Sample records for web based astronomy

  1. Results from Two Years of Web-Based Astronomy Teaching

    NASA Astrophysics Data System (ADS)

    Wallin, J.

    1996-12-01

    During the last two years, course notes, supplemental material, bulletin boards, and an interactive quiz system have been developed for the introductory astronomy course at George Mason University. In this talk, I will present results about the level of Web literacy, Web usage, and educational effectiveness of this system based on in-class surveys and test results. The results presented are based on a 300 person survey course composed primarily of non-science majors. Although this course currently includes a lecture section, we plan to offer this as a web-based distance learning course within six months.

  2. Great IDEAS: Telescopes, Computers, and Education

    NASA Astrophysics Data System (ADS)

    Nook, M. A.; Williams, D. L.

    1999-05-01

    Two workshops were developed for k-12 teachers that take advantage of the excitement students esperience when viewing objects through a telescope for the first time and the growth in educational opportunities that the internet has generated. The observational astronomy workshop focused on teaching educators a few basics about naked-eye, binocular, and small telescope observing; while the computers in astronomy education workshop taught teachers to develop simple web sites and permitted them to test astronomy software. The observational astronomy workshop met for three days on the SCSU campus to teach basic celestial motions, several constellations, and the basic operation of small telescopes. The next four nights were spent at Camden State Park in southwest Minnesota learning to locate deep sky objects and preparing public presentations. The final two nights the teachers presented public observing programs at three state parks. Fifty percent of the teachers implemented night observing into their curriculum this past year, and one teacher purchased her own telescope to use with students and to help other teachers in the district. The computers in astronomy workshop introduced the teachers to several commercially available astronomy software packages and taught them the fundamentals of constructing simple web pages. The participants were required to develop astronomy lessons based on one of the software packages or a web site that they developed. Each participant then constructed a web-based lesson plan, student lesson, and teacher's guide for their lesson. These lessons are available at http://enstein.stcloudstate.edu/nook/IDEAS/computers/. Support for this work was provided by NASA through grant numbers ED-90156.01-97A and ED-90157.01-97A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  3. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.

  4. Web-based visualization of very large scientific astronomy imagery

    NASA Astrophysics Data System (ADS)

    Bertin, E.; Pillay, R.; Marmo, C.

    2015-04-01

    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.

  5. A Virtual Tour of the Radio Astronomy Process

    NASA Astrophysics Data System (ADS)

    Conrad, S. B.; Finley, D. G.; Claussen, M. J.; Ulvestad, J. S.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching Degree at New Mexico Tech and participating in the Research Experience for Teachers (RET) program sponsored by the National Science Foundation, spent eight weeks as interns researching and working on projects at the National Radio Astronomy Observatory (NRAO) which will directly benefit students in their classrooms and also impact other science educators. One of the products of the interships is a set of web pages for NRAO's web page educational section. The purpose of these web pages is to familiarize students, teachers, and other people with the process that a radio astronomer goes through to do radio astronomy science. A virtual web tour was created of this process. This required interviewing radio astronomers and other professionals involved with this process at the NRAO (e.g. engineers, data analysts, and operations people), and synthesizing the interviews into a descriptive, visual-based set of web pages. These pages do meet the National as well as New Mexico Standards and Benchmarks for Science Education. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  6. World Wide Web Astronomy 2.0

    NASA Astrophysics Data System (ADS)

    Koppelman, M.; Gay, P. L.

    2008-11-01

    The Internet has changed astronomy. It's changed research, outreach and education and it's changed how people consume astronomy as enthusiasts. People have new ways to talk to each other and new ways to participate. Coined ``Web 2.0,'' technologies such as blogs, social networks, wikis, photo and video sharing sites, podcasts and micro-blogging have been adopted by the astronomy community and exciting things are happening as a result. The International Year of Astronomy's New Media Task Force has been working to harness the excitement of ``Web 2.0'' to make the International Year of Astronomy (IYA2009) highly visible on the Internet around the world.

  7. Web-Based Time Synchronization - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Display Clocks USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Web-Based Time Synchronization Web time displays from the

  8. Video-Tutorials for Tech Sign Vocabulary in Astronomy

    ERIC Educational Resources Information Center

    Egelston-Dodd, Judy; Ting, Simon

    2007-01-01

    This article describes the mediated American Sing Language (ASL) presentation of technical vocabulary and definitions within the context of a web-based astronomy course for first year students at the National Technical Institute for the Deaf at Rochester Institute of Technology (Rochester, NY). Deaf students showed achievement gains with fewer…

  9. Astronomy On-Line Programme Enters "hot Week"

    NASA Astrophysics Data System (ADS)

    1996-11-01

    World's Biggest Astronomy WWW-Event Attracts Thousands of Students The Astronomy On-line Programme (See ESO Press Release 09/96 of 18 June 1996) began officially on 1 October and is now about to enter its most intense phase, known as the Hot Week . On 18 - 22 November, an estimated 4000 astronomy-interested, mostly young people in Europe and on four other continents will get together during five days in what - not unexpected - has become the world's biggest astronomy event ever organised on the World Wide Web. This carefully structured Programme is carried out in collaboration between the European Association for Astronomy Education (EAAE), the European Southern Observatory and the European Commission, under the auspices of the Fourth European Week for Scientific and Technological Culture. The Programme has already had a most visible impact on the school education of natural sciences in various countries; for instance, the Internet-connection of schools has been advanced in some, in order to allow groups to participate. There have been numerous contacts among the groups across the borders and there are clear signs that many Astronomy On-line participants have progressed to use the impressive possibilities of the Web in an efficient and structured way. There has been a lively media interest in Astronomy On-line all over Europe and it is expected to increase during the next week. The current status of Astronomy On-line It is obvious that the pilot function of the Astronomy On-line Programme in the use of the Web has been very effective and that the associated dissemination of astronomical knowledge has been successful. At this time, more than 650 groups have registered with Astronomy On-line. Most come from 31 different European countries and a few dozen groups are located in North and South America as well as in Asia and Australia. Together they have experienced the steady build-up of Astronomy On-line over the past weeks, by means of numerous contributions from a large number of teachers, amateur astronomers and others interested in this field of science. The Astronomy On-line concept is that of a well-structured marketplace with a number of different shops which cater to the participants with a great variety of interesting and educational activities. These range from the availability of useful links to educational and scientific Web sites all around the world, collaborative projects where many participants in different countries work together to achieve an astronomical result and, not the least, the possibility to submit observing programmes to a dozen telescopes at 10 major observatories, including La Silla in Chile. In the early phases of Astronomy On-line , coordinated observations were performed of a lunar eclipse on 27 September and a partial solar eclipse on 12 October. Both events attracted many hundreds of observers from groups in almost all European countries and provisional reports have already been published on the Web. Many beautiful photographs and interesting reports about the activities of the individual groups are also available at their special Web sites. The Hot Week will last from Monday to Friday, 18-22 November and the time interval from 15:00-21:00 UT (16:00 - 22:00 Central European Time) will be the busiest. During this period, a variety of activities will take place. For instance, the groups will have the opportunity to contact professional astronomers at many observatories. They will also be invited to follow the other developments, e.g. the astronomical observations. The resulting images will immediately be made available on the Web. There will also be a Final Event involving all the groups. How to obtain more information about Astronomy On-line Astronomy On-line may be accessed through: http://www.eso.org/astronomyonline/ and http://www.algonet.se/~sirius/eaae.htm. National Astronomy On-line Committees have been established in many European countries. They have set up National Astronomy On-line Web-sites which can be reached directly from the sites indicated above. Information about the individual groups, their participants' interests as well as their postal, E-mail and Web addresses are also available, sorted by country. The addresses of the National organisers of Astronomy On-line may be found at these Web sites. A full report about this unique pilot project will become available before the end of this year. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  10. Teach Astronomy: An Online Textbook for Introductory Astronomy Courses and Resources for Informal Learners

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Impey, C. D.; Patikkal, A.

    2012-05-01

    This year we implemented Teach Astronomy (www.teachastronomy.com) as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive content includes: an introductory astronomy text book by Chris Impey, astronomy articles on Wikipedia, images from the Astronomy Picture of the Day, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy, and astronomy news from Science Daily. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. Steep increases in textbook prices and the unique capabilities of emerging web technology motivated the development of this free online resource. Recent additions to Teach Astronomy include: images and diagrams for the textbook articles, mobile device implementation, and suggested homework assignments for instructors that utilize recent discoveries in astronomy. We present an overview of how Teach Astronomy has been implemented for use in the classroom and informal settings, and suggestions for utilizing the rich content and features of the web site.

  11. Using Firefly Tools to Enhance Archive Web Pages

    NASA Astrophysics Data System (ADS)

    Roby, W.; Wu, X.; Ly, L.; Goldina, T.

    2013-10-01

    Astronomy web developers are looking for fast and powerful HTML 5/AJAX tools to enhance their web archives. We are exploring ways to make this easier for the developer. How could you have a full FITS visualizer or a Web 2.0 table that supports paging, sorting, and filtering in your web page in 10 minutes? Can it be done without even installing any software or maintaining a server? Firefly is a powerful, configurable system for building web-based user interfaces to access astronomy science archives. It has been in production for the past three years. Recently, we have made some of the advanced components available through very simple JavaScript calls. This allows a web developer, without any significant knowledge of Firefly, to have FITS visualizers, advanced table display, and spectrum plots on their web pages with minimal learning curve. Because we use cross-site JSONP, installing a server is not necessary. Web sites that use these tools can be created in minutes. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). We are using Firefly to serve many projects including Spitzer, Planck, WISE, PTF, LSST and others.

  12. Teaching Astronomy Online

    NASA Astrophysics Data System (ADS)

    Radnofsky, Mary L.; Bobrowsky, Matthew

    This article is intended to provide an overview of the practical, pedagogical, and philosophical considerations in designing a Web-based astronomy course, and to demonstrate the educational benefits that such online courses can afford students. Because online students need to take more responsibility for their learning, faculty must make course expectations extremely clear. Online education allows for increased student participation and equal access to college by such groups as the military, the handicapped, full-time employees, and rural and senior citizens. Teaching the sciences online--especially astronomy--gives students more time to think critically about new information. This article also includes tools, checklists, and resources helpful for introducing faculty to online course development in astronomy.

  13. Astronomers Without Borders: A Global Astronomy Community

    NASA Astrophysics Data System (ADS)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  14. The NASA ADS Abstract Service and the Distributed Astronomy Digital Library [and] Project Soup: Comparing Evaluations of Digital Collection Efforts [and] Cross-Organizational Access Management: A Digital Library Authentication and Authorization Architecture [and] BibRelEx: Exploring Bibliographic Databases by Visualization of Annotated Content-based Relations [and] Semantics-Sensitive Retrieval for Digital Picture Libraries [and] Encoded Archival Description: An Introduction and Overview.

    ERIC Educational Resources Information Center

    Kurtz, Michael J.; Eichorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Demleitner, Markus; Murray, Stephen S.; Jones, Michael L. W.; Gay, Geri K.; Rieger, Robert H.; Millman, David; Bruggemann-Klein, Anne; Klein, Rolf; Landgraf, Britta; Wang, James Ze; Li, Jia; Chan, Desmond; Wiederhold, Gio; Pitti, Daniel V.

    1999-01-01

    Includes six articles that discuss a digital library for astronomy; comparing evaluations of digital collection efforts; cross-organizational access management of Web-based resources; searching scientific bibliographic databases based on content-based relations between documents; semantics-sensitive retrieval for digital picture libraries; and…

  15. The Astronomy Workshop: Computer Assisted Learning Tools with Instructor Support Materials and Student Activities

    NASA Astrophysics Data System (ADS)

    Deming, Grace; Hamilton, D.; Hayes-Gehrke, M.

    2006-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive World Wide Web tools that were developed under the direction of Doug Hamilton for use in undergraduate classes, as supplementary materials appropriate for grades 9-12, and by the general public. The philosophy of the website is to foster student and public interest in astronomy by capitalizing on their fascination with computers and the internet. Many of the tools were developed by graduate and undergraduate students at UMD. This website contains over 20 tools on topics including scientific notation, giant impacts, extrasolar planets, astronomical distances, planets, moons, comets, and asteroids. Educators around the country at universities, colleges, and secondary schools have used the Astronomy Workshop’s tools and activities as homework assignments, in-class demos, or extra credit. Since 2005, Grace Deming has assessed several of the Astronomy Workshop’s tools for clarity and effectiveness by interviewing students as they used tools on the website. Based on these interviews, Deming wrote student activities and instructor support materials and posted them to the website. Over the next three years, we will continue to interview students, develop web materials, and field-test activities. We are targeting classes in introductory undergraduate astronomy courses and grades 11-12 for our Spring 2007 field tests. We are interested in hearing your ideas on how we can make the Astronomy Workshop more appealing to educators, museum directors, specialty programs, and professors. This research is funded by NASA EPO grants NNG04GM18G and NNG06GGF99G.

  16. Contribution to the popularization of the astronomy

    NASA Astrophysics Data System (ADS)

    Markishki, Pencho

    The purpose of this report is the representation of a WEB-book, related to astronomy, astro-photography, optics and some additional areas that have direct practice for the amateur astronomers. The popularization of astronomy worldwide is the purpose of many amateur astronomers. It is interesting and maybe fascinated, requires often innovative solutions from the hobby star observers. Today it is possible to share the science information by different methods, using the modern information technologies - a possibility used by the amateur astronomers too. In Internet existing currently thousands of WEB- sites, related to astronomy, completed training programs developed by amateur astronomers are included. They are addressed often to the schools, to the hobby beginners or to the wide audience.

  17. Astronomy 3.0 Style

    NASA Astrophysics Data System (ADS)

    Accomazzi, A.

    2010-10-01

    Over the next decade, we will witness the development of a new infrastructure in support of data-intensive scientific research, which includes Astronomy. This new networked environment will offer both challenges and opportunities to our community and has the potential to transform the way data are described, curated and preserved. Based on the lessons learned during the development and management of the ADS, a case is made for adopting the emerging technologies and practices of the Semantic Web to support the way Astronomy research will be conducted. Examples of how small, incremental steps can, in the aggregate, make a significant difference in the provision and repurposing of astronomical data are provided.

  18. The Astronomy Workshop Extragalactic: Web Tools for Use by Students

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa N.; Bolatto, A. D.

    2014-01-01

    The Astronomy Workshop Extragalactic (http://carma.astro.umd.edu/AWE) is a collection of interactive web tools that were developed for use in undergraduate and high school classes and by the general public. The focus of the tools is on concepts encountered in extragalactic astronomy, which are typically quite difficult for students to understand. Current tools explore Olbers' Paradox; the appearance of galaxies in different wavelengths of light; the Doppler Effect; cosmological redshift; gravitational lensing; Hubble's Law; cosmological parameters; and measuring masses of black holes by observing stellar orbits. The tools have been developed by undergraduate students under our supervision and we are planning to continue to add more tools. This project was inspired by the Astronomy Workshop (http://janus.astro.umd.edu) by Doug Hamilton which has web tools exploring more general astronomical concepts. We would like to thank the NSF for support through the CAREER grant NSF-AST0955836, and the Research Corporation for Science Advancement for a Cottrell Scholar award.

  19. Effectiveness of a Web-Supplemented Astronomy Survey Course

    NASA Astrophysics Data System (ADS)

    Hufnagel, B.

    1997-12-01

    An astronomy survey course for \\ 200 non-science majors, offered in spring 1997 at Michigan State University, was supplemented with an internet site. Web access was voluntary, with the exception of about 10% of the homework problems. In addition, all of the answers to homeworks, in-class activities, and tests were available only on the website. The website included web versions of all the usual hard-copy handouts, as well as lecture notes, links to other astronomy URLs, and a frequently-asked question (FAQ) site taken from student email to the professors. MSU students can access the Web through \\ 30 PC labs on and off campus, and through private PCs in the dorms where most of the MSU students live. A mid-semester open-ended feedback form (for class credit) was administered in-class to the students, with 151 respondents. Their responses to the question ``About how frequently do you access the course website?'' will be correlated to their grade at that point in the course, their gender, and their purpose for accessing the website. These results will be interesting to astronomy teachers who would like to offer additional resources and more lines of communication to their students at low cost and without abandoning traditional methods.

  20. Hands-on-Universe, Europe Bringing frontline interactive astronomy to the classroom

    NASA Astrophysics Data System (ADS)

    Ferlet, R.

    Hands-on-Universe, Europe (EU-HOU) aims at re-awakening the interest for science in the young generations through astronomy and new technologies. It relies on real observations acquired through a worldwide internet-based network of automatic telescopes or with didactical tools (webcam, radiotelescope). Pupils manipulate images in the classroom environment, using specific software within pedagogical resources constructed in close collaboration between researchers and teachers. EU-HOU is freely available on the web, and trains european teachers.

  1. Bibliographic Resources for the Historian of Astronomy

    NASA Astrophysics Data System (ADS)

    Corbin, B. G.

    1999-12-01

    Many large library collections now have online bibliographic catalogs on the web. These provide many hidden resources for the historian of astronomy. Special searching techniques will allow the historian to scan bibliographic records of hundreds of entries relating to biographies of astronomers, collected works of astronomers, ancient and medieval astronomy and many other historical subjects. Abstract databases such as the Astrophysics Data System and ARIBIB are also adding much historical bibliographic information. ARIBIB will eventually contain scanned images of the Astronomischer Jahresbericht containing bibliographic entries for all literature of astronomy from 1899 to 1968 and Astronomy and Astrophysics Abstracts from 1969 to present. Commercial services such as UnCover and FirstSearch provide a means of reaching bibliographic entries for journal and book literature in the history of astronomy which were not easily located in the past. A broad overview of these collections and services will be given, and searching techniques for finding ``hidden" bibliographic data will be presented. Web page addresses will be given for all sources covered.

  2. Radio and Optical Telescopes for School Students and Professional Astronomers

    NASA Astrophysics Data System (ADS)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  3. LAO web page

    Science.gov Websites

    of adaptive optics systems for the next generation of high resolution astronomy instrumentation. The largest telescopes in support of UC Astronomy, including those at the Keck, Gemini, and Lick Observatories optics for astronomy: MEMS and fiber lasers lead the way. In Adaptive Optics: Analysis, Methods and

  4. Space Mysteries: Making Science and Astronomy Learning Fun

    NASA Astrophysics Data System (ADS)

    Plait, P.; Tim, G.; Cominsky, L.

    2001-12-01

    How do you get and keep a student's attention during class? Make learning fun! Using a game to teach students ensures that they have fun, enjoy the lesson and remember it. We have developed a series of interactive web and CD based games called "Space Mysteries" to teach students math, physics and astronomy. Using real NASA data, the students must find out Who (or What) dunit in an engaging astronomy mystery. The games include video interviews with famous scientists, actors playing roles who give clues to the solution, and even a few blind alleys and red herrings. The first three games are currently online in beta release at http://mystery.sonoma.edu.

  5. Links | CTIO

    Science.gov Websites

    MNRAS New Astronomy New Scientist PASP SAO/NASA ADS Science StarHeads (people) Newsletters, Newspapers & Other Links 4th Region Info Astronomy Pic of the Day AstroWeb CDS AstroResources STScI BBC news

  6. A Review of Astronomy Education Research

    NASA Astrophysics Data System (ADS)

    Bailey, Janelle M.; Slater, Timothy F.

    The field of astronomy education is rapidly growing beyond merely sharing effective activities or curriculum ideas. This paper categorizes and summarizes the literature in astronomy education research and contains more than 100 references to articles, books, and Web-based materials. Research into student understanding on a variety of topics now occupies a large part of the literature. Topics include the shape of Earth and gravity, lunar phases, seasons, astrobiology, and cosmology. The effectiveness of instructional methods is now being tested systematically, taking data beyond the anecdotal with powerful research designs and statistical analyses. Quantitative, qualitative, and mixed-methods approaches have found their places in the researcher's toolbox. In all cases, the connection between the research performed and its effect on classroom instruction is largely lacking.

  7. Hera: Using NASA Astronomy Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mitchell, S.; Pence, W. D.

    2006-12-01

    Hera is a free internet-based tool that provides students access to both analysis software and data for studying astronomical objects such as black holes, binary star systems, supernovae, and galaxies. Students use a subset of the same software, and experience the same analysis process, that an astronomer follows in analyzing data obtained from an orbiting satellite observatory. Hera is accompanied by a web-based tutorial which steps students through the science background, procedures for accessing the data, and using the Hera software. The web pages include a lesson plan in which students explore data from a binary star system containing a normal star and a black hole. The objective of the lesson is for students to use plotting, estimation, and statistical techniques to determine the orbital period. Students may then apply these techniques to a number of data sets and draw conclusions on the natures of the systems (for example, students discover that one system is an eclipsing binary). The web page tutorial is self-guided and contains a number of exercises; students can work independently or in groups. Hera has been use with high school students and in introductory astronomy classes in community colleges. This poster describes Hera and its web-based tutorial. We outline the underlying software architecture, the development process, and its testing and classroom applications. We also describe the benefits to students in developing skills which extend basic science and math concepts into real applications.

  8. Astronomy Fun with Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Morris, Frank

    2016-01-01

    Those mobile devices your students bring to class can do more that tweet and text. Engage your students with these web-based astronomy learning tools that allow students to manipulate astronomical data to learn important concepts. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. With "Three Color" students can combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. "Star Clusters" allows students to compare images of clusters with a pre-defined template of colors and sizes to compare clusters of different ages. An adaptation of Travis Rector's "NovaSearch" allows students to examine images of the central regions of the Andromeda Galaxy to find novae and to measure the time over which the nova fades away. New additions to our suite of applications allow students to estimate the surface temperatures of exoplanets and the probability of life elsewhere in the Universe. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  9. Astronomy Learning Activities for Tablets

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Morris, Frank

    2015-08-01

    Four web-based tools allow students to manipulate astronomical data to learn concepts in astronomy. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. The first tool “Three Color” allows students to combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. The second tool “Star Clusters” allows students to compare images of stars in clusters with a pre-defined template of colors and sizes in order to produce color-magnitude diagrams to determine cluster ages. The third tool adapts Travis Rector’s “NovaSearch” to allow students to examine images of the central regions of the Andromeda Galaxy to find novae. After students find a nova, they are able to measure the time over which the nova fades away. A fourth tool, Proper Pair, allows students to interact with Hipparcos data to evaluate close double stars are physical binaries or chance superpositions. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  10. Data-Rich Astronomy: Mining Sky Surveys with PhotoRApToR

    NASA Astrophysics Data System (ADS)

    Cavuoti, Stefano; Brescia, Massimo; Longo, Giuseppe

    2014-05-01

    In the last decade a new generation of telescopes and sensors has allowed the production of a very large amount of data and astronomy has become a data-rich science. New automatic methods largely based on machine learning are needed to cope with such data tsunami. We present some results in the fields of photometric redshifts and galaxy classification, obtained using the MLPQNA algorithm available in the DAMEWARE (Data Mining and Web Application Resource) for the SDSS galaxies (DR9 and DR10). We present PhotoRApToR (Photometric Research Application To Redshift): a Java based desktop application capable to solve regression and classification problems and specialized for photo-z estimation.

  11. Astronomie, écologie et poésie par Hubert Reeves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-21

    Hubert ReevesL'astrophysicien donne une conférence puis s'entretient avec l'écrivain François Bon autour de :"Astronomie, écologie et poésie"Pour plus d'informations : http://outreach.web.cern.ch/outreach/FR/evenements/conferences.htmlNombre de places limité. Réservation obligatoire à la Réception du CERN : +41 22 767 76 76  Soirée diffusée en direct sur le Web : http://webcast.cern.ch/      

  12. Sixty Symbols, by The University of Nottingham

    NASA Astrophysics Data System (ADS)

    MacIsaac, Dan

    2009-11-01

    Faculty at the University of Nottingham are continuing to develop short (5-10 minutes long) insightful video-streamed vignettes for the web. Their earlier sites: Test Tube: Behind the World of Science and the widely known Periodic Table of Videos (a video on each element in the periodic table featured in WebSights last semester) have been joined by a new effort from the faculty of Physics, Astronomy and Engineering-Sixty Symbols: Videos about the Symbols of Physics and Astronomy. I liked the vignette on chi myself.

  13. SkyServer Voyages Website - Using Big Data to Explore Astronomy Concepts in Formal Education Settings

    NASA Astrophysics Data System (ADS)

    Meredith, Kate K.; Masters, Karen; Raddick, Jordan; Lundgren, Britt

    2015-08-01

    The Sloan Digital Sky Survey (SDSS) web interface “SkyServer” has long included online educational materials designed to help students and the public discover the fundamentals of modern astronomy using real observations from the SDSS database. The newly launched SDSS Voyages website updates and expands these activities to reflect new data from subsequent generations of the survey, advances in web technology, and evolving practices in science education. Voyages provides access to quality astronomy, astrophysics, and engineering materials to educators seeking an inquiry approach to fundamental concepts. During this session we will provide an overview of the design and development of Skyserver Voyages and discuss ways to apply this resource at K-12 and university levels.

  14. Astronomical activities with disabled people

    NASA Astrophysics Data System (ADS)

    Ortiz-Gil, Amelia; Blay, Pere; Gallego Calvente, A. Teresa; Gómez, Miquel; Guirado, José Carlos; Lanzara, Mariana; Martínez Núñez, Silvia

    2011-06-01

    As we celebrate the International Year of Astronomy, we have been working on four different projects with the goal of making astronomy more accessible to people with special needs. These projects are 1) an astronomy book and web site for blind people, 2) an open source software for people with motor disabilities, 3) a planetarium program for the visually impaired and 4) educational material for intellectually disabled people.

  15. Exploring science and technology through the Herschel space observatory

    NASA Astrophysics Data System (ADS)

    Minier, V.; Rouzé, M.

    2015-03-01

    Because modern astronomy associates the quest of our origins and high-tech instruments, communicating and teaching astronomy explore both science and technology. We report here on our work in communicating astronomy to the public through Web sites (www.herschel.fr), movies on Dailymotion (www.dailymotion.com/AstrophysiqueTV) and new ITC tools that describe interactively the technological dimension of a space mission for astrophysics.

  16. Socorro Students Translate NRAO Web Pages Into Spanish

    NASA Astrophysics Data System (ADS)

    2002-07-01

    Six Socorro High School students are spending their summer working at the National Radio Astronomy Observatory (NRAO) on a unique project that gives them experience in language translation, World Wide Web design, and technical communication. Under the project, called "Un puente a los cielos," the students are translating many of NRAO's Web pages on astronomy into Spanish. "These students are using their bilingual skills to help us make basic information about astronomy and radio telescopes available to the Spanish-speaking community," said Kristy Dyer, who works at NRAO as a National Science Foundation postdoctoral fellow and who developed the project and obtained funding for it from the National Aeronautics and Space Administration. The students are: Daniel Acosta, 16; Rossellys Amarante, 15; Sandra Cano, 16; Joel Gonzalez, 16; Angelica Hernandez, 16; and Cecilia Lopez, 16. The translation project, a joint effort of NRAO and the NM Tech physics department, also includes Zammaya Moreno, a teacher from Ecuador, Robyn Harrison, NRAO's education officer, and NRAO computer specialist Allan Poindexter. The students are translating NRAO Web pages aimed at the general public. These pages cover the basics of radio astronomy and frequently-asked questions about NRAO and the scientific research done with NRAO's telescopes. "Writing about science for non-technical audiences has to be done carefully. Scientific concepts must be presented in terms that are understandable to non-scientists but also that remain scientifically accurate," Dyer said. "When translating this type of writing from one language to another, we need to preserve both the understandability and the accuracy," she added. For that reason, Dyer recruited 14 Spanish-speaking astronomers from Argentina, Mexico and the U.S. to help verify the scientific accuracy of the Spanish translations. The astronomers will review the translations. The project is giving the students a broad range of experience. "They are getting hands-on experience in language translation, in Web design and computer science, and learning some astronomy as well," said Dyer. "This is a challenging project, but these students are meeting the challenge well," she added. The students are enthusiastic. "I've always been interested in stars and space, and I love working with computers," said Amarante. "We are pleased that these local students are using their skills to enhance our public-education efforts," said NRAO's director of New Mexico operations James Ulvestad. "Our Web site is one of our best tools for informing the public about astronomy and the work done at our observatory. This translation project now allows us to reach an important new audience," Ulvestad added. The students began the project in June and will complete the effort on July 26. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  17. Skynet Junior Scholars: Bringing Astronomy to Deaf and Hard of Hearing Youth

    NASA Astrophysics Data System (ADS)

    Meredith, Kate; Williamson, Kathryn; Gartner, Constance; Hoette, Vivian L.; Heatherly, Sue Ann

    2016-01-01

    Skynet Junior Scholars (SJS), funded by the National Science Foundation, aims to engage middle school youth from diverse audiences in investigating the universe with research quality robotic telescopes. SJS project development goals include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project by all youth including those with blindness or low vision and those who are Deaf or Hard of Hearing.Deaf and Hard of Hearing (DHH) students have long been an underserved population within STEM fields, including astronomy. Two main barriers include: (1) insufficient corpus of American Sign Language (ASL) for astronomy terminology, and (2) DHH education professionals who lack astronomy background. A suite of vocabulary, accessible hands-on activities, and interaction with trained professionals, are critical for enhancing the background experiences of DHH youth, as they may come to an astronomy lesson lacking the basic "incidental learning" that is often taken for granted with hearing peers (for example, from astronomy in the media).A collaboration between the Skynet Junior Scholars (SJS) project and the Wisconsin School for the Deaf is bringing astronomy to the DHH community in an accessible way for the first time. We follow a group of seven DHH youth over one semester as they interact with the SJS tools and curriculum to understand how they assimilate astronomy experiences and benefit from access to telescopes both directly (on school campus and at Yerkes Observatory) and through Skynet's robotic telescope network (optical and radio telescopes, inquiry-based modules, data analysis tools, and professional astronomers). We report on our first findings of resources and best practices for engaging DHH youth in astronomy in the future.

  18. Virtual Field Trips: Using Google Maps to Support Online Learning and Teaching of the History of Astronomy

    ERIC Educational Resources Information Center

    Fluke, Christopher J.

    2009-01-01

    I report on a pilot study on the use of Google Maps to provide virtual field trips as a component of a wholly online graduate course on the history of astronomy. The Astronomical Tourist Web site (http://astronomy.swin.edu.au/sao/tourist), themed around the role that specific locations on Earth have contributed to the development of astronomical…

  19. Year 4 Of The NSF-funded PAARE Project At SC State

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M.

    2012-01-01

    We summarize the progress made through Year 4 of "A Partnership in Observational and Computational Astronomy (POCA)". This NSF-funded project is part of the "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. Our partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. Fellowships provided by POCA as well as recruitment efforts on the national level have resulted in enrolling a total of four underrepresented minorities into the Ph.D. program in astronomy at Clemson. We report on the success and challenges to recruiting students into the undergraduate physics major with astronomy option at SC State. Our summer REU program under POCA includes underrepresented students from across the country conducting research at each of our three institutions. Examples are given of our inquiry-based, laboratory exercises and web- based activities related to cosmology that have been developed with PAARE funding. We discuss our ground-based photometric and spectroscopic study of RV Tauri and Semi-Regular variables which has been expanded to include successful Cycle 2 Kepler observations of a dozen of these objects reported elsewhere at this conference (see D.K. Walter, et.al.). Support for the POCA project is provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Support for the Kepler observations is provided by NASA to South Carolina State University under award NNX11AB82G.

  20. Astronomie, écologie et poésie par Hubert Reeves

    ScienceCinema

    None

    2017-12-09

    Hubert ReevesL'astrophysicien donne une conférence puis s'entretient avec l'écrivain François Bon autour de :"Astronomie, écologie et poésie"Pour plus d'informations : http://outreach.web.cern.ch/outreach/FR/evenements/conferences.htmlNombre de places limité. Réservation obligatoire à la Réception du CERN : +41 22 767 76 76  Soirée diffusée en direct sur le Web : http://webcast.cern.ch/      

  1. The START Collaboratory: Broadening Participation in Astronomy Research

    NASA Astrophysics Data System (ADS)

    Pennypacker, C. R.; Raddick, M. J.; Greenberg, G. J.; Hoette, V.; Meredith, K.

    2005-12-01

    The START Collaboratory is a three-year, NSF-funded project to create a Web-based national astronomy research collaboratory for high school students that will bring authentic scientific research to classrooms across the country. The project brings together the resources and experience of Hands-On Universe at the University of California at Berkeley, the Sloan Digital Sky Survey / National Virtual Observatory at Johns Hopkins University and the Northwestern University Collaboratory Project. START Collaboratory documents enable students to create, share and discuss Web-based astronomy research notebooks and research reports. These documents include seamless access to gigabytes of searchable data from the SDSS and the NVO. The START Collaboratory also supports observation requests to a "Telescope Request Broker" that automatically coordinates access to telescopes around the world, and a Web Visualization Tool for visualization and measurement of FITS files from professional observatories or user observations. The project has developed a set of research scenarios that use real astronomical problems to introduce students to the resources and tools available through the START Collaboratory. These scenarios also introduce a model for network-based collaboration that engages students, teachers and professional scientists. Great attention has been paid to ensuring that the research scenarios result in accurate and authentic research products that are of real interest to working astronomers. With the START Collaboratory, students will study science by doing science, generating useful scientific results just as professional astronomers do. As the third and last year of the project finalizes integrating tools and resources, an NSF-funded two-year CI-TEAM project with the Adler Planetarium will begin to create a professional development program for high school teachers interested in learning how to use the START Collaboratory to engage their students in astrophysical research. Through this program, we will begin to implement the tools and research scenarios that we have designed.

  2. Browsing Your Virtual Library: The Case of Expanding Universe.

    ERIC Educational Resources Information Center

    Daniels, Wayne; Enright, Jeanne; Mackenzie, Scott

    1997-01-01

    Describes "Expanding Universe: a classified search tool for amateur astronomy," a Web site maintained by the Metropolitan Toronto Reference Library which uses a modified form of the Dewey Decimal Classification to organize a large file of astronomy hotlinks. Highlights include structure, HTML coding, design requirements, and future…

  3. Space.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2001

    2001-01-01

    This annotated subject guide to Web sites and additional resources focuses on space and astronomy. Specifies age levels for resources that include Web sites, CD-ROMS and software, videos, books, audios, and magazines; offers professional resources; and presents a relevant class activity. (LRW)

  4. Appreciating Hubble at Hyper-speed: A Web-tool for Students and Teachers

    NASA Astrophysics Data System (ADS)

    Will, Lisa M.; Mechtley, M.; Cohen, S.; Windhorst, R. A.; Malhotra, S.; Rhoads, J.; Pirzkal, N.; Summers, F.

    2006-12-01

    Even post-instruction, many high school students and non-science college majors lack a firm understanding of the basic concepts of physics and astronomy necessary to appreciate our expanding universe. To mitigate this trend, we are developing a state-of-the-art Web-tool called "Appreciating Hubble at Hyper-speed" (AHaH ) that uses the HST Cycle 14 Treasury Project "PEARS" (Probing Evolution And Reionization through Spectra) data. AHaH will span the fully 3-dimensional PEARS database of the GOODS/HUDF galaxy distribution from redshifts z = 0.05 to z = 6.5, spanning nearly 90% of the history of the Universe. The web-tool AHaH will allow students to interactively zoom in/out of this PEARS data base, rotate, and accelerate/decelerate towards a specified target, and travel forward or backwards in time. Hence, students can make a complete interactive journey in look-back time. AHaH will help students learn and visually understand basic concepts of physics and astronomy, and at the same time allow them to explore how galaxies change when traveling back in time, how their light is redshifted, and how they are formed and clustered in the expanding Universe. This poster will describe the features of the web-tool and the services that will be offered to help teachers implement this tool in their classrooms.

  5. What's New in Astronomy for 2012?

    ERIC Educational Resources Information Center

    Wilkinson, John

    2012-01-01

    There's always something new happening in the field of Astronomy. This includes the immediate environment surrounding Earth, the Solar system and the universe. This article looks at some of the recent research astronomers have been undertaking this year. Each article has reference to a web site so teachers can find out more information or ask…

  6. ESASky: a new Astronomy Multi-Mission Interface

    NASA Astrophysics Data System (ADS)

    Baines, D.; Merin, B.; Salgado, J.; Giordano, F.; Sarmiento, M.; Lopez Marti, B.; Racero, E.; Gutierrez, R.; De Teodoro, P.; Nieto, S.

    2016-06-01

    ESA is working on a science-driven discovery portal for all its astronomy missions at ESAC called ESASky. The first public release of this service will be shown, featuring interfaces for sky exploration and for single and multiple targets. It requires no operational knowledge of any of the missions involved. A first public beta release took place in October 2015 and gives users world-wide simplified access to high-level science-ready data products from ESA Astronomy missions plus a number of ESA-produced source catalogues. XMM-Newton data, metadata and products were some of the first to be accessible through ESASky. In the next decade, ESASky aims to include not only ESA missions but also access to data from other space and ground-based astronomy missions and observatories. From a technical point of view, ESASky is a web application that offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to connect all-sky mosaics to individual observations; direct access to the underlying mission-specific science archives and catalogues. The poster will be accompanied by a demo booth at the conference.

  7. Online Tools for Astronomy and Cosmochemistry

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2005-01-01

    Over the past year, the Webnucleo Group at Clemson University has been developing a web site with a number of interactive online tools for astronomy and cosmochemistry applications. The site uses SHP (Simplified Hypertext Preprocessor), which, because of its flexibility, allows us to embed almost any computer language into our web pages. For a description of SHP, please see http://www.joeldenny.com/ At our web site, an internet user may mine large and complex data sets, such as our stellar evolution models, and make graphs or tables of the results. The user may also run some of our detailed nuclear physics and astrophysics codes, such as our nuclear statistical equilibrium code, which is written in fortran and C. Again, the user may make graphs and tables and download the results.

  8. Teaching in the Age of Electrons

    NASA Astrophysics Data System (ADS)

    Impey, C. D.

    2002-12-01

    Technology opens up a bewildering array of opportunities and options for faculty teaching courses to large groups of non-science majors. The trick is in understanding which modes of instruction increase the engagement and learning of students. Among the tools that show good potential for advancing learning in introductory astronomy classes are virtual worlds, exercises that use real astronomy data sets, expert systems, and content accessible by phone. Some of the capabilities of a new web site to assist astronomy instructors, www.astronomica.org, will be demonstrated.

  9. Teach Astronomy: An Online Resource for Introductory Astronomy Courses and Informal Learners

    NASA Astrophysics Data System (ADS)

    Austin, Carmen; Impey, C. D.; Hardegree-Ullman, K.; Patikkal, A.; Ganesan, N.

    2013-01-01

    Teach Astronomy (www.teachastronomy.com) is a new, free online resource—a teaching tool for non-science major astronomy courses and a reference guide for lifelong learners interested in the subject. Digital content available includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Motivation behind the development of Teach Astronomy includes steep increases in textbook prices, the rapid adoption by students and the public of digital resources, and the modern capabilities of digital technology. Recent additions to Teach Astronomy include: AstroPix images—from some of the most advanced observatories and complete with metadata, mobile device functionality, links to WikiSky where users can see the location of astronomical objects in the sky, and end of chapter textbook review questions. Next in line for development are assignments for classroom use. We present suggestions for utilizing the rich content and features of the web site.

  10. Web Based Homework for CAPA in General Education Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Robertson, T. H.

    2002-12-01

    Qualitative questions in astronomy have been developed to operate under the CAPA web-based homework system. Multiple versions of similar questions and software randomization are used to create different homework sets for each student. The questions are grouped by concept and subject to create more challenging activities from relatively simple questions. These questions have been used for three semesters in five sections of ASTRO 100 which enrolled a total of 500 students over the past two years. Student surveys consistently indicate that they like the system and believe that it helps them to learn. Cognitive measures in the form of exam and course grades do not demonstrate statistically significant improvement in sections which have used the new homework system. This is due in part to a conscious effort to create exam questions which focus on content understanding and not memorization and the persistent student habit of studying for exams by memorizing homework. Differences have been identified between female and male students in terms of completion rates and performance on homework, quiz and exam scores. This work was supported in part by funding from the George and Frances Ball Fund for Academic Excellence and the 21st Century Fund for Faculty Development.

  11. Astronomy Education: The Good, the Bad, and the Ugly -- A Practical Guide for Those Who Teach and Those Who Don't

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    2005-05-01

    Whether you teach undergraduate astronomy or just do occasional public outreach, you've probably seen personal examples reflecting the disturbing statistics. Roughly half of all freshmen entering the California State Colleges cannot do English or math at the college level and need remedial courses. Only 22% of adults in the U.S. can correctly explain what a molecule is. More people will watch each pseudoscience-filled episode of "Unsolved Mysteries" on television than will be taught an astronomy course by all the people at this AAS meeting combined. In this talk, we will briefly examine the challenges for everyone interested in astronomy education in three arenas: (dwindling) astronomy instruction in grades K-12, the teaching of Astro 101 for non-science majors, and the work of astronomers contributing to the public understanding of science. (For example, with the modern growth of astronomical knowledge, trying to teach ALL of astronomy in one quarter or semester is like trying to buy one of each item at your local Wal-Mart -- your cart will be impressively full, but your ability to get to know and enjoy each purchase will be severely limited.) We'll also look at some surprising result from a survey of the training and work of 400 astronomy instructors at non-research-oriented colleges. We'll then focus on some practical ideas on how all astronomers can contribute to improving the public appreciation of astronomy -- in their classes, in their institution's outreach work, and in the community. Several projects around the country that have found research-based techniques for making a significant difference will be highlighted, from family astronomy community events to experiments with hands-on small-group activities in the midst of large lecture classes. We'll discuss the role of a new electronic journal and web-based communities in facilitating the exchange of information on what works and what doesn't. Participants will receive an annotated resource guide to key readings, research findings, and ongoing projects in astronomy education.

  12. Observatory for education and public outreach controlled through the World Wide Web

    NASA Astrophysics Data System (ADS)

    Guzik, T. Gregory; Motl, Patrick M.; Burks, Geoffrey S.; Fisher, Paul; Giammanco, James; Landolt, Arlo U.; Stacy, J. G.; Tohline, Joel E.; Wefel, Katrina

    1998-05-01

    For the last two and a half years the Department of Physics and Astronomy at Louisiana State University has been engaged in a collaborative effort with the Recreation and Park Commission for the Parish of East Baton Rouge and the Baton Rouge Astronomical Society to develop a observatory that can be used for astronomy education from primary school; through graduate studies as well as for recreation and public outreach. The observatory includes a 2,300 square feet facility, a 20-inch diameter Ritchey-Chretien telescope, a black-thinned CCD camera, a computer control system and an internet T1 link. The on site public outreach and education program has been fully active since Fall, 1997 and we are currently in the process of developing a platform- independent system for remotely controlling the observatory over the internet. The initial version of the Java/World Wide Web based software is currently functioning and provides interactive control of the observatory via any Java compatible web browser. The main principles of the remote control system are presented in this paper, along with a discussion of the education and outreach goals of the observatory, details of the facility and hardware, initial measurements of system performance, and a discussion of our future development plans.

  13. Introducing the Virtual Astronomy Multimedia Project

    NASA Astrophysics Data System (ADS)

    Wyatt, Ryan; Christensen, L. L.; Gauthier, A.; Hurt, R.

    2008-05-01

    The goal of the Virtual Astronomy Multimedia Project (VAMP) is to promote and vastly multiply the use of astronomy multimedia resources—from images and illustrations to animations, movies, and podcasts—and enable innovative future exploitation of a wide variety of outreach media by systematically linking resource archives worldwide. High-quality astronomical images, accompanied by rich caption and background information, abound on the web and yet prove notoriously difficult to locate efficiently using existing search tools. The Virtual Astronomy Multimedia Project offers a solution via the Astronomy Visualization Metadata (AVM) standard. Due to roll out in time for IYA2009, VAMP manages the design, implementation, and dissemination of the AVM standard for the education and public outreach astronomical imagery that observatories publish. VAMP will support implementations in World Wide Telescope, Google Sky, Portal to the Universe, and 365 Days of Astronomy, as well as Uniview and DigitalSky software designed specifically for planetariums. The VAMP workshop will introduce the AVM standard and describe its features, highlighting sample image tagging processes using diverse tools—the critical first step in getting media into VAMP. Participants with laptops will have an opportunity to experiment first hand, and workshop organizers will update a web page with system requirements and software options in advance of the conference (see http://virtualastronomy.org/ASP2008/ for links to resources). The workshop will also engage participants in a discussion and review of the innovative AVM image hierarchy taxonomy, which will soon be extended to other types of media.

  14. Astronomy Education using the Web and a Computer Algebra System

    NASA Astrophysics Data System (ADS)

    Flurchick, K. M.; Culver, Roger B.; Griego, Ben

    2013-04-01

    The combination of a web server and a Computer Algebra System to provide students the ability to explore and investigate astronomical concepts presented in a class can help student understanding. This combination of technologies provides a framework to extend the classroom experience with independent student exploration. In this presentation we report on the developmen of this web based material and some initial results of students making use of the computational tools using webMathematica^TM. The material developed allow the student toanalyze and investigate a variety of astronomical phenomena, including topics such as the Runge-Lenz vector, descriptions of the orbits of some of the exo-planets, Bode' law and other topics related to celestial mechanics. The server based Computer Algebra System system allows for computations without installing software on the student's computer but provides a powerful environment to explore the various concepts. The current system is installed at North Carolina A&T State University and has been used in several undergraduate classes.

  15. Grist : grid-based data mining for astronomy

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden; hide

    2004-01-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  16. Grist: Grid-based Data Mining for Astronomy

    NASA Astrophysics Data System (ADS)

    Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.

    2005-12-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  17. Discovering the Network and Communicating amoungst Astronomy Librarians: or Finding my Feet

    NASA Astrophysics Data System (ADS)

    Hurn, Mark David

    A light-hearted description of starting work and finding the networks in astronomy libraries. Starting with a description of my librarianship career before astronomy. Networking with (SLIL Special Librarians In London). Why I applied for this job. Starting work at the Institute of Astronomy. A brief description of the Institute library. A glorious tradition: IoA librarians past and present. Getting to know the computers. Joining email lists (ASTROLIB and SLAPAM). Adventures with email and web forums. Saying hello, introducing myself to other Astronomy librarians (RAS and ROE). Other libraries and other networks (SLIC and CLG) in Cambridge. Other libraries in Britain. Unusual inter-library loan sources. Getting on with the job: my plans for the future. Looking back: where I went right and where I went wrong.

  18. Hosting an `Ask the Astronomer' Site on the Internet

    NASA Astrophysics Data System (ADS)

    Odenwald, S. F.

    1996-12-01

    Since 1995, the World Wide Web has explosively evolved into a significant medium for dispensing astronomical information to the general public. In addition to the numerous image archives that have proliferated, an increasing number of sites invite visitors to pose questions about astronomy and receive answers provided by professional astronomers. In this paper, I describe the operation of an Ask the Astronomer site that was opened on the WWW during August, 1995 as part of an astronomy education resource area called the "Astronomy Cafe" (URL=http://www2.ari.net/home/odenwald/cafe.html). The Astronomy Cafe includes a number of documents describing: a career in astronomy; how research papers are written; essays about cosmology, hyperspace and infrared astronomy; and the results from a 100-question, just for fun, personality test which distinguishes astronomers from non-astronomers. The Ask the Astronomer site is operated by a single astronomer through private donations and is now approaching its 500th day of operation. It contains over 2000+ questions and answers with a growth rate of 5 - 10 questions per day. It has attracted 70,000 visitors who are responsible for nearly 1 million 'hits' during the site's lifetime. The monthly statistics provide a unique survey of the kinds of individuals and organizations who visit Ask the Astronomer-type web sites, moreover, the accumulated questions provide a diagnostic X-ray into the public mind in the area of astronomy. I will present an analysis of the user demographics, and the types of questions that appear to be the most frequently asked. A paper copy of the complete index of these questions will be available for inspection.

  19. Seeing the LITE

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2000-12-01

    We are developing a number of eyes-on experiments, lecture demonstrations and Web based JAVA applets about light, optics, color and visual perception as part of `Project LITE - Light Inquiry Through Experiments'. These are intended for incorporation into introductory level university science courses in astronomy, physics and other disciplines. In this presentation, several of the new LITE demonstrations applicable to large astronomy and physics classes will be shown. One demonstration involves novel materials to display Rayleigh scattering (blue skies, red sunsets and interstellar reddening - NOT redshift!) - including polarization effects. Others employ incandescent bulbs, LED's and laser pointers to illustrate fluorescence, diffraction and other physical and quantum optics phenomena. Still other demonstrations utilize transparent plastic moire overlays as well as computer animated moire patterns to show a variety of astronomical and physical phenomena. We will also display some of our applets posted at the Project LITE Web site (http://www.bu.edu/smec/lite) as well as the associated kit of optical materials we have developed for use by individual students in their own homes or dormitory rooms. This work was supported in part by NSF grant # DUE-9950551.

  20. A Partnership in Observational and Computational Astronomy (POCA)

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2009-01-01

    A partnership has been established between South Carolina State University (SCSU, a Historically Black College/University), the National Optical Astronomy Observatory (NOAO) and Clemson University (CU) under an award from NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. The mission of POCA is to develop an effective, long-term partnership that combines the strengths of the three institutions to increase the scientific and educational output of all the partners with special emphasis on enhancing diversity in the field of astronomy. Components of the program include enhancing faculty and student research in astronomy at SCSU, recruiting and retaining underrepresented minority students into the field, outreach through planetarium programs and museum exhibits and developing web based resources in astronomy education. Activities in the first year of the program are discussed. We have begun developing and testing several new astronomy laboratory exercises. Our first summer internship program has concluded successfully. With PAARE scholarship money, we are now supporting four physics majors at SCSU who have chosen the astronomy option (concentration) for their degree. SCSU undergraduates have acquired observing experience on the KPNO Mayall 4-meter telescope under the guidance of faculty and graduate students from CU. NOAO astronomers have collaborated with SCSU faculty to begin a research program that studies RV Tauri stars. Funds from PAARE are supporting follow-up research to a just-completed doctoral dissertation by E. A. Mayo described elsewhere in these proceedings. Future plans for graduate fellowships and related activities are discussed in addition to summer internships for POCA undergraduates at CU and NOAO. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  1. A Radio Astronomy Curriculum for the Middle School Classroom

    NASA Astrophysics Data System (ADS)

    Davis, J.; Finley, D. G.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  2. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    NASA Astrophysics Data System (ADS)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of astronomical awareness.

  3. Evaluating ADS, ISI Web of Knowledge and Scopus in the Context of Two Astronomy Libraries in Spain

    NASA Astrophysics Data System (ADS)

    Gomez, M.; Merida Martín, F.

    2007-10-01

    We present the results of a comparative analysis of ADS, ISI Web of Knowledge and Scopus in the context of two astronomical libraries as well as the results of a patron survey conducted to determine how patrons use these services to get the information they need.

  4. Using Computers in Introductory Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Deming, Grace L.

    1995-12-01

    Computer literacy is fast becoming a focal point in undergraduate education. Scientific literacy has been a continuing goal of undergraduate programs across the nation and a course in introductory astronomy is often used to satisfy such science requirements. At U. MD an introduction to computer skills is being integrated into our astronomy curriculum for non-science majors. The campus is adequately equipped with computer labs, yet many students enter college without basic computer skills. In Astronomy 101 (General Astronomy) students are introduced to electronic mail, a Listserver, and the world wide web. Students in this course are required to register for a free campus computer account. Their first assignment is to use e-mail to subscribe to the class Listserver, Milkyway. Through Milkyway, students have access to weekly lecture summaries, questions to review for exams, and copies of previous exams. Using e-mail students may pose questions, provide comments, or exchange opinions using Milkyway, or they may e-mail the instructor directly. Studies indicate that using e-mail is less intimidating to a student than asking a question in a class of 200 students. Monitoring e-mail for student questions has not been a problem. Student reaction has been favorable to using e-mail, since instructor office hours are not always convenient, especially to commuting or working students. Through required assignments, students receive an introduction to accessing information on the world wide web using Netscape. Astronomy has great resources available on the Internet which can be used to supplement and reinforce introductory material. Assignments are structured so that students will gain the techniques necessary to access available information. It is hoped that students will successfully apply the computer skills they learn in astronomy class to their own fields and as life-long learners. We have found that students comfortable with computers are willing to share their knowledge with others. The computer activities have been structured to promote cooperation between students. These skills are also necessary for success.

  5. Syllabus Computer in Astronomy

    NASA Astrophysics Data System (ADS)

    Hojaev, Alisher S.

    2015-08-01

    One of the most important and actual subjects and training courses in the curricula for undergraduate level students at the National university of Uzbekistan is ‘Computer Methods in Astronomy’. It covers two semesters and includes both lecture and practice classes. Based on the long term experience we prepared the tutorial for students which contain the description of modern computer applications in astronomy.The main directions of computer application in field of astronomy briefly as follows:1) Automating the process of observation, data acquisition and processing2) Create and store databases (the results of observations, experiments and theoretical calculations) their generalization, classification and cataloging, working with large databases3) The decisions of the theoretical problems (physical modeling, mathematical modeling of astronomical objects and phenomena, derivation of model parameters to obtain a solution of the corresponding equations, numerical simulations), appropriate software creation4) The utilization in the educational process (e-text books, presentations, virtual labs, remote education, testing), amateur astronomy and popularization of the science5) The use as a means of communication and data transfer, research result presenting and dissemination (web-journals), the creation of a virtual information system (local and global computer networks).During the classes the special attention is drawn on the practical training and individual work of students including the independent one.

  6. Virtual Space Exploration: Let's Use Web-Based Computer Game Technology to Boost IYA 2009 Public Interest

    NASA Astrophysics Data System (ADS)

    Hussey, K.; Doronila, P.; Kulikov, A.; Lane, K.; Upchurch, P.; Howard, J.; Harvey, S.; Woodmansee, L.

    2008-09-01

    With the recent releases of both Google's "Sky" and Microsoft's "WorldWide Telescope" and the large and increasing popularity of video games, the time is now for using these tools, and those crafted at NASA's Jet Propulsion Laboratory, to engage the public in astronomy like never before. This presentation will use "Cassini at Saturn Interactive Explorer " (CASSIE) to demonstrate the power of web-based video-game engine technology in providing the public a "first-person" look at space exploration. The concept of virtual space exploration is to allow the public to "see" objects in space as if they were either riding aboard or "flying" next to an ESA/NASA spacecraft. Using this technology, people are able to immediately "look" in any direction from their virtual location in space and "zoom-in" at will. Users can position themselves near Saturn's moons and observe the Cassini Spacecraft's "encounters" as they happened. Whenever real data for their "view" exists it is incorporated into the scene. Where data is missing, a high-fidelity simulation of the view is generated to fill in the scene. The observer can also change the time of observation into the past or future. Our approach is to utilize and extend the Unity 3d game development tool, currently in use by the computer gaming industry, along with JPL mission specific telemetry and instrument data to build our virtual explorer. The potential of the application of game technology for the development of educational curricula and public engagement are huge. We believe this technology can revolutionize the way the general public and the planetary science community views ESA/NASA missions and provides an educational context that is attractive to the younger generation. This technology is currently under development and application at JPL to assist our missions in viewing their data, communicating with the public and visualizing future mission plans. Real-time demonstrations of CASSIE and other applications in development will be shown. Astronomy is one of the oldest basic sciences. We should use one of today's newest communications technologies available to engage the public. We should embrace the use of web-based gaming technology to prepare the world for the International Year of Astronomy 2009.

  7. Web-based Teaching Radio Interferometer for Africa

    NASA Astrophysics Data System (ADS)

    Carignan, Claude

    2015-08-01

    Practical training for the future use of the African VLBI Network (AVN) or any VLBI experiment starts by understanding the basic principles of radio observations and radio interferometry. The aim of this project is to build a basic interferometer that could be used remotely via a web interface from any country on the African continent. This should turn out as a much less expensive and much more efficient way to train AVN researchers from SKA partner countries to the principles of radio astronomy and to interferometric data analysis. The idea is based on the very successful EUHOU (European Hands-On Universe) already very successful in Europe. The former EUHOU manager, Dr Yannick Liebert, arrived for a 3 years postdoc with Prof Claude Carignan at the University of Cape Town to implement the same project on the African continent (AHI: African Hands-on Interferometry). Besides the use of AHI for the AVN researchers, this web-based system could be used be any undergraduate program on radio astronomical techniques across the African continent as the EUHOU is used all across Europe.

  8. Using Hollywood techniques to teach freshman astronomy over the Internet

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Lipnick, D.; Vila Migliaro, M.

    We use interactive 'click and drag' learning, bold colors, high graphic design standards, cartooning, animations and videos. We present Astronomy material in three languages, written English, written Spanish, and written and spoken Navajo. This distance-learning course is specifically designed for students with limited proficiency in the English language. We have both a lecture and laboratory series in the course that may be found at www.ibe.ncc.cc.nm.us and http://yoda.phys.unm.edu/ast100. It carries 4 hours of credit as Astronomy 100. To paraphrase John Ford, the great Hollywood director, a good movie should be able to stand with no dialogue. We have tried to meet his standard. We have borrowed heavily from the style of the Pvt. Snafu World War II military training films produced principally by the Walt Disney Studios. We have also used the graphic design techniques that I learned many years ago as a technical briefing officer at the Chief of Naval Operation's Briefing Room at the Pentagon, Washington D.C.. Finally, we use elements of 'Programmed Learning' developed by the American Management Association thirty odd years ago. Elements that make our web course unique are: A laboratory on Navajo Astronomy, lectures translated into Spanish, and many collateral resources for student use both internal to our web site and as external links on the Internet. Much of this work was underwritten by NASA grant NAG5-10254.

  9. A Status Report on the AAS Astronomy Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Fienberg, Richard Tresch; Fraknoi, Andrew; Gurton, Suzanne; Hurst, Anna; Schatz, Dennis L.

    2014-06-01

    The American Astronomical Society, in partnership with the Astronomical Society of the Pacific (ASP), has launched a series of professional-development workshops and a community of practice designed to improve early-career astronomers’ ability to communicate effectively with students and the public. Called AAS Astronomy Ambassadors, the program provides training and mentoring for young astronomers, from advanced undergraduates to beginning faculty; it also provides them access to resources and a network of contacts within the astronomy education and public outreach (EPO) community. Ambassadors are provided with a library of outreach activities and resource materials suitable for a range of venues and audiences. For much of this library we are using resources developed by organizations such as the ASP, the Pacific Science Center, and the Center for Astronomy Education for other outreach programs, though some resources have been created by one of us (AF) specifically for this program. After a period of evaluation and revision, the program’s “Menu of Outreach Opportunities for Science Education” (MOOSE) is now posted on the AAS website at http://aas.org/outreach/moose-menu-outreach-opportunities-science-education.The first two Astronomy Ambassadors workshops were held at AAS meetings in January 2013 and January 2014; each served 30 young astronomers chosen from about twice that many applicants. Web-based follow-up activities are being provided through a website at the ASP designed to keep cohorts of educators trained in their programs in touch with one another. The AAS is exploring ways to fund additional workshops at future winter meetings; suggestions are most welcome. Meanwhile, the Astronomy Ambassadors trained to date have logged more than 150 outreach events, reaching many thousands of children and adults across the U.S. and Canada.

  10. Swinburne Astronomy Online: Migrating from "PowerPoint" on CD to a Web 2.0 Compliant Delivery Infrastructure

    ERIC Educational Resources Information Center

    Barnes, David G.; Fluke, Christopher J.; Jones, Nicholas T.; Maddison, Sarah T.; Kilborn, Virginia A.; Bailes, Matthew

    2008-01-01

    We adopt the Web 2.0 paradigm as a mechanism for preparing, editing, delivering and maintaining educational content, and for fostering ongoing innovation in the online education field. We report here on the migration of legacy course materials from "PowerPoint" slides on CD to a fully online delivery mode for use in the "Swinburne Astronomy…

  11. Astronomers Without Borders: An IYA2009 Organization Node Dedicated to Connecting Groups Worldwide

    NASA Astrophysics Data System (ADS)

    Simmons, Michael

    2008-05-01

    Astronomers Without Borders (AWB) is a new global organizational and IYA2009 Organizational Node dedicated to furthering understanding and goodwill across national and cultural boundaries using the universal appeal of astronomy, a common language spoken by all those who share an interest in the sky. It is a universal interest that connects us. The AWB network of Affiliates will bring together up to 1000 astronomy clubs, magazines and other organizations involved in astronomy. Regional Coordinators work within their own regions - based on common language and culture rather than political or geographic boundaries - to best implement AWB's goals, involve the region's participants and bring in new ideas based on local culture and tradition. Participation is free for all Affiliates. The AWB web site is the center for the network of Affiliates. This Community Center is the global meeting place where Affiliates interact. Forums, galleries and more interactive technologies will be used. Sharing Telescopes and Resources (STAR) gathers both surplus and new telescopes and other equipment in developed countries and donates them to clubs in undeveloped countries. Follow-up programs are meant to ensure the best and widest use of the telescope in the destination country, and to maintain a relationship between donors and recipients. The World at Night (TWAN) has been designated as a Special IYA2009 Project. TWAN's specialty photographers create wide-angle images of the night sky in important natural and historic settings around the world that dramatically demonstrate the universal nature and appeal of the night sky. A web site, major exhibitions and more are planned for IYA2009. Astro-tourism has been proposed by several Affiliates. This program will draw on existing facilities and experiences, primarily from the long-established solar eclipse tour industry. AWB is meant to continue and grow for many years beyond the end of IYA2009.

  12. Observing proposals on the Web at the National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Barnes, Jeannette; Bell, David J.

    1998-07-01

    Proposals for telescope time at facilities available through the National Optical Astronomy Observatories can now be prepared and submitted via the WWW. Investigators submit proposal information through a series of HTML forms to the NOAO server, where the information is processed by Perl CGI scripts. PostScript figures and ASCII files may be attached by investigators for inclusion in their proposals using their browser's upload feature. Proposal information is saved on the server so that investigators can return in later sessions to continue work on a proposal and so that collaborators can participate in writing the proposal if they have access to the proposal account name and password. The system provides on-line verification of LATEX syntax and a spellchecker, and confirms that all sections of the proposal are filled out. Users can request a LATEX or PostScript copy of their proposal by e-mail, or view the proposal on line. The advantages of the Web-based process for our users are convenience, access to on-line documentation, and the simple interface which avoids direct confrontation with LATEX. From the NOAO point of view, the advantage is the use of standardized formats and syntax, particularly as we begin to receive proposals for the Gemini telescopes and some independent observatories.

  13. Story Time From Space — Astronomy and Astronauts Together in the Classroom

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey

    2015-08-01

    Story Time From Space is an exciting new program in which astronauts aboard the International Space Station combine two key educational activities: (1) reading aloud science-based stories for children and (2) conducting specially built science demonstrations designed to reinforce science lessons from the stories. Both activity types are videotaped, with the videos to be posted freely on the web for access by classrooms (and individuals) around the world. Longer term plans include the creation of downloadable activities to take the lessons further. While the stories tend to focus on elementary ages, the demos are more sophisticated and can be used for middle school, high school, and even college. The first set of five books has been aboard the ISS since January 2014, with readings videotaped so far for all books in English and selected books in German and Japanese; the science demos are scheduled for launch this summer, followed by a second set of books in the fall. The first set of books, written by the presenter, focus heavily on astronomy and space science. In this presentation, I will introduce the program, how it can be used in classrooms around the world, and plans for its future development. The in-progress web site is www.storytimefromspace.com.

  14. The Networks Of The Astronomical Society Of The Pacific And The International Year Of Astronomy

    NASA Astrophysics Data System (ADS)

    Fraknoi, Andrew; Manning, J.; Gurton, S.; Gibbs, M.; Hurst, A.; White, V.; Berendsen, M.

    2007-12-01

    Serious planning has begun for the International Year of Astronomy (IYA) in 2009, which will also be the 120th anniversary of the Astronomical Society of the Pacific (ASP). A key element required for IYA's success in reaching the maximum number of people in the U.S. will be to find effective ways of disseminating the programs and materials that are being developed. The ASP's national networks of educational intermediaries can play a major role in training, dissemination, and organization for IYA. These networks include: the Project ASTRO National Site Network (13 regional sites training professional and amateur astronomers to work with local teachers and families), the Night Sky Network (over 200 amateur astronomy clubs engaged in active outreach), the Astronomy from the Ground Up Network (smaller science and nature centers increasing their offerings in astronomy), and the Cosmos in the Classroom Network (hundreds of instructors of introductory astronomy in community, state, and liberal arts colleges). The ASP also offers "The Universe in the Classroom", a quarterly newsletter for those teaching astronomy in grades 3-12, an extensive web site of educational resources, podcasts, workshops, national conferences, and awards to help improve the public understanding of astronomy. At the Summer 2008 AAS meeting, the ASP will sponsor a major symposium and workshops on preparing for IYA (and working with a range of different audiences.)

  15. Astronomy and Space Technologies, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the first part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with photonics and electronics applications in astronomy and space technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  16. Zooniverse - A Platform for Data-Driven Citizen Science

    NASA Astrophysics Data System (ADS)

    Smith, A.; Lintott, C.; Bamford, S.; Fortson, L.

    2011-12-01

    In July 2007 a team of astrophysicists created a web-based astronomy project called Galaxy Zoo in which members of the public were asked to classify galaxies from the Sloan Digital Sky Survey by their shape. Over the following year a community of more than 150,000 people classified each of the 1 million galaxies more than 50 times each. Four years later this community of 'citizen scientists' is more than 450,000 strong and is contributing their time and efforts to more than 10 Zooniverse projects each with its own science team and research case. With projects ranging from transcribing ancient greek texts (ancientlives.org) to lunar science (moonzoo.org) the challenges to the Zooniverse community have gone well beyond the relatively simple original Galaxy Zoo interface. Delivering a range of citizen science projects to a large web-based audience presents challenges on a number of fronts including interface design, data architecture/modelling and reduction techniques, web-infrastructure and software design. In this paper we will describe how the Zooniverse team (a collaboration of scientists, software developers and educators ) have developed tools and techniques to solve some of these issues.

  17. The International Year of Astronomy 2009 Websites _ Connecting IYA2009 with its Community

    NASA Astrophysics Data System (ADS)

    Russo, Pedro; Lindberg Christensen, L.; Shida, R.

    2008-05-01

    The International Year of Astronomy 2009 (IYA2009) project looks like it will be the most "wired” astronomy project in history. IYA2009 already now has more individual web sites associated with it than any other astronomy project in the past. More than 60 Cornerstone websites, national websites etc. exist at the time of submission of this abstract. The main IYA2009 website (www.astronomy2009.org) is an important channel linking the different IYA2009 organisational levels. The first incarnation of this site was released in December 2006 and has served as the main information repository and as the basic communication tool between all the nodes that take part of IYA2009. Recently the website has changed from supporting the internal organisational needs for communication to a more appealing and content-rich website to meet the needs of the wider "external” world, including media, enthusiasts, laypeople, etc. This talk we will give an overview of the many websites and plans for the future of the IYA2009 websites will be put forward for discussion.

  18. Astronomy: A Self-Teaching Guide, 6th Edition

    NASA Astrophysics Data System (ADS)

    Moché, Dinah L.

    2004-02-01

    "A lively, up-to-date account of the basic principles of astronomy and exciting current field of research."-Science Digest For a quarter of a century, Astronomy: A Self-Teaching Guide has been making students and amateur stargazers alike feel at home among the stars. From stars, planets and galaxies, to black holes, the Big Bang and life in space, this title has been making it easy for beginners to quickly grasp the basic concepts of astronomy for over 25 years. Updated with the latest discoveries in astronomy and astrophysics, this newest edition of Dinah Moché's classic guide now includes many Web site addresses for spectacular images and news. And like all previous editions, it is packed with valuable tables, charts, star and moon maps and features simple activities that reinforce readers' grasp of basic concepts at their own pace, as well as objectives, reviews, and self-tests to monitor their progress. Dinah L. Moché, PhD (Rye, NY), is an award-winning author, educator, and lecturer. Her books have sold over nine million copies in seven languages.

  19. The AstroBID: Searching through the Italian Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Cirella, E. O.; Gargano, M.; Gasperini, A.; Mandrino, A.; Randazzo, D.; Zanini, V.

    2015-04-01

    The scientific heritage held in the National Institute for Astrophysics (INAF), made up of rare and modern books, instruments, and archival documents spanning from the 15th to the early 20th century, marks the milestones in the history of astronomy in Italy. To promote this history of this historical collection, the Libraries and Historical Archives Service and the Museums Service of INAF have developed a project aimed at creating a single web portal: Polvere di stelle. I beni culturali dell'astronomia italiana (Stardust. The cultural heritage of the Italian astronomy). This portal searches for data coming from the libraries, the instruments collections and the historical archives, regarding the heritage of the Italian Observatories. The BID (Books, Instruments, Documents) of the project is the creation of a multimedia web facility, which allows the public to make simultaneous searches on the three different types of materials.

  20. Assesment of access to bibliographic databases and telemetry databases in Astronomy: A groundswell for development.

    NASA Astrophysics Data System (ADS)

    Diaz-Merced, Wanda Liz; Casado, Johanna; Garcia, Beatriz; Aarnio, Alicia; Knierman, Karen; Monkiewicz, Jacqueline; Alicia Aarnio.

    2018-01-01

    Big Data" is a subject that has taken special relevance today, particularly in Astrophysics, where continuous advances in technology are leading to ever larger data sets. A multimodal approach in perception of astronomical data data (achieved through sonification used for the processing of data) increases the detection of signals in very low signal-to-noise ratio limits and is of special importance to achieve greater inclusion in the field of Astronomy. In the last ten years, different software tools have been developed that perform the sonification of astronomical data from tables or databases, among them the best known and in multiplatform development are Sonification Sandbox, MathTrack, and xSonify.In order to determine the accessibility of software we propose to start carrying out a conformity analysis of ISO (International Standard Organization) 9241-171171: 2008. This standard establishes the general guidelines that must be taken into account for accessibility in software design, and it is applied to software used in work, public places, and at home. To analyze the accessibility of web databases, we take into account the "Web Content Content Accessibility Guidelines (WCAG) 2.0", accepted and published by ISO in the ISO / IEC 40500: 2012 standard.In this poster, we present a User Centered Design (UCD), Human Computer Interaction (HCI), and User Experience (UX) framework to address a non-segregational provision of access to bibliographic databases and telemetry databases in Astronomy. Our framework is based on an ISO evaluation on a selection of data bases such as ADS, Simbad and SDSS. The WCAG 2.0 and ISO 9241-171171: 2008 should not be taken as absolute accessibility standards: these guidelines are very general, are not absolute, and do not address particularities. They are not to be taken as a substitute for UCD, HCI, UX design and evaluation. Based on our results, this research presents the framework for a focus group and qualitative data analysis aimed to lay the foundations for the employment of UCD functionalities on astronomical databases.

  1. Preliminary Evaluation of a New Cosmology Curriculum

    NASA Astrophysics Data System (ADS)

    Coble, Kimberly A.; Martin, Dominique; Hayes, Patrycia; Targett, Tom; Bailey, Janelle M.; Cominsky, Lynn R.

    2015-01-01

    Informed by our research on student understanding of cosmology, The Big Ideas in Cosmology is an immersive set of web-based learning modules that integrates text, figures, and visualizations with short and long interactive tasks and real cosmological data. This enables the transformation of general education astronomy and cosmology classes from primarily lecture and book-based courses to a more engaging format that builds important STEM skills.During the spring 2014 semester, we field-tested a subset of chapters with the general education astronomy and cosmology classes at Sonoma State University in a flipped-classroom format. We administered pre and post content and attitude assessments in the two flipped classes as well as two lecture classes. The majority of cosmology students had taken astronomy before whereas the astronomy students had not.When switching to an active mode of learning (e.g., flipped classroom instead of lecture), many instructors report pushback from students. We saw this effect from students in course evaluations, who reported dissatisfaction with "having to do more work." However, the students in the flipped section in astronomy made greater gains on the multiple choice content assessment than the students in either of the two lecture sections. On the attitude assessment (the CLASS), the cosmology students made a small shift toward more expert-like opinions. Preliminary results from open-ended content surveys indicate that, prior to instruction, students had difficulty answering 'why' or 'how do we know' questions; that post-instruction, students are less likely to respond "I don't know" or to leave an answer blank; and that students using the modules made gains in their content knowledge.Module development was supported by NASA ROSES E/PO Grant #NNXl0AC89G, the Illinois Space Grant Consortium, the Fermi E/PO program, Sonoma State University's Space Science Education and Public Outreach Group, and Great River Technology/Kendall-Hunt Publishing.

  2. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  3. Teaching Fair Use with Astronomy Imagery

    NASA Astrophysics Data System (ADS)

    Wilson, Teresa

    2016-01-01

    Plagiarism among students is most common because of a misunderstanding of copyright and fair use. Images and text are frequently used without proper credit to the original author, and works are frequently acknowledged improperly. For example, space imagery is often used in posters, presentations, on the web, on Facebook, and even in the classrooms, but often are not properly cited. A lesson plan on fair use is presented, outlining what constitutes fair use and how to properly acknowledge the work done by artists and authors everywhere, with examples drawn from the Astronomy Picture of the Day (APOD).

  4. Open Astronomy Catalogs API

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Cowperthwaite, Philip S.

    2018-05-01

    We announce the public release of the application program interface (API) for the Open Astronomy Catalogs (OACs), the OACAPI. The OACs serve near-complete collections of supernova, tidal disruption, kilonova, and fast stars data (including photometry, spectra, radio, and X-ray observations) via a user-friendly web interface that displays the data interactively and offers full data downloads. The OACAPI, by contrast, enables users to specifically download particular pieces of the OAC dataset via a flexible programmatic syntax, either via URL GET requests, or via a module within the astroquery Python package.

  5. Teaching Astronomy with Technology

    NASA Astrophysics Data System (ADS)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Students today are expected to have access to computers and the Internet. Students young and old, in school and out of school, are interested in learning about astronomy, and have computers to use for this. Teach Astronomy is a website with a comprehensive digital astronomy textbook freely available to students and educators. In addition to the textbook, there are astronomy Wikipedia articles, image archives from Astronomy Picture of the Day and AstroPix, and video lectures covering all topics of astronomy. Teach Astronomy has a unique search tool called the wikimap that can be used to search through all of the resources on the site. Astronomy: State of the Art (ASOTA) is a massive, open, online course (MOOC). Over 18,000 students have enrolled over the past year and half. This MOOC has been presented in various forms. First, only to students on the web, with content released weekly on host site Udemy. Then to university students who met formally in the classroom for educational activities, but were also expected to watch lectures online on their own time. Presently, it is available online for students to go at their own pace. In the future it will be available in an extended format on a new host site, Coursera. ASOTA instructors use social media to interact with students. Students ask questions via the course host site, Udemy. Live question and answer sessions are conducted using Google Hangouts on Air, and interesting and relevant astronomy news, or supplementary educational content is shared via the ASOTA Facebook page. Teaching on the Internet may seem impersonal and impractical, but by learning to use all of these tools, instructors have the ability to interact with students, and keep them engaged.

  6. Project LITE Spectroscopy

    NASA Astrophysics Data System (ADS)

    Weeks, E.; Brecher, K.; Carr, P.; Garik, P.

    2003-12-01

    Spectroscopy is one of the most important tools used by astronomers to disentangle information about the universe. However, it is one of the most challenging subjects in undergraduate astronomy courses. Among the most difficult concepts for students to master are Kirchhoff's laws, blackbody radiation, the Stefan-Boltzmann law, Wien's law, the nature and causes of emission and absorption lines, and the relation of spectra to the underlying astronomical and physical processes producing them. Students often seem baffled by the connection between a spectrum seen visually as a color band and the same spectrum plotted graphically as intensity versus wavelength or frequency. Project LITE (Light Inquiry Through Experiments) is a software, curriculum, and materials development project at Boston University. As part of the project, we are currently developing a suite of spectroscopic tools for astronomy education. We are also assessing their effectiveness in improving conceptual understanding of spectroscopic phenomena by astronomy students at the undergraduate level. The spectroscopy component of Project LITE includes take-home laboratory materials and experiments, which are integrated with web-based software. We have also developed a novel quantitative handheld binocular spectrometer (patent pending). Here we present an overview of the Project LITE homelab kits and curriculum, the Spectrum Explorer, and the Project LITE spectrometer. The homelab experiments and the Spectrum Explorer have been tested with students in a non-science majors introductory astronomy course as well as in a School of Education course for prospective elementary school science teachers. We present preliminary results of pre- and post-instruction surveys of student understanding of various spectral properties of light both from students who used the homelab activities and the Spectrum Explorer and those who did not. The Spectrum Explorer (along with many other applets about both the physical and perceptual nature of light) can be found at the Project LITE web site http://lite.bu.edu. Project LITE is supported by Grant #DUE-0125992 from the National Science Foundation Division of Undergraduate Education. E. W. is supported by a NASA Graduate Student Research Fellowship, NASA Grant number NGT5-50482.

  7. PULSE@Parkes, Engaging Students through Hands-On Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hollow, Robert; Hobbs, George; Shannon, Ryan M.; Kerr, Matthew

    2015-08-01

    PULSE@Parkes is an innovative, free educational program run by CSIRO Astronomy and Space Science (CASS) in which high school students use the 64m Parkes radio telescope remotely in real time to observe pulsars then analyse their data. The program caters for a range of student ability and introduces students to hands-on observing and radio astronomy. Students are guided by professional astronomers, educators and PhD students during an observing session. They have ample time to interact with the scientists and discuss astronomy, careers and general scientific questions. Students use a web-based module to analyse pulsar properties. All data from the program are streamed via a web browser and are freely available from the online archive and may be used for open-ended student investigations. The data are also used by the team for ongoing pulsar studies with two scientific papers published to date.Over 100 sessions have been held so far. Most sessions are held at CASS headquarters in Sydney, Australia but other sessions are regularly held in other states with partner institutions. The flexibility of the program means that it is also possible to run sessions in other countries. This aspect of the program is useful for demonstrating capability, engaging students in diverse settings and fostering collaborations. The use of Twitter (@pulseatparkes) during allows followers worldwide to participate and ask questions.Two tours of Japan plus sessions in the UK, Netherlands and Canada have reached a wide audience. Plans for collaborations in China are well underway with the possibility of use with other countries also being explored. The program has also been successfully used in helping to train international graduate students via the International Pulsar Timing Array Schools. We have identified strong demand and need for programs such as this for training undergraduate students in Asia and the North America in observing and data analysis techniques so one area of planned development is teaching materials and a package for students at this level. The program has also been used to inform the development of educational programs for new telescopes such as the Australian SKA Pathfinder (ASKAP) and the SKA.http://pulseatparkes.atnf.csiro.au/

  8. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  9. A Resource Guide for Debunking Astronomical Pseudo-Science

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    2008-11-01

    Many of us who do public programs for the International Year of Astronomy are likely to meet people who have questions or want to challenge us about pseudo-scientific topics related to astronomy. Perhaps they have heard about the claim that the moon landings were a hoax, or have seen a light in the sky which puzzled them. Even those of us who have extensive training in astronomy often are not prepared for tackling such questions. To deal with such situations, here is a concise guide to printed and web resources that offer rational examination of some of these ``fiction science'' claims. This is not a complete list, but a ``first defense'' for beginners. A fuller version can be found at: http://www.astrosociety.org/education/resources/pseudobib.html

  10. A Survey of Community- and Small-College Astronomy Instruc- tors: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    1996-12-01

    Estimates are that about 40-50% of the non-science students who take introductory astronomy in the U.S. do so at community (2-year) colleges. A further (to be determined) number do so at small colleges where research is not expec- ted of faculty. We report the preliminary results of a survey of full-time and part-time faculty at such institutions. Among topics covered are the fields of the instructors' highest degrees, the number and length of astronomy courses and labs they teach, the facilities that are available to them, their access to the Web and e-mail, and their budgets. Possible ways to reach this group of instructors (who have often been isolated from and somewhat neglected by the rest of the astronomical community) will be discussed.

  11. Night Sky Network: A partnership with NASA, the ASP and Astronomical League

    NASA Astrophysics Data System (ADS)

    Chippindale, S.; Berendsen, M.

    2003-12-01

    In 2002, the Astronomical Society of the Pacific (ASP) surveyed amateur astronomers to determine their views and experiences with public outreach. The ultimate goal was to discover methods to support amateur astronomers in their outreach efforts. The survey discovered that they are looking for ready-made, themed materials, training in astronomy content and presentation skills, mentoring, and networking to enhance their astronomy events and support their ability to do educational outreach. Acting on these results and with funding from NASA, the ASP is forming a nationwide coalition of amateur astronomy clubs whose members bring the science, technology and inspiration of NASA's missions to the general public. The program consists of three primary components: outreach materials, training, and community building. Member-based astronomy clubs will receive kits of materials on various astronomy topics to supplement and enhance their events as well as a "professional development" component that includes training on how to use the materials and tips to strengthen their individual presentation skills. The Night Sky Network web site includes public pages and a user area where success stories and challenges can be exchanged, new information downloaded, and a support area for amateur astronomers doing outreach. We are currently testing our first kit, "PlanetQuest: The Search for Another Earth", in over two dozen clubs across the country. The second kit, "Big Bang to Black Holes" is under development for NASA's Structure and Evolution of the Universe Forum through the SAO and will be beta tested over the spring and summer of 2004. Sponsored and supported by NASA-Navigator Program, NASA-SAO Education Forum, the Astronomical Society of the Pacific, and the Astronomical League.

  12. Under Connecticut Skies: Exploring 100 Years of Astronomy at Van Vleck Observatory in Middletown, Connecticut

    NASA Astrophysics Data System (ADS)

    Kilgard, Roy E.; Williams, Amrys; Erickson, Paul; Herbst, William; Redfield, Seth

    2017-01-01

    Under Connecticut Skies examines the history of astronomy at Van Vleck Observatory, located on the campus of Wesleyan University in Middletown, Connecticut. Since its dedication in June of 1916, Van Vleck has been an important site of astronomical research, teaching, and public outreach. Over a thousand visitors pass through the observatory each year, and regular public observing nights happen year-round in cooperation with the Astronomical Society of Greater Hartford. Our project explores the place-based nature of astronomical research, the scientific instruments, labor, and individuals that have connected places around the world in networks of observation, and the broader history of how observational astronomy has linked local people, amateur observers, professional astronomers, and the tools and objects that have facilitated their work under Connecticut’s skies over the past 100 years. Our research team has produced a historical exhibition to help commemorate the observatory’s centennial that opened to the public in May of 2016. Our work included collecting, documenting, and interpretting this history through objects, archival documents, oral histories, photographs, and more. The result is both a museum and a working history "laboratory" for use by student and professional researchers. In addition to the exhibit itself, we have engaged in new interpretive programs to help bring the history of astronomy to life. Future work will include digitization of documents and teaching slides, further collection of oral histories, and expanding the collection to the web for use by off-site researches.

  13. Evaluating virtual hosted desktops for graphics-intensive astronomy

    NASA Astrophysics Data System (ADS)

    Meade, B. F.; Fluke, C. J.

    2018-04-01

    Visualisation of data is critical to understanding astronomical phenomena. Today, many instruments produce datasets that are too big to be downloaded to a local computer, yet many of the visualisation tools used by astronomers are deployed only on desktop computers. Cloud computing is increasingly used to provide a computation and simulation platform in astronomy, but it also offers great potential as a visualisation platform. Virtual hosted desktops, with graphics processing unit (GPU) acceleration, allow interactive, graphics-intensive desktop applications to operate co-located with astronomy datasets stored in remote data centres. By combining benchmarking and user experience testing, with a cohort of 20 astronomers, we investigate the viability of replacing physical desktop computers with virtual hosted desktops. In our work, we compare two Apple MacBook computers (one old and one new, representing hardware and opposite ends of the useful lifetime) with two virtual hosted desktops: one commercial (Amazon Web Services) and one in a private research cloud (the Australian NeCTAR Research Cloud). For two-dimensional image-based tasks and graphics-intensive three-dimensional operations - typical of astronomy visualisation workflows - we found that benchmarks do not necessarily provide the best indication of performance. When compared to typical laptop computers, virtual hosted desktops can provide a better user experience, even with lower performing graphics cards. We also found that virtual hosted desktops are equally simple to use, provide greater flexibility in choice of configuration, and may actually be a more cost-effective option for typical usage profiles.

  14. The Portal to the Universe an IYA2009 Cornerstone Project

    NASA Astrophysics Data System (ADS)

    Lindberg Christensen, Lars; Gay, P.; IYA2009 TPTTU Cornerstone Task Group

    2008-05-01

    The science of astronomy is extremely fast moving, and delivers new results on a daily basis, often in the form of spectacular news, images of forms and shapes not seen anywhere else, enhanced by illustrations and animations. Public astronomy communication has to develop apace with the other players in the mass market for electronic information such as the gaming and entertainment industries. The problem today is not so much the availability of excellent astronomy multimedia resources for use in education, outreach and the like, but rather finding and accessing these materials. The Portal to the Universe (TPTTU) seeks to fix this problem. The Portal to the Universe (TPTTU) is an IYA2009 Cornerstone project that will feature a comprehensive directory of observatories, facilities, astronomical societies, amateur astronomy societies, space artists, science communication universities, as well as news-, image-, event- and video- aggregators and Web 2.0 collaborative tools for astronomy multimedia community interaction. The Portal will enable innovative access to, and vastly multiply the use of, astronomy multimedia resources - including news, images, videos, events, podcasts, vodcasts etc. as a selective aggregator with a non-painful editorial mechanism in place. This talk will discuss the plans for the TPTTU content as well as the technology and editorial choices behind the scenes.

  15. Reviews Book: The Quantum Story: A History in 40 Moments Resource: Down2Earth Equipment: Irwin Signal Generator/Power Amplifier Book: Laboratory Experiments in Physics for Modern Astronomy Book: Heart of Darkness Book: The Long Road to Stockholm Book: The Address Book: Our Place in the Scheme of Things Equipment: TI-Nspire Datalogger/Calculator Web Watch

    NASA Astrophysics Data System (ADS)

    2013-07-01

    WE RECOMMEND The Quantum Story: A History in 40 Moments Dip into this useful and accessible guide to quantum theory Down2Earth Astronomical-science resource enables students to pursue real, hands-on science, whatever the weather Irwin Signal Generator/Power Amplifier Students enjoy the novelty factor of versatile, affordable kit Laboratory Experiments in Physics for Modern Astronomy Book of experiments would make good supplementary material Heart of Darkness: Unravelling the Mysteries of the Invisible Universe Accessible and distinctive account of cosmology impresses The Long Road to Stockholm: The Story of MRI—An Autobiography Fascinating book tells personal and scientific stories side by side WORTH A LOOK The Address Book: Our Place in the Scheme of Things Entertaining and well-written essays offer insights and anecdotes TI-Nspire Datalogger/Calculator Challenging interface gives this kit a steep learning curve, but once overcome, results are good WEB WATCH Light-beam app game leaves little impression, while astronomy and astrophysics projects provide much-needed resources

  16. Discovering Astronomy: An Astro 101 e-book

    NASA Astrophysics Data System (ADS)

    Shawl, Stephen J.; Byrd, Gene; Deustua, Susana E.; LoPresto, Michael C.

    2016-01-01

    Discovering Astronomy, now available in its 6th edition as an eText, has many advantages and features for your students. We have partnered with etextink.com and WebAssign.net to produce an affordable set of cost-saving options for your students. Also available is the Discovering Astronomy Activity Manual, which provides students with an active-learning experience.Our etext is device independent and thus accessible through any web browser. Americans with Disabilities Act compatibility provides access for all students. Hotlinks to outside sites provide further information for interested students. Lecture demonstration videos of important concepts, made specifically for this new edition, are embedded within the text as appropriate. Students can highlight text, take notes, and bookmark locations within the text. Important terms are linked to the glossary. Search capabilities allow students to easily find what they want.Instructors can interact with their students directly through the etext once the class roster has been provided. For example, instructors can embed assignments into their students' etext and add their own notes and updates, which are immediately visible to their students.Updates can be quickly made by us as new findings become available. For example, updates from New Horizons were added at the time of the closest approach to Pluto, and an update on the recent announcement of current water on Mars was added the day of the announcement.We will present results of our own experience with college and high school students' use of Discovering Astronomy in online courses.Details of the book, a sample chapter, and other information are available at discoveringastronomy.weebly.com.

  17. Book Review: Astronomy: A Self-Teaching Guide, 6th Edition

    NASA Astrophysics Data System (ADS)

    Marigza, R. N., Jr.

    2009-03-01

    The sixth edition of Moche's book is up-to-date with the latest in astronomy. It contains accurate astronomical data on stars and constellations. The topics are incorporated with web site addresses for the reader to expand his/her knowledge and see high-resolution images of the celestial targets. This edition incorporates new discoveries and suggestions made prior to the first editions. Among the new developments is the twenty-first-century research into black holes, active galaxies and quasars, searches for life in space, origin and structure of our universe, and the latest in ground and space telescopes.

  18. Online Astronomy Resources from the American Museum of Natural History

    NASA Astrophysics Data System (ADS)

    Steiner, Robert

    2010-02-01

    The American Museum of Natural History, one of the world's largest natural history museums, is the locus of a rich array of scientific research, exhibition and educational resources through its Department of Astrophysics, its Rose Center for Earth and Space and its Hall of Meteorites. For the past decade, the Museum's National Center for Science Literacy, Education and Technology has leveraged these assets to create a panoply of web-based resources for students, teachers and the general public. This session will review several of these resources, including the Digital Universe (a three-dimensional mapping of the Universe); The Solar System (an online graduate course for K-12 teachers); multimedia highlighting searches for exoplanets and ultra-high-energy cosmic rays; Journey to the Stars (a DVD version of the current planetarium show); and the astronomy section of Ology (a website for children ages 7 and up). A copy of the Journey to the Stars DVD will be provided to all attendees. )

  19. Astronomers Who Write Science Fiction: Using SF as a Form of Astronomy Outreach

    NASA Astrophysics Data System (ADS)

    Fraknoi, Andrew

    2017-01-01

    In a recent survey, I have identified 21 living professional astronomers who write science fiction, plus a yet uncounted number of physicists. Many of the science fiction stories by this group involve, as you might imagine, reasonable extrapolation from current scientific ideas and discoveries. These stories, some of which are available free on the Web or are collected in inexpensive anthologies, represented a method of astronomy outreach to which relatively little attention has been paid. I will list the authors identified in the survey and provide a representative list of their stories or novels, organized by astronomical topic. I will also discuss how written SF (and SF films based on ideas by scientists, such as Kip Thorne's "Interstellar") can be used in general education classes and public programs. Scientists do not need to cede the field to wizards, dragons, and zombies! (Note: The author is included in the list of 21, having published two short stories in two different anthologies recently.)

  20. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  1. Astroaccesible: Bringing the study of the Universe to the visually impaired

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García Gómez-Caro, E.; Sánchez Molina, Y.; Ortiz-Gil, A.; López de Lacalle, S.; Tamayo, A.

    2017-03-01

    Astroaccesible is an outreach project carried out in collaboration with the IAA-CSIC and ONCE to make astronomy more accessible to the visually impaired people so the main source of information is not based on the use of images. The activities of the project started in 2014 and since then it has received financial support from SEA in 2015 and from FECYT in 2016 making possible to extend the activity for many ONCE centres in Spain. The activities include in-person classes using adequate descriptions, high-contrast images for those people with visual remain and touching material representing basic concepts about sizes, scales and distances of astronomical bodies. To maximize the impact of the contents of the project many of the contents, summary of activities, links to resources are available through the web page of the project. This project focused on astronomy is also intended to make the scientific community more sensitive to perform more accessible explanations of their results.

  2. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  3. Space Projects and Research by Kids (SPARK): A Web Based Research Journal for Middle School Students

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Pertzborn, R. A.

    1999-05-01

    Project SPARK is designed to facilitate opportunities for upper elementary and middle school students to develop the necessary skills to conduct investigations that focus on the subjects of astronomy, space exploration, and earth remote sensing. This program actively engages students in conducting their own research project to acquire increased understanding and content knowledge in the space sciences. While the development of scientific inquiry skills and content literacy is the primary focus, students also enhance their critical thinking, analytical, technological and communications skills. As in the professional science community, the web based SPARK Journal presents an avenue for students to effectively communicate the results of their investigations and work to classmates as well as the "global learning community" via the world wide web. Educational outreach staff at the Sapce Science and Engineering Center have developed active partnerships with teachers and schools throughout Wisconsin to facilitate the development of standards based curriculum and research projects focusing on current topics in the space sciences. Student research projects and activities arising from these initiatives were submitted in the Spring and Fall of 1998 for inclusion in SPARK, Volume 1. The second volume of SPARK will be published in Spring, 1999. Support for the development of this journal was provided by the NASA/IDEAS Program.

  4. Using the Browser for Science: A Collaborative Toolkit for Astronomy

    NASA Astrophysics Data System (ADS)

    Connolly, A. J.; Smith, I.; Krughoff, K. S.; Gibson, R.

    2011-07-01

    Astronomical surveys have yielded hundreds of terabytes of catalogs and images that span many decades of the electromagnetic spectrum. Even when observatories provide user-friendly web interfaces, exploring these data resources remains a complex and daunting task. In contrast, gadgets and widgets have become popular in social networking (e.g. iGoogle, Facebook). They provide a simple way to make complex data easily accessible that can be customized based on the interest of the user. With ASCOT (an AStronomical COllaborative Toolkit) we expand on these concepts to provide a customizable and extensible gadget framework for use in science. Unlike iGoogle, where all of the gadgets are independent, the gadgets we develop communicate and share information, enabling users to visualize and interact with data through multiple, simultaneous views. With this approach, web-based applications for accessing and visualizing data can be generated easily and, by linking these tools together, integrated and powerful data analysis and discovery tools can be constructed.

  5. Using Kepler Light Curves for Astronomy Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Cash, Jennifer; Rivers, S.; Eleby, J.; Gould, A.; Komatsu, T.

    2014-01-01

    We will present our efforts related to Education and Public Outreach activities using Kepler Light Curves. We are currently developing interactive web based activities to introduce the public to the general topic of Stellar Variability and Intrinsic Variable Stars in particular using the high quality light curves of over a dozen Kepler targets. Along with the public website, we are exploring areas to develop teacher guides to use Kepler Light Curves in the middle and high school classrooms. These efforts are supported through a NASA EPSCoR grant "South Carolina Joint Venture Program" via a subaward to SC State University.

  6. Interactive Astronomy.

    ERIC Educational Resources Information Center

    Martin, Jean K.

    1997-01-01

    Presents guiding principles for developing interactive lessons for the World Wide Web. Describes "Amazing Space: Education Online from the Hubble Space Telescope", a program where students study spectacular Hubble Space Telescope images of stars and star-forming regions to learn about the life cycle of stars and the creation of atoms. (JRH)

  7. The Future of Space Astronomy.

    ERIC Educational Resources Information Center

    Field, George B.

    1984-01-01

    Discusses various aspects of space astronomy, considering advantages, the space telescope and ground-based astronomy, an orbiting astrophysics facility, solar physics, and other areas. Indicates that earth-based astronomy will continue to be carried out there and space astronomy will be limited to observations that can be carried out only from…

  8. The Astronomy Workshop: Scientific Notation and Solar System Visualizer

    NASA Astrophysics Data System (ADS)

    Deming, Grace; Hamilton, D.; Hayes-Gehrke, M.

    2008-09-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive World Wide Web tools that were developed under the direction of Doug Hamilton for use in undergraduate classes and by the general public. The philosophy of the site is to foster student interest in astronomy by exploiting their fascination with computers and the internet. We have expanded the "Scientific Notation” tool from simply converting decimal numbers into and out of scientific notation to adding, subtracting, multiplying, and dividing numbers expressed in scientific notation. Students practice these skills and when confident they may complete a quiz. In addition, there are suggestions on how instructors may use the site to encourage students to practice these basic skills. The Solar System Visualizer animates orbits of planets, moons, and rings to scale. Extrasolar planetary systems are also featured. This research was sponsored by NASA EPO grant NNG06GGF99G.

  9. Top ten reasons to register your code with the Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, Alice; DuPrie, Kimberly; Berriman, G. Bruce; Mink, Jessica D.; Nemiroff, Robert J.; Robitaille, Thomas; Schmidt, Judy; Shamir, Lior; Shortridge, Keith; Teuben, Peter J.; Wallin, John F.; Warmels, Rein

    2017-01-01

    With 1,400 codes, the Astrophysics Source Code Library (ASCL, ascl.net) is the largest indexed resource for codes used in astronomy research in existence. This free online registry was established in 1999, is indexed by Web of Science and ADS, and is citable, with citations to its entries tracked by ADS. Registering your code with the ASCL is easy with our online submissions system. Making your software available for examination shows confidence in your research and makes your research more transparent, reproducible, and falsifiable. ASCL registration allows your software to be cited on its own merits and provides a citation that is trackable and accepted by all astronomy journals and journals such as Science and Nature. Registration also allows others to find your code more easily. This presentation covers the benefits of registering astronomy research software with the ASCL.

  10. The Radio JOVE Project: Inexpensive Radio Astronomy for the Classroom

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Higgins, C. A.; Pine, W.

    2000-12-01

    Radio JOVE is an interactive, hands-on educational activity for learning the scientific method through the medium of radio astronomy observations of Jupiter and the sun. Students build a radio telescope from a relatively inexpensive non-profit kit (about \\$125) and use it to record data, analyze the data, and share the results with others. Alternatively, for no cost, the students can record and analyze data from remote radio telescopes connected to the Web. The project is a useful adjunct to activities in optical astronomy since students should recognize that we learn about the Universe through more than just the optical spectrum. In addition to supplementing knowledge of Jupiter and the sun, the project teaches about charged particles and magnetic fields. Building of the kit is also a mini-course in electronics. The Radio JOVE website (http://radiojove.gsfc.nasa.gov) contains science information, instruction manuals, observing guides, software, and education resources for students and teachers.

  11. Vocabularies in the VO

    NASA Astrophysics Data System (ADS)

    Gray, A. J. G.; Gray, N.; Ounis, I.

    2009-09-01

    There are multiple vocabularies and thesauri within astronomy, of which the best known are the 1993 IAU Thesaurus and the keyword list maintained by A&A, ApJ and MNRAS. The IVOA has agreed on a standard for publishing vocabularies, based on the W3C skos standard, to allow greater automated interaction with them, in particular on the Web. This allows links with the Semantic Web and looks forward to richer applications using the technologies of that domain. Vocabulary-aware applications can benefit from improvements in both precision and recall when searching for bibliographic or science data, and lightweight intelligent filtering for services such as VOEvent streams. In this paper we present two applications, the Vocabulary Explorer and its companion the Mapping Editor, which have been developed to support the use of vocabularies in the Virtual Observatory. These combine Semantic Web and Information Retrieval technologies to illustrate the way in which formal vocabularies might be used in a practical application, provide an online service which will allow astronomers to explore and relate existing vocabularies, and provide a service which translates free text user queries into vocabulary terms.

  12. Boosting productivity: a framework for professional/amateur collaborative teamwork

    NASA Astrophysics Data System (ADS)

    Al-Shedhani, Saleh S.

    2002-11-01

    As technology advances, remote operation of telescopes has paved the way for joint observational projects between Astronomy clubs. Equipped with a small telescope, a standard CCD, and a networked computer, the observatory can be set up to carry out several photometric studies. However, most club members lack the basic training and background required for such tasks. A collaborative network between professionals and amateurs is proposed to utilize professional know-how and amateurs' readiness for continuous observations. Working as a team, various long-term observational projects can be carried out using small telescopes. Professionals can play an important role in raising the standards of astronomy clubs via specialized training programs for members on how to use the available technology to search/observe certain events (e.g. supernovae, comets, etc.). Professionals in return can accumulate a research-relevant database and can set up an early notification scheme based on comparative analyses of the recently-added images in an online archive. Here we present a framework for the above collaborative teamwork that uses web-based communication tools to establish remote/robotic operation of the telescope, and an online archive and discussion forum, to maximize the interactions between professionals and amateurs and to boost the productivity of small telescope observatories.

  13. Naming asteroids for the popularisation of astronomy

    NASA Astrophysics Data System (ADS)

    Naranjo, O. A.

    2008-06-01

    We give a detailed description of how the naming of asteroids was used as a prize in competitions run by educational institutions and museums. There were two events, one in Venezuela and one in Brazil, which used this as an attractive alternative method for the popularisation of astronomy. The first competition, named Bautizo Espacial (Space Baptism), consisted of scientific stories written by high school students. The second, called Grande Desafio (Big Challenge), was a competition where teams of students were challenged to design and build prototype equipment to fight forest fires. Nationally, both events received wide publicity through newspapers, radio, TV and web pages, reaching many people in both countries. As part of both the events, several activities promoting the public knowledge of astronomy were held. The asteroids that were named in these competitions are just some of the many discovered in a search programme developed by the Group of Theoretical Astrophysics of University of Los Andes in Mérida, Venezuela (Grupo de Astrofisica Teórica de la Universidad de Los Andes) as a mainstream research programme. Finally, Asteroids for the Popularisation of Astronomy has been formally proposed to the IAU as a worldwide programme during the celebration of the International Year of Astronomy in 2009 (IYA2009).

  14. Dark Skies are a Universal Resource. So are Quiet Skies!

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. New web technologies for astronomy

    NASA Astrophysics Data System (ADS)

    Sprimont, P.-G.; Ricci, D.; Nicastro, L.

    2014-12-01

    Thanks to the new HTML5 capabilities and the huge improvements of the JavaScript language, it is now possible to design very complex and interactive web user interfaces. On top of that, the once monolithic and file-server oriented web servers are evolving into easily programmable server applications capable to cope with the complex interactions made possible by the new generation of browsers. We believe that the whole community of amateur and professionals astronomers can benefit from the potential of these new technologies. New web interfaces can be designed to provide the user with a large deal of much more intuitive and interactive tools. Accessing astronomical data archives, schedule, control and monitor observatories, and in particular robotic telescopes, supervising data reduction pipelines, all are capabilities that can now be implemented in a JavaScript web application. In this paper we describe the Sadira package we are implementing exactly to this aim.

  16. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  17. XML — an opportunity for data standards in the geosciences

    NASA Astrophysics Data System (ADS)

    Houlding, Simon W.

    2001-08-01

    Extensible markup language (XML) is a recently introduced meta-language standard on the Web. It provides the rules for development of metadata (markup) standards for information transfer in specific fields. XML allows development of markup languages that describe what information is rather than how it should be presented. This allows computer applications to process the information in intelligent ways. In contrast hypertext markup language (HTML), which fuelled the initial growth of the Web, is a metadata standard concerned exclusively with presentation of information. Besides its potential for revolutionizing Web activities, XML provides an opportunity for development of meaningful data standards in specific application fields. The rapid endorsement of XML by science, industry and e-commerce has already spawned new metadata standards in such fields as mathematics, chemistry, astronomy, multi-media and Web micro-payments. Development of XML-based data standards in the geosciences would significantly reduce the effort currently wasted on manipulating and reformatting data between different computer platforms and applications and would ensure compatibility with the new generation of Web browsers. This paper explores the evolution, benefits and status of XML and related standards in the more general context of Web activities and uses this as a platform for discussion of its potential for development of data standards in the geosciences. Some of the advantages of XML are illustrated by a simple, browser-compatible demonstration of XML functionality applied to a borehole log dataset. The XML dataset and the associated stylesheet and schema declarations are available for FTP download.

  18. Improving Web-Based Student Learning Through Online Video Demonstrations

    NASA Astrophysics Data System (ADS)

    Miller, Scott; Redman, S.

    2010-01-01

    Students in online courses continue to lag their peers in comparable face-to-face (F2F) courses (Ury 2004, Slater & Jones 2004). A meta-study of web-based vs. classroom instruction by Sitzmann et al (2006) discovered that the degree of learner control positively influences the effectiveness of instruction: students do better when they are in control of their own learning. In particular, web-based courses are more effective when they incorporate a larger variety of instructional methods. To address this need, we developed a series of online videos to demonstrate various astronomical concepts and provided them to students enrolled in an online introductory astronomy course at Penn State University. We found that the online students performed worse than the F2F students on questions unrelated to the videos (t = -2.84), but that the online students who watched the videos performed better than the F2F students on related examination questions (t = 2.11). We also found that the online students who watched the videos performed significantly better than those who did not (t = 3.43). While the videos in general proved helpful, some videos were more helpful than others. We will discuss our thoughts on why this might be, and future plans to improve upon this study. These videos are freely available on iTunesU, YouTube, and Google Video.

  19. Enabling Astronony Research in High Schools with the START Collaboratory

    NASA Astrophysics Data System (ADS)

    Greenberg, G. J.; Pennypacker, C. R.

    2005-12-01

    The START Collaboratory is a three-year, NSF funded project to create a Web-based national astronomy research collaboratory for high school students that will bring authentic scientific research to classrooms across the country. The project brings together the resources and experience of Hands-On Universe at the University of California at Berkeley, the Sloan Digital Sky Survey / National Virtual Observatory at Johns Hopkins University and the Northwestern University Collaboratory Project. The START Collaboratory seamlessly integrates access to gigabytes of searchable data and images from the Sloan Digital Sky Survey and the NVO into Web-based research notebooks and research reports that can be shared and discussed online. Requests for observations can be made through the START Telescope Request Broker. These observations can be viewed with the START Web Visualization Tool for visualization and measurement of FITS files. The project has developed a set of research scenarios to introduce students to the resources and tools available through the START Collaboratory, and to provide a model for network-based collaboration that engages students, teachers and professional scientists. Great attention has been paid to ensuring that the research scenarios result in accurate and authentic research products that are of real interest to working astronomers. In this panel presentation, we will describe the educational benefits and opportunities being seen in pilot testing with teachers and students, and in preparations for a teacher professional development project with the Adler Planetarium.

  20. Imagine the Universe! Version 3. [CD-ROM].

    ERIC Educational Resources Information Center

    Whitlock, Laura; Bene, Meredith; Granger, Kara

    This CD-ROM contains four astronomy and space science learning center sites individually captured from the World Wide Web in January of 1999. Each site contains its own learning adventure full of facts, fun, music, beautiful images, movies, and excitement. Space science learning sites include: (1) Imagine the Universe! geared for ages 14 and up…

  1. Hypercat: A Database for Extragalactic Astronomy

    NASA Astrophysics Data System (ADS)

    Prugniel, Ph.; Maubon, G.

    The Hypercat Database is developed at Observatoire de Lyon and is distributed on the WEB(www-obs.univ-lyon1.fr/hypercat) through different mirrors in Europe. The goal of Hypercat is to gather data necessary for studying the evolution of galaxies (dynamics and stellar contains) and particularly for providing a z = 0 reference for these studies.

  2. The Swift MIDEX Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Cominsky, L. R.; Whitlock, L. A.

    1999-12-01

    The Swift satellite is dedicated to an understanding of gamma-ray bursts, the most powerful explosions in the Universe since the Big Bang. A multifaceted E/PO program associated with Swift is planned. Web sites will be constructed, including sophisticated interactive learning environments for combining science concepts with with exploration and critical thinking for high school students. The award-winning instructional television program "What's in the News?", produced by Penn State Public Broadcasting and reaching several million 4th-7th graders, will create a series of broadcasts on Swift and space astronomy. A teachers' curricular guide on space astronomy will be produced by UC-Berkeley's Lawrence Hall of Science as part of their highly successful GEMS guides promoting inquiry-based science education. Teacher workshops will be conducted in the Appalachian region and nationwide to testbed and disseminate these products. We may also assist the production of gamma-ray burst museum exhibits. All aspects of the program will be overseen by a Swift Education Committee and assessed by a professional educational evaluation firm. This effort will be supported by the NASA Swift MIDEX contract to Penn State.

  3. Cyberhubs: Virtual Research Environments for Astronomy

    NASA Astrophysics Data System (ADS)

    Herwig, Falk; Andrassy, Robert; Annau, Nic; Clarkson, Ondrea; Côté, Benoit; D’Sa, Aaron; Jones, Sam; Moa, Belaid; O’Connell, Jericho; Porter, David; Ritter, Christian; Woodward, Paul

    2018-05-01

    Collaborations in astronomy and astrophysics are faced with numerous cyber-infrastructure challenges, such as large data sets, the need to combine heterogeneous data sets, and the challenge to effectively collaborate on those large, heterogeneous data sets with significant processing requirements and complex science software tools. The cyberhubs system is an easy-to-deploy package for small- to medium-sized collaborations based on the Jupyter and Docker technology, which allows web-browser-enabled, remote, interactive analytic access to shared data. It offers an initial step to address these challenges. The features and deployment steps of the system are described, as well as the requirements collection through an account of the different approaches to data structuring, handling, and available analytic tools for the NuGrid and PPMstar collaborations. NuGrid is an international collaboration that creates stellar evolution and explosion physics and nucleosynthesis simulation data. The PPMstar collaboration performs large-scale 3D stellar hydrodynamics simulations of interior convection in the late phases of stellar evolution. Examples of science that is currently performed on cyberhubs, in the areas of 3D stellar hydrodynamic simulations, stellar evolution and nucleosynthesis, and Galactic chemical evolution, are presented.

  4. 47 CFR 2.1 - Terms and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radiocommunication services or the radio astronomy service under specified conditions. This term shall also be... another surface. (RR) Radio Astronomy. Astronomy based on the reception of radio waves of cosmic origin. (RR) Radio Astronomy Service. A service involving the use of radio astronomy. (RR) Radio Astronomy...

  5. 47 CFR 2.1 - Terms and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radiocommunication services or the radio astronomy service under specified conditions. This term shall also be... another surface. (RR) Radio Astronomy. Astronomy based on the reception of radio waves of cosmic origin. (RR) Radio Astronomy Service. A service involving the use of radio astronomy. (RR) Radio Astronomy...

  6. Astronomy 2020: A Pragmatic Approach

    NASA Astrophysics Data System (ADS)

    Graham, M. J.

    2009-09-01

    In the cinema history of astronomy, we are currently at the stage of the Lumiere brothers with contemporary surveys providing short monochromatic time sequences of the sky. By the end of the next decade, however, panchromatic blockbusters will be commonplace and science will be predominantly driven by the objects that change in successive ``frames''. Web-scale computing resources will be required just to process the torrents of data events but the key to understanding them will be contextualisation --- linking together disparate (sets of) events and relating them to archival and supplementary data in a machine-comprehensible way. Much of the data mining and analysis of such data portfolios will be performed by proxy scientists --- intelligent agent avatars that represent an individual's particular research interests in high-dimension parameter spaces. Although this view might sound like science fiction, in this paper, I will review the technologies that will make it achievable. In particular, I will cover new approaches to web services that will be required to support these massive event streams, social networking techniques that will facilitate science and semantic technologies that will underpin everything.

  7. The Astronomer's Telegram: A Web-based Short-Notice Publication System for the Professional Astronomical Community

    NASA Astrophysics Data System (ADS)

    Rutledge, Robert E.

    1998-06-01

    The Astronomer's Telegram (ATEL) is a web-based short-notice (<4000 characters) publication system for reporting and commenting on new astronomical observations, offering for the first time in astronomy effectively instantaneous distribution of time-critical information for the entire professional community. It is designed to take advantage of the World Wide Web's simple user interface and the ability of computer programs to provide nearly all the necessary functions. This makes ATEL fast, efficient, and free. In practice, one may post a Telegram, which is instantly (<1 s) available at the web site and is distributed by e-mail within 24 hours through the Daily Email Digest, which is tailored to the subject selections of each reader. In addition, authors reporting new outbursts of transients or coordinates of new objects (for example, gamma-ray bursts or microlensing events) may request distribution by Instant Email Notices, which instantly (~minutes) distributes their new Telegram by e-mail to self-identified workers interested in the same topic. This speed in distribution is obtained because no editing or reviewing is performed after posting-the last person to review the text before distribution is the author. Telegrams are enumerated chronologically, permanently archived, and referenceable. While ATEL will be of particular use to observers of transient objects (such as gamma-ray bursts, microlenses, supernovae, novae, or X-ray transients) or in fields that are rapidly evolving observationally, there are no restrictions on subject matter.

  8. Comets, Asteroids and Rubble Piles: not just debris

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Dusenbery, P.

    2010-12-01

    The National Center for Interactive Learning at the Space Science Institute (NCIL @ SSI) is developing a variety of asteroids related education activities as part of several E/PO projects, including Finding NEO (funded through NSF and NASA SMD); Great Balls of Fire! (funded through NSF); and a partnership with the WISE (Wide-field Infrared Survey Explorer) mission. These activities range from a web site to traveling exhibits in three different sizes. The Killer Asteroids web site (www.killerasteroids.org) includes background information on comets and asteroids as well as a number of interactive activities and games. These include a game that compares the risk of death from an asteroid impact to other hazards; a game and video vignettes on the role of backyard astronomers in light curve research; a physics-based asteroid deflection game; and a Google Earth -based "drop a rock on your house" activity. In addition, the project is developing a small, portable exhibit suitable for use in libraries or visitors centers. Great Balls of Fire! includes two separate traveling exhibitions: a 3000 square foot exhibition for science centers, and a 500 square foot version for smaller venues. Both will begin national tours in the summer of 2011. The Great Balls of Fire! exhibit program includes a free Education Program for docents and educators, and an Outreach Program to amateur astronomers around the country through the Astronomical Society of the Pacific’s (ASP) Astronomy from the Ground Up program. The project will facilitate partnerships between host venues and local astronomy clubs that can interact with the public using a toolkit of activities developed by ASP. Great Balls of Fire! Represents a collaboration between scientists, educators, exhibit designers, graphic artists, evaluators, education researchers, and three teams of middle school students who acted as advisors. The project’s exhibit design firm is Jeff Kennedy Associates Inc. We will present a summary of the different components of these projects and how different audiences can take advantage of them, from science centers and libraries that can host the exhibits, to home and classroom use through the web site.

  9. The Art of Astronomy: A New General Education Course for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  10. New and Innovative Library Services: Moving with Web 2.0 / Library 2.0 Technology, a Case Study

    NASA Astrophysics Data System (ADS)

    Sahu, H. K.; Pathak, S. K.; Singh, S. N.

    2010-10-01

    We give an overview and definition of Web 2.0 and Library 2.0 technology, especially addressing how it changes access to collections for users. We also describe its unlimited possibilities. The various components of Library 2.0 viz blogs, wikis, RSS, instant messaging, social networking, podcasting, and tagging are briefly summarized. Initiatives at three special information centers and libraries (IUCAA — Astronomy and Astrophysics; IIT — Science and Technology; and NIV — Viral Diseases) are described. We conclude with a futuristic view of Library 2.0.

  11. Preface

    NASA Astrophysics Data System (ADS)

    Gurvits, L. I.; Frey, S.; Rawlings, S.

    Three quarters of the century has passed since the synergy between scientific discovery and technological advances enabled Karl Jansky to open a new window on the Universe, marking the birth of radio astronomy. Since then, radio astronomy has become one of the major tools for studying the Universe. Radio galaxies with their enormously energetic clouds of relativistic electrons and cosmic jets that extend up to millions of light years into space, a broad variety of atoms and molecules, from neutral hydrogen to complex organic conglomerates, cosmic microwave masers, the cosmic microwave background radiation, quasars, pulsars, gravitational lenses and extra-solar planetary systems were all discovered in radio domain. Radio telescopes have also been used to measure the relativistic bending of electromagnetic waves which pass near the limb of the Sun, to establish the existence of gravitational radiation and measure continental drift. The progress of radio astronomy is driven by the needs of fundamental science and is based on the state-of-the-art developments in technology. Since its first steps, radio astronomy has made huge progress, resulting in the improvement of sensitivity by many orders of magnitude and approaching micro-arcsecond angular resolution. This progress will continue in the XXI century with the advent of new radio astronomy facilities on the ground (LOFAR, ALMA, SKA) and in space (Planck, next generation space VLBI systems). In this book, the current state of radio astronomy is framed by several retrospective reviews and introductions to the next generation facilities. Views at radio astronomy from other domains, optical astronomy and high energy astrophysics, are also presented. Advances of modern radio astronomy were in the focus of the symposium “Radio Astronomy at 70: from Karl Jansky to microjansky”, which was held under the auspices of the annual Joint European National Astronomy Meeting (JENAM) in Budapest, Hungary, 27-30 August 2003. More than 30 contributed papers from that symposium have been published recently in Baltic Astronomy (2005, Vol. 14, No. 3). This book contains a set of invited review presentations given at the symposium. They cover a range of scientific topics in extragalactic and galactic radio astronomy studies as well as recent developments in radio astronomy techniques aimed at the next generation radio astronomy facilities. On behalf of the organisers and participants of the symposium, we express our gratitude to the sponsors of the event and this publication: the European Astronomical Society, Hungarian Academy of Sciences, Eötvös Loránd University, Konkoly Observatory, Eötvös Loránd Physical Society, Netherlands Foundation for Research in Astronomy (ASTRON), Joint Institute for VLBI in Europe, Hungarian Scientific Research Fund, EC FP5 Infrastructure Cooperation Network RadioNET and EC FP6 Integrated Infrastructure Initiative RadioNet. We are grateful to the members of the Scientific Organising Committee of the Symposium. Ken Kellermann made very useful remarks on several papers. Ellen Bouton and Pat Smiley helped to include in this book several photos from the AUI-NRAO archive. Mark Bentum designed the cover picture of the book, visual components for which were kindly supplied by W.A. Baan, M.F. Bietenholz, R. Boomsma, R. Braun, N. Bartel, M.A. Garrett, J.M. van der Hulst, H.R. Klockner, NASA/WMAP Science Team, T.A. Oosterloo, M.P. Rupen, R. Sancisi, B. Stappers, R.G. Strom, D.A. Thilker, and R.A.M. Walterbos. Most of all, we are grateful to all the authors of this book for their efforts in the increasingly old-fashioned art of writing papers for a real “paper” publication as opposed to putting powerpoint files on a web site. We do hope that their nice work will be appreciated by the readers. Leonid Gurvits, Dwingeloo, The Netherlands Sándor Frey, Budapest, Hungary Steve Rawlings, Oxford, UK

  12. Project LITE - Light Inquiry Through Experiments

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2004-12-01

    Hands-on, inquiry-based, constructivist activity offers students a powerful way to explore, uncover and ultimately gain a feel for the nature of science. In order to make practicable a more genuine approach to learning astronomy, we have undertaken the development of hands-on (and eyes-on) materials that can be used in introductory undergraduate astronomy courses. These materials focus on light and optics. Over the past several years as part of Project LITE (Light Inquiry Through Experiments), we have developed a kit of optical materials that is integrated with a set of Java applets. The combined kit and software allows students to do actual experiments concerning geometrical optics, fluorescence, phosphorescence, polarization and other topics by making use of the photons that are emitted by their computer screens. We have also developed a suite of over 100 Flash applets that allow students to directly explore many aspects of visual perception. A major effort of the project concerns spectroscopy, since it is arguably the most important tool used by astronomers to disentangle the nature of the universe. It is also one of the most challenging subjects to teach in undergraduate astronomy courses. The spectroscopy component of Project LITE includes take-home laboratory materials and experiments that are integrated with web-based software. We have also developed a novel quantitative handheld binocular spectrometer (patent pending). Our major spectroscopic software is called the Spectrum Explorer (SPEX). It allows students to create, manipulate and explore all types of spectra including blackbody, power law, emission and absorption. We are now extending the SPEX capabilities to help students gain easy access to the astronomical spectra included in the NVO databases. All of the Project LITE software can be found http://lite.bu.edu. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  13. Cloud services on an astronomy data center

    NASA Astrophysics Data System (ADS)

    Solar, Mauricio; Araya, Mauricio; Farias, Humberto; Mardones, Diego; Wang, Zhong

    2016-08-01

    The research on computational methods for astronomy performed by the first phase of the Chilean Virtual Observatory (ChiVO) led to the development of functional prototypes, implementing state-of-the-art computational methods and proposing new algorithms and techniques. The ChiVO software architecture is based on the use of the IVOA protocols and standards. These protocols and standards are grouped in layers, with emphasis on the application and data layers, because their basic standards define the minimum operation that a VO should conduct. As momentary verification, the current implementation works with a set of data, with 1 TB capacity, which comes from the reduction of the cycle 0 of ALMA. This research was mainly focused on spectroscopic data cubes coming from the cycle 0 ALMA's public data. As the dataset size increases when the cycle 1 ALMA's public data is also increasing every month, data processing is becoming a major bottleneck for scientific research in astronomy. When designing the ChiVO, we focused on improving both computation and I/ O costs, and this led us to configure a data center with 424 high speed cores of 2,6 GHz, 1 PB of storage (distributed in hard disk drives-HDD and solid state drive-SSD) and high speed communication Infiniband. We are developing a cloud based e-infrastructure for ChiVO services, in order to have a coherent framework for developing novel web services for on-line data processing in the ChiVO. We are currently parallelizing these new algorithms and techniques using HPC tools to speed up big data processing, and we will report our results in terms of data size, data distribution, number of cores and response time, in order to compare different processing and storage configurations.

  14. Linked data scientometrics in semantic e-Science

    NASA Astrophysics Data System (ADS)

    Narock, Tom; Wimmer, Hayden

    2017-03-01

    The Semantic Web is inherently multi-disciplinary and many domains have taken advantage of semantic technologies. Yet, the geosciences are one of the fields leading the way in Semantic Web adoption and validation. Astronomy, Earth science, hydrology, and solar-terrestrial physics have seen a noteworthy amount of semantic integration. The geoscience community has been willing early adopters of semantic technologies and have provided essential feedback to the broader semantic web community. Yet, there has been no systematic study of the community as a whole and there exists no quantitative data on the impact and status of semantic technologies in the geosciences. We explore the applicability of Linked Data to scientometrics in the geosciences. In doing so, we gain an initial understanding of the breadth and depth of the Semantic Web in the geosciences. We identify what appears to be a transitionary period in the applicability of these technologies.

  15. "MANU 'Imiloa": The Development of Integrative, Indigenous Culture-Based Curriculum in Astronomy and STEM

    NASA Astrophysics Data System (ADS)

    Ha`o, Celeste

    2015-08-01

    This paper presents the development of "MANU 'Imiloa, Modern & Ancient ways of Navigating our Universe." Given the large bodies of research indicating that indigenous peoples are vastly underrepresented in STEM and particularly in astronomy, and that the middle school years serve as a bottleneck in the STEM pipeline, innovative approaches to engaging indigenous populations at the middle school level should be of great interest to the international astronomy education community. Manu `Imiloa is an integrated astronomy and STEM curriculum project, based in the indigenous Hawaiian culture, that serves as a place-based model of how astronomy and STEM can be meaningfully taught to middle school (age 12-15) students. Fusing the culture-based instructional model of Moenahā, with the reemerging cultural practice of Polynesian navigation, Manu `Imiloa breathes life into astronomy through the art of Polynesian wayfinding.

  16. A Visual Galaxy Classification Interface and its Classroom Application

    NASA Astrophysics Data System (ADS)

    Kautsch, Stefan J.; Phung, Chau; VanHilst, Michael; Castro, Victor H

    2014-06-01

    Galaxy morphology is an important topic in modern astronomy to understand questions concerning the evolution and formation of galaxies and their dark matter content. In order to engage students in exploring galaxy morphology, we developed a web-based, graphical interface that allows students to visually classify galaxy images according to various morphological types. The website is designed with HTML5, JavaScript, PHP, and a MySQL database. The classification interface provides hands-on research experience and training for students and interested clients, and allows them to contribute to studies of galaxy morphology. We present the first results of a pilot study and compare the visually classified types using our interface with that from automated classification routines.

  17. Hands-on Universe - Europe

    NASA Astrophysics Data System (ADS)

    Ferlet, R.

    2006-08-01

    The EU-HOU project aims at re-awakening the interest for science through astronomy and new technologies, by challenging middle and high schools pupils. It relies on real observations acquired through an internet-based network of robotic optical and radio telescopes or with didactical tools such as Webcam. Pupils manipulate and measure images in the classroom environment, using the specifically designed software SalsaJ, within pedagogical trans-disciplinary resources constructed in close collaboration between researchers and teachers. Gathering eight European countries coordinated in France, EU-HOU is partly funded by the European Union. All its outputs are freely available on the Web, in English and the other languages involved. A European network of teachers is being developed through training sessions.

  18. Hands-on Universe - Europe

    NASA Astrophysics Data System (ADS)

    Ferlet, R.

    The EU-HOU project aims at re-awakening the interest for science through astronomy and new technologies, by challenging middle and high schools pupils. It relies on real observations acquired through an internet-based network of robotic optical and radio telescopes or with didactical tools such as Webcam. Pupils manipulate and measure images in the classroom environment, using the specifically designed software SalsaJ, within pedagogical trans-disciplinary resources constructed in close collaboration between researchers and teachers. Gathering eight European countries coordinated in France, EU-HOU is partly funded by the European Union. All its outputs are freely available on the Web, in English and the other languages involved. A European network of teachers is being developed through training sessions.

  19. Roma-BZCAT: a multifrequency catalogue of blazars

    NASA Astrophysics Data System (ADS)

    Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S.

    2009-02-01

    We present a new catalogue of blazars based on multifrequency surveys and on an extensive review of the literature. Blazars are classified as BL Lacertae objects, as flat spectrum radio quasars or as blazars of uncertain/transitional type. Each object is identified by a root name, coded as BZB, BZQ and BZU for these three subclasses respectively, and by its coordinates. This catalogue is being built as a tool useful for the identification of the extragalactic sources that will be detected by present and future experiments for X and gamma-ray astronomy, like Swift, AGILE, Fermi-GLAST and Simbol-X. An electronic version is available from the ASI Science Data Center web site at http://www.asdc.asi.it/bzcat.

  20. Astronomy 101 in Washington State High Schools

    NASA Astrophysics Data System (ADS)

    Lutz, Julie H.; Garner, S.; Stetter, T.; McKeever, J.; Santo Pietro, V.

    2011-01-01

    The University of Washington in the High School (UWHS) program enables high schools to offer the 5 quarter credits Astronomy 101 (Astr 101) course for college credits. The credits are transferable to most colleges and universities. The course provides an alternative to advance placement courses and programs such as Washington's Running Start whereby high school students take courses at community colleges. Astr 101 focuses on stars, galaxies and the universe, as well as background topics such as gravitation, electromagnetic radiation and telescopes. The course satisfies the UW "natural world” and "quantitative/symbolic reasoning” distribution requirements. Students must pay a fee to enroll, but the credits cost less than half what they would cost for the course if taken on one of the UW campuses. The course can be offered as either one semester or full-year at the high school. Teachers who offer Astr 101 must be approved in advance by the UW Astronomy Department, and their syllabi and course materials approved also. Teachers receive orientation, professional development opportunities, classroom visits and support (special web site, answering questions, making arrangements for campus visits, planetarium visits) from astronomy department course coordinator. The UWHS Astr 101 program has produced positive outcomes for the astronomy department, the participating teachers and the students who complete the course. In this poster we will discuss our 5 years of experience with offering Astr 101, including benefits to the students, teachers, high schools, university and department, student outcomes, course assessments and resources for offering the course.

  1. What's Up? Use the night sky to engage the public through amateur astronomy in IYA; What's Up monthly astronomy themed podcasts; Annual Saturn Observation Night worldwide celebration of Saturn Opposition

    NASA Astrophysics Data System (ADS)

    Houston Jones, Jane

    2008-09-01

    Abstract What's Up video podcasts: connecting "astronomy for everyone" monthly astronomical views with related NASA missions, science, images and handson education. Background: What's Up Podcasts are 2 minute video podcasts available through RSS feed, You tube, and NASA websites every month. They feature an astronomy related viewing target in the sky each month, targets visible to everyone, from city or country, just by looking up! No telescope is required to view these objects. Summary: Expand and broaden the scope of the existing "What's Up" public astronomy themed video podcasts. NASA builds partnerships and linkages between Science, Technology, Engineering and Mathematics formal and informal education providers. What's Up podcasts provides a link between astronomical views and events, or "what's up in the night sky this month" with current NASA missions, mission milestones and events, space telescope images or press releases. These podcasts, plus supporting star charts, hands-on activities, standards-based educational lessons and mission links will be used by museums, planetariums, astronomy clubs, civic and youth groups, as well as by classrooms and the general public. They can be translated to other languages, too. Providing the podcasts in high definition, through the NASA websites, You Tube, iTunes and other web video sharing sites reaches wide audiences of all ages. Third Saturn Observation Night - May 18, 2008 Centered on Saturn Opposition, when the Sun and Saturn are on opposite sides of the Earth, all IYA participants - in all countries around the world - will be encouraged to take their telescopes out and share the planet Saturn with their communities. NASA's International Saturn Observation Campaign network of astronomy enthusiasts has now conducted a Saturn Observation Night event for the past 2 years, and it succeeds by building an international community all sharing Saturn. This celebration has been successfully conducted in hundreds of locations all over the world over the past 2 years; from Australia to Vietnam; from South Africa to Slovenia; and from Arkansas to Washington. The Cassini volunteer network, called the Saturn Observation Campaign http://soc.jpl.nasa.gov/members.cfm is comprised of 400 amateur astronomy members in 52 countries. Cassini Saturn Opposition is March, 8th, 2009, three days before full moon. So we plan Saturn Observation Night 2009 to be March 1, and offer the week before and the week after for weather and rain delay nights. What's Up Video Podcasts Archive: http://education.jpl.nasa.gov/amateurastronomy/index. html Saturn Observation Campaign worldwide members: http://soc.jpl.nasa.gov/members.cfm and event images: http://soc.jpl.nasa.gov/experience/gallery-archivephotos. cfm

  2. New Media in IYA2009: Communicating with the world via the web

    NASA Astrophysics Data System (ADS)

    Gay, Pamela L.; Koppelman, M.; IYA New Media Task Group

    2009-01-01

    In the 2009 International Year of Astronomy, new media will play a prominent role in engaging people in the universe that is theirs to discover. New online projects will take advantage of a diversity of technologies, allowing us to bring content to people through a variety of devices in places they work, play and learn. In this session we will give an overview of our programs, high-lighting: "AstroTwitter," an interface that asks 'What are you looking at?' and allows you to see how observers around the globe (professional and amateur) answer that same question; "Portal to the Universe," your one stop shop for all things new in astronomy; the "365 Days of Astronomy" podcast, which brings you an 8-minute podcast on the people, places, things, thoughts and discoveries in astronomy each day of 2009; new projects to extend Galaxy Zoo to new areas of science both in our solar system and at the edge of the cosmos; our social networking initiatives in Facebook, Flickr and YouTube; and the IYA Second Life® Island, which will be unveiled during this session. In addition to showing you how to access each of these new projects, we will also tell you how you can become a part of the projects in the coming months.

  3. The Astronomy Genealogy Project: A Progress Report

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2016-01-01

    Although it is not yet visible, much progress has been made on the Astronomy Genealogy Project (AstroGen) since it was accepted as a project of the Historical Astronomy Division (HAD) three years ago. AstroGen will list the world's astronomers with information about their highest degrees and advisors. (In academic genealogy, your thesis advisor is your parent.) A small group (the AstroGen Team) has compiled a database of approximately 12,000 individuals who have earned doctorates with theses (dissertations) on topics in astronomy, astrophysics, cosmology, or planetary science. These include nearly all those submitted in Australia, Canada, the Netherlands, and New Zealand, and most of those in the United States (all through 2014 for most universities and all through 1990 for all). We are compiling more information than is maintained by the Mathematics Genealogy Project (MGP). In addition to name, degree, university, year of degree, and thesis advisor(s), all provided by MGP as well, we are including years of birth and death when available, mentors in addition to advisors, and links to the thesis when it is online and to the person's web page or obituary, when we can find it. We are still struggling with some questions, such as the boundaries of inclusion and whether or not to include subfields of astronomy. We believe that AstroGen will be a valuable resource for historians of science as well as a source of entertainment for those who like to look up their academic family trees. A dedicated researcher following links from AstroGen will be able to learn quite a lot about the careers of astronomy graduates of a particular university, country, or era. We are still seeking volunteers to enter the graduates of one or more universities.

  4. Engaging Generation Now, Inspiring Generation Next

    NASA Astrophysics Data System (ADS)

    Simonsen, Mike; Gay, P.

    2008-05-01

    In 2008, the Education and Public Outreach Committee of the American Association of Variable Star Observers (AAVSO) initiated several new strategies for disseminating accurate, stimulating, engaging information on general astronomy and variable star science to thousands of students, parents, and amateur astronomers each year through astronomy clubs, societies, and star party events. We are initiating contact with astronomy clubs and organizations to offer qualified speakers from the AAVSO Speakers Bureau for their meetings and activities. The current roster of speakers include, professional astronomers, doctors, engineers, teachers and some of the world's leading variable star observers. Request information is available on the AAVSO website. For organizations and individuals unable to engage one of our speakers due to time, distance or financial constraints, we have made PowerPoint presentations used in previous talks available free for download from the same web pages. Thousands of amateur astronomers and their children attend star parties each year. As an extension of our speakers’ bureau, our goal is to have an AAVSO representative at each of the major star parties each year giving an enthusiastic talk on variable stars or related astronomical subject and supplying inspirational printed materials on astronomy and amateur contributions to science. The nation's largest astronomy clubs have monthly newsletters they distribute to their membership. Newsletter editors are constantly in need of quality, interesting content to fill out their issues each month. We are offering a `writers’ bureau’ service to newsletter editors, similar to the news wire services used by newspapers. We will supply up to a half dozen articles on astronomy and variable star science each month for editors to use at their discretion in their publications. Our goal is to provide information, inspiration and encourage participation among amateur astronomers and their kids, our next generation of astronomers.

  5. SOFIA Aircraft Visits NASA Ames, Reporter Package for TWAN/Web

    NASA Image and Video Library

    2011-10-19

    Taking a break from its science mission flights, the Stratospheric Observatory For Infrared Astronomy or SOFIA came to NASA Ames Research Center to offer tours to employees and VIP's alike. For two days, the aircraft was opened up so that dignitaries, members of the media, NASA employees and the general public could take self-guided tours of the aircraft.

  6. Teaching with Internet Telescopes: Some Lessons Learned

    NASA Astrophysics Data System (ADS)

    Stencel, Robert

    Observational astronomy is often difficult for pre-college students and teachers because: (1) school occurs in daytime and visual observing at night; (2) light pollution hides the stars from students living in cities; (3) few schools have teachers trained to use and maintain astronomy equipment; (4) there is lack of access to expertise when needed; (5) physically disabled students cannot easily access a telescope eypiece. Internet access to computer controlled telescopes with digital cameras can solve many of these difficulties. The Web enables students and teachers to access well-maintained internet-controllable telescopes at dark-site locations and to consult more readily with experts. This paper reports on a three-month pilot project exploring this situation conducted Feb-May 2002 which allowed high school students to access a CCD-equipped accurately-pointing and tracking telescope located in New Mexico controllable over the Web with a user-friendly skymap browser tool. User interest proved phenomenal and user statistics proved diverse. There were distinct lessons learned about how to enhance student participation in the research process. Details available at website www.du.edu/~rstencel/stn.htm. We thank the ICSRC for a grant to Denver University and acknowledge in-kind support from the estate of William Herschel Womble.

  7. Adding Audio Supported Smartboard Lectures to an Introductory Astronomy Online Laboratory

    NASA Astrophysics Data System (ADS)

    Lahaise, U. G. L.

    2003-12-01

    SMART Board(TM) and RealProducer(R) Plus technologies were used to develop a series of narrated pre-lab introductory online lectures. Smartboard slides were created by capturing images from internet pages and power point slides, then annotated and saved as web pages using smartboard technology. Short audio files were recorded using the RealProducer Plus software which were then linked to individual slides. WebCT was used to deliver the online laboratory. Students in an Introductory Astronomy of the Solar System Online laboratory used the lectures to prepare for laboratory exercises. The narrated pre-lab lectures were added to six out of eight suitable laboratory exercises. A survey was given to the students to research their online laboratory experience, in general, and the impact of the narrated smartboard lectures on their learning success, specifically. Data were collected for two accelerated sessions. Results show that students find the online laboratory equally hard or harder than a separate online lecture. The accelerated format created great time pressure which negatively affected their study habits. About half of the students used the narrated pre-lab lectures consistently. Preliminary findings show that lab scores in the accelerated sessions were brought up to the level of full semester courses.

  8. Investigating Introductory Astronomy Students' Perceived Impacts from Participation in Course-Based Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Wooten, Michelle M.; Coble, Kim; Puckett, Andrew W.; Rector, Travis

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] This study investigates students' perceived impacts regarding their participation in course-based undergraduate research experiences (CUREs) in astronomy. Each research experience adopted one or more projects from the Research Based Science Education for Undergraduates…

  9. The ESO Educational Office Reaches Out towards Europe's Teachers

    NASA Astrophysics Data System (ADS)

    2001-12-01

    ESA/ESO Astronomy Exercises Provide a Taste of Real Astronomy [1] Summary The European Southern Observatory (ESO) has been involved in many Europe-wide educational projects during the past years, in particular within European Science Weeks sponsored by the European Commission (EC). In order to further enhance the significant educational potential inherent in the numerous scientific endeavours now carried out by Europe's astronomers with ESO front-line telescope facilities, it has been decided to set up an Educational Office within the ESO EPR Department. It will from now on work closely with astronomy-oriented teachers, in particular at the high-school level , providing support, inspiration and new materials. Much of this interaction will happen via the European Association for Astronomy Education (EAAE) In this context, and in collaboration with the European Space Agency (ESA) , the first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web ( http://www.astroex.org ) and in print (6 booklets totalling 100 pages; provided free-of-charge to teachers on request). They allow 16-19 year old students to gain exciting hands-on experience in astronomy, making realistic calculations with data obtained from observations by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . PR Photo 36/01 : The "ESA/ESO Astronomy Exercise Series" . Educational projects at ESO The European Southern Observatory (ESO) , through its Education and Public Relations Department (EPR) , has long been involved in educational activities, in particular by means of Europe-wide projects during successive European Science Weeks , with support from the European Commission (EC) . A most visible outcome has been the creation of the trailblazing European Association for Astronomy Education (EAAE) - this was first discussed at an international meeting at the ESO Headquarters in November 1994 with the participation of more than one hundred physics teachers from different European countries. Other educational projects include the highly successful "Sea and Space" (in 1998; with ESA), "Physics on Stage" (2000; with CERN and ESA), and "Life in the Universe" (2001; with CERN, ESA, EMBL and ESRF), all in close collaboration with EAAE. Astronomy and Astrophysics at the frontline of education The subject of Astronomy and Astrophysics plays an increasingly important role within education. This is not coincidental - this particular field of basic science is very attractive to young people. Its exploratory nature tickles youthful minds and the vast expanse of the Universe harbours many unknown secrets that are waiting to be discovered. The beautiful and intriguing images brought back by high-tech telescopes and instruments from the enormous terra incognita out there are natural works of art that invite comtemplation as well as interpretation. Astronomy and Astrophysics is a broadly interdisciplinary field, providing ample opportunities for interesting educational angles into many different fields of fundamental science, from physics, chemistry and mathematics, to applied research in opto-mechanics, detectors and data handling, and onwards into the humanities. The ESO Educational Office In order to further enhance the educational potential of the numerous scientific endeavours now carried out by Europe's astronomers with ESO front-line facilities, it has been decided to set up an Educational Office within the ESO EPR Department. It will from now on work closely with astronomy-oriented teachers, in particular at the high-school level , providing support, inspiration and new materials. Beginning next year, it will arrange meetings for teachers to inform about new results and trends in modern astrophysics, while facilitating the efficient exchange of the teachers' educational experience at different levels within the different curricula at Europe's schools. These initiatives will be carried out in close collaboration with the European Association for Astronomy Education (EAAE). During the past months, various preparatory discussions have been held between ESO, EAAE members and other teachers involved in Astronomy teaching from many countries. Provisional information about the ESO Educational Office will be found at its website ( http://www.eso.org/outreach/eduoff/ ). One of the first activities is concerned with a survey of the specific needs for astronomy education in Europe's high-schools by means of a widely distributed questionnaire. Of more immediate use will be the publication of four, comprehensive astronomy exercises, prepared in collaboration with the European Space Agency (ESA) and further described below. In the scientists' footsteps ESO PR Photo 36/01 ESO PR Photo 36/01 [Preview - JPEG: 450 x 640 pix - 34k] [Hires - JPEG: 2514 x 3578 pix - 1.4M] Cover of the "General Introduction" to the "ESA/ESO Astronomy Exercise Series" . The first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web and in print. These exercises allow high-school students to gain exciting hands-on experience in astronomy, by making realistic calculations based on data obtained by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . Carefully prepared by astronomers and media experts, these excercises enable the students to measure and calculate fundamental properties like the distances to and the ages of different kinds of astronomical objects. Astronomy is an accessible and visual science, making it ideal for educational purposes. Reacting to the current need for innovative, high-quality educational materials, the European Space Agency (ESA) and the European Southern Observatory (ESO) have together produced this series of astronomical exercises for use in high schools. The prime object of the series is to present various small projects that will transmit some of the excitement and satisfaction of scientific discovery to students . By performing the well-structured projects, the students also gain first-hand experience in the application of scientific methods that only require basic geometrical and physical knowledge. They use ideas and techniques described in recent front-line scientific papers and are able to derive results that compare well with those from the much more sophisticated analyses done by the scientists. Focus on basic astrophysical themes The first four exercises focus on techniques to measuring distances in the Universe, one of the most basics problems in modern astrophysics. The students apply different methods to determine the distance of astronomical objects such as the supernova SN 1987A , the spiral galaxy Messier 100 , the Cat's Eye Planetary Nebula and the globular cluster Messier 12 . With these results, it is possible to make quite accurate estimates of the age of the Universe and its expansion rate , without the use of computers or sophisticated software. Students can also perform "naked-eye photometry" by measuring the brightness of stars on two VLT images (taken through blue and green optical filters, respectively). They can then construct the basic luminosity-temperature relation (the "Hertzsprung-Russell Diagramme") providing a superb way to gain insight into fundamental stellar physics. Six booklets The excercises are now available on the web ( http://www.astroex.org ) and in six booklets (100 pages in total), entitled * "General Introduction" (an overview of the HST and VLT telescopes), * "Toolkits" (explanation of basic astronomical and mathematical techniques), * "Exercise 1: Measuring the Distance to Supernova 1987A", * "Exercise 2: The Distance to Messier 100 as Determined By Cepheid Variable Stars", * "Exercise 3: Measuring the Distance to the Cat's Eye Nebula", and * "Exercise 4: Measuring a Globular Star Cluster's Distance and Age". Each of the four exercises begins with a background text, followed by a series of questions, measurements and calculations. The exercises can be used either as texts in a traditional classroom format or for independent study as part of a project undertaken in smaller groups. The booklets are sent free-of-charge to high- school teachers on request and may be downloaded as PDF-files from the above indicated website. More exercises will follow.

  10. Tools for Implementing the Recent IAU Resolutions: USNO Circular 179 and the NOVAS Software Package

    NASA Astrophysics Data System (ADS)

    Kaplan, G. H.; Bangert, J. A.

    2006-08-01

    The resolutions on positional astronomy adopted at the 1997 and 2000 IAU General Assemblies are far-reaching in scope, affecting both the details of various computations and the basic concepts upon which they are built. For many scientists and engineers, applying these recommendations to practical problems is thus doubly challenging. Because the U.S. Naval Observatory (USNO) serves a broad base of users, we have provided two different tools to aid in implementing the resolutions, both of which are intended for the person who is knowledgeable but not necessarily expert in positional astronomy. These tools complement the new material that has been added to The Astronomical Almanac (see paper by Hohenkerk). USNO Circular 179 is a 118-page book that introduces the resolutions to non-specialists. It includes extensive narratives describing the basic concepts as well as compilations of the equations necessary to apply the recommendations. The resolutions have been logically grouped into six main chapters. The Circular is available as a hard-cover book or as a PDF file that can be downloaded from either the USNO/AA web site (http://aa.usno.navy.mil/) or arXiv.org. NOVAS (Naval Observatory Vector Astrometry Subroutines) is a source-code library available in both Fortran and C. It is a long established package with a wide user base that has recently been extensively revised (in version 3.0) to implement the recent IAU resolutions. However, use of NOVAS does not require detailed knowledge of the resolutions, since commonly requested high-level data _ for example, topocentric positions of stars or planets _ are provided in a single call. NOVAS can be downloaded from the USNO/AA web site. Both Circular 179 and NOVAS version 3.0 anticipate IAU adoption of the recommendations of the 2003-2006 working groups on precession and nomenclature.

  11. How to Get Successfully Involved with K-12 Education

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Fraknoi, A.; Bennett, M.

    1998-05-01

    Many astronomers now have some involvement in K-12 education, either through their children, through large projects with an education or outreach office, or through an educational component to their own grants. Some may need to incorporate education components into future proposals. For those new to education, it can be difficult to decide how best to use their limited resources without "re-inventing the wheel." Some astronomers are comfortable taking a direct role in the classroom or working with teachers, others prefer developing web-based or printed materials, while still others wouldrather work with local schools of education to enhance the training of future teachers. Which of these roles is most useful? In this session, participants will learn what has worked well in the past, with special attention paid to ways in which astronomers' and physicists' training and instincts may fail them when working in education. Invited teachers will describe their classrooms and how astronomers can be most helpful to them. Sample (successful) activities will be demonstrated, and information given about the wide range of existing astronomy and space-science education programs around the country. A full menu of useful ways that astronomers can get involved will be presented, as well as the organizations and institutions which can help in devising a meaningful education program. Handouts will include a catalog of national astronomy education projects, a list of educational web sites, information about the NASA OSS education brokers and facilitators, examples of successful educational materials, and a listing of roles astronomers have played or could play to enhance K-12 education. Registration is required; see the AAS Education WWW page or email aased@aas.org.

  12. Teachable Moments in the News - an Online Resource Solar System Science News

    NASA Astrophysics Data System (ADS)

    Vanhala, H. A. T.; Miller, E. A.; Goldstein, J. J.

    2004-12-01

    Teachable Moments in the News (www.challenger.org/tmn/) is an online resource developed at Challenger Center for Space Science Education that takes recent news stories related to Solar System science and places them in a context relevant to the grades K-12 science curriculum. Using stories such as the launch of the MESSENGER spacecraft to Mercury, Teachable Moments in the News is meant to provide a seamless pathway from the news desk to the classroom. For each news item, an overview of the story is provided, along with high-quality inquiry-based, standards-driven lessons and links to more in-depth articles. Teachable Moments in the News is also a great tool for scientists who wish to stay informed of the recent events in Solar System exploration. The archived back issues of the quarterly published Web digest allow for a quick refresher on the most important news stories over the past several months. The very accessible nature of the stories makes the resource valuable for college students, and even the general public, as a means to keep up-to-date about current developments in planetary astronomy. Furthermore, college and university teachers can easily adapt many of the lessons to fit into the curriculum of an undergraduate astronomy course. During the poster session, we welcome suggestions from the scientific community on ways to enhance the usefulness of Teachable Moments in the News. For example, researchers could form partnerships with Teachable Moments in the News to provide news stories on their current research to be featured on the Web site. We invite researchers interested in this education and public outreach tool to visit the poster and provide suggestions on how to make the resource work as effectively as possible.

  13. A New Educational Scaffolding Approach to Support Authentic Solar Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Demuth, N.; Walker, C. E.; Isbell, D. M.; Pompea, S. M.

    2006-12-01

    Teacher Leaders in Research Based Science Education (TLRBSE) is a multi-year teacher professional development program sponsored by NSF and administered through the National Optical Astronomy Observatory (NOAO). The program reaches the formal education community through a national audience of well-trained and supported middle- and high-school teachers. Every year, a new cohort of teachers prepare for research through an on-line course in the spring. In the summer they conduct astronomy research at NOAO, working with astronomer-mentors to gather and analyze their data. They then return to their classrooms and engage their students in inquiry-based astronomy research using this authentic data. TLRBSE has much to offer teachers both inside and outside the program who wish to initiate research in the classroom. However, the activation energy to conduct authentic research is high. To address the needs of a wider audience of teachers and students, steps have been taken to supply web-based foundational resources for the solar research program. Teachers can use this "solar scaffolding" to support the implementation of authentic solar research in the classroom. The scaffolding files on the webpage will serve as a template for other TLRBSE research strands, as well as enable non-TLRBSE middle and high school teachers to download and use TLRBSE data in their own classrooms. The resultant webpage has links to high quality, vetted resources (webpages, interactives, movies, etc.) that provide content background and lesson plans relevant to solar research. Tools on presenting research, print resources, sample articles on research, videos, DVDs, and posters are included. Powerpoint presentations have been provided with lecture notes on themes ranging from "Why Study the Sun" to "The Nature of Light." Sample teaching materials give examples for a calendar to implement the research project, a daily point sheet, a rubric for a student poster evaluation, a student research project description and a student self evaluation. Various background activities help to pave the way to more challenging solar research projects. As a culminating feature, the website includes several downloadable support files from the TLRBSE solar research project, as well as the solar data files and software programs. These scaffolding resources and future directions will be described in detail. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation. For further information on the TLRBSE.

  14. School-Based Extracurricular Astronomy

    ERIC Educational Resources Information Center

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  15. 47 CFR 2.1 - Terms and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiocommunication services or the radio astronomy service under specified conditions. This term shall also be... or the spacecraft above the Earth's surface or another surface. (RR) Radio Astronomy. Astronomy based on the reception of radio waves of cosmic origin. (RR) Radio Astronomy Service. A service involving...

  16. 47 CFR 2.1 - Terms and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radiocommunication services or the radio astronomy service under specified conditions. This term shall also be... or the spacecraft above the Earth's surface or another surface. (RR) Radio Astronomy. Astronomy based on the reception of radio waves of cosmic origin. (RR) Radio Astronomy Service. A service involving...

  17. 47 CFR 2.1 - Terms and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radiocommunication services or the radio astronomy service under specified conditions. This term shall also be... or the spacecraft above the Earth's surface or another surface. (RR) Radio Astronomy. Astronomy based on the reception of radio waves of cosmic origin. (RR) Radio Astronomy Service. A service involving...

  18. Astronomy Popularization via Sci-fi Movies

    NASA Astrophysics Data System (ADS)

    Li, Qingkang

    2015-08-01

    It is astronomers’ duty to let more and more young people know a bit astronomy and be interested in astronomy and appreciate the beauty and great achievements in astronomy. One of the most effective methods to popularize astronomy to young people nowadays might be via enjoying some brilliant sci-fi movies related to astronomy with some guidance from astronomers. Firstly, we will introduce the basic information of our selective course “Appreciation of Sci-fi Movies in Astronomy” for the non-major astronomy students in our University, which is surely unique in China, then we will show its effect on astronomy popularization based on several rounds of teaching.

  19. "Catch a Star !"

    NASA Astrophysics Data System (ADS)

    2002-05-01

    ESO and EAAE Launch Web-based Educational Programme for Europe's Schools Catch a star!... and discover all its secrets! This is the full title of an innovative educational project, launched today by the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE). It welcomes all students in Europe's schools to an exciting web-based programme with a competition. It takes place within the context of the EC-sponsored European Week of Science and Technology (EWST) - 2002 . This unique project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public. What is "Catch a Star!" about? [Go to Catch a Star Website] The programme features useful components from the world of research, but it is specifically tailored to (high-)school students. Younger participants are also welcome. Groups of up to four persons (e.g., three students and one teacher) have to select an astronomical object - a bright star, a distant galaxy, a beautiful comet, a planet or a moon in the solar system, or some other celestial body. Like detectives, they must then endeavour to find as much information as possible about "their" object. This information may be about the position and visibility in the sky, the physical and chemical characteristics, particular historical aspects, related mythology and sky lore, etc. They can use any source available, the web, books, newspaper and magazine articles, CDs etc. for this work. The group members must prepare a (short) summarising report about this investigation and "their" object, with their own ideas and conclusions, and send it to ESO (email address: eduinfo@eso.org). A jury, consisting of specialists from ESO and the EAAE, will carefully evaluate these reports. All projects that are found to fulfill the stipulated requirements, including a reasonable degree of scientific correctness, are entered as "registered projects" and will receive a lottery number. The first 1000 participants from the corresponding groups will also get a "Catch a star" T-Shirt by mail. All accepted entries will be listed at the corresponding website and all accepted reports will be displayed soon after the expiry of the deadline for submission on November 1st, 2002 . Winners to be Announced on November 8, 2002 On November 8th, 2002, at the end of the European Week of Science and Technology, the winners will be found by drawing numbers in a lottery. This event will take place at the ESO Headquarters in Garching (Germany) and will be webcast. The First Prize is a free trip for the members of the group to the ESO Paranal Observatory in Chile , the site of the ESO Very Large Telescope (VLT) . The Paranal trip will be realised in any case, but because of age restrictions, it can only be offered to a group in which all participants are 15 years of age or older at the time of the drawing. Younger participants may win an interesting trip within Europe. There will also be other prizes, to be announced later. Starting now The programme starts now and is open for groups of up to three students and one teacher, who must all belong to a school in Europe on November 1, 2002 . This means that only students who did not yet terminate their school studies on this date can participate. No student may participate in more than one group. The programme is administered by the ESO Educational Office , in close collaboration with members of the EAAE, mostly physics teachers. Details about how to register and how to prepare the report about "your" object are available on the web at: http://www.eso.org/public/outreach/eduoff/cas/ About the ESO Educational Office The ESO Educational Office was established in July 2001. It is part of the EPR Department at ESO Headquarters in Garching near Munich. The aim is to provide support of astronomy and astrophysics education, especially at the high-school level. This includes teaching materials, courses for teachers and specific educational projects, for instance in the context of the yearly European Week of Science and Technology. More information is available in ESO PR 29/01 and at the ESA/ESO Astronomy Excercise Series website. Note also the Frontline Astrophysics for School Teachers (FAST 2002) , an ESO teacher training course just announced. The application deadline for participation is June 1, 2002 . Contact for the "Catch a Star!" Programme: ESO Education Office eduinfo@eso.org

  20. Astronomy - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Astronomy USNO Logo USNO Astronomical Applications AA Data Services Astronomical Optical/IR Products VLBI-based Products Astrometry Information Center Info Astronomy The Sky This Week a

  1. Quickly Creating Interactive Astronomy Illustrations

    ERIC Educational Resources Information Center

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  2. Space-Based Astronomy: A Teacher's Guide with Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This curriculum guide uses hands-on activities to help grade 5-8 students and teachers understand the significance of space-based astronomy--astronomical observations made from outside the Earth's atmosphere. The guide begins with a survey of astronomy-related spacecraft that the National Aeronautics and Space Administration (NASA) has sent into…

  3. Blazing the Trail for Astronomy Education Research

    ERIC Educational Resources Information Center

    Bailey, Janelle M.; Lombardi, Doug

    2015-01-01

    Education research has long considered student learning of topics in astronomy and the space sciences, but astronomy education research as a sub-field of discipline-based education research is relatively new. Driven by a growing interest among higher education astronomy educators in improving the general education, introductory science survey…

  4. The Collection of Data for the Research Component of the Internet-Based, ``Doctor of Astronomy'' Professional Degree Program at James Cook University

    NASA Astrophysics Data System (ADS)

    Millar, W.; White, G. L.; Filipović, M. D.; Hons, A.

    2008-06-01

    We discuss the means by which students collect, analyze and use original data to fulfill the research component of the Internet-based, professional ``Doctor of Astronomy'' degree, at the James Cook University Centre for Astronomy. We give an example of such data obtained with the 1.9 meter telescope at the South African Astronomical Observatory. We also discuss the use of such data in an introductory level astronomy class at a community college.

  5. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  6. Role of Creative Competitions and Mass Media in the Astronomy Education of School Students

    NASA Astrophysics Data System (ADS)

    Aleshkina, E. Yu.

    2006-08-01

    There are a many informational sources nowadays. For wide audiences it is, first of all, mass media - magazines, newspapers, television, broadcast and books. Web-technology provides a huge volume of information. The increasing flow of information about science, sometimes with questionable content, however, has its obstacles - it is difficult to restrict misconceptions and transfer receiving information to real knowledge. This problem is actual and very important, first of all, for school students. The experience in getting and analyzing information during astrophysics lessons in the Astronautic Club is considered. Statistical data about volume, kind, and quality of astronomy news, along with other scientific information in Russian mass media, are presented. Experience in transformation of receiving information to the knowledge is discussed. The role of a special form of education - creative competitions - in this process is analyzed. Results of the International Creative Competition, named after Giordano Bruno, are presented. The main goal of the competition was to raise interest in astronomy, space exploration, and related questions. Thirty-six papers from Bulgaria, United Kingdom, Russia, Byelorussia, Latvia, and Kazakhstan were submitted for the competition. On the decision of the jury, it was awarded three degrees for school students, one degree for adult amateurs of astronomy, and four special nominations. The bilingual volume (in Russian and English) with the best papersis being prepared for publishing.

  7. Ultraviolet-Optical Space Astronomy Beyond HST Conference (Origins Conference and UV-Optical Working Group Support)

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Morse, Jon

    2001-01-01

    This grant supported three major activities, from 1997-2001. (1) Origins Conference. The funds from this grant were used, initially, to support a Conference on "Origins", held May 19-23, 1997 at Estes Park, CO and attended by a wide range of astronomers, planetary scientists, and astrobiologists. The scientific proceedings of this meeting were published in 1998 by the Astronomical Society of the Pacific: "Origins" (1998) "Proceedings of the International Origins Conference". (2) UV-Optical Space Astronomy. Conference Additional funds provided by the NASA Office of Space Science were used to support a meeting held August 5-7, 1998 at Boulder, CO and attended by ultraviolet and optical astronomers and instrumentalists interested in a UV-O successor to the Hubble Space Telescope. The scientific proceedings of this meeting were published in 1999: "Ultraviolet-Optical Space Astronomy Beyond the Hubble Space Telescope" (1999), NASA provided funds and commissioned the UVOWG (Ultraviolet-Optical Working Group), charged with recommending a set of fundamental scientific problems and new space missions in the UV/Optical wavelength bands. The working group was chaired by J. M. Shull, and included ten other astrophysicists. Their report was published as a "White Paper" (Nov. 1999) entitled "The Emergence of the Modern Universe: Tracing the Cosmic Web" available. The results of this report were used in the NASA Strategic Planning ("Roadmap") exercise and by the NRC Astronomy/Astrophysics Decade Committee.

  8. Promoting instructional change in new faculty: An evaluation of the physics and astronomy new faculty workshop

    NASA Astrophysics Data System (ADS)

    Henderson, Charles

    2008-02-01

    An important finding of physics and astronomy education research (PAER) is that traditional, transmission-based instructional approaches are not effective in promoting meaningful student learning. Instead, PAER research suggests that physics and astronomy should be taught using more interactive instructional methods. These ways of teaching require significant changes in the way faculty think about teaching and learning and corresponding changes in their teaching behavior. Although the research base and corresponding pedagogies and strategies are well documented and widely available, widespread changes in physics and astronomy teaching at the college level has yet to occur. The Workshop for New Physics and Astronomy Faculty has been working to address this problem since 1996. This workshop, which is jointly administered by the American Association of Physics Teachers, the American Astronomical Society, and the American Physical Society, has attracted approximately 25% of all new physics and astronomy faculty each year to a four-day workshop designed to introduce new faculty to PAER-based instructional ideas and materials. This paper describes the impact of the Workshop as measured by surveys of Workshop participants and physics and astronomy department chairs. The results indicate that the Workshop is successful in meeting its goals and might be significantly contributing to the spread and acceptance of PAER-based instructional ideas and materials.

  9. Group Membership Based Authorization to CADC Resources

    NASA Astrophysics Data System (ADS)

    Damian, A.; Dowler, P.; Gaudet, S.; Hill, N.

    2012-09-01

    The Group Membership Service (GMS), implemented at the Canadian Astronomy Data Centre (CADC), is a prototype of what could eventually be an IVOA standard for a distributed and interoperable group membership protocol. Group membership is the core authorization concept that enables teamwork and collaboration amongst astronomers accessing distributed resources and services. The service integrates and complements other access control related IVOA standards such as single-sign-on (SSO) using X.509 proxy certificates and the Credential Delegation Protocol (CDP). The GMS has been used at CADC for several years now, initially as a subsystem and then as a stand-alone Web service. It is part of the authorization mechanism for controlling the access to restricted Web resources as well as the VOSpace service hosted by the CADC. We present the role that GMS plays within the access control system at the CADC, including the functionality of the service and how the different CADC services make use of it to assert user authorization to resources. We also describe the main advantages and challenges of using the service as well as future work to increase its robustness and functionality.

  10. VizieR Online Data Catalog: Spectroscopically identified white dwarfs (McCook+, 2014)

    NASA Astrophysics Data System (ADS)

    McCook, G. P.; Sion, E. M.

    2016-10-01

    This is an update of the Villanova catalog published in the ApJS paper, corresponding to the Web version of the catalog in Apr 2014 (see http://www.astronomy.villanova.edu/WDCatalog/index.html). The introduction to the 1999 catalog is in the file "preface.tex". This updated version lists 14294 unique white dwarfs for a total of 27975 rows (multiple observations). (5 data files).

  11. Solving the Software Legacy Problem with RISA

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Gabriel, C.

    2012-09-01

    Nowadays hardware and system infrastructure evolve on time scales much shorter than the typical duration of space astronomy missions. Data processing software capabilities have to evolve to preserve the scientific return during the entire experiment life time. Software preservation is a key issue that has to be tackled before the end of the project to keep the data usable over many years. We present RISA (Remote Interface to Science Analysis) as a solution to decouple data processing software and infrastructure life-cycles, using JAVA applications and web-services wrappers to existing software. This architecture employs embedded SAS in virtual machines assuring a homogeneous job execution environment. We will also present the first studies to reactivate the data processing software of the EXOSAT mission, the first ESA X-ray astronomy mission launched in 1983, using the generic RISA approach.

  12. NEWS: TRUMP resources

    NASA Astrophysics Data System (ADS)

    Swinbank, Elizabeth

    2000-05-01

    Support for astronomy in A-level physics aslogo Help is at hand for teachers and students choosing astronomy as part of A-level physics. The Teaching Resources Unit for Modern Physics (TRUMP) has produced a resource package covering all the astronomical options in the Edexcel, OCR and AQA (NEAB) syllabuses. The forerunner to TRUMP was the project that produced the highly successful Particle Physics Pack, sponsored by the Institute of Physics, which was instrumental in introducing particle physics into A-level syllabuses. The TRUMP Astrophysics Resource Package fills a gap between the colourful stimulus of popular materials on the one hand, and professional texts on the other. But this is not just another A-level textbook; the six-part resource pack has a similar structure and purpose to the Particle Physics Pack. It provides over 400 pages of comprehensive information for teachers, building on their existing subject knowledge and bringing them up to date as well as giving suggestions for teaching and notes on syllabus coverage. The package includes nearly 40 photocopiable sheets for students. The emphasis is on the physics that underpins the astronomy. There are details of student activities requiring no specialist equipment beyond that normally found in A-level labs, exercises using authentic data, and plenty of questions (all with worked solutions). The development of the TRUMP Astrophysics Package was funded by the Nuffield Foundation, the Particle Physics and Astronomy Research Council, the Institute of Physics and York University. The package is available by mail order, price £48 (inc. UK p&p) from the TRUMP Project, Science Education Group, University of York, Heslington, York YO10 5DD. Some parts may be purchased separately; for details contact the project's director, Elizabeth Swinbank (tel: 01904 434537, fax: 01904 434078, e-mail: es14@york.ac.uk) or consult the web page www.york.ac.uk/org/seg/trump. The BaBar experiment balogo In the spring of 1999, scientists began to collect data from the BaBar experiment - an international collaboration involving the UK, several other European countries and the USA. The experiment is designed to throw light on the puzzling question of why there is so little antimatter in the universe and so much matter. The TRUMP BaBar resource package brings the mystery of antimatter into schools. There are notes and colourful posters on the physics of BaBar, and photocopiable sheets supporting student activities. These include explorations of symmetry, templates for making a scale model of the BaBar detector, and a web-based research project. The pack is designed mainly for A-level physics (particularly those courses that include some particle physics) but parts also relate to GCSE science, Scottish Higher physics and Standard physics. The BaBar resource package is available free from the Particle Physics and Astronomy Research Council, which fully funded its development and production. Contact the Publicity Team, PPARC, Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1SZ (tel: 01973 442123, e-mail: pr_pus@pparc.ac.uk).

  13. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground-based facilities by this transformed planetary radar astronomy, as well as the upgrading of the Arecibo and Goldstone radars. A technical essay appended to this book provides an overview of planetary radar techniques, especially range-Doppler mapping.

  14. Engaging Undergraduate Education Majors in the Practice of Astronomy through a Coherent Science Content Storyline Course

    NASA Astrophysics Data System (ADS)

    Plummer, Julia; Palma, Christopher

    2015-08-01

    For the next generation of students to learn astronomy as both a body of knowledge and a process of continually extending, refining, and revising that knowledge, teachers at all levels must learn how to engage their students in the practices of astronomy. This begins by designing science coursework for undergraduate education majors in ways that reflect how we hope they will teach their own future students. We have designed an undergraduate astronomy course for elementary education majors around a coherent science content storyline (CSCS) framework in order to investigate methods that support education majors’ uptake of astronomy practices. CSCS instruction purposefully sequences lessons in ways that make explicit the connections between science ideas in order to move students towards increasingly sophisticated explanations for a single big idea in science. We used this framework to organize our course around a series of astronomical investigations that build towards a big idea in astronomy: how the formation model explains current patterns observed in the Solar System. Each investigation helps students begin to explain observations of the Solar System from a coherent, systems-based perspective as they make choices on how to design their own data collection and analysis strategies. Through these investigations, future teachers begin to view astronomy as a process of answering scientific questions using evidence-based explanations and model-based reasoning. The course design builds on our prior research into students’ ideas about Solar System phenomena and its formation as well as students’ ideas about how astronomers carry out investigations. Preliminary results, based on analysis of student conversations during in-class investigations, science notebook entries, and scientific reports, suggest that the course helps students learn to construct evidence-based explanations while also increasing the accuracy of the explanations for astronomical phenomena. We will discuss implications for undergraduate astronomy education towards increasing future teachers’ proficiency in doing astronomy in ways that move them towards understanding how astronomers investigate the universe.

  15. From the Beginning: Archiving the History of NRAO and US Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Bouton, E. N.

    2005-12-01

    In 2006 the National Radio Astronomy Observatory will celebrate its 50th anniversary. Before 2003, there were neither archives nor a formal archiving program at NRAO; institutional records were located at any of the four NRAO sites in four different states, and there was no record of the materials that we had. In mid-2003, the long-time NRAO librarian retired and began part time work as NRAO's first archivist. With the completion of an addition to the headquarters building in Charlottesville in spring 2005, the fledgling NRAO Archives moved into a new 1400 sq ft space. In addition to NRAO materials, the Archives also collects papers of individuals. Grote Reber, who built the first radio telescope in his backyard in Wheaton IL in 1937, had in 1995, donated many of his personal papers to NRAO, and these papers have been indexed and are available to researchers. We continue to receive additional materials from his estate in Tasmania. The complete papers of John Kraus, author, researcher, and professor in radio astronomy and engineering at Ohio State University for many years, were donated to the NRAO Archives by his son and estate executor in spring 2005. The NRAO Archives has also mounted Web resources with texts written by Nan Dieter Conklin and by Doc Ewen describing their work in the developing years of US radio astronomy. This talk will present the highlights of how, on a limited budget but with broad support of NRAO staff, the NRAO Archives has begun a program to gather and organize materials on institutional history as well as the personal papers and recollections of contributors to US radio astronomy history.

  16. 47 CFR 27.19 - Requirements for operation of base and fixed stations in the 600 MHz downlink band in close...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations in the 600 MHz downlink band in close proximity to Radio Astronomy Observatories. 27.19 Section 27... base and fixed stations in the 600 MHz downlink band in close proximity to Radio Astronomy Observatories. (a) Licensees must make reasonable efforts to protect the radio astronomy observatory at Green...

  17. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  18. NovaSearch Online: Research Experience in Astronomy 101

    NASA Astrophysics Data System (ADS)

    Pilachowski, C. A.; Rector, T.; Morris, F.; Tebbe, H.

    2003-12-01

    A new website at the University of Indiana Bloomington allows undergraduate, introductory astronomy students to participate in original research, discovering novae in the Andromeda Galaxy. Sequences of CCD images obtained with the WIYN 0.9-m telescope at Kitt Peak of the central region of Andromeda are displayed on the Web as Flash movies, allowing students to identify novae as new, blinking stars. Tools are provided to estimate the magnitude of the novae and to determine the Julian date of observations, so that students can plot light curves. The goal of NovaSearch is to engage students in the process of discovery, applying the content they learn from textbooks and lectures to real observations and the creation of new knowledge. NovaSearch is supplemented with live video interactions with on-site observers and remote observing at the 0.9-m telescope. For many students, NovaSearch is their first experience with science as a creative, human activity. NovaSearch is available for examination and use at www.astro.indiana.edu/novasearch/ Support from the SBC Fellows program at Indiana University, as well as from the National Science Foundation through grant ESI 0101982 to the National Optical Astronomy Observatory, is gratefully acknowledged.

  19. Launching Astronomy: Standards and STEM Integration (LASSI)

    NASA Astrophysics Data System (ADS)

    French, Debbie; Burrows, Andrea C.; Myers, Adam D.

    2015-01-01

    While astronomy is prevalent in the Next Generation Science Standards, it is often relegated to the '4th nine-weeks' in middle and high school curricula. I.e., it is taught at the end of the year, if time permits. However, astronomy ties in many core ideas from chemistry, earth science, physics, and even biology (with astrobiology being an up-and-coming specialization) and mathematics. Recent missions to Mars have captured students' attention and have added excitement to the fields of engineering and technology. Using astronomy as a vehicle to teach science, technology, engineering, and mathematics (STEM) connects these disciplines in an engaging way. The workshop entitled, 'Launching Astronomy: Standards and STEM Integration,' (LASSI) is a year-long professional development (PD) opportunity for teachers in grades K-12 to use astronomy as a vehicle to teach STEM and implement science standards through astronomy. Eight teachers participated in a two-week summer workshop and six follow-up sessions are scheduled during the 2014-2015 school year. Additional teachers plan to participate in the upcoming follow-up sessions. We evaluate the effectiveness of the LASSI PD to identify and confront teachers' misconceptions in astronomy, and discuss whether teachers identified topics for which astronomy can be used as a vehicle for standards-based STEM curricula. Teachers from around Wyoming were invited to participate. Participating teachers were surveyed on the quality of the workshop, their astronomy content knowledge before and after listening to talks given by experts in the field, conducting standards-based inquiry activities, developing their own lessons, and their level of engagement throughout the workshop. Two-thirds of teachers planned to incorporate LASSI activities into their classrooms in this school year. Teachers' misconceptions and requests for astronomy-based curriculum were identified in the summer session. These will be addressed during the follow-up session. Ninety percent of teachers reported being highly engaged at least 75% of the time. The majority of teachers also anticipated using activities from LASSI in their classrooms.

  20. Overview of lunar-based astronomy.

    NASA Astrophysics Data System (ADS)

    Smith, H. J.

    The Moon offers both significant advantages and drawbacks for astronomy. Recognition of these characteristics can clarify the objectives toward which developments should be directed and can help to inhibit premature or excessive selling of lunar developments on the basis of astronomy.

  1. Evolving Perspectives on Astronomy Education and Public Outreach in Hawai'i

    NASA Astrophysics Data System (ADS)

    Kimura, Ka'iu; Slater, T.; Hamilton, J.; Takata, V.

    2012-01-01

    For the last several decades, well meaning astronomers and educators have worked diligently to provide astronomy education experiences to Native Hawaiians and visitors across all the islands. Much of the early education and public outreach (EPO) work was based on a philosophical perspective based on the notion of, "if we just make them aware of how wonderful astronomy is, then everyone will naturally support the development of astronomy in the islands.” In support of this goal, numerous teacher workshops were delivered and the first generation of the Maunakea Observatories Visitors’ Center was developed and funded. These projects were most frequently developed using Mainland thinking, in a Mainland style, with a Mainland agenda. Consequently, these efforts often failed to create even moderate impacts, whether in educational settings, or in terms of public outreach. In recent years, our understanding of effective EPO has evolved. This evolution has led to a shift in the locus of control, from the Mainland to the Islands; and in content, from "astronomy only” to "astronomy as part of the whole.” We have come to understand that successfully transformative EPO requires intertwining astronomy with teaching about culture, language and context. In response, the `Imiloa Astronomy Center was expanded to convolve historical and modern astronomy with Hawaiian culture and language. Moreover, the most successful astronomy EPO programs in the islands have been redesigned to reflect meaningful collaborations of schools, businesses, and the larger community that situate astronomy as part of a larger educational work of honoring the traditions of the past while simultaneously transforming the future. This evolution in thinking may serve as a model for the astronomy community's interaction with other regional communities.

  2. The Role of the Modern Planetarium as an Effective Tool in Astronomy Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Albin, Edward F.

    2016-01-01

    As the planetarium approaches its 100th anniversary, today's planetarium educator must reflect on the role of such technology in contemporary astronomy education and outreach. The projection planetarium saw "first light" in 1923 at the Carl Zeiss factory in Jena, Germany. During the 20th century, the concept of a star projector beneath a dome flourished as an extraordinary device for the teaching of astronomy. The evolution of digital technology over the past twenty years has dramatically changed the perception / utilization of the planetarium. The vast majority of modern star theaters have shifted entirely to fulldome digital projection systems, abandoning the once ubiquitous electromechanical star projector altogether. These systems have evolved into ultra-high resolution theaters, capable of projecting imagery, videos, and any web-based media onto the dome. Such capability has rendered the planetarium as a multi-disciplinary tool, broadening its educational appeal to a wide variety of fields -- including life sciences, the humanities, and even entertainment venues. However, we suggest that what is at the heart of the planetarium appeal is having a theater adept at projecting a beautiful / accurate star-field. To this end, our facility chose to keep / maintain its aging Zeiss V star projector while adding fulldome digital capability. Such a hybrid approach provides an excellent compromise between presenting state of the art multimedia while at the same time maintaining the ability to render a stunning night sky. In addition, our facility maintains two portable StarLab planetariums for outreach purposes, one unit with a classic electromechanical star projector and the other having a relatively inexpensive fulldome projection system. With a combination of these technologies, it is possible for the planetarium to be an effective tool for astronomical education / outreach well into the 21st century.

  3. Research Experiences for 14 Year Olds: preliminary report on the `Sky Explorer' pilot program at Springfield (MA) High School of Science and Technology

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.

    1997-05-01

    This NSF supported program, emphasizing hands-on learning and observation with modern instruments, is described in its pilot phase, prior to being launched nationally. A group of 14 year old students are using a small (21 cm) computer controlled telescope and CCD camera to do: (1) a 'sky survey' of brighter celestial objects, finding, identifying, and learning about them, and accumulating a portfolio of images, (2) photometry of variable stars, reducing the data to get a light curve, and (3) learn modern computer-based communication/dissemination skills by posting images and data to a Web site they are designing (http://www.javanet.com/ sky) and contributing data to archives (e.g. AAVSO) via the Internet. To attract more interest to astronomy and science in general and have a wider impact on the school and surrounding community, peer teaching is used as a pedagogical technique and families are encouraged to participate. Students teach e.g. astronomy, software and computers, Internet, instrumentation, and observing to other students, parents and the community by means of daytime presentations of their results (images and data) and evening public viewing at the telescope, operating the equipment themselves. Students can contribute scientifically significant data and experience the `discovery' aspect of science through observing projects where a measurement is made. Their `informal education' activities also help improve the perception of science in general and astronomy in particular in society at large. This program could benefit from collaboration with astronomers wanting to organize geographically distributed observing campaigns coordinated over the Internet and willing to advise on promising observational programs for small telescopes in the context of current science.

  4. Reflections on the Galileoscope Program: Goals, Challenges, Achievements, and Future Directions

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Fienberg, R. T.; Arion, D. N.

    2010-01-01

    The value of an inexpensive telescope that could be constructed and used at night became clear in the planning process for the International Year of Astronomy 2009. In fact, it became a national and international priority to develop such a telescope. Thus was born the Galileoscope project, as it later became known. We tested nearly every department store telescope available and finding them wanting in some major aspect, project members developed and tested a series of prototypes of refracting telescope kits. A key to the project is that the telescope is professionally designed and engineered with its design informed by extensive usability testing to ensure that it can be used easily by people of all ages. The eyepiece has excellent eye relief, for example, so that one can observe with glasses. The primary image quality requirement was that the telescope be good enough to see the rings of Saturn, as well as the Galilean satellites of Jupiter, with a field of view large enough to view the entire Pleiades. The Galileoscope is an ideal telescope to reproduce the observations of Galileo, from any place bright city or dark rural site. For the science classroom, we have developed well-tested educational materials on observing with the Galileoscope and teaching optics with it, available in pdf format on the Web site www. galileoscope.org. The educational materials are standards-based and appropriate for high school and beginning-level physics classes. Some of the key project decisions will be described and the future directions of the project will be described. This work was supported by a grant from the National Science Foundation Astronomy Division. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  5. The Web-Lecture - a viable alternative to the traditional lecture format?

    NASA Astrophysics Data System (ADS)

    Meibom, S.

    2004-12-01

    Educational research shows that students learn best in an environment with emphasis on teamwork, problem-solving, and hands-on experience. Still professors spend the majority of their time with students in the traditional lecture-hall setting where the combination of large classes and limited time prevents sufficient student-teacher interaction to foster an active learning environment. Can modern computer technology be used to provide "lecture-type" information to students via the World Wide Web? If so, will that help professors make better and/or different use of their scheduled time with the students? Answering these questions was the main motivation for the Extra-Solar Planet Project. The Extra-Solar Planet Project was designed to test the effectiveness of a lecture available to the student on the World Wide Web (Web-Lecture) and to engage the students in an active learning environment were their use the information presented in the Web-Lecture. The topic of the Web-Lecture was detection of extra-solar planets and the project was implemented into an introductory astronomy course at University of Wisconsin Madison in the spring of 2004. The Web-Lecture was designed to give an interactive presentation of synchronized video, audio and lecture notes. It was created using the eTEACH software developed at the University of Wisconsin Madison School of Engineering. In my talk, I will describe the project, show excerpts of the Web-Lecture, and present assessments of student learning and results of student evaluations of the web-lecture format.

  6. The Distance-learning Part-time Masters and Doctoral Internet Programs in Astronomy at James Cook University, Australia

    NASA Astrophysics Data System (ADS)

    White, G. L.; Hons, A.; Orchiston, W.; Blank, D.

    2006-08-01

    The Centre for Astronomy at James Cook University (Townsville, Australia) specializes in the delivery of postgraduate distance-learning programs. In this paper, we report on the development of Internet-based Masters and Doctoral level degrees in Astrophysics, History of Astronomy and Astronomy Education that are offered by JCU. The Doctor of Astronomy (D.Astro.) degree is the world's only professional doctoral level program that is delivered over the Internet, and students can specialise in the areas of Astronomy Education, History of Astronomy or Astrophysics. An Internet-delivered Ph.D. is also available. There are two Masters level programs: the Master of Astronomy Education (M.Astro.Ed.), and the Master of Astronomy (M.Astro.), which incorporates a major in Astrophysics or History of Astronomy. There are also Internet-delivered Graduate Certificates and Graduate Diplomas in Astronomy. Instruments are being developed on-campus to support these programs (partially in collaboration with the Global Hands-On-Universe Consortium), however, most of the astrophysics research is undertaken using national and international facilities.

  7. CONRAD Software Architecture

    NASA Astrophysics Data System (ADS)

    Guzman, J. C.; Bennett, T.

    2008-08-01

    The Convergent Radio Astronomy Demonstrator (CONRAD) is a collaboration between the computing teams of two SKA pathfinder instruments, MeerKAT (South Africa) and ASKAP (Australia). Our goal is to produce the required common software to operate, process and store the data from the two instruments. Both instruments are synthesis arrays composed of a large number of antennas (40 - 100) operating at centimeter wavelengths with wide-field capabilities. Key challenges are the processing of high volume of data in real-time as well as the remote mode of operations. Here we present the software architecture for CONRAD. Our design approach is to maximize the use of open solutions and third-party software widely deployed in commercial applications, such as SNMP and LDAP, and to utilize modern web-based technologies for the user interfaces, such as AJAX.

  8. Accessible Universe: Making Astronomy Accessible to All in the Regular Elementary Classroom

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Farley, N.; Avery, F.; Zamboni, E.; Clark, B.; Geiger, N.; de Angelis, M.; Woodgate, B.

    2002-05-01

    Astronomy is one of the most publicly accessible of the sciences, with a steady stream of new discoveries, and wide public interest. The study of exo-planetary systems is a natural extension of studies of the Solar System at the elementary and middle-school level. Such space-related topics are some of the most popular science curriculum areas at the elementary level and can serve as a springboard to other sciences, mathematics, and technology for typical student learners. Not all students are typical: 10 percent of American students are identified as having disabilities which impact their education sufficiently that they receive special education services; various estimates suggest that an additional 10 percent may have milder impairments. Most frequently these students are placed in comprehensive (mixed-ability) classrooms. Budgetary limitations for most school systems have meant that for the bulk of these children, usually those with comparatively mild learning impairments affecting their ability to access text materials and in some cases to make effective use of visual materials, individualized accommodations in the science curriculum have not been readily available. Our team, consisting of an astronomer, regular education teachers, and special educators has been piloting a suite of curriculum materials, modified activities, including use of assistive technology, age- appropriate astronomy web resources, and instructional strategies which can more effectively teach astronomy to children with disabilities in the regular education grade 3-5 classroom. This study was supported by a grant HST-EO-8474 from the STScI and funded by NASA.

  9. Analysis of web-related threats in ten years of logs from a scientific portal

    NASA Astrophysics Data System (ADS)

    Santos, Rafael D. C.; Grégio, André R. A.; Raddick, Jordan; Vattki, Vamsi; Szalay, Alex

    2012-06-01

    SkyServer is an Internet portal to data from the Sloan Digital Sky Survey, the largest online archive of astronomy data in the world. provides free access to hundreds of millions of celestial objects for science, education and outreach purposes. Logs of accesses to SkyServer comprise around 930 million hits, 140 million web services accesses and 170 million SQL submitted queries, collected over the past 10 years. These logs also contain indications of compromise attempts on the servers. In this paper, we show some threats that were detected in ten years of stored logs, and compare them with known threats in those years. Also, we present an analysis of the evolution of those threats over these years.

  10. Course Management Systems: Traveling Beyond Powerpoint Slides Online

    NASA Astrophysics Data System (ADS)

    Gauthier, A. J.; Impey, C. D.

    2004-12-01

    Course management systems (CMS) like WebCT, Blackboard, Astronomica, etc., have reached and surpassed their tipping point in higher education. They are no longer a technology-trendy item to use in a course, but rather an expected supplement to undergraduate courses. There is a well known disconnect between the student population of ''digital natives'' (1) and higher education instructors, the ''digital immigrants'' (1). What expectations and technology skills do the new generations of undergraduates have? How can instructors easily meet their students' needs? What needs do instructors have and what resources are available to meet those needs? In the past, instructors would create their own HTML web pages to post class materials like PowerPoint slides, homework, and announcements. How does an instructor-created web resource differ from a secure university run CMS? How can you make your university or college's CMS system into a productive learning tool and not just a repository for class materials and grades? How can the astronomy instructor benefit from integrating a CMS into their course? What are common student attitudes regarding CMS usage in a course? How are instructors using CMSs in innovative ways? Where on your campus can you get free help designing and implementing a CMS resource for your students? This presentation aims to answer these questions. Extensive literature reviews, formal surveys, case study reports, and educational research from the instructional technology community inform our astronomy teaching community of the answers. Highlights from innovative systems and uses of CMSs in undergraduate Astro 101 classrooms will be presented. Resources and further references will be made available as handouts. (1) M. Prensky. ''Digital Natives, Digital Immigrants,'' On The Horizon, Vol.9, 2001.

  11. Methods of Engaging Preschool-age Children in Science Practices During Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Plummer, J. D.

    2015-11-01

    Providing preschool children with science learning experiences may improve their later science literacy. Further, research shows that children are capable of engaging in the same kinds of scientific reasoning as adults. An initial step towards increasing the opportunities for children to engage in science is to improve our understanding of how to support children's engagement in the practices of science in astronomy. To this end, the My Sky Tonight project is developing and evaluating astronomy activities for informal science educators to use with young children. I have gathered video of a series of astronomy workshops that engaged preschool-age children with My Sky Tonight-developed activities. This paper describes features of these museum-based astronomy activities that supported young children in evidence-based science practices.

  12. The Astronomy Spacelab Payloads Study: Executive volume

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The progress of the Astronomy Spacelab Payloads Project at the Goddard Space Flight Center is reported. Astronomical research in space, using the Spacelab in conjunction with the Space Shuttle, is described. The various fields of solar astronomy or solar physics, ultraviolet and optical astronomy, and high energy astrophysics are among the topics discussed. These fields include scientific studies of the sun and its dynamical processes, of the stars in wavelength regions not accessible to ground based observations, and the exciting new fields of X-ray, gamma ray, and particle astronomy.

  13. Astronomy: On the Bleeding Edge of Scholarly Infrastructure

    NASA Astrophysics Data System (ADS)

    Borgman, Christine; Sands, A.; Wynholds, L. A.

    2013-01-01

    The infrastructure for scholarship has moved online, making data, articles, papers, journals, catalogs, and other scholarly resources nodes in a deeply interconnected network. Astronomy has led the way on several fronts, developing tools such as ADS to provide unified access to astronomical publications and reaching agreement on a common data file formats such as FITS. Astronomy also was among the first fields to establish open access to substantial amounts of observational data. We report on the first three years of a long-term research project to study knowledge infrastructures in astronomy, funded by the NSF and the Alfred P. Sloan Foundation. Early findings indicate that the availability and use of networked technologies for integrating scholarly resources varies widely within astronomy. Substantial differences arise in the management of data between ground-based and space-based missions and between subfields of astronomy, for example. While large databases such as SDSS and MAST are essential resources for many researchers, much pointed, ground-based observational data exist only on local servers, with minimal curation. Some astronomy data are easily discoverable and usable, but many are not. International coordination activities such as IVOA and distributed access to high-level data products servers such as SIMBAD and NED are enabling further integration of published data. Astronomers are tackling yet more challenges in new forms of publishing data, algorithms, visualizations, and in assuring interoperability with parallel infrastructure efforts in related fields. New issues include data citation, attribution, and provenance. Substantial concerns remain for the long term discoverability, accessibility, usability, and curation of astronomy data and other scholarly resources. The presentation will outline these challenges, how they are being addressed by astronomy and related fields, and identify concerns and accomplishments expressed by the astronomers we have interviewed and observed.

  14. ESO takes the public on an astronomical journey "Around the World in 80 Telescopes"

    NASA Astrophysics Data System (ADS)

    2009-03-01

    A live 24-hour free public video webcast, "Around the World in 80 Telescopes", will take place from 3 April 09:00 UT/GMT to 4 April 09:00 UT/GMT, chasing day and night around the globe to let viewers "visit" some of the most advanced astronomical telescopes on and off the planet. The webcast, organised by ESO for the International Year of Astronomy 2009 (IYA2009), is the first time that so many large observatories have been linked together for a public event. ESO PR Photo 13a/09 Map of Participating Observatories ESO PR Photo 13b/09 100 Hours of Astronomy logo Viewers will see new images of the cosmos, find out what observatories in their home countries or on the other side of the planet are discovering, send in questions and messages, and discover what astronomers are doing right now. Participating telescopes include those at observatories in Chile such as ESO's Very Large Telescope and La Silla, the Hawaii-based telescopes Gemini North and Keck, the Anglo-Australian Telescope, telescopes in the Canary Islands, the Southern African Large Telescope, space-based telescopes such as the NASA/ESA Hubble Space Telescope, ESA XMM-Newton and Integral, and many more. "Around the World in 80 Telescopes" will take viewers to every continent, including Antarctica! The webcast production will be hosted at ESO's headquarters near Munich, Germany, with live internet streaming by Ustream.tv. Anyone with a web browser supporting Adobe Flash will be able to follow the show, free of charge, from the website www.100hoursofastronomy.org and be a part of the project by sending messages and questions. The video player can be freely embedded on other websites. TV stations, web portals and science centres can also use the high quality feed. Representatives of the media who wish to report from the "front-line" and interview the team should get in touch. "Around the World in 80 Telescopes" is a major component of the 100 Hours of Astronomy (100HA), a Cornerstone project of the International Year of Astronomy 2009. 100HA is on track to be the largest single science public outreach event ever, with more than 1500 events registered in over 130 countries. 100HA will take place over four days and nights, from 2-5 April 2009. It is a worldwide celebration composed of a broad range of activities aimed at involving the public. During this period, people from around the globe will share the experience and wonder of observing the sky. For many, it will be their first glimpse of the marvels of the heavens through a telescope. For others, it is the perfect opportunity to impart their knowledge and excitement, helping unveil the cosmos to fresh and eager eyes. Astronomers at ESO are also organising local public events near their headquarters in Garching, near Munich. In the Munich city centre, ESO astronomers, together with colleagues from the Excellence Cluster Universe, will share their views of the cosmos with members of the public. ESO in Chile is also participating in a series of events to celebrate the 100 Hours of Astronomy. In Antofagasta, an exhibition by international and local astrophotographers will be unveiled at the main mall in the city. Star parties will be organised for the public in the desert outside Antofagasta, in coordination with the local university UCN. In Santiago, ESO is offering, along with other international observatories and the Chilean astronomical community, a complete set of programmes, including public talks, night observations and interactive exhibitions. In San Pedro de Atacama, the ALMA project will install an inflatable planetarium for the local community, and astronomy workshops and star parties will be offered to the public. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO plays also a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor. The vision of the IYA2009 is to help the citizens of the world rediscover their place in the Universe through the day and night-time skies the impact of astronomy and basic sciences on our daily lives, and understand better how scientific knowledge can contribute to a more equitable and peaceful society. Ustream.TV is the live interactive video broadcast platform that enables anyone with a camera and an internet connection to quickly and easily broadcast to a global audience of unlimited size. In less than two minutes, anyone can become a broadcaster by creating their own channel on Ustream or by broadcasting through their own site, empowering them to engage with their audience and further build their brand.

  15. How, precisely, can astronomy be of benefit to anyone?

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.

    2011-06-01

    Astronomy as an observational science is technology driven both from the point of view of data acquisition and of data processing and visualisation. Astronomy exploits a very wide base of technologies which are developed, enhanced and extended by users. Consequently, astronomy can return new and enhanced technologies to areas well outside of astronomy itself. My own hi-tech company, Astraguard, a video imaging company, is a small but significant example of that technology return. Astronomy can provide both know-how and people for a diverse variety of areas: security, industrial process control, medical and biological imaging, petrochemicals, databases, and the financial industries to name but a few. It is unfortunate that those who teach astronomy are generally not aware of these possibilities. In this lecture I hope to take a first step towards showing what is possible. I hope to convince the reader that astronomy education, at all levels, can play a significant role in career development outside of astronomy and in higher education in developing countries.

  16. Long-term attitude sustainability from a constructivist-based astronomy-for-teachers course

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Safko, J. L.; Carpenter, J. R.

    Survey performed four years after in-service teachers (elementary and middle school) took a special astronomy course using constructivist approach. Attitudes and confidence toward teaching astronomy did not decline during this time, implying that properly designed courses have long-term effectiveness.

  17. Educational Research in an Introductory Astronomy Course.

    ERIC Educational Resources Information Center

    Hemenway, Mary Kay; Straits, William J.; Wilke, R. Russell; Hufnagel, Beth

    2002-01-01

    Used classroom observations, personal interviews, and pre-instruction/post-instruction administration of the Texas Attitude Survey and the Astronomy Diagnostic Test to evaluate hands-on instructional innovations in a college astronomy course. Modified instruction based on student concerns; scores for the second course showed significant…

  18. Teach Astronomy: An Online Resource for General Education and Informal Learning

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Impey, C.; Patikkal, A.; Srinathan, A.; Collaboration of Astronomy Teaching Scholars CATS

    2012-01-01

    Teach Astronomy is a website developed for students and informal learners who would like to learn more general astronomy knowledge. This learning tool aggregates content from a myriad of sources, including: an introductory astronomy text book by C. D. Impey and W. K. Hartmann, astronomy related articles on Wikipedia, images from the Astronomy Picture of the Day, two to three minute video clips by C. D. Impey, podcasts from 365 Days of Astronomy, and news from Science Daily. In addition, Teach Astronomy utilizes a novel technology to cluster and display search results called a Wikimap. We present an overview of the website's features and suggestions for making the best use of Teach Astronomy in the classroom or at home. This material is based in part upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  19. Policy opportunities

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Ostriker, Jeremiah P.; Acton, Loren W.; Bahcall, Neta A.; Bless, Robert C.; Brown, Robert A.; Burbidge, Geoffrey; Burke, Bernard F.; Clark, George W.; Cordova, France A.

    1991-01-01

    Recommendations are given regarding National Science Foundation (NSF) astronomy programs and the NASA Space Astrophysics program. The role of ground based astronomy is reviewed. The role of National Optical Astronomy Observatories (NOAO) in ground-based night-time astronomical research is discussed. An enhanced Explored Program, costs and management of small and moderate space programs, the role of astrophysics within NASA's space exploration initiative, suborbital and airborne astronomical research, the problems of the Hubble Space Telescope, and astronomy education are discussed. Also covered are policy issues related to the role of science advisory committees, international cooperation and competition, archiving and distribution of astronomical data, and multi-wavelength observations of variable sources.

  20. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  1. Spectroscopic data for an astronomy database

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, Peter L.

    1995-01-01

    Very few of the atomic and molecular data used in analyses of astronomical spectra are currently available in World Wide Web (WWW) databases that are searchable with hypertext browsers. We have begun to rectify this situation by making extensive atomic data files available with simple search procedures. We have also established links to other on-line atomic and molecular databases. All can be accessed from our database homepage with URL: http:// cfa-www.harvard.edu/ amp/ data/ amdata.html.

  2. University of Hawaii Institute for Astronomy

    DTIC Science & Technology

    1998-10-01

    the Virgo Cluster , and motions toward Centaurus and the ‘‘Great At- tractor.’’ In collaboration with former UH student J. Jensen ~Gemini!, R. Thompson...operated in Hawaii by the Joint Astronomy Centre ~JAC! based in Hilo on behalf of the Particle Physics and Astronomy Research Council of the United...and Keck II telescopes of the W.M. Keck Observatory, which is operated by the California Association for Research in Astronomy for the use of

  3. ZTF Undergraduate Astronomy Institute at Caltech and Pomona College

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward; Bellm, Eric Christopher

    2017-01-01

    From the new Zwicky Transient Facility (ZTF), an NSF funded project based at Caltech, comes a new initiative for undergraduate research known as the Summer Undergraduate Astronomy Institute. The Institute brings together 15-20 students from across the world for an immersive experience in astronomy techniques before they begin their summer research projects. The students are primarly based at Caltech in their SURF program but also includes a large cohort of students enrolled in research internships at Pomona College in nearby Claremont CA. The program is intended to introduce students to research techniques in astronomy, laboratory and computational technologies, and to observational astronomy. Since many of the students are previously computer science or physics majors with little astronomy experience, this immersive experience has been extremely helpful for enabling students to learn about the terminologies, techniques and technologies of astronomy. The field trips to the Mount Wilson and Palomar telescopes deepen their knowledge and excitement about astronomy. Lectures about astronomical research from Caltech staff scientists and graduate students also provide context for the student research. Perhaps more importantly, the creation of a cohort of like-minded students, and the chance to reflect about careers in astronomy and research, give these students opportunities to consider themselves as future research scientists and help them immensely as they move forward in their careers. We discuss some of the social and intercultural aspects of the experience as well, as our cohorts typically include international students from many countries and several students from under-represented groups in science.

  4. Quickly creating interactive astronomy illustrations

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary Photojournal are just a few of the many available.1-3 At the same time, computer video projectors and SMART Boards are becoming ever more commonplace in classrooms. Taken together, it has never been easier to bring astronomy directly into classrooms to actively engage students to improve student understanding and motivate student learning.

  5. Opportunity to Learn: Investigating Possible Predictors for Pre-Course "Test Of Astronomy STandards" TOAST Scores

    ERIC Educational Resources Information Center

    Berryhill, Katie J.; Slater, Timothy F.

    2017-01-01

    As discipline-based astronomy education researchers become more interested in experimentally testing innovative teaching strategies to enhance learning in undergraduate introductory astronomy survey courses ("ASTRO 101"), scholars are placing increased attention toward better understanding factors impacting student gain scores on the…

  6. From Conceptual Frameworks to Mental Models for Astronomy: Students' Perceptions

    ERIC Educational Resources Information Center

    Pundak, David; Liberman, Ido; Shacham, Miri

    2017-01-01

    Considerable debate exists among discipline-based astronomy education researchers about how students change their perceptions in science and astronomy. The study questioned the development of astronomical models among students in institutions of higher education by examining how college students change their initial conceptual frameworks and…

  7. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  8. Proposal Information | ast.noao.edu

    Science.gov Websites

    Logo NOAO is the national center for ground-based nighttime astronomy in the United States and is operated by the Association of Universities for Research in Astronomy (AURA). under cooperative agreement with the National Science Foundation. If you would like information about solar astronomy, visit the

  9. eButterfly: Leveraging Massive Online Citizen Science for Butterfly Conservation

    PubMed Central

    Prudic, Kathleen L.; McFarland, Kent P.; Oliver, Jeffrey C.; Hutchinson, Rebecca A.; Long, Elizabeth C.; Kerr, Jeremy T.; Larrivée, Maxim

    2017-01-01

    Data collection, storage, analysis, visualization, and dissemination are changing rapidly due to advances in new technologies driven by computer science and universal access to the internet. These technologies and web connections place human observers front and center in citizen science-driven research and are critical in generating new discoveries and innovation in such fields as astronomy, biodiversity, and meteorology. Research projects utilizing a citizen science approach address scientific problems at regional, continental, and even global scales otherwise impossible for a single lab or even a small collection of academic researchers. Here we describe eButterfly an integrative checklist-based butterfly monitoring and database web-platform that leverages the skills and knowledge of recreational butterfly enthusiasts to create a globally accessible unified database of butterfly observations across North America. Citizen scientists, conservationists, policy makers, and scientists are using eButterfly data to better understand the biological patterns of butterfly species diversity and how environmental conditions shape these patterns in space and time. eButterfly in collaboration with thousands of butterfly enthusiasts has created a near real-time butterfly data resource producing tens of thousands of observations per year open to all to share and explore. PMID:28524117

  10. eButterfly: Leveraging Massive Online Citizen Science for Butterfly Consevation.

    PubMed

    Prudic, Kathleen L; McFarland, Kent P; Oliver, Jeffrey C; Hutchinson, Rebecca A; Long, Elizabeth C; Kerr, Jeremy T; Larrivée, Maxim

    2017-05-18

    Data collection, storage, analysis, visualization, and dissemination are changing rapidly due to advances in new technologies driven by computer science and universal access to the internet. These technologies and web connections place human observers front and center in citizen science-driven research and are critical in generating new discoveries and innovation in such fields as astronomy, biodiversity, and meteorology. Research projects utilizing a citizen science approach address scientific problems at regional, continental, and even global scales otherwise impossible for a single lab or even a small collection of academic researchers. Here we describe eButterfly an integrative checklist-based butterfly monitoring and database web-platform that leverages the skills and knowledge of recreational butterfly enthusiasts to create a globally accessible unified database of butterfly observations across North America. Citizen scientists, conservationists, policy makers, and scientists are using eButterfly data to better understand the biological patterns of butterfly species diversity and how environmental conditions shape these patterns in space and time. eButterfly in collaboration with thousands of butterfly enthusiasts has created a near real-time butterfly data resource producing tens of thousands of observations per year open to all to share and explore.

  11. Report of the Science Working Group: Science with a lunar optical interferometer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Resolution is the greatest constraint in observational astronomy. The Earth's atmosphere causes on optical image to blur to about 1 arcsec or greater. Interferometric techniques have been developed to overcome atmospheric limitations for both filled aperture conventional telescopes and for partially filled aperture telescopes, such as the Michelson or the radio interferometer. The Hubble Space Telescope (HST) represents the first step toward space based optical astronomy. The HST represents an immediate short term evolution of observational optical astronomy. A longer time scale of evolution is focused on and the benefits are considered to astronomy of placing an array of telescopes on the Moon at a time when a permanent base may exist there.

  12. ``If it's not on the Web, it doesn't exist at all'': Electronic Information Resources -- Myth and Reality

    NASA Astrophysics Data System (ADS)

    Stevens-Rayburn, Sarah; Bouton, Ellen N.

    In this paper, we review the current status of astronomical research via electronic means, with an eye towards separating the hype from the hypothetical in hopes of revealing the actual state of affairs. We will review both anecdotal and scholarly work aimed at documenting the state of research using the World Wide Web and demonstrate that although there is enormous potential in electronic research, much of that potential is as yet unrealized. In addition, especially in astronomy, a significant amount of material is not (yet) available electronically and likely will never be. Finally, we will point out the potential danger of a looming paradigm shift in the way astronomers conduct research and the possible consequences thereof. \\end{abstract}

  13. The Galileo Teacher Training Programme

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    The Galileo Teacher Training Program is a global effort to empower teachers all over the world to embark on a new trend in science teaching, using new technologies and real research meth-ods to teach curriculum content. The GTTP goal is to create a worldwide network of "Galileo Ambassadors", promoters of GTTP training session, and a legion of "Galileo Teachers", edu-cators engaged on the use of innovative resources and sharing experiences and supporting its pears worldwide. Through workshops, online training tools and resources, the products and techniques promoted by this program can be adapted to reach locations with few resources of their own, as well as network-connected areas that can take advantage of access to robotic, optical and radio telescopes, webcams, astronomy exercises, cross-disciplinary resources, image processing and digital universes (web and desktop planetariums). Promoters of GTTP are expert astronomy educators connected to Universities or EPO institutions that facilitate the consolidation of an active support to newcomers and act as a 24 hour helpdesk to teachers all over the world. GTTP will also engage in the creation of a repository of astronomy education resources and science research projects, ViRoS (Virtual Repository of resources and Science Projects), in order to simplify the task of educators willing to enrich classroom activities.

  14. Astronomy LITE Demonstrations

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2006-12-01

    Project LITE (Light Inquiry Through Experiments) is a materials, software, and curriculum development project. It focuses on light, optics, color and visual perception. According to two recent surveys of college astronomy faculty members, these are among the topics most often included in the large introductory astronomy courses. The project has aimed largely at the design and implementation of hands-on experiences for students. However, it has also included the development of lecture demonstrations that employ novel light sources and materials. In this presentation, we will show some of our new lecture demonstrations concerning geometrical and physical optics, fluorescence, phosphorescence and polarization. We have developed over 200 Flash and Java applets that can be used either by teachers in lecture settings or by students at home. They are all posted on the web at http://lite.bu.edu. For either purpose they can be downloaded directly to the user's computer or run off line. In lecture demonstrations, some of these applets can be used to control the light emitted by video projectors to produce physical effects in materials (e.g. fluorescence). Other applets can be used, for example, to demonstrate that the human percept of color does not have a simple relationship with the physical frequency of the stimulating source of light. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  15. Astrophysics and astronomy (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 January 2011)

    NASA Astrophysics Data System (ADS)

    2011-10-01

    An Astrophysics and Astronomy scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the Conference Hall of the P N Lebedev Physical Institute, RAS, on 26 January 2011. The following reports were put on the session's agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Cherepashchuk A M (Sternberg Astronomical Institute, Moscow State University, Moscow) "Investigation of X-ray sources"; (2) Shustov B M (Institute of Astronomy, Russian Academy of Sciences, Moscow) "Asteroid and comet hazards: physical and other aspects"; (3) Sazhin M V (Sternberg Astronomical Institute, Moscow State University, Moscow) "Search for cosmic strings"; (4) Zakharov A F (Russian Federation State Scientific Center 'A I Alikhanov Institute for Theoretical and Experimental Physics', Moscow) "Exoplanet search using gravitational microlensing". Papers written on the basis of the reports are published below. • Optical investigations of X-ray binary systems, A M Cherepashchuk Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1061-1067 • Asteroid and comet hazards: the role of physical sciences in solving the problem, B M Shustov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1068-1071 • Search for cosmic strings using optical and radio astronomy methods, O S Sazhina, M V Sazhin, M Capaccioli, G Longo Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1072-1077 • Search for exoplanets using gravitational microlensing, A F Zakharov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1077-1084

  16. Pulsar Search Results from the Arecibo Remote Command Center

    NASA Astrophysics Data System (ADS)

    Rodriguez, Miguel; Stovall, Kevin; Banaszak, Shawn A.; Becker, Alison; Biwer, Christopher M.; Boehler, Keith; Caballero, Keeisi; Christy, Brian; Cohen, Stephanie; Crawford, Fronefield; Cuellar, Andres; Danford, Andrew; Percy Dartez, Louis; Day, David; Flanigan, Joseph D.; Fonrouge, Aldo; Gonzalez, Adolfo; Gustavson, Kathy; Handzo, Emma; Hinojosa, Jesus; Jenet, Fredrick A.; Kaplan, David L. A.; Lommen, Andrea N.; Longoria, Chasity; Lopez, Janine; Lunsford, Grady; Mahany, Nicolas; Martinez, Jose; Mata, Alberto; Miller, Andy; Murray, James; Pankow, Chris; Ramirez, Ivan; Reser, Jackie; Rojas, Pablo; Rohr, Matthew; Rolph, Kristina; Rose, Caitlin; Rudnik, Philip; Siemens, Xavier; Tellez, Andrea; Tillman, Nicholas; Walker, Arielle; Wells, Bradley L.; Zaldivar, Jonathan; Zermeno, Adrienne; Gbncc Consortium, Palfa Consortium, Gbtdrift Consortium, Ao327 Consortium

    2015-01-01

    This poster presents the pulsar discoveries made by students in the Arecibo Remote Command Center (ARCC) program. The ARCC program was started at the University of Texas - Brownsville (UTB) within the Center for Advanced Radio Astronomy (CARA) as a group of scientists, faculty, graduate, undergraduate, and high school students interested in astrophysics. It has since expanded to form other ARCC programs at the University of Wisconsin-Milwaukee (UWM) and Franklin and Marshall College (F&M). The students in the ARCC group control the world's largest radio telescopes to search and discover pulsars. Pulsars are exotic neutron stars that emit beams of electromagnetic radiation. ARCC students use a web application to view and rate the images of radio pulsar candidates based on their signal characteristics. To date, ARCC students have searched through thousands of candidates and have discovered 61 pulsars to date.

  17. The Sky's the Limit! Introducing GCSE Astronomy at Glyncoed Comprehensive School

    ERIC Educational Resources Information Center

    Jeffes, Jennifer

    2012-01-01

    Edexcel's GCSE Astronomy syllabus provides an opportunity for students to develop their understanding and enthusiasm for astronomy, as well as to complement and extend the reach of their study of key stage 4 science, technology, engineering and mathematics (STEM) subjects. This article, based on research conducted by the National Foundation for…

  18. Community Science and Data Center (CSDC) | ast.noao.edu

    Science.gov Websites

    ground-based nighttime astronomy in the United States and is operated by the Association of Universities for Research in Astronomy (AURA). under cooperative agreement with the National Science Foundation. If you would like information about solar astronomy, visit the National Solar Observatory. If you would

  19. Efficient computer algorithms for infrared astronomy data processing

    NASA Technical Reports Server (NTRS)

    Pelzmann, R. F., Jr.

    1976-01-01

    Data processing techniques to be studied for use in infrared astronomy data analysis systems are outlined. Only data from space based telescope systems operating as survey instruments are considered. Resulting algorithms, and in some cases specific software, will be applicable for use with the infrared astronomy satellite (IRAS) and the shuttle infrared telescope facility (SIRTF). Operational tests made during the investigation use data from the celestial mapping program (CMP). The overall task differs from that involved in ground-based infrared telescope data reduction.

  20. Vector Antenna and Maximum Likelihood Imaging for Radio Astronomy

    DTIC Science & Technology

    2016-03-05

    Maximum Likelihood Imaging for Radio Astronomy Mary Knapp1, Frank Robey2, Ryan Volz3, Frank Lind3, Alan Fenn2, Alex Morris2, Mark Silver2, Sarah Klein2...haystack.mit.edu Abstract1— Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets...observational astronomy . Ground-based observatories including LOFAR [1], LWA [2], [3], MWA [4], and the proposed SKA-Low [5], [6] are improving access to

  1. ITEMS Project: An online sequence for teaching mathematics and astronomy

    NASA Astrophysics Data System (ADS)

    Martínez, Bernat; Pérez, Josep

    2010-10-01

    This work describes an elearning sequence for teaching geometry and astronomy in lower secondary school created inside the ITEMS (Improving Teacher Education in Mathematics and Science) project. It is based on results from the astronomy education research about studentsŠ difficulties in understanding elementary astronomical observations and models. The sequence consists of a set of computer animations embedded in an elearning environment aimed at supporting students in learning about astronomy ideas that require the use of geometrical concepts and visual-spatial reasoning.

  2. A Coherent Content Storyline Approach for Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Palma, Christopher; Flarend, A.; McDonald, S.; Kregenow, J. M.

    2014-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Part of the multi-faceted ESSP effort includes revising the curriculum of university science classes known to be taken by large numbers of elementary pre-service teachers. By adopting research-based pedagogical approaches in our courses, we hope to expose these pre-service teachers to excellent examples of science teaching. In this presentation, we will discuss changes made in a pilot study to one section of our introductory astronomy survey course. There have been many articles published in the Astronomy Education Review and elsewhere that detail research-based pedagogical practices for introductory astronomy courses. Many of those practices (such as from the Center for Astronomy Education) have been incorporated into introductory astronomy courses at Penn State. However, our work with middle-grades teachers in the ESSP project is based on two key practices: a Claims, Evidence, and Reasoning (CER) framework (McNeill & Krajcik 2012) and a coherent science content storyline (Roth,et. al., 2011). As a first step in modeling these practices in our University courses, we reorganized our Astro course using a content storyline approach. We plan to incorporate CER activities into the course next year that advance the storyline described. In this poster, we present the storyline developed by our team, which we believe was successful in its pilot, and was built around a conceptually coherent presentation of the diverse set of phenomena typical of an introductory astronomy course. We adopted as our main learning goal a statement based on the cosmological principle that the physical laws throughout the Universe are identical everywhere. In addition, we organized the class schedule to connect the work done in each class to this storyline. We suggest that a coherent content storyline is a useful tool for others who teach broad survey astronomy courses similar to ours at Penn State. We gratefully acknowledge support from the NSF MSP program award DUE#0962792.

  3. Astronomy Education Research Observations from the iSTAR international Study of Astronomical Reasoning Database

    NASA Astrophysics Data System (ADS)

    Tatge, C. B.; Slater, S. J.; Slater, T. F.; Schleigh, S.; McKinnon, D.

    2016-12-01

    Historically, an important part of the scientific research cycle is to situate any research project within the landscape of the existing scientific literature. In the field of discipline-based astronomy education research, grappling with the existing literature base has proven difficult because of the difficulty in obtaining research reports from around the world, particularly early ones. In order to better survey and efficiently utilize the wide and fractured range and domain of astronomy education research methods and results, the iSTAR international Study of Astronomical Reasoning database project was initiated. The project aims to host a living, online repository of dissertations, theses, journal articles, and grey literature resources to serve the world's discipline-based astronomy education research community. The first domain of research artifacts ingested into the iSTAR database were doctoral dissertations. To the authors' great surprise, nearly 300 astronomy education research dissertations were found from the last 100-years. Few, if any, of the literature reviews from recent astronomy education dissertations surveyed even come close to summarizing this many dissertations, most of which have not been published in traditional journals, as re-publishing one's dissertation research as a journal article was not a widespread custom in the education research community until recently. A survey of the iSTAR database dissertations reveals that the vast majority of work has been largely quantitative in nature until the last decade. We also observe that modern-era astronomy education research writings reaches as far back as 1923 and that the majority of dissertations come from the same eight institutions. Moreover, most of the astronomy education research work has been done covering learners' grasp of broad knowledge of astronomy rather than delving into specific learning targets, which has been more in vogue during the last two decades. The surprisingly wide breadth of largely unknown research revealed in the iSTAR database motivates us to begin to synthesize the research and look for broader themes using widely accepted meta analysis techniques.

  4. World's Biggest Astronomy Event on the World-Wide

    NASA Astrophysics Data System (ADS)

    1996-06-01

    `Astronomy On-Line' will connect students all over Europe Astronomy On-Line is a major, all-European project that will take place in conjunction with the 4th European Week for Scientific and Technological Culture later this year. It is based on intensive use of the World-Wide-Web (WWW) and represents the first large-scale attempt in the world to bring together pupils and their teachers all over one continent to explore challenging scientific questions, using modern communication tools, both for obtaining and for communicating information. The programme will be carried out in a collaboration between the European Association for Astronomy Education (EAAE) [1] and the European Southern Observatory, and together with the European Commission (EC). The active phase of Astronomy On-Line will start on October 1 and reach a climax on November 18 - 22, 1996 . What is `Astronomy On-Line'? In this project, a large number of students and their teachers at schools all over Europe, together with professional and amateur astronomers and others interested in astronomy, will become associated in a unique experience that makes intensive use of the vast possibilities of the World-Wide-Web (WWW). Although the exact number of participants will not be known until the beginning of October, it is expected to run into thousands, possibly many more. The unusual size and scope of Astronomy On-Line will contribute to make it an important all-European media event. The central idea is that the participants, through the WWW, will `meet' in a `marketplace' where a number of different `shops' will be available, each of which will tempt them with a number of exciting and educational `events', carefully prepared to cater for different age groups, from 12 years upwards. The events will cover a wide spectrum of activities, some of which will be timed to ensure the proper progression of this very complex project through its main phases. The benefits In fact, Astronomy On-Line will be the first, internationally organised and fully structured programme which offers a large number of students the possibility to familiarize themselves with the use of this communication tool of the future, unequalled possibilities for fruitful international communication, and at the same time to learn much about the science and technology of astronomy, including the scientific methods now being practiced by the world's scientists. Within this framework, they can actively contribute to co-ordinated sub-programmes that will draw on the combined forces and ingenuity of participants from all areas of Europe. There are many other side benefits, of course, such as stimulating schools to go on-line, prompting international cooperation among the young people, etc. Another important aspect is that the programme will lead to natural involvement of business and industrial partners in local areas of the participating groups. Also its unique character and international implications will be very inviting for extensive media coverage, both in human and scientific/technological terms. The organisation An enormous programme like Astronomy On-Line obviously represents a tremendous challenge to the organisers, and careful planning is crucial to its success. This is ensured by the active participation of experienced educators, scientists and engineers in most European countries, united by the common goal to prepare a well-structured event that is exciting for everybody and which has clearly defined roles and responsibilities for all involved parties. An International Steering Committee (ISC) has been established for the programme. The ICS is responsible for the planning of the main activities, together with National Steering Committees (NSC) which will coordinate the Programme in their respective countries. The NSC's are still in the process of being formed and for the time being, most EAAE National Representatives will act as contact points for the programme in their areas. Full information about the organisational and technical aspects of the Programme is available on two central WWW nodes. They will be continuously updated as the programme is specified in increasing detail. The Astronomy On-Line WWW Homepages can be reached under: http://www.eso.org/outreach/spec-prog/aol/ and http://www.algonet.se/~sirius/eaae.htm Announcements about National WWW Homepages for the Programme, now being set up by the NCS's, will follow on the above WWW Homepages. Participation The NSCs will soon issue a call for participation to interested schools, astronomy clubs and other astronomy-interested persons in their respective areas. The deadline for registration is October 1, 1996 , the day when the first active phase of the Programme will start. Participants must register with the appropriate NSC. Participating groups may consist of at least one teacher and his/her students or of one or more astronomy enthousiasts. Each group must have access to the WWW. If access is not yet available at the school, this may be arranged by `sponsors' in the local area. These may be planetaria, science institutes, business undertakings (e.g. in the field of electronics, computers, communication, etc.), industrial firms or private benefactors. All communication via the WWW will take place in English. Only registered groups can participate actively. The main phases Astronomy On-Line will be divided into three phases, lasting from October 1 to November 22, 1996, and reflecting the gradual progression of the associated activities. Phase 1 will last about six weeks, from early October to the beginning of the 4th European Week for Scientific and Technological Culture. During this period, the participating groups will have the possibility of preparing themselves for the active participation, for instance to familiarize themselves with the hard- and software as well as to consider specific programme opportunities, now becoming available on the WWW pages. Regional or international `clusters of groups' may form at this time. Phase 2 will take place on Monday, November 18 and Tuesday, November 19, 1996. On these and the three following days ( Phase 3 : November 20--22), the `active period' will be in the six-hour interval from 15h to 21h UT [2]. Various events are planned to happen at certain times and in certain places on the WWW, keeping the programme lively and enhancing the interaction by ensuring continued attention and expectation by the participants. During Phases 2 and 3, nine or more `shops' will be available in the Astronomy On-Line WWW `marketplaces' for consultation by the participants. They will display a variety of `goods' (activities) at different levels of complexity in order to attract participants of different age groups, among others: General information; Collaborative projects which require observations by many groups all over the continent; Real astronomical observations to be submitted and executed with telescopes at participating, professional observatories; Prepared exercises which may include guided searches on the WWW; Opportunities to talk to professional astronomers, etc. More details are available at the above mentioned WWW sites. Ideas for further activities are now being actively solicited by the Steering Committees. At the end, the various results will be presented on the WWW in the form of short reports which may be commented upon, as far as possible in real time. A `final event' which will `unite' participants from all over Europe will be planned on the last day. Notes: [1] The EAAE was founded in November 1994 (cf. ESO Press Release 17/94 of 2 December 1994) and now has several hundred members located in virtually all European countries; most are secondary school physics teachers with a particular interest in astronomy. [2] This period of the day has been chosen to allow students to participate outside the the normal school hours, and by taking into account the time zones across Europe (from UT in the West to UT+2h in East). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  5. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery and to provide a showcase for a broad range of astronomical research and celestial objects," Adams added. In addition, NRAO is developing enhanced data visualization techniques and data-processing recipes to assist radio astronomers in making quality images and in combining radio data with data collected at other wavelengths, such as visible-light or infrared, to make composite images. "We encourage all our telescope users to take advantage of these techniques to showcase their research," said Juan Uson, a member of the NRAO scientific staff and the observatory's EPO scientist. "All these efforts should demonstrate the vital and exciting roles that radio telescopes, radio observers, and the NRAO play in modern astronomy," Lo said. "While we want to encourage images that capture the imagination, we also want to emphasize that extra effort invested in enhanced imagery also will certainly pay off scientifically, by revealing subtleties and details that may have great significance for our understanding of astronomical objects," he added. Details of the NRAO Image Contest, which will become an annual event, are on the observatory's Web site. The observatory will announce winners on October 15. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  6. Promise and Progress of Millihertz Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2017-01-01

    Extending the new field of gravitational wave (GW) astronomy into the millihertz band with a space-based GW observatory is a high-priority objective of international astronomy community. This paper summarizes the astrophysical promise and the technological groundwork for such an observatory, concretely focusing on the prospects for the proposed Laser Interferometer Space Antenna (LISA) mission concept.

  7. Variables that Correlate with Faculty Use of Research-Based Instructional Strategies

    NASA Astrophysics Data System (ADS)

    Henderson, Charles; Dancy, Melissa H.; Niewiadomska-Bugaj, Magdalena

    2010-10-01

    During the Fall of 2008 a web survey, designed to collect information about pedagogical knowledge and practices, was completed by a representative sample of 722 physics faculty across the United States (a 50.3% response rate). This paper examines how 20 predictor variables correlate with faculty knowledge about and use of research-based instructional strategies (RBIS). Profiles were developed for each of four faculty levels of knowledge about and use of RBIS. Logistic regression analysis was used to identify a subset of the variables that could predict group membership. Five significant predictor variables were identified. High levels of knowledge and use of RBIS were associated with the following characteristics: attendee of the physics and astronomy new faculty workshop, attendee of at least one talk or workshop related to teaching in the last two years, satisfaction with meeting instructional goals, regular reader of one or more journals related to teaching, and being female. High research productivity and large class sizes were not found to be barriers to use of at least some RBIS.

  8. Data to Pictures to Data: Outreach Imaging Software and Metadata

    NASA Astrophysics Data System (ADS)

    Levay, Z.

    2011-07-01

    A convergence between astronomy science and digital photography has enabled a steady stream of visually rich imagery from state-of-the-art data. The accessibility of hardware and software has facilitated an explosion of astronomical images for outreach, from space-based observatories, ground-based professional facilities and among the vibrant amateur astrophotography community. Producing imagery from science data involves a combination of custom software to understand FITS data (FITS Liberator), off-the-shelf, industry-standard software to composite multi-wavelength data and edit digital photographs (Adobe Photoshop), and application of photo/image-processing techniques. Some additional effort is needed to close the loop and enable this imagery to be conveniently available for various purposes beyond web and print publication. The metadata paradigms in digital photography are now complying with FITS and science software to carry information such as keyword tags and world coordinates, enabling these images to be usable in more sophisticated, imaginative ways exemplified by Sky in Google Earth and World Wide Telescope.

  9. H-Index of Astrophysicists at Raman Research Institute: Performance of Different Calculators

    NASA Astrophysics Data System (ADS)

    Meera, B. M.; Manjunath, M.

    2012-08-01

    H-index, a single number proposed by J. E. Hirsch in 2005 has gained popularity as an index number to measure the research performance of individuals, institutions, universities, etc. There are many calculators to derive the h-in dex number, such as Google Scholar, Web of Science, Scopus, etc. However, h-index can be calculated manually, provided we have access to a complete list of publications of a scientist and the number of citations received by them. It is observed that h-index for a given scientist at a ny given point of time differs from one calculator to the other. Here is an attempt to calculate the H-index of scientists of the Astronomy and Astrophysics Group at Raman Research Institute using Google Scholar Free calculator, Web of Science Paid calculator and The SAO/NASA As trophysics Data System manual calculation and comparison of the results. Application of this h- index phenomenon to the research output of RRI scientists in a group is done while keeping in mi nd Hirsch's systematic in vestigation to predict the position of a scientist using h-index in physics. It is believed that the higher the academic age of a scientist, the higher will be the h-index. An attempt is made to find whether this assumption is true with respect to the sample studied by including the superannuated scientists from Astronomy and Astrophysics Group at Raman Research Institute under the purview of this study.

  10. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Astronomy is enjoying a golden age of fundamental, exciting discoveries. Europe is at the forefront, thanks to 50 years of progress in cooperation. To remain ahead over the next two to three decades, Europe must prioritise and coordinate the investment of its financial and human resources even more closely. The ASTRONET network, backed by the entire European scientific community, supported by the European Commission, and coordinated by the CNRS, today presents its Roadmap for a brilliant future for European astronomy. ESO's European Extremely Large Telescope is ranked as one of two top-priority large ground-based projects. Astronet and the E-ELT ESO PR Photo 43a/08 The E-ELT Europe is a leader in astronomy today, with the world's most successful optical observatory, ESO's Very Large Telescope, and cutting-edge facilities in radio astronomy and in space. In an unprecedented effort demonstrating the potential of European scientific cooperation, all of European astronomy is now joining forces to define the scientific challenges for the future and construct a common plan to address them in a cost-effective manner. In 2007, a top-level Science Vision was prepared to assess the most burning scientific questions over the next quarter century, ranging from dark energy to life on other planets. European astronomy now presents its Infrastructure Roadmap, a comprehensive 20-year plan to coordinate national and community investments to meet these challenges in a cost-effective manner. The Roadmap not only prioritises the necessary new frontline research facilities from radio telescopes to planetary probes, in space and on the ground, but also considers such key issues as existing facilities, human resources, ICT infrastructure, education and outreach, and cost -- of operations as well as construction. This bold new initiative -- ASTRONET -- was created by the major European funding agencies with support from the European Commission and is coordinated by the National Institute for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities, and for a stronger involvement of European high-tech industry in the development of future facilities. Moreover, success depends critically upon an adequate supply of qualified scientists, and of engineers in fields ranging from IT to optics. Finally, the Roadmap proposes a series of measures to enhance the public understanding of astronomy as a means to boost recruitment in science and technology in schools and universities across Europe. Europe currently spends approximately €2 billion a year on astronomy in the broadest sense. Implementing the ASTRONET Roadmap will require a funding increase of around 20% -- less than €1 per year per European citizen. Global cooperation will be needed -- and is being planned -- for several of the largest projects.

  11. Astronomy and Atmospheric Optics

    NASA Astrophysics Data System (ADS)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  12. Ethics Instruction in Undergraduate Astronomy and Physics

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; van Zee, L.; Bacher, A. D.; Durisen, R. H.

    2009-01-01

    Instruction in research ethics is now included as part of the formal undergraduate curriculum in astronomy and physics at Indiana University. Traditionally, students learn research ethics through informal mentoring by research advisors. However, a more formal approach is encouraged by funding agencies, professional societies, and common sense. Following the booklet, "On Being a Scientist: Responsible Conduct in Research" (1995, National Academy Press), our ethics program is built around a "case study" approach using scenarios involving real life situations that students are likely to encounter as undergraduates or beginning graduate students. Students discuss possible resolutions of the ethical questions involved. Discussion topics include reporting data, data rights, credit for ideas, and professional behavior. Scenarios for graduate students involve ethical concerns more appropriate for their career stage, including conflicts of interest, authorship, and collaboration. The answers are not clear-cut, and students must grapple with shades of gray to help them define what the limits of ethical behavior are. The scenarios are available on the Web at www.astro.indiana.edu/education/ethics.html

  13. U-Science (Invited)

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to represent and encode the new knowledge, and how to curate the discovered knowledge. This talk will address the emergence of U-Science as a type of Semantic e-Science, and will explore challenges, implementations, and results. Semantic e-Science and U-Science applications and concepts will be discussed within the context of one particular implementation (AstroDAS: Astronomy Distributed Annotation System) and its applicability to petascale science projects such as the LSST (Large Synoptic Survey Telescope), coming online within the next few years.

  14. iSTAR: The International STudy on Astronomy Reasoning

    NASA Astrophysics Data System (ADS)

    Tatge, Coty B.; Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    This paper reports the first steps taken in the International STudy on Astronomy Reasoning (iSTAR). The iSTAR Project is an attempt to look beyond traditional wisdom and practices in astronomy education, to discover the ways in which cognitive abilities and human culture interact to impact individuals’ understanding of and relationship to astronomy content knowledge. In contrast to many international studies that seek to rank nations by student performance on standardized tests, the iSTAR Project seeks to find ways that culture may unexpectedly enhance performance in astronomy. Using the Test of Astronomy Standards (TOAST) as a reasonable, initial proxy for the content knowledge a well educated person might know in astronomy, the iSTAR team then defined culture as a construct with five components: practices, traditional knowledge, historical and genealogical relationships, place-based knowledge, and language. Given the complexity of this construct, Stage 1 of the project focuses on the cultural component of language, and assumed that prior to the collection of data from students, the process of translating the TOAST could provide valuable expert-based information on the impact of language on astronomy knowledge. As such, the work began with a study of the translation process. For each of the languages used in the testing phase of the iSTAR protocol, a succession of translators and analysts were engaged, including two educated, non-astronomer native speakers, a native speaking astronomer, and a native speaking linguistics expert. Multiple translations were analyzed in order to make relevant meaning of differences in the translations, and provide commentary on the ways in which metaphor, idiom, cultural history are embedded in the language, providing potential advantages in the learning of astronomy. The first test languages were German, Hawaiian, and American Sign Language, and initial findings suggest that each of these languages provide specific advantages, related to a reduction in astronomy vocabulary, and encoded directionality related to the cardinal directions and the celestial sphere.

  15. 2011 Astronomy Day at McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Preston, Sandra; Hemeway, M.; Wetzel, M.

    2012-01-01

    Our philosophy is that everyday is Astronomy Day because the McDonald Observatory's Frank N. Bash Visitors Center is open 362 days a year. So, how did we create a special celebration for the "Astronomy Day” declared by the Astronomical League? During September 26-29 we conducted 20 videoconferences and served 12,559 students with "Astronomy Day” programming. Connect2Texas provides bridging for a network of Texas-based museums and cultural, historical, and scientific organizations that offer educational content to schools throughout the state via videoconferencing. Connect2Texas connected McDonald Observatory to 334 schools; most of these schools were in Texas, but schools in a dozen other states also participated. While most schools had a "view-only" connection, at least 20 of the schools had interactive connections, whereby the students could ask questions of the presenter. Connect2Texas also collects evaluation information from the participating schools that we will use to produce a report for our funders and make modifications to future programs as need be. The videoconferences were offered free of charge. The theme for the 2011 Astronomy Day program was the Year of the Solar System, which aligns with NASA's theme for 2011 and 2012. By aligning with this NASA theme, we could leverage NASA artwork and materials to both advertise and enrich the learning experience. Videoconference materials also included pre- and post-videoconference assessment sheets, an inquiry based activity, and pre- and post-videoconference activities, all of which were made available online. One of the lessons learned from past Astronomy Day videoconferences is that the days the Astronomical League declares as "Astronomy Day” are not always good days for Texas schools to participate. So, we choose an Astronomy Day that meets the needs of Texas schools and our schedule - so any day can be Astronomy Day. 2011 Astronomy Day was made possible by The Meyer-Levy Charitable Trust.

  16. Misconceptions in Astronomy: Before and After a Constructivist Learning Environment

    NASA Astrophysics Data System (ADS)

    Ruzhitskaya, Lanika; Speck, A.

    2009-01-01

    We present results of a pilot study on college students’ misconceptions in astronomy. The study was conducted on the campus of a Midwestern university among 43 non-science major students enrolled in an introductory astronomy laboratory course. The laboratory course was based on a constructivist learning environment where students learned astronomy by doing astronomy. During the course, students worked with educational simulations created by Project CLEA team and RedShift College Education Astronomy Workbook by Bill Walker as well as were involved in think-pair-share discussions based on Lecture-Tutorials (Prather et al 2008). Several laboratories were prompted by an instructor's brief presentations. On the first and last days of the course students were surveyed on what their beliefs were about causes of the seasons, the moon's apparent size in the sky and its phases, planetary orbits, structure of the solar system, the sun, distant stars, and the nature of light. The majority of the surveys’ questions were based on Neil Comins’ 50 most commonly cited misconceptions. The outcome of the study showed that while students constructed correct understanding of a number of phenomena, they also created a set of new misconceptions. For example, if on the first day of the course, nine out of 43 students knew what caused the seasons on Earth; on the last day of the course, 20 students gained the similar understanding. However, by the end of the course more students believed that smaller planets must rotate faster based on the conservation of angular momentum and Kepler's laws. Our findings suggest that misconceptions pointed out by Neil Comins over a decade ago are still relevant today; and that learning based exclusively on simulations and collaborative group discussions does not necessarily produce the best results, but may set a ground for creating new misconceptions.

  17. Contact Information Regarding Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You UTGPS (GPS-based UT1-like quantity). Astronomy Products Astronomical phenomena, astronomical data

  18. Bringing the Universe to the World: Lessons Learned from a Massive Open Online Class on Astronomy

    NASA Astrophysics Data System (ADS)

    Impey, C.; Wenger, M.; Formanek, M.; Buxner, S.

    2016-12-01

    This paper presents the results of a massive open online class (MOOC) on astronomy called Astronomy: Exploring Time and Space. The class was hosted by the web platform Coursera and ran for six weeks from February to May 2015. Coverage was designed to emphasise topics in astronomy where there has been rapid research progress, including large telescopes, exploration of the Solar System, the discovery of exoplanets, exotic end states of stars, and the frontiers of cosmology. The core content was nearly eighteen hours of video lectures, assessed by thirteen video lecture quizzes, three peer review writing assignments, and two online activities. Information on demographics and on the goals and motivations of the learners was gathered using standard Coursera entry and exit surveys and an external Science Literacy survey. A total of 25 379 people registered for the course, and most of them did not complete any assignments. About two-thirds of the 14 900 learners who opened the course lived outside the United States, distributed across 151 different countries. Out of 4275 participants who completed one or more assignments, 1607 passed the course, and a majority did so with a grade of 80% or higher. Those who completed the course were generally very satisfied with their experience and felt it met their learning goals. The people with the highest chance of completing the course tended to be in the range 40 to 60 years old, had a college education, and were either retired or working in professional fields. The strongest predictors of passing the course were to have completed the first written assignment or the first online activity.

  19. Astronomy Education and Research With Digital Viewing: Forming a New Network of Small Observatories

    NASA Astrophysics Data System (ADS)

    Bogard, Arthur; Hamilton, T. S.

    2011-01-01

    Small observatories face two major hindrances in teaching astronomy to students: weather and getting students to recognize what they're seeing. The normal astronomy class use of a single telescope with an eyepiece is restricted to good skies, and it allows only one viewer at a time. Since astronomy labs meet at regular times, bad weather can mean the loss of an entire week. As for the second problem, students often have difficulties recognizing what they are seeing through an eyepiece, and the instructor cannot point out the target's features. Commercial multimedia resources, although structured and easy to explain to students, do not give students the same level of interactivity. A professor cannot improvise a new target nor can he adjust the image to view different features of an object. Luckily, advancements in technology provide solutions for both of these limitations without breaking the bank. Astronomical video cameras can automatically stack, align, and integrate still frames, providing instructors with the ability to explain things to groups of students in real time under actual seeing conditions. Using Shawnee State University's Mallincam on an 8" Cassegrain, our students are now able to understand and classify both planetary and deep sky objects better than they can through an eyepiece. To address the problems with weather, SSU proposes forming a network among existing small observatories. With inexpensive software and cameras, telescopes can be aligned and operated over the web, and with reciprocal viewing agreements, users who are clouded out could view from another location. By partnering with institutions in the eastern hemisphere, even daytime viewing would be possible. Not only will this network aid in instruction, but the common user interface will make student research projects much easier.

  20. The challenge of teaching astronomy with 0 dollars

    NASA Astrophysics Data System (ADS)

    Ros, Rosa Maria; García, Beatriz

    2015-08-01

    The training courses on Astronomy are necessary for teachers in all the countries. Normally they are more necessary in developing countries that in other ones. The challenge is to do this work without expenses. NASE, Network for Astronomy School Education, organizes courses for teachers in service and future teachers practically free of charge. The host country only pays accommodation and meals of NASE visitors. But the most interesting aspect of NASE is that presents a lot of activities to carry out in the classroom by 0 dollars using “learning by doing” methodology. After more than 60 courses in about 20 countries we can show several examples of materials generated by participants themselves during the course. With this materials they can make observations and reasoning about their observations in order to understand the astronomy concepts which appear in the curricula of different levels of formal education.Waste materials, cardboard or paper, pieces of string or wire, a stick or a CD, some milk or a drop of oil can be very useful to produce a spectrograph, a photometer, a sundial, a goniometer or a quadrant. The imagination and creativity can replace funding which are difficult to achieve in secondary and primary schools in small towns or villages. NASE is a solution for teachers. which discover that they can explain, in a simple way, complex concepts using models and observations that do not need any money!Participants in NASE courses receive instructions in order to work with NASE materials and after the courses they can find (and create) complementary materials at the NASE website, in order to continue working in the same way. We receive some contributions from some of them that we publish at our web.http:www.naseprogram.org

  1. The Virtual Museum for Meteorites

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.

    2012-09-01

    Meteorites play a fundamental role in education and outreach, as these samples of extraterrestrial materials are very valuable tools to promote the public's interest in Astronomy and Planetary Sciences. Thus, for instance, meteorite exhibitions reveal the interest and fascination of students, educators and even researchers for these peculiar rocks and how these can provide information to explain many fundamental questions related to the origin and evolution of our Solar System. However, despite the efforts of private collectors, museums and other institutions to organize meteorite exhibitions, the reach of these is usually limited. But this issue can be addressed thanks to new technologies related to the Internet. In fact we can take advantage of HTML and related technologies to overcome local boundaries and open the possibility of offering these exhibitions for a global audience. With this aim a Virtual Museum for Meteorites has been created and a description of this web-based tool is given here.

  2. Visualization of Multi-mission Astronomical Data with ESASky

    NASA Astrophysics Data System (ADS)

    Baines, Deborah; Giordano, Fabrizio; Racero, Elena; Salgado, Jesús; López Martí, Belén; Merín, Bruno; Sarmiento, María-Henar; Gutiérrez, Raúl; Ortiz de Landaluce, Iñaki; León, Ignacio; de Teodoro, Pilar; González, Juan; Nieto, Sara; Segovia, Juan Carlos; Pollock, Andy; Rosa, Michael; Arviset, Christophe; Lennon, Daniel; O'Mullane, William; de Marchi, Guido

    2017-02-01

    ESASky is a science-driven discovery portal to explore the multi-wavelength sky and visualize and access multiple astronomical archive holdings. The tool is a web application that requires no prior knowledge of any of the missions involved and gives users world-wide simplified access to the highest-level science data products from multiple astronomical space-based astronomy missions plus a number of ESA source catalogs. The first public release of ESASky features interfaces for the visualization of the sky in multiple wavelengths, the visualization of query results summaries, and the visualization of observations and catalog sources for single and multiple targets. This paper describes these features within ESASky, developed to address use cases from the scientific community. The decisions regarding the visualization of large amounts of data and the technologies used were made to maximize the responsiveness of the application and to keep the tool as useful and intuitive as possible.

  3. The Research Tools of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  4. The Development of Astronomy in Korea and the Emergence of Astrophysics in South Korea

    NASA Astrophysics Data System (ADS)

    Nha, Il-Seong; L. Nha, Sarah; Orchiston, Wayne

    There are two books and one review paper that have been written about the history of astronomy in Korea. Chronologically, they are the review paper "Astronomy in Korea" (Rufus, Transactions of the Korea Branch of the Royal Asiatic Society, XXVI, 1-69, 1936), and the books The Hall of Heavenly Records, Korean Astronomical Instruments and Clocks 1380-1780 (Needham et al., Cambridge University Press, Cambridge, 1986a) and History of Astronomy in Korea (Nha, Seoul National University Press, Seoul, 2000). In order to overview the emergence and development of modern astronomy and astrophysics in South Korea, much of the present chapter is based on these three references, along with various papers published by the present authors and other astronomers.

  5. Astronomy, Astrology, and Medicine

    NASA Astrophysics Data System (ADS)

    Greenbaum, Dorian Gieseler

    Astronomy and astrology were combined with medicine for thousands of years. Beginning in Mesopotamia in the second millennium BCE and continuing into the eighteenth century, medical practitioners used astronomy/astrology as an important part of diagnosis and prescription. Throughout this time frame, scientists cited the similarities between medicine and astrology, in addition to combining the two in practice. Hippocrates and Galen based medical theories on the relationship between heavenly bodies and human bodies. In an enduring cultural phenomenon, parts of the body as well as diseases were linked to zodiac signs and planets. In Renaissance universities, astronomy and astrology were studied by students of medicine. History records a long tradition of astrologer-physicians. This chapter covers the topic of astronomy, astrology, and medicine from the Old Babylonian period to the Enlightenment.

  6. Giant Magellan Telescope

    Science.gov Websites

    collaborate with the National Optical Astronomy Observatory (NOAO) and the Thirty Meter Telescope (TMT) to articulate a community based science program for presentation to the next Decadal Survey of Astronomy and

  7. El Programa de Fortalecimiento de Capacidades de COSPAR

    NASA Astrophysics Data System (ADS)

    Gabriel, C.

    2016-08-01

    The provision of scientific data archives and analysis tools by diverse institutions in the world represents a unique opportunity for the development of scientific activities. An example of this is the European Space Agency's space observatory XMM-Newton with its Science Operations Centre at the European Space Astronomy Centre near Madrid, Spain. It provides through its science archive and web pages, not only the raw and processed data from the mission, but also analysis tools, and full documentation greatly helping their dissemination and use. These data and tools, freely accesible to anyone in the world, are the practical elements around which COSPAR (COmmittee on SPAce Research) Capacity Building Workshops have been conceived and developed, and held for a decade and a half in developing countries. The Programme started with X-ray workshops, but in-between it has been broadened to the most diverse space science areas. The workshops help to develop science at the highest level in those countries, in a long and substainable way, with a minimal investment (computer plus a moderate Internet connection). In this paper we discuss the basis, concepts, and achievements of the Capacity Building Programme. Two instances of the Programme have already taken place in Argentina, one of them devoted to X-ray astronomy and another to Infrared Astronomy. Several others have been organised for the Latin American region (Brazil, Uruguay and Mexico) with a large participation of young investigators from Argentina.

  8. National Center for Mathematics and Science - K-12 education research

    Science.gov Websites

    motion, calculus, statistics, genetics, evolution, astronomy, and other topics. Teacher professional ). Extensive materials developed for instruction in evolutionary biology and astronomy - using the model-based

  9. Learning to Explain Astronomy across Moving Frames of Reference: Exploring the Role of Classroom and Planetarium-Based Instructional Contexts

    ERIC Educational Resources Information Center

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-01-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children…

  10. Research amateur astronomy; Proceedings of the Symposium, La Paz, Mexico, July 7-12, 1991

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J. (Editor)

    1992-01-01

    The present volume on amateur astronomy deals with solar observations; planet, asteroid, and comet studies; photometry; education and communication; and history and sociology. Particular attention is given to the observation of the 1984 annular eclipse in Mexico, amateur solar astronomy in Germany, the Ashen Light of Venus, dust clouds on Mars in 1990, and the importance of comets Encke and Machholz. Also discussed are a UBVRI and occultation photometry acquisition and reduction software package for PC-based observatories, a Skyweek weekly newsletter on astronomy and spaceflight, and the Hubble Space Telescope and the Goddard High Resolution Spectrograph.

  11. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  12. Web life: Sixty Symbols

    NASA Astrophysics Data System (ADS)

    2009-09-01

    So what is the site about? If you enjoyed The Periodic Table of Videos we profiled earlier this year (January p35), but found it a bit too...well...chemical, then this is the website for you. Physics does not really have a periodic table, so a handful of scientists from Nottingham University in the UK worked with video-journalist Brady Haran to create one. The result is a 6 × 10 matrix of important symbols in physics and astronomy, each linked to a 5-10 min video describing the symbol's significance.

  13. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  14. Accessible Astronomy.

    ERIC Educational Resources Information Center

    Glickstein, Neil

    1994-01-01

    Describes the development of a theme-based, multidisciplinary course. The article partitions into the following sections: (1) Constructing the Course; (2) Putting the Ideas to Work; (3) Connecting Science and Society; and (4) The Arts and Astronomy. (ZWH)

  15. First Results from the iSTAR International STudy on Astronomy Reasoning

    NASA Astrophysics Data System (ADS)

    Tatge, Coty B.; Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Our best efforts in the United States to dramatically improve teaching and learning in astronomy courses has been less than satisfactory despite Herculean efforts. A possible solution is to expand our view beyond our own culture's borders and presumptions in order to bring our shortcomings in discipline-based astronomy education research to light. Before we can begin the process of international comparisons of student conceptual understanding, we need to better understand how different citizens of different countries position astronomy culturally. Under the banner of the International STudy on Astronomy Reasoning Project, iSTAR, we are now carefully observing how foreign experts in teaching astronomy and the science of astronomy translate the Test Of Astronomy STandards - TOAST multiple-choice assessment instrument to look for subtle clues revealed during the translation process. The TOAST is the widely used standard to evaluate students' gains in the United States' Astronomy classrooms. We hope that the process of translation itself will help us comprehend how other cultures think differently about astronomical concepts and eventually we are looking to obtain useful data of how other cultures develop their society's understanding of particular astronomy aspects where we may fall short. Several of the iSTAR Project's bilingual speakers are documenting their thoughts and insights as they translate the TOAST. The end-goal is to collect a comprehensible, well-defined, and logical translation in various languages that are culturally sensitive and linguistically accurate. This project is sponsored and managed by the CAPER Center for Astronomy & Physics Education Research at CAPERTeam.com in collaboration with members of the International Astronomical Union-Commission 46.

  16. iSTAR First Light: Characterizing Astronomy Education Research Dissertations in the iSTAR Database

    ERIC Educational Resources Information Center

    Slater, Stephanie J.; Tatge, Coty B.; Bretones, Paulo S.; Slater, Timothy F.; Schleigh, Sharon P.; McKinnon, David; Heyer, Inge

    2016-01-01

    There is widespread interest among discipline-based science education researchers to situate their research in the existing scholarly literature base. Unfortunately, traditional approaches to conducting a thorough literature review are unduly hindered in astronomy education research as the venues in which scholarship is reported are fragmented and…

  17. Pre-College Astronomy Education in the United States in the Twentieth Century

    NASA Astrophysics Data System (ADS)

    Bishop, J. E.

    2003-03-01

    The nature of pre-college astronomy education in the United States can be divided into several periods: 1900 to about 1955, 1955 to about 1980, and about 1980 to 2000. Until the Space Age, astronomy in elementary and secondary schools was minimal, a situation influenced in great part of the work of the National Education Association Committee of Ten in 1892. With the launch of the Russian Sputnik in November 1957, a rapid response of concern and action took place to improve science and math education, including astronomy. Efforts by small planetariums and the National Aeronautics and Space Administration (NASA) played large roles in re-introducing astronomy back into schools in the 1960s and 1970s. During the last decades, educational-research-based astronomy programs and a nationwide effort to improve astronomy and other science education were important at all pre-college levels. Although the basic astronomical literacy of students leaving secondary school at the close of the century needed improvement, awareness of astronomical discoveries had increased since the opening of the Space Age.

  18. Future of Space Astronomy: A Global Road Map for the Next Decades

    NASA Technical Reports Server (NTRS)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  19. The SARA REU Site Program

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Oswalt, T. D.; SARA Collaboration

    2000-12-01

    We present an overview of the Research Experiences for Undergraduates (REU) Site Program hosted by the Southeastern Association for Research in Astronomy (SARA) for the past 6 years. SARA is a consortium of the six universities: Florida Institute of Technology, East Tennessee State University, Florida International University, The University of Georgia, Valdosta State University, and Clemson University. We host 10-11 student interns per year out of an application pool of ~150-200. Recruiting flyers are sent to the ~3400 undergraduate institutions in the United States, and we use a web-based application form and review process. We are a distributed REU Site, but come together for group meetings at the beginning and end of the summer program and stay in contact in between using email list manager software. Interns complete a research project working one-on-one with a faculty mentor, and each intern travels to observe at the SARA Observatory at Kitt Peak National Observatory. Interns give both oral and display presentations of their results at the final group meeting. In addition, all interns write a paper for publication in the IAPPP Communications, an international amateur-professional journal, and several present at professional meetings and in refereed publications. We include in the group meetings a ``how-to'' session on giving talks and posters, an Ethics Session, and a session on Women in Astronomy. This work was supported by the NSF Research Experiences for Undergraduates (REU) Site Program through grant AST 96169939 to The Florida Institute of Technology.

  20. Astronomy Education Programs at the Smithsonian National Air and Space Museum

    NASA Astrophysics Data System (ADS)

    Nagy, Katie; de Messieres, G.; Edson, S.

    2014-01-01

    Astronomy educators present the range of astronomy education programming available at the National Air and Space Museum, including the following. In the Phoebe Waterman Haas Public Observatory, visitors use telescopes and other scientific equipment to observe and discuss the Sun, Venus, and other celestial sights in an unstructured, inquiry-based environment. At Discovery Stations throughout the Museum, staff and volunteers engage visitors in hands-on exploration of a wide range of artifacts and teaching materials. Astronomy-related Discovery Stations include Cosmic Survey, an exploration of gravitational lensing using a rubber sheet, spectroscopy using discharge tubes, and several others. Astronomy lectures in the planetarium or IMAX theater, featuring researchers as the speakers, include a full evening of activities: a custom pre-lecture Discovery Station, a handout to help visitors explore the topic in more depth, and evening stargazing at the Public Observatory. Astronomy educators present planetarium shows, including star tours and explorations of recent science news. During Astronomy Chat, an astronomy researcher engages visitors in an informal conversation about science. The goal is to make the public feel welcome in the environment of professional research and to give busy scientists a convenient outreach opportunity. Astronomy educators also recruit, train, and coordinate a corps of volunteers who contribute their efforts to the programming above. The volunteer program has grown significantly since the Public Observatory was built in 2009.

  1. The Martian Goes To College: Open Inquiry with Science Fiction in the Classroom.

    NASA Astrophysics Data System (ADS)

    Beatty, L.; Patterson, J. D.

    2015-12-01

    Storytelling is an ancient art; one that can get lost in the reams of data available in a typical geology or astronomy classroom. But storytelling draws us to a magical place. Our students, with prior experience in either a geology or astronomy course, were invited to explore Mars in a special topics course at Johnson County Community College through reading The Martian by Andy Weir. As they traveled with astronaut Mark Watney, the students used Google Mars, Java Mission-planning and Analysis for Remote Sensing (JMARS), and learning modules from the Mars for Earthlings web site to investigate the terrain and the processes at work in the past and present on Mars. Our goal was to apply their understanding of processes on Earth in order to explain and predict what they observed on Mars courtesy of the remote sensing opportunities available from Viking, Pathfinder, the Mars Exploration Rovers, and Maven missions; sort of an inter-planetary uniformitarianism. Astronaut Mark Watney's fictional journey from Acidalia Planitia to Schiaparelli Crater was analyzed using learning modules in Mars for Earthlings and exercises that we developed based on Google Mars, JMARS, Rotating Sky Explorer, and Science Friday podcasts. Each student also completed an individual project that either focused on a particular region that Astronaut Mark Watney traveled through or a problem that he faced. Through this open-inquiry learning style, they determined some processes that shaped Mars such as crater impacts, volcanism, fluid flow, mass movement, and groundwater sapping and also investigated the efficacy of solar energy as a power source based on location and the likelihood of regolith potential as a mineral matter source for soil.

  2. Engaging students in astronomy and spectroscopy through Project SPECTRA!

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2011-12-01

    Computer simulations for minds-on learning with "Project Spectra!" How do we gain information about the Sun? How do we know Mars has CO2 or that Enceladus has H2O geysers? How do we use light in astronomy? These concepts are something students and educators struggle with because they are abstract. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. Visualizing lessons with multi-media solidifies understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. Visualizations also enable teachers to forgo purchasing expensive laboratory equipment. "Project Spectra!" is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. To engage students in "Project Spectra!", students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, or analyzing the soil of a remote planet. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission, which is something that is not practical to do during a typical paper-and-pencil activity. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement in-class Project SPECTRA! activities exploring applications of the electromagnetic spectrum.

  3. Wilga Photonics and Web Engineering 2011

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the SPIE-IEEE Wilga 2011 symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-225].

  4. WILGA Photonics and Web Engineering, January 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper presents a digest of chosen technical work results shown by young researchers from technical universities during the SPIE-IEEE Wilga January 2012 Symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics codesign, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium held two times a year is a summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of chosen Wilga references is presented [1-268].

  5. Photonics Applications and Web Engineering: WILGA 2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2017-08-01

    XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.

  6. Introduction to the Space Weather Monitoring System at KASI

    NASA Astrophysics Data System (ADS)

    Baek, J.; Choi, S.; Kim, Y.; Cho, K.; Bong, S.; Lee, J.; Kwak, Y.; Hwang, J.; Park, Y.; Hwang, E.

    2014-05-01

    We have developed the Space Weather Monitoring System (SWMS) at the Korea Astronomy and Space Science Institute (KASI). Since 2007, the system has continuously evolved into a better system. The SWMS consists of several subsystems: applications which acquire and process observational data, servers which run the applications, data storage, and display facilities which show the space weather information. The applications collect solar and space weather data from domestic and oversea sites. The collected data are converted to other format and/or visualized in real time as graphs and illustrations. We manage 3 data acquisition and processing servers, a file service server, a web server, and 3 sets of storage systems. We have developed 30 applications for a variety of data, and the volume of data is about 5.5 GB per day. We provide our customers with space weather contents displayed at the Space Weather Monitoring Lab (SWML) using web services.

  7. Hosting and pulishing astronomical data in SQL databases

    NASA Astrophysics Data System (ADS)

    Galkin, Anastasia; Klar, Jochen; Riebe, Kristin; Matokevic, Gal; Enke, Harry

    2017-04-01

    In astronomy, terabytes and petabytes of data are produced by ground instruments, satellite missions and simulations. At Leibniz-Institute for Astrophysics Potsdam (AIP) we host and publish terabytes of cosmological simulation and observational data. The public archive at AIP has now reached a size of 60TB and growing and helps to produce numerous scientific papers. The web framework Daiquiri offers a dedicated web interface for each of the hosted scientific databases. Scientists all around the world run SQL queries which include specific astrophysical functions and get their desired data in reasonable time. Daiquiri supports the scientific projects by offering a number of administration tools such as database and user management, contact messages to the staff and support for organization of meetings and workshops. The webpages can be customized and the Wordpress integration supports the participating scientists in maintaining the documentation and the projects' news sections.

  8. Prioritizing Scientific Initiatives.

    ERIC Educational Resources Information Center

    Bahcall, John N.

    1991-01-01

    Discussed is the way in which a limited number of astronomy research initiatives were chosen and prioritized based on a consensus of members from the Astronomy and Astrophysics Survey Committee. A list of recommended equipment initiatives and estimated costs is provided. (KR)

  9. Astronomy Village: Innovative Uses of Planetary Astronomy Images and Data

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pompea, S. M.

    2008-06-01

    Teaching and learning science is best done by hands-on experience with real scientific data and real scientific problems. Getting such experiences into public and home-schooling classrooms is a challenge. Here we describe two award-winning multimedia products that embody one successful solution to the problem: Astronomy Village: Investigating the Universe, and Astronomy Village: Investigating the Solar System. Each Village provides a virtual environment for inquiry-based scientific exploration of ten planetary and astronomical problems such as ``Mission to Pluto'' and ``Search for a Supernova.'' Both Villages are standards-based and classroom tested. Investigating the Solar System is designed for middle and early high school students, while Investigating the Universe is at the high school and introductory college level. The objective of both Villages is to engage students in scientific inquiry by having them acquire, explore, and analyze real scientific data and images drawn from real scientific problems.

  10. Space based astronomy: Teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    Rosenberg, Carla B. (Editor); Weiler, Edward; Morrow, Cherilyn; Bacon, Pamela M.; Thorne, Muriel; Blanchard, Paul A.; Howard, Sethane; Pengra, Patricia R.; Brown, Deborah A.; Winrich, Ralph

    1994-01-01

    This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy - astronomical observations made from outer space. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. Instead, it tells the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. The guide begins with a survey of astronomy related NASA spacecraft. This is followed by a collection of activities in four units: (1) the atmospheric filter; (2) the electromagnetic spectrum; (3) collecting electromagnetic radiation; and (4) down to Earth. A curriculum index identifies the curriculum areas each activity addresses. The guide concludes with a glossary, reference list, a NASA Resources list, and an evaluation card. It is designed for students in grades 5 through 8.

  11. STS-Astro: Astronomy in focus of science, technology and society and analysis about the International Year of Astronomy 2009-Brazil

    NASA Astrophysics Data System (ADS)

    Ferreira, Orlando Rodrigues; Voelzke, Marcos Rincon

    2012-10-01

    This paper focuses on Science, Technology and Society around Astronomy an approach which authors call STS-Astro. It is considered that Astronomy is beyond the limits of Science itself, since it forwards to profound reflections on the own existence, predicated on the philosophical foundation of the Universe which is based on the anthropic principle. Subsequently, it discuss about the International Year of Astronomy 2009 in Brazil and their results. In 2003, Brazil, Italy and France sent a petition to the United Nations Educational, Scientific and Cultural Organization-UNESCO to consider 2009 as the International Year of Astronomy, on the occasion of 400 years of the first telescopic observations made in 1609 by Galileo Galilei (1568-1742). The International Year of Astronomy 2009 involved more than 148 countries and 815 million people, causing an unprecedented integration in the History between areas scientific, technological and humanities. Brazil had an outstanding performance, but even after a few years, numerous data in the country are still subject to studies and analyzes. The positive impacts on various sectors of the society have become permanent and aggregate actions in many institutions as schools, Universities, Observatories, Planetariums, Science Museums and the Astronomy Club, among others.

  12. Zooniverse - Real science online with more than a million people. (Invited)

    NASA Astrophysics Data System (ADS)

    Smith, A.; Lynn, S.; Lintott, C.; Whyte, L.; Borden, K. A.

    2013-12-01

    The Zooniverse (zooniverse.org) began in 2007 with the launch of Galaxy Zoo, a project in which more than 175,000 people provided shape analyses of more than 1 million galaxy images sourced from the Sloan Digital Sky Survey. These galaxy 'classifications', some 60 million in total, have since been used to produce more than 50 peer-reviewed publications based not only on the original research goals of the project but also because of serendipitous discoveries made by the volunteer community. Based upon the success of Galaxy Zoo the team have gone on to develop more than 25 web-based citizen science projects, all with a strong research focus in a range of subjects from astronomy to zoology where human-based analysis still exceeds that of machine intelligence. Over the past 6 years Zooniverse projects have collected more than 300 million data analyses from over 1 million volunteers providing fantastically rich datasets for not only the individuals working to produce research from their project but also the machine learning and computer vision research communities. This talk will focus on the core 'method' by which Zooniverse projects are developed and lessons learned by the Zooniverse team developing citizen science projects across a range of disciplines.

  13. Europe's Astronomy Teachers Meet at ESO

    NASA Astrophysics Data System (ADS)

    1994-12-01

    European Association for Astronomy Education Formed A joint EU/ESO Workshop (1) on the Teaching of Astronomy in Europe was held at the ESO Headquarters from November 25-30, 1994, under the auspices of the 1994 European Week for Scientific Culture. More than 100 teachers from secondary schools in 17 European countries participated together with representatives of national ministries and local authorities, as well as professional astronomers. This meeting was the first of its kind ever held and was very successful. As a most visible and immediate outcome, the participants agreed to form the "European Association for Astronomy Education (EAAE)", uniting astronomy educators all over Europe into one network. A provisional Executive Committee of the EAAE was elected which will work towards the organisation of a constitutional conference within the next year. The participants unanimously adopted a "Declaration on the Teaching of Astronomy in Europe", specifying the overall aims and initial actions needed to achieve them. Astronomy: Science, Technology and Culture At the beginning of the Workshop the participants listened to lectures by several specialists about some of the most active fields of astronomy. The scientific sessions included topics as diverse as minor bodies in the solar system, nucleosynthesis, interstellar chemistry and cosmology. Then followed overviews of various recent advances in astronomical technology, some of which are already having direct impact on highly specialized sectors of European industry. They included the advanced use of computers in astronomy, for instance within image processing and data archiving, as well as a demonstration of remote observing. Discussing the cultural aspects, Nigel Calder (UK) and Hubert Reeves (France) emphasized the important role of astronomy in modern society, in particular its continuing influence on our perceptions of mankind's unique location in time and space. Teaching of Astronomy in European Countries Following this broad introduction to the central themes of the Workshop, representatives of the individual countries presented the current status of astronomy teaching in their respective areas. This was the first time such an exchange of information has ever taken place at a European level, and the participants considered this extremely useful. There are clearly many different approaches to the teaching of astronomy, but it is rarely presented in a global and coherent way. Most often, disparate elements of astronomy are incorporated into other subjects, e.g., geography, mathematics, physics, chemistry, the geo-sciences, history and philosophy. Only a few countries have so far established well balanced astronomy courses at the secondary level of education. In some places, students may pass through school and only be exposed to the most rudimentary astronomical terms, or none at all. Nevertheless, these presentations also demonstrated that many changes are taking place in the school curricula in Europe. This opens certain possibilities for future improvements of the teaching of astronomy. According to several participating teachers, now is probably an ideal moment to consider how this basic and exciting subject may best be incorporated. Declaration on the Teaching of Astronomy in Europe After further detailed discussions within a number of ad-hoc Working Groups, the Workshop participants unanimously adopted the "Declaration" that is appended to this Press Release. According to the central statement of this basic document, "astronomy should contribute towards the consciousness that, in a complex society abounding in science and technology, a scientific education is essential for the choices that every citizen has to make in the democratic life. Moreover, students should feel that the Earth is a wonderful place in the Universe, and to be cared for and defended." The Declaration also emphasizes the need to establish an international network which will provide an efficient basis for the future cooperation within the teaching of astronomy in Europe. Another important point is the in-service education of teachers that is still lacking in many places. As an unfortunate consequence many teachers are unfamiliar with the more recent advances in astronomy and also unaware of the associated educational materials now available. Several of these were impressively demonstrated during the Workshop and a first, very useful exchange of materials and ideas took place among the participants. Yet another important subject concerns the wide spectrum of extra-curricular student activities that are possible in connection with astronomy. And last, but not least, the participants established as a desirable long-term goal the development of a unified European astronomy course, optimally incorporating the aims and ideals of astronomy teaching as outlined in this Declaration. The course "would illuminate astronomy as a human endeavour, with associated doubts and lack of answers, the interplay between experiment, observation and theory, the philosophy of science, the scientific method as well as the interaction between science, technology and society". The European Association for Astronomy Education (EAAE) At the end of the Workshop, the participants by unanimous decision resolved to set up the "European Association for Astronomy Education" which will from now on form the Europe-wide network for this subject and unite all astronomy teachers on this continent. A provisional Executive Committee was elected which will immediately start up a European Newsletter on Astronomy Teaching and also work towards the organisation of a constitutional conference within the next year. The Chairman is D.P. Simopoulos (2) (Athens, Greece) and the other members are L. Abati (Noventa Vicentina, Italy), A.M. Cohen (Bollington, UK), L. Gougenheim (Paris, France), J.G. More (Glenrothes, UK; Treasurer), M. Reichen (Lausanne, Switzerland; Editor of the EAAE Newsletter), R. Szostak (Munster, Germany; Secretary) and M. Winther (Sonderborg, Denmark). ESO has pledged to support the aims and ideals of the EAAE. Notes (1) See also ESO Press Release 15/94 of November 15, 1994. (2) For further information about the EAAE, please contact: Dr. D.P. Simopoulos, Eugenides Foundation, 387, Sygrou Avenue, P.O. Box 79103, Paleo Faliro, GR-17564 Athens, Greece. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  14. Escape the Black Hole of Lecturing: Put Collaborative Ranking Tasks on Your Event Horizon

    NASA Astrophysics Data System (ADS)

    Hudgins, D. W.; Prather, E. E.; Grayson, D. J.

    2005-05-01

    At the University of Arizona, we have been developing and testing a new type of introductory astronomy curriculum material called Ranking Tasks. Ranking Tasks are a form of conceptual exercise that presents students with four to six physical situations, usually by pictures or diagrams, and asks students to rank order the situations based on some resulting effect. Our study developed design guidelines for Ranking Tasks based on learning theory and classroom pilot studies. Our research questions were: Do in-class collaborative Ranking Task exercises result in student conceptual gains when used in conjunction with traditional lecture-based instruction? And are these gains sufficient to justify implementing them into the astronomy classroom? We conducted a single-group repeated measures experiment across eight core introductory astronomy topics with 250 students at the University of Arizona in the Fall of 2004. The study found that traditional lecture-based instruction alone produced statistically significant gains - raising test scores to 61% post-lecture from 32% on the pretest. While significant, we find these gains to be unsatisfactory from a teaching and learning perspective. The study data shows that adding a collaborative learning component to the class structured around Ranking Task exercises helped students achieve statistically significant gains - with post-Ranking Task scores over the eight astronomy topic rising to 77%. Interestingly, we found that the normalized gain from the Ranking Tasks was equal to the entire previous gain from traditional instruction. Further analysis of the data revealed that Ranking Tasks equally benefited both genders; they also equally benefited both high and low-scoring median groups based on their pretest scores. Based on these results, we conclude that adding collaborative Ranking Task exercises to traditional lecture-based instruction can significantly improve student conceptual understanding of core topics in astronomy.

  15. Astronomy Landscape in Africa

    NASA Astrophysics Data System (ADS)

    Nemaungani, Takalani

    2015-01-01

    The vision for astronomy in Africa is embedded in the African Space Policy of the African Union in early 2014. The vision is about positioning Africa as an emerging hub for astronomy sciences and facilities. Africa recognized the need to take advantage of its natural resource, the geographical advantage of the clear southern skies and pristine sites for astronomy. The Pan African University (PAU) initiative also presents an opportunity as a post-graduate training and research network of university nodes in five regions of Africa and supported by the African Union. The Southern African node based in South Africa concentrates on space sciences which also includes astronomy. The PAU aims to provide the opportunity for advanced graduate training and postgraduate research to high-performing African students. Objectives also include promoting mobility of students and teachers and harmonizing programs and degrees.A number of astronomy initiatives have burgeoned in the Southern African region and these include the Southern Africa Largest Optical Telescope (SALT), HESS (High Energy Stereoscopic System), the SKA (Square Kilometre Array) and the AVN (African Very Long Baseline Interferometer Network). There is a growing appetite for astronomy sciences in Africa. In East Africa, the astronomy community is well organized and is growing - the East African Astronomical society (EAAS) held its successful fourth annual conference since 2010 on 30 June to 04 July 2014 at the University of Rwanda. Centred around the 'Role of Astronomy in Socio-Economic Transformation,' this conference aimed at strengthening capacity building in Astronomy, Astrophysics and Space Science in general, while providing a forum for astronomers from the region to train young and upcoming scientists.

  16. Making Space for Specialized Astronomy Resources

    NASA Astrophysics Data System (ADS)

    MacMillan, D.

    2007-10-01

    With the growth of both free and subscription-based resources, articles on astronomy have never been easier to find. Locating the best and most current materials for any given search, however, now requires multiple tools and strategies dependent on the query. An analysis of the tools currently available shows that while astronomy is well-served by Google Scholar, Scopus and Inspec, its literature is best accessed through specialized resources such as ADS (Astrophysics Data System). While no surprise to astronomers, this has major implications for those of us who teach information literacy skills to astronomy students and work in academic settings where astronomy is just one of many subjects for which our non-specialist colleagues at the reference desk provide assistance. This paper will examine some of the implications of this analysis for library instruction, reference assistance and training, and library webpage development.

  17. The New Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as possible. A poor purchase choice and the hassle of setting up are why most fancy telescopes gather dust in their owners' dens. Summing Up: Highly recommended. General readers; lower- and upper-division undergraduates."( T. D. Oswalt, CHOICE, March 2005)

  18. Impact of Information and Communication Technology on Information Seeking Behavior of Users in Astronomy and Astrophysics Centers of India: A Survey

    NASA Astrophysics Data System (ADS)

    Sahu, H. K.; Singh, S. N.

    2010-10-01

    This study is based on a survey designed to determine the Information Seeking Behavior (ISB) of Astronomy and Astrophysics users in India. The main objective of the study is to determine the sources consulted and the general pattern of the information-gathering system of users and the impact of Information and Communication Technology (ICT) on the Astronomy and Astrophysics user's Information Seeking Behavior. It examines various Information and Communication Technology-based resources and methods of access and use. A descriptive sample stratified method has been used and data was collected using a questionnaire as the main tool. The response rate was 72%. Descriptive statistics were also employed and data have been presented in tables and graphs. The study is supported by earlier studies. It shows that Astronomy and Astrophysics users have developed a unique Information Seeking Behavior to carry out their education and research. The vast majority of respondents reported that more information is available from a variety of e-resources. Consequently, they are able to devote more time to seek out relevant information in the current Information and Communication Technology scenario. The study also indicates that respondents use a variety of information resources including e-resources for teaching and research. Books and online databases such as the NASA Astrophysics Data System (ADS) were considered more important as formal sources of information. E-mail and face-to-face communications are used extensively by users as informal sources of information. It also reveals that despite the presence of electronic sources, Astronomy and Astrophysics users are still using printed materials. This study should to help to improve various Information and Communication Technology-based services. It also suggests that GOI should adopt Information and Communication Technology-based Information Centers and Libraries services and recommends a network-based model for Astronomy and Astrophysics users.

  19. Initial Orbit Determination Based on Propagation of Admissible Regions with Differential Algebra

    DTIC Science & Technology

    2017-01-19

    Asteroid close encounter characterization using differential algebra: the case of aphophis. Celestial Mechanics and Dynamical Astronomy , 107(4), 2010...Mechanics and Dynamical Astronomy , 112 (3):331–352, 2012. ISSN 09232958. doi: 10.1007/s10569-012-9400-8. Roberto Armellin, Pierluigi Di Lizia, and Renato... Astronomy , 90(1-2):59–87, 2004. ISSN 09232958. doi: 10.1007/s10569-004-6593-5. 50 DISTRIBUTION A. Approved for public release: distribution unlimited

  20. HERO: a space based low frequency interferometric observatory for heliophysicsenabled by novel vector sensor technology

    DTIC Science & Technology

    2017-04-07

    considerations. Experimental Astronomy , 2015.304 Dicke, R. H. The Measurement of Thermal Radiation at Microwave Frequencies. Review305 of Scientific Instruments...17, 7, 268, 1946.306 12 M. Knapp et al. Ellingson, S. W. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy .307 IEEE Transactions on...Morris, M. Silver, S. Klein, and314 S. Seager. Vector antenna and maximum likelihood imaging for radio astronomy . In315 IEEE Aerospace Conference

  1. Astronomy Education with Movement and Music

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.

    2006-08-01

    This paper will address the development of two multi-sensory approaches to astronomy education: 1) Kinesthetic Astronomy - an innovative series of lessons for 6th grade through adult learners that teach basic astronomical concepts through choreographed bodily movements; and 2) AstroJazz - a novel planetarium or auditorium-based public education program that blends live jazz music with astronomical imagery and dramatic insights into the wonders of our universe. The paper will discuss results from field testing these approaches.

  2. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; de Angelis, A.; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-12-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  3. Motivational Differences between MOOC and Undergraduate Astronomy Students

    NASA Astrophysics Data System (ADS)

    Formanek, Martin; Wenger, Matthew; Buxner, Sanlyn; Impey, Chris David

    2018-01-01

    It is vital for the instructors and designers of the Massive Open Online Courses (MOOCs) to understand the motivation of its users for enrolling in the class and their reasons to engage with the material. This is particularly important for MOOCs focusing on scientific topics such as our MOOC on Astronomy (Astronomy: Exploring time and space) whose audience is less motivated by a desire to advance their careers compared to other MOOCs. In order to learn more about the motivation of our learners we deployed in our Astronomy MOOC a survey based on the Science Motivation Questionnaire II developed by Glynn et. al (2011). We specifically asked for reasons to sign up for the course and the overall motivation and attitude towards astronomy and science courses. We compare results of 3360 participants of this survey with a similar instrument administered to 638 students in undergraduate Astronomy classes for non Astronomy majors at the University of Arizona. Our comparison not only looks at the demographic differences, but also at reasons for signing up for the course and scores in motivational categories such as self-determination, self-efficacy, grade motivation, career motivation, hobby motivation, social motivation, and intrinsic motivation showing, that these populations of learners are fundamentally different.

  4. Future Professional Communication in Astronomy II

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto

    The present volume gathers together the talks presented at the second colloquium on the Future Professional Communication in Astronomy (FPCAII), held at the Harvard-Smithsonian Center for Astrophysics (Cambridge, MA) on 13-14 April 2010. This meeting provided a forum for editors, publishers, scientists, librarians and officers of learned societies to discuss the future of the field. The program included talks from leading researchers and practitioners and drew a crowd of approximately 50 attendees from 10 countries. These proceedings contain contributions from invited and contributed talks from leaders in the field, touching on a number of topics. Among them: The role of disciplinary repositories such as ADS and arXiv in astronomy and the physical sciences; Current status and future of Open Access Publishing models and their impact on astronomy and astrophysics publishing; Emerging trends in scientific article publishing: semantic annotations, multimedia content, links to data products hosted by astrophysics archives; Novel approaches to the evaluation of facilities and projects based on bibliometric indicators; Impact of Government mandates, Privacy laws, and Intellectual Property Rights on the evolving digital publishing environment in astronomy; Communicating astronomy to the public: the experience of the International Year of Astronomy 2009.

  5. High performance large infrared and visible astronomy arrays for low background applications: instruments performance data and future developments at Raytheon

    NASA Astrophysics Data System (ADS)

    Beuville, Eric; Acton, David; Corrales, Elizabeth; Drab, John; Levy, Alan; Merrill, Michael; Peralta, Richard; Ritchie, William

    2007-09-01

    Raytheon Vision Systems (RVS) has developed a family of high performance large format infrared detector arrays for astronomy and civil space applications. RVS offers unique off-the-shelf solutions to the astronomy community. This paper describes mega-pixel arrays, based on multiple detector materials, developed for astronomy and low-background applications. New focal plane arrays under development at RVS for the astronomy community will also be presented. Large Sensor Chip Assemblies (SCAs) using various detector materials like Si:PIN, HgCdTe, InSb, and Si:As IBC, covering a detection range from visible to large wavelength infrared (LWIR) have been demonstrated with an excellent quantum efficiency and very good uniformity. These focal plane arrays have been assembled using state-of-the-art low noise, low power, readout integrated circuits (ROIC) designed at RVS. Raytheon packaging capabilities address reliability, precision alignment and flatness requirements for both ground-based and space applications. Multiple SCAs can be packaged into even larger focal planes. The VISTA telescope, for example, contains sixteen 2k × 2k infrared focal plane arrays. RVS astronomical arrays are being deployed world-wide in ground-based and space-based applications. A summary of performance data for each of these array types from instruments in operation will be presented (VIRGO Array for large format SWIR, the ORION and VISTA Arrays, NEWFIRM and other solutions for MWIR spectral ranges).

  6. History of Astronomy in Portugal: Theories, Institutions and Practices

    NASA Astrophysics Data System (ADS)

    Saraiva, Luis

    2014-01-01

    In Portugal, throughout its history, astronomy was developed in the context of the mathematical sciences. During the times of Portugal's Maritime Discoveries, astronomical navigation was based on spherical trigonometry, and therefore it was the mathematicians who taught astronomy to the pilots. During the 17th century, basic notions of astronomy were taught in mathematical courses in the University and in the main Jesuit colleges. This tradition continued in the 18th century, so it is no wonder that one of the most influent Portuguese astronomers during this period was the mathematician José Monteiro da Rocha. During the 19th century the new centres of science teaching, as the Polytechnic School in Lisbon, or the Polytechnic Academy in Oporto, developed astronomy teaching and research in the context of the mathematics subjects. The inheritors of these 19th century institutions, respectively the Faculties of Sciences of Lisbon and Oporto, upheld this tradition until the final decades of 20th century and continued to consider astronomy as a subject to be taught in their mathematics departments. This Meeting aims at outlining several perspectives on the history of astronomy in Portugal, particularly analysing its ties with mathematical sciences and astronomy applications. The Meeting is organised by the Museum of Science of the University of Lisbon (MCUL) with CMAF, CMUC, CMUP and the CIUHCT, and is included in CIM events. It is integrated in the commemorations of the International Year of Astronomy (IYA2009).

  7. Attempts to bring the trained teachers in the schools of Nepal

    NASA Astrophysics Data System (ADS)

    Lamsal, Jeevan

    2016-07-01

    To develop space activities and to industrialize astronomy, base of space education in the high schools must be very effective. This paper highlights the present scenario of space education and discusses the syllabus of astronomy in the different education level of Nepal. Astronomy is included in the curriculum of science book of middle school and high school which contains very few contents of solar system, constellations, galaxy, black holes and formation of stars. There is no any degree for higher studies in astronomy as a separate department in any university of Nepal. This paper also highlights the space activities and national level programs conducting in Nepal to support astronomy education. With the rise of many astronomical clubs and societies in the different regions of Nepal, astronomy education has been more effective in the recent time. Series of Galileo Teacher's Training Program in the different parts of Nepal being organized by Global Hands on Universe in cooperation with local astronomy clubs will be discuss in brief. The attempts to bring more trained and skilled teachers in the classroom by the government and non-government agencies are now gradually increasing. The competition of private schools and their capacity building workshops to their teachers to attract more students is also playing active role to shape the school education effective. The challenges, prospects and the practice of effective astronomy education prevailing in Nepal will be discuss. Key Words: Nepal, Astronomy Education, GTTP, Trained Teachers

  8. Learning Physical Science through Astronomy Activities: A Comparison between Constructivist and Traditional Approaches in Grades 3-6

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Sadler, Philip M.; Shapiro, Irwin I.

    2008-01-01

    We report on an evaluation of the effectiveness of Project ARIES, an astronomy-based physical science curriculum for upper elementary and middle school children. ARIES students use innovative, simple, and affordable apparatus to carry out a wide range of indoor and outdoor hands-on, discovery-based activities. Student journals and comprehensive…

  9. Conceptual astronomy: A novel model for teaching postsecondary science courses

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  10. A Wide Spectrum of Solar Science for After School Astronomy Club

    NASA Technical Reports Server (NTRS)

    Mayo, Lou; Thieman, James R.

    2008-01-01

    After School Astronomy clubs are an important method of exposing students to astronomy at the critical middle school age when sparking an interest can inspire a lifelong career or hobby. We know that teachers complain that they can spend little time on astronomy in the classroom since they must teach to the test and the curriculum requirements do not have very extensive astronomy coverage. We also know that space is a very popular subject with students that can motivate them to join an after school club. One of the problems with after school astronomy clubs is that they don't often have a chance to observe the night sky. We propose to train club mentors on how to do daytime solar observing so students fulfill the IYA goal of looking through a telescope. We propose to provide a half day workshop for elementary and middle school teachers on starting and maintaining After School Astronomy clubs with special emphasis on observing the Sun not only in the visible spectrum but with radio waves and other parts of the spectrum as well. We will use NASA-oriented or NASA-funded educational materials and websites to bring a variety of ideas to the mentors and a broad knowledge of astronomy to the students. Attendees will be given an overview of the science of the Sun and how it can affect us on the Earth. They will be shown the dynamic nature of the Sun and what to look for to track the events happening there. The educators will be shown simple approaches to directly observing the Sun such as pinhole cameras, use of projection techniques with telescopes or binoculars, etc. They will be acquainted with sunspotter scopes and the advantages and disadvantages (such as expense) they pose for getting students involved. We will also point out the possibilities of using regular telescopes with solar filters and the specialized solar viewing telescopes such as the Coronado. Once the educators are comfortable with the simple approaches to viewing the Sun we will expose them to advanced topics such as remotely viewing the Sun using telescopes available on the web. Resources such as the Sun-Earth Viewer will allow them to study near real-time images of the Sun in multiple wavelengths. They will also be shown how they can monitor the Sun at radio wavelengths via remote telescopes or even how to purchase and build their own radio telescopes for hands-on monitoring of the Sun and other radio sources. We will conduct a brief evaluation of the participants knowledge of the Sun as they come into the workshop. We will also ask them to complete a brief knowledge survey at the end to determine if their knowledge and comfort level with solar science has improved significantly.

  11. Education and public engagement in observatory operations

    NASA Astrophysics Data System (ADS)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  12. The Astrophysics Source Code Library: Supporting software publication and citation

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Teuben, Peter

    2018-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net), established in 1999, is a free online registry for source codes used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. In addition to registering codes, the ASCL can house archive files for download and assign them DOIs. The ASCL advocations for software citation on par with article citation, participates in multidiscipinary events such as Force11, OpenCon, and the annual Workshop on Sustainable Software for Science, works with journal publishers, and organizes Special Sessions and Birds of a Feather meetings at national and international conferences such as Astronomical Data Analysis Software and Systems (ADASS), European Week of Astronomy and Space Science, and AAS meetings. In this presentation, I will discuss some of the challenges of gathering credit for publishing software and ideas and efforts from other disciplines that may be useful to astronomy.

  13. Information Literacy--Don't Search the WWW Without It!

    NASA Astrophysics Data System (ADS)

    Cromer, Donna E.

    2002-04-01

    Physics and astronomy information resources are proliferating at a rapid pace today. The ability to differentiate between the myriad of resources available and to learn to evaluate them is a necessary skill if students are to succeed in college and beyond. This is not a new problem, in fact, yet it has become more urgent with the proliferation of the World Wide Web and the ability of anyone to put up a webpage. Too often students pay little attention to the authority behind a website, and use whatever they find without questioning the source. It is important, then, to include information literacy skills in the curriculum. Physics and astronomy librarians are uniquely qualified to assist in developing these skills. Even better is cooperation and collaboration between the librarian and the teaching faculty. In practice, this works best when any sort of information seeking assignment, including a research paper, is required for a class. Information literacy is defined and discussed, and an outline of an instruction session that could be used in conjunction with a research paper assignment is given.

  14. Hands-On TAROT: Intercontinental Use of the TAROT for Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Boër, M.; Thiébaut, C.; Klotz, A.; Buchholtz, G.; Melchior, A.-L.; Pennypaker, C.; Isaac, M.; Ebisuzaki, T.

    The TAROT telescope has for primary goal the search for the prompt optical counterpart of cosmic Gamma-Ray Bursts. It is a completely autonomous 25cm telescope installed near Nice (France), able to point to any location of the sky within 1-2 seconds. The control, scheduling, and data processing activities are completely automated. In addition to its un-manned modes, we added recently the possibility to control the telescope remotely, as a request of the ``Hands-On Universe'' (HOU) program of using automatic telescopes for education and public outreach. To this purpose we developed a simple control interface. A webcam was installed to visualize the telescope. Access to the data is possible through a web interface. The images can be processed by the HOU software, a program specially suited for use within the classroom. We used these feature during the open days of the University of California Berkeley and the Astronomy Festival of Fleurance (France). We plan regular use for an astronomy course of the Museum of Tokyo, as well as for French schools. Not only does Hands-On TAROT gives the general public access to professional astronomy, it is also a more general tool to demonstrate the use of a complex automated system, the techniques of data processing and automation. Last but not least, through the use of telescopes located in many countries over the globe, a powerful and genuine cooperation between teachers and children from various countries is promoted, with a clear educational goal.

  15. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Architecture

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Yu, C.; Cui, C.; He, B.; Li, C.; Fan, D.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Zhang, H.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of this project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.

  16. Improving Science Literacy Though Engagement in Astronomy at the Astronomical Society of the Pacific

    NASA Astrophysics Data System (ADS)

    Manning, James; Gibbs, M.; Gurton, S.

    2009-01-01

    The Astronomical Society of the Pacific (ASP) increases the understanding and appreciation of astronomy by engaging scientists, educators, enthusiasts and the public to advance science and science literacy. The mission-based astronomy and space science education and public outreach programs provide hands-on resources for both formal and informal educators working with K-12 students and the general public. This poster both highlights the ASP's signature programs, such as Project ASTRO, the Night Sky Network, and Astronomy from the Ground Up, and provides updated information regarding the recent impact the programs are having throughout the United States. Information regarding the ASP can be located online at www.astrosociety.org.

  17. Skynet Junior Scholars- Sharing the Universe with Blind/Low Vision Youth

    NASA Astrophysics Data System (ADS)

    Hoette, Vivian L.; Kron, R. G.; Meredith, K.; Heatherly, S.; Williamson, K.; Gurton, S.; Reichart, D.; Haislip, J.

    2014-01-01

    Skynet Junior Scholars, a new project funded by the National Science Foundation, aims to engage middle school youth including youth with visual and hearing impairments, in investigating the universe with the same tools professionals use. Project deliverables include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project deliverables to the greatest extent possible given existing accessibility technologies. In this paper we describe our experience in field-testing SJS activities with 29 blind/low vision youth attending a Lion’s Club summer camp. From our observations and preliminary results from pre/post surveys and interviews, we learned that rather than creating a new interest in STEM for these youth, we were instead helping the students satisfy an interest that they already had in these subjects, with our techniques allowing a first direct experience in observational astronomy.

  18. The Cosmos Portal and the IYA2009 Project

    NASA Astrophysics Data System (ADS)

    Haisch, Bernard M.; Sims, M.; Lindblom, J.

    2009-05-01

    In 2007 the non-profit Digital Universe Foundation (DUF) launched the Earth Portal (earthportal.org) as a comprehensive resource for timely, objective, science-based information about the environment. There are currently over 1000 scholars from 60 countries engaged in this rapidly growing web-based collaboration. The Cosmos Portal is the second major DUF initiative (cosmosportal.org). In support of the IYA2009 effort, the Cosmos Portal is recruiting astronomy professionals to make use of easy online tools to publish articles, blogs, news items, image galleries, class notes, lectures, powerpoint presentations, links to other high quality websites or other educational material. A major difference between the Digital Universe and Wikipedia is that educational material is produced by identified experts, not anonymous contributors with unknown qualifications. The Digital Universe is a 501(c)(3) public charity whose goal is to evolve into a worldwide online community (a social network) whose centerpiece is an ever growing Asimov-Sagan Encyclopedia Galactica created by experts. We encourage you to write an encylopedia article or start a portal on your favorite topic or join an existing topic as an expert contributor.

  19. Skynet Junior Scholars- Sharing the Universe with Blind/Low Vision Youth

    NASA Astrophysics Data System (ADS)

    Meredith, Kate K.; Hoette, Vivian; Kron, Richard; Heatherly, Sue Ann; Williamson, Kathryn; Gurton, Suzanne; Haislip, Josh; Reichart, Dan

    2015-08-01

    Skynet Junior Scholars, a project funded by the National Science Foundation, aims to engage middle school youth including youth with visual and hearing impairments in investigating the universe with the same tools professionals use. Project deliverables include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project deliverables to the greatest extent possible given existing accessibility technologies. In this poster we describe our experience in field-testing SJS activities with 29 blind/low vision youth attending a Lion’s Club summer camp. From our observations and preliminary results from pre and post surveys and interviews, we learned that rather than creating a new interest in STEM, we were instead nourishing pre-existing interest giving students their first direct experience in observational astronomy. Additional accessibility features have been added to the SJS program since the initial pilot testing. Full testing is scheduled for July 2015.

  20. Social Representations of the Integrated High School Students about Astronomy

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose Isnaldo de Lima; Voelzke, Marcos Rincon

    2017-07-01

    Astronomy issues are not always adequately handled in the formal education system, as well as, their dissemination in the media is often loaded with sensationalism. However, in this context the students are forming their explanations about it. Therefore, this work has the objective of identifying the possible social representations of students from the Integrated High School on the inductor term Astronomy. It is basically a descriptive research, therefore, a quali-qualitative approach was adopted. The procedures for obtaining the data occurred in the form of a survey, and they involved 653 subjects students from the Integrated High School. The results indicate that the surveyed students have social representations of the object Astronomy, which are based on elements from the formal education space, and also disclosed in the media. In addition, they demonstrate that the students have information about Astronomy, and a value judgment in relation to this science.

  1. Jaasc Cooperation League for Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun-Ichi; JAASC Committee

    The JAASC Japanese Astronomy Aeronautical Science Space Science cooperation league has been established in 2000 among the related institutes for education and public outreach. The participating institutes are National Astronomical Observatory of Japan Institute of Space and Astronautical Science National Space Development Agency of Japan National Aerospace Laboratory of Japan Young Astronomers Club Japan Science and Technology Corporation and Japan Space Forum. These institutes started several joint efforts such as making web site for beginners in general public or educational materials for junior high school. This is a challenging trial for Japanese institutes to cooperate beyond the barrier of the

  2. Changes in the ''Urania - Postepy Astronomii'' astronomical magazine

    NASA Astrophysics Data System (ADS)

    Czart, Krzysztof; Mikołajewski, Maciej

    2014-12-01

    ''Urania - Postepy Astronomii'' is one of the oldest popular science magazines about astronomy in the world. During 2012-2013 it undergone revolutionary changes into a modern magazine suitable for 21st century market of popular science press, at the same time maintaining a high level of popularization. The main changes included: diversity of content, full colour for all pages, changing website into modern internet portal, using social media, ambitious project of a digital archive of all issues from 1922 to 2011, web store to provide easier access for everyone, and projects aimed at schools and school libraries.

  3. Music and Astronomy Under the Stars

    NASA Astrophysics Data System (ADS)

    Lubowich, D.

    2008-11-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a public astronomy outreach program at community parks during and after free summer music concerts and outdoor movie nights. This project also includes daytime activities because there are some afternoon concerts and daylight children's concerts, and observations using remotely operated telescopes in cloudy weather. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience---music lovers who are attending free summer concerts held in community parks. The music lovers who may never have visited a science museum, planetarium, or star party will be exposed to telescope observations and astronomy information with no additional travel costs. This program will permit the entire community to participate in telescope observations and view astronomical video information to enhance the public appreciation of astronomy. This program will also reach underrepresented and underserved groups (women, minorities, older adults). The population base for the initial target audience (Nassau and Suffolk Counties, New York) is 2,500,000. My partners are the Amateur Observers' Society of New York (AOS) and the Towns of Oyster Bay, Hempstead, North Hempstead, and Huntington. Music and Astronomy Under the Stars is program that should continue beyond the International Year of Astronomy 2009 (IYA2009) and can be expanded into a national program.

  4. Ancient Chinese Astronomy - An Overview

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    Documentary and archaeological evidence testifies the early origin and continuous development of ancient Chinese astronomy to meet both the ideological and practical needs of a society largely based on agriculture. There was a long period when the beginning of the year, month, and season was determined by direct observation of celestial phenomena, including their alignments with respect to the local skyline. As the need for more exact study arose, new instruments for more exact observation were invented and the system of calendrical astronomy became entirely mathematized.

  5. Handling Qualities Flight Testing of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Technical Reports Server (NTRS)

    Glaser, Scott T.; Strovers, Brian K.

    2011-01-01

    Airborne infrared astronomy has a long successful history, albeit relatively unknown outside of the astronomy community. A major problem with ground based infrared astronomy is the absorption and scatter of infrared energy by water in the atmosphere. Observing the universe from above 40,000 ft puts the observation platform above 99% of the water vapor in the atmosphere, thereby addressing this problem at a fraction of the cost of space based systems. The Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft is the most ambitious foray into the field of airborne infrared astronomy in history. Using a 747SP (The Boeing Company, Chicago, Illinois) aircraft modified with a 2.5m telescope located in the aft section of the fuselage, the SOFIA endeavors to provide views of the universe never before possible and at a fraction of the cost of space based systems. The modification to the airplane includes moveable doors and aperture that expose the telescope assembly. The telescope assembly is aimed and stabilized using a multitude of on board systems. This modification has the potential to cause aerodynamic anomalies that could induce undesired forces either at the cavity itself or indirectly due to interference with the empennage, both of which could cause handling qualities issues. As a result, an extensive analysis and flight test program was conducted from December 2009 through March 2011. Several methods, including a Lower Order Equivalent Systems analysis and pilot assessment, were used to ascertain the effects of the modification. The SOFIA modification was found to cause no adverse handling qualities effects and the aircraft was cleared for operational use. This paper discusses the history and modification to the aircraft, development of test procedures and analysis, results of testing and analysis, lessons learned for future projects and justification for operational certification.

  6. A Grand Vision for European Astronomy

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Today, and for the first time, astronomers share their global Science Vision for European Astronomy in the next two decades. This two-year long effort by the ASTRONET network of funding agencies, sponsored by the European Commission and coordinated by INSU-CNRS, underscores Europe's ascension to world leadership in astronomy and its will to maintain that position. It will be followed in just over a year by a prioritised roadmap for the observational facilities needed to implement the Vision. Implementation of these plans will ensure that Europe fully contributes to Mankind's ever deeper understanding of the wonders of our Universe. astronet logo "This is a great opportunity to help create a vibrant long-term future for astronomy and science" says Tim de Zeeuw (Leiden Observatory, The Netherlands) who led this community-wide effort. The ASTRONET Science Vision provides a comprehensive overview of the most important scientific questions that European astronomy should address in the next twenty years. The four key questions are the extremes of the Universe, from the nature of the dark matter and dark energy that comprise over 95% of the Universe to the physics of extreme objects such as black holes, neutron stars, and gamma-ray bursts; the formation of galaxies from the first seeds to our Milky Way; the formation of stars and planets and the origin of life; and the crucial question of how do we (and our Solar System) fit in the global picture. These themes reach well beyond the realm of traditional astronomy into the frontiers of physics and biology. The Vision identifies the major new facilities that will be needed to achieve these goals, but also stresses the need for parallel developments in theory and numerical simulations, high-performance computing resources, efficient astronomical data archiving and the European Virtual Observatory, as well as in laboratory astrophysics. "This report is a key input for the even more challenging task of developing a prioritised, community-based Infrastructure Roadmap, crucial to keep Europe at the forefront of astronomical research," says de Zeeuw. ESO PR Photo 44a/07 European astronomy today is fully competitive on the global scene and is at the forefront in many domains with such breakthroughs as the first detection of a planet around a sun-like star, the successful landing on Titan, the proof that a massive black hole exists in the centre of our own Galaxy, the discovery of gravitational arcs around galaxy clusters, and the proof that most Gamma Ray Bursts are caused by huge exploding stars. The rise of European astronomy to this top position by the end of last century has been achieved through extensive cooperation and coordination of efforts, in particular through ESO for optical astronomy and ESA for space astronomy. To strengthen this position and to extend it to all branches of astronomy and all nations of the new Europe, a group of European funding agencies set up the ASTRONET programme with the goal to establish a comprehensive long-term development plan of European astronomy. ASTRONET therefore covers all astrophysical domains from cosmology to the Solar system, and every observing window, from space and from the ground, and from electromagnetic radiation to particles and gravitational waves. It addresses the whole astronomical 'food chain' from infrastructure and technology development to observation, data access, modelling and theory, and the human resources needed to make it all work. This effort is quite similar in scope to the 'decadal surveys' conducted in the USA over the last half-century, but unlike its American counterpart, ASTRONET was set up directly by the national funding agencies, with strong support from the European Commission. "A shared long-term Science Vision for European astronomy is the fundamental first step in the process, soon to be followed by a detailed infrastructure and technology development roadmap," says Johannes Andersen (NOTSA, Denmark), the ASTRONET Board Chair. "Both will be updated regularly as scientific and/or technological breakthroughs materialize." The first stepping stone is the Science Vision document released today. This is the result of intense work by thematic panels drawn from the community, with detailed mid-term feedback from the community at large through a web forum and an open Symposium that took place earlier this year in Poitiers, France, and in which 228 scientists from 31 countries participated. Preparation of the detailed Infrastructure Roadmap has already begun. Getting the community to agree on a common set of priorities, hard choices, and delicate balances will be a tough task, but, adds de Zeeuw, "If we don't hang together, we will surely hang separately!" Some background information on the ASTRONET Science Vision is also available. The ASTRONET Science Vision is available in PDF format in either low (17 MB) or normal (47 MB) resolution.

  7. Astronomy in New Zealand

    NASA Astrophysics Data System (ADS)

    Hearnshaw, John B.

    2006-01-01

    Although New Zealand is a young country, astronomy played a significant role in its early exploration and discovery during the three voyages of Cook from 1769. In the later 19th century several expeditions came to New Zealand to observe the transits of Venus of 1874 and 1882 and New Zealand's rich history of prominent amateur astronomers dates from this time. The Royal Astronomical Society of New Zealand (founded in 1920) has catered for the amateur community. Professional astronomy however had a slow start in New Zealand. The Carter Observatory was founded in 1941. But it was not until astronomy was taken up by New Zealand's universities, notably by the University of Canterbury from 1963, that a firm basis for research in astronomy and astrophysics was established. Mt John University Observatory with its four optical telescopes (largest 1.8 m) is operated by the University of Canterbury and is the main base for observational astronomy in the country. However four other New Zealand universities also have an interest in astronomical research at the present time. There is also considerable involvement in large international projects such as MOA, SALT, AMOR, IceCube and possibly SKA.

  8. The Effect of Technological Pedagogical Content Knowledge Based Training Programs Used in Astronomy Classes on the Success Levels of Science Teacher Candidates

    ERIC Educational Resources Information Center

    Sensoy, Onder; Yildirim, Halil Ibrahim

    2018-01-01

    The aim of this study is to examine the impact of the Technological Pedagogical Content Knowledge (TPCK) based educational practices in astronomy lectures on prospective science teachers' success levels. The study was conducted on 4th-grade prospective science teachers of a public university and lasted for 14 weeks. In the study,…

  9. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Actis, M

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTAmore » is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.« less

  10. Construction of the iSTAR international Study of Astronomical Reasoning Database

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Tatge, C. B.; Slater, T. F.; Bretones, P. S.; Schleigh, S.

    2016-12-01

    Perhaps more than any other science discipline-based education research field, the scholarly literature base describing and documenting astronomy education research is highly fragmented and widely dispersed across numerous journals. The resulting wide diversity of journals that publish astronomy education research presents an arduous challenge for scholars trying to best understand what work has been done and what work still needs to be done. Moreover, a vast amount of education research on the teaching and learning of astronomy exists in dissertations that were never published and even more exists in the realm of un-disseminated grey literature hosted in conference proceedings and society newsletters going back decades. With a few notable exceptions far less extensive than the current project, there has been no comprehensive repository for cataloging astronomy education research methods and results to date. In response, an international cadre of scholars coordinated by the CAPER Center for Astronomy & Physics Education Research are creating the underlying structure for an online database in order to conduct an international Study of Astronomy Reasoning, iSTAR, project. The online iSTAR database serves as an online host to bring together in one place digital copies of hard to locate journal articles, isolated dissertations and theses, and professional meeting contributions to extend the world's scholars abilities to more easily find and utilize a far broader collection of astronomy education research literature than has been previously available. Works are categorized by research method, nature of study-participants, educational learning venue studied, country and language of the study, and other fruitfully useful categories. Scholars wishing to add their own literature resources are encouraged to contribute to the online database located at istardatabase.org

  11. Test Of Astronomy STandards TOAST Survey of K-12 Teachers

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Slater, Stephanie; Stork, Debra J.

    2015-01-01

    Discipline-based education research in astronomy is focused on understanding the underlying mental mechanisms used by students when learning astronomy and teachers when teaching astronomy. Systematic surveys of K-12 teacher' knowledge in the domain of astronomy are conducted periodically in order to better focus and improve professional development. These surveys are most often done when doing contemporary needs assessments or when new assessment instruments are readily available. Designed by Stephanie J. Slater of the CAPER Center for Astronomy & Physics Education Research, the 29-item multiple-choice format Test Of Astronomy STandards - TOAST is a carefully constructed, criterion-referenced instrument constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. The targeted learning concepts tightly align with the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's 1996 National Science Education Standards. Without modification, the TOAST is also aligned with the significantly less ambitious 2013 Next Generation Science Standards created by Achieve, Inc., under the auspices of the National Research Council. This latest survey reveals that K-12 teachers still hold many of the same fundamental misconceptions uncovered by earlier surveys. This includes misconceptions about the size, scale, and structure of the cosmos as well as misconceptions about the nature of physical processes at work in astronomy. This suggests that professional development in astronomy is still needed and that modern curriculum materials are best served if they provide substantial support for implementation.

  12. Use of the AAVSO's International Variable Star Index (VSX) in an Undergraduate Astronomy Course Capstone Project

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2017-06-01

    The author discusses a capstone project that utilizes the AAVSO's International Variable Star Index (VSX), ASAS light curves and phase plots, and the SIMBAD astronomical data repository in a laboratory-based undergraduate Stellar and Galactic Astronomy course.

  13. “Workshop Astronomy” at Dickinson College

    NASA Astrophysics Data System (ADS)

    Morgan, Windsor A., Jr.

    2006-12-01

    Dickinson College, a 2400-student liberal arts college in Carlisle, Pennsylvania, is recognized for the development of Workshop Physics. This innovative, calculus-based introductory course combines physics lectures and laboratories with integrated hands-on, small-group sessions. It allows students to do experiments, so that they will make their own observations and, with the guidance of the professor discover the principles of physics themselves. Since spring 2006, I have been developing an introductory solar-system astronomy course in the “Workshop” format at Dickinson. Students participate in discussions with their classmates and investigate astronomical concepts with computer simulations and guided inquiry. I emphasize “practical” astronomy (such as lunar phases, sky motions, and seasons) and physics concepts (such as density and Doppler shift); thus, my students become familiar with the basics of astronomy before developing a better understanding of the solar system. In my paper, I will discuss class activities and will evaluate their efficacy based on a comparison with traditionally-taught astronomy courses.

  14. Innovative technology for optical and infrared astronomy

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin R.; Evans, Christopher J.; Molster, Frank; Kendrew, Sarah; Kenworthy, Matthew A.; Snik, Frans

    2012-09-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  15. A small Internet controllable observatory for research and education at the University of North Dakota

    NASA Astrophysics Data System (ADS)

    Hardersen, P. S.; de Silva, S.; Reddy, V.; Cui, P.; Kumar, S.; Gaffey, M. J.

    2006-06-01

    One of the challenges in astronomy education today is to introduce college students to the real-world practice and science of observational astronomy. Along with a good theoretical background, college students can gain an earlier, deeper understanding of the astronomy profession through direct observational and data reduction experience. However, building and managing a modest observatory is still too costly for many colleges and universities. Fortunately, advances in commercial astronomical hardware and software now allow universities to build and operate small Internet controllable observatories for a modest investment. The advantages of an Internet observatory include: 1) remote operation from a comfortable location, 2) immediate data access, 3) telescope control via a web browser, and 4) allowing both on-campus and distance education students the ability to conduct a variety of observing projects. Internet capabilities vastly expand the number of students who will be able to use the observatory, thus exposing them to astronomy as a science and as a potential career. In September 2005, the University of North Dakota (UND) Department of Space Studies began operating a small, recently renovated Internet controllable observatory. Housed within a roll-off roof 10 miles west of UND, the observatory includes a Meade 16-inch, f/10 Schmidt-Cassegrain telescope, an SBIG STL-6303e CCD with broadband filters, ACP observatory control software, focuser, and associated equipment. The observatory cost \\25,000 to build in 1996; 2005 renovation costs total \\28,000. An observatory operator prepares the telescope for use each night. Through remote operation, the roof is opened and the telescope/CCD power is turned on. The telescope is then aligned and focused before allowing students to access the observatory. Students communicate with the observatory operator via an online chat room and via telephone, if necessary, to answer questions and resolve any problems. Additional observatory enhancements are planned for installation and testing in 2006.

  16. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  17. The Next Information Revolution in Astronomy

    NASA Astrophysics Data System (ADS)

    Kennicutt, R. C.

    2006-08-01

    The information revolution has truly revolutionized our profession, through such innovations as the astronomical data centres, electronic journals and preprint servers, and bibliographic interfaces that link these resources through instantaneous and freely available web interfaces. For most of us the effects of these innovations have been profound, changing forever the way we access the research literature, disseminate results to our colleagues, and even in the ways we carry out our research and write papers. Astronomy's efforts in this area have attracted the attention and admiration of other scientific professions as well as the information technology community. We now stand at the threshold of a second revolution, in which enormous and rich collections of astronomical observations, models, software, and tools will be accessible through a common Virtual Observatory interface. The next logical step beyond that is an integration of these VO resources with the web of astronomical literature, to provide mechanisms for quality certification of those resources, and to provide a seamless mechanism by which authors can make the results of their research available to other scientists in their most useful form. If this is done successfully its impacts on the way we conduct and disseminate our research may be as profound as those of the past decade. However this success will require cooperative approaches to information archiving and publication involving the data centres, journals, and library communities, and which incorporate or at least emulate the features of curation, provenance, quality assurance, and intellectual property protections that underlie the traditional publishing system. This talk will highlight some of the efforts being made in the VO and journal communities to make this vision a reality, and identify some of the key challenges that remain.

  18. Design of the iSTAR International STudy on Astronomy Reasoning

    NASA Astrophysics Data System (ADS)

    Tatge, Coty B.; Slater, Stephanie J.

    2015-01-01

    Beginning in 2013, a small international collaborative of discipline-based astronomy education researchers began to build the foundation to start the International STudy on Astronomy Reasoning Project, known simply as iSTAR. The project was a direct result of the inability of existing large international investigations into the learning of science, such as the TIMSS and PISA studies, to provide actionable intelligence on either strengths or weaknesses of astronomy teaching across the world. This is not because those studies were flawed; rather, they focused on the general characteristics of teaching and learning across all sciences. Prior to the iSTAR effort, there has been no systematic effort to measure individual's conceptual astronomy understanding across the globe. The goal of studying a widely dispersed international sample is to identify cultural subpopulations that do not conform to our existing knowledge of student misconceptions, highlighting unexpected cultural or educational practices that hint at alternative, and perhaps more effective, means of instruction. As a first step, we are carefully translating the Test Of Astronomy STandards - TOAST multiple-choice assessment instrument and carefully attending to nuances that occur during the translation process as cultural clues to differences in the teaching and learning of astronomy. We are actively welcoming and seeking international partners in this work through the CAPERteam.com website and at https://www.surveymonkey.com/s/iSTAR-Registration . This project is sponsored and managed by the CAPER Center for Astronomy & Physics Education Research in collaboration with members of the International Astronomical Union-Commission 46.

  19. Investigating introductory astronomy students' perceived impacts from participation in course-based undergraduate research experiences

    NASA Astrophysics Data System (ADS)

    Wooten, Michelle M.; Coble, Kim; Puckett, Andrew W.; Rector, Travis

    2018-06-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] This study investigates students' perceived impacts regarding their participation in course-based undergraduate research experiences (CUREs) in astronomy. Each research experience adopted one or more projects from the Research Based Science Education for Undergraduates (RBSEU) curriculum, which teaches analysis of astronomical data coming from various national observatories. Participating students were enrolled in introductory astronomy courses at one of four universities using the curriculum. They were invited to respond to several instruments, including surveys (N =199 ), essays (N =94 ), and interviews (N =19 ). Each university implemented the curriculum differently with respect to content covered, length of instruction, and whether students' research results were contributed to the astronomical community. We found that participation in all versions of the curriculum had the potential to significantly increase students' perceived confidence participating in science. However, participation in experiences wherein results were contributed to the scientific community more often led to students' nuanced perceptions of science processes, including increased understanding of the role of analysis and the utility of scientific communities and collaborations. We frame our study according to a pathway model under study by discipline-based education researchers of CUREs and explore our findings' connections with psychological theories.

  20. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  1. The Advanced Labs Website: resources for upper-level laboratories

    NASA Astrophysics Data System (ADS)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  2. Determine the Sun's Rotation Period using D.I.Y Sunspotter and Smartphone

    NASA Astrophysics Data System (ADS)

    Lim, JongHo; Lim, Jihey; Sohn, Jungjoo; Jo, Hoon

    2016-04-01

    This is an astronomy education program for rotation period of the Sun using a sunspotter of one's own making made by the easy manageable materials and generic smart phone as a detector. Students had immediate chances to understand the principle of the telescope and optical system. Tries to make better product appears during making it. For example, they reduced the number of reflectors to decrease loss of light and changed outer shape of it to make easy for storage. D.I.Y. sunspotter is free to adjust to altazimuth mount and marked the azimuth and altitude to determine viewing direction. The images taken with smartphones were processed by using Pixlr/editor(free web-based image processing program). Rotation period of sun was calculated by using the basic formula. In addition, its accuracy was confirmed by comparison result from the SOHO satellite data. Learning by manufacturing the sunspotter is increased to understanding the principles of solar observation and to concentrate on the project following the scientist's practical study.

  3. New Concepts for Far-Infrared and Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J. (Editor); Leisawitz, David T. (Editor)

    2004-01-01

    The Second Workshop on New Concepts for Far-Infrared and Submillimeter Space Astronomy aimed to highlight the groundbreaking opportunities available for astronomical investigations in the far-infrared to submillimeter using advanced, space-based telescopes. Held at the University of Maryland on March 7-8, 2002, the Workshop was attended by 130 participants from 50 institutions, and represented scientists and engineers from many countries and with a wide variety of experience. The technical content featured 17 invited talks and 44 contributed posters, complemented by two sixperson panels to address questions of astronomy and technology.

  4. Use of the AAVSO's International Variable Star Index (VSX) in an Undergraduate Astronomy Course Capstone Project (Abstract)

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2017-12-01

    (Abstract only) The author discusses a capstone project that utilizes the AAVSO's International Variable Star Index (VSX), ASAS light curves and phase plots, and the SIMBAD astronomical data repository in a laboratory-based undergraduate Stellar and Galactic Astronomy course.

  5. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    ERIC Educational Resources Information Center

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-01-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…

  6. Discovering the Cosmos

    NASA Astrophysics Data System (ADS)

    Bless, R. C.

    Based on the very popular liberal arts course Bob Bless has taught at University of Wisconsin for over twenty years, this book provides a rich, historical approach to introductory astronomy. It is ideal for use in an introductory astronomy course for nonmajors. An Instructor's Manual, test questions and transparencies are also available for adopting professors.

  7. Addressing Children's Alternative Frameworks of the Moon's Phases and Eclipses.

    ERIC Educational Resources Information Center

    Barnett, Michael; Morran, Judy

    2002-01-01

    Analyzes a project-based space science curriculum designed to support elementary school students in understanding complex, inter-related astronomy concepts. Uses pre- and post-interviews, examines student work, and has students complete a pre- and post-astronomy conceptual survey to assess conceptual change. Points out that instruction should…

  8. Computing and data processing

    NASA Technical Reports Server (NTRS)

    Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.

    1991-01-01

    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.

  9. The Georgians Experience Astronomy Research in Schools (GEARS) High School Galaxy Unit

    NASA Astrophysics Data System (ADS)

    Higdon, Sarah; Higdon, J.; Aguilar, J.

    2012-01-01

    The Georgians Experience Astronomy Research in Schools (GEARS) project aims to provide a rigorous and inquiry-based astronomy curriculum to GA's public schools. Exposure to data mining and research activities using the astronomy archives can be the trigger for the next generation of scientists, and it improves a student's ability to solve problems. Students then consolidate their findings and improve their communication skills by writing scientific reports and creating video presentations. The GEARS curriculum has units on the solar system, life in the Universe, stars, galaxies and cosmology. Here we present some of the activities in the Galaxy Unit. The GEARS material is freely available. Please email shigdon_AT_georgiasouthern.edu if you would like more details. NASA Grant NNX09AH83A through the GADOE funds this project.

  10. Mobile applications and Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Jagade, S.

    2015-06-01

    Within a few years, smartphones and Internet tablets have become the devices to access Web or standalone applications from everywhere, with a rapid development of the bandwidth of the mobile networks (e.g. 4G). Internet tablets are used to take notes during meetings or conferences, to read scientific papers in public transportation, etc. A smartphone is for example a way to have your data in the pocket or to control, from everywhere, the progress of a heavy workflow process. These mobile devices have enough powerful hardware to run more and more complex applications for many use cases. In the field of astronomy it is possible to use these tools to access data via a simple browser, but also to develop native applications reusing libraries (written in Java for Android or Objective-C/Swift for iOS) developed for desktops/laptops. We describe the experiments conducted in this domain, at CDS and IUCAA, considering a mobile application as a native application as well as a Web application.

  11. Interactions and Interventions: Current Research on Improving Informal Astronomy Education via the Astronomical Society of the Pacific (ASP)

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Gurton, S.; Hurst, A.; Berendsen, M.; Storksdieck, M.; Haley-Goldman, K.; Stein, J.; Pompea, S.; Garmany, C.; Sparks, R.; Pollock, W.

    2007-12-01

    In building national capacity for better informal astronomy education and public outreach (EPO), what sorts of professional development interactions are most effective in what situations--and what interventions for improvement can be effectively applied? Building on previous experience, the ASP, in conjunction with its partners, is conducting two National Science Foundation (NSF) funded projects investigating astronomy teaching and learning in informal contexts to explore these questions in both museum-based and amateur astronomy club settings. "Astronomy from the Ground Up" (AfGU) develops capacity for hands-on astronomy education in small and medium-sized science centers and nature centers through on-site and online professional development workshops and the establishment of a "community of practice" network. The ASP, in collaboration with the National Optical Astronomy Observatory (NOAO) and the Association of Science and Technology Centers (ASTC), is investigating which model--face-to-face or online professional development--works best and will be sustainable for that target group. "Sharing the Universe" (STU) builds on the Night Sky Network in which amateur astronomy clubs, through the ASP with financial and logistical support from NASA and its missions, are provided tools and training to conduct EPO activities with their public audiences. The ASP, in collaboration with the Institute for Learning Innovation (ILI), launched a national survey in late 2007 to investigate the factors that either support or discourage sustained amateur astronomer EPO efforts, followed by an in-depth study of a subset of both successful and struggling clubs, and leading to the development of interventions that support amateur astronomy outreach within the context of a nurturing club environment. The presentation will offer some early and initial results of the AfGU project--which reveal some interesting and unforeseen advantages of the online model over the on-site model--and some insights into the STU national survey of astronomy clubs as this project gets underway.

  12. International VLBI Service for Geodesy and Astronomy

    NASA Technical Reports Server (NTRS)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2004-01-01

    This volume of reports is the 2003 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2003 Annual Report documents the work of the IVS components for the calendar year 2003, our fifih year of existence. The reports describe changes, activities, and progress of the IVS. Many thanks to all IVS components who contributed to this Annual Report. The entire contents of this Annual Report also appear on the IVS web site at http://ivscc.gsfc.nasa.gov/publications/ar2OO3

  13. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  14. A classroom activity and laboratory on astronomical scale

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael

    2017-10-01

    The four basics "scales" at which astronomy is studied, that of (1) the Earth-Moon system, (2) the solar system, (3) the galaxy, and (4) the universe (Fig. 1), are a common place to start an intro astronomy course. In fact, courses and textbooks are often divided into approximately four sections based on these scales.

  15. Activity Based Astronomy for Primary Science Programs.

    ERIC Educational Resources Information Center

    Ginns, Ian

    Print materials in astronomy such as books, journals, charts, and posters are typically the sources of information for teachers and children about the moon, the sun, lunar and solar eclipses, planetary sizes, distances of planets from the sun, planetary atmospheres, and so on. This paper describes and analyzes a number of activities designed to…

  16. To Hear Ourselves as Others Hear Us

    ERIC Educational Resources Information Center

    Lippert, Nathaniel; Partridge, Bruce

    2004-01-01

    The American Astronomical Society has recently developed an ambitious set of goals for introductory astronomy courses. How well does an introductory astronomy course based firmly on these goals actually do? In this article, an education student enrolled in such a class and the professor who taught it present an unvarnished analysis of one course…

  17. How Create an Astronomy Outreach Program to Bring Astronomy to Thousands of People at Outdoor Concerts Astronomy Festivals, or Tourist Sites

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald

    2015-08-01

    I describe how to create an astronomy program for thousands of people at outdoor concerts based on my $308,000 NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013), and the Astronomy Festival on the National Mall (AFNM, 10,000 people/yr).MAUS reached 50,000 music lovers at local parks and at the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. AFNM was started in 2010 with co-sponsorship by the White House Office of Science and Technology Policy. MAUS and AFMN combine solar, optical, and radio telescope observations; large posters/banners; hands-on activities, imaging with a cell phone mount; citizen science activities; hand-outs; and teacher info packet. Representatives from scientific institutions participated. Tyco Brahe, Johannes Kepler, and Caroline Herschel made guest appearances.MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience-often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn more; and increased their interest in science (ave. rating 3.6/4). MAUS is effective in promoting science education!Lessons learned: plan early; create partnerships with parks, concert organizers, and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use social media/www sites to promote the events; use many telescopes for multiple targets; project a live image or video; select equipment that is easy to use, store, set-up, and take down; use hands-on astronomy activities; position the displays for maximum visibility (they are teachable moments); have educator hand-outs, show citizen science projects, promote astronomy clubs and science museums.

  18. Overview of diffraction gratings technologies for spaceflight satellites and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cotel, A.; Liard, A.; Desserouer, F.; Pichon, P.

    2017-11-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, high-groove density holographic toroidal and spherical grating, and finally transmission Fused Silica Etched (FSE) grism-assembled grating. We will not present the Volume Phase Holographic (VPHG) grating type which is used in Astronomy.

  19. Design and Implement of Astronomical Cloud Computing Environment In China-VO

    NASA Astrophysics Data System (ADS)

    Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu

    2017-06-01

    Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.

  20. The Inwood Astronomy Project: Ready for IYA 2009

    NASA Astrophysics Data System (ADS)

    Shilling Kendall, Jason

    2009-01-01

    The Inwood Astronomy Project begins its mission of "100 Nights of Astronomy", an outreach program for the IYA 2009 in New York City. While the city lights may at first glance be a major deterrent to amateur and educational night-sky viewing, the author describes numerous community-based initiatives designed to fit into a racially and ethnically diverse neighborhood of Northern Manhattan and the Bronx, which all give a deeper understanding and appreciation of and for the night sky. The author presents ways for professional astronomers to use their light-polluted cities and towns for the same purpose.

  1. IYA 2009 in Second Life

    NASA Astrophysics Data System (ADS)

    Gauthier, Adrienne J.; Gay, P. L.; New Media Working Group

    2008-05-01

    The New Media Group is working to create an IYA 2009 presence in the 3-dimensional multi-user virtual world called Second Life (SL). Current installations, development plans, and collaboration initiatives will be discussed. The first wave of development will bring real-life (RL) IYA 2009 events and exhibits to the residents of Second Life. Informational kiosks with IYA 2009 freebie avatar clothing will be placed in a variety of science-related places and other high traffic locations in SL. The IYA 2009 cornerstone project "From Earth to the Universe” is planned to be a portable exhibit in SL that can reside in temporary locations and be unveiled for special events. Interactive exhibits for "Years of Astronomy Timeline", "Galileo's Telescope", and "Dark Sky Awareness” will also be under design. Live events such as public lectures, coffee talks, and a web-streamed opening ceremonies SL party are also in the works. These are our ideas, now we want yours! Our ultimate plan is to bring together all those nationally and internationally interested in brainstorming, creating, and developing content, exhibits, and activities in Second Life for IYA 2009. Sharing resources, sponsorship, and land space will help us all succeed in bringing astronomy to the public in 2009 and beyond.

  2. IYA2009 in Second Life

    NASA Astrophysics Data System (ADS)

    Gauthier, A.; Gay, P. L.

    2008-11-01

    The New Media Group is working to create an IYA2009 presence in the 3-dimensional multi-user virtual world called Second Life (SL). Current installations, development plans, and collaboration initiatives will be discussed. The first wave of development will bring real-life (RL) IYA2009 events and exhibits to the residents of Second Life. Informational kiosks with IYA2009 freebie avatar clothing will be placed in a variety of science-related places and other high traffic locations in SL. The IYA 2009 cornerstone project ``From Earth to the Universe'' is planned to be a portable exhibit in SL that can reside in temporary locations and be unveiled for special events. Interactive exhibits for ``400 Years of Astronomy Timeline,'' ``Galileo's Telescope,'' and ``Dark Sky Awareness'' will also be under design. Live events such as public lectures, coffee talks, and a web-streamed opening ceremonies SL party are also in the works. Our ultimate plan is to bring together all those interested in brainstorming, creating, and developing content, exhibits, and activities in Second Life for IYA2009. Sharing resources, sponsorship, and land space will help us all succeed in bringing astronomy to the public in 2009 and beyond.

  3. Distance Learning Materials for Elementary Astronomy with Lab

    NASA Astrophysics Data System (ADS)

    Castle, K. G.

    2004-05-01

    I have developed a distance learning astronomy course with an integral lab. The materials for this course are available from the site below. Test and quiz contents can be obtained upon request In this distance-learning format, students take quizzes online, tests in person and meet with the instructor for assistance. Student activities include homework, laboratory exercises and observing projects using household and community resources. This course (Astro 128) has been approved to fulfill general education requirements for University of California and the California State University system. Materials include instructions and reference materials for measuring parallax, analyzing radial velocity and light curves, finding ages of star clusters, tracking planets, recording sunrise or sunset time, simulating lunar phases, assessing lunar feature ages, classifying stellar spectra from tracings, and classifying galaxy morphology. Students analyze actual astronomical data from the literature in many cases. A comparatively large number of observational examples allows each student to work with a unique assignment. Course management includes a calendar where students schedule meetings with the instructor and WebCT test, quiz and grade maintenance. Course materials are supplied with links to data sets in PDF. This class was developed with technical assistance from the Instructional Technology Department at Diablo Valley College.

  4. 25 Years of Reports on Geodesy and Geoinformatics

    NASA Astrophysics Data System (ADS)

    Siemiątkowska, Jadwiga

    2016-06-01

    The article presents an outline of the 25-year history of the journal "Reports on Geodesy and Geoinformatics". The source of information was mainly the journal issues themselves. Attention was drawn to changes that the journal underwent over a quarter of a century and its relationship with the Institute of Geodesy and Geodetic Astronomy and later the Department of Geodesy and Geodetic Astronomy. Many issues were dedicated to materials from Polish conferences - those organised by the Institute and the international ones attended by the employees of the Institute, which was indicated in the section on the history of the journal. The second part of the article concerns the current activity and importance of the journal. Attention was paid to visibility of "Reports on Geodesy and Geoinformatics" in the domestic and foreign databases. Polish databases where the journal is indexed have been identified and briefly described. A separate issue is the evaluation of the journal, which forms a measure of its popularity among consumers. For this purpose, various parameters and biometrics indicators are used. The article used the Web of Science, Google Scholar and the Ministerial List databases for the assessment of the journal.

  5. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, David; Schneider, N.; Molaverdikhani, K.; Afsharahmadi, F.

    2012-10-01

    We present two new features of an ongoing effort to bring recent newsworthy advances in planetary science to undergraduate lecture halls. The effort, called 'Discoveries in Planetary Sciences', summarizes selected recently announced discoveries that are 'too new for textbooks' in the form of 3-slide PowerPoint presentations. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts at a level appropriate for students of 'Astronomy 101', and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/ for download by undergraduate instructors or any interested party. Several new slide sets have just been released, and we summarize the topics covered. The slide sets are also being translated into languages other than English (including Spanish and Farsi), and we will provide an overview of the translation strategy and process. Finally, we will present web statistics on how many people are using the slide sets, as well as individual feedback from educators.

  6. Landolt-Börnstein: Group 6:2c, 1982. Numerical Data and Functional Relationships in Science and Technology - New Series Group 6: 2C -- "Astronomy and Astrophysics -- Interstellar Matter, Galaxy, Universe"

    NASA Astrophysics Data System (ADS)

    Biermann, P.; Fink, H. H.; Fricke, K. J.; Gliese, W.; Grewing, M.; Huchtmeier, W. K.; Madore, B. F.; Netzer, H.; Rahe, J.; Scheffler, H.; Schmadel, L. D.; Schmid-Burgk, J.; Tammann, G. A.; Trümper, J.; Wielen, R.; Witzel, A.; Zech, G.

    The full Landolt-Börnstein Group 6 series contains: VI/1 Astronomy and Astrophysics · Astronomy and Astrophysics VI/2a Astronomy and Astrophysics · Astronomy and Astrophysics · Methods, Constants, Solar System VI/2b Astronomy and Astrophysics · Astronomy and Astrophysics · Stars and Star Clusters VI/2c Astronomy and Astrophysics · Astronomy and Astrophysics · Interstellar Matter, Galaxy, Universe VI/3a Astronomy and Astrophysics · Astronomy and Astrophysics · Instruments, Methods, Solar System VI/3b Astronomy and Astrophysics · Astronomy and Astrophysics · Stars and Star Clusters VI/3c Astronomy and Astrophysics · Astronomy and Astrophysics · Interstellar Matter, Galaxy, Universe VI/4B Astronomy and Astrophysics · The Solar System

  7. Current state of Czech astronomy popularization and its potential for enhancing science career interest

    NASA Astrophysics Data System (ADS)

    Kříček, Radek

    2015-08-01

    The Czech Republic has a dense net of observatories, astronomical clubs and other activities for both adults and children. Can we use it to improve skills of our pupils and their motivation to choose their career in science? Does the situation in the Czech Republic differ from abroad? What can we improve in the future? These questions were not answered satisfactorily so far. We decided to contribute to solve this issue.We present our survey of current state based mainly on electronic sources and personal dealings. Besides of 56 observatories working with public and many interest clubs, there are other possibilities to meet astronomy. For example, Astronomical Olympiad attracts thousands of pupils across the country each year to solve both theoretical and practical tasks in astronomy. In other projects, children can visit Dark-Sky Parks, design experiments for a stratospheric balloon, observe with CCD or radio devices or build their own rockets.We outline our ongoing project to examine the link between popularization activities and pupils’ or high school students’ attitude toward science and science career. We plan to create a typology of both popularization activities and life stories of people dealing with astronomy. From the methodological point of view, the mixed method design, combining both the qualitative and quantitative approach, will be used to solve the research problems. The basic research plan will be a case study. So far the project is based on interviews with various subjects. We choose people with different life stories, all connected with astronomy or astronomy popularization in some period. We focus on important moments in their career, similarities between subjects, and various types of possible motivation to participate in astronomy-related activities or to study science at university.Future results can be used to help interested organizations such as universities, observatories or astronomical societies. They will be able to work more effectively with talented youth and stimulate additional interest in science.

  8. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the CAPER Center for Astronomy & Physics Education Research. More information about the journal and its policies are available online at http://www.JAESE.org

  9. White paper on science operations

    NASA Technical Reports Server (NTRS)

    Schreier, Ethan J.

    1991-01-01

    Major changes are taking place in the way astronomy gets done. There are continuing advances in observational capabilities across the frequency spectrum, involving both ground-based and space-based facilities. There is also very rapid evolution of relevant computing and data management technologies. However, although the new technologies are filtering in to the astronomy community, and astronomers are looking at their computing needs in new ways, there is little coordination or coherent policy. Furthermore, although there is great awareness of the evolving technologies in the arena of operations, much of the existing operations infrastructure is ill-suited to take advantage of them. Astronomy, especially space astronomy, has often been at the cutting edge of computer use in data reduction and image analysis, but has been somewhat removed from advanced applications in operations, which have tended to be implemented by industry rather than by the end-user scientists. The purpose of this paper is threefold. First, we briefly review the background and general status of astronomy-related computing. Second, we make recommendations in three areas: data analysis; operations (directed primarily to NASA-related activities); and issues of management and policy, believing that these must be addressed to enable technological progress and to proceed through the next decade. Finally, we recommend specific NASA-related work as part of the Astrotech-21 plans, to enable better science operations in the operations of the Great Observatories and in the lunar outpost era.

  10. Kepler's "War on Mars"

    NASA Astrophysics Data System (ADS)

    Dorsey, William; Orchiston, W.; Stephenson, F. R.

    2011-01-01

    This paper presents an interpretation of how Johannes Kepler changed the study of astronomy. We propose that in his metaphorical "War on Mars,” the Astronomia Nova, Kepler used a revolutionary rhetoric to bring about the usurpation of seventeenth-century astronomy. We discuss how Kepler approached the well-established conceptual framework within which the hypotheses of Ptolemy, Copernicus and Tycho Brahe functioned, and how he sought comprehensive physical principles that could determine the true cause and form of the known Universe. We examine Kepler's need to redefine reality and his use of rhetoric in shaping his astronomical argument for a new astronomy, and we show that his new `laws’ represent a fusion of physics and geometry based upon astronomical observations. We suggest that although Kepler may have believed in and defended some Copernican ideas, his innovative Astronomia Nova opened up a whole new vista for international astronomy.

  11. Conceptual astronomy. II. Replicating conceptual gains, probing attitude changes across three semesters

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy

    1999-10-01

    We report on a long-term, large-scale study of a one-semester, conceptually based, introductory astronomy course with data from more than 400 students over three semesters at the University of New Mexico. Using traditional and alternative assessment tools developed for the project, we examined the pre- and postcourse results for Fall 1994, Spring 1995, and Fall 1995. We find our results are robust: novice students show large, positive gains on assessments of conceptual understanding and connected understanding of the knowledge structure of astronomy. We find no relationship between course achievement and completion of prior courses in science or math; we do find a small to moderate relationship between students' science self-image and course achievement. Also, we detect little change over each semester in students' mildly positive incoming attitudes about astronomy and science.

  12. Astronomy in Buginese-Makassarese culture based on historical and ethnographical sources

    NASA Astrophysics Data System (ADS)

    Hasanah, N.; Suriamihardja, D. A.

    2016-11-01

    Our research has been looking for astronomical aspects in Buginese-Makassarese culture from historical to ethnographical sources. We found from history that astronomy had been used by Buginese - Makassar society long before Islam came to South Sulawesi at early 17th century and had their own first telescope at the time of Gowa's Prime Minister, Karaeng Pattingaloang. Meanwhile from ethnographical source, utilization of astronomy penetrated not only at Islamic calendar and worship time, but also at agriculture, sailing navigation, and weather prediction. Some of our literature were taken from Lontaraq (ancient manuscript) which now the experts are not many and old, especially in the field of astronomy. It was found that Lontaraq was using lunar period to characterize local weather [called: Pananrang]. Therefore, we need to excavate immediately more about this matter before the experts reduced in number.

  13. Dark Skies, Bright Kids Year 7

    NASA Astrophysics Data System (ADS)

    Bittle, Lauren E.; Johnson, Kelsey E.; Borish, H. Jacob; Burkhardt, Andrew; Firebaugh, Ariel; Hancock, Danielle; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; Prager, Brian; Pryal, Matthew; Sokal, Kimberly R.; Troup, Nicholas William; Wenger, Trey

    2016-01-01

    We present updates from our seventh year of operation including new club content, continued assessments, and our fifth annual Star Party. Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.

  14. Assessment of an Internet-Delivered Interactive Approach to Introductory Astronomy for Non-Science Majors

    ERIC Educational Resources Information Center

    Slater, Timothy F.; Jones, Lauren V.

    2004-01-01

    This project explores the effectiveness of learner-centered education (LCE) principles and practices on student learning and attitudes in an online interactive introductory astronomy course for non-science majors by comparing a high-quality Internet-delivered course with a high-quality on-campus course, both of which are based on the principles of…

  15. Energy, The Environment And Astronomy: Education And Action

    NASA Astrophysics Data System (ADS)

    Rodgers, Bernadette; Doppmann, G.; Kalas, P.; Lacy, J.; Beck, T.; Marshall, P. J.

    2010-01-01

    The specter of global climate change is arguably the most pressing scientific, social and ethical issue of our time. Although the relatively small field of astronomy represents only a fraction of the total human carbon emissions, astronomers have a great potential, and therefore perhaps a great responsibility, to educate themselves and the public on this issue. In addition, the average per capita carbon emissions of professional astronomers are not small, and our profession can do much to reduce its energy consumption and maximize the cost-benefit ratio of our work. At the January AAS meeting, we are organizing a half-day splinter meeting titled "Energy, the Environment and Astronomy: Education and Action". The focus will be on energy conservation and education as it relates to professional astronomy. Education focuses on informing ourselves, our students and the general public with which we interact, about the real issues, the necessary actions, and the likely consequences of various energy consumption and carbon emission scenarios. Action focuses on effective energy conservation and renewable energy initiatives within professional astronomy. Air travel, solar energy at ground-based observatories, and Gemini's "Green Initiative” are among the topics that will be discussed. The splinter meeting will be open to all and will include expert speakers from outside astronomy, contributed talks by astronomers, and a discussion session.

  16. X-Ray Astronomy Research at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Austin, Robert A.

    1999-01-01

    For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.

  17. Dealing with the forecast of the optical turbulence as a tool to support astronomy assisted by AO facilities

    NASA Astrophysics Data System (ADS)

    Masciadri, Elena; Lascaux, Franck; Fini, Luca

    2015-04-01

    In the context of the research activities related to the forecast of the optical turbulence and the atmospherical parameters being relevant for ground-based astronomy we focus here our attention on two specific topics: 1. pros and cons of different solutions to supply wind speed and direction stratification on the whole atmosphere all along a night to support AO facilities; 2. the necessity of instrumentation for optical turbulence monitoring (vertical profiles on the whole atmosphere) to be used operationally. In the last two decades the development and the use of different vertical profilers covering the whole atmosphere or part of it in application to the astronomy took place. Several instruments based on different principles (with associated pros and cons) have been applied in different contexts in astronomy with a main use in the site characterization and site selection. Time changed and the necessity of the astronomy supported by AO facilities is much more demanding with a diversification of applications. Recently, motivated by a precise necessity related to the identification of an absolute reference to carry out studies on optical turbulence forecasts (MOSE project), we carried out a verification of the reliability of a few instruments that lead us to put in evidence some limitations for a few of them. At the same time such a detailed analysis permitted us to clarify the nature of some astroclimatic parameters. The main conclusion at which we arrived is two-fold. From one side we could trace a list of warnings related to different uses of such instruments. On the other side we could identify open problems that indicate that there is still space for research in the field of turbulence monitoring in application to the astronomy. Some suggestions are proposed.

  18. Running an Elementary School Astronomy Club: Engaging Children in the Wonders of Space

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Odenwald, S.; Lundberg, C.; Dimarco, A.

    2000-10-01

    ``At the elementary school level, children are motivated by two things, dinosaurs and space" (Dr. Harold Williams, Montgomery College Planetarium Director). Yet, many elementary school science objectives include only the most basic astronomical concepts. Some ignore the subject all together in favor of more traditional courses (e.g. math and reading) or Earth science based curricula such as weather and local ecosystems. In addition, most elementary school teachers are unfamiliar with astronomical concepts and are poorly equipped to teach the subject. With teacher requirements increasing due to increasing class sizes, state competency exams, and a back to basics political climate, there is often little room to capitalize on the natural sense of curiosity children have about the universe during the normal school day. An after school astronomy club can provide a solution. In this paper, we present a model for setting up and running an after school astronomy club for students in grades 3-6. Our model was developed at two Maryland schools, Sligo Creek Elementary and Holy Redeemer Elementary/Middle School and incorporates national education standards as well as NASA OSS guidelines for effective education outreach programs. We propose here, a Community Based Learning (CBL) approach with the goal of engaging multiple elements of the community in the learning process including local amateur astronomy clubs, industry, community colleges, parents, and teachers. Methods for using astronomy as a basis for teaching reading, writing, math, and presentation skills are introduced. Resources, teaching methods, preparation guidelines, discipline, and safety are discussed and a list of grade appropriate, hands-on astronomy activities is presented along with procedures and expected outcomes.

  19. Trident: scalable compute archives: workflows, visualization, and analysis

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Kotulla, Ralf; Henschel, Robert; Harbeck, Daniel

    2016-08-01

    The Astronomy scientific community has embraced Big Data processing challenges, e.g. associated with time-domain astronomy, and come up with a variety of novel and efficient data processing solutions. However, data processing is only a small part of the Big Data challenge. Efficient knowledge discovery and scientific advancement in the Big Data era requires new and equally efficient tools: modern user interfaces for searching, identifying and viewing data online without direct access to the data; tracking of data provenance; searching, plotting and analyzing metadata; interactive visual analysis, especially of (time-dependent) image data; and the ability to execute pipelines on supercomputing and cloud resources with minimal user overhead or expertise even to novice computing users. The Trident project at Indiana University offers a comprehensive web and cloud-based microservice software suite that enables the straight forward deployment of highly customized Scalable Compute Archive (SCA) systems; including extensive visualization and analysis capabilities, with minimal amount of additional coding. Trident seamlessly scales up or down in terms of data volumes and computational needs, and allows feature sets within a web user interface to be quickly adapted to meet individual project requirements. Domain experts only have to provide code or business logic about handling/visualizing their domain's data products and about executing their pipelines and application work flows. Trident's microservices architecture is made up of light-weight services connected by a REST API and/or a message bus; a web interface elements are built using NodeJS, AngularJS, and HighCharts JavaScript libraries among others while backend services are written in NodeJS, PHP/Zend, and Python. The software suite currently consists of (1) a simple work flow execution framework to integrate, deploy, and execute pipelines and applications (2) a progress service to monitor work flows and sub-work flows (3) ImageX, an interactive image visualization service (3) an authentication and authorization service (4) a data service that handles archival, staging and serving of data products, and (5) a notification service that serves statistical collation and reporting needs of various projects. Several other additional components are under development. Trident is an umbrella project, that evolved from the One Degree Imager, Portal, Pipeline, and Archive (ODI-PPA) project which we had initially refactored toward (1) a powerful analysis/visualization portal for Globular Cluster System (GCS) survey data collected by IU researchers, 2) a data search and download portal for the IU Electron Microscopy Center's data (EMC-SCA), 3) a prototype archive for the Ludwig Maximilian University's Wide Field Imager. The new Trident software has been used to deploy (1) a metadata quality control and analytics portal (RADY-SCA) for DICOM formatted medical imaging data produced by the IU Radiology Center, 2) Several prototype work flows for different domains, 3) a snapshot tool within IU's Karst Desktop environment, 4) a limited component-set to serve GIS data within the IU GIS web portal. Trident SCA systems leverage supercomputing and storage resources at Indiana University but can be configured to make use of any cloud/grid resource, from local workstations/servers to (inter)national supercomputing facilities such as XSEDE.

  20. New Worlds, New Horizons in Astronomy and Astrophysics, Washington, D.C.: National Academies Press, 2010. Panel Reports New Worlds, New Horizons in Astronomy and Astrophysics, Washington, D.C.: National Academies Press, 2010. Report of the Panel on Implementing Recommendations from the New Worlds, New Horizons Decadal Survey, Washington, D.C.: National Academies Press, 2010. 2020 Vision: An Overview of New Worlds, New Horizons in Astronomy and Astrophysics, Washington, D.C.: National Academies Press, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapero, Donald C.

    The NRC's Astronomy and Astrophysics decadal survey Astro2010 was organized under the umbrella of the BPA and its sister board the Space Studies Board (SSB). NASA, NSF, and DOE are the sponsors of this survey that was asked to evaluate the field of space- and ground-based astronomy and astrophysics, recommending priorities for the most important scientific and technical activities of the decade 2010-2020. The principal goals of this study were to carry out an assessment of activities in astronomy and astrophysics, including both new and previously identified concept, and to prepare a concise report that addresses the agencies supporting themore » field, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public. Over the past 40 years, the Astronomy and Astrophysics decadal reviews have played a vital role in the selection of major astronomical activities and subsequent scientific discoveries. Some decadal survey prioritization highlights include the development of adaptive optics systems, the Very Long Baseline Array, the Hubble Space Telescope, and the Spitzer Space Telescope.« less

  1. Evaluation of “The Space Place,” a NASA Integrated, Multi-mission Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Fisher, Diane K.; Leon, N. J.

    2006-12-01

    The Space Place is an integrated NASA education and public outreach program, so far representing over 40 different NASA missions. It combines Web-based, printed, and externally published media to reach underserved audiences across the nation. Its primary mission is to develop and provide a highly desirable suite of attractive and educational products designed to appeal to and immerse the general public in space exploration. Its primary target audience is elementary school age kids. The program has developed an extensive network of partnerships with museums and libraries in rural areas, English and Spanish language newspapers, astronomy societies, rocketry clubs, and national youth organizations. Materials are distributed monthly through all these channels. Originally a New Millennium Program (NMP) outreach effort only, it is open to all NASA missions. NMP (a NASA-level program managed out of the Jet Propulsion Laboratory) continues to provide the base of support to build and maintain the outreach program’s infrastructure. Obtaining independent evaluation and reporting of the effectiveness of the program is one of NASA’s requirements for education and public outreach efforts. The Program Evaluation and Research Group (PERG) at Lesley University, Cambridge, MA, was retained to perform this service for The Space Place. PERG is also evaluating education and public outreach programs for NASA’s Science Mission Directorate. PERG recently delivered a report evaluating The Space Place program. Using both qualitative and quantitative methods, PERG surveyed representative samples of Space Place partner museums, astronomy clubs, and newspapers. The survey included questions about all the products the program provides. The report concludes that The Space Place fills a niche by serving small institutions, giving them a personal alliance with NASA that they would otherwise not have. By providing free, quality materials, The Space Place program provides these under-served populations access to space and science as only NASA can.

  2. The Center for Astronomy Education (CAE) and Our NSF Funded CCLI Phase III Collaboration of Astronomy Teaching Scholars (CATS) Program: Updates to Our New Community-Based Model for Astronomy Education Research

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Impey, C.; Prather, E. E.; Lee, K. M.; CATS

    2010-01-01

    The Center for Astronomy Education (CAE) has been devoted to improving teaching & learning in Astro 101 by creating research-validated curriculum & assessment instruments for use in Astro 101 & by providing Astro 101 instructors professional development opportunities to increase their pedagogical content knowledge & instructional skills at implementing these curricula & assessment materials. To create sustainability and further expand this work, CAE, in collaboration with other national leaders in astronomy education & research, developed the Collaboration of Astronomy Teaching Scholars (CATS) Program. The primary goals of CATS are to: 1) increase the number of Astro 101 instructors conducting fundamental research in astronomy education 2) increase the amount of research-validated curriculum & assessment instruments available for use in Astro 101 3) increase the number of people prepared to develop & conduct their own CAE Teaching Excellence Workshops In our second year we have concluded a national study assessing the contribution students’ personal characteristics make to student learning gains and the effectiveness of interactive learning strategies. We have results from our classroom research validation study on the use of the "ClassAction” electronic learning system. We have begun creation of an assessment instrument designed specifically for Astro 101 to evaluate the effectiveness of our instruction in improving students’ attitudes & beliefs about science, and which is being informed by several of our studies and community input. We have also begun field-testing of our Solar System Concept Inventory. Additionally research into students’ beliefs and reasoning difficulties on topics in Cosmology is underway. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  3. Cosmic Noise: The Pioneers of Early Radio Astronomy and Their Discoveries

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III

    2012-01-01

    Extraterrestrial radio waves (the galactic background), often referred to as "cosmic noise", were first detected accidentally by Karl Jansky at a frequency of 20 MHz in 1932, with significant followup by Grote Reber. Yet after World War II it was England and Australia that dominated the field. An entirely different sky from that of visual astronomy was revealed by the discoveries of solar noise, "radio stars” (discrete sources such as Cas A, Tau A, Cyg A, Cen A and Vir A), galactic noise, lunar and meteor radar experiments, the detection of the 21 cm hydrogen line, and eventually optical identifications such as the Crab Nebula and M87. Key players included wartime radar experts such as Stanley Hey (the British Army's Operational Research Group), Martin Ryle (Cambridge University), Bernard Lovell (Jodrell Bank) and Joe Pawsey (Radiophysics Lab, Sydney). Younger leaders also emerged such as Graham Smith, Tony Hewish, John Davies, "Chris" Christiansen, Bernie Mills, Paul Wild, and John Bolton. Some optical astronomers (Jan Oort, Henk van de Hulst, Jesse Greenstein, Rudolph Minkowski, and Walter Baade) were also extremely supportive. By the end of the postwar decade, radio astronomy was firmly established within the gamut of astronomy, although very few of its practitioners had been trained as astronomers. I will also trace the technical and social aspects of this wholly new type of astronomy, with special attention on military and national influences. I argue that radio astronomy represents one of the key developments in twentieth century astronomy not only because of its own discoveries, but also its pathfinding for the further opening the electromagnetic spectrum. This study is based on exhaustive archival research and over one hundred interviews with pioneering radio astronomers. Full details are available in the book "Cosmic Noise: A History of Early Radio Astronomy" (Cambridge Univ. Pr.).

  4. Online Scholarly Conversations in General Education Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Cai, Qijie; Wong, Ka-Wah

    2018-01-01

    In general education astronomy courses, many students are struggling with understanding the foundational concepts and theories in astronomy. One of the possible reasons is that, due the large class size, many of the courses are taught using a lecture mode, where human interactions and active learning are limited (Freeman et al., 2014). To address this challenge, we have applied the knowledge building framework (Scardamalia & Bereiter, 2006) to design an online collaborative learning component, called Scholarly Conversations, to be integrated into a general education astronomy course at a public, comprehensive university.During Scholarly Conversations, students are treated as scholars to advance knowledge frontiers (Scardamalia & Bereiter, 2006). The whole process involves the creation of new ideas and requires discourse and collective work for the advancement and creation of artifacts, such as theories and models (van Aalst, 2009). Based on the knowledge building principles (Scardamalia, 2002; Zhang, Scardamalia, Reeve, & Messina, 2009), several features have been built into Scholarly Conversations so that students are guided to deepen understanding of the astronomy concepts through three phases: knowledge sharing, knowledge construction and knowledge building, and reflections on learning growth (van Aalst, 2009; Cai, 2017). The online Scholarly Conversation is an extension of the lecture component of the general education astronomy course. It promotes student interactions and collaborative learning, and provides scaffolds for students to construct meanings of the essential concepts in astronomy through social learning and online technology. In this presentation, we will explain the specific design principles of the online Scholarly Conversation, and share the artifacts created to facilitate the online conversations in an general education astronomy course.Note: This project has been supported by the College of Education Research Grant Program at Minnesota State University, Mankato.

  5. Overview of lunar-based astronomy

    NASA Technical Reports Server (NTRS)

    Smith, Harlan J.

    1988-01-01

    The opportunities along with the advantages and disadvantages of the Moon for astronomical observatories are carefully and methodically considered. Taking a relatively unbiased approach, it was concluded that lunar observatories will clearly be a major factor in the future of astronomy in the next century. He concludes that ground based work will continue because of its accessibility and that Earth orbital work will remain useful, primarily for convenience of access in constructing and operating very large space systems. Deep space studies will feature not only probes but extensive systems for extremely long baseline studies at wavelengths from gamma rays through visible and IR out to radio is also a conclusion drawn, along with the consideration that lunar astronomy will have found important permanent applications along lines such as are discussed at the present symposium and others quite unsuspected today.

  6. Light and lightened mirrors for astronomy

    NASA Astrophysics Data System (ADS)

    Fappani, Denis

    2008-07-01

    For ground-based astronomy, more and more large telescopes are emerging all around the world. Similarly to space borne telescopes, for which the use of lightened optics has always been a baseline for purpose of mass reduction of payloads, same kinds of lightened/light mirrors are then now more and more intensively used also for ground-based instrumentation for astronomy, requiring larger and larger components. Through several examples of typical past realizations (class 0.5m-1m) for different astronomical projects requiring light or lightened mirrors for different reasons (optimisation of mass and stiffness, reduction of thermal inertia, increasing of dynamic performance for fast scanning purpose,....), the presentation will point out issues for lightening design, manufacturing and control of such parts, as well as brief overview of the corresponding existing "state of the art" for these technologies in SESO.

  7. A Program of Ground-Based Astronomy to Complement Einstein Observations.

    DTIC Science & Technology

    1982-11-30

    Astronomy D T I C i CO-,,, Uv I,. WA TOPE: -. Gary A. Cbanan Assistant Professor of Phy.3[cs i t0V.l.., 1982 %30𔃼 0 ii CONTENTS Page A. REPORT DOCUMENTATION...block number) A total of eight ground-based astronomical observing programs were carried out in pursuit of a multiwavelength approach to a number of...astro- physical problems. Synthesis of these results with existing X-ray data led to considerable progress on problems of the emission mechanisms and

  8. Status of the NOAO evaluation of the Hughes 20x64 Si:As impurity band conduction array. [for ground and space-based astronomy

    NASA Technical Reports Server (NTRS)

    Fowler, A. M.; Joyce, R. R.

    1990-01-01

    The Hughes 20 x 64 Si:As impurity band conduction arrays designed for ground-based and spaceborne astronomy observations is described together with experiments performed at NOAO to test these arrays. Special attention is given to the design and the characteristics of the test system and to the test methods. The initial tests on two columns of one array indicate that the array is easy to operate and performed satisfactorily.

  9. Astronomy: Social Representations of the Integrated High School Students and Graduates in Physics

    NASA Astrophysics Data System (ADS)

    Barbosa, J. I. L.

    The topics related to Astronomy are spread through almost all levels of basic education in Brazil and are also disseminated through the mass media, activities that do not always occur in the proper way. However, their students form their explanations about the phenomena studied by Astronomy, that is, they begin to construct their opinions, their beliefs and their attitudes regarding this object or this situation. In this sense, this work was divided in two fronts, which have the following objectives: (1) To identify the social representations of Astronomy elaborated by students of Integrated secondary education and undergraduate students in Physics; (2) To verify to what extent the social representations developed by the investigated students are equivalent; (3) To Investigate if the social representations designed per undergraduate students in Physics about Astronomy undergo changes after these participate in a course on basic subjects of Astronomy, in comparison with those exposed before the mentioned event. On the first front there is a research of a basic nature, where the data were obtained through of survey, and analysed in accordance with the methodologies pertinent to Central Nucleus Theory, the second front deals with an investigation of an applied nature, and the data obtained were explored through statistical analyses. The results indicate that the researchers have been involved in social representations of the object Astronomy, which are based on elements of the formal education space, and also disclosed in the media, in addition, demonstrate that the students have information about Astronomy and a valuation position in relation to this Science. On the second front, the results indicate that there were changes in the social representations of the undergraduate students in Physics about the term inductor Astronomy, after the course, that is, several elements evoked before the course were replaced by others, which were worked during the event.

  10. Teaching and Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay; Percy, John

    2005-12-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel Hawkins; 25. The role of science centers and planetariums Nick Lomb; 26. Science education for the new century - a European perspective Claus Madsen; 27. Communicating astronomy to the public Charles Blue; 28. Poster highlights: public outreach in astronomy; Part IX. The Education Programs of the IAU: Preface; 29. A short overview of astronomical education carried out by the IAU Syuzo Isobe; Part X. Discussion; Index.

  11. Teaching and Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay; Percy, John

    2009-07-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel Hawkins; 25. The role of science centers and planetariums Nick Lomb; 26. Science education for the new century - a European perspective Claus Madsen; 27. Communicating astronomy to the public Charles Blue; 28. Poster highlights: public outreach in astronomy; Part IX. The Education Programs of the IAU: Preface; 29. A short overview of astronomical education carried out by the IAU Syuzo Isobe; Part X. Discussion; Index.

  12. Astronomy Teaching in Europe's Secondary Schools

    NASA Astrophysics Data System (ADS)

    1994-11-01

    EU/ESO Workshop for European Physics Teachers A joint Workshop of the European Union (EU) and the European Southern Observatory (ESO) will take place on November 25 - 30, 1994 under the auspices of the European Week for Scientific Culture. The Workshop is entitled "Astronomy: Science, Culture and Technology". It will bring together at the ESO Headquarters in Garching (Germany) more than 100 secondary school teachers and ministerial representatives from 17 European countries to discuss all aspects of this broad subject. It is the first and very visible part of a new, sustained effort to stimulate and modernize the teaching of the subjects of Astronomy and Astrophysics in European secondary schools. During the Workshop, the participants will experience the present state of this multi-disciplinary science in its most general context, that is as a human, long-term scientific and technological endeavour with great cultural implications. They will exchange views on how the various elements of Astronomy can best be utilized within the educational schemes of the individual countries, both as subjects in their own rights, and especially in support of many other items on the present teaching agenda. Why This Workshop ? Astronomy is probably the oldest science. Since innumerable millenia, it has continued to have a great influence on mankind's perception of itself and its surroundings. In our days, Astronomy and Astrophysics have become a central area of the natural sciences with many direct links to other sciences (e.g., many aspects of physics, mathematics, chemistry, the geo-sciences, etc.); it has an important cultural content (including our distant origins, the recognition of the location and restricted extent of our niche in space and time, cosmological considerations as well as philosophy in general); its recent successes are to a large amount dependent on advanced technologies and methodologies (e.g., optics, electronics, detector techniques at all wavelengths, computer techniques like image processing and the transfer, storage and retrieval of enormous data sets). Astronomy is undoubtedly one of the sciences that enjoys the most intense public interest and it also has a great media appeal, in part because of its exploratory ("adventurous") character and ability to produce spectacular images, cf. the recent, dramatic collision between a comet and Jupiter. Moreover, with the increasing public awareness of the Earth's fragile ecosystems and the obvious influence of external, i.e., "astronomical" forces (solar irradiation, variations in the Earth's orbit, collisions with other bodies, radiative effects from nearby cosmic explosions, etc.), this science has taken on a new significance in the minds of many people. Nevertheless, the teaching of Astronomy in European secondary schools has been the subject of many vacillations during the past decades. In several countries it is taught at a quite rudimentary and "old-fashioned" level, in others, some of its elements are included, but most often in a seemingly haphazard way; it is very rare, that an overall, holistic view is presented. This is despite the obvious fact that many areas of Astronomy are relatively easy to comprehend (at least qualitatively) and that this science is a most illustrative example of the interplay between science, culture and technology in all its historical and modern aspects. It moreover demonstrates the unity of science, gives a host of educationally useful examples of the scientific method, and may also serve as a natural stepping stone into a large number of other areas of human knowledge and activities. The Workshop Programme The Workshop will begin in the afternoon of Friday, November 25, when the participants gather at the ESO Headquarters in Garching near Munich. It ends after four busy days in the evening of Tuesday, November 29. To begin with, specialist speakers will provide reviews of some of the scientific subjects now at the forefront of Astronomy and Astrophysics, overviews of selected astronomical technologies of more general relevance and their various implications for other human activities, as well as presentations of Astronomy as part of our cultural heritage and its current place in society. Then follows a thorough discussion among the participants about the current teaching of astronomy-related subjects in secondary schools in the individual countries. One of the main aims of this meeting will be the preparation of a joint document stating the goals and optimal contents of the future teaching of Astronomy in Europe's secondary schools. It is also the intention to initiate on this occasion a Europe-wide "teachers' network", which can follow these matters up. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  13. Vision for Astronomy in South Africa and partnership with the US

    NASA Astrophysics Data System (ADS)

    Nemaungani, Takalani

    2014-01-01

    The 2002 National Research and Development Strategy identified astronomy as a national geographic advantage. This identification was based on the historical investments in optical and, to a lesser extent, radio astronomy up to that point and the realisation that the conditions prevailing in Sutherland were among the best in the world. Since then a number of astronomy initiatives have burgeoned in the Southern African region and these include the HESS, SKA and the AVN. Currently, investments in astronomy are by far the biggest investments being made by the Department of Science and Technology (DST). South Africa’s involvement in modern astronomy dates back to 1685 when a French Astronomer, Guy Tachard, setup an observatory at the southern tip of Africa to decipher the star charts of the extreme southern sky. In 1820, a permanent observatory - the Royal Observatory - was established outside of Cape Town and astronomy has been practised continuously since then. By the late 1980s, it became clear that for South African astronomers and astrophysicists to continue conducting first class research, the acquisition of a much larger, powerful and sophisticated telescope would be necessary. This provided the impetus for a new vision to construct the largest single optical telescope in the Southern Hemisphere, eventually known as the Southern African Large Telescope (SALT). Within the last decade, the African appetite for radio astronomy initiatives has increased exponentially. This has largely been spurred by the African bid to host the SKA project and the need for African countries to work in close partnership that consequently resulted in a successful bid to co-host the SKA project and the subsequent need to ensure its effective implementation. This partnership, and the interactions related thereto, has effectively enhanced awareness around the requirements for hosting radio astronomy instrumentation and the associated benefits that could be derived in making such commitments. Consequently, there have been concerted efforts in support of various radio astronomy initiatives that sit at the cusp of the continents ambitions for the hosting of the SKA.

  14. Nontechnical Astronomy Books of 1989.

    ERIC Educational Resources Information Center

    Mercury, 1990

    1990-01-01

    Presented are 126 reviews. Categories include amateur astronomy, children's books, computers and astronomy, cosmic rays, cosmology, education in astronomy, galaxies, general astronomy, history of astronomy, life in the universe, physics and astronomy, pseudoscience, quasars and active galaxies, reference, solar system, space exploration, stars and…

  15. The view from the observatory: history is too important to be left to the historians

    NASA Astrophysics Data System (ADS)

    Osterbrock, Donald E.

    A research astronomer and historian of astronomy begins this paper with a statement on his views of the latter subject. It helps anyone who wishes to understand its history to know and understand astronomy. History must be based on facts, which archives, scientific papers, and books can provide. Immersion in a field like astronomy makes one better qualified to understand what others have done in that field, and to write about it, as Henrik Ibsen, Ernest Hemingway, Barbara Tuchman, and John Grisham have all stated and proved by example. The second part of the paper is a progress report on the author's current project, the life and scientific career of the early American astronomer and solar physicist Charles A. Young (1834-1908). Astronomy was very different in his "small-telescope era", but there are many modern resonances in his problems and their solutions.

  16. Astronomy: social background of students of the integrated high school

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Barbosa, J. I. L.

    2017-07-01

    Astronomy-related contents exist in almost all levels of basic education in Brazil and are also frequently disseminated through mass media. Thus, students form their own explanations about the phenomena studied by this science. Therefore, this work has the objective of identifying the possible social background of the Integrated High School students on the term Astronomy. It is a research of a basic nature, descriptive, and for that reason a quali-quantitative approach was adopted; the procedures to obtain the data were effected in the form of a survey. The results show that the tested students have a social background about the object Astronomy, which is on the one hand fortified by elements they have made or which is part of the experience lived by the respondents within the formal space of education, and on the other hand based on elements possibly disseminated through the mass media.

  17. Google Sky as an Interactive Content Delivery System

    NASA Astrophysics Data System (ADS)

    Parrish, Michael

    2009-05-01

    In support of the International Year of Astronomy New Media Task Group's mission to create online astronomy content, several existing technologies are being leveraged. With this undertaking in mind, Google Sky provides an immersive contextual environment for both exploration and content presentation. As such, it affords opportunities for new methods of interactive media delivery. Traditional astronomy news sources and blogs are able to literally set a story at the location of their topic. Furthermore, audio based material can be complimented by a series of locations in the form of a guided tour. In order to provide automated generation and management of this content, an open source software suite has been developed.

  18. The language of the arrows

    NASA Astrophysics Data System (ADS)

    2015-10-01

    I think and hope that most experienced physics and astronomy teachers would agree that teaching is both a science and a creative art. There is a way to creatively introduce vectors into introductory astronomy that lets students learn some basic, but fundamental, physics and at the same time demonstrates that mathematics need not be a barrier in a science course. The approach is entirely graphical in that it is based on the geometric properties of vectors and is implemented by drawing diagrams. Despite the simplicity, it allows astronomy students to experience genuine physics reasoning at about the same level of a conceptual physics course (and possibly a higher level).

  19. GEAS Spectroscopy Tools for Authentic Research Investigations in the Classroom

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Vogt, Nicole P.

    2018-06-01

    Spectroscopy is one of the most powerful tools that astronomers use to study the universe. However relatively few resources are available that enable undergraduates to explore astronomical spectra interactively. We present web-based applications which guide students through the analysis of real spectra of stars, galaxies, and quasars. The tools are written in HTML5 and function in all modern web browsers on computers and tablets. No software needs to be installed nor do any datasets need to be downloaded, enabling students to use the tools in or outside of class (e.g., for online classes).Approachable GUIs allow students to analyze spectra in the same manner as professional astronomers. The stellar spectroscopy tool can fit a continuum with a blackbody and identify spectral features, as well as fit line profiles and determine equivalent widths. The galaxy and AGN tools can also measure redshifts and calcium break strengths. The tools provide access to an archive of hundreds of spectra obtained with the optical telescopes at Kitt Peak National Observatory. It is also possible to load your own spectra or to query the Sloan Digital Sky Survey (SDSS) database.We have also developed curricula to investigate these topics: spectral classification, variable stars, redshift, and AGN classification. We will present the functionality of the tools and describe the associated curriculum. The tools are part of the General Education Astronomy Source (GEAS) project based at New Mexico State University, with support from the National Science Foundation (NSF, AST-0349155) and the National Aeronautics and Space Administration (NASA, NNX09AV36G). Curriculum development was supported by the NSF (DUE-0618849 and DUE-0920293).

  20. Observational astrophysics.

    NASA Astrophysics Data System (ADS)

    Léna, P.; Lebrun, F.; Mignard, F.

    This book is the 2nd edition of an English translation published in 1988 (45.003.105) of the French original "Astrophysique: Méthodes physiques de l'observation" published in 1986 (42.003.048). Written specifically for physicists and graduate students in astronomy, this textbook focuses on astronomical observation and on the basic physical principles that astronomers use to conceive, build and exploit their instruments at their ultimate limits in sensitivity or resolution. This second edition has been entirely restructured and almost doubled in size, in order to improve its clarity and to account for the great progress achieved in the last 15 years. It deals with ground-based and space-based astronomy and their respective fields. It presents the new generation of giant ground-based telescopes, with the new methods of optical interferometry and adaptive optics, and also the ambitious concepts behind planned space missions for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spectrum and touches upon the "new astronomies" becoming possible with gravitational waves and neutrinos.

  1. Ground-based very high energy gamma ray astronomy: Observational highlights

    NASA Technical Reports Server (NTRS)

    Turver, K. E.

    1986-01-01

    It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.

  2. Managing Astronomy Research Data: Data Practices in the Sloan Digital Sky Survey and Large Synoptic Survey Telescope Projects

    ERIC Educational Resources Information Center

    Sands, Ashley Elizabeth

    2017-01-01

    Ground-based astronomy sky surveys are massive, decades-long investments in scientific data collection. Stakeholders expect these datasets to retain scientific value well beyond the lifetime of the sky survey. However, the necessary investments in knowledge infrastructures for managing sky survey data are not yet in place to ensure the long-term…

  3. Inquiry-Based Educational Design for Large-Scale High School Astronomy Projects Using Real Telescopes

    ERIC Educational Resources Information Center

    Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena

    2015-01-01

    In this paper, we outline the theory behind the educational design used to implement a large-scale high school astronomy education project. This design was created in response to the realization of ineffective educational design in the initial early stages of the project. The new design follows an iterative improvement model where the materials…

  4. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  5. Improving Instructor Presence in An Online Introductory Astronomy Course through Video Demonstrations

    ERIC Educational Resources Information Center

    Miller, Scott T.; Redman, Stephen L.

    2010-01-01

    We created a series of videos for an online introductory astronomy course at the Pennsylvania State University in part to address the lack of personal presence in online courses. Based on surveys administered to the students during the semester, we found that these videos were effective in creating an instructor presence within the online course.…

  6. Learning to Explain Astronomy Across Moving Frames of Reference: Exploring the role of classroom and planetarium-based instructional contexts

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-05-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children learn to move between frames of reference in astronomy wherein one explains Earth-based descriptions of the Sun's, Moon's, and stars' apparent motion using the Earth's daily rotation. We analysed interviews with 8-9-year-old students (N = 99) who participated in one of four instructional conditions emphasizing: the space-based perspective; the Earth-based perspective in the planetarium; constructing explanations for the Earth-based observations; and a combination of the planetarium plus constructing explanations in the classroom. We used an embodied cognition framework to analyse outcomes while also considering challenges learners face due to the high cognitive demands of spatial reasoning. Results support the hypothesis that instruction should engage students in learning both the Earth-based observations and space-based explanations, as focusing on a single frame of reference resulted in less sophisticated explanations; however, few students were able to construct a fully scientific explanation after instruction.

  7. A Renewal of Community Outreach by Amherst College

    NASA Astrophysics Data System (ADS)

    Sauter, Steven

    2008-09-01

    Amherst College was left a legacy of an 18 inch Alvin Clark refractor and a Spitz planetarium. We just completed a new Museum of Natural History and have a close relationship with a very active amateur astronomy association. We have taken these assets and recommitted ourselves to community science educational outreach. My poster describes those activities and future plans. Our method is to communicate basic astronomy in a lively presentation that focuses on the current night sky including sun position, planet locations, constellation and stars, current events in space exploration such as ISS, space based telescopes, deep space probes as well as current news in astronomy that has reached the popular press such as extra-solar system planets and galactic structure and evolution. In all our efforts we trace the history of telescopes from Galileo through our own Alvin Clark refractor to current space based telescopes. In the museum, the talks on Valley geology rely on a knowledge of sun position, earth processes born of its formation and position in the solar system. Evolution and extinctions are tied to astronomical events such as asteroid and comet collisions, the possibilities of life and organic compounds being extra-terrestrial, and the role that our galactic orbit may play a role in regular mass extinctions. We seek to reach the following audiences: pre-K-12 school children College classes in observational astronomy Boy and Girl scout troops working on merit achievements in astronomy College alumni general public College dorm student groups Retirement communities

  8. Astronomical Book Trek: Astronomy Books of 1983.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1984-01-01

    Presents an annotated list of technical and non-technical astronomy books. Topic areas of non-technical books include general astronomy, amateur astronomy, computers and astronomy, history of astronomy, pseudoscience, space exploration, physics and astronomy, and textbooks. Each entry includes author, title, description, source, and current cost.…

  9. Astronomy Education & Outreach in South Africa

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.

    2015-11-01

    Although South Africa has evolved greatly in the 20 years since the end of apartheid, it remains a very divided country. The highest-performing students are comparable in ability to those in the US and Europe, but nearly all of these students are from priveleged Afrikaaner (European) backgrounds. The vast majority of students in the country are native African, and school standards remain very low across the country. It is common that students have no textbooks, teachers have only a high school education, and schools have no telephones and no toilets. By high school graduation, the majority of students have never used a web browser -- even students in the capital of Johannesburg. And while a few students are inspired by home-grown world-class projects such as the Square Kilometer Array (SKA) and Southern African Large Telescope (SALT), most remain unaware of their existence.Despite the poor state of education in the country, students work hard, are curious, and desire information from the outside world. Astronomy is one subject in which students in rural Africa often show exceptional interest. Perhaps astronomy serves as a 'gateway science,' linking the physically observable world with the exotic and unknown.Here I report on many visits I have made to both rural and urban schools in South Africa during the 2013-2015 period. I have interacted with thousands of grade 7-12 students at dozens of schools, as well as taught students who graduated from this system and enrolled in local universities. I will present an assessment of the state of science education in South Africa, as well as a few broader suggestions for how scientists and educators in developed countries can best make an impact in Southern Africa.

  10. Star Ware: The Amateur Astronomer's Guide to Choosing, Buying, and Using Telescopes and Accessories, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Harrington, Philip S.

    2002-05-01

    Praise for the Second Edition of Star Ware "Star Ware is still a tour de force that any experienced amateur will find invaluable, and which hardware-minded beginners will thoroughly enjoy." -Robert Burnham, Sky & Telescope magazine "Star Ware condenses between two covers what would normally take a telescope buyer many months to accumulate." -John Shibley, Astronomy magazine Now more than ever, the backyard astronomer has a dazzling array of choices when it comes to telescope shopping-which can make choosing just the right sky-watching equipment a formidable challenge. In this revised and updated edition of Star Ware, the essential guide to buying astronomical equipment, award-winning astronomy writer Philip Harrington does the work for you, analyzing and exploring today's astronomy market and offering point-by-point comparisons of everything you need. Whether you're an experienced amateur astronomer or just getting started, Star Ware, Third Edition will prepare you to explore the farthest reaches of space with: Extensive, expanded reviews of leading models and accessories, including dozens of new products, to help you buy smart

  11. A clear, step-by-step guide to all aspects of purchasing everything from telescopes and binoculars to filters, mounts, lenses, cameras, film, star charts, guides and references, and much more Eleven new do-it-yourself projects for making unique astronomical equipment at home Easy tips on maintenance, photography, and star-mapping to help you get the most out of your telescope Lists of where to find everything astronomical, including Internet sites and Web resources; distributors, dealers, and conventions; and corporate listings for products and services

  12. The Citizen-Scientist as Data Collector: GLOBE at Night, Part 2

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Ward, D.; Henderson, S.; Meymaris, K.; Gallagher, S.; Salisbury, D.

    2006-12-01

    An innovative program to realize light pollution education on two continents via Internet 2-based videoconferencing was begun 4 years ago by the National Optical Astronomy Observatory. Bilingual science teachers and their students in Arizona and Chile recorded the brightness of the night sky by matching its appearance toward the constellation Orion with one of 6 stellar maps of limiting magnitude. Students from both hemispheres would report their findings via videoconferences. In the last year the program has evolved in collaboration with UCAR and other partners into an international, user-friendly, web-based science event open to anyone in the world, known as GLOBE at Night. GLOBE at Night uses the same design to observe and record the visible stars toward Orion, as a means of measuring light pollution in a given location. The inaugural event occurred over 11 nights last March, when 18,000 citizen- scientists made over 4,500 observations from 96 countries. Analysis of the GLOBE at Night data set found that the brighter skies corresponded to areas with higher population density, and that most observations were taken in a location with some light pollution. The data also tended to confirm that satellite data is reliable in assessing light pollution. This session will describe our program to incorporate more technology into the GLOBE at Night program. Citizen-scientists will use sky quality meters (visible light photometers), calibrated digital photography, and GPS as a means to measure and map more accurately the brightness of the sky at selected urban and rural sites. This extension of the program is designed to aid further in teaching about the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource. We will also describe how detailed maps of selected urban areas can be used to assess lighting design, safety considerations and energy usage. Given the widespread interest in the inaugural GLOBE at Night event, the GLOBE at Night team is eager to offer it again from March 8-21, 2007. For more information, see www.globe.gov/GaN or contact globeatnight@globe.gov or outreach@noao.edu. GLOBE at Night is a collaboration between The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS), Windows to the Universe, and Environmental Systems Research Institute, Inc. (ESRI). NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  13. The High-Energy Astrophysics Learning Center-and More!

    NASA Astrophysics Data System (ADS)

    Whitlock, L. A.

    2006-06-01

    As part of the education outreach efforts at NASA-Goddard's HEASARC (High Energy Astrophysics Science Archive Research Center), we have developed two World Wide Web sites for astronomy and space science education. "StarChild" is a site geared for ages 4-14, and the "High-Energy Astrophysics Learning Center" focuses on ages 14-adult. In both sites, information is presented on a variety of reading and comprehension levels. Interactive activities, movies, and animations are included. The sites have been developed with the participation of, and review by, teachers of all grade levels. The sites are now also being distributed in a CD-ROM format. Development of the sites and our future plans are discussed.

  14. Catch a Star 2008!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners chosen with the help of a public online vote. Detailed entry information and rules can be found at http://www.eso.org/catchastar/cas2008/. The deadline for submitting an entry for the 2008 competition is Friday 29 February 2008, 17:00 Central European Time.

  15. Past and Future of Astronomy and SETI Cast in Maths

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    Assume that the history of Astronomy and SETI is the leading proof of the evolution of human knowledge on Earth over the last 3000 years. Then, human knowledge has increased a lot, although not at a uniform pace. A mathematical description of how much human knowledge has increased, however, is difficult to achieve. In this paper, we cast a mathematical model of the evolution of human knowledge over the last three thousand years that seems to reflect reasonably well both what is known from the past and might be extrapolated into the future. Our model is based on two seminal books by Sagan and Finney and Jones. Our model is based on the use of two cubic curves, representing the evolution of Astronomy and of SETI, respectively. We conclude by extrapolating these curves into the future and reach the conclusion that the "Star Trek" age of humankind might possibly begin by the end of this century.

  16. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing large astronomical data holdings; Poster abstracts; Part IV. Practical Issues Connected with the Implementation of the 2003 IAU Resolution: Introduction; 33. Stellar evolution for students of Moscow University; 34. Astronomy for everybody: An approach from the CASAO/NAUH view; 35. Toward a new program in astronomy education in secondary schools in Turkey; 36. Universe awareness for young children; 37. Education in Egypt and Egyptian responses to eclipses; 38. Astronomy in the cultural heritage of African societies; 39. Education at the Pierre Auger Observatory: the cinema as a tool in science education; 40. Freshman seminars: interdisciplinary engagements in astronomy; 41. Astronomy for teachers; Poster abstracts; Conclusion.

  17. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2008-07-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing large astronomical data holdings; Poster abstracts; Part IV. Practical Issues Connected with the Implementation of the 2003 IAU Resolution: Introduction; 33. Stellar evolution for students of Moscow University; 34. Astronomy for everybody: An approach from the CASAO/NAUH view; 35. Toward a new program in astronomy education in secondary schools in Turkey; 36. Universe awareness for young children; 37. Education in Egypt and Egyptian responses to eclipses; 38. Astronomy in the cultural heritage of African societies; 39. Education at the Pierre Auger Observatory: the cinema as a tool in science education; 40. Freshman seminars: interdisciplinary engagements in astronomy; 41. Astronomy for teachers; Poster abstracts; Conclusion.

  18. The Astronomy Diagnostic Test: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Deming, G. L.; Hufnagel, B. R.

    2000-12-01

    During 1998, the Collaboration for Astronomy Education Research (Adams, Adrian, Brick, Deming, Hufnagel, Slater, and Zeilik) developed a content-based diagnostic test for undergraduate non-science majors taking their first introductory level astronomy course. Student interviews and written feedback were used to construct a series of questions reflecting the students' natural language and with distractors (wrong answers) that mirror commonly held misconceptions. Version 1.9 of the Astronomy Diagnostic Test (ADT) was administered during Spring 1999 by volunteers teaching astronomy at 22 institutions across the United States. Minor modifications were made and Version 2.0 was released on June 21, 1999. The ADT 2.0 currently is available to the astronomical community through two websites and we continue to collect pretest/posttest results. Award of an NSF Small Grant for Exploratory Research has enabled us to work with a team of education researchers at the Ontario Institute for Studies in Education. Our database will be subjected to a statistical analysis in order to establish reliability of ADT 2.0. In addition, content, face, and construct validity are being examined. If you are teaching an introductory astronomy course aimed at non-science majors for Spring 2001, your class can be part of this project. We are looking for volunteers! We are also interested in hearing your ideas for a "next-generation" version of the ADT. Funding provided by NSF grant REC-0089239

  19. Is It Working? Distractor Analysis Results from the Test Of Astronomy STandards (TOAST) Assessment Instrument

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie

    2009-05-01

    The Test Of Astronomy STandards (TOAST) assessment instrument is a multiple-choice survey tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) have been conducting a question-by-question distractor analysis procedure to determine the sensitivity and effectiveness of each item. In brief, the frequency each possible answer choice, known as a foil or distractor on a multiple-choice test, is determined and compared to the existing literature on the teaching and learning of astronomy. In addition to having statistical difficulty and discrimination values, a well functioning assessment item will show students selecting distractors in the relative proportions to how we expect them to respond based on known misconceptions and reasoning difficulties. In all cases, our distractor analysis suggests that all items are functioning as expected. These results add weight to the validity of the Test Of Astronomy STandards (TOAST) assessment instrument, which is designed to help instructors and researchers measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.

  20. Teaching ASTRO 101 Students the Art of Scientific Argumentation

    NASA Astrophysics Data System (ADS)

    Schleigh, Sharon P.; Slater, Stephanie; Slater, Timothy F.

    2016-01-01

    Going beyond asking students to simply memorize facts about the universe, a longstanding challenge in teaching astronomy centers on successfully teaching students about the nature of science. As introductory astronomy survey courses, known widely as ASTRO 101, can sometimes be the last science course non-science majoring undergraduates take, many faculty hope to emphasize the scientific enterprise as a broad field in inquiry making valuable contributions to civilization as a whole, rather than as an isolated study of objects far from Earth. Scholars have long proposed that an understanding of the nature of science as a human endeavor requires explicit instruction. In other words, students successfully learning the facts of astronomy does not in any way ensure that students will learn anything about the nature of how astronomy is done. In a purposeful effort to improve students' understanding about the practices and discourse of astronomy, scholars working with the CAPER Center for Astronomy & Physics Education research are developing a suite of carefully designed instructional sequences—called Scientific Argumentation—focused on teaching students the differences between data and evidence, how to communicate and defend evidence-based conclusions, and how to be informed skeptics of scientific claims. Early results show students moving from naïve understandings of scientific practices to more informed understandings as well as demonstrating enhanced value for science in general as an worthwhile human endeavor with far reaching benefits.

  21. East African ROAD

    NASA Astrophysics Data System (ADS)

    Tekle, Kelali

    2016-10-01

    In the developing world astronomy had been treated as the science of elites. As a result of this overwhelming perception, astronomy compared with other applied sciences has got less attention and its role in development has been insignificant. However, the IAU General Assembly decision in 2009 opened new opportunity for countries and professionals to deeply look into Astronomy and its role in development. Then, the subsequent establishment of regional offices in the developing world is helping countries to integrate astronomy with other earth and space based sciences so as to progressively promote its scientific and development importance. Gradually nations have come to know that space is the frontier of tomorrow and the urgency of preeminence on space frontier starts at primary school and ascends to tertiary education. For this to happen, member nations in east African region have placed STEM education at the center of their education system. For instance, Ethiopian has changed University enrollment strategy to be in favor of science and engineering subjects, i.e. every year seventy percent of new University entrants join science and engineering fields while thirty percent social science and humanities. Such bold actions truly promote astronomy to be conceived as gateway to science and technology. To promote the concept of astronomy for development the East African regional office has actually aligned it activities to be in line with the focus areas identified by the IAU strategy (2010 to 2020).

  1. Astronomy Education. Third Newsletter of the TGEA (Task Group on Education in Astronomy).

    ERIC Educational Resources Information Center

    Wentzel, Donat G., Comp.

    This newsletter, published by the Task Group on Education in Astronomy, focuses on astronomy education both for the public and for schools. Topics in this issue include new publications related to astronomy education; a roster of consultants on astronomy education; a collection of course syllabuses (college level); teaching astronomy in schools,…

  2. Astronomical Book Trek: Astronomy Books of 1982.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1983-01-01

    Provided in two separate annotated lists are technical and nontechnical astronomy books. Categories in the latter group include: general astronomy; astronomy textbooks; amateur astronomy; astronomy history; life on other worlds; astrophysics; the solar system; space exploration; and the sun. (JN)

  3. Measuring the Relationship between Stellar Scintillation and Altitude: A Simple Discovery-Based Observational Exercise Used in College Level Non-Major Astronomy Classes

    ERIC Educational Resources Information Center

    Sampson, Russell D.

    2013-01-01

    A simple naked eye observational exercise is outlined that teaches non-major astronomy students basic observational and critical thinking skills but does not require complex equipment or extensive knowledge of the night sky. Students measure the relationship between stellar scintillation and the altitude of a set of stars. Successful observations…

  4. Prior Knowledge Base of Constellations and Bright Stars among Non-Science Majoring Undergraduates and 14-15 Year Old Students

    ERIC Educational Resources Information Center

    Hintz, Eric G.; Hintz, Maureen L.; Lawler, M. Jeannette

    2015-01-01

    As part of an effort to improve students' knowledge of constellations and bright stars in an introductory level descriptive astronomy survey course, we measured the baseline knowledge that students bring to the class and how their score evolve over the course of the semester. This baseline is needed by the broader astronomy education research…

  5. The Effect of 3D Computer Modeling and Observation-Based Instruction on the Conceptual Change regarding Basic Concepts of Astronomy in Elementary School Students

    ERIC Educational Resources Information Center

    Kucukozer, Huseyin; Korkusuz, M. Emin; Kucukozer, H. Asuman; Yurumezoglu, Kemal

    2009-01-01

    This study has examined the impact of teaching certain basic concepts of astronomy through a predict-observe-explain strategy, which includes three-dimensional (3D) computer modeling and observations on conceptual changes seen in sixth-grade elementary school children (aged 11-13; number of students: 131). A pre- and postastronomy instruction…

  6. Science Divulgation: The Social Representations of Brazilian Researchers Working in the Field of Astronomy

    NASA Astrophysics Data System (ADS)

    Carneiro, Dalira Lúcia Cunha Maradei; Longhini, Marcos Daniel

    2015-12-01

    This article addresses the role of scientific divulgation in the interaction between science and society, debating the importance of Astronomy as a prime starter of the scientific divulgation. In the light of Moscovici’s Social Representations Theory, the social representations on scientific divulgation of Brazilian researchers that work in the field of Astronomy are studied. Individuals from different educational trajectories ansewered semi-structured interviews, which were analyzed according to Spink. The results indicate two representations: one for the society at large, moved by passion, based on values and beliefs, and on the satisfaction of seeing the results of their actions on people’s life; and another for their peers. In the first representation, gaps that obstruct the science divulgation emerge, such as the lack of training and the difficulty to use a plain language, the bureaucracy required for the projects’ execution and its negative representation in the media. Other inferences are that Astronomy is neither part of a systematic teaching nor a part of the media at large, and it often presents conceptual mistakes. Those representations find an echo in the theoretical framework, showing that, despite their advances, scientific divulgation and Astronomy Education are in a context of social fragility.

  7. Astronomy and Public Policy

    NASA Astrophysics Data System (ADS)

    Suntzeff, Nicholas B.

    2014-01-01

    Astronomy is an unusual science in that almost all of what we study can only be passively observed. We enjoy tremendous public support for our research and education, both domestically and abroad. Our discoveries in cosmology and exoplanets have captured world-wide attention, as have stunning images from the Great Observatories of NASA, and ground based telescopes. Despite the passive nature of our science, it touches humanity profoundly. There are groups of amateur astronomers in every conceivable country who meet to look at the sky. Almost one billion people from 150 countries participated in The International Year of Astronomy 2009. No other science reaches humanity as ours does. In a recent poll, it was found that the among all the things the US does abroad, US science is seen by the world as our most positive face. We as astronomers can use this good will to affect positive changes in the world through public policy. I would like to explore how astronomy has impacted public policy, especially foreign policy, and what more we can do in the future. I also hope to encourage astronomers that a career path into public policy is an excellent use of a Ph.D. in astronomy.

  8. International Schools for Young Astronomers Teaching for Astronomy Development: two programmes of the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Gerbaldi, Michèle; DeGreve, Jean-Pierre; Guinan, Edward

    2011-06-01

    This text outlines the main features of two educational programmes of the International Astronomical Union (IAU): the International Schools for Young Astronomers (ISYA) and the Teaching for Astronomy Development programme (TAD), developed since 1967. The main goal of the International Schools for Young Astronomers (ISYA) is to support astronomy (education and research) in developing countries in organizing a 3-week School for students with typically M.Sc. degrees. The context in which the ISYA were developed changed drastically during the last decade. From a time when access to large telescopes was difficult and mainly organized on a nation-basis, nowadays the archives of astronomical data have accumulated at the same time that many major telescope become accessible, and they are accessible from everywhere, the concept of virtual observatory reinforcing this access. A second programme of the IAU, Teaching for Astronomy Development (TAD), partially based on a School, but also of shorter duration (typically one week) has a complementary objective. It is dedicated to assist countries that have little or no astronomical activity, but that wish to enhance their astronomy education. The fast development of the TAD programme over the past years is emphasized.

  9. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  10. Advanced Technologies and Instrumentation at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  11. Kinds of Astronomy-5

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Astronomers study light and basically, almost everything we know about the universe has been figured out through the study of light gathered by telescopes on the earth, in the earth's atmosphere, and in space. This light comes in many different colors, the sum of which comprises what is commonly I known as the electromagnetic (EM) spectrum. Unfortunately, the earth's atmosphere blocks almost all of wavelengths in the EM spectrum. Only the visible (400-700 mn) and radio (approx. 1-150 m) "windows" are accessible from the ground, and thus have the longest observational "history." These early restrictions on the observational astronomer also gave rise to classifying "kinds" of astronomy based on their respective EM portion, such as the term "radio astronomy."

  12. The decade of discovery in astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A survey of astronomy and astrophysics in the 1990s is presented and a prioritized agenda is offered for space- and ground-based research into the 21st century. In addition to proposing new telescopes for ground and space, the research infrastructure is discussed. The urgent need is emphasized for increased support of individual investigators, for appropriate maintenance and refurbishment of existing facilities, and for a balanced program of space astronomy. The scientific and the technical opportunities of the 1990s are summarized and the technological development is described needed for instruments to be built in the first years of the next century. Also addressed is the suitability of the Moon as an observation site.

  13. Astronomy popularization at the University of Wrocław

    NASA Astrophysics Data System (ADS)

    Preś, Paweł; Cader-Sroka, Barbara; Berlicki, Arkadiusz

    2016-06-01

    Science popularization found many expressions in the history of the Astronomical Institute of the University of Wrocław. The long-lasting is the tradition of popular astronomy lectures. Occasional celestial events are the base of public observations. Since 1998 the Institute boldly participates in the Lower-Silesian Science Festival. The rising public interest in astronomy encouraged us to establish ''Planetarium'' laboratory in 2008. Together with the Astronomical Institute of the Academy of Sciences of the Czech Republic we established in 2009 the very first trans-border dark-sky park in the location of Izera Mountains, where since then the public can benefit from excellent observational conditions and the astronomers' support.

  14. Classification System and Information Services in the Library of SAO RAS

    NASA Astrophysics Data System (ADS)

    Shvedova, G. S.

    The classification system used at SAO RAS is described. It includes both special determinants from UDC (Universal Decimal Classification) and newer tables with astronomical terms from the Library-Bibliographical Classification (LBC). The classification tables are continually modified, and new astronomical terms are introduced. At the present time the information services of the scientists is fulfilled with the help of the Abstract Journal Astronomy, Astronomy and Astrophysics Abstracts, catalogues and card indexes of the library. Based on our classification system and The Astronomy Thesaurus completed by R.M. Shobbrook and R.R. Shobbrook the development of a database for the library has been started, which allows prompt service of the observatory's staff members.

  15. A Machine Learning Classifier for Fast Radio Burst Detection at the VLBA

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.; Tang, Benyang; Thompson, David R.; Khudikyan, Shakeh; Wyngaard, Jane; Deller, Adam T.; Palaniswamy, Divya; Tingay, Steven J.; Wayth, Randall B.

    2016-08-01

    Time domain radio astronomy observing campaigns frequently generate large volumes of data. Our goal is to develop automated methods that can identify events of interest buried within the larger data stream. The V-FASTR fast transient system was designed to detect rare fast radio bursts within data collected by the Very Long Baseline Array. The resulting event candidates constitute a significant burden in terms of subsequent human reviewing time. We have trained and deployed a machine learning classifier that marks each candidate detection as a pulse from a known pulsar, an artifact due to radio frequency interference, or a potential new discovery. The classifier maintains high reliability by restricting its predictions to those with at least 90% confidence. We have also implemented several efficiency and usability improvements to the V-FASTR web-based candidate review system. Overall, we found that time spent reviewing decreased and the fraction of interesting candidates increased. The classifier now classifies (and therefore filters) 80%-90% of the candidates, with an accuracy greater than 98%, leaving only the 10%-20% most promising candidates to be reviewed by humans.

  16. VAO Tools Enhance CANDELS Research Productivity

    NASA Astrophysics Data System (ADS)

    Greene, Gretchen; Donley, J.; Rodney, S.; LAZIO, J.; Koekemoer, A. M.; Busko, I.; Hanisch, R. J.; VAO Team; CANDELS Team

    2013-01-01

    The formation of galaxies and their co-evolution with black holes through cosmic time are prominent areas in current extragalactic astronomy. New methods in science research are building upon collaborations between scientists and archive data centers which span large volumes of multi-wavelength and heterogeneous data. A successful example of this form of teamwork is demonstrated by the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) and the Virtual Astronomical Observatory (VAO) collaboration. The CANDELS project archive data provider services are registered and discoverable in the VAO through an innovative web based Data Discovery Tool, providing a drill down capability and cross-referencing with other co-spatially located astronomical catalogs, images and spectra. The CANDELS team is working together with the VAO to define new methods for analyzing Spectral Energy Distributions of galaxies containing active galactic nuclei, and helping to evolve advanced catalog matching methods for exploring images of variable depths, wavelengths and resolution. Through the publication of VOEvents, the CANDELS project is publishing data streams for newly discovered supernovae that are bright enough to be followed from the ground.

  17. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  18. Photon Physics and Plasma Research, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].

  19. Generating Mosaics of Astronomical Images

    NASA Technical Reports Server (NTRS)

    Bergou, Attila; Berriman, Bruce; Good, John; Jacob, Joseph; Katz, Daniel; Laity, Anastasia; Prince, Thomas; Williams, Roy

    2005-01-01

    "Montage" is the name of a service of the National Virtual Observatory (NVO), and of software being developed to implement the service via the World Wide Web. Montage generates science-grade custom mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. "Science-grade" in this context signifies that terrestrial and instrumental features are removed from images in a way that can be described quantitatively. "Custom" refers to user-specified parameters of projection, coordinates, size, rotation, and spatial sampling. The greatest value of Montage is expected to lie in its ability to analyze images at multiple wavelengths, delivering them on a common projection, coordinate system, and spatial sampling, and thereby enabling further analysis as though they were part of a single, multi-wavelength image. Montage will be deployed as a computation-intensive service through existing astronomy portals and other Web sites. It will be integrated into the emerging NVO architecture and will be executed on the TeraGrid. The Montage software will also be portable and publicly available.

  20. Astronomy Enrollments and Degrees: Results from the 2012 Survey of Astronomy Enrollments and Degrees. Focus On

    ERIC Educational Resources Information Center

    Mulvey, Patrick; Nicholson, Starr

    2014-01-01

    Interest in astronomy degrees in the U.S. remains strong, with astronomy enrollments at or near all-time highs for the 2012-13 academic year. The total number of students taking an introductory astronomy course at a degree-granting physics or astronomy department is approaching 200,000. Enrollments in introductory astronomy courses have been…

  1. Astronomy Books of 1984: The Non-Technical List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1985-01-01

    Presents an annotated list of nontechnical astronomy books in these categories: amateur astronomy; children's books; cosmology; galaxies; general astronomy; history of astronomy; life in the universe; physics and astronomy; pseudoscience; quasars and active galaxies; solar system; space exploration; stars/stellar evolution; sun; astronomy…

  2. The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy

    NASA Astrophysics Data System (ADS)

    Leon, N. J.; Fisher, D. K.

    2008-12-01

    The Space Place is a unique NASA education and public outreach program. It includes a NASA website (spaceplace.nasa.gov) in English and Spanish that targets elementary age children with appealing, content- rich STEM material on space science, Earth science, and technology. The site features science and/or technology content related to, so far, over 40 NASA missions. This overall program, as well as special efforts planned for IYA2009, strongly support many of the objectives of IYA. Some of these are: 1. Stimulate interest in astronomy and science, especially among young people and in audiences not normally reached. 2. Increase scientific awareness. 3. Support and improve formal and informal science education. 4. Provide a contemporary image of science and scientists. 5. Facilitate new astronomy education networks and strengthen existing ones. 6. Improve the gender-balanced representation of scientists at all levels and promote greater involvement of underrepresented groups. The Space Place program has cultivated a large network of community partners (Obj. 5), including museums, libraries, and planetariums, as well as a large network of avocational astronomy societies. We send the community partners monthly mailings of the latest NASA materials for their "NASA Space Place" display boards (Obj. 1, 2, 3, 5). The astronomy societies receive original articles with the latest "insider" news on NASA missions for publication in their newsletters or on their websites (Obj. 2, 5). Through these leveraged partnerships, we reach a large audience of children; parents; formal and informal educators; rural, minority, and otherwise underserved audiences (Obj. 1, 6); and avocational astronomers, many of whom work with children and the general public in the classroom or at special events (Obj. 2, 3). Supporting Obj. 4, are the "Space Place Live" cartoon "talk show" episodes, spaceplace.nasa.gov/en/kids/live. For IYA 2009, we will specifically prepare our partners to plan and carry out activities to tie in with the IYA April topic, Galaxies and the Distant Universe. The infrared Spitzer Space Telescope, as well as the Galaxy Evolution Explorer (GALEX) spacecraft are strongly represented on The Space Place web site, with interactive games, images, and crafts that explore the wonders of and latest discoveries about galaxies. In addition, in our mailings and other partner communications throughout the year, we will feature special activities and projects on spaceplace.nasa.gov, and suggest ways to use these resources in IYA-related events.

  3. Panel on Graduate Education in Science

    NASA Astrophysics Data System (ADS)

    Strom, S.; Edwards, S.; Gallagher, J. S.; Levy, E.; York, D.; van Horn, H.; Wyckoff, S.

    1995-12-01

    As a result of the shifting emphasis for public investment in basic research and higher education, opportunities for new PhDs to follow traditional academic research careers are expected to decrease. Given these realities, it is both essential and timely to re-examine the role of graduate schools in serving our discipline, our students, and the society which supports us. Central to the discussion are the questions: (1) What should be the goals and content of an astronomy graduate education in view of (a) the discipline's need to continue a tradition of carrying out world class research, and (b) our nation's need for imaginative, scientifically capable and adaptable young people, both in the technical workforce and as teachers in the nation's schools? (2) Should we consider changing our admissions policies, graduate curricula, funding patterns or academic culture to meet the needs of (a) our discipline, and (b) our nation? The panelists will share their current perspectives on these very challenging questions. A follow-up open discussion on these issues will be held on Tuesday evening. A detailed outline of the questions regarding the goals of graduate education in astronomy formulated by the AAS Education Policy Board may be found through the Education link on the AAS World Wide Web homepage.

  4. Music and Astronomy Under The Stars after 4 years and 50,000 People

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald A.

    2013-01-01

    Since 2009 my NASA-funded Music and Astronomy Under the Stars (MAUS) program has brought astronomy to 50,000 music lovers at the National Mall (co-sponsor OSTP); Central Park Jazz, Newport Folk, Ravinia, or Tanglewood music festivals; and classical, folk, pop/rock, opera, Caribbean, or county-western concerts in parks assisted by astronomy clubs (55 events; 28parks). MAUS combines solar, optical, and radio telescope observations; live image projection; large posters/banners (From the Earth to the Universe and Visions of the Universe); videos; and hands-on activities (Night Sky Network; Harvard-Smithsonian CfA); imaging with a cell phone mount; and hand-outs(with info on science museums, astronomy clubs, and citizen science before and after the concerts or at intermission. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, the McCoy Tyner Quartet, Ravi Coltrane, Esperanza Spalding, the Stanley Clarke Band, Phish, Blood Sweat and Tears, Deep Purple, Patti Smith, Tony Orlando, and Ronan Tynan performed at these concerts. MAUS reached underserved groups and attracted large enthusiastic crowds. Many young children participated in this family learning experience-often the first time they looked through a telescope. Lessons learned: plan early; create partnerships with parks and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use media/www sites to promote the events; use many telescopes for multipletargets; project a live image or video; select equipment that is easy to use, store, set-up, and take down; use hands-on astronomy activities; position the displays for maximum visibility (they became teachable moments); and have educator hand-outs. While < 50% of the participants attended a science museum or took part in astronomy programs in the previous year (based on our survey), they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn more; and increased their interest in science (ave. rating 4.6/5). Taking science directly to people is effective in promoting scienceeducation! Sponsor: NASA grant NNX09AD53G

  5. Dark Skies Awareness Programs for the U.S. International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; U. S. IYA Dark Skies Working Group

    2009-01-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource” is one of seven primary themes of the U.S. International Year of Astronomy program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, activities have been developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking, Second Life) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize an event in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs, as well as RFI monitoring (e.g., GLOBE at Night and Quiet Skies) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., the Dark Skies Toolkit, Good Neighbor Lighting, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial). To deliver these programs, strategic networks have been established with astronomy clubs (ASP's Night Sky Network's astronomy clubs and the Astronomical League), science and nature centers (Astronomy from the Ground Up and the Association of Science and Technology), educational programs (Project ASTRO and GLOBE) and the International Dark-sky Association. The poster will describe the "know-how” and the means for people to become community advocates in promoting Dark Skies programs as public events at their home institutions. For more information, visit http://astronomy2009.us/darkskies/.

  6. The 2015 Chile-U.S. Astronomy Education Outreach Summit in Chile

    NASA Astrophysics Data System (ADS)

    Preston, Sandra Lee; Arnett, Dinah; Hardy, Eduardo; Cabezón, Sergio; Spuck, Tim; Fields, Mary Sue; Smith, R. Chris

    2015-08-01

    The first Chile-U.S. Astronomy Education Outreach Summit occurred March 22-28, 2015. The Summit was organized and supported by the U.S. Embassy in Chile, Associated Universities Inc., Association of Universities for Research in Astronomy, the Carnegie Institution for Science, the Image of Chile Foundation, the National Science Foundation, and La Comisión Nacional de Investigación Científica y Tecnológica. The Summit brought together a team of leading experts and officials from Chile and the U.S. to share best practices in astronomy education and outreach. In addition, Summit participants discussed enhancing existing partnerships, and building new collaborations between U.S. Observatories and astronomy education outreach leaders in Chile.The Summit was an exciting and intense week of work and travel. Discussions opened in Santiago on March 22 with a variety of astronomy education and public outreach work sessions, a public forum, and on March 23 the U.S. Embassy sponsored a Star Party. On Tuesday, March 24, the Summit moved to San Pedro de Atacama, where activities included work sessions, a visit to the Atacama Large Millimeter/Submillimeter Array telescope facilities, and a second public forum. From San Pedro, the team traveled to La Serena for additional work sessions, visits to Gemini and Cerro Tololo, a third public forum, and the closing session. At each stop, authorities and the broader community were invited to participate and provide valuable input on the current state, and the future, of astronomy education and public outreach.Following the Summit a core working committee has continued meeting to draft a “roadmap document” based on findings from the Summit. This document will help to identify potential gaps in astronomy outreach efforts, and how the U.S. facilities and Chilean institutions might work together strategically to address these needs. The first draft of this “roadmap document” will be made available for comment in both Spanish and English in late September 2015.

  7. The View from the Observatory: History is Too Important to be Left to the Historians

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2001-12-01

    As the first astronomer turned historian of astronomy relatively late in life to receive the LeRoy Doggett Prize, I am especially grateful to its Committee for this high honor. I knew LeRoy well and worked with him when he was Secretary`Treasurer of the HAD before his untimely death. I will begin my lecture by paying tribute to my mentors who encouraged and helped me to become a historian of astronomy, Mary Lea Heger Shane, Owen Gingerich, Helen Wright, and William G. Hoyt. Then I will speak briefly on why I think astronomers are interested in the history of their science, buttressed by quotations from Ecclesiasticus, Henry Ford, Thucydides, and Herodotus. Basically it is because we are interested in our roots, just as members of a family are interested in its roots. I will talk briefly about the Mary Lea Shane Archives of the Lick Observatory, and what a resource it is for my specialty, American Astronomy in the Big-Telescope Era. Its Curator, Dorothy Schaumberg, has helped me and hundreds of other historians of astronomy tremendously. I believe it helps anyone who wants to understand the history of astronomy to know and understand astronomy. History must be based on facts, which archives, scientific papers, and books can provide. Immersion in a field like astronomy makes one better qualified to understand what others have done in that field, and how they did it, as Ibsen, Hemingway, Tuchman, and Grisham have all stated and proved by example. Finally I will give a progress report on my current project, the life and scientific career of the early American astronomer and solar physicist Charles A. Young (1834-1908). Astronomy was very different in his ``small-telescope era," but there are many modern resonances in his problems and their solutions.

  8. STS-Astro: Astronomy in the focus of Science, Technology and Society and Case Study in Education Distance

    NASA Astrophysics Data System (ADS)

    Ferreira, O. R.

    2014-02-01

    The dissertation addresses the focus of Astronomy in Science, Technology and Society [STS}, which the author calls the STS-Astro. Observes the International Year of the Astronomy 2009 [IYA 2009] as one of the greatest experiences STS worldwide, causing unprecedented integration between science, technology and humanities, with positive impacts in many sectors of society and are still worthy of study, specially in Brazil due to the implementation of the International Year of Astronomy, Brazil 2009 [IYABrazil-2009}. Astronomy is also investigated in the area of Education, based mainly on theoretical aspects of educational socio-interacionist of Lev Semenovich Vygotsky (Vygotsky, 1991, 2008 and 2012, p. 103-117) and socio-historical cultural of Paulo Reglus Neves Freire (1979, 1982 and 1996), but when necessary and still keeping the field of constructivism, properly taking advantage of the interactionism and transdisciplinarity of Jean William Fritz Piaget (1983). Concerning Distance Education [DE], it is noted significant growth at the graduate and postgraduate courses. New challenges arise, with the establishment of an increasingly accustomed to Information and Communication Technologies [ICT] and the teaching methodologies to be used and developed, with Astronomy becoming an important instrument in the teaching-learning process associated technologies. Using the methodology of action research, we proceeded with a case study involving 26 students of the discipline of Astronomy Topics applied to Education, between November 1 and December 17, 2012, of the postgraduation courses in Distance Education at the Universidade Cruzeiro do Sul [Southern Cross University]. The results obtained permit statistical surveys therefore quantitative, but also qualitative information about the teaching-learning Astronomy by DE. Analyses of performance and progress of each student and set permit a finding interaction among those involved in the mediation of the teacher-tutor who, in turn, as a researcher also went through changes to processes meet also inserted in the role of agent or actor, while also influences and is influenced.

  9. The Center for Astronomy Education (CAE) Ushers in a New Community-Based Model for Astronomy Education Research with the NSF Funded CCLI Phase III Collaboration of Astronomy Teaching Scholars (CATS) Program

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Impey, C.; Prather, E.; Lee, K.; Duncan, D.

    2009-01-01

    The Center for Astronomy Education (CAE) has been devoted to improving teaching & learning in Astro 101 by creating research-validated curriculum & assessment instruments for use in Astro 101 & by providing Astro 101 instructors professional development opportunities to increase their pedagogical content knowledge & instructional skills at implementing these curricula & assessment materials. To create sustainability and further expand this work, CAE, in collaboration with other national leaders in astronomy education & research, developed the Collaboration of Astronomy Teaching Scholars (CATS) Program. The primary goals of CATS are to: 1) increase the number of Astro 101 instructors conducting fundamental research in astronomy education 2) increase the amount of research-validated curriculum & assessment instruments available for use in Astro 101 3) increase the number of people prepared to develop & conduct their own CAE Teaching Excellence Workshops In our first year we have concluded a national study assessing the teaching & learning of Astro 101 & the effect of interactive instruction. We have begun the initial analysis of the demographics data of this study. We have begun a classroom research validation study on the use of the "ClassAction” electronic learning system. We have begun to analyze data from two different studies on students’ attitudes & understanding of science to inform the creation of an assessment instrument designed specifically for Astro 101 to evaluate the effectiveness of our instruction in improving students’ attitudes & beliefs about science. We have also begun the development of a Solar System Concept Inventory. Additionally the development of the Solar System Concept Inventory and research into students’ beliefs and reasoning difficulties on topics in Cosmology are well underway. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  10. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  11. Getting to Know and Address Your State Science Standards to Connect Classroom Instruction and Field Trips During IYA

    NASA Astrophysics Data System (ADS)

    Bednarski, M.; Larsen, K.

    2008-11-01

    Astronomy activities often pose problems for in-service teachers, especially at the elementary level, as many do not have a solid content background. Often astronomy instruction revolves around reading and answering questions. This is not an effective way to work with abstract concepts or engage students, and also fails to meet the standards of inquiry-based instruction recommended by the National Science Teachers Association and national and state standards. Science museums and planetariums bring unique and exciting perspectives to astronomy education. However, bringing students to the museum can sometimes be perceived as only a ``cool field trip.'' With mounting pressure for teachers to teach to the new standardized tests demanded by No Child Left Behind, and shrinking school budgets, field trips are rapidly becoming an endangered species. Coordinating museum, science center, and planetarium offerings with national and state science standards can renew interest in (and perceived relevance of) field trips. Therefore, university faculty, in-service teachers, and museum/planetarium staff can form successful partnerships which can both improve student learning and increase attendance at informal education science events and facilities. This workshop will first briefly introduce participants to national and representative state standards as well as research on in-service teachers' astronomy content knowledge and the educational value of field trips. For the majority of the workshop, participants will engage in the actual steps of coordinating, planning, and writing inquiry-based astronomy curriculum embedded performance tasks that collectively meet the learning needs of students in elementary, middle, or high school.

  12. The U.S. Program for the International Year of Astronomy 2009 (IYA2009): Outcomes, Lessons Learned, and Legacy Projects (Invited)

    NASA Astrophysics Data System (ADS)

    Isbell, D.

    2009-12-01

    The United States conducted an active and wide-ranging program for IYA2009, thanks largely to support from the American Astronomical Society, the National Science Foundation, and NASA. The U.S. effort included leadership of several international “cornerstone” projects, including the Galileoscope telescope kit, the “From Earth to the Universe” image exhibition, Dark-Skies Awareness, and a variety of creative New Media activities, such as a daily podcast (“365 Days of Astronomy”) and a virtual island in Second Life. In addition, U.S. astronomy educators and outreach professionals played major roles in IYA2009 cornerstone projects designed to promote greater gender equity in astronomy (“She is An Astronomer”); to provide the best astronomy resources for formal education (the Galileo Teacher Training Program); and to conduct global weekend-long celebrations of astronomy involving star parties, several live Webcasts, and special events (“100 Hours of Astronomy” and “Galilean Nights”). NASA led special projects to provide large astronomy images to science centers across the nation, and sent comprehensive exhibits on the major themes of modern astronomy to dozens of libraries in small and medium-sized cities, based on competitive proposals for community impact (“Visions of the Universe”). Underpinning all of these efforts was a variety of methods for informing and engaging the large community of U.S. amateur astronomers, and active communication with our colleagues in Canada, Puerto Rico and Mexico. This talk will review the outcomes and major success stories from the year, discuss several lessons learned that could be useful for pending efforts such as the 2011 International Year of Chemistry, and provide a look ahead for IYA2009 projects and resources that are expected to continue to be active in 2010 and beyond.

  13. Integrating WorldWide Telescope with Wordpress

    NASA Astrophysics Data System (ADS)

    Sands, Mark; Luebbert, J.; Fay, J.; Gay, P. L.

    2010-01-01

    In this project we unite three major components of astronomy and new media: World Wide Telescope, Wordpress, and user supplied audio. Through an easy to use Wordpress plug-in users can create WorldWide Telescope sky tours that allow: a) astronomers and educators to spread the facts and awareness of astronomy, potentially bringing new and interested individuals into the astronomy community; b) bloggers/podcasters to create dynamic, virtual tours of the universe that are nearly boundless; and, c) readers to benefit from the alluring WorldWide Telescope tours by gaining a new and dramatic outlook on our universe. This software has the potential to augment, and in some cases replace, traditional methods of astronomy centered online lectures. With this plugin, it is possible to combine Wordpress-based website content with audio, and a sky tour that can be paused at any object. This ability to pause a sky tour allows the user to further explore the wealth of data provided within WWT. This fully customizable solution includes all of the necessary features required to reproduce a lecture in a more creative and appealing format then some of the standard, typically non-interactive, movies and podcasts currently found online. Through the creation of effective WorldWide Telescope tours, astronomers and educators can better extend astronomy content to astronomy-interested, but not yet engaged, members of the new media community. These tours will provide a better understanding and appreciation for what our universe has to offer. Through this new media approach of integrating WorldWide Telescope with blogs and podcasts, users can now extend their interest in astronomy by exploring the universe themselves, moving beyond provided content to gain a better understanding all on their own.

  14. Reexamining the Underrepresentation of Indigenous Peoples in Astronomy: A Hawaiian Case Study

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie J.; Slater, Timothy F.

    2015-08-01

    As we look toward a future of ever increasing challenges in astronomy, there is widespread consensus that solutions depend on expanding human capitol. While we contemplate pathways to increase astronomy/STEM capacity across multinational settings, we are theoretically hindered by our failure to fully develop the capacity of ethnic and racial groups. Indigenous peoples continue to be underrepresented in astronomy at one-sixth of their share of the total U.S. population, despite investment of substantial resources from the public and private sectors. At the extreme, Native Hawaiians participate in astronomy at rates that are almost incalculably low. This 14-year case study of astronomy in the Hawaiian context suggests that national efforts (e.g. standards-based reform and agency-funded education and public outreach) have been, and are likely to continue to be, ineffective, as these efforts do not address the source of the problem. An examination of K-12, informal science, and "broader impacts" settings in Hawai'i, suggest that the disparity is ultimately rooted in a failure of relationships. Research across these settings indicates that many current common-sense efforts fail to transmit across cultures, and that effective efforts must primarily foster authentic trust and respect between Western and Indigenous perspective-holders. Specifically, findings suggest that much of our failure has been a result of human resource decisions. Although extensive research on effective practices at the indigenous/mainstream culture interface suggests that appropriate “bridge” persons are essential to creating authentic trust and respect between groups, in the Hawaiian context, we have often failed to do the work required to employ and empower “bridge” people. With critical examination of best- and worst-practices, this session focuses on immediate actions that can be taken to positively impact diverse participation in astronomy.

  15. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the CAPER Center for Astronomy & Physics Education Research. More information about the journal and its policies are available online at http://www.JAESE.org

  16. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and implemented teacher professional development workshops. Their efforts have impacted thousands of students and teachers.

  17. An assessment of professional development for astronomy and physics faculty: Expanding our vision of how to support faculty's learning about teaching

    NASA Astrophysics Data System (ADS)

    Olmstead, Alice Rose

    In this thesis, we will explore approaches to faculty instructional change in astronomy and physics. We primarily focus on professional development (PD) workshops, which are a central mechanism used within our community to help faculty improve their teaching. Although workshops serve a critical role for promoting more equitable instruction, we rarely assess them through careful consideration of how they engage faculty. To encourage a shift towards more reflective, research-informed PD, we developed the Real-Time Professional Development Observation Tool (R-PDOT), to document the form and focus of faculty's engagement during workshops. We then analyze video-recordings of faculty's interactions during the Physics and Astronomy New Faculty Workshop, focusing on instances where faculty might engage in pedagogical sense-making. Finally, we consider insights gained from our own local, team-based effort to improve a course sequence for astronomy majors. We conclude with recommendations for PD leaders and researchers.

  18. The Northwest Indiana Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  19. Inuit Astronomy

    NASA Astrophysics Data System (ADS)

    MacDonald, John

    Inuit live mainly in the treeless Arctic regions of North America, Greenland, and parts of northeastern Siberia. Their cosmology, based on shamanistic belief, constructed a view of the sky and its contents distinctively suited to their spiritual and pragmatic needs. Their astronomy, particularly for those groups living far above the Arctic Circle, reflects the unique appearance of the celestial sphere at high northerly latitudes, demonstrated most noticeably in the annual disappearance of the sun during midwinter months.

  20. Optical Observing Conditions at Delingha Station

    NASA Astrophysics Data System (ADS)

    Tian, J. F.; Deng, L. C.; Zhang, X. B.; Lu, X. M.; Sun, J. J.; Liu, Q. L.; Zhou, Q.; Yan, Z. Z.; Xin, Y.; Wang, K.; Jiang, X. J.; Luo, Z. Q.; Yang, J.

    2016-10-01

    SONG is a global ground-based network of 1m telescopes for stellar time-domain science, an international collaboration involving many countries across the world. In order to enable a favorable duty cycle, the SONG network plans to create a homogeneous distribution of four nodes in each of the northern and southern hemispheres. An expected possibility was building one of the northern nodes in East Asia, preferably on the Qinghai-Tibetan Plateau. During the last decade, a great deal of effort has been invested in searching for a high-quality site for ground-based astronomy in China, since this has been one of the major concerns for the development of Chinese astronomy. A number of sites on the plateau have been in operation for many years, but most of them are used only for radio astronomy, as well as small optical telescopes that are used for applied astronomy. Several potential sites for large optical instruments have been identified by the plateau site survey, but so far none of them have been adequately quantitatively characterized. Here we present results from a detailed multi-year study of the Delingha site, which was eventually selected for the SONG-China node. We also describe the site-monitoring system that will allow an isolated SONG and 50BiN node to operate safely in an automated mode.

  1. Birth of the Astronomy Diagnostic Test: Prototest Evolution

    NASA Astrophysics Data System (ADS)

    Zeilik, M.

    2001-12-01

    In 1992, with funding by the National Science Foundation, a multidisciplinary research team at the University of New Mexico accreted to transform a "traditional Astro 101" course into a conceptually-oriented one. The team consisted of people from astronomy, cognitive psychology, and education. Our aim was to improve the learning environment in a large "lecture" course based on current cognitive models of adult learning. We demanded that our effort be research-based, but found little in the literature to assist us; for example, no field-tested assessment tools that would measure appropiate outcomes had been developed in higher education. From prior research at lower grades, we saw the need of a valid and reliable "misconceptions" test. We also desired to tap into higher level conceptual learning, and so developed concept map assessments to measure acquisition of the "Big Picture" in astronomy. These "misconceptions measures" were protoversions of the Astronomy Diagnostic Test (ADT) that gained in structure and usefulness over four semesters involving hundreds of students. I will outline our methodology to develop the ADT in a bootstrap way, its basis as a learning tool, and its correlation with other assessments (especially the concept maps) and achievement in the UNM "Astro 101" course. This work was supported in part by NSF DUE grants 9253983 and 9981155.

  2. Standardised online data access and publishing for Earth Systems and Climate data in Australia

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Druken, K. A.; Trenham, C.; Wang, J.; Wyborn, L. A.; Smillie, J.; Allen, C.; Porter, D.

    2015-12-01

    The National Computational Infrastructure (NCI) hosts Australia's largest repository (10+ PB) of research data collections spanning a wide range of fields from climate, coasts, oceans, and geophysics through to astronomy, bioinformatics, and the social sciences. Spatial scales range from global to local ultra-high resolution, requiring storage volumes from MB to PB. The data have been organised to be highly connected to both the NCI HPC and cloud resources (e.g., interactive visualisation and analysis environments). Researchers can login to utilise the high performance infrastructure for these data collections, or access the data via standards-based web services. Our aim is to provide a trusted platform to support interdisciplinary research across all the collections as well as services for use of the data within individual communities. We thus cater to a wide range of researcher needs, whilst needing to maintain a consistent approach to data management and publishing. All research data collections hosted at NCI are governed by a data management plan, prior to being published through a variety of platforms and web services such as OPeNDAP, HTTP, and WMS. The data management plan ensures the use of standard formats (when available) that comply with relevant data conventions (e.g., CF-Convention) and metadata standards (e.g., ISO19115). Digital Object Identifiers (DOIs) can be minted at NCI and assigned to datasets and collections. Large scale data growth and use in a variety of research fields has led to a rise in, and acceptance of, open spatial data formats such as NetCDF4/HDF5, prompting a need to extend these data conventions to fields such as geophysics and satellite Earth observations. The fusion of DOI-minted data that is discoverable and accessible via metadata and web services, creates a complete picture of data hosting, discovery, use, and citation. This enables standardised and reproducible data analysis.

  3. TeachAstronomy.com - Digitizing Astronomy Resources

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  4. Sea & Space: a New European Educational Programme

    NASA Astrophysics Data System (ADS)

    1998-01-01

    This spring, teachers across Europe will enjoy support for exciting, novel educational projects on astronomy, navigation and environmental observations. The largely web-based and highly interactive SEA & SPACE programme makes it possible for pupils to perform field experiments and astronomical observations and to obtain and process satellite images. A contest will take the best pupils for one week to Lisbon (Portugal), to Europe's space port in Kourou (French Guyana) where the European launcher lifts off or to ESO's Very Large Telescope at the Cerro Paranal Observatory in Chile, the largest optical telescope in the world. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the European Association for Astronomy Education (EAAE). It builds on these organisations' several years' successful participation in the European Week for Scientific and Technological Culture organised by the European Commission that they intend to continue in 1998. The 1998 World Exhibition EXPO98 in Lisbon will focus on the oceans. This is why the umbrella theme of SEA & SPACE is concerned with the many relations between the oceans and the space that surrounds us, from ancient times to present days. Under the new programme, teaching resources are offered for three major areas, Remote Sensing of Europe's Coastal Environment, Navigation and Oceans of Water. Remote Sensing of Europe's Coastal Environment : observations of the Earth from Space are made accessible to pupils who will appreciate their usefulness through interactive image processing and field observations; Navigation : the capabilities and functioning of different navigation techniques are explored through experiments using navigation by the stars, with GPS, and via satellite images/maps; Oceans of Water : What is the role of water in Nature? How can one detect water from satellites or with telescopes? How much water is there in rivers and floods, in an ocean, on Mars, in comets, in stars, in the Universe? SEA & SPACE will use the Internet and the WWW to transport teaching resources so that teachers and pupils can communicate with the organisers and among themselves. To this end, the National Committees of the European Association for Astronomy Education will operate sites onto which the information and resources provided by ESA and ESO are loaded. The Contest, in which pupils will write and design a poster or a newspaper on a subject related to SEA & SPACE, will be organised simultaneously in most European countries and will not require Internet access. SEA & SPACE will start as from 1 March 1998. Further information is provided on the Home Pages of ESA, ESO and EAAE. In early February, a dedicated joint SEA & SPACE Home Page will be operational where schools can register for the project and for regular mailing of new information: * http://www.esa.int/seaspace * http://www.eso.org/seaspace * http://www.algonet.se/~sirius/eaae/seaspace Note: [1] This press release is published jointly by ESA, ESO and EAAE. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  5. Of Stars and Harlow Shapley

    NASA Astrophysics Data System (ADS)

    Palmeri, J.

    2016-01-01

    For much of the twentieth century, the astronomer and longtime director of the Harvard College Observatory, Harlow Shapley (1885-1972), embodied the public face of astronomy. From the 1920s through the 1960s he introduced millions to the wonders of the night sky. His compelling vision of humanity's place in the universe and moving message about cosmic connections inspired many who had never looked through a telescope, visited a planetarium, or taken an astronomy class. He encouraged readers and audiences to learn more about astronomy and other sciences. Over the course of a long career, Shapley not only bolstered the image of astronomy, but also the role of the astronomer as a public intellectual and spokesperson for science. Shapley's early years on the newspaper beat honed his storytelling, and he then put these skills to use as a promoter and fundraiser for astronomy and science at Harvard. He used a variety of means to convey his message beyond the observatory, including radio talks, lectures, magazine articles, television appearances, and popular books. He also narrated an award-winning animated film based on one of his most widely read books, Of Stars and Men. Through words, voice, and visuals, Shapley offered the world an eloquent perspective on the cosmos and a timely message about the significance of science for society. In this paper I focus on how Shapley conveyed the meaning and value of astronomical inquiry, and I explore audience reception of the messages and images he used to popularize astronomy.

  6. Outcomes of promotional efforts for astronomy among high school students through the astronomy olympiad

    NASA Astrophysics Data System (ADS)

    Kim, Yoojea

    2015-08-01

    The Korean Astronomical Society initiated the Korea Astronomy Olympiad (KAO) in 2001 and also began to participate in the international astronomy olympiad in 2002, as a means to promote astronomy among Korean high school students. To find out how successful such endeavor has been, first how partipating students regard astronomy as their career choice has been investigated. Of the students who have taken part in the international astronomy olympiads and then have entered a college afterwards in the period 2002-2014, more than 50% have chosen astronomy, physics, or earth science as their college major. In addition, when the future career choices of the KAO applicants were examined through their school records, astronomy and space science were chosen to be 44% in 2014, a significant increase from 25% in 2010. Secondly, the astronomical content of the regular Korean high school curriculum has been compared with the syllabus of international astronomy olympiads, to see how students can enhance their astronomical understanding through participating in astronomy olympiads, which would in turn contribute to their possible future career in astronomy.

  7. Interactive Mapping of the Planets: An Online Activity Using the Google Earth Platform

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Gilbert, A.; Harrison, T. N.; Mader, M. M.; Shankar, B.; Tornabene, L. L.

    2013-12-01

    With funding from the Natural Sciences and Engineering Research Council of Canada's PromoScience program and support from the Department of Earth Sciences at The University of Western Ontario, the Centre for Planetary Science and Exploration (CPSX) has developed a new web-based initiative called Interactive Mapping of the Planets (IMAPS). Additional components include in person school visits to deliver inquiry-based workshops, week-long summer camps, and pre-prepared impact rock lending kits, all framed around the IMAPS activity. IMAPS will is now in beta testing mode and will be demonstrated in this session. The general objective of the online activity is for participants to plan and design a rover mission to Mars based on a given mission goal - e.g., to find evidence for past water flow. The activity begins with participants receiving image-analysis training to learn about the different landforms on Mars and which ones are potentially caused by water flow. They then need to pass a short test to show they can consistently identify Martian landforms. From there, the participants choose a landing site and plan a traverse - utilizing the free Google Earth plug-in - and taking into account factors such as hazards and their sites of interest. A mission control blog will provide updates on the status of their mission and a 'choose your rover' option provides the opportunity to unlock more advanced rovers by collaborating with other scientists and rating their missions. Indeed, evaluation of missions will be done using a crowd-sourcing method. In addition to being fully accessible online, CPSX will also target primary- and secondary-school grades in which astronomy and space science is taught. Teachers in K-12 classrooms will be able to sign-up for the activity ahead of time in order to receive a workshop package, which will guide them on how to use the IMAPS online activity with their class. Teachers will be able to set up groups for their classroom so that they can evaluate their students based on pre-determined criteria. The IMAPS activities are developed in partnerships with the Department of Earth Sciences at Western University, Sports Western, the Thames Valley District School Board, and Dimentians Web Marketing and Design. We are continually looking for new collaborators to help design or test our inquiry- and web-based activities, provide feedback on our programs, or volunteer with us. Please contact cpsxoutreach@uwo.ca if you are interested.

  8. The Bright Future of Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2008-04-01

    These are exciting times in the search for gravitational waves. Gravitational waves are expected from many different astrophysical sources: brief transients from violent events like supernova explosions and collisions of neutron stars and black holes, coalescence of compact binary systems, continuous waves from rotating systems, and stochastic signals from cosmological origin or unresolved transients. The LIGO gravitational wave detectors have achieved unprecedented sensitivity to gravitational waves, and other detectors around the world are expected to reach similar sensitivities. The LIGO Scientific Collaboration (LSC) has recently completed their most sensitive observation run to date with LIGO and GEO detectors, including several months of joint observations with the European VIRGO detector. The LIGO Laboratory and the LSC, as well as the Virgo Collaboration, are actively preparing for operating enhanced detectors in the very near future. The next decade will see the construction and commissioning of Advanced LIGO and VIRGO, and quite possibly the launch of the space-based LISA mission, starting for sure then, if not earlier, a new era for gravitational wave astronomy. Plans for a world-wide network of ground based detectors involving more detectors in Europe, Japan and Australia are becoming more concrete. The future of gravitational wave astronomy is bright indeed! In this talk, will briefly describe the present status of the ground and space based detector projects and discuss the science we may expect to do with the detectors (and detections!) we will have in the upcoming era of gravitational wave astronomy.

  9. Astronomy Students Learn to Think Big.

    ERIC Educational Resources Information Center

    Somerville, W. B.

    1989-01-01

    Presents background information related to astronomy for high school students. Discusses the differences between astronomy and astrophysics, and the employment of the astronomy graduates. Lists degree programs in astronomy and related subjects in an appendix. (YP)

  10. Public Outreach in Astronomy

    NASA Astrophysics Data System (ADS)

    Fierro, J.

    2009-05-01

    In this paper I will address ways in which astronomy can be conveyed to the general public. I believe that the workings of the cosmos are an effective way to interest the public in science due to their multidisciplinary nature and appeal. This paper is based on the idea that outreach is part of informal education and therefore must be encouraged since it is the way adults learn throughout their lives. We must take advantage of year 2009 to address astronomy in Galileo's honor. I think that outreach should be carried out in the way we enjoy learning about subjects outside our field of expertise. It must be done with passion and for the joy of giving; the gift that outreach conveys is knowledge.

  11. The emergence of x-ray astronomy, neutron stars and black holes

    NASA Astrophysics Data System (ADS)

    Gursky, H.

    2003-10-01

    Remo Ruffini's professional career began just as X-ray astronomy began its second decade. His paper on the maximum mass of cold stars was instrumental in establishing Cygnus X-1 as a black hole. The idea of black holes and neutron stars had originated more than 40 years earlier based on considerations of white dwarfs. It was not until the explosion of technology that emerged after World War II that the observational evidence developed which enabled establishing the existence of these objects. The discovery of X-ray sources in 1962 and the subsequent maturing of that discipline and of radio astronomy were the key elements. By now a large number of stellar objects are found to be neutron stars and black holes.

  12. Conceptual Astronomy Knowledge among Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Berendsen, Margaret L.

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2, an online survey was developed as an assessment. In particular, astronomy club members with at least some college-level astronomy education score substantially higher on the assessment (mean score: 85) than do college undergraduates after taking their first astronomy course (mean score: 47). Astronomy club members scored up to 17% higher than unaffiliated amateurs, an indication that regular contact with like-minded hobbyists improves basic knowledge. Proportionally more astronomy club members report doing outreach than do unaffiliated amateurs (87% vs. 46%). It appears that those who are likely to be more knowledgeable are also those doing more outreach.

  13. Benefits to the nation from astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Trimble, Virginia; Bahcall, John N.; Chaisson, Eric; Code, Arthur; Conklin, Edward K.; Cowan, John; Dalgarno, Alexander; Drake, Frank; Elson, Rebecca; Field, George

    1991-01-01

    It is argued that astronomy makes unexpectantly large contributions to formal and informal science education, given the small number of research astronomers. Technology transfer and spin-offs from astronomy have important applications in medicine, industry, defence, environmental monitoring, and consumer products. Astronomy provides unusually promising opportunities for international cooperation. Other sciences benefit from synergistic interactions with astronomy. A review is given of astronomy education and teacher training. The role of astronomy in medicine, industry, defence, energy technology, the environment, and everyday life is reviewed.

  14. [Dr. Tadeusz Rakowiecki (July 26, 1878-April 6, 1965), physician, astronomer and writer--on the 25th anniversary of his death].

    PubMed

    Wiechowski, W

    He decided to study medicine to be self-reliant and helpful for the society though he showed outstanding abilities to exact sciences, in particular mathematics. He was graduated at the Warsaw University in 1903 "cum eximia laude" in medicine. Apart from medicine he had disclosed interest in literature that was realized by many lectures and publications related to the famous and outstanding Polish writer Stefan Zeromski. Since 1930 Dr. Rakowiecki has started as self-taught astronomy studies becoming soon one of seven most eminent Polish astronomers. In the thirties there appeared his two-volume monography entitled "Drogi Planet i Komet" ("Motions of planets and comets") that has become the first fundamental Polish handbook of astronomy actual up to seventies. His scientific achievements based on higher mathematics included 20 important reports on astronomy and several monographs on mathematics. In 1930 he had refused several proposals to head University Chairs of Astronomy, among others in Lwów, due to modesty and his willingness to help and to serve his patients. He had been a demon for work, his rest after admission of patients were astronomy calculations, while when tired with the latters he became occupied with medicine.

  15. MSFC Skylab ground-based astronomy program

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.

    1974-01-01

    The Skylab Ground-Based Astronomy Program (SGAP) was conducted to enhance the data base of solar physics obtained during the Apollo Telescope Mount (ATM) mission flown in conjunction with the Skylab orbital station. Leading solar physicists from various observatories obtained data from the ground at the same time that orbital data were being acquired by ATM. The acquisition of corollary solar data from the ground simultaneously with the ATM orbital observations helped to provide a broader basis for understanding solar physics by increasing spectral coverage and by the use of additional sophisticated instruments of various types. This report briefly describes the individual tasks and the associated instrumentation selected for this ground-based program and contains as appendices, the final reports from the Principal Investigators.

  16. Radio observations of the Milky Way from the classroom

    NASA Astrophysics Data System (ADS)

    Chyży, Krzysztof T.

    2014-12-01

    We present the project to introduce the first European network of radio telescopes for education. It enables pupils to detect spectral line emission of neutral hydrogen in the Milky Way at a wavelength of 21 cm. Any classroom connected to Internet via any web-browser can remotely control one of the radio-telescopes, observe and analyse obtained spectra: derive the Milky-Way rotation curve and recognise spiral arms in hydrogen distribution. Doing exercises pupils, guided by their teachers, learn the basics of radio astronomy research, use scientific method to explore and interpret the attained spectral data. A range of attractive educational materials are prepared to help in disseminating the scientific knowledge in the classroom and demonstrate the modern information technology.

  17. filltex: Automatic queries to ADS and INSPIRE databases to fill LaTex bibliography

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Vallisneri, Michele

    2017-05-01

    filltex is a simple tool to fill LaTex reference lists with records from the ADS and INSPIRE databases. ADS and INSPIRE are the most common databases used among the theoretical physics and astronomy scientific communities, respectively. filltex automatically looks for all citation labels present in a tex document and, by means of web-scraping, downloads all the required citation records from either of the two databases. filltex significantly speeds up the LaTex scientific writing workflow, as all required actions (compile the tex file, fill the bibliography, compile the bibliography, compile the tex file again) are automated in a single command. We also provide an integration of filltex for the macOS LaTex editor TexShop.

  18. Communicating Solar Astronomy to the public

    NASA Astrophysics Data System (ADS)

    Yaji, Kentaro; Solar Observatory NAOJ, The

    2015-08-01

    The Sun is the nearest star to us, so that the public is greatly interested in the Sun itself and in solar activity. The Solar Observatory, National Astronomical Observatory of Japan is one of the solar research divisions. Various data of the Sun obtained with our instruments, systematically accumulated more than one hundred years since 1910s, are open to not only researchers but also the public as online database. So, we have many chances that the public request solar images for the education and the media. In addition, we release daily solar observation informations on the web and with social media and guide visitors to our observation facilities. It is reviewed about the public relations and outreach activities of the Solar Observatory, including recent solar observation topics.

  19. The mercedes-benz approach to γ-ray astronomy

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl W.

    1988-02-01

    The sensitivity requirements for ground-based γ-ray astronomy are reviewed in the light of the most reliable estimates of stellar fluxes above 100 GeV. Current data strongly favor the construction of detectors with the lowest energy thresholds. Since improvements in angular resolution are limited by shower fluctuations, better methods of rejecting hadronic showers must be found to reliably observe the known astrophysical sources. Several possible methods for reducing this hadronic background are discussed.

  20. Regulations and Ethical Considerations for Astronomy Education Research III: A Suggested Code of Ethics

    NASA Astrophysics Data System (ADS)

    Brogt, Erik; Foster, Tom; Dokter, Erin; Buxner, Sanlyn; Antonellis, Jessie

    We present an argument for, and suggested implementation of, a code of ethics for the astronomy education research community. This code of ethics is based on legal and ethical considerations set forth by U.S. federal regulations and the existing code of conduct of the American Educational Research Association. We also provide a fictitious research study as an example for working through the suggested code of ethics.

  1. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    PubMed

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  2. Night Vision

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael

    2013-05-01

    Preface; 1. Introduction; 2. William Herschel opens up the invisible universe; 3. 1800-1950: slow progress - the moon, planets, bright stars, and the discovery of interstellar dust; 4. Dying stars shrouded in dust and stars being born: the emergence of infrared astronomy in the 60s and 70s; 5. Birth of far infrared and submillimetre astronomy: clouds of dust and molecules in our Galaxy; 6. The cosmic microwave background, echo of the Big Bang; 7. The Infrared Astronomical Satellite and the opening up of extragalactic infrared astronomy: starbursts and active galactic nuclei; 8. The Cosmic Background Explorer and the ripples, the Wilkinson Microwave Anisotropy Explorer, and dark energy; 9. Giant ground-based infrared and submillimetre telescopes; 10. The Infrared Space Observatory and the Spitzer Space Telescope: the star-formation history of the universe and infrared galaxy populations; 11. Our dusty Solar System, debris disks and the search for exoplanets; 12. The future: pioneering space missions and giant ground-based telescopes; Notes; Credits for illustrations; Further reading; Bibliography; Glossary; Index of names; Index.

  3. The ADS All Sky Survey: footprints of astronomy literature, in the sky

    NASA Astrophysics Data System (ADS)

    Pepe, Alberto; Goodman, A. A.; Muench, A. A.; Seamless Astronomy Group at the CfA

    2014-01-01

    The ADS All-Sky Survey (ADSASS) aims to transform the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. In this talk, the ADSASS viewer - http://adsass.org/ - will be presented: a sky heatmap of astronomy articles based on the celestial objects they reference. The ADSASS viewer is as an innovative research and visual search tool for it allows users to explore astronomical literature based on celestial location, rather than keyword string. The ADSASS is a NASA-funded initiative carried out by the Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics.

  4. Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters

    NASA Astrophysics Data System (ADS)

    Fluke, Christopher J.; Barnes, David G.; Barsdell, Benjamin R.; Hassan, Amr H.

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is dramatically changing the landscape of high performance computing in astronomy. In this paper, we identify and investigate several key decision areas, with a goal of simplifying the early adoption of GPGPU in astronomy. We consider the merits of OpenCL as an open standard in order to reduce risks associated with coding in a native, vendor-specific programming environment, and present a GPU programming philosophy based on using brute force solutions. We assert that effective use of new GPU-based supercomputing facilities will require a change in approach from astronomers. This will likely include improved programming training, an increased need for software development best practice through the use of profiling and related optimisation tools, and a greater reliance on third-party code libraries. As with any new technology, those willing to take the risks and make the investment of time and effort to become early adopters of GPGPU in astronomy, stand to reap great benefits.

  5. Web-based interventions for menopause: A systematic integrated literature review.

    PubMed

    Im, Eun-Ok; Lee, Yaelim; Chee, Eunice; Chee, Wonshik

    2017-01-01

    Advances in computer and Internet technologies have allowed health care providers to develop, use, and test various types of Web-based interventions for their practice and research. Indeed, an increasing number of Web-based interventions have recently been developed and tested in health care fields. Despite the great potential for Web-based interventions to improve practice and research, little is known about the current status of Web-based interventions, especially those related to menopause. To identify the current status of Web-based interventions used in the field of menopause, a literature review was conducted using multiple databases, with the keywords "online," "Internet," "Web," "intervention," and "menopause." Using these keywords, a total of 18 eligible articles were analyzed to identify the current status of Web-based interventions for menopause. Six themes reflecting the current status of Web-based interventions for menopause were identified: (a) there existed few Web-based intervention studies on menopause; (b) Web-based decision support systems were mainly used; (c) there was a lack of detail on the interventions; (d) there was a lack of guidance on the use of Web-based interventions; (e) counselling was frequently combined with Web-based interventions; and (f) the pros and cons were similar to those of Web-based methods in general. Based on these findings, directions for future Web-based interventions for menopause are provided. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Evaluation of an Interactive Undergraduate Cosmology Curriculum

    NASA Astrophysics Data System (ADS)

    White, Aaron; Coble, Kimberly A.; Martin, Dominique; Hayes, Patrycia; Targett, Tom; Cominsky, Lynn R.

    2018-06-01

    The Big Ideas in Cosmology is an immersive set of web-based learning modules that integrates text, figures, and visualizations with short and long interactive tasks as well as labs that allow students to manipulate and analyze real cosmological data. This enables the transformation of general education astronomy and cosmology classes from primarily lecture and book-based courses to a format that builds important STEM skills, while engaging those outside the field with modern discoveries and a more realistic sense of practices and tools used by professional astronomers. Over two semesters, we field-tested the curriculum in general education cosmology classes at a state university in California [N ~ 80]. We administered pre- and post-instruction multiple-choice and open-ended content surveys as well as the CLASS, to gauge the effectiveness of the course and modules. Questions addressed included the structure, composition, and evolution of the universe, including students’ reasoning and “how we know.”Module development and evaluation was supported by NASA ROSES E/PO Grant #NNXl0AC89G, the Illinois Space Grant Consortium, the Fermi E/PO program, Sonoma State University’s Space Science Education and Public Outreach Group, and San Francisco State University. The modules are published by Great River Learning/Kendall-Hunt.

  7. Images of the Universe, Part II: The Decade in Astronomical Photographs.

    ERIC Educational Resources Information Center

    Mercury, 1982

    1982-01-01

    Provides an annotated list of technical and nontechnical astronomy books (reviewer's remarks, cost, publisher's name/address). Topics include general astronomy, general astronomy textbooks, solar system, amateur astronomy, astronomy history, archeoastronomy, space exploration, related physics books, pseudoscience, and others. (JN)

  8. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  9. The impact of collaborative groups versus individuals in undergraduate inquiry-based astronomy laboratory learning exercises

    NASA Astrophysics Data System (ADS)

    Sibbernsen, Kendra J.

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However, recent research has shown that learners in traditional undergraduate science laboratory environments are not developing a sufficiently meaningful understanding of scientific inquiry. Recently, astronomy laboratory activities have been developed that intentionally scaffold a student from guided activities to open inquiry ones and preliminary results show that these laboratories are successful for supporting students to understand the nature of scientific inquiry (Slater, S., Slater, T. F., & Shaner, 2008). This mixed-method quasi-experimental study was designed to determine how students in an undergraduate astronomy laboratory increase their understanding of inquiry working in relative isolation compared to working in small collaborative learning groups. The introductory astronomy laboratory students in the study generally increased their understanding of scientific inquiry over the course of the semester and this held true similarly for students working in groups and students working individually in the laboratories. This was determined by the examining the change in responses from the pretest to the posttest administration of the Views of Scientific Inquiry (VOSI) survey, the increase in scores on laboratory exercises, and observations from the instructor. Because the study was successful in determining that individuals in the astronomy laboratory do as well at understanding inquiry as those who complete their exercises in small groups, it would be appropriate to offer these inquiry-based exercises in an online format.

  10. Getting to Know and Address Your State Science Standards to Connect Classroom Instruction and Field Trips During IYA

    NASA Astrophysics Data System (ADS)

    Bednarski, Marsha; Larsen, K.

    2008-05-01

    Astronomy activities often pose problems for in-service teachers, especially at the elementary level, as many do not have a solid content background. Often astronomy instruction revolves around reading and answering questions. This is not an effective way to work with abstract concepts or engage students, and also fails to meet the standards of inquiry-based instruction recommended by the National Science Teachers Association and national and state standards. Science museums and planetariums bring unique and exciting perspectives to astronomy education. However, bringing students to the museum can sometimes be perceived as only a "cool field trip.” With mounting pressure for teachers to teach to the new standardized tests demanded by No Child Left Behind, and shrinking school budgets, field trips are rapidly becoming an endangered species. Coordinating museum, science center, and planetarium offerings with national and state science standards can renew interest in (and perceived relevance of) field trips. Therefore, university faculty, in-service teachers, and museum/planetarium staff can form successful partnerships which can both improve student learning and increase attendance at informal education science events and facilities. This workshop will first briefly introduce participants to national and representative state standards as well as research on in-service teachers’ astronomy content knowledge and the educational value of field trips. For the majority of the workshop, participants will engage in the actual steps of coordinating, planning, and writing inquiry-based astronomy curriculum embedded performance tasks that collectively meet the learning needs of students in elementary, middle, or high school. Participants are encouraged to bring a copy of their own state standards (available on their state's Department of Education website) for their preferred target age group.

  11. Flying high-altitude balloon-borne telescopes 50 years ago

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.

    Based on theoretical predictions of cosmic gamma-ray fluxes by P. Morrison (1958) and M. Savedoff (1959), we started, at the University of Rochester, a program in high-energy gammaray astronomy to search for these sources using high-altitude balloon-borne telescopes. The first flight occurred in 1959 from Sioux Falls, SD, using scintillator/Cerenkov detectors. In 1962 I initiated a gamma-ray astronomy program at the Smithsonian Astrophysical Observatory (SAO) using vidicon spark chambers. Later Henry Helmken (SAO) developed a program in low-energy gamma-ray astronomy based on a gas Cerenkov detector. During the 1960's more flights followed from San Angelo, TX; Holloman AFB, NM; Hyderabad, India, and finally, Palestine, TX. All of these flights just produced upper limits to the cosmic gamma-ray flux. We also entered a collaboration with the Cornell Group (K. Greisen) to fly a large gas-Cerenkov telescope to search for ˜ 100 MeV gamma-rays. In the early 1970's, using this telescope, gammarays from the Crab Nebula pulsar were detected (McBreen et al. 1973). It soon became evident that gamma-ray astronomy, to be successful, had to be performed from space telescopes. In 1970, somewhat frustrated, I changed fields and started at SAO/Harvard the construction of a 1-meter balloon-borne telescope for far-infrared astronomy. This was a collaborative program with the University of Arizona (F. Low). This program was extremely successful, resulting in 19 flights over 20 years, and produced the first far-infrared high-resolution maps of many new galactic regions and detection of solar system sources. Experience gained from these programs later led to the development and flight of space gamma-ray and infrared telescopes and many of the participants were, and some still are, active in numerous space programs.

  12. Working Papers: Astronomy and Astrophysics Panel Reports

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.

    1991-01-01

    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.

  13. The Importance and Justifications for Astronomy Teaching: A Look at the Researches on the Area

    NASA Astrophysics Data System (ADS)

    Soler, D. R.; Leite, C.

    2013-08-01

    Many researchers in Astronomy Teaching often refer to Astronomy as an object of great curiosity. In this paper, we will present a survey concerning the importance and justifications researchers have given to Astronomy Teaching. In a universe of 180 papers about Astronomy Teaching, found in periodicals from the areas of Science, Physics and Astronomy Teaching in the last decade, in 29 of them, discussions about the importance or justifications to Astronomy Teaching were found. As the main result of this work, all the elements related to the importance and the justification for the Astronomy Teaching were organized and grouped in four categories of analysis, which indicate the nature of the justifications presented by the authors: Awakening of feelings and curiosities; Socio-historic-cultural relevance; World view and awareness expansion and Interdisciplinarity. In each category, related elements were grouped. By doing so, we could produce an articulation among the elements taken from different papers, matching them in a way that enabled us to obtain new inferences not individually present in any of the papers. Furthermore, when all the research was analyzed, it was also revealed that there were no papers that aimed at the investigation of the importance and justifications for Astronomy Teaching. It was still noticed that, in general, when researchers invoke the interdisciplinary character of Astronomy, they make it superficially. Since the researches do not show how they get the idea presented to the justifications for teaching Astronomy, some questions could have surfaced, such as: would it be possible to exist a kind of “common sense” for teaching and disseminating Astronomy that would make researchers understand Astronomy as a differential science? Would the "born interest" in Astronomy - pointed by some people - be something real? Does Astronomy really differ from other sciences?

  14. Astronomy in the City for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.; Garc, Beatriz

    2016-10-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. ``Astronomy in the city'' is an important part of NASE (Network for Astronomy School Education) (Ros & Hemenway 2012). In each NASE course we introduce a ``working group session'' chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair. After more than 5 years using this method we visited and discovered several examples of astronomy in the city: •Astronomy in ancient typical clothes. •Archaeological temples oriented according to the sunrise or set. •Petroglyphs with astronomical meaning. •Astronomy in monuments. •Sundials. •Oriented Colonial churches. •Astronomy in Souvenirs. In any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus ``what is the best part in order to be seat in the shadow during the journey?'' The result is motivation to go with ``open eyes'' when they are in the street and they try to get more and more information about their surroundings. In summary, one of the main activities is to introduce local cultural aspects in NASE astronomy courses. The participants can discover a new approach to local culture from an astronomical point of view.

  15. Dark Skies, Bright Kids Year 9

    NASA Astrophysics Data System (ADS)

    Burkhardt, Andrew Michael; Matthews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest

    2018-01-01

    We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.

  16. Space-Based Astronomy: An Educator Guide with Activities for Science, Mathematics, and Technology Education

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.

    2001-01-01

    If you go to the country, far from city lights, you can see about 3,000 stars on a clear night. If your eyes were bigger, you could see many more stars. With a pair of binoculars, an optical device that effectively enlarges the pupil of your eye by about 30 times, the number of stars you can see increases to the tens of thousands. With a medium-sized telescope with a light-collecting mirror 30 centimeters in diameter, you can see hundreds of thousands of stars. With a large observatory telescope, millions of stars become visible. This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy--astronomical observations made from outer space. It is not intended to serve as a curriculum. Instead, teachers should select activities from this guide that support and extend existing study. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. It tells, rather, the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. Teachers are encouraged to adapt these activities for the particular needs of their students. When selected activities from this guide are used in conjunction with traditional astronomy curricula, students benefit from a more complete experience.

  17. CADC and CANFAR: Extending the role of the data centre

    NASA Astrophysics Data System (ADS)

    Gaudet, Severin

    2015-12-01

    Over the past six years, the CADC has moved beyond the astronomy archive data centre to a multi-service system for the community. This evolution is based on two major initiatives. The first is the adoption of International Virtual Observatory Alliance (IVOA) standards in both the system and data architecture of the CADC, including a common characterization data model. The second is the Canadian Advanced Network for Astronomical Research (CANFAR), a digital infrastructure combining the Canadian national research network (CANARIE), cloud processing and storage resources (Compute Canada) and a data centre (Canadian Astronomy Data Centre) into a unified ecosystem for storage and processing for the astronomy community. This talk will describe the architecture and integration of IVOA and CANFAR services into CADC operations, the operational experiences, the lessons learned and future directions

  18. The Moon Topography Model as an Astronomy Educational Kit for Visual Impaired Student

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Hikmah, F. N.; Muchlas

    2016-08-01

    The visual impaired students need science educational kit at the school to assist their learning process in science. However, there are lack of the educational kit especially on the topic of astronomy. To introduce the structure of the moon, the moon topography model has been made in circular shape only shown the near side of the moon. The moon topography module are easy to be made since it was made based on low cost material. The expertise on astronomy and visual impaired media marked the 76.67% and 94% ideal percentage, respectively. The visual impaired students were able to study the moon crater and mare by using the kit and the braille printed learning book. They also showed the improvement in the material understanding skill.

  19. Wisconsin H-Alpha Mapper | UW-Madison Astronomy

    Science.gov Websites

    Department of Astronomy Wisconsin H-Alpha Mapper Overview Description About WHAM Fabry-Perot Spectroscopy National Science Foundation Astronomy and... 02.20.2012 | Continue Reading » WHAM featured at Natural Astronomy Galactic Structure GALFA GLIMPSE GLIMPSE360 WHAM Extragalactic Astronomy & Cosmology Local

  20. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  1. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  2. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  3. Astronomy Books of 1985.

    ERIC Educational Resources Information Center

    Mercury, 1986

    1986-01-01

    Provides annotated listing of books in 16 areas: (1) amateur astromony; (2) children's books; (3) comets; (4) cosmology; (5) education in astronomy; (6) general astronomy; (7) history of astronomy; (8) life in the universe; (9) miscellaneous; (10) physics and astronomy; (11) pseudo-science; (12) space exploration; (13) stars and stellar evolution;…

  4. White supremacism and Islamic astronomy in history of astronomy texts from the eighteenth century to the present day

    NASA Astrophysics Data System (ADS)

    Lockard, Joe

    2018-04-01

    This paper reviews manifestations of racism in European and American histories of Arab and Persian astronomy from the eighteenth century to the present day. Its first section discusses representation of Islamic astronomy from Adam Smith to late Victorian writers, particularly tracing ideas of Arab unoriginality and scientific incapacity. The second section first relates the appearance of scientific racism in the early twentieth-century historiography of astronomy, then how the rise of scientifically and linguistically competent scholarship in the latter twentieth century provided much-improved information on Islamic achievements in astronomy. The paper’s conclusion underlines the importance of avoiding ethnic supremacism and integrating research on Islamic astronomy into teaching and publishing on the history of astronomy.

  5. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  6. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA DFRC after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA's Dryden Flight Research Center after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  7. Art as a Vehicle for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  8. Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part1 By A. Pavolotsky, And Advanced Technologies For Heterodyne Radio Astronomy Instrumentation - Part2 By V. Desmaris

    NASA Astrophysics Data System (ADS)

    Pavolotsky, Alexey

    2018-01-01

    Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.

  9. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    NASA Astrophysics Data System (ADS)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  10. The Baltimore Charter for Women in Astronomy

    NASA Astrophysics Data System (ADS)

    Urry, C. M.; Danly, L.; Schreier, E. J.; Tobias, S.

    1993-05-01

    Over 200 people attended the meeting on Women in Astronomy at the Space Telescope Science Institute in September 1992. Speakers documented the status of women in astronomy and shed light on the causes of their underrepresentation. The Baltimore Charter, which is based on extensive discussions among the meeting participants, is a focal point for action to increase the participation of women in the profession. The foundation for the Charter is our deep belief in the equality of women's abilities and our frank assessment of the current status of women in the profession. The Charter Rationale explains why action is needed today and the Recommendations consist of five major points that, if adopted, will greatly improve the situation for women in astronomy. The goal of equal participation of men and women is not only a matter of justice but of practicality as well, because the inclusion of new people and new ideas has always led to renewed intellectual ferment. We ask our colleagues to embrace the Charter and to help persuade universities, observatories, and other astronomical institutions to endorse it formally.

  11. Supporting Interactive Teaching Methods at the New Faculty Workshop with Astronomy Lecture-Tutorials

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Brissenden, G.; Duestua, S.; Prather, E. E.

    2004-05-01

    Ongoing research by the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona Steward Observatory suggests that, although faculty realize that lecture-based instruction is ineffective for many students, they are not aware of what interactive teaching strategies are available, particularly for large enrollment courses. A major emphasis of the AAPT/AAS New Faculty Workshop was to introduce faculty to effective active-learning strategies based on an understanding of how people learn. Faculty were introduced to think-pair-share methods where students work together to explain difficult concepts to each other. Faculty were also introduced to authentic assessment strategies that go beyond using traditional multiple-choice tests. In particular, faculty were introduced to Lecture-Tutorials for Introductory Astronomy. The Lecture-Tutorials are instructional materials intended for use with collaborative student learning groups and are designed specifically to be easily integrated into existing courses centered on conventional lectures and do not require any outside equipment or a drastic course revision for implementation. The materials are based on research into student beliefs and reasoning difficulties and use effective instructional strategies that center on student learning. Each workshop presentation was complimented by a follow-up small group discussion session.

  12. De-mystifying earned value management for ground based astronomy projects, large and small

    NASA Astrophysics Data System (ADS)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  13. UK Announces Intention to Join ESO

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Summary The Particle Physics and Astronomy Research Council (PPARC) , the UK's strategic science investment agency, today announced that the government of the United Kingdom is making funds available that provide a baseline for this country to join the European Southern Observatory (ESO) . The ESO Director General, Dr. Catherine Cesarsky , and the ESO Community warmly welcome this move towards fuller integration in European astronomy. "With the UK as a potential member country of ESO, our joint opportunities for front-line research and technology will grow significantly", she said. "This announcement is a clear sign of confidence in ESO's abilities, most recently demonstrated with the construction and operation of the unique Very Large Telescope (VLT) on Paranal. Together we will look forward with confidence towards new, exciting projects in ground-based astronomy." It was decided earlier this year to place the 4-m UK Visible and Infrared Survey Telescope (VISTA) at Paranal, cf. ESO Press Release 03/00. Following negotiations between ESO and PPARC, a detailed proposal for the associated UK/ESO Agreement with the various entry modalities will now be presented to the ESO Council for approval. Before this Agreement can enter into force, the ESO Convention and associated protocols must also be ratified by the UK Parliament. Research and key technologies According to the PPARC press release, increased funding for science, announced by the UK government today, will enable UK astronomers to prepare for the next generation of telescopes and expand their current telescope portfolio through membership of the European Southern Observatory (ESO). The uplift to its baseline budget will enable PPARC to enter into final negotiations for UK membership of the ESO. This will ensure that UK astronomers, together with their colleagues in the ESO member states, are actively involved in global scale preparations for the next generation of astronomy facilities. among these are ALMA (Atacama Large Millimeter Array) in Chile and the very large optical/infrared telescopes now undergoing conceptual studies. ESO membership will give UK astronomers access to the suite of four world-class 8.2-meter VLT Unit Telescopes at the Paranal Observatory (Chile), as well as other state-of-the-art facilities at ESO's other observatory at La Silla. Through PPARC the UK already participates in joint collaborative European science programmes such as CERN and the European Space Agency (ESA), which have already proved their value on the world scale. Joining ESO will consolidate this policy, strengthen ESO and enhance the future vigour of European astronomy. Statements Commenting on the funding announcement, Prof. Ian Halliday , PPARC's CEO, said that " this new funding will ensure our physicists and astronomers remain at the forefront of international research - leading in discoveries that push back the frontiers of knowledge - and the UK economy will also benefit through the provision of highly trained people and the resulting advances in IT and commercial spin-offs ". Prof. Mike Edmunds , UCW Cardiff, and Chairman of the UK Astronomy Review Panel which recently set out a programme of opportunities and priorities for the next 10 - 20 years added that " this is excellent news for UK science and lays the foundation for cutting edge research over the next ten years. British astronomers will be delighted by the Government's rapid and positive response to their case. " Speaking on behalf of the ESO Organisation and the community of more than 2500 astronomers in the ESO member states [2], the ESO Director General, Dr. Catherine Cesarsky , declared: "When ESO was created in 1962, the UK decided not to join, because of access to other facilities in the Southern Hemisphere. But now ESO has developed into one of the world's main astronomical organisations, with top technology and operating the VLT at Paranal, the largest and most efficient optical/infrared telescope facility in the world. We look forward to receiving our UK colleagues in our midst and work together on the realization of future cutting-edge projects." Joining ESO was considered a top priority for UK astronomy following a community report to the UK Long Term Science Review, which set out a programme of opportunities and priorities for PPARC science over the next 10 to 20 years. The report is available on the web at URL: www.pparc.ac.uk/ltsr.

  14. A Brief History of Publishing Papers on Astronomy Education Research

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    2014-01-01

    While some research had been done on K-12 and planetarium astronomy teaching from the 1930's to the 1980's, the growth of research on college physics education offered astronomy education researchers a model for examining techniques for teaching introductory college astronomy survey "Astronomy 101" courses as well. This early research…

  15. The Development and Validation of the Test Of Astronomy STandards (TOAST)

    ERIC Educational Resources Information Center

    Slater, Stephanie J.

    2014-01-01

    The Test Of Astronomy STandards (TOAST) is a comprehensive assessment instrument designed to measure students' general astronomy content knowledge. Built upon the research embedded within a generation of astronomy assessments designed to measure single concepts, the TOAST is appropriate to measure across an entire astronomy course. The TOAST's…

  16. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    ERIC Educational Resources Information Center

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  17. ESO

    Science.gov Websites

    2009 100 Hours of Astronomy The Eye 3D IMAX® 3D Film Hidden Universe Open House Day 2011 Open House and Jupiter - 1994 Comet Hale Bopp - 1994 Astronomy Communication Seminars Outreach Education Educational Material Science in School ESO Astronomy Camp 2017 ESO Astronomy Camp 2016 ESO Astronomy Camp 2015

  18. Journey of Ethiopia Astronomy

    NASA Astrophysics Data System (ADS)

    Belay Tessema, Solomon

    2015-08-01

    Ancient astronomy had contributed away for the modern development of astronomy. The history of astronomy development in Ethiopian was liked with different beliefs and culture of the society. The Ethiopians were the first who invented the science of stars, and gave names to the planets, not at random and without meaning, but descriptive of the qualities which they conceived them to possess; and it was from them that this art passed, still in an imperfect state, to the Egyptians. Even though, Ethiopian’s contributions for astronomy in the world were immense but the journey of modern astronomy is still in the infant stage. The modern astronomy and space program in Ethiopia was started in 2004 in well organized form from three individuals to the public. In the past eleven years of journey of astronomy development in Ethiopia was the most challenging from national to international level. After strong struggle of a few committed individuals for the past eleven years the development of astronomy is completely changed from dark age to bright age. This paper will try to address the details of journey of astronomy in Ethiopia.

  19. Using the Teach Astronomy Website to Enrich Introductory Astronomy Classes

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, K. K.; Impey, C. D.; Patikkal, A.; Austin, C. L.

    2013-04-01

    This year we implemented Teach Astronomy as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive astronomy content of the website includes: an introductory text book, encyclopedia articles, images, two to three minute topical video clips, podcasts, and news articles. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. We will present an overview of how Teach Astronomy works and how instructors can use it as an effective teaching tool in the classroom. Additionally, we will gather feedback from science instructors on how to improve the features and functionality of the website, as well as develop new assignment ideas using Teach Astronomy.

  20. Dark Skies, Bright Kids! Year 4

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Borish, J.; Crawford, S. B.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Jackson, L.; Liss, S.; Oza, A.; Peacock, S.; Prager, B.; Romero, C.; Sivakoff, G. R.; Walker, L.; Whelan, D. G.; Zucker, C.

    2013-01-01

    Aiming to engage young children's natural excitement and curiosity, the outreach group Dark Skies, Bright Kids (DSBK) brings a hands-on approach to astronomy to elementary schools in Virginia. We hope to enhance children's view and understanding of science while exploring the Universe using fun activities. DSBK focuses on rural and underserved schools in Albemarle County and offers a semester-long astronomy club for third through fifth grade students. We believe regular interactions foster personal relationships between students and volunteers that encourage a life-long interest in science. In our fourth year of hosting clubs, we returned to Ivy Creek Elementary School, where we saw wonderful responses from a special group of students with `low-incidence' disabilities. DSBK has grown to realize a broader reach beyond local astronomy clubs; we hope to ignite a spark of interest in astronomy and science more widely- in more children, their families, and their teachers. We also hosted the Second Annual Central Virginia Star Party with an open invitation to the community to encourage families to enjoy astronomy together. Throughout the year, DSBK now holds 'one-off' programs (akin to astronomy field days) for elementary schools and children's groups throughout Virginia. Furthermore, we are in the final stages of a project to create two bilingual astronomy books called "Snapshots of the Universe", in Spanish and French with English translations. This art book will be made available online and we are working to get a copy in every elementary school in the state. DSBK has begun to reach out to elementary school teachers in order to provide them with useful and engaging classroom material. We have adapted our volunteer-created activities into useful and ready-to-use lessons, available online. After improvements based on research through interactions and feedback from teachers, we have explicitly identified the learning goals in terms of Virginia's Standards of Learning (SOL) and the materials necessary to run each activity.

Top