carrier material to degrade marine weathered oil. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28628274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28628274"><span>New technology for using meteorological information in forest insect pest forecast and warning systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng</p> <p>2017-12-01</p> <p>Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39097','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39097"><span>Modeling fire behavior on tropical islands with high-resolution weather data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John W. Benoit; Francis M. Fujioka; David R. Weise</p> <p>2009-01-01</p> <p>In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.180B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.180B"><span>Operational Space Weather Activities in the US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert</p> <p>2016-07-01</p> <p>We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012522"><span>Maintaining a Local Data Integration System in Support of Weather Forecast Operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian</p> <p>2010-01-01</p> <p>Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division/Meteorological Assimilation Data Ingest System (MADIS), as well as the Kennedy Space Center ICape Canaveral Air Force Station wind tower network. The scripts provide NWS MLB and SMG with several options for setting a desirable runtime configuration of the LDIS to account for adjustments in grid spacing, domain location, choice of observational data sources, and selection of background model fields, among others. The utility of an improved LDIS will be demonstrated through postanalysis warm and cool season case studies that compare high-resolution model output with and without the ADAS analyses. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HydJ...25..689B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HydJ...25..689B"><span>Performance evaluation of a reverse-gradient artificial recharge system in basalt aquifers of Maharashtra, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep</p> <p>2017-05-01</p> <p>Drinking water scarcity in rural parts of central India in basaltic terrain is common. Most of the rural population depends on groundwater sources located in the fractured and weathered zone of the basaltic aquifers. Long-term indiscriminate withdrawal has caused an alarming rate of depletion of groundwater levels in both pre- and post-monsoon periods. The aquifer is not replenished through precipitation under natural conditions. To overcome this situation, an innovative artificial recharge system, called the reverse-gradient recharge system (RGRS), was implemented in seven villages of Wardha district of Maharashtra. The study described here presents a comparative analysis of recharge systems constructed in the year 2012 downstream of dug-well locations in these seven villages. The post-project comparative analysis reveals that the area of influence (AOI) of the groundwater recharge system, within which increases in groundwater levels and yield are observed, is directly related to the specific yield, thickness of the weathered and fractured zone, porosity, and transmissivity of the aquifer, showing high correlation coefficients of 0.92, 0.88, 0.85 and 0.83, respectively. The study indicates that the RGRS is most effective in vesicular weathered and fractured basalt, recording a maximum increase in well yield of 65-82 m3/day, while a minimum increase in yield of 15-30 m3/day was observed in weathered vesicular basalt. The comparative analysis thus identifies the controlling factors which facilitate groundwater recharge through the proposed RGRS. After implementation of these projects, the groundwater availability in these villages increased significantly, solving their drinking water problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28336017','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28336017"><span>Weather Webcam System for the Safety of Helicopter Emergency Medical Services in Miyazaki, Japan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kanemaru, Katsuhiro; Katzer, Robert; Hanato, Syu; Nakamura, Koji; Matsuoka, Hiroshi; Ochiai, Hidenobu</p> <p></p> <p>In Japan, the helicopter emergency medical services (HEMS) system was initiated in 2001 and introduced to Miyazaki Prefecture in 2012. Mountainous areas occupy 88% of Miyazaki's land area, and HEMS flights can be subject to the effects of weather. Therefore, ensuring safety in changing weather conditions is a necessity for HEMS. The weather webcam system (WWS) was established to observe the meteorological conditions in 29 locations. Assessments of the probability of a flight based on conventional data including a weather chart provided by the Japan Meteorological Agency and meteorological reports provided by the Miyazaki Airport were compared with the assessment based on the combination of the information obtained from the WWS and the conventional data. The results showed that the probability of a flight by HEMS increased when using the WSS, leading to an increased transportation opportunity for patients in the mountains who rely on HEMS. In addition, the results indicate that the WWS may prevent flights in unfavorable weather conditions. The WWS used in conjunction with conventional weather data within Miyazaki HEMS increased the pilot's awareness of current weather conditions throughout the Prefecture, increasing the probability of accepting a flight. Copyright © 2017 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/11604','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/11604"><span>National Voice Response System (VRS) Implementation Plan Alternatives Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1979-07-01</p> <p>This study examines the alternatives available to implement a national Voice Response System (VRS) for automated preflight weather briefings and flight plan filing. Four major hardware configurations are discussed. A computerized analysis model was d...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA618215','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA618215"><span>Investigating Surface Bias Errors in the Weather Research and Forecasting (WRF) Model using a Geographic Information System (GIS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-02-01</p> <p>WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007323','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007323"><span>Constructing Data Albums for Significant Severe Weather Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greene, Ethan; Zavodsky, Bradley; Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Bakare, Rohan; Basyal, Sabin; Conover, Helen</p> <p>2014-01-01</p> <p>There is need in the research community for weather-related case studies to improve prediction of and recovery after convective thunderstorms that produce damaging winds, hail, and tornadoes. One of the largest continuing challenges in any Earth Science investigation is the discovery of and access to useful science content from the increasingly large volumes of available Earth Science data. The Information Technology and Systems Center at the University of Alabama in Huntsville has developed a software system called Noesis 2.0 that can be used to produce Data Albums for weather events relevant to NASA Earth Science researchers. Noesis is an Internet search tool that combines relevant storm research, pictures and videos of an event or event aftermath, web pages containing news reports and official storm summaries, background information about damage, injuries, and deaths, and NASA datasets from field campaigns and satellites into a "one-stop shop" database. The Data Album concept has been previously applied to hurricane cases from 2010 to present. The objective of this paper is to extend that Hurricane Data Album concept to focus on development of an ontology for significant severe weather to aid in selecting appropriate NASA datasets for inclusion in a severe weather Data Album. Recent severe weather events in Moore and El Reno, Oklahoma will be analyzed as an example of how these events can be incorporated into a Data Album.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.138..657D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.138..657D"><span>Geochemistry of the dissolved loads of the Liao River basin in northeast China under anthropogenic pressure: Chemical weathering and controlling factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Hu; Liu, Cong-Qiang; Zhao, Zhi-Qi; Li, Si-Liang; Lang, Yun-Chao; Li, Xiao-Dong; Hu, Jian; Liu, Bao-Jian</p> <p>2017-05-01</p> <p>This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers in the Liao River basin, which is one of the principal river systems in northeast China. Water samples were collected from both the tributaries and the main channel of the Liao River, Daling River and Hun-Tai River. Chemical and isotopic analyses indicated that four major reservoirs (carbonates (+gypsum), silicates, evaporites and anthropogenic inputs) contribute to the total dissolved solutes. Other than carbonate (+gypsum) weathering, anthropogenic inputs provide the majority of the solutes in the river water. The estimated chemical weathering rates (as TDS) of silicate, carbonate (+gypsum) and evaporites are 0.28, 3.12 and 0.75 t/km2/yr for the main stream of the Liao River and 7.01, 25.0 and 2.80 t/km2/yr for the Daliao River, respectively. The associated CO2 consumption rates by silicate weathering and carbonate (+gypsum) weathering are 10.1 and 9.94 × 103 mol/km2/yr in the main stream of the Liao River and 69.0 and 80.4 × 103 mol/km2/yr in the Hun-Tai River, respectively. The Daling River basin has the highest silicate weathering rate (TDSsil, 3.84 t/km2/yr), and the Hun-Tai River has the highest carbonate weathering rate (TDScarb, 25.0 t/km2/yr). The Raoyang River, with an anthropogenic cation input fraction of up to 49%, has the lowest chemical weathering rates, which indicates that human impact is not a negligible parameter when studying the chemical weathering of these rivers. Both short-term and long-term study of riverine dissolved loads are needed to a better understanding of the chemical weathering and controlling factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1171482','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1171482"><span>A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen</p> <p></p> <p>Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energymore » management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15002367','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15002367"><span>Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Teller, E; Leith, C; Canavan, G</p> <p>2001-11-13</p> <p>We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These {approx}more » $$10{sup 2} B annual savings dwarf the <$$1 B costs of operating a rational, long-range weather prediction system of the type proposed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.osti.gov/accomplishments/documents/fullText/ACC0232.pdf','DOE-RDACC'); return false;" href="http://www.osti.gov/accomplishments/documents/fullText/ACC0232.pdf"><span>Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/accomplishments/fieldedsearch.html">DOE R&D Accomplishments Database</a></p> <p>Teller, E.; Leith, C.; Canavan, G.; Wood, L.</p> <p>2001-11-13</p> <p>We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These{approx}$10{sup 2} B annual savings dwarf the<$1 B costs of operating a rational, long-range weather prediction system of the type proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4970168','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4970168"><span>Uncertainty Comparison of Visual Sensing in Adverse Weather Conditions†</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lo, Shi-Wei; Wu, Jyh-Horng; Chen, Lun-Chi; Tseng, Chien-Hao; Lin, Fang-Pang; Hsu, Ching-Han</p> <p>2016-01-01</p> <p>This paper focuses on flood-region detection using monitoring images. However, adverse weather affects the outcome of image segmentation methods. In this paper, we present an experimental comparison of an outdoor visual sensing system using region-growing methods with two different growing rules—namely, GrowCut and RegGro. For each growing rule, several tests on adverse weather and lens-stained scenes were performed, taking into account and analyzing different weather conditions with the outdoor visual sensing system. The influence of several weather conditions was analyzed, highlighting their effect on the outdoor visual sensing system with different growing rules. Furthermore, experimental errors and uncertainties obtained with the growing rules were compared. The segmentation accuracy of flood regions yielded by the GrowCut, RegGro, and hybrid methods was 75%, 85%, and 87.7%, respectively. PMID:27447642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A34E..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A34E..02A"><span>What the Heliophysics System Observatory is teaching us about future constellations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Angelopoulos, V.</p> <p>2017-12-01</p> <p>Owing to the benign space weather during the recent solar cycle numerous Heliophysics missions have outlived their original purpose and have exceeded expectations in terms of science return. The simultaneous availability of several multi-spacecraft fleets also offers conjunction opportunities that compounds their science yield. It allows the Heliophysics System, a vast region of Sun-Earth interactions, to be peered through the colletive eyes of a fortuitous grand Observatory. The success of this Heliophysics/Geospace System Observatory (H/GSO) has been partly due to fuel resources available on THEMIS, allowing it to reconfigure its orbit lines of apsides, apogees and mean anomalies to optimize conjunctions with the rest of the H/GSO. The other part of the success has been a mandatory open data policy, the accessibility of the data though common data formats, unified analysis tools (e.g. SPEDAS) and distributed data repositories. Future constellations are motivated by the recent science lessons learned: Tight connections between dayside and nightside processes, evidenced by fortuitous conjunctions of ground and space-based assets, suggest that regional activations drive classical global modes of circulation. Like regional tornadoes and hurricanes synthesize global atmospheric weather that cannot be studied with 5 weather stations alone, one per continent, so do dayside reconnection, and nightside injections require more than a handful of point measurements. Like atmospheric weather, space weather too requires networks of stations built to meet a minimum set of requirements to "play together" and build on each other over time. Like Argo's >3000 buoys have revolutionized research, modeling and prediction by global circulation models, "space buoys" can study space weather fronts and double-up as monitors and inputs to space weather models, increasing fidelity and advance warning. Reconfigurability can allow versatility as the scientific targets adjust to the knowledge gained over the years. Classical single-satellite, multi-sensor or imaging missions can benefit from the context that constellations provide. CubeSats, a disruptive technology, are catalysts for the emergence of constellations, a new research and operations asset for Heliophysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713421J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713421J"><span>A Real-Time Offshore Weather Risk Advisory System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan</p> <p>2015-04-01</p> <p>Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is a 24 hour window of high resolution/accuracy forecasts leveraging available data-model integration and CAPE prediction. The systems includes dissemination of WRF outputs over the World Wide Web. Components of the system (including WRF computational engine and results dissemination modules) are deployed in to computational cloud. This approach tends to increase system robustness and sustainability. The creation of such a system to share information between the public and private sectors and across territorial boundaries is an important step towards the next generation of governance for climate risk and extreme weather offshore. The system benefits offshore operators by reducing downtime related to accidents and incidents; eliminate unnecessary hiring costs related to waiting on weather; and improve the efficiency and planning of transport and logistics by providing a rolling weather risk advisory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003TrGeo...5..365B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003TrGeo...5..365B"><span>Radiogenic Isotopes in Weathering and Hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blum, J. D.; Erel, Y.</p> <p>2003-12-01</p> <p>There are a small group of elements that display variations in their isotopic composition, resulting from radioactive decay within minerals over geological timescales. These isotopic variations provide natural fingerprints of rock-water interactions and have been widely utilized in studies of weathering and hydrology. The isotopic systems that have been applied in such studies are dictated by the limited number of radioactive parent-daughter nuclide pairs with half-lives and isotopic abundances that result in measurable differences in daughter isotope ratios among common rocks and minerals. Prior to their application to studies of weathering and hydrology, each of these isotopic systems was utilized in geochronology and petrology. As in the case of their original introduction into geochronology and petrology, isotopic systems with the highest concentrations of daughter isotopes in common rocks and minerals and systems with the largest observed isotopic variations were introduced first and have made the largest impact on our understanding of weathering and hydrologic processes. Although radiogenic isotopes have helped elucidate many important aspects of weathering and hydrology, it is important to note that in almost every case that will be discussed in this chapter, our fundamental understanding of these topics came from studies of variations in the concentrations of major cations and anions. This chapter is a "tools chapter" and thus it will highlight applications of radiogenic isotopes that have added additional insight into a wide spectrum of research areas that are summarized in almost all of the other chapters of this volume.The first applications of radiogenic isotopes to weathering processes were based on studies that sought to understand the effects of chemical weathering on the geochronology of whole-rock samples and geochronologically important minerals (Goldich and Gast, 1966; Dasch, 1969; Blaxland, 1974; Clauer, 1979, 1981; Clauer et al., 1982); as well as on the observation that radiogenic isotopes are sometimes preferentially released compared to nonradiogenic isotopes of the same element during acid leaching of rocks ( Hart and Tilton, 1966; Silver et al., 1984; Erel et al., 1991). A major finding of these investigations was that weathering often results in anomalously young Rb-Sr isochron ages, and discordant Pb-Pb ages. Rubidium is generally retained relative to strontium in whole-rock samples, and in some cases radiogenic strontium and lead are lost preferentially to common strontium and lead from weathered minerals.The most widely utilized of these isotopic systems is Rb-Sr, followed by U-Pb. The K-Ar system is not directly applicable to most studies of rock-water interaction, because argon is a noble gas, and upon release during mineral weathering mixes with atmospheric argon, limiting its usefulness as a tracer in most weathering applications. Argon and other noble gas isotopes have, however, found important applications in hydrology (see Chapter 5.15). Three other isotopic systems commonly used in geochronology and petrology include Sm-Nd, Lu-Hf, and Re-Os. These parent and daughter elements are in very low abundance and concentrated in trace mineral phases. Sm-Nd, Lu-Hf, and Re-Os have been used in a few weathering studies but have not been utilized extensively in investigations of weathering and hydrology.The decay of 87Rb to 87Sr has a half-life of 48.8 Gyr, and this radioactive decay results in natural variability in the 87Sr/86Sr ratio in rubidium-bearing minerals (e.g., Blum, 1995). The trace elements rubidium and strontium are geochemically similar to the major elements potassium and calcium, respectively. Therefore, minerals with high K/Ca ratios develop high 87Sr/86Sr ratios over geologic timescales. Once released into the hydrosphere, strontium retains its isotopic composition without significant fractionation by geochemical or biological processes, and is therefore a good tracer for sources and cycling of calcium. The decay of 235U to 207Pb, 238U to 206Pb, and 232Th to 208Pb have half-lives of 0.704 Gyr, 4.47 Gyr, and 14.0 Gyr, respectively, and result in variations in the 207Pb/204Pb, 206Pb/204Pb, and 208Pb/204Pb ratios (e.g., Blum, 1995). Uranium-234 has a half-life of 0.25 Myr and the ratio 234U/238U approaches a constant secular equilibrium value in rocks and minerals if undisturbed for ˜1 Myr. Differences in this ratio are often observed in solutions following rock-water interaction and have been used in studies of weathering and hydrology. Uranium and thorium tend to be highly concentrated in the trace accessory minerals such as zircon, monazite, apatite, and sphene, which therefore develop high 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios. Once released into the hydrosphere, lead retains its isotopic composition without significant geochemical or biological fractionation and tends to generally follow the chemistry of iron in soils and aqueous systems (Erel and Morgan, 1992). The use of the U-Th disequilibrium series as a dating tool falls outside the scope of this chapter and is reviewed in Chapters 6.14 and 6.17 as well as Chapter 3.15. The decay of 147Sm to 143Nd, 176Lu to 176Hf, and 187Re to 187Os have half-lives of 106 Gyr, 35.7 Gyr, and 42.3 Gyr, respectively, and result in natural variability in the 144Nd/143Nd, 176Hf/177Hf, and 187Os/188Os ratios (e.g., Blum, 1995). Neodymium is a rare earth element (REE), hafnium is a transition metal with chemical similarities to zirconium, and osmium is a platinum group element. The geochemical behaviors of these elements in the hydrosphere are largely determined by these chemical affinities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010pcms.confE..62C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010pcms.confE..62C"><span>Severe rainfall prediction systems for civil protection purposes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comellas, A.; Llasat, M. C.; Molini, L.; Parodi, A.; Siccardi, F.</p> <p>2010-09-01</p> <p>One of the most common natural hazards impending on Mediterranean regions is the occurrence of severe weather structures able to produce heavy rainfall. Floods have killed about 1000 people across all Europe in last 10 years. With the aim of mitigating this kind of risk, quantitative precipitation forecasts (QPF) and rain probability forecasts are two tools nowadays available for national meteorological services and institutions responsible for weather forecasting in order to and predict rainfall, by using either the deterministic or the probabilistic approach. This study provides an insight of the different approaches used by Italian (DPC) and Catalonian (SMC) Civil Protection and the results they achieved with their peculiar issuing-system for early warnings. For the former, the analysis considers the period between 2006-2009 in which the predictive ability of the forecasting system, based on the numerical weather prediction model COSMO-I7, has been put into comparison with ground based observations (composed by more than 2000 raingauge stations, Molini et al., 2009). Italian system is mainly focused on regional-scale warnings providing forecasts for periods never shorter than 18 hours and very often have a 36-hour maximum duration . The information contained in severe weather bulletins is not quantitative and usually is referred to a specific meteorological phenomena (thunderstorms, wind gales et c.). Updates and refining have a usual refresh time of 24 hours. SMC operates within the Catalonian boundaries and uses a warning system that mixes both quantitative and probabilistic information. For each administrative region ("comarca") Catalonia is divided into, forecasters give an approximate value of the average predicted rainfall and the probability of overcoming that threshold. Usually warnings are re-issued every 6 hours and their duration depends on the predicted time extent of the storm. In order to provide a comprehensive QPF verification, the rainfall predicted by Mesoscale Model 5 (MM5), the SMC forecast operational model, is compared with the local rain gauge network for year 2008 (Comellas et al., 2010). This study presents benefits and drawbacks of both Italian and Catalonian systems. Moreover, a particular attention is paid on the link between system's predictive ability and the predicted severe weather type as a function of its space-time development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070006538','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070006538"><span>Aircraft Weather Mitigation for the Next Generation Air Transportation System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stough, H. Paul, III</p> <p>2007-01-01</p> <p>Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29456290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29456290"><span>A new precipitation and drought climatology based on weather patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert</p> <p>2018-02-01</p> <p>Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/5620','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/5620"><span>Road weather forecast quality analysis : project summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2006-03-01</p> <p>The purpose of this research is to enhance the use of KDOTs Roadway Weather : Information System by improving the weather forecasts themselves and raising the level of : confidence in these forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V51A3042J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V51A3042J"><span>The variation of molybdenum isotopes within the weathering system of the black shales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jianming, Z.</p> <p>2016-12-01</p> <p>Jian-Ming Zhu 1,2, De-Can Tan 2, Liang Liang 2, Wang Jing21 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China 2 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China Molybdenum (Mo) stable isotopes have been developed as a tracer to indicate the evolution of the atmospheric and oceanic oxygenation related with continent weathering, and to reveal the extent of ancient oceanic euxinia. Molybdenum isotopic variation within the weathering system of basalts has been studied, and was presented the whole trend with heavier isotopes preferentially removed during weathering processes. However, there are few researches to study the variation of Mo isotopes during black shale weathering, especiall on the behavoir of Mo isotopes within the perfect shales' profiles. Here, the weathering profiles of Mo and selenium(Se)-rich carbonaceous rocks in Enshi southwest Hubei Province were selected. The Mo isotopes was measured on Nu Plasma II's MC-ICP-MS using 97Mo-100Mo double spike, and δ98/95Mo was reported relative to NIST 3134. A comprehensive set of Mo isotopic composition and concentration data from the unweathered, weakly and intensely weathered rocks were collected. The δ98/95Mo in fresh shales (220±248 mg/kg Mo, 1SD, n=41) from Shadi and Yutangba drill cores varies from 0.41‰ to 0.99‰ with an average of 0.67±0.16‰, while the strongly weathered shales (19.9±5.8 mg/kg Mo, 1SD, n=5) from Shadi profiles are isotopically heavier with average δ98/95Mo values of 1.03±0.10‰ (1SD, n=5). The Locally altered shales exposed in a quarry at Yutangba are highly enriched in Mo, varing from 31 to 2377 mg/kg with an average of 428 ±605mg/kg (1SD, n=24), approximately 2 times greater than that in fresh shales samples. These rocks are presented a significant variation in δ98/95Mo values varing from -0.24 ‰ to -3.99 ‰ with average -1.67±1.57‰, showing the extremely negative δ98/95Mo values existed in natural samples. This suggested that Mo isotopes can be fractionated during shales weathering processes, with lighter isotopes preferentially removed. This finding is in contrast to the previous knowledge from basalt weathering, and requires further study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22422393','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22422393"><span>Evaluation of weather-based rice yield models in India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sudharsan, D; Adinarayana, J; Reddy, D Raji; Sreenivas, G; Ninomiya, S; Hirafuji, M; Kiura, T; Tanaka, K; Desai, U B; Merchant, S N</p> <p>2013-01-01</p> <p>The objective of this study was to compare two different rice simulation models--standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])--with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..APR.D1019C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..APR.D1019C"><span>Infrasonic Influences of Tornados and Cyclonic Weather Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, Tessa</p> <p>2014-03-01</p> <p>Infrasound waves travel through the air at approximately 340 m/s at sea level, while experiencing low levels of friction, allowing the waves to travel over larger distances. When seismic waves travel through unconsolidated soil, the waves slow down to approximately 340 m/s. Because the speeds of waves in the air and ground are similar, a more effective transfer of energy from the atmosphere to the ground can occur. Large ring lasers can be utilized for detecting sources of infrasound traveling through the ground by measuring anomalies in the frequency difference between their two counter-rotating beams. Sources of infrasound include tornados and other cyclonic weather systems. The way systems create waves that transfer to the ground is unknown and will be continued in further research; this research has focused on attempting to isolate the time that the ring laser detected anomalies in order to investigate if these anomalies may be contributed to isolatable weather systems. Furthermore, this research analyzed the frequencies detected in each of the anomalies and compared the frequencies with various characteristics of each weather system, such as tornado width, wind speeds, and system development. This research may be beneficial for monitoring gravity waves and weather systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/12115','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/12115"><span>Transportation system resilience, extreme weather and climate change : a thought leadership series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-09-01</p> <p>This report summarizes key findings from the Transportation System Resilience, Extreme Weather and Climate Change thought leadership series held at Volpe, the National Transportation Systems Center from fall 2013 to spring 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/11253','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/11253"><span>Twenty-Channel Voice Response System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1981-06-01</p> <p>This report documents the design and implementation of a Voice Response System, which provides Direct-User Access to the FAA's aviation-weather data base. This system supports 20 independent audio channels, and as of this report, speaks three weather...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040000145','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040000145"><span>Concept of Operations for the NASA Weather Accident Prevention (WxAP) Project. Version 2.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Green, Walter S.; Tsoucalas, George; Tanger, Thomas</p> <p>2003-01-01</p> <p>The Weather Accident Prevention Concept of Operations (CONOPS) serves as a decision-making framework for research and technology development planning. It is intended for use by the WxAP members and other related programs in NASA and the FAA that support aircraft accident reduction initiatives. The concept outlines the project overview for program level 3 elements-such as AWIN, WINCOMM, and TPAWS (Turbulence)-that develop the technologies and operating capabilities to form the building blocks for WxAP. Those building blocks include both retrofit of equipment and systems and development of new aircraft, training technologies, and operating infrastructure systems and capabilities. This Concept of operations document provides the basis for the WxAP project to develop requirements based on the operational needs ofthe system users. It provides the scenarios that the flight crews, airline operations centers (AOCs), air traffic control (ATC), and flight service stations (FSS) utilize to reduce weather related accidents. The provision to the flight crew of timely weather information provides awareness of weather situations that allows replanning to avoid weather hazards. The ability of the flight crew to locate and avoid weather hazards, such as turbulence and hail, contributes to safer flight practices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389541','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1389541"><span>Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (NDP-078 and 078A)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Cushman, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Carbon Dioxide Information Analysis Center, Environmental Sciences Division; Hanson, Paul J. [Oak Ridge National Laboratory, Oak Ridge, TN (USA), Environmental Sciences Division; Todd, Donald E. [Oak Ridge National Laboratory, Oak Ridge, TN (USA), Environmental Sciences Division; Riggs, Jeffery S. [Oak Ridge National Laboratory, Oak Ridge, TN (USA), Instrumentation and Controls Division; Wolfe, Mark E. [Tennessee Valley Authority, Norris, TN (USA); O'Neill, Elizabeth G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), Environmental Sciences Division</p> <p>2001-07-01</p> <p>This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS(TM) access codes are provided to read the ASCII data files.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610745C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610745C"><span>A climatology of weather-driven mixing events in a dimictic Arctic lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooke, Melanie; MacIntyre, Sally; Kushner, Paul</p> <p>2014-05-01</p> <p>For dimictic and polymictic Arctic lakes, mixing during the ice-free season is primarily controlled by the passage of cold fronts and their associated strong winds. At Toolik Lake, a Long Term Ecological Research site in Alaska, year-to-year variability in lake stability and mixing frequency has been considerable over the past 14 summers. Mixing is important for lake productivity, distributing dissolved gases and nutrients through the water column. Summertime Arctic warming might be expected to stabilize Arctic lakes such as Toolik, but the control of individual weather events on a season's mixing characteristics complicates the ability to predict trends in stability and mixing. With this motivation, this work aims to characterize weather systems that are conducive to mixing at Toolik. High resolution lake and meteorological data from the site were used to characterize mixing while atmospheric reanalysis data were used to describe the weather systems. Mixing events were first identified using an automated algorithm based on Lake Number and lake thermal structure. The algorithm identified mixing events that are separated by at least the timescale of weather systems, so that any given weather event should cause at most one mixing event. Because low Lake Number conditions typically highlight strong wind events, temperature profile data over time were used to identify thermocline deepening as a complementary indicator for mixing. Mixing events were found to be most often characterized by simultaneous occurrence of a low Lake Number condition and thermocline deepening. Once mixing events were identified, they were classified according to their corresponding atmospheric structures. Two primary weather system types with distinct characteristics were determined to be associated with mixing. The analysis suggests that changing the occurrence of these weather system types might change the summertime thermal structure of Toolik Lake, and by extension other lakes in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN11A1272T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN11A1272T"><span>Ionosphere-related products for communication and navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.</p> <p>2011-12-01</p> <p>Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511752B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511752B"><span>AFFECTS - Advanced Forecast For Ensuring Communications Through Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bothmer, Volker</p> <p>2013-04-01</p> <p>Through the AFFECTS project funded by the European Union's 7th Framework Programme, European and US scientists develop an advanced proto-type space weather warning system to safeguard the operation of telecommunication and navigation systems on Earth to the threat of solar storms. The project is led by the University of Göttingen's Institute for Astrophysics and comprises worldwide leading research and academic institutions and industrial enterprises from Germany, Belgium, Ukraine, Norway and the United States. The key objectives of the AFFECTS project are: State-of-the-art analysis and modelling of the Sun-Earth chain of effects on the Earth's ionosphere and their subsequent impacts on communication systems based on multipoint space observations and complementary ground-based data. Development of a prototype space weather early warning system and reliable space weather forecasts, with specific emphasis on ionospheric applications. Dissemination of new space weather products and services to end users, the scientific community and general public. The presentation summarizes the project highlights, with special emphasis on the developed space weather forecast tools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020038750','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020038750"><span>General Aviation Pilots' Perceived Usage and Valuation of Aviation Weather Information Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Latorella, Kara; Lane, Suzanne; Garland, Daniel</p> <p>2002-01-01</p> <p>Aviation suffers many accidents due to the lack of good weather information in flight. Existing aviation weather information is difficult to obtain when it is most needed and is not well formatted for in-flight use. Because it is generally presented aurally, aviation weather information is difficult to integrate with spatial flight information and retain for reference. Efforts, by NASA's Aviation Weather Information (AWIN) team and others, to improve weather information accessibility, usability and decision aiding will enhance General Aviation (GA) pilots' weather situation awareness and decision-making and therefore should improve the safety of GA flight. Consideration of pilots' economic concerns will ensure that in-flight weather information systems are financially accessible to GA pilots as well. The purpose of this survey was to describe how aviation operator communities gather and use weather information as well as how weather related decisions are made between flight crews and supporting personnel. Pilots of small GA aircraft experience the most weather-related accidents as well as the most fatal weather related accident. For this reason, the survey design and advertisement focused on encouraging participation from GA pilots. Perhaps as a result of this emphasis, most responses, 97 responses or 85% of the entire response set, were from GA pilots, This paper presents only analysis of these GA pilots' responses. The insights provided by this survey regarding GA pilots' perceived value and usage of current aviation weather information. services, and products provide a basis for technological approaches to improve GA safety. Results of this survey are discussed in the context of survey limitations and prior work, and serve as the foundation for a model of weather information value, guidance for the design of in-flight weather information systems, and definition of further research toward their development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20799629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20799629"><span>[The ways in which variations in space and atmospheric factors act upon the biosphere and humans].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chernogor, L F</p> <p>2010-01-01</p> <p>The system analysis is validated to be an efficient means for studying the channels through which variations in space and tropospheric weather affect the biosphere (humans). The basics of the system analysis paradigm are presented. The causes of variations in space and tropospheric weather are determined, and the interrelations between them are demonstrated. The ways in which these variations affect the biosphere (humans) are discussed. Aperiodic and quasi-periodic disturbances in the physical fields that influence the biosphere (humans) are intercompared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2203','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2203"><span>Surface Transportation Weather Decision Support Requirements - Executive Summary, Version 1.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-12-16</p> <p>WEATHER: IT AFFECTS THE VISIBILITY, TRACTABILITY, MANEUVERABILITY, VEHICLE STABILITY, EXHAUST EMISSIONS AND STRUCTURAL INTEGRITY OF THE SURFACE TRANSPORTATION SYSTEM. THEREBY WEATHER AFFECTS THE SAFETY, MOBILITY, PRODUCTIVITY AND ENVIRONMENTAL IMPACT...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993imsc.conf..231S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993imsc.conf..231S"><span>Cockpit weather graphics using mobile satellite communications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seth, Shashi</p> <p></p> <p>Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940018302','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940018302"><span>Cockpit weather graphics using mobile satellite communications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seth, Shashi</p> <p>1993-01-01</p> <p>Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70056554','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70056554"><span>Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.</p> <p>2013-01-01</p> <p>When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.107...27L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.107...27L"><span>Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.</p> <p>2013-04-01</p> <p>When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003345','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003345"><span>Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.</p> <p>2016-01-01</p> <p>Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......301S"><span>Evaluation and economic value of winter weather forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snyder, Derrick W.</p> <p></p> <p>State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008163','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008163"><span>Automated Flight Routing Using Stochastic Dynamic Programming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ng, Hok K.; Morando, Alex; Grabbe, Shon</p> <p>2010-01-01</p> <p>Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SunGe...9...15G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SunGe...9...15G"><span>Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gadimova, S. H.; Haubold, H. J.</p> <p>2014-01-01</p> <p>Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000451','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000451"><span>Introducing GFWED: The Global Fire Weather Database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160000451'); toggleEditAbsImage('author_20160000451_show'); toggleEditAbsImage('author_20160000451_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160000451_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160000451_hide"></p> <p>2015-01-01</p> <p>The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020087635','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020087635"><span>Satellite Imagery Via Personal Computer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1989-01-01</p> <p>Automatic Picture Transmission (APT) was incorporated by NASA in the Tiros 8 weather satellite. APT included an advanced satellite camera that immediately transmitted a picture as well as low cost receiving equipment. When an advanced scanning radiometer was later introduced, ground station display equipment would not readily adjust to the new format until GSFC developed an APT Digital Scan Converter that made them compatible. A NASA Technical Note by Goddard's Vermillion and Kamoski described how to build a converter. In 1979, Electro-Services, using this technology, built the first microcomputer weather imaging system in the U.S. The company changed its name to Satellite Data Systems, Inc. and now manufactures the WeatherFax facsimile display graphics system which converts a personal computer into a weather satellite image acquisition and display workstation. Hardware, antennas, receivers, etc. are also offered. Customers include U.S. Weather Service, schools, military, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914716D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914716D"><span>A comparative study of European insurance schemes for extreme weather risks and incentives for risk reduction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Ruiter, Marleen; Hudson, Paul; de Ruig, Lars; Kuik, Onno; Botzen, Wouter</p> <p>2017-04-01</p> <p>This paper provides an analysis of the insurance schemes that cover extreme weather events in twelve different EU countries and the risk reduction incentives offered by these schemes. Economic impacts of extreme weather events in many regions in Europe and elsewhere are on the rise due to climate change and increasing exposure as driven by urban development. In an attempt to manage impacts from extreme weather events, natural disaster insurance schemes can provide incentives for taking measures that limit weather-related risks. Insurance companies can influence public risk management policies and risk-reducing behaviour of policyholders by "rewarding behaviour that reduces risks and potential damages" (Botzen and Van den Bergh, 2008, p. 417). Examples of insurance market systems that directly or indirectly aim to incentivize risk reduction with varying degrees of success are: the U.S. National Flood Insurance Programme; the French Catastrophes Naturelles system; and the U.K. Flood Re program which requires certain levels of protection standards for properties to be insurable. In our analysis, we distinguish between four different disaster types (i.e. coastal and fluvial floods, droughts and storms) and three different sectors (i.e. residential, commercial and agriculture). The selected case studies also provide a wide coverage of different insurance market structures, including public, private and public-private insurance provision, and different methods of coping with extreme loss events, such as re-insurance, governmental aid and catastrophe bonds. The analysis of existing mechanisms for risk reduction incentives provides recommendations about incentivizing adaptive behaviour, in order to assist policy makers and other stakeholders in designing more effective insurance schemes for extreme weather risks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H23F1637K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H23F1637K"><span>Development of Innovative Technology to Expand Precipitation Observations in Satellite Precipitation Validation in Under-developed Data-sparse Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kucera, P. A.; Steinson, M.</p> <p>2016-12-01</p> <p>Accurate and reliable real-time monitoring and dissemination of observations of precipitation and surface weather conditions in general is critical for a variety of research studies and applications. Surface precipitation observations provide important reference information for evaluating satellite (e.g., GPM) precipitation estimates. High quality surface observations of precipitation, temperature, moisture, and winds are important for applications such as agriculture, water resource monitoring, health, and hazardous weather early warning systems. In many regions of the World, surface weather station and precipitation gauge networks are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation including tipping bucket and weighing-type precipitation gauges in sparsely observed regions of the world. The goal is to improve the number of observations (temporally and spatially) for the evaluation of satellite precipitation estimates in data-sparse regions and to improve the quality of applications for environmental monitoring and early warning alert systems on a regional to global scale. One important aspect of this initiative is to make the data open to the community. The weather station instrumentation have been developed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. An initial pilot project have been implemented in the country of Zambia. This effort could be expanded to other data sparse regions around the globe. The presentation will provide an overview and demonstration of 3D printed weather station development and initial evaluation of observed precipitation datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915477O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915477O"><span>Advancing land surface model development with satellite-based Earth observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo</p> <p>2017-04-01</p> <p>The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/17076','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/17076"><span>Florida's wet weather demonstration project : final report, January 2009.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-11-01</p> <p>The Florida Department of Transportation (FDOT) established a wet-weather pavement marking demonstration project with goals to gather performance data, evaluate various wet-weather marking systems, and develop a measurement protocol for measuring ret...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3343','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3343"><span>Enhanced road weather content for travel advisories : Clarus regional demonstrations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-01-01</p> <p>Statewide transportation information systems need road weather and road condition forecasts to improve safety and mobility for transportation users. Under the Clarus Initiatives regional demonstrations enhanced road weather content was developed f...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3372','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3372"><span>Concept of operations for road weather connected vehicle applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-02-01</p> <p>Weather has a significant impact on the operations of the nations roadway system year round. These weather events translate into changes in traffic conditions, roadway safety, travel reliability, operational effectiveness, and productivity. It is,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26564675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26564675"><span>Training General Aviation Pilots for Convective Weather Situations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blickensderfer, Elizabeth L; Lanicci, John M; Vincent, Michael J; Thomas, Robert L; Smith, MaryJo; Cruit, Jessica K</p> <p>2015-10-01</p> <p>Over the past 10-15 yr, considerable research has occurred for the development, testing, and fielding of real-time Datalink weather products for general aviation (GA) pilots to use before and during flight. As is the case with the implementation of most new technologies, work is needed to ensure that the users (in this case, the pilots) understand both the capabilities and limitations of the new technologies as well as how to use the new systems to improve their task performance. The purpose of this study was to replicate and extend a previous study on training pilots how and when to use these new weather technologies. This field study used a quasi-experimental design (pre- vs. post-test with a control group). There were 91 GA pilots from the Midwest, Northeastern, and Southeastern United States who participated in a 2-h short course or a control activity. The lecture-based short course covered radar basics, Next Generation Weather Radar (NEXRAD), NEXRAD specifics/limitations, thunderstorm basics, radar products, and decision making. The pilots who participated in the course earned higher knowledge test scores, improved at applying the concepts in paper-based flight scenarios, had higher self-efficacy in post-training assessments as compared to pre-training assessments, and also performed better than did control subjects on post-test knowledge and skills assessments. GA pilots lack knowledge about real-time Datalink weather technology. This study indicates that a relatively short training program was effective for fostering Datalink weather-related knowledge and skills in GA pilots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860033237&hterms=heinemann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dheinemann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860033237&hterms=heinemann&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dheinemann"><span>Rapid weather information dissemination in Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Martsolf, J. D.; Heinemann, P. H.; Gerber, J. F.; Crosby, F. L.; Smith, D. L.</p> <p>1984-01-01</p> <p>The development of the Florida Agricultural Services and Technology (FAST) plan to provide ports for users to call for weather information is described. FAST is based on the Satellite Frost Forecast System, which makes a broad base of weather data available to its users. The methods used for acquisition and dissemination of data from various networks under the FAST plan are examined. The system provides color coded IR or thermal maps, precipitation maps, and textural forecast information. A diagram of the system is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001853','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001853"><span>Extreme Spacecraft Charging in Polar Low Earth Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda</p> <p>2012-01-01</p> <p>Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130003217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130003217"><span>Extreme Spacecraft Charging in Polar Low Earth Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard</p> <p>2012-01-01</p> <p>Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3309','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3309"><span>Implementation and evaluation of the Sacramento Regional Transportation Management Center Weather Alert Notification System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2010-08-01</p> <p>This report presents the results of an evaluation of Caltrans District 3 Regional Transportation Management Centers (RTMC) implementation of a weather alert notification system. This alert system was selected for implementation from among several ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=284257','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=284257"><span>Weather variability and adaptive management for rangeland restoration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Inherent weather variability in upland rangeland systems requires relatively long-term goal setting, and contingency planning for partial success or failure in any given year. Rangeland plant communities are dynamic systems and successional planning is essential for achieving and maintaining system...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/11433','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/11433"><span>Panama Canal Fog Navigation Study : Candidate System Definition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1984-01-01</p> <p>A candidate system for solving fog navigation problems in the Panama Canal is defined. The vessel monitoring subsystem is a shore-based, all-weather, precision ranging system with ranging accuracies of 9 feet (2 standard deviations, 95 percent).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..250L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..250L"><span>Heavy rain forecasts in mesoscale convective system in July 2016 in Belarus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lapo, Palina; Barodka, Siarhei; Krasouski, Aliaksandr</p> <p>2017-04-01</p> <p>During the last decade, the frequency of severe weather phenomena, such as heavy precipitation, hail and squalls, over Europe is observed to increase, which is attributed to climate change in the region. Such hazardous weather events over the territory of Belarus every year, having significant economic and social effects. Of special interest for further studies are mesoscale convective systems, which can be described as long-lived cloud complexes including groups of cumulonimbus clouds and squall lines. Passage of such systems is accompanied with intense thunderstorms, showers and squally wind. In this study, we investigate a case of Mesoscale Convective System (MCS) passage over the territory of Belarus, which occurred 13 July 2016. During this Mesoscale Convective Complex passage, heavy precipitation (up to 43 mm), squally winds and intense thunderstorms have been observed. Another feature of this MCS was the hook-shaped weather radar signature known as a "hook echo", seen on the Doppler weather radar Minsk-2. Tornadoes and powerful mesocyclones are often characterized by the presence of a hook echo on radar. Also we have performed simulations of the convective complex passage with the WRF-ARW mesoscale atmospheric modelling system using 6 different microphysics parameterizations. Our main objectives are to study the conditions of this Mesoscale Convective Systems (MCSs) development, to consider the microphysical structure of clouds in the MCS, and to identify which microphysics package provides the best forecast of precipitation for this case of MCS in terms of its geographical distribution and precipitation amount in towns and cities where highest levels of precipitation have been observed. We present analysis of microphysical structure of this MCS along with evaluation of precipitation forecasts obtained with different microphysics parametrizations as compared to real observational data. In particular, we may note that results of almost all microphysics simulations indicate underestimation of precipitation areas in the region of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080017415','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080017415"><span>Weather Requirements and Procedures for Step 1: High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS) Flight Operations in the National Air Space (NAS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2007-01-01</p> <p>This cover sheet is for version 2 of the weather requirements document along with Appendix A. The purpose of the requirements document was to identify and to list the weather functional requirements needed to achieve the Access 5 vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS) for Step 1." A discussion of the Federal Aviation Administration (FAA) references and related policies, procedures, and standards is provided as basis for the recommendations supported within this document. Additional procedures and reference documentation related to weather functional requirements is also provided for background. The functional requirements and related information are to be proposed to the FAA and various standards organizations for consideration and approval. The appendix was designed to show that sources of flight weather information are readily available to UAS pilots conducting missions in the NAS. All weather information for this presentation was obtained from the public internet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011813','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011813"><span>Tethered Satellites as an Enabling Platform for Operational Space Weather Monitoring Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gilchrist, Brian E.; Krause, Linda Habash; Gallagher, Dennis Lee; Bilen, Sven Gunnar; Fuhrhop, Keith; Hoegy, Walt R.; Inderesan, Rohini; Johnson, Charles; Owens, Jerry Keith; Powers, Joseph; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140011813'); toggleEditAbsImage('author_20140011813_show'); toggleEditAbsImage('author_20140011813_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140011813_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140011813_hide"></p> <p>2013-01-01</p> <p>Tethered satellites offer the potential to be an important enabling technology to support operational space weather monitoring systems. Space weather "nowcasting" and forecasting models rely on assimilation of near-real-time (NRT) space environment data to provide warnings for storm events and deleterious effects on the global societal infrastructure. Typically, these models are initialized by a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g., via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative semi-empirical physics-based forward-prediction calculations. Many challenges are associated with the development of an operational system, from the top-level architecture (e.g., the required space weather observatories to meet the spatial and temporal requirements of these models) down to the individual instruments capable of making the NRT measurements. This study focuses on the latter challenge: we present some examples of how tethered satellites (from 100s of m to 20 km) are uniquely suited to address certain shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements are presented for two examples of space environment observables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A12A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A12A..02L"><span>Towards a unified Global Weather-Climate Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, S. J.</p> <p>2016-12-01</p> <p>The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the unification in weather and climate models can happen not just at the algorithm or parameterization level, but also in the metric and tuning strategy used for both applications, and ultimately, with benefits to both weather and climate applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840035100&hterms=aviation+safety&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Daviation%2Bsafety','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840035100&hterms=aviation+safety&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Daviation%2Bsafety"><span>The Joint Airport Weather Studies Project - Current analysis highlights in the aviation safety context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mccarthy, J.</p> <p>1984-01-01</p> <p>The principal objective of the Joint Airport Weather Studies Project was to obtain high-resolution velocity, turbulence, and thermodynamic data on a convective outflow called a microburst, an intense downdraft and resulting horizontal outflow near the surface. Data collection occurred during the summer of 1982 near Denver, CO. Data sensors included three pulsed-microwave Doppler and two pulsed CO2 lidar radars, along with 27 Portable Automated Mesonet surface weather stations, the FAA's low-level-wind-shear alert system (LLWSAS), and five instrumented research aircraft. Convective storms occurred on 75 of 91 operational days, with Doppler data being collected on at least 70 microbursts. Analyses reported included a thorough examination of microburst-climatology statistics, the capability of the LLWSAS to detect adequately and accurately the presence of low-altitude wind shear danger to aircraft, the capability of a terminal Doppler radar system development to provide improved wind-shear detection and warning, and progress toward improved wind-shear training for pilots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED31E3460B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED31E3460B"><span>Studying Weather and Climate Using Atmospheric Retrospective Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosilovich, M. G.</p> <p>2014-12-01</p> <p>Over the last 35 years, tremendous amounts of satellite observations of the Earth's atmosphere have been collected along side the much longer and diverse record of in situ measurements. The satellite data records have disparate qualities, structure and uncertainty which make comparing weather from the 80s and 2000s a challenging prospect. Likewise, in-situ data records lack complete coverage of the earth in both space and time. Atmospheric reanalyses use the observations with numerical models and data assimilation to produce continuous and consistent weather data records for periods longer than decades. The result is a simplified data format with a relatively straightforward learning curve that includes many more variables available (through the modeling component of the system), but driven by a full suite of observational data. The simplified data format allows introduction into weather and climate data analysis. Some examples are provided from undergraduate meteorology program internship projects. We will present the students progression through the projects from their initial understanding and competencies to some final results and the skills learned along the way. Reanalyses are a leading research tool in weather and climate, but can also provide an introductory experience as well, allowing students to develop an understanding of the physical system while learning basic programming and analysis skills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010186','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010186"><span>JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan</p> <p>1990-01-01</p> <p>As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH51B0128X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH51B0128X"><span>Monitoring Space Weather Hazards caused by geomagnetic disturbances with Space Hazard Monitor (SHM) systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Z.; Gannon, J. L.; Peek, T. A.; Lin, D.</p> <p>2017-12-01</p> <p>One space weather hazard is the Geomagnetically Induced Currents (GICs) in the electric power transmission systems, which is naturally induced geoelectric field during the geomagnetic disturbances (GMDs). GICs are a potentially catastrophic threat to bulk power systems. For instance, the Blackout in Quebec in March 1989 was caused by GMDs during a significant magnetic storm. To monitor the GMDs, the autonomous Space Hazard Monitor (SHM) system is developed recently. The system includes magnetic field measurement from magnetometers and geomagnetic field measurement from electrodes. In this presentation, we introduce the six sites of SHMs which have been deployed in the US continental regions. The data from the magnetometers are processed with the Multiple Observatory Geomagnetic Data Analysis Software (MOGDAS). And the statistical results are presented here. It reveals not only the impacts of space weather over US continental region but also the potential of improving instrumentation development to provide better space weather monitor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001930','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001930"><span>Dynamic Routing of Aircraft in the Presence of Adverse Weather Using a POMDP Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balaban, Edward; Roychoudhury, Indranil; Spirkovska, Lilly; Sankararaman, Shankar; Kulkarni, Chetan; Arnon, Tomer</p> <p>2017-01-01</p> <p>Each year weather-related airline delays result in hundreds of millions of dollars in additional fuel burn, maintenance, and lost revenue, not to mention passenger inconvenience. The current approaches for aircraft route planning in the presence of adverse weather still mainly rely on deterministic methods. In contrast, this work aims to deal with the problem using a Partially Observable Markov Decision Processes (POMDPs) framework, which allows for reasoning over uncertainty (including uncertainty in weather evolution over time) and results in solutions that are more robust to disruptions. The POMDP-based decision support system is demonstrated on several scenarios involving convective weather cells and is benchmarked against a deterministic planning system with functionality similar to those currently in use or under development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3662T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3662T"><span>Enhancing the Awareness of the Interaction of the Space Weather and Public: Some Case Studies in Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tulunay, Y.; Tulunay, E.; Kocabas, Z.; Altuntas, E.; Yapici, T.; Senalp, E. T.; Hippler, R.</p> <p>2009-04-01</p> <p>Space Weather has important effects on many systems and peripherals that human interacts with. However, most of the people are not aware of those interactions. During the FP6 SWEETS, COST 724 and the ‘I love my Sun' activities it was aimed to create basis to bring together academicians from universities, experts from industry, scientific institutes, and the public, especially the school children of age 7-11, in order to enhance the awareness of space weather effects and to discuss appropriate countermeasures by different education and promotion methods including non-technical ones. This work mentions the activities performed in Turkey within the framework. Since 1990, a small group at METU has been developing data driven models in order to forecast some critical system parameters related with the near-Earth space processes. With the background on the subject the group feels responsible to organise activities in Turkey to inform public on enhancing the awareness of space weather effects. In order to inform and educate public on their interaction with the Space Weather, distinct social activities which take quick and strong attention were organised. Those include art shows and workshops, quizes, movies and entertainments, special programs for school children of age 7-11 under the ‘I love my Sun' activities, press releases, audio-visual media including webpages [Tulunay, 2007]. The impact of the activities can be evaluated considering the before and after activity record materials of the participants. For instance, under the ‘I love my Sun' activities, the school children drew pictures related with Sun before and after the informative programs. The performance of reaching the school children on the subject is very promising. Sub-activities conducted under the action are: 1. Space Weather Dance Show "Sonnensturm" 2. Web Quiz all over Europe: In Türkiye 3. Space Weather / Sun / Heliospheric Public Science Festivals in 27 Countries: In Türkiye 4. Space Weather on Tour-Mobile Bus 5. Rocket / balloon launch participation for European web quiz winner and journalists 6. Space Weather / Solar / Aurora / Rocket / Balloon movie production for TV 7. Space Weather / Sun /Heliospheric public science festival & public fair in Schwerin castle (main SWEETS festival during ESW 2007) 8. Space Weather telescope video link with Australian (Antarctic Mawson station) and Japanese locations for Schwerin castle festival (no. 7 deliverable) 9. Space Weather planetarium show in Poland, Finland, France and Portugal (4 new languages) 10. Updated Space Weather / Solar CD-Rom / DVD in 7 new languages, poster / flyer 11. Cosmic ray spark chambers 12. Space Weather storm forecast map 13. Mirror system for solar movie 14. FP6 SWEETS / IHY / COST 724 Case Sub-project: "I LOVE MY SUN" (An outreach Activity in Turkey: The Space Weather and the Sun as conceived by the School Children of age 7-11) 15. Press Releases 16. FP6 SWEETS Related Art 17. Turkish Translations in IHY and COST webpages 18. Impact of the SWEETS References Tulunay Y. (2007), FP6 SWEETS (SSA) Activity Report of the Participant No. 16: the METU in Ankara, Türkiye, 31 December 2007, www.ae.metu.edu.tr/~cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1041382','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1041382"><span>Advanced Architectures for Modern Weather/Multifunction Radars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-03-01</p> <p>Advanced Architectures for Modern Weather /Multifunction Radars Caleb Fulton The University of Oklahoma Advanced Radar Research Center Norman...and all of them are addressing the need to lower cost while improving beamforming flexibility in future weather radar systems that will be tasked...with multiple non- weather functions. Keywords: Phased arrays, digital beamforming, multifunction radar. Introduction and Overview As the performance</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H52B..07Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H52B..07Y"><span>Interplay between physical movements of soils and mineral grains and chemical weathering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoo, K.</p> <p>2007-12-01</p> <p>Most soil biogeochemistry studies treat the soils and their inorganic and organic constituents as physically immobile. Those soil materials, however, are in perpetual motion due to the conversion of bedrock to soils, colluvial transport, and vertical mixing by various biophysical perturbations of the soils. Subsequently, a soil is continuously replaced by the materials from the neighboring soils and the underlying parent material, while its individual horizons are gradually mixed with the materials in the neighboring horizons. The movements of bulk soil materials are ultimately driven by moving individual mineral grains. While rarely appreciated, these physical movements of soil's mineral components operate in the presence of strong vertical and topographic gradients of the rates of mineral dissolution and leaching. The result is that the physical movement of soil constituents affects chemical weathering. The fluxes of soil materials (via physical movements and solute fluxes) in and out of a soil system defined by a researcher determine the time length that the materials reside in the system. The residence time, together with the system-specific rates of chemical weathering, determine the degree of weathering of the materials within the system. This presentation provides a new mathematical framework to consistently quantify the residence times of minerals, individual soil horizons, soil profiles, and an entire soil within a watershed boundary. Soil age, which is equivalent of the time length since the cessation of erosion or deposition on level grounds, becomes a special case of the residence time. The model is combined with empirical data to quantitatively illustrate the impacts that the physical motion of soil constituents have on the rates of chemical weathering. The data are drawn from ongoing field and laboratory studies focusing on the impact of river incision, colluvial flux, bioturbation, and agricultural tillage on the vertical and lateral variation of elemental composition within the soils.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2063.3176D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2063.3176D"><span>Instruments for Deep Space Weather Prediction and Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeForest, C. E.; Laurent, G.</p> <p>2018-02-01</p> <p>We discuss remote space weather monitoring system concepts that could mount on the Deep Space Gateway and provide predictive capability for space weather events including SEP events and CME crossings, and advance heliophysics of the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25590537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25590537"><span>Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dixit, Prakash N; Telleria, Roberto</p> <p>2015-04-01</p> <p>Inter-annual and seasonal variability in climatic parameters, most importantly rainfall, have potential to cause climate-induced risk in long-term crop production. Short-term field studies do not capture the full nature of such risk and the extent to which modifications to crop, soil and water management recommendations may be made to mitigate the extent of such risk. Crop modeling studies driven by long-term daily weather data can predict the impact of climate-induced risk on crop growth and yield however, the availability of long-term daily weather data can present serious constraints to the use of crop models. To tackle this constraint, two weather generators namely, LARS-WG and MarkSim, were evaluated in order to assess their capabilities of reproducing frequency distributions, means, variances, dry spell and wet chains of observed daily precipitation, maximum and minimum temperature, and solar radiation for the eight locations across cropping areas of Northern Syria and Lebanon. Further, the application of generated long-term daily weather data, with both weather generators, in simulating barley growth and yield was also evaluated. We found that overall LARS-WG performed better than MarkSim in generating daily weather parameters and in 50 years continuous simulation of barley growth and yield. Our findings suggest that LARS-WG does not necessarily require long-term e.g., >30 years observed weather data for calibration as generated results proved to be satisfactory with >10 years of observed data except in area with higher altitude. Evaluating these weather generators and the ability of generated weather data to perform long-term simulation of crop growth and yield is an important first step to assess the impact of future climate on yields, and to identify promising technologies to make agricultural systems more resilient in the given region. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC53G..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC53G..02D"><span>High-quality weather data for grid integration studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Draxl, C.</p> <p>2016-12-01</p> <p>As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990097320&hterms=Time+Series+Design&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DTime%2BSeries%2BDesign','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990097320&hterms=Time+Series+Design&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DTime%2BSeries%2BDesign"><span>The Design and Evaluation of the Lighting Imaging Sensor Data Applications Display (LISDAD)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boldi, B.; Hodanish, S.; Sharp, D.; Williams, E.; Goodman, Steven; Raghavan, R.; Matlin, A.; Weber, M.</p> <p>1998-01-01</p> <p>The design and evaluation of the Lightning Imaging Sensor Data Applications Display (LISDAD). The ultimate goal of the LISDAD system is to quantify the utility of total lightning information in short-term, severe-weather forecasting operations. To this end, scientists from NASA, NWS, and MIT organized an effort to study the relationship of lightning and severe-weather on a storm-by-storm, and even cell-by-cell basis for as many storms as possible near Melbourne, Florida. Melbourne was chosen as it offers a unique combination of high probability of severe weather and proximity to major relevant sensors - specifically: NASA's total lightning mapping system at Kennedy Space Center (the LDAR system at KSC); a NWS/NEXRAD radar (at Melbourne); and a prototype Integrated Terminal Weather System (ITWS, at Orlando), which obtains cloud-to-ground lightning Information from the National Lightning Detection Network (NLDN), and also uses NSSL's Severe Storm Algorithm (NSSL/SSAP) to obtain information about various storm-cell parameters. To assist in realizing this project's goal, an interactive, real-time data processing system (the LISDAD system) has been developed that supports both operational short-term weather forecasting and post facto severe-storm research. Suggestions have been drawn from the operational users (NWS/Melbourne) in the design of the data display and its salient behavior. The initial concept for the users Graphical Situation Display (GSD) was simply to overlay radar data with lightning data, but as the association between rapid upward trends in the total lightning rate and severe weather became evident, the display was significantly redesigned. The focus changed to support the display of time series of storm-parameter data and the automatic recognition of cells that display rapid changes in the total-lightning flash rate. The latter is calculated by grouping discrete LDAR radiation sources into lightning flashes using a time-space association algorithm. Specifically, the GSD presents the user with the Composite Maximum Reflectivity obtained from the NWS/NEXRAD. Superimposed upon this background image are placed small black circles indicating the locations of storm cells identified by the NSSL/SSA. The circles become cyan if lightning is detected within the storm-cell; if the cell has lightning rates indicative of a severe-storm, the circle turns red. This paper will: (1) review the design of LISDAD system; (2) present some examples of its data display; and shown results of the lightning based severe-weather prediction algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27821115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27821115"><span>Adverse weather conditions and fatal motor vehicle crashes in the United States, 1994-2012.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saha, Shubhayu; Schramm, Paul; Nolan, Amanda; Hess, Jeremy</p> <p>2016-11-08</p> <p>Motor vehicle crashes are a leading cause of injury mortality. Adverse weather and road conditions have the potential to affect the likelihood of motor vehicle fatalities through several pathways. However, there remains a dearth of assessments associating adverse weather conditions to fatal crashes in the United States. We assessed trends in motor vehicle fatalities associated with adverse weather and present spatial variation in fatality rates by state. We analyzed the Fatality Analysis Reporting System (FARS) datasets from 1994 to 2012 produced by the National Highway Traffic Safety Administration (NHTSA) that contains reported weather information for each fatal crash. For each year, we estimated the fatal crashes that were associated with adverse weather conditions. We stratified these fatalities by months to examine seasonal patterns. We calculated state-specific rates using annual vehicle miles traveled data for all fatalities and for those related to adverse weather to examine spatial variations in fatality rates. To investigate the role of adverse weather as an independent risk factor for fatal crashes, we calculated odds ratios for known risk factors (e.g., alcohol and drug use, no restraint use, poor driving records, poor light conditions, highway driving) to be reported along with adverse weather. Total and adverse weather-related fatalities decreased over 1994-2012. Adverse weather-related fatalities constituted about 16 % of total fatalities on average over the study period. On average, 65 % of adverse weather-related fatalities happened between November and April, with rain/wet conditions more frequently reported than snow/icy conditions. The spatial distribution of fatalities associated with adverse weather by state was different than the distribution of total fatalities. Involvement of alcohol or drugs, no restraint use, and speeding were less likely to co-occur with fatalities during adverse weather conditions. While adverse weather is reported for a large number of motor vehicle fatalities for the US, the type of adverse weather and the rate of associated fatality vary geographically. These fatalities may be addressed and potentially prevented by modifying speed limits during inclement weather, improving road surfacing, ice and snow removal, and providing transit alternatives, but the impact of potential interventions requires further research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMIN13C3646L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMIN13C3646L"><span>A near real time regional JPSS and GOES-R data assimilation system for high impact weather research and applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, J.; Wang, P.; Han, H.; Schmit, T. J.</p> <p>2014-12-01</p> <p>JPSS and GOES-R observations play important role in numerical weather prediction (NWP). However, how to best represent the information from satellite observations and how to get value added information from these satellite data into regional NWP models, including both radiance and derived products, still need investigations. In order to enhance the applications of JPSS and GOES-R data in regional NWP for high impact weather forecasts, scientists from Cooperative Institute of Meteorological Satellite Studies (CIMSS) at University of Wisconsin-Madison have recently developed a near realtime regional Satellite Data Assimilation system for Tropical storm forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat). The system consists of the community Gridpoint Statistical Interpolation (GSI) assimilation system and the advanced Weather Research Forecast (WRF) model. In addition to assimilate GOES, AMSUA/AMSUB, HIRS, MHS, ATMS (Suomi-NPP), AIRS and IASI radiances, the SDAT is also able to assimilate satellite-derived products such as hyperspectral IR retrieved temperature and moisture profiles, total precipitable water (TPW), GOES Sounder (and future GOES-R) layer precipitable water (LPW) and GOES Imager atmospheric motion vector (AMV) products into the system. Real time forecasted GOES infrared (IR) images simulated from SDAT output have also been part of the SDAT system for applications and forecast evaluations. To set up the system parameters, a series of experiments have been carried out to test the impacts of different initialization schemes, including different background error matrix, different NCEP global model date sets, and different WRF model horizontal resolutions. Using SDAT as a research testbed, researches have been conducted for different satellite data impacts study, as well as different techniques for handling clouds in radiance assimilation. Since the fall of 2013, the SDAT system has been running in near real time. The results from historical cases and 2014 hurricane season cases will be compared with the operational GFS and HWRF, and presented at the meeting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1989/0415/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1989/0415/report.pdf"><span>A primer on clothing systems for cold-weather field work</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Denner, J.C.</p> <p>1993-01-01</p> <p>Hypothermia in cold environments can be prevented by physiological adaptation and by the proper use of cold weather clothing. The human body adjusts to cold temperature by increasing the rates of basal metabolism, specific dynamic action, and physical exercise. Heat loss is reduced by vasoconstriction. Clothing systems for cold weather reduce loss by providing insulation and protection from the elements. Satisfactory cold- weather clothing is constructed of wool fabrics or the synthetic fibers polypropylene and polyester. Outerwear suitable for cold climates is insulated with down, high-loft polyester fiberfills, or the new synthetic thin insulators. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC41B1099B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC41B1099B"><span>Scenario-neutral Food Security Risk Assessment: A livestock Heat Stress Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Broman, D.; Rajagopalan, B.; Hopson, T. M.</p> <p>2015-12-01</p> <p>Food security risk assessments can provide decision-makers with actionable information to identify critical system limitations, and alternatives to mitigate the impacts of future conditions. The majority of current risk assessments have been scenario-led and results are limited by the scenarios - selected future states of the world's climate system and socioeconomic factors. A generic scenario-neutral framework for food security risk assessments is presented here that uses plausible states of the world without initially assigning likelihoods. Measures of system vulnerabilities are identified and system risk is assessed for these states. This framework has benefited greatly by research in the water and natural resource fields to adapt their planning to provide better risk assessments. To illustrate the utility of this framework we develop a case study using livestock heat stress risk within the pastoral system of West Africa. Heat stress can have a major impact not only on livestock owners, but on the greater food production system, decreasing livestock growth, milk production, and reproduction, and in severe cases, death. A heat stress index calculated from daily weather is used as a vulnerability measure and is computed from historic daily weather data at several locations in the study region. To generate plausible states, a stochastic weather generator is developed to generate synthetic weather sequences at each location, consistent with the seasonal climate. A spatial model of monthly and seasonal heat stress provide projections of current and future livestock heat stress measures across the study region, and can incorporate in seasonal climate and other external covariates. These models, when linked with empirical thresholds of heat stress risk for specific breeds offer decision-makers with actionable information for use in near-term warning systems as well as for future planning. Future assessment can indicate under which states livestock are at greatest risk of heat stress; when coupled with assessments of additional measures (e.g. water and fodder availability) can inform on alternatives that provide satisfactory performance under a wide range of states (e.g. optimal cattle breed, supplemental feed, increased water access).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.2892H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.2892H"><span>Monthly forecasting of agricultural pests in Switzerland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirschi, M.; Dubrovsky, M.; Spirig, C.; Samietz, J.; Calanca, P.; Weigel, A. P.; Fischer, A. M.; Rotach, M. W.</p> <p>2012-04-01</p> <p>Given the repercussions of pests and diseases on agricultural production, detailed forecasting tools have been developed to simulate the degree of infestation depending on actual weather conditions. The life cycle of pests is most successfully predicted if the micro-climate of the immediate environment (habitat) of the causative organisms can be simulated. Sub-seasonal pest forecasts therefore require weather information for the relevant habitats and the appropriate time scale. The pest forecasting system SOPRA (www.sopra.info) currently in operation in Switzerland relies on such detailed weather information, using hourly weather observations up to the day the forecast is issued, but only a climatology for the forecasting period. Here, we aim at improving the skill of SOPRA forecasts by transforming the weekly information provided by ECMWF monthly forecasts (MOFCs) into hourly weather series as required for the prediction of upcoming life phases of the codling moth, the major insect pest in apple orchards worldwide. Due to the probabilistic nature of operational monthly forecasts and the limited spatial and temporal resolution, their information needs to be post-processed for use in a pest model. In this study, we developed a statistical downscaling approach for MOFCs that includes the following steps: (i) application of a stochastic weather generator to generate a large pool of daily weather series consistent with the climate at a specific location, (ii) a subsequent re-sampling of weather series from this pool to optimally represent the evolution of the weekly MOFC anomalies, and (iii) a final extension to hourly weather series suitable for the pest forecasting model. Results show a clear improvement in the forecast skill of occurrences of upcoming codling moth life phases when incorporating MOFCs as compared to the operational pest forecasting system. This is true both in terms of root mean squared errors and of the continuous rank probability scores of the probabilistic forecasts vs. the mean absolute errors of the deterministic system. Also, the application of the climate conserving recalibration (CCR, Weigel et al. 2009) technique allows for successful correction of the under-confidence in the forecasted occurrences of codling moth life phases. Reference: Weigel, A. P.; Liniger, M. A. & Appenzeller, C. (2009). Seasonal Ensemble Forecasts: Are Recalibrated Single Models Better than Multimodels? Mon. Wea. Rev., 137, 1460-1479.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.528W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.528W"><span>Empirical Data Fusion for Convective Weather Hazard Nowcasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, J.; Ahijevych, D.; Steiner, M.; Dettling, S.</p> <p>2009-09-01</p> <p>This paper describes a statistical analysis approach to developing an automated convective weather hazard nowcast system suitable for use by aviation users in strategic route planning and air traffic management. The analysis makes use of numerical weather prediction model fields and radar, satellite, and lightning observations and derived features along with observed thunderstorm evolution data, which are aligned using radar-derived motion vectors. Using a dataset collected during the summers of 2007 and 2008 over the eastern U.S., the predictive contributions of the various potential predictor fields are analyzed for various spatial scales, lead-times and scenarios using a technique called random forests (RFs). A minimal, skillful set of predictors is selected for each scenario requiring distinct forecast logic, and RFs are used to construct an empirical probabilistic model for each. The resulting data fusion system, which ran in real-time at the National Center for Atmospheric Research during the summer of 2009, produces probabilistic and deterministic nowcasts of the convective weather hazard and assessments of the prediction uncertainty. The nowcasts' performance and results for several case studies are presented to demonstrate the value of this approach. This research has been funded by the U.S. Federal Aviation Administration to support the development of the Consolidated Storm Prediction for Aviation (CoSPA) system, which is intended to provide convective hazard nowcasts and forecasts for the U.S. Next Generation Air Transportation System (NextGen).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005597','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005597"><span>Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi</p> <p>2010-01-01</p> <p>The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED31B0861A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED31B0861A"><span>Using Flow Charts to Visualize the Decision-Making Process in Space Weather Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aung, M. T. Y.; Myat, T.; Zheng, Y.; Mays, M. L.; Ngwira, C.; Damas, M. C.</p> <p>2016-12-01</p> <p>Our society today relies heavily on technological systems such as satellites, navigation systems, power grids and aviation. These systems are very sensitive to space weather disturbances. When Earth-directed space weather driven by the Sun arrives at the Earth, it causes changes to the Earth's radiation environment and the magnetosphere. Strong disturbances in the magnetosphere of the Earth are responsible for geomagnetic storms that can last from hours to days depending on strength of storms. Geomagnetic storms can severely impact critical infrastructure on Earth, such as the electric power grid, and Solar Energetic Particles that can endanger life in outer space. How can we lessen these adverse effects? They can be lessened through the early warning signals sent by space weather forecasters before CME or high-speed stream arrives. A space weather forecaster's duty is to send predicted notifications to high-tech industries and NASA missions so that they could take extra measures for protection. NASA space weather forecasters make prediction decisions by following certain steps and processes from the time an event occurs at the sun all the way to the impact locations. However, there has never been a tool that helps these forecasters visualize the decision process until now. A flow chart is created to help forecasters visualize the decision process. This flow chart provides basic knowledge of space weather and can be used to train future space weather forecasters. It also helps to cut down the training period and increase consistency in forecasting. The flow chart is also a great reference for people who are already familiar with space weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1078057','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1078057"><span>Weather-Corrected Performance Ratio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dierauf, T.; Growitz, A.; Kurtz, S.</p> <p></p> <p>Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimatemore » expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B54A..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B54A..04W"><span>Thermodynamic Cconstraints on Coupled Carbonate-Pyrite Weathering Dynamics and Carbon Fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winnick, M.; Maher, K.</p> <p>2017-12-01</p> <p>Chemical weathering within the critical zone regulates global biogeochemical cycles, atmospheric composition, and the supply of key nutrients to terrestrial and aquatic ecosystems. Recent studies suggest that thermodynamic limits on solute production act as a first-order control on global chemical weathering rates; however, few studies have addressed the factors that set these thermodynamic limits in natural systems. In this presentation, we investigate the effects of soil CO2 concentrations and pyrite oxidation rates on carbonate dissolution and associated carbon fluxes in the East River watershed in Colorado, using concentration-discharge relationships and thermodynamic constraints. Within the shallow subsurface, soil respiration rates and moisture content determine the extent of carbonic acid-promoted carbonate dissolution through their modulation of soil pCO2 and the balance of open- v. closed-system weathering processes. At greater depths, pyrite oxidation generates sulfuric acid, which alters the approach to equilibrium of infiltrating waters. Through comparisons of concentration-discharge data and reactive transport model simulations, we explore the conditions that determine whether sulfuric acid reacts to dissolve additional carbonate mineral or instead reacts with alkalinity already in solution - the balance of which determines watershed carbon flux budgets. Our study highlights the importance of interactions between the chemical structure of the critical zone and the hydrologic regulation of flowpaths in determining concentration-discharge relationships and overall carbon fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850022233','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850022233"><span>Utilization of satellite data and regional scale numerical models in short range weather forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kreitzberg, C. W.</p> <p>1985-01-01</p> <p>Overwhelming evidence was developed in a number of studies of satellite data impact on numerical weather prediction that it is unrealistic to expect satellite temperature soundings to improve detailed regional numerical weather prediction. It is likely that satellite data over the United States would substantially impact mesoscale dynamical predictions if the effort were made to develop a composite moisture analysis system. The horizontal variability of moisture, most clearly depicited in images from satellite water vapor channels, would not be determined from conventional rawinsondes even if that network were increased by a doubling of both the number of sites and the time frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012589','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012589"><span>Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watson, Leela R.; Hoeth, Brian; Blottman, Peter F.</p> <p>2007-01-01</p> <p>Mesoscale weather conditions can significantly affect the space launch and landing operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). During the summer months, land-sea interactions that occur across KSC and CCAFS lead to the formation of a sea breeze, which can then spawn deep convection. These convective processes often last 60 minutes or less and pose a significant challenge to the forecasters at the National Weather Service (NWS) Spaceflight Meteorology Group (SMG). The main challenge is that a "GO" forecast for thunderstorms and precipitation at the Shuttle Landing Facility is required at the 90 minute deorbit decision for End Of Mission (EOM) and at the 30 minute Return To Launch Site (RTLS) decision. Convective initiation, timing, and mode also present a forecast challenge for the NWS in Melbourne, FL (MLB). The NWS MLB issues such tactical forecast information as Terminal Aerodrome Forecasts (TAF5), Spot Forecasts for fire weather and hazardous materials incident support, and severe/hazardous weather Watches, Warnings, and Advisories. Lastly, these forecasting challenges can also affect the 45th Weather Squadron (45 WS), which provides comprehensive weather forecasts for shuttle launch, as well as ground operations, at KSC and CCAFS. The need for accurate mesoscale model forecasts to aid in their decision making is crucial. This study specifically addresses the skill of different model configurations in forecasting warm season convective initiation. Numerous factors influence the development of convection over the Florida peninsula. These factors include sea breezes, river and lake breezes, the prevailing low-level flow, and convergent flow due to convex coastlines that enhance the sea breeze. The interaction of these processes produces the warm season convective patterns seen over the Florida peninsula. However, warm season convection remains one of the most poorly forecast meteorological parameters. To determine which configuration options are best to address this specific forecast concern, the Weather Research and Forecasting (WRF) model, which has two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM) was employed. In addition to the two dynamical cores, there are also two options for a "hot-start" initialization of the WRF model - the Local Analysis and Prediction System (LAPS; McGinley 1995) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS; Brewster 1996). Both LAPS and ADAS are 3- dimensional weather analysis systems that integrate multiple meteorological data sources into one consistent analysis over the user's domain of interest. This allows mesoscale models to benefit from the addition of highresolution data sources. Having a series of initialization options and WRF cores, as well as many options within each core, provides SMG and MLB with considerable flexibility as well as challenges. It is the goal of this study to assess the different configurations available and to determine which configuration will best predict warm season convective initiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008553','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008553"><span>A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H.; Roeder, William P.</p> <p>2014-01-01</p> <p>People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMIN42A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMIN42A..06B"><span>Near Real Time Data for Operational Space Weather Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, T. E.</p> <p>2014-12-01</p> <p>Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002658','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002658"><span>Severe Weather Tool using 1500 UTC Cape Canaveral Air Force Station Soundings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III</p> <p>2013-01-01</p> <p>People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34626','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34626"><span>Concept of Operations for Road Weather Connected Vehicle and Automated Vehicle Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-05-21</p> <p>Weather has a significant impact on the operations of the nation's roadway system year round. These weather events translate into changes in traffic conditions, roadway safety, travel reliability, operational effectiveness and productivity. It is, th...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4029','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4029"><span>Traffic analysis toolbox volume XI : weather and traffic analysis, modeling and simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2010-12-01</p> <p>This document presents a weather module for the traffic analysis tools program. It provides traffic engineers, transportation modelers and decisions makers with a guide that can incorporate weather impacts into transportation system analysis and mode...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED312146.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED312146.pdf"><span>Sentinels in the Sky: Weather Satellites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Haynes, Robert</p> <p></p> <p>This publication describes forecasting weather activity using satellites. Information is included on the development of weather satellites, the National Oceanic and Atmospheric Administration (NOAA) Satellite System (including the polar-orbiting satellites), and the Geostationary Operational Environmental Satellite (GOES). The publication…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3594','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3594"><span>Michigan Department of Transportation (MDOT) weather responsive traveler information (Wx-TINFO) system implementation project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-01-01</p> <p>Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3579','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3579"><span>South Dakota Department of Transportation (SDDOT) regional traveler information system for weather responsive traffic management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-11-01</p> <p>Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950045390&hterms=rodgers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CBTWN%2B19940101%2B20001231%26N%3D0%26No%3D40%26Ntt%3Drodgers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950045390&hterms=rodgers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CBTWN%2B19940101%2B20001231%26N%3D0%26No%3D40%26Ntt%3Drodgers"><span>Observations of ionospheric electric fields above atmospheric weather systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.</p> <p>1994-01-01</p> <p>We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15..545H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15..545H"><span>Satellite navigation—Amazing technology but insidious risk: Why everyone needs to understand space weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hapgood, Mike</p> <p>2017-04-01</p> <p>Global navigation satellite systems (GNSS) are one of the technological wonders of the modern world. Popularly known as satellite navigation, these systems have provided global access to precision location and timing services and have thereby stimulated advances in industry and consumer services, including all forms of transport, telecommunications, financial trading, and even the synchronization of power grids. But this wonderful technology is at risk from natural phenomena in the form of space weather. GNSS signals experience a slight delay as they pass through the ionosphere. This delay varies with space weather conditions and is the most significant source of error for GNSS. Scientific efforts to correct these errors have stimulated billions of dollars of investment in systems that provide accurate correction data for suitably equipped GNSS receivers in a growing number of regions around the world. This accuracy is essential for GNSS use by aircraft and ships. Space weather also provides a further occasional but severe risk to GNSS: an extreme space weather event may deny access to GNSS as ionospheric scintillation scrambles the radio signals from satellites, and rapid ionospheric changes outstrip the ability of error correction systems to supply accurate corrections. It is vital that GNSS users have a backup for such occasions, even if it is only to hunker down and weather the storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710848H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710848H"><span>Stages of weathering mantle formation from carbonate rocks in the light of rare earth elements (REE) and Sr-Nd-Pb isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hissler, Christophe; Stille, Peter</p> <p>2015-04-01</p> <p>Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil suggesting their close genetic relationships. Sr-Nd-Pb isotope data allow to identify four principal components in the soil: a silicate-rich pool at close to the surface, a leachable REE enriched pool at the bottom of the soil profile, the limestone facies on which the weathering profile developed and an anthropogenic, atmosphere-derived component detected in the soil leachates of the uppermost soil horizon. The leachable phases are mainly secondary carbonate-bearing REE phases such as bastnaesite. The isotope data and trace element distribution patterns indicate that at least four geological and environmental events impacted the chemical and isotopical compositions of the soil system since the Cretaceous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSM22D..09T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSM22D..09T"><span>The New Era in Operational Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.; Eccles, J. V.; Rice, D. D.; Bouwer, D.; Bailey, J. J.; Knipp, D. J.; Blake, J. B.; Rex, J.; Fuschino, R.; Mertens, C. J.; Gersey, B.; Wilkins, R.; Atwell, W.</p> <p>2012-12-01</p> <p>Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere, thermosphere, and even troposphere are key regions that are affected. The Utah State University (USU) Space Weather Center (SWC) and Space Environment Technologies (SET) are developing and producing commercial space weather applications. Key systems for providing timely information about the effects of space weather are SWC's Global Assimilation of Ionospheric Measurements (GAIM) system, SET's Magnetosphere Alert and Prediction System (MAPS), and SET's Automated Radiation Measurements for Aviation Safety (ARMAS) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. These operational runs enable the reporting of global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders via the http://q-upnow.com website. MAPS provides a forecast Dst index out to 6 days through the data-driven Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. ARMAS is demonstrating a prototype flight of microdosimeters on aircraft to capture the "weather" of the radiation environment for air-crew and passenger safety. It assimilates real-time radiation dose and dose rate data into the global NAIRAS radiation system to correct the global climatology for more accurate radiation fields along flight tracks. This team also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe recent forecasting advances for moving space weather information through automated systems into operational, derivative products for communications, aviation, and satellite operations uses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150014258&hterms=databases&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddatabases','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150014258&hterms=databases&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddatabases"><span>Development of a Global Fire Weather Database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150014258'); toggleEditAbsImage('author_20150014258_show'); toggleEditAbsImage('author_20150014258_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150014258_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150014258_hide"></p> <p>2015-01-01</p> <p>The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2/3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective- Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040034245&hterms=time+series+forecasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bseries%2Bforecasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040034245&hterms=time+series+forecasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bseries%2Bforecasting"><span>Use of EOS Data in AWIPS for Weather Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason</p> <p>2003-01-01</p> <p>Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016447','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016447"><span>Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.</p> <p>2011-01-01</p> <p>The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true for areas with lower GVF in the SPoRT model runs. These differences in the heating and evaporation rates produced subtle yet quantifiable differences in the simulated convective precipitation systems for the selected severe weather case examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7313F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7313F"><span>Predicting atmospheric states from local dynamical properties of the underlying attractor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faranda, Davide; Rodrigues, David; Alvarez-Castro, M. Carmen; Messori, Gabriele; Yiou, Pascal</p> <p>2017-04-01</p> <p>Mid-latitude flows are characterized by a chaotic dynamics and recurring patterns hinting to the existence of an atmospheric attractor. In 1963 Lorenz described this object as: "the collection of all states that the system can assume or approach again and again, as opposed to those that it will ultimately avoid" and analyzed a low dimensional system describing a convective dynamics whose attractor has the shape of a butterfly. Since then, many studies try to find equivalent of the Lorenz butterfly in the complex atmospheric dynamics. Most of the studies where focused to determine the average dimension D of the attractor i.e. the number of degrees of freedom sufficient to describe the atmospheric circulation. However, obtaining reliable estimates of D has proved challenging. Moreover, D does not provide information on transient atmospheric motions, such as those leading to weather extremes. Using recent developments in dynamical systems theory, we show that such motions can be classified through instantaneous rather than average properties of the attractor. The instantaneous properties are uniquely determined by instantaneous dimension and stability. Their extreme values correspond to specific atmospheric patterns, and match extreme weather occurrences. We further show the existence of a significant correlation between the time series of instantaneous stability and dimension and the mean spread of sea-level pressure fields in an operational ensemble weather forecast at lead times of over two weeks. Instantaneous properties of the attractor therefore provide an efficient way of evaluating and informing operational weather forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020067708','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020067708"><span>Contributions to the AIAA Guidance, Navigation and Control Conference</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, S. D. (Editor)</p> <p>2002-01-01</p> <p>This report contains six papers presented by the Lincoln Laboratory Air Traffic Control Systems Group at the American Institute of Aeronautics & Astronautics (AIAA) Guidance, Navigation and Control (GNC) conference on 6-9 August 2001 in Montreal, Canada. The work reported was sponsored by the NASA Advanced Air Transportation Technologies (AATT) program and the FAA Free Flight Phase 1 (FFP1) program. The papers are based on studies completed at Lincoln Laboratory in collaboration with staff at NASA Ames Research Center. These papers were presented in the Air Traffic Automation Session of the conference and fall into three major areas: Traffic Analysis & Benefits Studies, Weather/Automation Integration and Surface Surveillance. In the first area, a paper by Andrews & Robinson presents an analysis of the efficiency of runway operations at Dallas/Ft. Worth using a tool called PARO, and a paper by Welch, Andrews & Robinson presents a delay benefit results for the Final Approach Spacing Tool (FAST). In the second area, a paper by Campbell, et al describes a new weather distribution systems for the Center/TRACON Automation System (CTAS) that allows ingestion of multiple weather sources, and a paper by Vandevenne, Lloyd & Hogaboom describes the use of the NOAA Eta model as a backup wind data source for CTAS. Also in this area, a paper by Murphy & Campbell presents initial steps towards integrating weather impacted routes into FAST. In the third area, a paper by Welch, Bussolari and Atkins presents an initial operational concept for using surface surveillance to reduce taxi delays.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJBm...57..107S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJBm...57..107S"><span>Evaluation of weather-based rice yield models in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.</p> <p>2013-01-01</p> <p>The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004E%26PSL.220...69W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004E%26PSL.220...69W"><span>Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: Evidence from integrated carbon isotope and sandstone records of the western Tethys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wortmann, Ulrich Georg; Herrle, Jens Olaf; Weissert, Helmut</p> <p>2004-03-01</p> <p>In this study we investigate if a major perturbation of the Early Cretaceous carbon cycle was accompanied by altered weathering and erosion rates. The large Aptian carbon isotope anomaly records the response of the biosphere to widespread volcanic activity and probably resulting changes in atmospheric pCO2 levels. Elevated pCO2 levels should also result in an accelerated hydrological cycle and increased silicate weathering, creating a negative feedback loop removing CO2 from the atmosphere. We propose to interpret the widespread occurrence of quartz sandstones in the Tethys-Atlantic seaway as a result of altered weathering and erosion rates in the wake of the Aptian carbon cycle excursion. We challenge the traditional notion that these are 'flysch' deposits associated with Early Cretaceous orogenic movements in the western Tethys. We propose that these sandstones were most likely part of a large conveyor belt system, acting along the Iberian and European margin of the Tethys seaway. Using chemostratigraphic correlations, we show that the activity of this system was only short-lived and coeval with changes in coastal ecology and the Aptian carbon cycle perturbations. We tentatively relate the existence of this system to a transient climate regime, characterized by fluctuating pCO2 levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080030356&hterms=office&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D90%26Ntt%3Doffice','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080030356&hterms=office&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D90%26Ntt%3Doffice"><span>Chemical OSSEs in Global Modeling and Assimilation Office (GMAO)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pawson, Steven</p> <p>2008-01-01</p> <p>This presentation will summarize ongoing 'chemical observing system simulation experiment (OSSE)' work in the Global Modeling and Assimilation Office (GMAO). Weather OSSEs are being studied in detail, with a 'nature run' based on the European Centre for Medium-Range Weather Forecasts (ECMWF) model that can be sampled by a synthesized suite of satellites that reproduces present-day observations. Chemical OSSEs are based largely on the carbon-cycle project and aim to study (1) how well we can reproduce the observed carbon distribution with the Atmospheric Infrared Sounder (AIRS) and Orbiting Carbon Observatory (OCO) sensors and (2) with what accuracy can we deduce surface sources and sinks of carbon species in an assimilation system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM13F..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM13F..01B"><span>Fifty Years of Space Weather Forecasting from Boulder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, T. E.</p> <p>2015-12-01</p> <p>The first official space weather forecast was issued by the Space Disturbances Laboratory in Boulder, Colorado, in 1965, ushering in an era of operational prediction that continues to this day. Today, the National Oceanic and Atmospheric Administration (NOAA) charters the Space Weather Prediction Center (SWPC) as one of the nine National Centers for Environmental Prediction (NCEP) to provide the nation's official watches, warnings, and alerts of space weather phenomena. SWPC is now integral to national and international efforts to predict space weather events, from the common and mild, to the rare and extreme, that can impact critical technological infrastructure. In 2012, the Strategic National Risk Assessment included extreme space weather events as low-to-medium probability phenomena that could, unlike any other meteorogical phenomena, have an impact on the government's ability to function. Recognizing this, the White House chartered the Office of Science and Technology Policy (OSTP) to produce the first comprehensive national strategy for the prediction, mitigation, and response to an extreme space weather event. The implementation of the National Strategy is ongoing with NOAA, its partners, and stakeholders concentrating on the goal of improving our ability to observe, model, and predict the onset and severity of space weather events. In addition, work continues with the research community to improve our understanding of the physical mechanisms - on the Sun, in the heliosphere, and in the Earth's magnetic field and upper atmosphere - of space weather as well as the effects on critical infrastructure such as electrical power transmission systems. In fifty years, people will hopefully look back at the history of operational space weather prediction and credit our efforts today with solidifying the necessary developments in observational systems, full-physics models of the entire Sun-Earth system, and tools for predicting the impacts to infrastructure to protect against any and all forms of space weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995SPIE.2344..118E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995SPIE.2344..118E"><span>Sensor performance and weather effects modeling for intelligent transportation systems (ITS) applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.</p> <p>1995-01-01</p> <p>Optical sensors are used for several ITS applications, including lateral control of vehicles, traffic sign recognition, car following, autonomous vehicle navigation, and obstacle detection. This paper treats the performance assessment of a sensor/image processor used as part of an on-board countermeasure system to prevent single vehicle roadway departure crashes. Sufficient image contrast between objects of interest and backgrounds is an essential factor influencing overall system performance. Contrast is determined by material properties affecting reflected/radiated intensities, as well as weather and visibility conditions. This paper discusses the modeling of these parameters and characterizes the contrast performance effects due to reduced visibility. The analysis process first involves generation of inherent road/off- road contrasts, followed by weather effects as a contrast modification. The sensor is modeled as a charge coupled device (CCD), with variable parameters. The results of the sensor/weather modeling are used to predict the performance on an in-vehicle warning system under various levels of adverse weather. Software employed in this effort was previously developed for the U.S. Air Force Wright Laboratory to determine target/background detection and recognition ranges for different sensor systems operating under various mission scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980236669','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980236669"><span>The Behavior of Total Lightning Activity in Severe Florida Thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark; Hodanish, Steve; Sharp, Dave; Goodman, Steve; Raghavan, Ravi; Buechler, Dennis</p> <p>1998-01-01</p> <p>The development of a new observational system called LISDAD (Lightning Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 flashes/min, with some values reaching 500 flashes/min. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5-20 minutes. A distinguishing feature of severe storms is the presence of lightning "jumps"-abrupt increases in flash rate in advance of the maximum rate for the storm. ne systematic total lightning precursor to severe weather of all kinds-wind, hail, tornadoes-is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the lightning activity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/27265','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/27265"><span>Aesthetic coatings for steel bridge components.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-11-01</p> <p>The effectiveness of aesthetic coating systems for steel bridges was studied. Twelve 2-coat, 3-coat, and duplex : coating systems were selected and subjected to a series of accelerated weathering and mechanical tests to : determine their performance....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/6457','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/6457"><span>Road Weather Information Systems (RWIS) data integration guidelines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-01-01</p> <p>In an effort to reduce winter road maintenance costs, agencies are using Road Weather : Information Systems (RWIS) to gain more information for application to surface transportation. : RWIS technologies consist of roadside Environmental Sensor Statio...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35268','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35268"><span>Real transportation solutions for greenhouse gas emissions reductions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-07-27</p> <p>Mobile observation systems may help to enhance the quantity of information available on our nations road weather conditions and augment existing road weather information systems. Such improvements may lead to increased passenger safety through bet...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990027164','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990027164"><span>Weather Avoidance Using Route Optimization as a Decision Aid: An AWIN Topical Study. Phase 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p>The aviation community is faced with reducing the fatal aircraft accident rate by 80 percent within 10 years. This must be achieved even with ever increasing, traffic and a changing National Airspace System. This is not just an altruistic goal, but a real necessity, if our growing level of commerce is to continue. Honeywell Technology Center's topical study, "Weather Avoidance Using Route Optimization as a Decision Aid", addresses these pressing needs. The goal of this program is to use route optimization and user interface technologies to develop a prototype decision aid for dispatchers and pilots. This decision aid will suggest possible diversions through single or multiple weather hazards and present weather information with a human-centered design. At the conclusion of the program, we will have a laptop prototype decision aid that will be used to demonstrate concepts to industry for integration into commercialized products for dispatchers and/or pilots. With weather a factor in 30% of aircraft accidents, our program will prevent accidents by strategically avoiding weather hazards in flight. By supplying more relevant weather information in a human-centered format along with the tools to generate flight plans around weather, aircraft exposure to weather hazards can be reduced. Our program directly addresses the NASA's five year investment areas of Strategic Weather Information and Weather Operations (simulation/hazard characterization and crew/dispatch/ATChazard monitoring, display, and decision support) (NASA Aeronautics Safety Investment Strategy: Weather Investment Recommendations, April 15, 1997). This program is comprised of two phases, Phase I concluded December 31, 1998. This first phase defined weather data requirements, lateral routing algorithms, an conceptual displays for a user-centered design. Phase II runs from January 1999 through September 1999. The second phase integrates vertical routing into the lateral optimizer and combines the user interface into a prototype software testbed. Phase II concludes with a dispatcher and pilot evaluation of the route optimizer decision aid. This document describes work completed in Phase I in contract with NASA Langley August 1998 - December 1998. This report includes: (1) Discuss how weather hazards were identified in partnership with experts, and how weather hazards were prioritized; (2) Static representations of display layouts for integrated planning function (3) Cost function for the 2D route optimizer; (4) Discussion of the method for obtaining, access to raw data of, and the results of the flight deck user information requirements definition; (5) Itemized display format requirements identified for representing weather hazards in a route planning aid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.4169J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.4169J"><span>Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, David</p> <p></p> <p>NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar-wind, magnetosphere and ionosphere. The three simulations are directly or indirectly connected each other based on real-time observa-tion data to reproduce a virtual geo-space region on the super-computer. Informatics is a new methodology to make precise forecast of space weather. Based on new information and communication technologies (ICT), it provides more information in both quality and quantity. At NICT, we have been developing a cloud-computing system named "space weather cloud" based on a high-speed network system (JGN2+). Huge-scale distributed storage (1PB), clus-ter computers, visualization systems and other resources are expected to derive new findings and services of space weather forecasting. The final goal of NICT space weather service is to predict near-future space weather conditions and disturbances which will be causes of satellite malfunctions, tele-communication problems, and error of GPS navigations. In the present talk, we introduce our recent activities on the space weather services and discuss how we are going to develop the services from the view points of space science and practical uses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986PhDT.......138S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986PhDT.......138S"><span>a Weather Monitoring System for Application to Apple and Corn Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stirm, Walter Leroy</p> <p></p> <p>Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34176','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34176"><span>Utilizing Vehicle Data for Road Weather Management (Pikalert 5.0).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-01-01</p> <p>Weather has a significant impact on the operations of the nations roadway system year round. For example, rain reduces pavement friction; winter weather can leave pavements snow-covered or icy; fog, smoke, blowing dust, heavy precipitation, and ve...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14180','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14180"><span>The Advanced Transportation Weather Information System (ATWIS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2000-01-01</p> <p>Understanding and interpreting weather information can be critical to the success of any winter snow and ice removal operation. Knowing when, where and what type of deicing material to use for a particular winter weather event can be a challenge to e...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMIN43C3705K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMIN43C3705K"><span>Early Benchmarks of Product Generation Capabilities of the GOES-R Ground System for Operational Weather Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalluri, S. N.; Haman, B.; Vititoe, D.</p> <p>2014-12-01</p> <p>The ground system under development for Geostationary Operational Environmental Satellite-R (GOES-R) series of weather satellite has completed a key milestone in implementing the science algorithms that process raw sensor data to higher level products in preparation for launch. Real time observations from GOES-R are expected to make significant contributions to Earth and space weather prediction, and there are stringent requirements to product weather products at very low latency to meet NOAA's operational needs. Simulated test data from all the six GOES-R sensors are being processed by the system to test and verify performance of the fielded system. Early results show that the system development is on track to meet functional and performance requirements to process science data. Comparison of science products generated by the ground system from simulated data with those generated by the algorithm developers show close agreement among data sets which demonstrates that the algorithms are implemented correctly. Successful delivery of products to AWIPS and the Product Distribution and Access (PDA) system from the core system demonstrate that the external interfaces are working.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC31E1246Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC31E1246Q"><span>Power System Operations With Water Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiu, F.; Wang, J.</p> <p>2015-12-01</p> <p>The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120009693&hterms=temperature+classes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtemperature%2Bclasses','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120009693&hterms=temperature+classes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtemperature%2Bclasses"><span>Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lu, Thomas; Pham, Timothy; Liao, Jason</p> <p>2011-01-01</p> <p>This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMGP11A1063K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMGP11A1063K"><span>Magnetomineralogy as a tool for determination of the meteorite weathering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohout, T.; Kletetschka, G.; Kobr, M.; Pruner, P.; Wasilewski, P. J.</p> <p>2002-12-01</p> <p>In early solar system history are several electromagnetic processes expected capable of magnetizing the primitive solid particles condensating from the Solar Nebula. The signature of this magnetic events can be observed in meteorites found on the Earth. It can take a long time from meteorite fall till laboratory study. Some samples are deposited in the desert or Antarctic ice for thousands of years. In this work we used the sample of the LL chondrite found in Libya desert for weathering simulations, magnetic mineralogy and magnetic properties study. The weathering in this sample is related to the desert varnish formation. From high and low temperature magnetic susceptibility measurements we can see, that most important magnetic carriers are iron, magnetite and hematite. The influence on magnetic mineralogy can be seen from weathering simulations done by leaching the samples in different solutions. This change affects the suitability of different samples for primary magnetic record study. Acknowledgements: This work is supported by Charles University Grant Agency, Czech Republic and would not be possible without the help of following people: Jakub Haloda, Petr Jakes, Marcela Bukovanska, Jaroslav Kadlec, Libuse Kohoutova, Vladimir Kohout.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED13D0195N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED13D0195N"><span>SPace weather applications in a technology-dependent society</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ngwira, C. M.</p> <p>2017-12-01</p> <p>Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SpWea...610004I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SpWea...610004I"><span>Industry and Government Officials Meet for Space Weather Summit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Intriligator, Devrie S.</p> <p>2008-10-01</p> <p>Commercial airlines, electric power grids, cell phones, handheld Global Positioning Systems: Although the Sun is less active due to solar minimum, the number and types of situations and technologies that can benefit from up-to-date space weather information are growing. To address this, the second annual summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's Space Weather Prediction Center (SWPC) was held on 1 May 2008 during Space Weather Workshop (SWW), in Boulder, Colo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510629K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510629K"><span>An integrated weather and sea-state forecasting system for the Arabian Peninsula (WASSF)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kallos, George; Galanis, George; Spyrou, Christos; Mitsakou, Christina; Solomos, Stavros; Bartsotas, Nikolaos; Kalogrei, Christina; Athanaselis, Ioannis; Sofianos, Sarantis; Vervatis, Vassios; Axaopoulos, Panagiotis; Papapostolou, Alexandros; Qahtani, Jumaan Al; Alaa, Elyas; Alexiou, Ioannis; Beard, Daniel</p> <p>2013-04-01</p> <p>Nowadays, large industrial conglomerates such as the Saudi ARAMCO, require a series of weather and sea state forecasting products that cannot be found in state meteorological offices or even commercial data providers. The two major objectives of the system is prevention and mitigation of environmental problems and of course early warning of local conditions associated with extreme weather events. The management and operations part is related to early warning of weather and sea-state events that affect operations of various facilities. The environmental part is related to air quality and especially the desert dust levels in the atmosphere. The components of the integrated system include: (i) a weather and desert dust prediction system with forecasting horizon of 5 days, (ii) a wave analysis and prediction component for Red Sea and Arabian Gulf, (iii) an ocean circulation and tidal analysis and prediction of both Red Sea and Arabian Gulf and (iv) an Aviation part specializing in the vertical structure of the atmosphere and extreme events that affect air transport and other operations. Specialized data sets required for on/offshore operations are provided ate regular basis. State of the art modeling components are integrated to a unique system that distributes the produced analysis and forecasts to each department. The weather and dust prediction system is SKIRON/Dust, the wave analysis and prediction system is based on WAM cycle 4 model from ECMWF, the ocean circulation model is MICOM while the tidal analysis and prediction is a development of the Ocean Physics and Modeling Group of University of Athens, incorporating the Tidal Model Driver. A nowcasting subsystem is included. An interactive system based on Google Maps gives the capability to extract and display the necessary information for any location of the Arabian Peninsula, the Red Sea and Arabian Gulf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1033037','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1033037"><span>Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>2012-01-01</p> <p>Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and long-lasting reductions in their energy bills. Vermont-SERC is administered by the Vermont Office of Economic Opportunity and is carried out by five local weatherization agencies. The purpose of the program is to identify technologies and new approaches-in this case, solar energy and energy efficiency coaches-that can improve weatherizationmore » services to low-income clients. The program selects households that have previously received weatherization services. This has several advantages. First, the clients already understand how weatherization works and are willing to strive for additional energy savings. Second, the weatherization agencies are working with clients who have previously had weatherization and therefore have complete energy usage data from utility bills collected during the first energy upgrade installation. This allows the agencies to select the best potential candidates for solar energy. Agencies have existing knowledge of the homes and can pre-screen them for potential structural problems or lack of south-facing exposure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1341396','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1341396"><span>High Quality Data for Grid Integration Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit</p> <p></p> <p>As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSM51A1755F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSM51A1755F"><span>The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fry, C. D.; Eccles, J. V.; Reich, J. P.</p> <p>2010-12-01</p> <p>Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22049728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22049728"><span>Assessing dry weather flow contribution in TSS and COD storm events loads in combined sewer systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Métadier, M; Bertrand-Krajewski, J L</p> <p>2011-01-01</p> <p>Continuous high resolution long term turbidity measurements along with continuous discharge measurements are now recognised as an appropriate technique for the estimation of in sewer total suspended solids (TSS) and Chemical Oxygen Demand (COD) loads during storm events. In the combined system of the Ecully urban catchment (Lyon, France), this technique is implemented since 2003, with more than 200 storm events monitored. This paper presents a method for the estimation of the dry weather (DW) contribution to measured total TSS and COD event loads with special attention devoted to uncertainties assessment. The method accounts for the dynamics of both discharge and turbidity time series at two minutes time step. The study is based on 180 DW days monitored in 2007-2008. Three distinct classes of DW days were evidenced. Variability analysis and quantification showed that no seasonal effect and no trend over the year were detectable. The law of propagation of uncertainties is applicable for uncertainties estimation. The method has then been applied to all measured storm events. This study confirms the interest of long term continuous discharge and turbidity time series in sewer systems, especially in the perspective of wet weather quality modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A33B0162D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A33B0162D"><span>Simulation of the trajectory of microwaves during passage of Mesoescale Convective System over Southern Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diniz, F. L.; Munchow, G. B.; Herdies, D. L.; Foster, P. R.</p> <p>2010-12-01</p> <p>When the eletromagnetic wave travels in the atmosphere from one medium to another with different density and/or composition suffers small changes in speed and direction of propagation. These changes are caused by the vertical variation of atmospheric refractive index. This causes different types of trajectory deviations, which can be called: normal refraction, sub-refraction, super-refraction and duct. The condition to create duct is satisfied when there is a especific vertical profile of refraction, in this case an eletromagnectic wave will oscillate in a layer of the atmosphere. Considering that this ducts condition can causes damage in the transmission and reception of microwave system equipment (e.g. telecomunications, global positioning, weather radars and satellites) and that in the Rio Grande do Sul, state of Brazil, there are two weather radars, this study present a simulation of the trajectory that would have an eletromagnetic wave. In this study was used soundings of the atmosphere to infer the vertical profile of refractive index during the passage of a Mesoescale Convective System on September 7, 2009. In the lack of this data a numerical simulation with nested grids using Weather Research & Forecasting Model was performed to infer this.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GeCoA..66.3397D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GeCoA..66.3397D"><span>Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.</p> <p>2002-10-01</p> <p>The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by silicates in the YRS basin is marginally higher than the reported values of CO 2 release from oxidation of organic rich sediments, estimated using Re as a proxy. This comparison shows the need to constrain CO 2 sources and sinks better to balance its budget in a regional scale. The results also show that silicate weathering rate in the YRS basin is ˜10 mm ky -1 and on the Ganga basin, it is ˜5 mm ky -1, which are several times lower than the carbonate weathering rates. The significantly higher silicate weathering rate observed in the YRS basin seems to be governed by rapid physical erosion in this region. The apparent activation energy for overall silicate weathering in the YRS basin, derived from Na* and Si concentrations and water temperature, ranges from ˜50 to 80 kJ mol -1. These values are comparable to those reported for granitoid weathering in natural watersheds and feldspar weathering in laboratory experiments. This study brings to light the sources contributing to major ions, enhanced chemical weathering rates in the Yamuna River Basin and interdependence of silicate weathering on physical erosion and temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA535963','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA535963"><span>Cold Weather Admixture Systems Demonstration at Fort Wainwright, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-08-01</p> <p>3, and 5, the remaining two test sec- tions (Test Sections 2 and 4) were readied for concrete . The interior formwork was removed, and the rebar was...Washington, DC 20314-1000 ERDC/CRREL TR-10-6 ii Abstract: Cold Weather Admixture Systems (CWAS) is a new approach to cold weather concreting that...incorporates suites of commercially avail- able chemical admixtures in concrete mixes. When used in combination, these admixtures depress the freezing</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..543H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..543H"><span>Improving Weather Forecasts Through Reduced Precision Data Assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatfield, Samuel; Düben, Peter; Palmer, Tim</p> <p>2017-04-01</p> <p>We present a new approach for improving the efficiency of data assimilation, by trading numerical precision for computational speed. Future supercomputers will allow a greater choice of precision, so that models can use a level of precision that is commensurate with the model uncertainty. Previous studies have already indicated that the quality of climate and weather forecasts is not significantly degraded when using a precision less than double precision [1,2], but so far these studies have not considered data assimilation. Data assimilation is inherently uncertain due to the use of relatively long assimilation windows, noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, we can redistribute computational resources towards, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localisation, lowering precision could actually allow us to improve the accuracy of weather forecasts. We will present results on how lowering numerical precision affects the performance of an ensemble data assimilation system, consisting of the Lorenz '96 toy atmospheric model and the ensemble square root filter. We run the system at half precision (using an emulation tool), and compare the results with simulations at single and double precision. We estimate that half precision assimilation with a larger ensemble can reduce assimilation error by 30%, with respect to double precision assimilation with a smaller ensemble, for no extra computational cost. This results in around half a day extra of skillful weather forecasts, if the error-doubling characteristics of the Lorenz '96 model are mapped to those of the real atmosphere. Additionally, we investigate the sensitivity of these results to observational error and assimilation window length. Half precision hardware will become available very shortly, with the introduction of Nvidia's Pascal GPU architecture and the Intel Knights Mill coprocessor. We hope that the results presented here will encourage the uptake of this hardware. References [1] Peter D. Düben and T. N. Palmer, 2014: Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware, Mon. Weather Rev., 142, 3809-3829 [2] Peter D. Düben, Hugh McNamara and T. N. Palmer, 2014: The use of imprecise processing to improve accuracy in weather & climate prediction, J. Comput. Phys., 271, 2-18</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-VAFB-20180509-PH_ANV01_0029.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-VAFB-20180509-PH_ANV01_0029.html"><span>Pegasus ICON Spacecraft Mate to Separation System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-05-09</p> <p>Technicians prepare NASA's Ionospheric Connection Explorer (ICON) to be attached to the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-VAFB-20180509-PH_ANV01_0050.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-VAFB-20180509-PH_ANV01_0050.html"><span>Pegasus ICON Spacecraft Mate to Separation System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-05-09</p> <p>Technicians secure NASA's Ionospheric Connection Explorer (ICON) on the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3254','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3254"><span>Maintenance decision support system deployment guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-07-01</p> <p>This is a guide for transportation professionals on why and how to deploy winter Maintenance Decision Support Systems (MDSS). Adverse winter weather can cause traffic delays and crashes. Treating the effects of winter weather can also have impacts on...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2063.3188M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2063.3188M"><span>Forecasting Space Weather Hazards for Astronauts in Deep Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martens, P. C.</p> <p>2018-02-01</p> <p>Deep Space Gateway provides a unique platform to develop, calibrate, and test a space weather forecasting system for interplanetary travel in a real life setting. We will discuss requirements and design of such a system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11858166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11858166"><span>Matrix effects in applying mono- and polyclonal ELISA systems to the analysis of weathered oils in contaminated soil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pollard, S J T; Farmer, J G; Knight, D M; Young, P J</p> <p>2002-01-01</p> <p>Commercial mono- and polyclonal enzyme-linked immunosorbent assay (ELISA) systems were applied to the on-site analysis of weathered hydrocarbon-contaminated soils at a former integrated steelworks. Comparisons were made between concentrations of solvent extractable matter (SEM) determined gravimetrically by Soxhlet (dichloromethane) extraction and those estimated immunologically by ELISA determination over a concentration range of 2000-330,000 mg SEM/kg soil dry weight. Both ELISA systems tinder-reported for the more weathered soil samples. Results suggest this is due to matrix effects in the sample rather than any inherent bias in the ELISA systems and it is concluded that, for weathered hydrocarbons typical of steelworks and coke production sites, the use of ELISA requires careful consideration as a field technique. Consideration of the target analyte relative to the composition of the hydrocarbon waste encountered appears critical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.198...17P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.198...17P"><span>Lithium isotope behaviour during weathering in the Ganges Alluvial Plain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pogge von Strandmann, Philip A. E.; Frings, Patrick J.; Murphy, Melissa J.</p> <p>2017-02-01</p> <p>The Ganges river system is responsible for the transportation of a large flux of dissolved materials derived from Himalayan weathering to the oceans. Silicate weathering-driven cooling resulting from uplift of the Himalayas has been proposed to be a key player in Cenozoic climate variation. This study has analysed Li isotope (δ7Li) ratios from over 50 Ganges river waters and sediments, in order to trace silicate weathering processes. Sediments have δ7Li of ∼0‰, identical to bulk continental crust, however suspended sediment depth profiles do not display variations associated with grain size that have been observed in other large river systems. Dissolved δ7Li are low (∼11‰) in the Ganges headwaters, but reach a constant value of 21 ± 1.6‰ within a relatively short distance downstream, which is then maintained for almost 2000 km to the Ganges mouth. Given that Li isotopes are controlled by the ratio of primary mineral dissolution to secondary mineral formation, this suggests that the Ganges floodplain is at steady-state in terms of these processes for most of its length. Low δ7Li in the mountainous regions suggest silicate weathering is therefore at its most congruent where uplift and fresh silicate exposure rates are high. However, there is no correlation between δ7Li and the silicate weathering rate in these rivers, suggesting that Li isotopes cannot be used as a weathering-rate tracer, although they do inform on weathering congruency and intensity. The close-to-constant δ7Li values for the final 2000 km of Ganges flow also suggest that once the size of the alluvial plain reached more than ∼500 km (the flow distance after which riverine δ7Li stops varying), the Ganges exerted little influence on the changing Cenozoic seawater δ7Li, because riverine δ7Li attained a near steady-state composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840013981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840013981"><span>Research Review, 1983</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1984-01-01</p> <p>The Global Modeling and Simulation Branch (GMSB) of the Laboratory for Atmospheric Sciences (GLAS) is engaged in general circulation modeling studies related to global atmospheric and oceanographic research. The research activities discussed are organized into two disciplines: Global Weather/Observing Systems and Climate/Ocean-Air Interactions. The Global Weather activities are grouped in four areas: (1) Analysis and Forecast Studies, (2) Satellite Observing Systems, (3) Analysis and Model Development, (4) Atmospheric Dynamics and Diagnostic Studies. The GLAS Analysis/Forecast/Retrieval System was applied to both FGGE and post FGGE periods. The resulting analyses have already been used in a large number of theoretical studies of atmospheric dynamics, forecast impact studies and development of new or improved algorithms for the utilization of satellite data. Ocean studies have focused on the analysis of long-term global sea surface temperature data, for use in the study of the response of the atmosphere to sea surface temperature anomalies. Climate research has concentrated on the simulation of global cloudiness, and on the sensitivities of the climate to sea surface temperature and ground wetness anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62875&keyword=FAN&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62875&keyword=FAN&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>URBAN WET-WEATHER FLOW POLLUTION MANAGEMENT AND CONTROL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>One of the challenges in protecting urban watersheds lies in effectively controlling the contaminants in both overland runoff and sewerage system overflows during wet-weather events. Abatement of wet-weather flow (WWF) pollution can be implemented at the source by land managemen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSM22D..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSM22D..02L"><span>Space weather forecasting: Past, Present, Future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanzerotti, L. J.</p> <p>2012-12-01</p> <p>There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720014715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720014715"><span>Infrared spectrometry studies: Spectral digital data acquisition system (1971 version)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lu, L.; Lyon, R. J. P.</p> <p>1971-01-01</p> <p>The construction of the Stanford Spectral Digital Data Acquisition System is described. The objective of the system is to record both the spectral distribution of incoming radiation from the rock samples measured by the spectroradiometer (Exotech Model 10-34 Circular Variable Filter Infrared Spectroradiometer) together with other weather information. This system is designed for both laboratory and field measurement programs. The multichannel inputs (8 channels) of the system are as follows: Ch 1 the Spectro-radiometer, Ch 2 the radiometer (PRT-5), and Ch 3 to Ch 8 for the weather information. The system records data from channel 1 and channel 2 alternately for 48 times, before a fast sweep across the six weather channels, to form a single scan in the scan counter. The operation is illustrated in a block diagram, and the theory of operation is described. The outputs are written on a 7-track magnetic tape with IBM compatible form. The format of the tape and the playback computer programs are included. The micro-pac digital modules and a CIPHER model 70 tape recorder (Cipher Data Products) are used. One of the major characteristics of this system is that it is externally clocked by the spectroradiometer instead of taking data at intervals of various wavelengths by using internal-clocking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1033592','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1033592"><span>Lincoln Laboratory demonstrates highly accurate vehicle localization under adverse weather conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-05-25</p> <p>2016 Lincoln Laboratory demonstrates highly accurate vehicle localization under adverse weather conditions A ground-penetrating radar system...the problems limiting the development and adoption of self-driving vehicles: how can a vehicle navigate to stay within its lane when bad weather ... weather conditions, but it is challenging, even impossible, for them to work when snow covers the markings and surfaces or precipitation obscures points</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002156','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002156"><span>Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shafer, Jaclyn; Watson, Leela R.</p> <p>2015-01-01</p> <p>NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations (RWO) AWIPS II client computers and conduct real-time subjective analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10562E..0FK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10562E..0FK"><span>Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kraft, S.; Puschmann, K. G.; Luntama, J. P.</p> <p>2017-09-01</p> <p>As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3990','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3990"><span>Incorporating weather impacts in traffic estimation and prediction systems (TREPS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-09-01</p> <p>This document provides quantitative benefits of using Intelligent Transportation Systems in highway construction and maintenance work zones. The technical report covers case study sites in the District of Columbia, Texas, Michigan, Arkansas, and Nort...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35705','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35705"><span>Integrating Safety in Developing a Variable Speed Limit System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-01-01</p> <p>Disaggregate safety studies benefit from the reliable surveillance systems which provide detailed real-time traffic and weather data. This information could help in capturing microlevel influences of the hazardous factors which might lead to a crash....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/16715','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/16715"><span>Evaluation of video detection systems, volume 4 : effects of adverse weather conditions in the performance of video detection systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-03-01</p> <p>The performance of three video detection systems (VDS): Iteris, Autoscope, and Peek, was evaluated : using a side-by-side installation at a signalized intersection under various adverse weather conditions including : rain and snow in both day and nig...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RaSc...51.1157S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RaSc...51.1157S"><span>Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.</p> <p>2016-07-01</p> <p>The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5477494','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5477494"><span>The inheritance of a Mesozoic landscape in western Scandinavia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fredin, Ola; Viola, Giulio; Zwingmann, Horst; Sørlie, Ronald; Brönner, Marco; Lie, Jan-Erik; Grandal, Else Margrethe; Müller, Axel; Margreth, Annina; Vogt, Christoph; Knies, Jochen</p> <p>2017-01-01</p> <p>In-situ weathered bedrock, saprolite, is locally found in Scandinavia, where it is commonly thought to represent pre-Pleistocene weathering possibly associated with landscape formation. The age of weathering, however, remains loosely constrained, which has an impact on existing geological and landscape evolution models and morphotectonic correlations. Here we provide new geochronological evidence that some of the low-altitude basement landforms on- and offshore southwestern Scandinavia are a rejuvenated geomorphological relic from Mesozoic times. K-Ar dating of authigenic, syn-weathering illite from saprolitic remnants constrains original basement exposure in the Late Triassic (221.3±7.0–206.2±4.2 Ma) through deep weathering in a warm climate and subsequent partial mobilization of the saprolitic mantle into the overlying sediment cascade system. The data support the bulk geomorphological development of west Scandinavia coastal basement rocks during the Mesozoic and later, long-lasting relative tectonic stability. Pleistocene glaciations played an additional geomorphological role, selectively stripping the landscape from the Mesozoic overburden and carving glacial landforms down to Plio–Pleistocene times. Saprolite K-Ar dating offers unprecedented possibilities to study past weathering and landscape evolution processes. PMID:28452366</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMIN31A1270T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMIN31A1270T"><span>Global, real-time ionosphere specification for end-user communication and navigation products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.</p> <p>2010-12-01</p> <p>Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those data into operational space physics models, and finally generate visualization products such as the images, plots, and alerts that can be viewed on SpaceWx. In a real sense, the space weather community is now able to transition research models into operations through “proofing” products such as real-time disseminated of information through smart phones. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMIN21D1710T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMIN21D1710T"><span>GOES-R Space Weather Data: Ensuring Access and Usability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tilton, M.; Rowland, W. F.; Wilkinson, D. C.; Denig, W. F.; Darnel, J.; Kress, B. T.; Loto'aniu, P. T. M.; Machol, J. L.; Redmon, R. J.; Rodriguez, J. V.</p> <p>2015-12-01</p> <p>The upcoming Geostationary Operational Environmental Satellite series, GOES-R, will provide critical space weather data. These data are used to prevent communication outages, mitigate the damage solar weather causes to satellites and power grids, and reduce astronaut radiation exposure. The space weather instruments aboard GOES-R will deliver an operational dataset of unprecedented breadth. However, NOAA's National Centers for Environmental Information (NCEI)—the organization that provides access to archived GOES-R data—has faced several challenges in delivering this information to customers in usable form. For instance, the GOES-R ground system was contracted to develop higher-level products for terrestrial data but not space weather data. Variations in GOES-R data file formats and archive locations have also threatened to create an inconsistent user experience. This presentation will examine the ways in which NCEI is making GOES-R space weather data more accessible and actionable for customers. These efforts include NCEI's development of high-level data products to meet the requirements of NOAA's Space Weather Prediction Center—a role NCEI has not previously played. In addition, NCEI is creating a demonstration system to show how these products can be produced in real-time. The organization is also examining customer usage of the GOES-NOP data access system and using these access patterns to drive decisions about the GOES-R user interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3799','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3799"><span>Project report : road weather information system phase I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2004-11-01</p> <p>The Alaska Department of Transportation & Public Facilities (ADOT&PF) initiated the first eight environmental sensor stations (ESS) in the Anchorage area, called the Road Weather Information System (RWIS) Phase I. The ESS are used to detect road weat...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3369','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3369"><span>Implementation and Evaluation of Weather Responsive Traffic Estimation and Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-06-01</p> <p>The objective of the project is to develop a framework and procedures for implementing and evaluating weather-responsive traffic management (WRTM) strategies using Traffic Estimation and Prediction System (TrEPS) methodologies. In a previous FHWA-fun...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-08-19/pdf/2013-20000.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-08-19/pdf/2013-20000.pdf"><span>78 FR 50340 - Travelers' Information Stations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-08-19</p> <p>... information systems, and satellite radio. While motorists should not access weather information from cell... weather and traffic information beyond traditional AM and FM broadcast sources, including cell phone, mobile internet, automobile based information systems, and satellite radio. Therefore, due to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/8596','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/8596"><span>Establishment and discontinuance criteria for automated weather observing systems (AWOS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1983-05-01</p> <p>This report develops establishment and discontinuance criteria for automated : weather observing systems (AWOS) for publication in FAA Order 703l.2B, Airway : Planning Standard Number One. Airway Planning Standard Number One contains : the policy and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3769','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3769"><span>Evaluation of the Idaho Transportation Department integrated road-weather information system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2005-02-02</p> <p>This report presents the results of FHWA's evaluation of the Idaho Transportation Department's (ITD) integration of its Road-Weather Information System (RWIS). The ITD RWIS project was selected for evaluation because it held significant potential to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMED41C0653K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMED41C0653K"><span>Three Dimensional Spherical Display Systems and McIDAS: Tools for Science, Education and Outreach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohrs, R.; Mooney, M. E.</p> <p>2010-12-01</p> <p>The Space Science and Engineering Center (SSEC) and Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin are now using a 3D spherical display system and their Man computer Data Access System (McIDAS)-X and McIDAS-V as outreach tools to demonstrate how scientists and forecasters utilize satellite imagery to monitor weather and climate. Our outreach program displays orbits and data coverage of geostationary and polar satellites and demonstrates how each is beneficial for the remote sensing of Earth. Global composites of visible, infrared and water vapor images illustrate how satellite instruments collect data from different bands of the electromagnetic spectrum to monitor global weather patterns 24 hours a day. Captivating animations on spherical display systems are proving to be much more intuitive than traditional 2D displays, enabling audiences to view satellites orbiting above real-time weather systems circulating the entire globe. Complimenting the 3D spherical display system are the UNIX-based McIDAS-X and Java-based McIDAS-V software packages. McIDAS is used to composite the real-time global satellite data and create other weather related derived products. Client and server techniques used by these software packages provide the opportunity to continually update the real-time content on our globe. The enhanced functionality of McIDAS-V extends our outreach program by allowing in-depth interactive 4-dimensional views of the imagery previously viewed on the 3D spherical display system. An important goal of our outreach program is the promotion of remote sensing research and technology at SSEC and CIMSS. The 3D spherical display system has quickly become a popular tool to convey societal benefits of these endeavors. Audiences of all ages instinctively relate to recent weather events which keeps them engaged in spherical display presentations. McIDAS facilitates further exploration of the science behind the weather phenomena. Audience feedback fuels the collaborative efforts of outreach specialists and computer programmers which provides continuous evolution of the 3D displays and McIDAS. This iterative presentation strategy is proving to be beneficial to our outreach program as seen by the success of our workshops, educational lectures and temporary exhibits at high visibility venues such as Madison Children’s Museum, the Milwaukee Public Museum and EAA AirVenture Museum. 3D Spherical Display System and McIDAS-V depiction of Hurricane Wilma</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10675','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10675"><span>Weathering effects on fuel moisture sticks: corrections and recommendations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Donald A. Haines; John S. Frost</p> <p>1978-01-01</p> <p>Describes response to weathering of 100-gram (1/2-inch) fuel moisture sticks over 6-month fire season in the Northeast. Presents a chart for correcting weathered-stick values and gives replacement recommendations for those sticks used in the National Fire Danger Rating System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14179','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14179"><span>Iowa DOT weather information system to support winter maintenance operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2000-01-01</p> <p>Understanding and interpreting weather information can be critical to the success of any winter snow and ice removal operation. Knowing when, where and what type of deicing material to use for a particular winter weather event can be a challenge to e...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA229088','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA229088"><span>Department of Defense Air Traffic Control and Airspace Systems Interface with the National Airspace System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-03-30</p> <p>systems on the DoD in terms of safety and operational- effectiveness and probable impacts on specific Air Force mission requirements. The report does... Systems ................................. 2-21 2.1.3 Flight Service and Weather Systems .......................... 2-22 2.1.3.1 Flight Service Automation...2-41 2.2.2 Terminal Control and Landing Systems .. ....................... 2-44 2.2.3 Flight Information and Weather Systems</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060017833','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060017833"><span>Recommendations for a Cockpit Display that Integrates Weather Information with Traffic Information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comerford, Doreen A.</p> <p>2004-01-01</p> <p>This effort was supported by the System-Wide Accident Prevention element of NASA s Aviation Safety Program. This document may serve as a first step toward the goal of integrating traffic, weather, and terrain information; it provides recommendations for a cockpit display that integrates weather information with traffic information. While some of the recommendations are general enough to be used for any type of operations, these recommendations are targeted for Federal Aviation Regulations Part 121 Operations. The document is organized in the following manner. First, weather information is discussed as an independent subject matter, and recommendations are presented for presenting weather in the cockpit. Second, traffic is discussed independently, but this discussion essentially reviews work on the display of traffic in the cockpit. Third, recommendations for the cockpit integration of weather and traffic information are discussed. Fourth, several research groups are recognized for their efforts in developing systems that are relevant to the current discussion. Finally, closing remarks provide suggestions for future efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.A31A..11D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.A31A..11D"><span>Study of the impact of satellite data in the analysis and forecasting of a SACZ episode using G3DVar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Azevedo, H. B.; Goncalves, L.</p> <p>2013-05-01</p> <p>Earth observations from satellite have great importance and impact, in particular for operational weather and climate forecast centers in the Southern Hemisphere such as the Center for Weather Forecast and Climate Studies (CPTEC from its Portuguese acronym), a division of the Brazilian National Institute for Space Research (INPE from its Portuguese acronym). It is well known that such data is critical, in particular over Southern Hemisphere oceans where there is a lack of other information sources e.g. radiosonde and aircraft, where satellite data provides excellent spatial coverage with relatively frequent sampling in addition to sweeping continents, deserts, woodlands and other remote areas. Hence, studies like OSEs (Observing Systems Experiments) where we are able to test whether observational input data in an assimilation system degrades or improves analyzes and forecasts, are of great value. Furthermore OSEs applied to satellite observations are expected to show large impact due to its large amount of information compared to conventional observations. OSE also provides useful information on the efficiency of the system and this information can be used to improve the use of one or another observation system in the data assimilation process and to determine its relative importance compared to other observation systems. This is a technique where one or more observation systems are retained in the data assimilation process in order to assess the impact of the inclusion or exclusion of a particular observation on the quality of numerical weather prediction (NWP). One of the difficulties within the NWP nevertheless, is to predict the correct intensity of severe weather systems, which has great impact on the population. Over South America, an important weather system is the South Atlantic Convergence Zone (SACZ), which every year during summer yelds large amounts of rainfall over a band oriented northwest-southeast, extending from the Amazon to the Brazilian Southeast, with persistence of at least four days. It often is associated with the occurrence of landslides on slopes in heavily populated areas of Brazil such as Rio de Janeiro, killing and displacing hundreds to thousands of people. This work aims to study the impact of satellite data assimilated in the recently implemented Global 3DVar (G3DVar) assimilation system based on the Gridpoint Statistical Interpolation (GSI) in a situation of extreme event, such as the SACZ from January 8th 2013 to January 15th 2013. This system runs using a GCM from CPTEC/INPE (T299L64) corresponding to a horizontal resolution of approximately 44 km. A OSE was performed by removing the satellite data from the assimilation cycle and compared against a control experiment, were all available information (radiosondes, satellite, conventional observations, etc) was assimilated into the system. The OSE results presented in this work show the evaluation of the analyzes and up to 120 hours forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CSR....63S.149S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CSR....63S.149S"><span>Demonstrating the Alaska Ocean Observing System in Prince William Sound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schoch, G. Carl; McCammon, Molly</p> <p>2013-07-01</p> <p>The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC43H..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC43H..05F"><span>Introducing the Global Fire WEather Database (GFWED)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, R. D.</p> <p>2015-12-01</p> <p>The Canadian Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations beginning in 1980 called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded datasets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC=1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously-identified in MERRA's precipitation and reinforce the need to consider alternative sources of precipitation data. GFWED is being used by researchers around the world for analyzing historical relationships between fire weather and fire activity at large scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models. These applications will be discussed. More information on GFWED can be found at http://data.giss.nasa.gov/impacts/gfwed/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC13D1184L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC13D1184L"><span>Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.</p> <p>2015-12-01</p> <p>Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5003/pdf/SIR2013-5003.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5003/pdf/SIR2013-5003.pdf"><span>Hydrologic data and groundwater flow simulations in the vicinity of Long Lake, Indiana Dunes National Lakeshore, near Gary, Indiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lampe, David C.; Bayless, E. Randall</p> <p>2013-01-01</p> <p>The U.S. Geological Survey (USGS) collected data and simulated groundwater flow to increase understanding of the hydrology and the effects of drainage alterations to the water table in the vicinity of Long Lake, near Gary, Indiana. East Long Lake and West Long Lake (collectively known as Long Lake) make up one of the largest interdunal lakes within the Indiana Dunes National Lakeshore. The National Park Service is tasked with preservation and restoration of wetlands in the Indiana Dunes National Lakeshore along the southern shoreline of Lake Michigan. Urban development and engineering have modified drainage and caused changes in the distribution of open water, streams and ditches, and groundwater abundance and flow paths. A better understanding of the effects these modifications have on the hydrologic system in the area will help the National Park Service, the Gary Sanitary District (GSD), and local stakeholders manage and protect the resources within the study area.This study used hydrologic data and steady-state groundwater simulations to estimate directions of groundwater flow and the effects of various engineering controls and climatic conditions on the hydrology near Long Lake. Periods of relatively high and low groundwater levels were examined and simulated by using MODFLOW and companion software. Simulated hydrologic modifications examined the effects of (1) removing the beaver dams in US-12 ditch, (2) discontinuing seepage of water from the filtration pond east of East Long Lake, (3) discontinuing discharge from US-12 ditch to the GSD sewer system, (4) decreasing discharge from US-12 ditch to the GSD sewer system, (5) connecting East Long Lake and West Long Lake, (6) deepening County Line Road ditch, and (7) raising and lowering the water level of Lake Michigan.Results from collected hydrologic data indicate that East Long Lake functioned as an area of groundwater recharge during October 2002 and a “flow-through” lake during March 2011, with the groundwater divide south of US-12. Wetlands to the south of West Long Lake act as points of recharge to the surficial aquifer in both dry- and wet-weather conditions.Among the noteworthy results from a dry-weather groundwater flow model simulation are (1) US-12 ditch does not receive water from East Long Lake or West Long Lake, (2) the filtration pond at the east end of East Long Lake, when active, contributed approximately 10 percent of the total water entering East Long Lake, and (3) County Line Road ditch has little effect on simulated water level.Among the noteworthy results from a wet-weather groundwater flow simulation are (1) US-12 ditch does not receive water from East Long Lake or West Long Lake, (2) when the seepage from the filtration pond to the surficial aquifer is not active, sources of inflow to East Long Lake are restricted to only precipitation (46 percent of total) and inflow from the surficial aquifer (54 percent of total), and (3) County Line Road ditch bisects the groundwater divide and creates two water-table mounds south of US-12.The results from a series of model scenarios simulating certain engineering controls and changes in Lake Michigan levels include the following: (1) The simulated removal of beaver dams in US-12 ditch during a wet-weather simulation increased discharge from the ditch to the Gary Sanitary system by 13 percent. (2) Discontinuation of seepage from the filtration pond east of East Long Lake decreased discharge from US-12 ditch to the Gary Sanitary system by 2.3 percent. (3) Simulated discontinuation of discharge from the US-12 ditch to the GSD sewer system increased the area where the water table was estimated to be above the land surface beyond the inundated area in the initial wet-weather simulation. (4) Simulated modifications to the control structure at the discharge point of US-12 ditch to the GSD sewer system can decrease discharge by as much as 61 percent while increasing the simulated inundated area during dry weather and decrease discharge as much as 6 percent while increasing the simulated inundated area during wet weather. (5) Deepening of County Line Road ditch can decrease the discharge from US-12 ditch by 26 percent during dry weather and 24 percent during wet weather, as well as decrease the extent of flooded areas south and east of the filtration pond near Ogden Dunes. (7) The increase of the Lake Michigan water level to match the historical maximum can increase the discharge from US-12 ditch by 14 percent during dry weather and by 9.6 percent during wet weather. (8) The decrease of the Lake Michigan water level to match the historical minimum can decrease the discharge from US-12 ditch by 7.4 percent during dry weather and by 3.1 percent during wet weather.The results of this study can be used by water-resource managers to understand how surrounding ditches affect water levels in East and West Long Lake and in the surrounding wetlands and residential areas. The groundwater model developed in this study can be applied in the future to answer questions about how alterations to the drainage system in the area will affect water levels in East and West Long Lake and surrounding areas. The modeling methods developed in this study provide a template for other studies of groundwater flow and groundwater/surface-water interactions within the shallow surficial aquifer in northern Indiana, and in similar hydrologic settings that include surficial sand aquifers in coastal settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31A2153Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31A2153Q"><span>Enhance the accuracy of radar snowfall estimation with Multi new Z-S relationships in MRMS system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qi, Y.</p> <p>2017-12-01</p> <p>Snow may have negative affects on roadways and human lives, but the result of the melted snow/ice is good for farm, humans, and animals. For example, in the Southwest and West mountainous area of United States, water shortage is a very big concern. However, snowfall in the winter can provide humans, animals and crops an almost unlimited water supply. So, using radar to accurately estimate the snowfall is very important for human life and economic development in the water lacking area. The current study plans to analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be evaluated with independent CoCoRaHS (Community Collaborative Rain, Hail & Snow Network) gauge observations and eventually implemented in the Multi-Radar Multi-Sensor system for improved quantitative precipitation estimation for snow. This study will analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be used to reduce the error of snowfall estimation in Multi Radar and Multi Sensors (MRMS) system, and tested in MRMS system and evaluated with the COCORaHS observations. Finally, it will be ingested in MRMS sytem, and running in NWS/NCAR operationally</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC14A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC14A..01S"><span>Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samaras, C.; Cook, L.</p> <p>2015-12-01</p> <p>Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA089054','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA089054"><span>Evaluation of the Transcribed Weather Broadcast (TWEB) System and Alternatives. Volume I. Technical and Operational Assessment and Cost Summary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-08-01</p> <p>objectives of this project were to perform an evaluation of the effectiveness of the Transcribed Weather Broadcast (TWEB) System in its current national con... performance of TWEB at selected represent- ative field locations. In addition, discussions concerning the review and appraisal of TWEB and Pilots...Briefing Surface TELCO Telephone Company TEL-TWZB telephone access to TWEB TV television TWEB Transcribed Weather Broadcast UNICOM Aeronautical Advisory</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005819&hterms=https&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dhttps%253A','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005819&hterms=https&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dhttps%253A"><span>Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila</p> <p>2015-01-01</p> <p>The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890038220&hterms=information+dissemination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation%2Bdissemination','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890038220&hterms=information+dissemination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation%2Bdissemination"><span>Cockpit display of hazardous weather information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hansman, R. John, Jr.; Wanke, Craig</p> <p>1989-01-01</p> <p>Information transfer and display issues associated with the dissemination of hazardous-weather warnings are studied in the context of wind-shear alerts. Operational and developmental wind-shear detection systems are briefly reviewed. The July 11, 1988 microburst events observed as part of the Denver TDWR operational evaluation are analyzed in terms of information transfer and the effectiveness of the microburst alerts. Information transfer, message content, and display issues associated with microburst alerts generated from ground-based sources (Doppler radars, LLWAS, and PIREPS) are evaluated by means of pilot opinion surveys and part-task simulator studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJAEO..55...32R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJAEO..55...32R"><span>Assessing reference evapotranspiration at regional scale based on remote sensing, weather forecast and GIS tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramírez-Cuesta, J. M.; Cruz-Blanco, M.; Santos, C.; Lorite, I. J.</p> <p>2017-03-01</p> <p>Reference evapotranspiration (ETo) is a key component in efficient water management, especially in arid and semi-arid environments. However, accurate ETo assessment at the regional scale is complicated by the limited number of weather stations and the strict requirements in terms of their location and surrounding physical conditions for the collection of valid weather data. In an attempt to overcome this limitation, new approaches based on the use of remote sensing techniques and weather forecast tools have been proposed. Use of the Land Surface Analysis Satellite Application Facility (LSA SAF) tool and Geographic Information Systems (GIS) have allowed the design and development of innovative approaches for ETo assessment, which are especially useful for areas lacking available weather data from weather stations. Thus, by identifying the best-performing interpolation approaches (such as the Thin Plate Splines, TPS) and by developing new approaches (such as the use of data from the most similar weather station, TS, or spatially distributed correction factors, CITS), errors as low as 1.1% were achieved for ETo assessment. Spatial and temporal analyses reveal that the generated errors were smaller during spring and summer as well as in homogenous topographic areas. The proposed approaches not only enabled accurate calculations of seasonal and daily ETo values, but also contributed to the development of a useful methodology for evaluating the optimum number of weather stations to be integrated into a weather station network and the appropriateness of their locations. In addition to ETo, other variables included in weather forecast datasets (such as temperature or rainfall) could be evaluated using the same innovative methodology proposed in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060049122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060049122"><span>Longitudinal Study of the Market Penetration of Cockpit Weather Information Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stough, Harry Paul, III; Sireli, Yesim; Ozan, Erol; Kauffmann, Paul</p> <p>2005-01-01</p> <p>The purpose of the longitudinal research of the market penetration of cockpit weather information systems (CWIS) is to contribute to the body of knowledge on modeling advanced technology feasibility in aviation by tracking and analyzing the market adoption of CWIS over a three year period. This research takes advantage of a previous study, conducted by Dr. Paul Kauffmann in 2000, which demonstrated an integrated and cost effective approach to evaluate advanced technology feasibility, examining the feasibility of CWIS in five market segments: transport, commuter, general aviation, business, and rotorcraft. The longitudinal research consists of two consecutive studies and produced two reports. The first report was submitted in August 2003 and included general market analysis about the CWIS products in the market at the time, identified their characteristics and examined developing market dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27694348','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27694348"><span>Implementing extreme weather event advice and guidance in English public health systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wistow, Jonathan; Curtis, Sarah; Bone, Angie</p> <p>2017-09-01</p> <p>Extreme weather events (EWEs) can significantly impact on mortality and morbidity in the UK. How EWE guidance is disseminated and applied across health and social care systems, at the local, operational level, is not well understood. This exploratory study develops tools and resources to assist local stakeholders to cascade national 'all weather' EWE guidance across local systems. These resources are also used to evaluate the local interpretation and implementation of this advice and guidance within three local authority areas. In total, five discussion group meetings were held and 45 practitioners took part in the study. A thematic analysis was conducted. The main themes emerging from the analysis related to awareness of PHE guidance for EWE preparedness, data sharing feasibility, community engagement, specific conditions in remote rural areas and capacity of frontline staff. The relative difficulty in finding where the study 'best fits' on local stakeholders' agendas suggests that year-round and preparedness planning for EWEs may not have been considered a high priority in participating areas. This study adds to the relatively limited evidence internationally concerning the practical implementation at local level of national adaptation advice and guidance and potential barriers to achieving this. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29862145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29862145"><span>Space Weathering on Airless Bodies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pieters, Carle M; Noble, Sarah K</p> <p>2016-10-01</p> <p>Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5975224','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5975224"><span>Space Weathering on Airless Bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pieters, Carle M.; Noble, Sarah K.</p> <p>2018-01-01</p> <p>Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produce different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research. PMID:29862145</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-02-09/pdf/2010-2770.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-02-09/pdf/2010-2770.pdf"><span>75 FR 6343 - Information Collection Activity; Comment Request</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-02-09</p> <p>... Independence Ave., SW., Washington, DC 20250-1522. FAX: (202) 720-4120. Title: Weather Radio Transmitter Grant... collection. Abstract: The National Weather Service operates an All Hazards Early Warning System that alerts people in areas covered by its transmissions of approaching dangerous weather and other emergencies. The...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nco.ncep.noaa.gov','SCIGOVWS'); return false;" href="http://www.nco.ncep.noaa.gov"><span>NCEP Central Operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>Climate</em> <em>Climate</em> Prediction <em>Climate</em> Archives Weather Safety Storm Ready NOAA Central Library Photo Library NCO's MISSION * Execute the NCEP operational model suite - Create <em>climate</em>, weather, ocean, space and ) NCO Organizational Chart NOAA's Weather and <em>Climate</em> Operational Supercomputing System is known as</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30953','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30953"><span>Thermoelectric generator installation at Divide Road Weather Information Systems (RWIS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-04-13</p> <p>The Department of Transportation and Public Facilities (DOT&PF) has a network of Road Weather Information System (RWIS) environmental sensor stations (ESS) deployed along the road network. Six of the stations do not have access to commercial power an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4102','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4102"><span>Final evaluation report for the greater Yellowstone regional traveler and weather information system (GYRTWIS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2004-12-30</p> <p>This final report describes the national evaluation of the Greater Yellowstone Regional Traveler and Weather Information System (GYRTWIS). This evaluation complements the ongoing GYRTWIS evaluation being conducted by WTI/MSU by investigating three ar...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170004936','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170004936"><span>Predicted Weather Display and Decision Support Interface for Flight Deck</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Walter W. (Inventor); Wong, Dominic G. (Inventor); Koteskey, Robert W. (Inventor); Wu, Shu-Chieh (Inventor)</p> <p>2017-01-01</p> <p>A system and method for providing visual depictions of a predictive weather forecast for in-route vehicle trajectory planning. The method includes displaying weather information on a graphical display, displaying vehicle position information on the graphical display, selecting a predictive interval, displaying predictive weather information for the predictive interval on the graphical display, and displaying predictive vehicle position information for the predictive interval on the graphical display, such that the predictive vehicle position information is displayed relative to the predictive weather information, for in-route trajectory planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880015721','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880015721"><span>Meteorological and Environmental Inputs to Aviation Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Camp, Dennis W. (Editor); Frost, Walter (Editor)</p> <p>1988-01-01</p> <p>Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21086604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21086604"><span>[On the development of a system of medical weather forecast for the Caucasian Mineral Waters spa-and-resort complex].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Povolotskaia, N P; Efimova, N V; Zherlitsina, L I; Kirilenko, A A; Kortunova, Z V; Golitsin, G S; Senik, I A; Rubinshteĭn, K G</p> <p>2010-01-01</p> <p>A system of medical weather forecast for the Caucasian Mineral Waters spa-and-resort complex has been modified and updated based on the results of long-term observations of weather conditions in the region of interest with special reference to the bioclimatic regime, atmospheric circulation, aerosol pollution of the near-ground air, ultraviolet radiation, heliomagnetic activity, and meteopathic effects. This system provides a basis for the timely emergency meteopreventive treatment of meteodependent patients and therefore can be instrumental in enhancing efficiency of spa-and-resort rehabilitative therapy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980017072','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980017072"><span>LDAR, A Three-Dimensional Lightning Warning System: Its Development and Use by the Government, and Transition to Public Availability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Starr, Stan; Sharp, David; Merceret, Francis; Madura, John; Murphy, Martin</p> <p>1998-01-01</p> <p>NASA, at the John F. Kennedy Space Center (KSC), developed and operates a unique high precision lightning location system to provide lightning related weather warnings. These warnings are used to stop lightning-sensitive operations such as space vehicle launches and ground operations where equipment and personnel are at risk. The data is provided to the Range Weather Operations [45th Weather Squadron, U. S. Air Force (USAF)] where it is used with other meteorological data to issue weather advisories and warnings for Cape Canaveral Air Station (CCAS) and KSC operations. This system, called Lightning Detection and Ranging (LDAR), provides users with a graphical display in three dimensions of 66 MHz radio frequency events generated by lightning processes. The locations of these events provide a sound basis for the prediction of lightning hazards. NASA and Global Atmospherics, Inc. are developing a new system that will replace the unique LDAR components with commercially available and maintainable components having improved capabilities. These components will be phased in to ensure full continuity and access to this important warning technology. These LDAR systems are expected to eventually be available for installation and use by the public at specialized facilities, such as airports, and for general weather warnings via the National Weather Service (NWS) or television broadcast. The NWS in Melbourne has had access to real-time LDAR data since 1993 on an experimental basis. This use of LDAR has shown promise for the improvement of aviation forecasts and severe weather warnings. More so, it has opened the door to investigate the feasibility of issuing lightning-related public advisories. The success of its early use suggests that this technology may improve safety and potentially save lives, therefore constituting a significant benefit to the public. This paper describes the LDR system, the plans and progress of these upgrades, and the potential benefits of its use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4415M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4415M"><span>Overview of Best Practices in Mitigating the Impact of Natural Disasters and Extreme Weather Phenomena on European Aviation - The MOWE-IT Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muehlhausen, Thorsten; Kreuz, Michael; Temme, Annette; Nokkala, Marko; Nurmi, Pertti; Perrels, Adriaan; Hyvarinen, Otto; Yuga, Ilkka; Pylkko, Pirkko; Kral, Stephan; Schaetter, Frank; Bartsch, Mariana; Wiens, Marcus; Michaelides, Silas; Tymvios, Filippos; Papadakis, Matheos; Athanasatos, Spyros</p> <p>2014-05-01</p> <p>The European transport system has shown various degrees of vulnerability to external shocks such as severe weather events, which have partially or, in some cases, totally shut down part of the transport system. Under climate change conditions, the identification of Best Practices within the European area and the proposal of short, medium and long term solutions in order to deal with induced disruptions are vital to upkeep the efficiency and integrity of the European transport network. The MOWE-IT (Management of weather events in the transport system) project is a continuation of the work performed in up-to-date European projects such as the EWENT, WEATHER and ECCONET projects. Its aim is to identify such existing best practices and to develop methodologies in order to assist transport operators, authorities and transport system users to mitigate the impact of natural disasters and extreme weather phenomena on transport system performance. While the MOWE-IT project covers a wide number of transportation modes such as road, rail, marine transport, aviation and inland waterways, in this current work, an overview of the project's work performed in the aviation sector in Europe is presented. The MOWE-IT project is funded by the European Union, under its 7th Framework Programme (TRANSPORT SUPPORT ACTIONS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMES...9..501D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMES...9..501D"><span>An approach to secure weather and climate models against hardware faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Düben, Peter D.; Dawson, Andrew</p> <p>2017-03-01</p> <p>Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelization to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. In this paper, we present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform model simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13 % for the shallow water model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4961D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4961D"><span>An approach to secure weather and climate models against hardware faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Düben, Peter; Dawson, Andrew</p> <p>2017-04-01</p> <p>Enabling Earth System models to run efficiently on future supercomputers is a serious challenge for model development. Many publications study efficient parallelisation to allow better scaling of performance on an increasing number of computing cores. However, one of the most alarming threats for weather and climate predictions on future high performance computing architectures is widely ignored: the presence of hardware faults that will frequently hit large applications as we approach exascale supercomputing. Changes in the structure of weather and climate models that would allow them to be resilient against hardware faults are hardly discussed in the model development community. We present an approach to secure the dynamical core of weather and climate models against hardware faults using a backup system that stores coarse resolution copies of prognostic variables. Frequent checks of the model fields on the backup grid allow the detection of severe hardware faults, and prognostic variables that are changed by hardware faults on the model grid can be restored from the backup grid to continue model simulations with no significant delay. To justify the approach, we perform simulations with a C-grid shallow water model in the presence of frequent hardware faults. As long as the backup system is used, simulations do not crash and a high level of model quality can be maintained. The overhead due to the backup system is reasonable and additional storage requirements are small. Runtime is increased by only 13% for the shallow water model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AdAtS..32..967H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AdAtS..32..967H"><span>Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia</p> <p>2015-07-01</p> <p>To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA41A0287P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA41A0287P"><span>Using Weather Types to Understand and Communicate Weather and Climate Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.</p> <p>2017-12-01</p> <p>A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050147492&hterms=urbanization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Durbanization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050147492&hterms=urbanization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Durbanization"><span>How Cities Make Their Own Weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shepherd, J. Marshall</p> <p>2004-01-01</p> <p>Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in d e near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. We will also present results from experiments using a regional atmospheric-land surface modeling system. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp.1314G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp.1314G"><span>A Meteorological Supersite for Aviation and Cold Weather Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.</p> <p>2018-05-01</p> <p>The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and remote-sensing retrievals. Overall, the results from the five cases are provided and challenges related to observations applicable to aviation meteorology are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030020305&hterms=aviation+safety&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Daviation%2Bsafety','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030020305&hterms=aviation+safety&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Daviation%2Bsafety"><span>Aviation Safety Program: Weather Accident Prevention (WxAP) Development of WxAP System Architecture And Concepts of Operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grantier, David</p> <p>2003-01-01</p> <p>This paper presents viewgraphs on the development of the Weather Accident Prevention (WxAP) System architecture and Concept of Operation (CONOPS) activities. The topics include: 1) Background Information on System Architecture/CONOPS Activity; 2) Activity Work in Progress; and 3) Anticipated By-Products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760015788','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760015788"><span>System development of the Screwworm Eradication Data System (SEDS) algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arp, G.; Forsberg, F.; Giddings, L.; Phinney, D.</p> <p>1976-01-01</p> <p>The use of remotely sensed data is reported in the eradication of the screwworm and in the study of the role of the weather in the activity and development of the screwworm fly. As a result, the Screwworm Eradication Data System (SEDS) algorithm was developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39374','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39374"><span>Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>LaWen Hollingsworth; James Menakis</p> <p>2010-01-01</p> <p>This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17607001Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17607001Z"><span>Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Shiming; Malmqvist, Elin; Li, Yiyun; Jansson, Samuel; Li, Wansha; Duan, Zheng; Fu, Wei; Svanberg, Katarina; Bood, Joakim; Feng, Hongqiang; Åkesson, Susanne; Song, Ziwei; Zhang, Baoxin; Zhao, Guangyu; Li, Dunsong; Brydegaard, Mikkel; Svanberg, Sune</p> <p>2018-04-01</p> <p>A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=249303','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=249303"><span>Evaluating the accuracy of VEMAP daily weather data for application in crop simulations on a regional scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Weather plays a critical role in eco-environmental and agricultural systems. Limited availability of meteorological records often constrains the applications of simulation models and related decision support tools. The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) provides daily weather...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3442','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3442"><span>Implementation of a weather responsive traffic estimation and prediction system (TrEPS) for signal timing at Utah DOT.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-07-01</p> <p>The overall goal of this project is to integrate and operationalize weather-sensitive TrEPS models calibrated for the Salt Lake City region to support weather-responsive traffic signal timing implementation and evaluation in the Riverdale corridor in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nws.noaa.gov/om/marine/wxsat.htm','SCIGOVWS'); return false;" href="http://www.nws.noaa.gov/om/marine/wxsat.htm"><span>NOAA WEATHER SATELLITES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>extent of snow cover. In addition, <em>satellite</em> <em>sensors</em> detect ice fields and map the movement of sea and greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE <em>SATELLITE</em> PRODUCTS NOAA's operational weather <em>satellite</em> system is composed of two types of satellites: geostationary operational</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=259527','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=259527"><span>Decision Aids for Multiple-Decision Disease Management as Affected by Weather Input Errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Many disease management decision support systems (DSS) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation or estimation from off-site sources, may affect model calculations and manage...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TESS....120004Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TESS....120004Z"><span>CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo</p> <p>2015-04-01</p> <p>With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC53E1338C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC53E1338C"><span>Next generation of weather generators on web service framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chinnachodteeranun, R.; Hung, N. D.; Honda, K.; Ines, A. V. M.</p> <p>2016-12-01</p> <p>Weather generator is a statistical model that synthesizes possible realization of long-term historical weather in future. It generates several tens to hundreds of realizations stochastically based on statistical analysis. Realization is essential information as a crop modeling's input for simulating crop growth and yield. Moreover, they can be contributed to analyzing uncertainty of weather to crop development stage and to decision support system on e.g. water management and fertilizer management. Performing crop modeling requires multidisciplinary skills which limit the usage of weather generator only in a research group who developed it as well as a barrier for newcomers. To improve the procedures of performing weather generators as well as the methodology to acquire the realization in a standard way, we implemented a framework for providing weather generators as web services, which support service interoperability. Legacy weather generator programs were wrapped in the web service framework. The service interfaces were implemented based on an international standard that was Sensor Observation Service (SOS) defined by Open Geospatial Consortium (OGC). Clients can request realizations generated by the model through SOS Web service. Hierarchical data preparation processes required for weather generator are also implemented as web services and seamlessly wired. Analysts and applications can invoke services over a network easily. The services facilitate the development of agricultural applications and also reduce the workload of analysts on iterative data preparation and handle legacy weather generator program. This architectural design and implementation can be a prototype for constructing further services on top of interoperable sensor network system. This framework opens an opportunity for other sectors such as application developers and scientists in other fields to utilize weather generators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec155-1020.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec155-1020.pdf"><span>33 CFR 155.1020 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... vessel or aircraft outfitted with the dispersant-application equipment acting as the delivery system for...: Adverse weather means the weather conditions that will be considered when identifying response systems and equipment in a response plan for the applicable operating environment. Factors to consider include, but are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec155-1020.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec155-1020.pdf"><span>33 CFR 155.1020 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... vessel or aircraft outfitted with the dispersant-application equipment acting as the delivery system for...: Adverse weather means the weather conditions that will be considered when identifying response systems and equipment in a response plan for the applicable operating environment. Factors to consider include, but are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/22191','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/22191"><span>Wet weather highway accident analysis and skid resistance data management system (volume I).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1992-06-01</p> <p>The objectives and scope of this research are to establish an effective methodology for wet weather accident analysis and to develop a database management system to facilitate information processing and storage for the accident analysis process, skid...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/16091','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/16091"><span>Arizona Road Weather Information System (RWIS) communications plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-04-01</p> <p>There have been two implementations of Roadway Weather Information Systems in Arizona, known as RWIS Phase 0 and Phase 1. Each Phase has met with limited success and has on-going issues that need to be addressed before new RWIS sites are implemented....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.329J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.329J"><span>Error discrimination of an operational hydrological forecasting system at a national scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, F.; Brauchli, T.</p> <p>2010-09-01</p> <p>The use of operational hydrological forecasting systems is recommended for hydropower production as well as flood management. However, the forecast uncertainties can be important and lead to bad decisions such as false alarms and inappropriate reservoir management of hydropower plants. In order to improve the forecasting systems, it is important to discriminate the different sources of uncertainties. To achieve this task, reanalysis of past predictions can be realized and provide information about the structure of the global uncertainty. In order to discriminate between uncertainty due to the weather numerical model and uncertainty due to the rainfall-runoff model, simulations assuming perfect weather forecast must be realized. This contribution presents the spatial analysis of the weather uncertainties and their influence on the river discharge prediction of a few different river basins where an operational forecasting system exists. The forecast is based on the RS 3.0 system [1], [2], which is also running the open Internet platform www.swissrivers.ch [3]. The uncertainty related to the hydrological model is compared to the uncertainty related to the weather prediction. A comparison between numerous weather prediction models [4] at different lead times is also presented. The results highlight an important improving potential of both forecasting components: the hydrological rainfall-runoff model and the numerical weather prediction models. The hydrological processes must be accurately represented during the model calibration procedure, while weather prediction models suffer from a systematic spatial bias. REFERENCES [1] Garcia, J., Jordan, F., Dubois, J. & Boillat, J.-L. 2007. "Routing System II, Modélisation d'écoulements dans des systèmes hydrauliques", Communication LCH n° 32, Ed. Prof. A. Schleiss, Lausanne [2] Jordan, F. 2007. Modèle de prévision et de gestion des crues - optimisation des opérations des aménagements hydroélectriques à accumulation pour la réduction des débits de crue, thèse de doctorat n° 3711, Ecole Polytechnique Fédérale, Lausanne [3] Keller, R. 2009. "Le débit des rivières au peigne fin", Revue Technique Suisse, N°7/8 2009, Swiss engineering RTS, UTS SA, Lausanne, p. 11 [4] Kaufmann, P., Schubiger, F. & Binder, P. 2003. Precipitation forecasting by a mesoscale numerical weather prediction (NWP) model : eight years of experience, Hydrology and Earth System</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SpWea..14..937T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SpWea..14..937T"><span>Ionospheric TEC Weather Map Over South America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.</p> <p>2016-11-01</p> <p>Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) <10) to the crest region (TECU > 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020060754','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020060754"><span>Observing System Forecast Experiments at the DAO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atlas, Robert</p> <p>2001-01-01</p> <p>Since the advent of meteorological satellites in the 1960's, numerous experiments have been conducted in order to evaluate the impact of these and other data on atmospheric analysis and prediction. Such studies have included both OSE'S and OSSE's. The OSE's were conducted to evaluate the impact of specific observations or classes of observations on analyses and forecasts. Such experiments have been performed for selected types of conventional data and for various satellite data sets as they became available. (See for example the 1989 ECMWF/EUMETSAT workshop proceedings on "The use of satellite data in operational numerical weather prediction" and the references contained therein.) The ODYSSEY were conducted to evaluate the potential for future observing systems to improve Numerical Weather Prediction NWP and to plan for the Global Weather Experiment and more recently for EVANS (Atlas et al., 1985a; Arnold and Day, 1986; Hoffman et al., 1990). In addition, OSSE's have been run to evaluate trade-offs in the design of observing systems and observing networks (Atlas and Emmitt, 1991; Rohaly and Krishnamurti, 1993), and to test new methodology for data assimilation (Atlas and Bloom, 1989).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>