Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2008-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2009-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A
2011-11-29
Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.
2011-01-01
Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios. PMID:22126392
EnviroAtlas National Layers Master Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes layers depicting EnviroAtlas national metrics mapped at the 12-digit HUC within the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service
NASA Astrophysics Data System (ADS)
Nonogaki, S.; Nemoto, T.
2014-12-01
Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.
Exploring NASA GES DISC Data with Interoperable Services
NASA Technical Reports Server (NTRS)
Zhao, Peisheng; Yang, Wenli; Hegde, Mahabal; Wei, Jennifer C.; Kempler, Steven; Pham, Long; Teng, William; Savtchenko, Andrey
2015-01-01
Overview of NASA GES DISC (NASA Goddard Earth Science Data and Information Services Center) data with interoperable services: Open-standard and Interoperable Services Improve data discoverability, accessibility, and usability with metadata, catalogue and portal standards Achieve data, information and knowledge sharing across applications with standardized interfaces and protocols Open Geospatial Consortium (OGC) Data Services and Specifications Web Coverage Service (WCS) -- data Web Map Service (WMS) -- pictures of data Web Map Tile Service (WMTS) --- pictures of data tiles Styled Layer Descriptors (SLD) --- rendered styles.
Interoperability in planetary research for geospatial data analysis
NASA Astrophysics Data System (ADS)
Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara
2018-01-01
For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.
EnviroAtlas - Metrics for Austin, TX
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web service depict ecosystem services at the census block group level for the community of Austin, Texas. These layers illustrate the ecosystems and natural resources that are associated with clean air (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanAir/MapServer); clean and plentiful water (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanPlentifulWater/MapServer); natural hazard mitigation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_NaturalHazardMitigation/MapServer); climate stabilization (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_ClimateStabilization/MapServer); food, fuel, and materials (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_FoodFuelMaterials/MapServer); recreation, culture, and aesthetics (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_RecreationCultureAesthetics/MapServer); and biodiversity conservation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_BiodiversityConservation/MapServer), and factors that place stress on those resources. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States as well as de
NASA Astrophysics Data System (ADS)
Hagemeier-Klose, M.; Wagner, K.
2009-04-01
Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.
Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze
2009-01-01
This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019
Interoperability And Value Added To Earth Observation Data
NASA Astrophysics Data System (ADS)
Gasperi, J.
2012-04-01
Geospatial web services technology has provided a new means for geospatial data interoperability. Open Geospatial Consortium (OGC) services such as Web Map Service (WMS) to request maps on the Internet, Web Feature Service (WFS) to exchange vectors or Catalog Service for the Web (CSW) to search for geospatialized data have been widely adopted in the Geosciences community in general and in the remote sensing community in particular. These services make Earth Observation data available to a wider range of public users than ever before. The mapshup web client offers an innovative and efficient user interface that takes advantage of the power of interoperability. This presentation will demonstrate how mapshup can be effectively used in the context of natural disasters management.
Agricultural Census 2012: Publishing Mashable GIS Big Data Services
NASA Astrophysics Data System (ADS)
Mueller, R.
2014-12-01
The 2012 Agricultural Census was released by the US Department of Agriculture (USDA) on May 2nd 2014; published on a quinquennial basis covering all facets of American production agriculture. The Agricultural Census is a comprehensive source of uniform published agricultural data for every state and county in the US. This is the first Agricultural Census that is disseminated with web mapping services using REST APIs. USDA developed an open GIS mashable web portal that depicts over 250 maps on Crops and Plants, Economics, Farms, Livestock and Animals, and Operators. These mapping services written in JavaScript replace the traditional static maps published as the Ag Atlas. Web users can now visualize, interact, query, and download the Agricultural Census data in a means not previously discoverable. Stakeholders will now be able to leverage this data for activities such as community planning, agribusiness location suitability analytics, availability of loans/funds, service center locations and staffing, and farm programs and policies. Additional sites serving compatible mashable USDA Big Data web services are as follows: The Food Environment Atlas, The Atlas of Rural and Small-Town America, The Farm Program Atlas, SNAP Data System, CropScape, and VegScape. All portals use a similar data organization scheme of "Categories" and "Maps" providing interactive mashable web services for agricultural stakeholders to exploit.
NaviCell Web Service for network-based data visualization.
Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P A; Barillot, Emmanuel; Zinovyev, Andrei
2015-07-01
Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of 'omics' data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NaviCell Web Service for network-based data visualization
Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P. A.; Barillot, Emmanuel; Zinovyev, Andrei
2015-01-01
Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of ‘omics’ data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. PMID:25958393
Improving Land Cover Mapping: a Mobile Application Based on ESA Sentinel 2 Imagery
NASA Astrophysics Data System (ADS)
Melis, M. T.; Dessì, F.; Loddo, P.; La Mantia, C.; Da Pelo, S.; Deflorio, A. M.; Ghiglieri, G.; Hailu, B. T.; Kalegele, K.; Mwasi, B. N.
2018-04-01
The increasing availability of satellite data is a real value for the enhancement of environmental knowledge and land management. Possibilities to integrate different source of geo-data are growing and methodologies to create thematic database are becoming very sophisticated. Moreover, the access to internet services and, in particular, to web mapping services is well developed and spread either between expert users than the citizens. Web map services, like Google Maps or Open Street Maps, give the access to updated optical imagery or topographic maps but information on land cover/use - are not still provided. Therefore, there are many failings in the general utilization -non-specialized users- and access to those maps. This issue is particularly felt where the digital (web) maps could form the basis for land use management as they are more economic and accessible than the paper maps. These conditions are well known in many African countries where, while the internet access is becoming open to all, the local map agencies and their products are not widespread.
The Westfield River Watershed Interactive Atlas: mapping recreation data on the web
Robert S. Bristow; Steven Riberdy
2002-01-01
Imagine searching the web to create a map to your house. You could use one of the many Internet mapping sites like MapBlast or MapQuest to create such a map. But maybe you wish to get a map of trails for the Grand Canyon. The National Park Service web site could serve that need. Or you may wish to get a map to show you the way from the Orlando...
US Geoscience Information Network, Web Services for Geoscience Information Discovery and Access
NASA Astrophysics Data System (ADS)
Richard, S.; Allison, L.; Clark, R.; Coleman, C.; Chen, G.
2012-04-01
The US Geoscience information network has developed metadata profiles for interoperable catalog services based on ISO19139 and the OGC CSW 2.0.2. Currently data services are being deployed for the US Dept. of Energy-funded National Geothermal Data System. These services utilize OGC Web Map Services, Web Feature Services, and THREDDS-served NetCDF for gridded datasets. Services and underlying datasets (along with a wide variety of other information and non information resources are registered in the catalog system. Metadata for registration is produced by various workflows, including harvest from OGC capabilities documents, Drupal-based web applications, transformation from tabular compilations. Catalog search is implemented using the ESRI Geoportal open-source server. We are pursuing various client applications to demonstrated discovery and utilization of the data services. Currently operational applications allow catalog search and data acquisition from map services in an ESRI ArcMap extension, a catalog browse and search application built on openlayers and Django. We are developing use cases and requirements for other applications to utilize geothermal data services for resource exploration and evaluation.
Reddy, Vinod; Swanson, Stanley M; Segelke, Brent; Kantardjieff, Katherine A; Sacchettini, James C; Rupp, Bernhard
2003-12-01
Anticipating a continuing increase in the number of structures solved by molecular replacement in high-throughput crystallography and drug-discovery programs, a user-friendly web service for automated molecular replacement, map improvement, bias removal and real-space correlation structure validation has been implemented. The service is based on an efficient bias-removal protocol, Shake&wARP, and implemented using EPMR and the CCP4 suite of programs, combined with various shell scripts and Fortran90 routines. The service returns improved maps, converted data files and real-space correlation and B-factor plots. User data are uploaded through a web interface and the CPU-intensive iteration cycles are executed on a low-cost Linux multi-CPU cluster using the Condor job-queuing package. Examples of map improvement at various resolutions are provided and include model completion and reconstruction of absent parts, sequence correction, and ligand validation in drug-target structures.
Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science
NASA Astrophysics Data System (ADS)
Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.
2007-12-01
The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.
Operational Use of OGC Web Services at the Met Office
NASA Astrophysics Data System (ADS)
Wright, Bruce
2010-05-01
The Met Office has adopted the Service-Orientated Architecture paradigm to deliver services to a range of customers through Rich Internet Applications (RIAs). The approach uses standard Open Geospatial Consortium (OGC) web services to provide information to web-based applications through a range of generic data services. "Invent", the Met Office beta site, is used to showcase Met Office future plans for presenting web-based weather forecasts, product and information to the public. This currently hosts a freely accessible Weather Map Viewer, written in JavaScript, which accesses a Web Map Service (WMS), to deliver innovative web-based visualizations of weather and its potential impacts to the public. The intention is to engage the public in the development of new web-based services that more accurately meet their needs. As the service is intended for public use within the UK, it has been designed to support a user base of 5 million, the analysed level of UK web traffic reaching the Met Office's public weather information site. The required scalability has been realised through the use of multi-tier tile caching: - WMS requests are made for 256x256 tiles for fixed areas and zoom levels; - a Tile Cache, developed in house, efficiently serves tiles on demand, managing WMS request for the new tiles; - Edge Servers, externally hosted by Akamai, provide a highly scalable (UK-centric) service for pre-cached tiles, passing new requests to the Tile Cache; - the Invent Weather Map Viewer uses the Google Maps API to request tiles from Edge Servers. (We would expect to make use of the Web Map Tiling Service, when it becomes an OGC standard.) The Met Office delivers specialist commercial products to market sectors such as transport, utilities and defence, which exploit a Web Feature Service (WFS) for data relating forecasts and observations to specific geographic features, and a Web Coverage Service (WCS) for sub-selections of gridded data. These are locally rendered as maps or graphs, and combined with the WMS pre-rendered images and text, in a FLEX application, to provide sophisticated, user impact-based view of the weather. The OGC web services supporting these applications have been developed in collaboration with commercial companies. Visual Weather was originally a desktop application for forecasters, but IBL have developed it to expose the full range of forecast and observation data through standard web services (WCS and WMS). Forecasts and observations relating to specific locations and geographic features are held in an Oracle Database, and exposed as a WFS using Snowflake Software's GO-Publisher application. The Met Office has worked closely with both IBL and Snowflake Software to ensure that the web services provided strike a balance between conformance to the standards and performance in an operational environment. This has proved challenging in areas where the standards are rapidly evolving (e.g. WCS) or do not allow adequate description of the Met-Ocean domain (e.g. multiple time coordinates and parametric vertical coordinates). It has also become clear that careful selection of the features to expose, based on the way in which you expect users to query those features, in necessary in order to deliver adequate performance. These experiences are providing useful 'real-world' input in to the recently launched OGC MetOcean Domain Working Group and World Meteorological Organisation (WMO) initiatives in this area.
EnviroAtlas - Austin, TX - Demographics by Block Group Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
NASA Astrophysics Data System (ADS)
Albrecht, Florian; Weinke, Elisabeth; Eisank, Clemens; Vecchiotti, Filippo; Hölbling, Daniel; Friedl, Barbara; Kociu, Arben
2017-04-01
Regional authorities and infrastructure maintainers in almost all mountainous regions of the Earth need detailed and up-to-date landslide inventories for hazard and risk management. Landslide inventories usually are compiled through ground surveys and manual image interpretation following landslide triggering events. We developed a web service that uses Earth Observation (EO) data to support the mapping and monitoring tasks for improving the collection of landslide information. The planned validation of the EO-based web service does not only cover the analysis of the achievable landslide information quality but also the usability and user friendliness of the user interface. The underlying validation criteria are based on the user requirements and the defined tasks and aims in the work description of the FFG project Land@Slide (EO-based landslide mapping: from methodological developments to automated web-based information delivery). The service will be validated in collaboration with stakeholders, decision makers and experts. Users are requested to test the web service functionality and give feedback with a web-based questionnaire by following the subsequently described workflow. The users will operate the web-service via the responsive user interface and can extract landslide information from EO data. They compare it to reference data for quality assessment, for monitoring changes and for assessing landslide-affected infrastructure. An overview page lets the user explore a list of example projects with resulting landslide maps and mapping workflow descriptions. The example projects include mapped landslides in several test areas in Austria and Northern Italy. Landslides were extracted from high resolution (HR) and very high resolution (VHR) satellite imagery, such as Landsat, Sentinel-2, SPOT-5, WorldView-2/3 or Pléiades. The user can create his/her own project by selecting available satellite imagery or by uploading new data. Subsequently, a new landslide extraction workflow can be initiated through the functionality that the web service provides: (1) a segmentation of the image into spectrally homogeneous objects, (2) a classification of the objects into landslide and non-landslide areas and (3) an editing tool for the manual refinement of extracted landslide boundaries. In addition, the user interface of the web service provides tools that enable the user (4) to perform a monitoring that identifies changes between landslide maps of different points in time, (5) to perform a validation of the landslide maps by comparing them to reference data, and (6) to perform an assessment of affected infrastructure by comparing the landslide maps to respective infrastructure data. After exploring the web service functionality, the users are asked to fill in the online validation protocol in form of a questionnaire in order to provide their feedback. Concerning usability, we evaluate how intuitive the web service functionality can be operated, how well the integrated help information guides the users, and what kind of background information, e.g. remote sensing concepts and theory, is necessary for a practitioner to fully exploit the value of EO data. The feedback will be used for improving the user interface and for the implementation of additional functionality.
Boulos, Maged N Kamel; Honda, Kiyoshi
2006-01-01
Open Source Web GIS software systems have reached a stage of maturity, sophistication, robustness and stability, and usability and user friendliness rivalling that of commercial, proprietary GIS and Web GIS server products. The Open Source Web GIS community is also actively embracing OGC (Open Geospatial Consortium) standards, including WMS (Web Map Service). WMS enables the creation of Web maps that have layers coming from multiple different remote servers/sources. In this article we present one easy to implement Web GIS server solution that is based on the Open Source University of Minnesota (UMN) MapServer. By following the accompanying step-by-step tutorial instructions, interested readers running mainstream Microsoft® Windows machines and with no prior technical experience in Web GIS or Internet map servers will be able to publish their own health maps on the Web and add to those maps additional layers retrieved from remote WMS servers. The 'digital Asia' and 2004 Indian Ocean tsunami experiences in using free Open Source Web GIS software are also briefly described. PMID:16420699
SSE Announcement - New GIS Web Mapping Applications and Services
Atmospheric Science Data Center
2016-06-30
Dear SSE Users, We are excited to announce SSE-GIS v1.0.3 is now available! If you haven’t already noticed the link to the new SSE-GIS web application on the SSE homepage entitled “GIS Web Mapping ...
Geovisualization in the HydroProg web map service
NASA Astrophysics Data System (ADS)
Spallek, Waldemar; Wieczorek, Malgorzata; Szymanowski, Mariusz; Niedzielski, Tomasz; Swierczynska, Malgorzata
2016-04-01
The HydroProg system, built at the University of Wroclaw (Poland) in frame of the research project no. 2011/01/D/ST10/04171 financed by the National Science Centre of Poland, has been designed for computing predictions of river stages in real time on a basis of multimodelling. This experimental system works on the upper Nysa Klodzka basin (SW Poland) above the gauge in the town of Bardo, with the catchment area of 1744 square kilometres. The system operates in association with the Local System for Flood Monitoring of Klodzko County (LSOP), and produces hydrograph prognoses as well as inundation predictions. For presenting the up-to-date predictions and their statistics in the online mode, the dedicated real-time web map service has been designed. Geovisualisation in the HydroProg map service concerns: interactive maps of study area, interactive spaghetti hydrograms of water level forecasts along with observed river stages, animated images of inundation. The LSOP network offers a high spatial and temporal resolution of observations, as the length of the sampling interval is equal to 15 minutes. The main environmental elements related to hydrological modelling are shown on the main map. This includes elevation data (hillshading and hypsometric tints), rivers and reservoirs as well as catchment boundaries. Furthermore, we added main towns, roads as well as political and administrative boundaries for better map understanding. The web map was designed as a multi-scale representation, with levels of detail and zooming according to scales: 1:100 000, 1:250 000 and 1:500 000. Observations of water level in LSOP are shown on interactive hydrographs for each gauge. Additionally, predictions and some of their statistical characteristics (like prediction errors and Nash-Sutcliffe efficiency) are shown for selected gauges. Finally, predictions of inundation are presented on animated maps which have been added for four experimental sites. The HydroProg system is a strictly scientific project, but the web map service has been designed for all web users. The main objective of the paper is to present the design process of the web map service, following the cartographic and graphic principles.
EnviroAtlas - Recreation, Culture, and Aesthetics Metrics for Conterminous United States
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Recreation, Culture, and Aesthetics category in this web service includes layers illustrating the ecosystems and natural resources that provide inherent cultural and aesthetic value or recreation opportunity, the need or demand for these amenities, the impacts associated with their presence and accessibility, and factors that place stress on the natural environment's capability to provide these benefits. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States. Additional descriptive information about each attribute in this web service is located within each web service layer (see Full Metadata hyperlink) or can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
QTIMaps: A Model to Enable Web Maps in Assessment
ERIC Educational Resources Information Center
Navarrete, Toni; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep
2011-01-01
Test-based e-Assessment approaches are mostly focused on the assessment of knowledge and not on that of other skills, which could be supported by multimedia interactive services. This paper presents the QTIMaps model, which combines the IMS QTI standard with web maps services enabling the computational assessment of geographical skills. We…
OneGeology-Europe: architecture, portal and web services to provide a European geological map
NASA Astrophysics Data System (ADS)
Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John
2010-05-01
OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.
NASA Astrophysics Data System (ADS)
Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.
2005-12-01
We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.
OneGeology Web Services and Portal as a global geological SDI - latest standards and technology
NASA Astrophysics Data System (ADS)
Duffy, Tim; Tellez-Arenas, Agnes
2014-05-01
The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.
NASA Astrophysics Data System (ADS)
Chen, R. S.; MacManus, K.; Vinay, S.; Yetman, G.
2016-12-01
The Socioeconomic Data and Applications Center (SEDAC), one of 12 Distributed Active Archive Centers (DAACs) in the NASA Earth Observing System Data and Information System (EOSDIS), has developed a variety of operational spatial data services aimed at providing online access, visualization, and analytic functions for geospatial socioeconomic and environmental data. These services include: open web services that implement Open Geospatial Consortium (OGC) specifications such as Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage Service (WCS); spatial query services that support Web Processing Service (WPS) and Representation State Transfer (REST); and web map clients and a mobile app that utilize SEDAC and other open web services. These services may be accessed from a variety of external map clients and visualization tools such as NASA's WorldView, NOAA's Climate Explorer, and ArcGIS Online. More than 200 data layers related to population, settlements, infrastructure, agriculture, environmental pollution, land use, health, hazards, climate change and other aspects of sustainable development are available through WMS, WFS, and/or WCS. Version 2 of the SEDAC Population Estimation Service (PES) supports spatial queries through WPS and REST in the form of a user-defined polygon or circle. The PES returns an estimate of the population residing in the defined area for a specific year (2000, 2005, 2010, 2015, or 2020) based on SEDAC's Gridded Population of the World version 4 (GPWv4) dataset, together with measures of accuracy. The SEDAC Hazards Mapper and the recently released HazPop iOS mobile app enable users to easily submit spatial queries to the PES and see the results. SEDAC has developed an operational virtualized backend infrastructure to manage these services and support their continual improvement as standards change, new data and services become available, and user needs evolve. An ongoing challenge is to improve the reliability and performance of the infrastructure, in conjunction with external services, to meet both research and operational needs.
DIY-style GIS service in mobile navigation system integrated with web and wireless GIS
NASA Astrophysics Data System (ADS)
Yan, Yongbin; Wu, Jianping; Fan, Caiyou; Wang, Minqi; Dai, Sheng
2007-06-01
Mobile navigation system based on handheld device can not only provide basic GIS services, but also enable these GIS services to be provided without location limit, to be more instantly interacted between users and devices. However, we still see that most navigation systems have common defects on user experience like limited map format, few map resources, and unable location share. To overcome the above defects, we propose DIY-style GIS service which provide users a more free software environment and allow uses to customize their GIS services. These services include defining geographical coordinate system of maps which helps to hugely enlarge the map source, editing vector feature, related property information and hotlink images, customizing covered area of download map via General Packet Radio Service (GPRS), and sharing users' location information via SMS (Short Message Service) which establishes the communication between users who needs GIS services. The paper introduces the integration of web and wireless GIS service in a mobile navigation system and presents an implementation sample of a DIY-Style GIS service in a mobile navigation system.
Web Map Services (WMS) Global Mosaic
NASA Technical Reports Server (NTRS)
Percivall, George; Plesea, Lucian
2003-01-01
The WMS Global Mosaic provides access to imagery of the global landmass using an open standard for web mapping. The seamless image is a mosaic of Landsat 7 scenes; geographically-accurate with 30 and 15 meter resolutions. By using the OpenGIS Web Map Service (WMS) interface, any organization can use the global mosaic as a layer in their geospatial applications. Based on a trade study, an implementation approach was chosen that extends a previously developed WMS hosting a Landsat 5 CONUS mosaic developed by JPL. The WMS Global Mosaic supports the NASA Geospatial Interoperability Office goal of providing an integrated digital representation of the Earth, widely accessible for humanity's critical decisions.
Publishing Platform for Aerial Orthophoto Maps, the Complete Stack
NASA Astrophysics Data System (ADS)
Čepický, J.; Čapek, L.
2016-06-01
When creating set of orthophoto maps from mosaic compositions, using airborne systems, such as popular drones, we need to publish results of the work to users. Several steps need to be performed in order get large scale raster data published. As first step, data have to be shared as service (OGC WMS as view service, OGC WCS as download service). But for some applications, OGC WMTS is handy as well, for faster view of the data. Finally the data have to become a part of web mapping application, so that they can be used and evaluated by non-technical users. In this talk, we would like to present automated line of those steps, where user puts in orthophoto image and as a result, OGC Open Web Services are published as well as web mapping application with the data. The web mapping application can be used as standard presentation platform for such type of big raster data to generic user. The publishing platform - Geosense online map information system - can be also used for combination of data from various resources and for creating of unique map compositions and as input for better interpretations of photographed phenomenons. The whole process is successfully tested with eBee drone with raster data resolution 1.5-4 cm/px on many areas and result is also used for creation of derived datasets, usually suited for property management - the records of roads, pavements, traffic signs, public lighting, sewage system, grave locations, and others.
eWaterCycle visualisation. combining the strength of NetCDF and Web Map Service: ncWMS
NASA Astrophysics Data System (ADS)
Hut, R.; van Meersbergen, M.; Drost, N.; Van De Giesen, N.
2016-12-01
As a result of the eWatercycle global hydrological forecast we have created Cesium-ncWMS, a web application based on ncWMS and Cesium. ncWMS is a server side application capable of reading any NetCDF file written using the Climate and Forecasting (CF) conventions, and making the data available as a Web Map Service(WMS). ncWMS automatically determines available variables in a file, and creates maps colored according to map data and a user selected color scale. Cesium is a Javascript 3D virtual Globe library. It uses WebGL for rendering, which makes it very fast, and it is capable of displaying a wide variety of data types such as vectors, 3D models, and 2D maps. The forecast results are automatically uploaded to our web server running ncWMS. In turn, the web application can be used to change the settings for color maps and displayed data. The server uses the settings provided by the web application, together with the data in NetCDF to provide WMS image tiles, time series data and legend graphics to the Cesium-NcWMS web application. The user can simultaneously zoom in to the very high resolution forecast results anywhere on the world, and get time series data for any point on the globe. The Cesium-ncWMS visualisation combines a global overview with local relevant information in any browser. See the visualisation live at forecast.ewatercycle.org
NASA Astrophysics Data System (ADS)
Zhu, Z.; Bi, J.; Wang, X.; Zhu, W.
2014-02-01
As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data.
NASA Astrophysics Data System (ADS)
Weinke, Elisabeth; Hölbling, Daniel; Albrecht, Florian; Friedl, Barbara
2017-04-01
Geo-hazards and their effects are distributed geographically over wide regions. The effective mapping and monitoring is essential for hazard assessment and mitigation. It is often best achieved using satellite imagery and new object-based image analysis approaches to identify and delineate geo-hazard objects (landslides, floods, forest fires, storm damages, etc.). At the moment, several local/national databases and platforms provide and publish data of different types of geo-hazards as well as web-based risk maps and decision support systems. Also, the European commission implemented the Copernicus Emergency Management Service (EMS) in 2015 that publishes information about natural and man-made disasters and risks. Currently, no platform for landslides or geo-hazards as such exists that enables the integration of the user in the mapping and monitoring process. In this study we introduce the concept of a spatial data infrastructure for object delineation, web-processing and service provision of landslide information with the focus on user interaction in all processes. A first prototype for the processing and mapping of landslides in Austria and Italy has been developed within the project Land@Slide, funded by the Austrian Research Promotion Agency FFG in the Austrian Space Applications Program ASAP. The spatial data infrastructure and its services for the mapping, processing and analysis of landslides can be extended to other regions and to all types of geo-hazards for analysis and delineation based on Earth Observation (EO) data. The architecture of the first prototypical spatial data infrastructure includes four main areas of technical components. The data tier consists of a file storage system and the spatial data catalogue for the management of EO-data, other geospatial data on geo-hazards, as well as descriptions and protocols for the data processing and analysis. An interface to extend the data integration from external sources (e.g. Sentinel-2 data) is planned for the possibility of rapid mapping. The server tier consists of java based web and GIS server. Sub and main services are part of the service tier. Sub services are for example map services, feature editing services, geometry services, geoprocessing services and metadata services. For (meta)data provision and to support data interoperability, web standards of the OGC and the rest-interface is used. Four central main services are designed and developed: (1) a mapping service (including image segmentation and classification approaches), (2) a monitoring service to monitor changes over time, (3) a validation service to analyze landslide delineations from different sources and (4) an infrastructure service to identify affected landslides. The main services use and combine parts of the sub services. Furthermore, a series of client applications based on new technology standards making use of the data and services offered by the spatial data infrastructure. Next steps include the design to extend the current spatial data infrastructure to other areas and geo-hazard types to develop a spatial data infrastructure that can assist targeted mapping and monitoring of geo-hazards on a global context.
BingEO: Enable Distributed Earth Observation Data for Environmental Research
NASA Astrophysics Data System (ADS)
Wu, H.; Yang, C.; Xu, Y.
2010-12-01
Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data accumulated already and still growing, BingEO will allow these resources to be utilized more widely, intensively, efficiently and economically in earth science applications.
NASA Astrophysics Data System (ADS)
Bandibas, J. C.; Takarada, S.
2013-12-01
Timely identification of areas affected by natural disasters is very important for a successful rescue and effective emergency relief efforts. This research focuses on the development of a cost effective and efficient system of identifying areas affected by natural disasters, and the efficient distribution of the information. The developed system is composed of 3 modules which are the Web Processing Service (WPS), Web Map Service (WMS) and the user interface provided by J-iView (fig. 1). WPS is an online system that provides computation, storage and data access services. In this study, the WPS module provides online access of the software implementing the developed frequency based change detection algorithm for the identification of areas affected by natural disasters. It also sends requests to WMS servers to get the remotely sensed data to be used in the computation. WMS is a standard protocol that provides a simple HTTP interface for requesting geo-registered map images from one or more geospatial databases. In this research, the WMS component provides remote access of the satellite images which are used as inputs for land cover change detection. The user interface in this system is provided by J-iView, which is an online mapping system developed at the Geological Survey of Japan (GSJ). The 3 modules are seamlessly integrated into a single package using J-iView, which could rapidly generate a map of disaster areas that is instantaneously viewable online. The developed system was tested using ASTER images covering the areas damaged by the March 11, 2011 tsunami in northeastern Japan. The developed system efficiently generated a map showing areas devastated by the tsunami. Based on the initial results of the study, the developed system proved to be a useful tool for emergency workers to quickly identify areas affected by natural disasters.
A Web-based Visualization System for Three Dimensional Geological Model using Open GIS
NASA Astrophysics Data System (ADS)
Nemoto, T.; Masumoto, S.; Nonogaki, S.
2017-12-01
A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.
Minecraft® on Demand - A new IGN service which combines game and 3D cartography
NASA Astrophysics Data System (ADS)
Lecordix, François; Fremont, David; Jilani, Moez; Séguin, Emmanuel; Kriat, Sofiane
2018-05-01
The French national mapping agency, Institut national de l'information géographique et forestière (IGN), decided to develop a new web service, called Minecraft on Demand (www.ign.fr/Minecraft), designed to provide Minecraft maps from the geographic data that IGN produces. This free web service enables the user to select the center of the map and to get a Minecraft world of 5 km long and 5 km wide, at the scale 1 : 1. The player can easily input this map into Minecraft, the world's most popular video game with 121 million copies sold. Launched in June 2016 in France, the service Minecraft® on Demand obtained a fair success (10,000 maps downloaded), more specifically among young people, since it may enable them to discover IGN data and geography.
EnviroAtlas - NHDPlus V2 Hydrologic Unit Boundaries Web Service - Conterminous United States
This EnviroAtlas web service contains layers depicting hydrologic unit boundary layers and labels for the Subregion level (4-digit HUCs), Subbasin level (8-digit HUCs), and Subwatershed level (12-digit HUCs) for the conterminous United States. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Tree Cover Configuration and Connectivity, Water Background Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The EnviroAtlas Austin, TX tree cover configuration and connectivity map categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). In this community, Forest is defined as Trees & Forest (Trees & Forest - 40 = 1; All Else = 0). Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Using JavaScript and the FDSN web service to create an interactive earthquake information system
NASA Astrophysics Data System (ADS)
Fischer, Kasper D.
2015-04-01
The FDSN web service provides a web interface to access earthquake meta-data (e. g. event or station information) and waveform date over the internet. Requests are send to a server as URLs and the output is either XML or miniSEED. This makes it hard to read by humans but easy to process with different software. Different data centers are already supporting the FDSN web service, e. g. USGS, IRIS, ORFEUS. The FDSN web service is also part of the Seiscomp3 (http://www.seiscomp3.org) software. The Seismological Observatory of the Ruhr-University switched to Seiscomp3 as the standard software for the analysis of mining induced earthquakes at the beginning of 2014. This made it necessary to create a new web-based earthquake information service for the publication of results to the general public. This has be done by processing the output of a FDSN web service query by javascript running in a standard browser. The result is an interactive map presenting the observed events and further information of events and stations on a single web page as a table and on a map. In addition the user can download event information, waveform data and station data in different formats like miniSEED, quakeML or FDSNxml. The developed code and all used libraries are open source and freely available.
NASA Astrophysics Data System (ADS)
Lykiardopoulos, A.; Iona, A.; Lakes, V.; Batis, A.; Balopoulos, E.
2009-04-01
The development of new technologies for the aim of enhancing Web Applications with Dynamically data access was the starting point for Geospatial Web Applications to developed at the same time as well. By the means of these technologies the Web Applications embed the capability of presenting Geographical representations of the Geo Information. The induction in nowadays, of the state of the art technologies known as Web Services, enforce the Web Applications to have interoperability among them i.e. to be able to process requests from each other via a network. In particular throughout the Oceanographic Community, modern Geographical Information systems based on Geospatial Web Services are now developed or will be developed shortly in the near future, with capabilities of managing the information itself fully through Web Based Geographical Interfaces. The exploitation of HNODC Data Base, through a Web Based Application enhanced with Web Services by the use of open source tolls may be consider as an ideal case of such implementation. Hellenic National Oceanographic Data Center (HNODC) as a National Public Oceanographic Data provider and at the same time a member of the International Net of Oceanographic Data Centers( IOC/IODE), owns a very big volume of Data and Relevant information about the Marine Ecosystem. For the efficient management and exploitation of these Data, a relational Data Base has been constructed with a storage of over 300.000 station data concerning, physical, chemical and biological Oceanographic information. The development of a modern Web Application for the End User worldwide to be able to explore and navigate throughout HNODC data via the use of an interface with the capability of presenting Geographical representations of the Geo Information, is today a fact. The application is constituted with State of the art software components and tools such as: • Geospatial and no Spatial Web Services mechanisms • Geospatial open source tools for the creation of Dynamic Geographical Representations. • Communication protocols (messaging mechanisms) in all Layers such as XML and GML together with SOAP protocol via Apache/Axis. At the same time the application may interact with any other SOA application either in sending or receiving Geospatial Data through Geographical Layers, since it inherits the big advantage of interoperability between Web Services systems. Roughly the Architecture can denoted as follows: • At the back End Open source PostgreSQL DBMS stands as the data storage mechanism with more than one Data Base Schemas cause of the separation of the Geospatial Data and the non Geospatial Data. • UMN Map Server and Geoserver are the mechanisms for: Represent Geospatial Data via Web Map Service (WMS) Querying and Navigating in Geospatial and Meta Data Information via Web Feature Service (WFS) oAnd in the near future Transacting and processing new or existing Geospatial Data via Web Processing Service (WPS) • Map Bender, a geospatial portal site management software for OGC and OWS architectures acts as the integration module between the Geospatial Mechanisms. Mapbender comes with an embedded data model capable to manage interfaces for displaying, navigating and querying OGC compliant web map and feature services (WMS and transactional WFS). • Apache and Tomcat stand again as the Web Service middle Layers • Apache Axis with it's embedded implementation of the SOAP protocol ("Simple Object Access Protocol") acts as the No spatial data Mechanism of Web Services. These modules of the platform are still under development but their implementation will be fulfilled in the near future. • And a new Web user Interface for the end user based on enhanced and customized version of a MapBender GUI, a powerful Web Services client. For HNODC the interoperability of Web Services is the big advantage of the developed platform since it is capable to act in the future as provider and consumer of Web Services in both ways: • Either as data products provider for external SOA platforms. • Or as consumer of data products from external SOA platforms for new applications to be developed or for existing applications to be enhanced. A great paradigm of Data Managenet integration and dissemination via the use of such technologies is the European's Union Research Project Seadatanet, with the main objective to develop a standardized distributed system for managing and disseminating the large and diverse data sets and to enhance the currently existing infrastructures with Web Services Further more and when the technology of Web Processing Service (WPS), will be mature enough and applicable for development, the derived data products will be able to have any kind of GIS functionality for consumers across the network. From this point of view HNODC, joins the global scientific community by providing and consuming application Independent data products.
77 FR 15369 - Mobility Fund Phase I Auction GIS Data of Potentially Eligible Census Blocks
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
....fcc.gov/auctions/901/ , are the following: Downloadable shapefile Web mapping service MapBox map tiles... GIS software allows you to add this service as a layer to your session or project. 6. MapBox map tiles are cached map tiles of the data. With this open source software approach, these image tiles can be...
Towards an EO-based Landslide Web Mapping and Monitoring Service
NASA Astrophysics Data System (ADS)
Hölbling, Daniel; Weinke, Elisabeth; Albrecht, Florian; Eisank, Clemens; Vecchiotti, Filippo; Friedl, Barbara; Kociu, Arben
2017-04-01
National and regional authorities and infrastructure maintainers in mountainous regions require accurate knowledge of the location and spatial extent of landslides for hazard and risk management. Information on landslides is often collected by a combination of ground surveying and manual image interpretation following landslide triggering events. However, the high workload and limited time for data acquisition result in a trade-off between completeness, accuracy and detail. Remote sensing data offers great potential for mapping and monitoring landslides in a fast and efficient manner. While facing an increased availability of high-quality Earth Observation (EO) data and new computational methods, there is still a lack in science-policy interaction and in providing innovative tools and methods that can easily be used by stakeholders and users to support their daily work. Taking up this issue, we introduce an innovative and user-oriented EO-based web service for landslide mapping and monitoring. Three central design components of the service are presented: (1) the user requirements definition, (2) the semi-automated image analysis methods implemented in the service, and (3) the web mapping application with its responsive user interface. User requirements were gathered during semi-structured interviews with regional authorities. The potential users were asked if and how they employ remote sensing data for landslide investigation and what their expectations to a landslide web mapping service regarding reliability and usability are. The interviews revealed the capability of our service for landslide documentation and mapping as well as monitoring of selected landslide sites, for example to complete and update landslide inventory maps. In addition, the users see a considerable potential for landslide rapid mapping. The user requirements analysis served as basis for the service concept definition. Optical satellite imagery from different high resolution (HR) and very high resolution (VHR) sensors, e.g. Landsat, Sentinel-2, SPOT-5, WorldView-2/3, was acquired for different study areas in the Alps. Object-based image analysis (OBIA) methods were used for semi-automated mapping of landslides. Selected mapping routines and results, including a step-by-step guidance, are integrated in the service by means of a web processing chain. This allows the user to gain insights into the service idea, the potential of semi-automated mapping methods, and the applicability of various satellite data for specific landslide mapping tasks. Moreover, an easy-to use and guided classification workflow, which includes image segmentation, statistical classification and manual editing options, enables the user to perform his/her own analyses. For validation, the classification results can be downloaded or compared against uploaded reference data using the implemented tools. Furthermore, users can compare the classification results to freely available data such as OpenStreetMap to identify landslide-affected infrastructure (e.g. roads, buildings). They also can upload infrastructure data available at their organization for specific assessments or monitor the evolution of selected landslides over time. Further actions will include the validation of the service in collaboration with stakeholders, decision makers and experts, which is essential to produce landslide information products that can assist the targeted management of natural hazards, and the evaluation of the potential towards the development of an operational Copernicus downstream service.
First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Manaud, N.; Gonzalez, J.
2014-04-01
We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.
EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
Climate Prediction Center - Expert Assessments Index
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Global Climate Data & Maps > ; Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are
EnviroAtlas -Pittsburgh, PA- One Meter Resolution Urban Land Cover Data (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas).The EnviroAtlas Pittsburgh, PA land cover map was generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution. Imagery was collected on multiple dates in June 2010. Five land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, and grass and herbaceous non-woody vegetation. An accuracy assessment of 500 completely random and 81 stratified random points yielded an overall accuracy of 86.57 percent. The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Pittsburgh, PA. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Discovery Mechanisms for the Sensor Web
Jirka, Simon; Bröring, Arne; Stasch, Christoph
2009-01-01
This paper addresses the discovery of sensors within the OGC Sensor Web Enablement framework. Whereas services like the OGC Web Map Service or Web Coverage Service are already well supported through catalogue services, the field of sensor networks and the according discovery mechanisms is still a challenge. The focus within this article will be on the use of existing OGC Sensor Web components for realizing a discovery solution. After discussing the requirements for a Sensor Web discovery mechanism, an approach will be presented that was developed within the EU funded project “OSIRIS”. This solution offers mechanisms to search for sensors, exploit basic semantic relationships, harvest sensor metadata and integrate sensor discovery into already existing catalogues. PMID:22574038
Web-based network analysis and visualization using CellMaps
Salavert, Francisco; García-Alonso, Luz; Sánchez, Rubén; Alonso, Roberto; Bleda, Marta; Medina, Ignacio; Dopazo, Joaquín
2016-01-01
Summary: CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. Availability and Implementation: The application is available at: http://cellmaps.babelomics.org/ and the code can be found in: https://github.com/opencb/cell-maps. The client is implemented in JavaScript and the server in C and Java. Contact: jdopazo@cipf.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27296979
Web-based network analysis and visualization using CellMaps.
Salavert, Francisco; García-Alonso, Luz; Sánchez, Rubén; Alonso, Roberto; Bleda, Marta; Medina, Ignacio; Dopazo, Joaquín
2016-10-01
: CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. The application is available at: http://cellmaps.babelomics.org/ and the code can be found in: https://github.com/opencb/cell-maps The client is implemented in JavaScript and the server in C and Java. jdopazo@cipf.es Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Morton, J. J.; Ferrini, V. L.
2015-12-01
The Marine Geoscience Data System (MGDS, www.marine-geo.org) operates an interactive digital data repository and metadata catalog that provides access to a variety of marine geology and geophysical data from throughout the global oceans. Its Marine-Geo Digital Library includes common marine geophysical data types and supporting data and metadata, as well as complementary long-tail data. The Digital Library also includes community data collections and custom data portals for the GeoPRISMS, MARGINS and Ridge2000 programs, for active source reflection data (Academic Seismic Portal), and for marine data acquired by the US Antarctic Program (Antarctic and Southern Ocean Data Portal). Ensuring that these data are discoverable not only through our own interfaces but also through standards-compliant web services is critical for enabling investigators to find data of interest.Over the past two years, MGDS has developed several new RESTful web services that enable programmatic access to metadata and data holdings. These web services are compliant with the EarthCube GeoWS Building Blocks specifications and are currently used to drive our own user interfaces. New web applications have also been deployed to provide a more intuitive user experience for searching, accessing and browsing metadata and data. Our new map-based search interface combines components of the Google Maps API with our web services for dynamic searching and exploration of geospatially constrained data sets. Direct introspection of nearly all data formats for hundreds of thousands of data files curated in the Marine-Geo Digital Library has allowed for precise geographic bounds, which allow geographic searches to an extent not previously possible. All MGDS map interfaces utilize the web services of the Global Multi-Resolution Topography (GMRT) synthesis for displaying global basemap imagery and for dynamically provide depth values at the cursor location.
EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-
EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas -Portland, ME- One Meter Resolution Urban Land Cover (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Portland, ME land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a stratified random sampling of 600 samples yielded an overall accuracy of 87.5 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Portland.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Web mapping system for complex processing and visualization of environmental geospatial datasets
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor
2016-04-01
Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.
EnviroAtlas -- Austin, TX -- One Meter Resolution Urban Land Cover Data (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The Austin, TX EnviroAtlas One Meter-scale Urban Land Cover (MULC) Data were generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution from multiple dates in May, 2010. Six land cover classes were mapped: water, impervious surfaces, soil and barren land, trees, grass-herbaceous non-woody vegetation, and agriculture. An accuracy assessment of 600 completely random and 55 stratified random photo interpreted reference points yielded an overall User's fuzzy accuracy of 87 percent. The area mapped is the US Census Bureau's 2010 Urban Statistical Area for Austin, TX plus a 1 km buffer. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas
NASA Astrophysics Data System (ADS)
Baldwin, R.; Ansari, S.; Reid, G.; Lott, N.; Del Greco, S.
2007-12-01
The main goal in developing and deploying Geographic Information System (GIS) services at NOAA's National Climatic Data Center (NCDC) is to provide users with simple access to data archives while integrating new and informative climate products. Several systems at NCDC provide a variety of climatic data in GIS formats and/or map viewers. The Online GIS Map Services provide users with data discovery options which flow into detailed product selection maps, which may be queried using standard "region finder" tools or gazetteer (geographical dictionary search) functions. Each tabbed selection offers steps to help users progress through the systems. A series of additional base map layers or data types have been added to provide companion information. New map services include: Severe Weather Data Inventory, Local Climatological Data, Divisional Data, Global Summary of the Day, and Normals/Extremes products. THREDDS Data Server technology is utilized to provide access to gridded multidimensional datasets such as Model, Satellite and Radar. This access allows users to download data as a gridded NetCDF file, which is readable by ArcGIS. In addition, users may subset the data for a specific geographic region, time period, height range or variable prior to download. The NCDC Weather Radar Toolkit (WRT) is a client tool which accesses Weather Surveillance Radar 1988 Doppler (WSR-88D) data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. As more users become accustom to GIS, questions of better, cheaper, faster access soon follow. Expanding use and availability can best be accomplished through standards which promote interoperability. Our GIS related products provide Open Geospatial Consortium (OGC) compliant Web Map Services (WMS), Web Feature Services (WFS), Web Coverage Services (WCS) and Federal Geographic Data Committee (FGDC) metadata as a complement to the map viewers. KML/KMZ data files (soon to be compliant OGC specifications) also provide access.
Modern Data Center Services Supporting Science
NASA Astrophysics Data System (ADS)
Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.
2011-12-01
The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web application frameworks such as Groovy and Grails. Data discovery is being improved and simplified by leveraging ISO metadata standards along with ESRI Geoportal Server.
NASA Astrophysics Data System (ADS)
Yang, Z.; Han, W.; di, L.
2010-12-01
The National Agricultural Statistics Service (NASS) of the USDA produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, U.S. crop specific land cover classification. These digital data layers are widely used for a variety of applications by universities, research institutions, government agencies, and private industry in climate change studies, environmental ecosystem studies, bioenergy production & transportation planning, environmental health research and agricultural production decision making. The CDL is also used internally by NASS for crop acreage and yield estimation. Like most geospatial data products, the CDL product is only available by CD/DVD delivery or online bulk file downloading via the National Research Conservation Research (NRCS) Geospatial Data Gateway (external users) or in a printed paper map format. There is no online geospatial information access and dissemination, no crop visualization & browsing, no geospatial query capability, nor online analytics. To facilitate the application of this data layer and to help disseminating the data, a web-service based CDL interactive map visualization, dissemination, querying system is proposed. It uses Web service based service oriented architecture, adopts open standard geospatial information science technology and OGC specifications and standards, and re-uses functions/algorithms from GeoBrain Technology (George Mason University developed). This system provides capabilities of on-line geospatial crop information access, query and on-line analytics via interactive maps. It disseminates all data to the decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services. A CDL region of interest can also be exported directly to Google Earth for mashup or downloaded for use with other desktop application. This web service based system greatly improves equal-accessibility, interoperability, usability, and data visualization, facilitates crop geospatial information usage, and enables US cropland online exploring capability without any client-side software installation. It also greatly reduces the need for paper map and analysis report printing and media usages, and thus enhances low-carbon Agro-geoinformation dissemination for decision support.
The deegree framework - Spatial Data Infrastructure solution for end-users and developers
NASA Astrophysics Data System (ADS)
Kiehle, Christian; Poth, Andreas
2010-05-01
The open source software framework deegree is a comprehensive implementation of standards as defined by ISO and Open Geospatial Consortium (OGC). It has been developed with two goals in mind: provide a uniform framework for implementing Spatial Data Infrastructures (SDI) and adhering to standards as strictly as possible. Although being open source software (Lesser GNU Public License, LGPL), deegree has been developed with a business model in mind: providing the general building blocks of SDIs without license fees and offer customization, consulting and tailoring by specialized companies. The core of deegree is a comprehensive Java Application Programming Interface (API) offering access to spatial features, analysis, metadata and coordinate reference systems. As a library, deegree can and has been integrated as a core module inside spatial information systems. It is reference implementation for several OGC standards and based on an ISO 19107 geometry model. For end users, deegree is shipped as a web application providing easy-to-set-up components for web mapping and spatial analysis. Since 2000, deegree has been the backbone of many productive SDIs, first and foremost for governmental stakeholders (e.g. Federal Agency for Cartography and Geodesy in Germany, the Ministry of Housing, Spatial Planning and the Environment in the Netherlands, etc.) as well as for research and development projects as an early adoption of standards, drafts and discussion papers. Besides mature standards like Web Map Service, Web Feature Service and Catalogue Services, deegree also implements rather new standards like the Sensor Observation Service, the Web Processing Service and the Web Coordinate Transformation Service (WCTS). While a robust background in standardization (knowledge and implementation) is a must for consultancy, standard-compliant services and encodings alone do not provide solutions for customers. The added value is comprised by a sophisticated set of client software, desktop and web environments. A focus lies on different client solutions for specific standards like the Web Processing Service and the Web Coordinate Transformation Service. On the other hand, complex geoportal solutions comprised of multiple standards and enhanced by components for user management, security and map client functionality show the demanding requirements of real world solutions. The XPlan-GML-standard as defined by the German spatial planing authorities is a good example of how complex real-world requirements can get. XPlan-GML is intended to provide a framework for digital spatial planning documents and requires complex Geography Markup Language (GML) features along with Symbology Encoding (SE), Filter Encoding (FE), Web Map Services (WMS), Web Feature Services (WFS). This complex infrastructure should be used by urban and spatial planners and therefore requires a user-friendly graphical interface hiding the complexity of the underlying infrastructure. Based on challenges faced within customer projects, the importance of easy to use software components is focused. SDI solution should be build upon ISO/OGC-standards, but more important, should be user-friendly and support the users in spatial data management and analysis.
Architecture of the local spatial data infrastructure for regional climate change research
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny
2013-04-01
Georeferenced datasets (meteorological databases, modeling and reanalysis results, etc.) are actively used in modeling and analysis of climate change for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset studies in the area of climate and environmental change require a special software support based on SDI approach. A dedicated architecture of the local spatial data infrastructure aiming at regional climate change analysis using modern web mapping technologies is presented. Geoportal is a key element of any SDI, allowing searching of geoinformation resources (datasets and services) using metadata catalogs, producing geospatial data selections by their parameters (data access functionality) as well as managing services and applications of cartographical visualization. It should be noted that due to objective reasons such as big dataset volume, complexity of data models used, syntactic and semantic differences of various datasets, the development of environmental geodata access, processing and visualization services turns out to be quite a complex task. Those circumstances were taken into account while developing architecture of the local spatial data infrastructure as a universal framework providing geodata services. So that, the architecture presented includes: 1. Effective in terms of search, access, retrieval and subsequent statistical processing, model of storing big sets of regional georeferenced data, allowing in particular to store frequently used values (like monthly and annual climate change indices, etc.), thus providing different temporal views of the datasets 2. General architecture of the corresponding software components handling geospatial datasets within the storage model 3. Metadata catalog describing in detail using ISO 19115 and CF-convention standards datasets used in climate researches as a basic element of the spatial data infrastructure as well as its publication according to OGC CSW (Catalog Service Web) specification 4. Computational and mapping web services to work with geospatial datasets based on OWS (OGC Web Services) standards: WMS, WFS, WPS 5. Geoportal as a key element of thematic regional spatial data infrastructure providing also software framework for dedicated web applications development To realize web mapping services Geoserver software is used since it provides natural WPS implementation as a separate software module. To provide geospatial metadata services GeoNetwork Opensource (http://geonetwork-opensource.org) product is planned to be used for it supports ISO 19115/ISO 19119/ISO 19139 metadata standards as well as ISO CSW 2.0 profile for both client and server. To implement thematic applications based on geospatial web services within the framework of local SDI geoportal the following open source software have been selected: 1. OpenLayers JavaScript library, providing basic web mapping functionality for the thin client such as web browser 2. GeoExt/ExtJS JavaScript libraries for building client-side web applications working with geodata services. The web interface developed will be similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. The work is partially supported by RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2.1 and IP 131.
Land User and Land Cover Maps of Europe: a Webgis Platform
NASA Astrophysics Data System (ADS)
Brovelli, M. A.; Fahl, F. C.; Minghini, M.; Molinari, M. E.
2016-06-01
This paper presents the methods and implementation processes of a WebGIS platform designed to publish the available land use and land cover maps of Europe at continental scale. The system is built completely on open source infrastructure and open standards. The proposed architecture is based on a server-client model having GeoServer as the map server, Leaflet as the client-side mapping library and the Bootstrap framework at the core of the front-end user interface. The web user interface is designed to have typical features of a desktop GIS (e.g. activate/deactivate layers and order layers by drag and drop actions) and to show specific information on the activated layers (e.g. legend and simplified metadata). Users have the possibility to change the base map from a given list of map providers (e.g. OpenStreetMap and Microsoft Bing) and to control the opacity of each layer to facilitate the comparison with both other land cover layers and the underlying base map. In addition, users can add to the platform any custom layer available through a Web Map Service (WMS) and activate the visualization of photos from popular photo sharing services. This last functionality is provided in order to have a visual assessment of the available land coverages based on other user-generated contents available on the Internet. It is supposed to be a first step towards a calibration/validation service that will be made available in the future.
CPC - Monitoring & Data: Pacific Island Climate Data
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Pacific Islands Climate Data & Maps island stations. NOAA/ National Weather Service NOAA Center for Weather and Climate Prediction Climate
A Different Web-Based Geocoding Service Using Fuzzy Techniques
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.
2015-12-01
Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.
Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project
NASA Astrophysics Data System (ADS)
Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.
2011-12-01
The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework; openSSO - open source access management and federation platform; solr - open source enterprise search platform; redmine - open source project collaboration and management framework; GDAL - open source geospatial data abstraction library; and others. Its data products are compliant with Federal Geographic Data Committee (FGDC) metadata standard. This standardization allows users to access the data products via custom written applications or off-the-shelf applications such as GoogleEarth. We will demonstrate this ready-to-use system for data discovery and visualization by walking through the data services provided through the portal such as browse, search, and other tools. We will further demonstrate image viewing and layering of lunar map images from the Internet, via mobile devices such as Apple's iPad.
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
Caching strategies for improving performance of web-based Geographic applications
NASA Astrophysics Data System (ADS)
Liu, M.; Brodzik, M.; Collins, J. A.; Lewis, S.; Oldenburg, J.
2012-12-01
The NASA Operation IceBridge mission collects airborne remote sensing measurements to bridge the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission and the upcoming ICESat-2 mission. The IceBridge Data Portal from the National Snow and Ice Data Center provides an intuitive web interface for accessing IceBridge mission observations and measurements. Scientists and users usually do not have knowledge about the individual campaigns but are interested in data collected in a specific place. We have developed a high-performance map interface to allow users to quickly zoom to an area of interest and see any Operation IceBridge overflights. The map interface consists of two layers: the user can pan and zoom on the base map layer; the flight line layer that overlays the base layer provides all the campaign missions that intersect with the current map view. The user can click on the flight campaigns and download the data as needed. The OpenGIS® Web Map Service Interface Standard (WMS) provides a simple HTTP interface for requesting geo-registered map images from one or more distributed geospatial databases. Web Feature Service (WFS) provides an interface allowing requests for geographical features across the web using platform-independent calls. OpenLayers provides vector support (points, polylines and polygons) to build a WMS/WFS client for displaying both layers on the screen. Map Server, an open source development environment for building spatially enabled internet applications, is serving the WMS and WFS spatial data to OpenLayers. Early releases of the portal displayed unacceptably poor load time performance for flight lines and the base map tiles. This issue was caused by long response times from the map server in generating all map tiles and flight line vectors. We resolved the issue by implementing various caching strategies on top of the WMS and WFS services, including the use of Squid (www.squid-cache.org) to cache frequently-used content. Our presentation includes the architectural design of the application, and how we use OpenLayers, WMS and WFS with Squid to build a responsive web application capable of efficiently displaying geospatial data to allow the user to quickly interact with the displayed information. We describe the design, implementation and performance improvement of our caching strategies, and the tools and techniques developed to assist our data caching strategies.
A web-based system for supporting global land cover data production
NASA Astrophysics Data System (ADS)
Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu
2015-05-01
Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.
The National Map: New Viewer, Services, and Data Download
Dollison, Robert M.
2010-01-01
Managed by the U.S. Geological Survey's (USGS) National Geospatial Program, The National Map has transitioned data assets and viewer applications to a new visualization and product and service delivery environment, which includes an improved viewing platform, base map data and overlay services, and an integrated data download service. This new viewing solution expands upon the National Geospatial Intelligence Agency (NGA) Palanterra X3 viewer, providing a solid technology foundation for navigation and basic Web mapping functionality. Building upon the NGA viewer allows The National Map to focus on improving data services, functions, and data download capabilities. Initially released to the public at the 125th anniversary of mapping in the USGS on December 3, 2009, the viewer and services are now the primary distribution point for The National Map data. The National Map Viewer: http://viewer.nationalmap.gov
Open source software integrated into data services of Japanese planetary explorations
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Ishihara, Y.; Otake, H.; Imai, K.; Masuda, K.
2015-12-01
Scientific data obtained by Japanese scientific satellites and lunar and planetary explorations are archived in DARTS (Data ARchives and Transmission System). DARTS provides the data with a simple method such as HTTP directory listing for long-term preservation while DARTS tries to provide rich web applications for ease of access with modern web technologies based on open source software. This presentation showcases availability of open source software through our services. KADIAS is a web-based application to search, analyze, and obtain scientific data measured by SELENE(Kaguya), a Japanese lunar orbiter. KADIAS uses OpenLayers to display maps distributed from Web Map Service (WMS). As a WMS server, open source software MapServer is adopted. KAGUYA 3D GIS (KAGUYA 3D Moon NAVI) provides a virtual globe for the SELENE's data. The main purpose of this application is public outreach. NASA World Wind Java SDK is used to develop. C3 (Cross-Cutting Comparisons) is a tool to compare data from various observations and simulations. It uses Highcharts to draw graphs on web browsers. Flow is a tool to simulate a Field-Of-View of an instrument onboard a spacecraft. This tool itself is open source software developed by JAXA/ISAS, and the license is BSD 3-Caluse License. SPICE Toolkit is essential to compile FLOW. SPICE Toolkit is also open source software developed by NASA/JPL, and the website distributes many spacecrafts' data. Nowadays, open source software is an indispensable tool to integrate DARTS services.
Towards Web-based representation and processing of health information
Gao, Sheng; Mioc, Darka; Yi, Xiaolun; Anton, Francois; Oldfield, Eddie; Coleman, David J
2009-01-01
Background There is great concern within health surveillance, on how to grapple with environmental degradation, rapid urbanization, population mobility and growth. The Internet has emerged as an efficient way to share health information, enabling users to access and understand data at their fingertips. Increasingly complex problems in the health field require increasingly sophisticated computer software, distributed computing power, and standardized data sharing. To address this need, Web-based mapping is now emerging as an important tool to enable health practitioners, policy makers, and the public to understand spatial health risks, population health trends and vulnerabilities. Today several web-based health applications generate dynamic maps; however, for people to fully interpret the maps they need data source description and the method used in the data analysis or statistical modeling. For the representation of health information through Web-mapping applications, there still lacks a standard format to accommodate all fixed (such as location) and variable (such as age, gender, health outcome, etc) indicators in the representation of health information. Furthermore, net-centric computing has not been adequately applied to support flexible health data processing and mapping online. Results The authors of this study designed a HEalth Representation XML (HERXML) schema that consists of the semantic (e.g., health activity description, the data sources description, the statistical methodology used for analysis), geometric, and cartographical representations of health data. A case study has been carried on the development of web application and services within the Canadian Geospatial Data Infrastructure (CGDI) framework for community health programs of the New Brunswick Lung Association. This study facilitated the online processing, mapping and sharing of health information, with the use of HERXML and Open Geospatial Consortium (OGC) services. It brought a new solution in better health data representation and initial exploration of the Web-based processing of health information. Conclusion The designed HERXML has been proven to be an appropriate solution in supporting the Web representation of health information. It can be used by health practitioners, policy makers, and the public in disease etiology, health planning, health resource management, health promotion and health education. The utilization of Web-based processing services in this study provides a flexible way for users to select and use certain processing functions for health data processing and mapping via the Web. This research provides easy access to geospatial and health data in understanding the trends of diseases, and promotes the growth and enrichment of the CGDI in the public health sector. PMID:19159445
This EnviroAtlas web service contains layers depicting market-based programs and projects addressing ecosystem services protection in the United States. Layers include data collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets and enabling conditions that facilitate, directly or indirectly, market-based approaches to protecting and investing in those ecosystem services. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas -Phoenix, AZ- One Meter Resolution Urban Land Cover Data (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The EnviroAtlas Phoenix, AZ land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubland, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall accuracy of 69.2%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data
CPC - Monitoring & Data: Regional Climate Maps
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Information CPC Web Team HOME > Monitoring and Data > Global Climate Data & Maps > Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are usually
Cool Apps: Building Cryospheric Data Applications with Standards-Based Service Oriented Architecture
NASA Astrophysics Data System (ADS)
Oldenburg, J.; Truslove, I.; Collins, J. A.; Liu, M.; Lewis, S.; Brodzik, M.
2012-12-01
The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high- quality software in a timely manner, we have adopted a Service- Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-defined service endpoints which follow a RESTful architecture. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/ portal) which depends on many of the aforementioned services, retrieving data in several ways. The maps it displays are obtained through the use of WMS and WFS protocols from a MapServer instance hosted at NSIDC. Links to the scientific data collected on Operation IceBridge campaigns are obtained through ESIP OpenSearch requests service providers that encapsulate our metadata databases. These standards-based web services are also developed at NSIDC and are designed to be used independently of the Portal. This poster provides a visual representation of the relationships described above, with additional details and examples, and more generally outlines the benefits and challenges of this SOA approach.
High-Performance Tiled WMS and KML Web Server
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2007-01-01
This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.
Tiled vector data model for the geographical features of symbolized maps.
Li, Lin; Hu, Wei; Zhu, Haihong; Li, You; Zhang, Hang
2017-01-01
Electronic maps (E-maps) provide people with convenience in real-world space. Although web map services can display maps on screens, a more important function is their ability to access geographical features. An E-map that is based on raster tiles is inferior to vector tiles in terms of interactive ability because vector maps provide a convenient and effective method to access and manipulate web map features. However, the critical issue regarding rendering tiled vector maps is that geographical features that are rendered in the form of map symbols via vector tiles may cause visual discontinuities, such as graphic conflicts and losses of data around the borders of tiles, which likely represent the main obstacles to exploring vector map tiles on the web. This paper proposes a tiled vector data model for geographical features in symbolized maps that considers the relationships among geographical features, symbol representations and map renderings. This model presents a method to tailor geographical features in terms of map symbols and 'addition' (join) operations on the following two levels: geographical features and map features. Thus, these maps can resolve the visual discontinuity problem based on the proposed model without weakening the interactivity of vector maps. The proposed model is validated by two map data sets, and the results demonstrate that the rendered (symbolized) web maps present smooth visual continuity.
Migrating Department of Defense (DoD) Web Service Based Applications to Mobile Computing Platforms
2012-03-01
World Wide Web Consortium (W3C) Geolocation API to identify the device’s location and then center the map on the device. Finally, we modify the entry...THIS PAGE INTENTIONALLY LEFT BLANK xii List of Acronyms and Abbreviations API Application Programming Interface CSS Cascading Style Sheets CLIMO...Java API for XML Web Services Reference Implementation JS JavaScript JSNI JavaScript Native Interface METOC Meteorological and Oceanographic MAA Mobile
NASA Astrophysics Data System (ADS)
Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph
2015-01-01
Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).
Usability Evaluation of Public Web Mapping Sites
NASA Astrophysics Data System (ADS)
Wang, C.
2014-04-01
Web mapping sites are interactive maps that are accessed via Webpages. With the rapid development of Internet and Geographic Information System (GIS) field, public web mapping sites are not foreign to people. Nowadays, people use these web mapping sites for various reasons, in that increasing maps and related map services of web mapping sites are freely available for end users. Thus, increased users of web mapping sites led to more usability studies. Usability Engineering (UE), for instance, is an approach for analyzing and improving the usability of websites through examining and evaluating an interface. In this research, UE method was employed to explore usability problems of four public web mapping sites, analyze the problems quantitatively and provide guidelines for future design based on the test results. Firstly, the development progress for usability studies were described, and simultaneously several usability evaluation methods such as Usability Engineering (UE), User-Centered Design (UCD) and Human-Computer Interaction (HCI) were generally introduced. Then the method and procedure of experiments for the usability test were presented in detail. In this usability evaluation experiment, four public web mapping sites (Google Maps, Bing maps, Mapquest, Yahoo Maps) were chosen as the testing websites. And 42 people, who having different GIS skills (test users or experts), gender (male or female), age and nationality, participated in this test to complete the several test tasks in different teams. The test comprised three parts: a pretest background information questionnaire, several test tasks for quantitative statistics and progress analysis, and a posttest questionnaire. The pretest and posttest questionnaires focused on gaining the verbal explanation of their actions qualitatively. And the design for test tasks targeted at gathering quantitative data for the errors and problems of the websites. Then, the results mainly from the test part were analyzed. The success rate from different public web mapping sites was calculated and compared, and displayed by the means of diagram. And the answers from questionnaires were also classified and organized in this part. Moreover, based on the analysis, this paper expands the discussion about the layout, map visualization, map tools, search logic and etc. Finally, this paper closed with some valuable guidelines and suggestions for the design of public web mapping sites. Also, limitations for this research stated in the end.
Geospatial data for 303(d) Impaired Waters are available as prepackaged national downloads or as GIS web and and data services. EPA provides geospatial data in the formats: GIS compatible shapefiles and geodatabases and ESRI and OGC web mapping.
Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping
NASA Astrophysics Data System (ADS)
Kadlec, Jiri
This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed to combine volunteer snow reports, cross-country ski track reports and station measurements to fill cloud gaps in the MODIS snow cover product. The method is demonstrated by producing a continuous daily time step snow presence probability map dataset for the Czech Republic region. The ability of the presented methodology to reconstruct MODIS snow cover under cloud is validated by simulating cloud cover datasets and comparing estimated snow cover to actual MODIS snow cover. The percent correctly classified indicator showed accuracy between 80 and 90% using this method. Using crowdsourcing data (volunteer snow reports and ski tracks) improves the map accuracy by 0.7--1.2%. The output snow probability map data sets are published online using web applications and web services. Keywords: crowdsourcing, image analysis, interpolation, MODIS, R statistical software, snow cover, snowpack probability, Tethys platform, time series, WaterML, web services, winter sports.
Design and Applications of Rapid Image Tile Producing Software Based on Mosaic Dataset
NASA Astrophysics Data System (ADS)
Zha, Z.; Huang, W.; Wang, C.; Tang, D.; Zhu, L.
2018-04-01
Map tile technology is widely used in web geographic information services. How to efficiently produce map tiles is key technology for rapid service of images on web. In this paper, a rapid producing software for image tile data based on mosaic dataset is designed, meanwhile, the flow of tile producing is given. Key technologies such as cluster processing, map representation, tile checking, tile conversion and compression in memory are discussed. Accomplished by software development and tested by actual image data, the results show that this software has a high degree of automation, would be able to effectively reducing the number of IO and improve the tile producing efficiency. Moreover, the manual operations would be reduced significantly.
Web servicing the biological office.
Szugat, Martin; Güttler, Daniel; Fundel, Katrin; Sohler, Florian; Zimmer, Ralf
2005-09-01
Biologists routinely use Microsoft Office applications for standard analysis tasks. Despite ubiquitous internet resources, information needed for everyday work is often not directly and seamlessly available. Here we describe a very simple and easily extendable mechanism using Web Services to enrich standard MS Office applications with internet resources. We demonstrate its capabilities by providing a Web-based thesaurus for biological objects, which maps names to database identifiers and vice versa via an appropriate synonym list. The client application ProTag makes these features available in MS Office applications using Smart Tags and Add-Ins. http://services.bio.ifi.lmu.de/prothesaurus/
Colour Coding of Maps for Colour Deficient Observers.
Røise, Anne Kari; Kvitle, Anne Kristin; Green, Phil
2016-01-01
We evaluate the colour coding of a web map traffic information service based on profiles simulating colour vision deficiencies. Based on these simulations and principles for universal design, we propose adjustments of the existing colours creating more readable maps for the colour vision deficient observers.
rasdaman Array Database: current status
NASA Astrophysics Data System (ADS)
Merticariu, George; Toader, Alexandru
2015-04-01
rasdaman (Raster Data Manager) is a Free Open Source Array Database Management System which provides functionality for storing and processing massive amounts of raster data in the form of multidimensional arrays. The user can access, process and delete the data using SQL. The key features of rasdaman are: flexibility (datasets of any dimensionality can be processed with the help of SQL queries), scalability (rasdaman's distributed architecture enables it to seamlessly run on cloud infrastructures while offering an increase in performance with the increase of computation resources), performance (real-time access, processing, mixing and filtering of arrays of any dimensionality) and reliability (legacy communication protocol replaced with a new one based on cutting edge technology - Google Protocol Buffers and ZeroMQ). Among the data with which the system works, we can count 1D time series, 2D remote sensing imagery, 3D image time series, 3D geophysical data, and 4D atmospheric and climate data. Most of these representations cannot be stored only in the form of raw arrays, as the location information of the contents is also important for having a correct geoposition on Earth. This is defined by ISO 19123 as coverage data. rasdaman provides coverage data support through the Petascope service. Extensions were added on top of rasdaman in order to provide support for the Geoscience community. The following OGC standards are currently supported: Web Map Service (WMS), Web Coverage Service (WCS), and Web Coverage Processing Service (WCPS). The Web Map Service is an extension which provides zoom and pan navigation over images provided by a map server. Starting with version 9.1, rasdaman supports WMS version 1.3. The Web Coverage Service provides capabilities for downloading multi-dimensional coverage data. Support is also provided for several extensions of this service: Subsetting Extension, Scaling Extension, and, starting with version 9.1, Transaction Extension, which defines request types for inserting, updating and deleting coverages. A web client, designed for both novice and experienced users, is also available for the service and its extensions. The client offers an intuitive interface that allows users to work with multi-dimensional coverages by abstracting the specifics of the standard definitions of the requests. The Web Coverage Processing Service defines a language for on-the-fly processing and filtering multi-dimensional raster coverages. rasdaman exposes this service through the WCS processing extension. Demonstrations are provided online via the Earthlook website (earthlook.org) which presents use-cases from a wide variety of application domains, using the rasdaman system as processing engine.
NASA Astrophysics Data System (ADS)
Gupta, V.; Gupta, N.; Gupta, S.; Field, E.; Maechling, P.
2003-12-01
Modern laptop computers, and personal computers, can provide capabilities that are, in many ways, comparable to workstations or departmental servers. However, this doesn't mean we should run all computations on our local computers. We have identified several situations in which it preferable to implement our seismological application programs in a distributed, server-based, computing model. In this model, application programs on the user's laptop, or local computer, invoke programs that run on an organizational server, and the results are returned to the invoking system. Situations in which a server-based architecture may be preferred include: (a) a program is written in a language, or written for an operating environment, that is unsupported on the local computer, (b) software libraries or utilities required to execute a program are not available on the users computer, (c) a computational program is physically too large, or computationally too expensive, to run on a users computer, (d) a user community wants to enforce a consistent method of performing a computation by standardizing on a single implementation of a program, and (e) the computational program may require current information, that is not available to all client computers. Until recently, distributed, server-based, computational capabilities were implemented using client/server architectures. In these architectures, client programs were often written in the same language, and they executed in the same computing environment, as the servers. Recently, a new distributed computational model, called Web Services, has been developed. Web Services are based on Internet standards such as XML, SOAP, WDSL, and UDDI. Web Services offer the promise of platform, and language, independent distributed computing. To investigate this new computational model, and to provide useful services to the SCEC Community, we have implemented several computational and utility programs using a Web Service architecture. We have hosted these Web Services as a part of the SCEC Community Modeling Environment (SCEC/CME) ITR Project (http://www.scec.org/cme). We have implemented Web Services for several of the reasons sited previously. For example, we implemented a FORTRAN-based Earthquake Rupture Forecast (ERF) as a Web Service for use by client computers that don't support a FORTRAN runtime environment. We implemented a Generic Mapping Tool (GMT) Web Service for use by systems that don't have local access to GMT. We implemented a Hazard Map Calculator Web Service to execute Hazard calculations that are too computationally intensive to run on a local system. We implemented a Coordinate Conversion Web Service to enforce a standard and consistent method for converting between UTM and Lat/Lon. Our experience developing these services indicates both strengths and weakness in current Web Service technology. Client programs that utilize Web Services typically need network access, a significant disadvantage at times. Programs with simple input and output parameters were the easiest to implement as Web Services, while programs with complex parameter-types required a significant amount of additional development. We also noted that Web services are very data-oriented, and adapting object-oriented software into the Web Service model proved problematic. Also, the Web Service approach of converting data types into XML format for network transmission has significant inefficiencies for some data sets.
Data Access and Web Services at the EarthScope Plate Boundary Observatory
NASA Astrophysics Data System (ADS)
Matykiewicz, J.; Anderson, G.; Henderson, D.; Hodgkinson, K.; Hoyt, B.; Lee, E.; Persson, E.; Torrez, D.; Smith, J.; Wright, J.; Jackson, M.
2007-12-01
The EarthScope Plate Boundary Observatory (PBO) at UNAVCO, Inc., part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 880 continuous GPS stations, 103 borehole strainmeter stations, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations and one previously existing laser strainmeter. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of access methods, incuding map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.
The Plate Boundary Observatory: Community Focused Web Services
NASA Astrophysics Data System (ADS)
Matykiewicz, J.; Anderson, G.; Lee, E.; Hoyt, B.; Hodgkinson, K.; Persson, E.; Wright, J.; Torrez, D.; Jackson, M.
2006-12-01
The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 852 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of channels, including map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.
2014-01-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.
2014-01-01
During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.
Online Maps and Cloud-Supported Location-Based Services across a Manifold of Devices
NASA Astrophysics Data System (ADS)
Kröpfl, M.; Buchmüller, D.; Leberl, F.
2012-07-01
Online mapping, miniaturization of computing devices, the "cloud", Global Navigation Satellite System (GNSS) and cell tower triangulation all coalesce into an entirely novel infrastructure for numerous innovative map applications. This impacts the planning of human activities, navigating and tracking these activities as they occur, and finally documenting their outcome for either a single user or a network of connected users in a larger context. In this paper, we provide an example of a simple geospatial application making use of this model, which we will use to explain the basic steps necessary to deploy an application involving a web service hosting geospatial information and a client software consuming the web service through an API. The application allows an insurance claim specialist to add claims to a cloud-based database including a claim location. A field agent then uses a smartphone application to query the database by proximity, and heads out to capture photographs as supporting documentation for the claim. Once the photos have been uploaded to the web service, a second web service for image matching is called in order to try and match the current photograph to previously submitted assets. Image matching is used as a pre-verification step to determine whether the coverage of the respective object is sufficient for the claim specialist to process the claim. The development of the application was based on Microsoft's® Bing Maps™, Windows Phone™, Silverlight™, Windows Azure™ and Visual Studio™, and was completed in approximately 30 labour hours split among two developers.
Paterson, Trevor; Law, Andy
2009-08-14
Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. We have developed a simple generic XML schema (GenomicMappingData.xsd - GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data.
Paterson, Trevor; Law, Andy
2009-01-01
Background Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. Results We have developed a simple generic XML schema (GenomicMappingData.xsd – GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. Conclusion The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data. PMID:19682365
Multigraph: Interactive Data Graphs on the Web
NASA Astrophysics Data System (ADS)
Phillips, M. B.
2010-12-01
Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf" through large data sets, downloading only those the parts of the data that are needed for display. Multigraph is currently in use on several web sites including the US Drought Portal (www.drought.gov), the NOAA Climate Services Portal (www.climate.gov), the Climate Reference Network (www.ncdc.noaa.gov/crn), NCDC's State of the Climate Report (www.ncdc.noaa.gov/sotc), and the US Forest Service's Forest Change Assessment Viewer (ews.forestthreats.org/NPDE/NPDE.html). More information about Multigraph is available from the web site www.multigraph.org. Interactive Graph of Global Temperature Anomalies from ClimateWatch Magazine (http://www.climatewatch.noaa.gov/2009/articles/climate-change-global-temperature)
Semantic Integration for Marine Science Interoperability Using Web Technologies
NASA Astrophysics Data System (ADS)
Rueda, C.; Bermudez, L.; Graybeal, J.; Isenor, A. W.
2008-12-01
The Marine Metadata Interoperability Project, MMI (http://marinemetadata.org) promotes the exchange, integration, and use of marine data through enhanced data publishing, discovery, documentation, and accessibility. A key effort is the definition of an Architectural Framework and Operational Concept for Semantic Interoperability (http://marinemetadata.org/sfc), which is complemented with the development of tools that realize critical use cases in semantic interoperability. In this presentation, we describe a set of such Semantic Web tools that allow performing important interoperability tasks, ranging from the creation of controlled vocabularies and the mapping of terms across multiple ontologies, to the online registration, storage, and search services needed to work with the ontologies (http://mmisw.org). This set of services uses Web standards and technologies, including Resource Description Framework (RDF), Web Ontology language (OWL), Web services, and toolkits for Rich Internet Application development. We will describe the following components: MMI Ontology Registry: The MMI Ontology Registry and Repository provides registry and storage services for ontologies. Entries in the registry are associated with projects defined by the registered users. Also, sophisticated search functions, for example according to metadata items and vocabulary terms, are provided. Client applications can submit search requests using the WC3 SPARQL Query Language for RDF. Voc2RDF: This component converts an ASCII comma-delimited set of terms and definitions into an RDF file. Voc2RDF facilitates the creation of controlled vocabularies by using a simple form-based user interface. Created vocabularies and their descriptive metadata can be submitted to the MMI Ontology Registry for versioning and community access. VINE: The Vocabulary Integration Environment component allows the user to map vocabulary terms across multiple ontologies. Various relationships can be established, for example exactMatch, narrowerThan, and subClassOf. VINE can compute inferred mappings based on the given associations. Attributes about each mapping, like comments and a confidence level, can also be included. VINE also supports registering and storing resulting mapping files in the Ontology Registry. The presentation will describe the application of semantic technologies in general, and our planned applications in particular, to solve data management problems in the marine and environmental sciences.
SSE Transition to POWER is Now Complete
Atmospheric Science Data Center
2018-06-21
... A new POWER home page with enhanced responsive GIS-enabled web data services and mapping capabilities replaced the SSE site on June 13, 2018. This current set of SSE web applications and website is no longer accessible. The new POWER includes ...
Whetzel, Patricia L; Noy, Natalya F; Shah, Nigam H; Alexander, Paul R; Nyulas, Csongor; Tudorache, Tania; Musen, Mark A
2011-07-01
The National Center for Biomedical Ontology (NCBO) is one of the National Centers for Biomedical Computing funded under the NIH Roadmap Initiative. Contributing to the national computing infrastructure, NCBO has developed BioPortal, a web portal that provides access to a library of biomedical ontologies and terminologies (http://bioportal.bioontology.org) via the NCBO Web services. BioPortal enables community participation in the evaluation and evolution of ontology content by providing features to add mappings between terms, to add comments linked to specific ontology terms and to provide ontology reviews. The NCBO Web services (http://www.bioontology.org/wiki/index.php/NCBO_REST_services) enable this functionality and provide a uniform mechanism to access ontologies from a variety of knowledge representation formats, such as Web Ontology Language (OWL) and Open Biological and Biomedical Ontologies (OBO) format. The Web services provide multi-layered access to the ontology content, from getting all terms in an ontology to retrieving metadata about a term. Users can easily incorporate the NCBO Web services into software applications to generate semantically aware applications and to facilitate structured data collection.
Standards-Based Open-Source Planetary Map Server: Lunaserv
NASA Astrophysics Data System (ADS)
Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.
2018-04-01
Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.
NASA Astrophysics Data System (ADS)
Civera Lorenzo, Tamara
2017-10-01
Brief presentation about the J-PLUS EDR data access web portal (http://archive.cefca.es/catalogues/jplus-edr) where the different services available to retrieve images and catalogues data have been presented.J-PLUS Early Data Release (EDR) archive includes two types of data: images and dual and single catalogue data which include parameters measured from images. J-PLUS web portal offers catalogue data and images through several different online data access tools or services each suited to a particular need. The different services offered are: Coverage map Sky navigator Object visualization Image search Cone search Object list search Virtual observatory services: Simple Cone Search Simple Image Access Protocol Simple Spectral Access Protocol Table Access Protocol
Content-Based Discovery for Web Map Service using Support Vector Machine and User Relevance Feedback
Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi
2016-01-01
Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery. PMID:27861505
Hu, Kai; Gui, Zhipeng; Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi
2016-01-01
Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery.
Evolution of System Architectures: Where Do We Need to Fail Next?
NASA Astrophysics Data System (ADS)
Bermudez, Luis; Alameh, Nadine; Percivall, George
2013-04-01
Innovation requires testing and failing. Thomas Edison was right when he said "I have not failed. I've just found 10,000 ways that won't work". For innovation and improvement of standards to happen, service Architectures have to be tested and tested. Within the Open Geospatial Consortium (OGC), testing of service architectures has occurred for the last 15 years. This talk will present an evolution of these service architectures and a possible future path. OGC is a global forum for the collaboration of developers and users of spatial data products and services, and for the advancement and development of international standards for geospatial interoperability. The OGC Interoperability Program is a series of hands-on, fast paced, engineering initiatives to accelerate the development and acceptance of OGC standards. Each initiative is organized in threads that provide focus under a particular theme. The first testbed, OGC Web Services phase 1, completed in 2003 had four threads: Common Architecture, Web Mapping, Sensor Web and Web Imagery Enablement. The Common Architecture was a cross-thread theme, to ensure that the Web Mapping and Sensor Web experiments built on a base common architecture. The architecture was based on the three main SOA components: Broker, Requestor and Provider. It proposed a general service model defining service interactions and dependencies; categorization of service types; registries to allow discovery and access of services; data models and encodings; and common services (WMS, WFS, WCS). For the latter, there was a clear distinction on the different services: Data Services (e.g. WMS), Application services (e.g. Coordinate transformation) and server-side client applications (e.g. image exploitation). The latest testbed, OGC Web Service phase 9, completed in 2012 had 5 threads: Aviation, Cross-Community Interoperability (CCI), Security and Services Interoperability (SSI), OWS Innovations and Compliance & Interoperability Testing & Evaluation (CITE). Compared to the first testbed, OWS-9 did not have a separate common architecture thread. Instead the emphasis was on brokering information models, securing them and making data available efficiently on mobile devices. The outcome is an architecture based on usability and non-intrusiveness while leveraging mediation of information models from different communities. This talk will use lessons learned from the evolution from OGC Testbed phase 1 to phase 9 to better understand how global and complex infrastructures evolve to support many communities including the Earth System Science Community.
Usability evaluation of cloud-based mapping tools for the display of very large datasets
NASA Astrophysics Data System (ADS)
Stotz, Nicole Marie
The elasticity and on-demand nature of cloud services have made it easier to create web maps. Users only need access to a web browser and the Internet to utilize cloud based web maps, eliminating the need for specialized software. To encourage a wide variety of users, a map must be well designed; usability is a very important concept in designing a web map. Fusion Tables, a new product from Google, is one example of newer cloud-based distributed GIS services. It allows for easy spatial data manipulation and visualization, within the Google Maps framework. ESRI has also introduced a cloud based version of their software, called ArcGIS Online, built on Amazon's EC2 cloud. Utilizing a user-centered design framework, two prototype maps were created with data from the San Diego East County Economic Development Council. One map was built on Fusion Tables, and another on ESRI's ArcGIS Online. A usability analysis was conducted and used to compare both map prototypes in term so of design and functionality. Load tests were also ran, and performance metrics gathered on both map prototypes. The usability analysis was taken by 25 geography students, and consisted of time based tasks and questions on map design and functionality. Survey participants completed the time based tasks for the Fusion Tables map prototype quicker than those of the ArcGIS Online map prototype. While response was generally positive towards the design and functionality of both prototypes, overall the Fusion Tables map prototype was preferred. For the load tests, the data set was broken into 22 groups for a total of 44 tests. While the Fusion Tables map prototype performed more efficiently than the ArcGIS Online prototype, differences are almost unnoticeable. A SWOT analysis was conducted for each prototype. The results from this research point to the Fusion Tables map prototype. A redesign of this prototype would incorporate design suggestions from the usability survey, while some functionality would need to be dropped. This is a free product and would therefore be the best option if cost is an issue, but this map may not be supported in the future.
Montagni, Ilaria; Langlois, Emmanuel; Wittwer, Jérôme; Tzourio, Christophe
2017-02-16
University students aged 18-30 years are a population group reporting low access to health care services, with high rates of avoidance and delay of medical care. This group also reports not having appropriate information about available health care services. However, university students are at risk for several health problems, and regular medical consultations are recommended in this period of life. New digital devices are popular among the young, and Web-apps can be used to facilitate easy access to information regarding health care services. A small number of electronic health (eHealth) tools have been developed with the purpose of displaying real-world health care services, and little is known about how such eHealth tools can improve access to care. This paper describes the processes of co-creating and evaluating the beta version of a Web-app aimed at mapping and describing free or low-cost real-world health care services available in the Bordeaux area of France, which is specifically targeted to university students. The co-creation process involves: (1) exploring the needs of students to know and access real-world health care services; (2) identifying the real-world health care services of interest for students; and (3) deciding on a user interface, and developing the beta version of the Web-app. Finally, the evaluation process involves: (1) testing the beta version of the Web-app with the target audience (university students aged 18-30 years); (2) collecting their feedback via a satisfaction survey; and (3) planning a long-term evaluation. The co-creation process of the beta version of the Web-app was completed in August 2016 and is described in this paper. The evaluation process started on September 7, 2016. The project was completed in December 2016 and implementation of the Web-app is ongoing. Web-apps are an innovative way to increase the health literacy of young people in terms of delivery of and access to health care. The creation of Web-apps benefits from the involvement of stakeholders (eg, students and health care providers) to correctly identify the real-world health care services to be displayed. ©Ilaria Montagni, Emmanuel Langlois, Jérôme Wittwer, Christophe Tzourio. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 16.02.2017.
Langlois, Emmanuel; Wittwer, Jérôme; Tzourio, Christophe
2017-01-01
Background University students aged 18-30 years are a population group reporting low access to health care services, with high rates of avoidance and delay of medical care. This group also reports not having appropriate information about available health care services. However, university students are at risk for several health problems, and regular medical consultations are recommended in this period of life. New digital devices are popular among the young, and Web-apps can be used to facilitate easy access to information regarding health care services. A small number of electronic health (eHealth) tools have been developed with the purpose of displaying real-world health care services, and little is known about how such eHealth tools can improve access to care. Objective This paper describes the processes of co-creating and evaluating the beta version of a Web-app aimed at mapping and describing free or low-cost real-world health care services available in the Bordeaux area of France, which is specifically targeted to university students. Methods The co-creation process involves: (1) exploring the needs of students to know and access real-world health care services; (2) identifying the real-world health care services of interest for students; and (3) deciding on a user interface, and developing the beta version of the Web-app. Finally, the evaluation process involves: (1) testing the beta version of the Web-app with the target audience (university students aged 18-30 years); (2) collecting their feedback via a satisfaction survey; and (3) planning a long-term evaluation. Results The co-creation process of the beta version of the Web-app was completed in August 2016 and is described in this paper. The evaluation process started on September 7, 2016. The project was completed in December 2016 and implementation of the Web-app is ongoing. Conclusions Web-apps are an innovative way to increase the health literacy of young people in terms of delivery of and access to health care. The creation of Web-apps benefits from the involvement of stakeholders (eg, students and health care providers) to correctly identify the real-world health care services to be displayed. PMID:28209561
Spatiotemporal-Thematic Data Processing for the Semantic Web
NASA Astrophysics Data System (ADS)
Hakimpour, Farshad; Aleman-Meza, Boanerges; Perry, Matthew; Sheth, Amit
This chapter presents practical approaches to data processing in the space, time and theme dimensions using existing Semantic Web technologies. It describes how we obtain geographic and event data from Internet sources and also how we integrate them into an RDF store. We briefly introduce a set of functionalities in space, time and semantics. These functionalities are implemented based on our existing technology for main-memory-based RDF data processing developed at the LSDIS Lab. A number of these functionalities are exposed as REST Web services. We present two sample client-side applications that are developed using a combination of our services with Google Maps service.
G2S: a web-service for annotating genomic variants on 3D protein structures.
Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong
2018-06-01
Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that supports programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online.
An Offline-Online Android Application for Hazard Event Mapping Using WebGIS Open Source Technologies
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya
2016-04-01
Nowadays, Free and Open Source Software (FOSS) plays an important role in better understanding and managing disaster risk reduction around the world. National and local government, NGOs and other stakeholders are increasingly seeking and producing data on hazards. Most of the hazard event inventories and land use mapping are based on remote sensing data, with little ground truthing, creating difficulties depending on the terrain and accessibility. Open Source WebGIS tools offer an opportunity for quicker and easier ground truthing of critical areas in order to analyse hazard patterns and triggering factors. This study presents a secure mobile-map application for hazard event mapping using Open Source WebGIS technologies such as Postgres database, Postgis, Leaflet, Cordova and Phonegap. The objectives of this prototype are: 1. An Offline-Online android mobile application with advanced Geospatial visualisation; 2. Easy Collection and storage of events information applied services; 3. Centralized data storage with accessibility by all the service (smartphone, standard web browser); 4. Improving data management by using active participation in hazard event mapping and storage. This application has been implemented as a low-cost, rapid and participatory method for recording impacts from hazard events and includes geolocation (GPS data and Internet), visualizing maps with overlay of satellite images, viewing uploaded images and events as cluster points, drawing and adding event information. The data can be recorded in offline (Android device) or online version (all browsers) and consequently uploaded through the server whenever internet is available. All the events and records can be visualized by an administrator and made public after approval. Different user levels can be defined to access the data for communicating the information. This application was tested for landslides in post-earthquake Nepal but can be used for any other type of hazards such as flood, avalanche, etc. Keywords: Offline, Online, WebGIS Open source, Android, Hazard Event Mapping
Accessing Geospatial Services in Limited Bandwidth Service-Oriented Architecture (SOA) Environments
ERIC Educational Resources Information Center
Boggs, James D.
2013-01-01
First responders are continuously moving at an incident site and this movement requires them to access Service-Oriented Architecture services, such as a Web Map Service, via mobile wireless networks. First responders from inside a building often have problems in communicating to devices outside that building due to propagation obstacles. Dynamic…
The EarthServer Geology Service: web coverage services for geosciences
NASA Astrophysics Data System (ADS)
Laxton, John; Sen, Marcus; Passmore, James
2014-05-01
The EarthServer FP7 project is implementing web coverage services using the OGC WCS and WCPS standards for a range of earth science domains: cryospheric; atmospheric; oceanographic; planetary; and geological. BGS is providing the geological service (http://earthserver.bgs.ac.uk/). Geoscience has used remote sensed data from satellites and planes for some considerable time, but other areas of geosciences are less familiar with the use of coverage data. This is rapidly changing with the development of new sensor networks and the move from geological maps to geological spatial models. The BGS geology service is designed initially to address two coverage data use cases and three levels of data access restriction. Databases of remote sensed data are typically very large and commonly held offline, making it time-consuming for users to assess and then download data. The service is designed to allow the spatial selection, editing and display of Landsat and aerial photographic imagery, including band selection and contrast stretching. This enables users to rapidly view data, assess is usefulness for their purposes, and then enhance and download it if it is suitable. At present the service contains six band Landsat 7 (Blue, Green, Red, NIR 1, NIR 2, MIR) and three band false colour aerial photography (NIR, green, blue), totalling around 1Tb. Increasingly 3D spatial models are being produced in place of traditional geological maps. Models make explicit spatial information implicit on maps and thus are seen as a better way of delivering geosciences information to non-geoscientists. However web delivery of models, including the provision of suitable visualisation clients, has proved more challenging than delivering maps. The EarthServer geology service is delivering 35 surfaces as coverages, comprising the modelled superficial deposits of the Glasgow area. These can be viewed using a 3D web client developed in the EarthServer project by Fraunhofer. As well as remote sensed imagery and 3D models, the geology service is also delivering DTM coverages which can be viewed in the 3D client in conjunction with both imagery and models. The service is accessible through a web GUI which allows the imagery to be viewed against a range of background maps and DTMs, and in the 3D client; spatial selection to be carried out graphically; the results of image enhancement to be displayed; and selected data to be downloaded. The GUI also provides access to the Glasgow model in the 3D client, as well as tutorial material. In the final year of the project it is intended to increase the volume of data to 20Tb and enhance the WCPS processing, including depth and thickness querying of 3D models. We have also investigated the use of GeoSciML, developed to describe and interchange the information on geological maps, to describe model surface coverages. EarthServer is developing a combined WCPS and xQuery query language, and we will investigate applying this to the GeoSciML described surfaces to answer questions such as 'find all units with a predominant sand lithology within 25m of the surface'.
Automatic Earth observation data service based on reusable geo-processing workflow
NASA Astrophysics Data System (ADS)
Chen, Nengcheng; Di, Liping; Gong, Jianya; Yu, Genong; Min, Min
2008-12-01
A common Sensor Web data service framework for Geo-Processing Workflow (GPW) is presented as part of the NASA Sensor Web project. This framework consists of a data service node, a data processing node, a data presentation node, a Catalogue Service node and BPEL engine. An abstract model designer is used to design the top level GPW model, model instantiation service is used to generate the concrete BPEL, and the BPEL execution engine is adopted. The framework is used to generate several kinds of data: raw data from live sensors, coverage or feature data, geospatial products, or sensor maps. A scenario for an EO-1 Sensor Web data service for fire classification is used to test the feasibility of the proposed framework. The execution time and influences of the service framework are evaluated. The experiments show that this framework can improve the quality of services for sensor data retrieval and processing.
Exchanging the Context between OGC Geospatial Web clients and GIS applications using Atom
NASA Astrophysics Data System (ADS)
Maso, Joan; Díaz, Paula; Riverola, Anna; Pons, Xavier
2013-04-01
Currently, the discovery and sharing of geospatial information over the web still presents difficulties. News distribution through website content was simplified by the use of Really Simple Syndication (RSS) and Atom syndication formats. This communication exposes an extension of Atom to redistribute references to geospatial information in a Spatial Data Infrastructure distributed environment. A geospatial client can save the status of an application that involves several OGC services of different kind and direct data and share this status with other users that need the same information and use different client vendor products in an interoperable way. The extensibility of the Atom format was essential to define a format that could be used in RSS enabled web browser, Mass Market map viewers and emerging geospatial enable integrated clients that support Open Geospatial Consortium (OGC) services. Since OWS Context has been designed as an Atom extension, it is possible to see the document in common places where Atom documents are valid. Internet web browsers are able to present the document as a list of items with title, abstract, time, description and downloading features. OWS Context uses GeoRSS so that, the document can be to be interpreted by both Google maps and Bing Maps as items that have the extent represented in a dynamic map. Another way to explode a OWS Context is to develop an XSLT to transform the Atom feed into an HTML5 document that shows the exact status of the client view window that saved the context document. To accomplish so, we use the width and height of the client window, and the extent of the view in world (geographic) coordinates in order to calculate the scale of the map. Then, we can mix elements in world coordinates (such as CF-NetCDF files or GML) with elements in pixel coordinates (such as WMS maps, WMTS tiles and direct SVG content). A smarter map browser application called MiraMon Map Browser is able to write a context document and read it again to recover the context of the previous view or load a context generated by another application. The possibility to store direct links to direct files in OWS Context is particularly interesting for GIS desktop solutions. This communication also presents the development made in the MiraMon desktop GIS solution to include OWS Context. MiraMon software is able to deal either with local files, web services and database connections. As in any other GIS solution, MiraMon team designed its own file (MiraMon Map MMM) for storing and sharing the status of a GIS session. The new OWS Context format is now adopted as an interoperable substitution of the MMM. The extensibility of the format makes it possible to map concepts in the MMM to current OWS Context elements (such as titles, data links, extent, etc) and to generate new elements that are able to include all extra metadata not currently covered by OWS Context. These developments were done in the nine edition of the OpenGIS Web Services Interoperability Experiment (OWS-9) and are demonstrated in this communication.
Engineering web maps with gradual content zoom based on streaming vector data
NASA Astrophysics Data System (ADS)
Huang, Lina; Meijers, Martijn; Šuba, Radan; van Oosterom, Peter
2016-04-01
Vario-scale data structures have been designed to support gradual content zoom and the progressive transfer of vector data, for use with arbitrary map scales. The focus to date has been on the server side, especially on how to convert geographic data into the proposed vario-scale structures by means of automated generalisation. This paper contributes to the ongoing vario-scale research by focusing on the client side and communication, particularly on how this works in a web-services setting. It is claimed that these functionalities are urgently needed, as many web-based applications, both desktop and mobile, require gradual content zoom, progressive transfer and a high performance level. The web-client prototypes developed in this paper make it possible to assess the behaviour of vario-scale data and to determine how users will actually see the interactions. Several different options of web-services communication architectures are possible in a vario-scale setting. These options are analysed and tested with various web-client prototypes, with respect to functionality, ease of implementation and performance (amount of transmitted data and response times). We show that the vario-scale data structure can fit in with current web-based architectures and efforts to standardise map distribution on the internet. However, to maximise the benefits of vario-scale data, a client needs to be aware of this structure. When a client needs a map to be refined (by means of a gradual content zoom operation), only the 'missing' data will be requested. This data will be sent incrementally to the client from a server. In this way, the amount of data transferred at one time is reduced, shortening the transmission time. In addition to these conceptual architecture aspects, there are many implementation and tooling design decisions at play. These will also be elaborated on in this paper. Based on the experiments conducted, we conclude that the vario-scale approach indeed supports gradual content zoom and the progressive web transfer of vector data. This is a big step forward in making vector data at arbitrary map scales available to larger user groups.
NASA Astrophysics Data System (ADS)
Kadlec, J.; Ames, D. P.
2014-12-01
The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by itself.
Web Services as Building Blocks for an Open Coastal Observing System
NASA Astrophysics Data System (ADS)
Breitbach, G.; Krasemann, H.
2012-04-01
In coastal observing systems it is needed to integrate different observing methods like remote sensing, in-situ measurements, and models into a synoptic view of the state of the observed region. This integration can be based solely on web services combining data and metadata. Such an approach is pursued for COSYNA (Coastal Observing System for Northern and Artic seas). Data from satellite and radar remote sensing, measurements of buoys, stations and Ferryboxes are the observation part of COSYNA. These data are assimilated into models to create pre-operational forecasts. For discovering data an OGC Web Feature Service (WFS) is used by the COSYNA data portal. This Web Feature Service knows the necessary metadata not only for finding data, but in addition the URLs of web services to view and download the data. To make the data from different resources comparable a common vocabulary is needed. For COSYNA the standard names from CF-conventions are stored within the metadata whenever possible. For the metadata an INSPIRE and ISO19115 compatible data format is used. The WFS is fed from the metadata-system using database-views. Actual data are stored in two different formats, in NetCDF-files for gridded data and in an RDBMS for time-series-like data. The web service URLs are mostly standard based the standards are mainly OGC standards. Maps were created from netcdf files with the help of the ncWMS tool whereas a self-developed java servlet is used for maps of moving measurement platforms. In this case download of data is offered via OGC SOS. For NetCDF-files OPeNDAP is used for the data download. The OGC CSW is used for accessing extended metadata. The concept of data management in COSYNA will be presented which is independent of the special services used in COSYNA. This concept is parameter and data centric and might be useful for other observing systems.
NASA Technical Reports Server (NTRS)
Panangadan, Anand; Monacos, Steve; Burleigh, Scott; Joswig, Joseph; James, Mark; Chow, Edward
2012-01-01
In this paper, we describe the architecture of both the PATS and SAP systems and how these two systems interoperate with each other forming a unified capability for deploying intelligence in hostile environments with the objective of providing actionable situational awareness of individuals. The SAP system works in concert with the UICDS information sharing middleware to provide data fusion from multiple sources. UICDS can then publish the sensor data using the OGC's Web Mapping Service, Web Feature Service, and Sensor Observation Service standards. The system described in the paper is able to integrate a spatially distributed sensor system, operating without the benefit of the Web infrastructure, with a remote monitoring and control system that is equipped to take advantage of SWE.
EPA's EnviroAtlas Educational Curriculum
U.S. EPA’s EnviroAtlas provides a collection of web-based, interactive tools for exploring ecosystem services: an Interactive Map, which provides access to 300+ maps at multiple extents for the U.S., and an Eco-Health Relationship Browser, which displays the linkages betwee...
NASA Astrophysics Data System (ADS)
Yang, C.; Wong, D. W.; Phillips, T.; Wright, R. A.; Lindsey, S.; Kafatos, M.
2005-12-01
As a teamed partnership of the Center for Earth Observing and Space Research (CEOSR) at George Mason University (GMU), Virginia Department of Transportation (VDOT), Bureau of Transportation Statistics at the Department of Transportation (BTS/DOT), and Intergraph, we established Transportation Framework Data Services using Open Geospatial Consortium (OGC)'s Web Feature Service (WFS) Specification to enable the sharing of transportation data among the federal level with data from BTS/DOT, the state level through VDOT, the industries through Intergraph. CEOSR develops WFS solutions using Intergraph software. Relevant technical documents are also developed and disseminated through the partners. The WFS is integrated with operational geospatial systems at CEOSR and VDOT. CEOSR works with Intergraph on developing WFS solutions and technical documents. GeoMedia WebMap WFS toolkit is used with software and technical support from Intergraph. ESRI ArcIMS WFS connector is used with GMU's campus license of ESRI products. Tested solutions are integrated with framework data service operational systems, including 1) CEOSR's interoperable geospatial information services, FGDC clearinghouse Node, Geospatial One Stop (GOS) portal, and WMS services, 2) VDOT's state transportation data and GIS infrastructure, and 3)BTS/DOT's national transportation data. The project presents: 1) develop and deploy an operational OGC WFS 1.1 interfaces at CEOSR for registering with FGDC/GOS Portal and responding to Web ``POST'' requests for transportation Framework data as listed in Table 1; 2) build the WFS service that can return the data that conform to the drafted ANSI/INCITS L1 Standard (when available) for each identified theme in the format given by OGC Geography Markup Language (GML) Version 3.0 or higher; 3) integrate the OGC WFS with CEOSR's clearinghouse nodes, 4) establish a formal partnership to develop and share WFS-based geospatial interoperability technology among GMU, VDOT, BTS/DOT, and Intergraph; and 5) develop WFS-based solutions and technical documents using the GeoMedia WebMap WFS toolkit. Geospatial Web Feature Service is demonstrated to be more efficient in sharing vector data and supports direct Internet access transportation data. Developed WFS solutions also enhanced the interoperable service provided by CEOSR through the FGDC clearinghouse node and the GOS Portal.
Page, William R.; Berry, Margaret E.; VanSistine, D. Paco; Snyders, Scott R.
2009-01-01
The purpose of this map is to provide an integrated, bi-national geologic map dataset for display and analyses on an Arc Internet Map Service (IMS) dedicated to environmental health studies in the United States-Mexico border region. The IMS web site was designed by the US-Mexico Border Environmental Health Initiative project and collaborators, and the IMS and project web site address is http://borderhealth.cr.usgs.gov/. The objective of the project is to acquire, evaluate, analyze, and provide earth, biologic, and human health resources data within a GIS framework (IMS) to further our understanding of possible linkages between the physical environment and public health issues. The geologic map dataset is just one of many datasets included in the web site; other datasets include biologic, hydrologic, geographic, and human health themes.
Land cover change map comparisons using open source web mapping technologies
Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin Megown
2015-01-01
The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...
Study on generation and sharing of on-demand global seamless data—Taking MODIS NDVI as an example
NASA Astrophysics Data System (ADS)
Shen, Dayong; Deng, Meixia; Di, Liping; Han, Weiguo; Peng, Chunming; Yagci, Ali Levent; Yu, Genong; Chen, Zeqiang
2013-04-01
By applying advanced Geospatial Data Abstraction Library (GDAL) and BigTIFF technology in a Geographical Information System (GIS) with Service Oriented Architecture (SOA), this study has derived global datasets using tile-based input data and implemented Virtual Web Map Service (VWMS) and Virtual Web Coverage Service (VWCS) to provide software tools for visualization and acquisition of global data. Taking MODIS Normalized Difference Vegetation Index (NDVI) as an example, this study proves the feasibility, efficiency and features of the proposed approach.
Integrating Socioeconomic and Earth Science Data Using Geobrowsers and Web Services: A Demonstration
NASA Astrophysics Data System (ADS)
Schumacher, J. A.; Yetman, G. G.
2007-12-01
The societal benefit areas identified as the focus for the Global Earth Observing System of Systems (GEOSS) 10- year implementation plan are an indicator of the importance of integrating socioeconomic data with earth science data to support decision makers. To aid this integration, CIESIN is delivering its global and U.S. demographic data to commercial and open source Geobrowsers and providing open standards based services for data access. Currently, data on population distribution, poverty, and detailed census data for the U.S. are available for visualization and access in Google Earth, NASA World Wind, and a browser-based 2-dimensional mapping client. The mapping client allows for the creation of web map documents that pull together layers from distributed servers and can be saved and shared. Visualization tools with Geobrowsers, user-driven map creation and sharing via browser-based clients, and a prototype for characterizing populations at risk to predicted precipitation deficits will be demonstrated.
OpenSearch technology for geospatial resources discovery
NASA Astrophysics Data System (ADS)
Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo
2010-05-01
In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a set of services for discovery, access, and processing of geospatial resources in a SOA framework. GI-cat is a distributed CSW framework implementation developed by the ESSI Lab of the Italian National Research Council (CNR-IMAA) and the University of Florence. It provides brokering and mediation functionalities towards heterogeneous resources and inventories, exposing several standard interfaces for query distribution. This work focuses on a new GI-cat interface which allows the catalog to be queried according to the OpenSearch syntax specification, thus filling the gap between the SOA architectural design of the CSW and the Web 2.0. At the moment, there is no OGC standard specification about this topic, but an official change request has been proposed in order to enable the OGC catalogues to support OpenSearch queries. In this change request, an OpenSearch extension is proposed providing a standard mechanism to query a resource based on temporal and geographic extents. Two new catalog operations are also proposed, in order to publish a suitable OpenSearch interface. This extended interface is implemented by the modular GI-cat architecture adding a new profiling module called "OpenSearch profiler". Since GI-cat also acts as a clearinghouse catalog, another component called "OpenSearch accessor" is added in order to access OpenSearch compliant services. An important role in the GI-cat extension, is played by the adopted mapping strategy. Two different kind of mappings are required: query, and response elements mapping. Query mapping is provided in order to fit the simple OpenSearch query syntax to the complex CSW query expressed by the OGC Filter syntax. GI-cat internal data model is based on the ISO-19115 profile, that is more complex than the simple XML syndication formats, such as RSS 2.0 and Atom 1.0, suggested by OpenSearch. Once response elements are available, in order to be presented, they need to be translated from the GI-cat internal data model, to the above mentioned syndication formats; the mapping processing, is bidirectional. When GI-cat is used to access OpenSearch compliant services, the CSW query must be mapped to the OpenSearch query, and the response elements, must be translated according to the GI-cat internal data model. As results of such extensions, GI-cat provides a user friendly facade to the complex CSW interface, thus enabling it to be queried, for example, using a browser toolbar.
Using a Web-based GIS to Teach Problem-based Science in High School and College
NASA Astrophysics Data System (ADS)
Metzger, E.; Lenkeit Meezan, , K. A.; Schmidt, C.; Taketa, R.; Carter, J.; Iverson, R.
2008-12-01
Foothill College has partnered with San Jose State University to bring GIS web mapping technology to the high school and college classroom. The project consists of two parts. In the first part, Foothill and San Jose State University have teamed up to offer classes on building and maintaining Web based Geographic Information Systems (GIS). Web-based GIS such as Google Maps, MapQuest and Yahoo Maps have become ubiquitous, and the skills to build and maintain these systems are in high demand from many employers. In the second part of the project, high school students will be able to learn about Web GIS as a real world tool used by scientists. The students in the Foothill College/San Jose State class will build their Web GIS using scientific data related to the San Francisco/San Joaquin Delta region, with a focus on watersheds, biodiversity and earthquake hazards. This project includes high school level curriculum development that will tie in to No Child Left Behind and National Curriculum Standards in both Science and Geography, and provide workshops for both pre-and in- service teachers in the use of Web GIS-driven course material in the high school classroom. The project will bring the work of professional scientists into any high school classroom with an internet connection; while simultaneously providing workforce training in high demand technology based jobs.
Web-based data delivery services in support of disaster-relief applications
Jones, Brenda K.; Risty, Ron R.; Buswell, M.
2003-01-01
The U.S. Geological Survey Earth Resources Observation Systems Data Center responds to emergencies in support of various government agencies for human-induced and natural disasters. This response consists of satellite tasking and acquisitions, satellite image registrations, disaster-extent maps analysis and creation, base image provision and support, Web-based mapping services for product delivery, and predisaster and postdisaster data archiving. The emergency response staff are on call 24 hours a day, 7 days a week, and have access to many commercial and government satellite and aerial photography tasking authorities. They have access to value-added data processing and photographic laboratory services for off-hour emergency requests. They work with various Federal agencies for preparedness planning, which includes providing base imagery. These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other predisaster data. These layers are incorporated into a Web-based browser and data delivery service that is accessible either to the general public or to select customers. As usage declines, the data are moved to a postdisaster nearline archive that is still accessible, but not in real time.
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes the State and County boundaries from the TIGER shapefiles compiled into a single national coverage for each layer. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB).
NASA Astrophysics Data System (ADS)
Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.
2007-12-01
NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.
Web Map Apps using NASA's Earth Observing Fleet
NASA Technical Reports Server (NTRS)
Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M.;
2016-01-01
Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASAs Earth observing fleet. Spanning 15+ years and running through as recently as a few hours ago, GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development. data visualization, web services, open access
NASA Astrophysics Data System (ADS)
Signell, R. P.; Camossi, E.
2015-11-01
Work over the last decade has resulted in standardized web-services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by: (1) making it simple for providers to enable web service access to existing output files; (2) using technology that is free, and that is easy to deploy and configure; and (3) providing tools to communicate with web services that work in existing research environments. We present a simple, local brokering approach that lets modelers continue producing custom data, but virtually aggregates and standardizes the data using NetCDF Markup Language. The THREDDS Data Server is used for data delivery, pycsw for data search, NCTOOLBOX (Matlab®1) and Iris (Python) for data access, and Ocean Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.1 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US Government.
Teaching science with technology: Using EPA’s EnviroAtlas in the classroom
Background/Question/Methods U.S. EPA’s EnviroAtlas provides a collection of web-based, interactive tools and resources for exploring ecosystem goods and services. EnviroAtlas contains two primary tools: An Interactive Map, which provides access to 300+ maps at multiple exte...
Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna
2017-01-01
Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.
Cross-Dataset Analysis and Visualization Driven by Expressive Web Services
NASA Astrophysics Data System (ADS)
Alexandru Dumitru, Mircea; Catalin Merticariu, Vlad
2015-04-01
The deluge of data that is hitting us every day from satellite and airborne sensors is changing the workflow of environmental data analysts and modelers. Web geo-services play now a fundamental role, and are no longer needed to preliminary download and store the data, but rather they interact in real-time with GIS applications. Due to the very large amount of data that is curated and made available by web services, it is crucial to deploy smart solutions for optimizing network bandwidth, reducing duplication of data and moving the processing closer to the data. In this context we have created a visualization application for analysis and cross-comparison of aerosol optical thickness datasets. The application aims to help researchers identify and visualize discrepancies between datasets coming from various sources, having different spatial and time resolutions. It also acts as a proof of concept for integration of OGC Web Services under a user-friendly interface that provides beautiful visualizations of the explored data. The tool was built on top of the World Wind engine, a Java based virtual globe built by NASA and the open source community. For data retrieval and processing we exploited the OGC Web Coverage Service potential: the most exciting aspect being its processing extension, a.k.a. the OGC Web Coverage Processing Service (WCPS) standard. A WCPS-compliant service allows a client to execute a processing query on any coverage offered by the server. By exploiting a full grammar, several different kinds of information can be retrieved from one or more datasets together: scalar condensers, cross-sectional profiles, comparison maps and plots, etc. This combination of technology made the application versatile and portable. As the processing is done on the server-side, we ensured that the minimal amount of data is transferred and that the processing is done on a fully-capable server, leaving the client hardware resources to be used for rendering the visualization. The application offers a set of features to visualize and cross-compare the datasets. Users can select a region of interest in space and time on which an aerosol map layer is plotted. Hovmoeller time-latitude and time-longitude profiles can be displayed by selecting orthogonal cross-sections on the globe. Statistics about the selected dataset are also displayed in different text and plot formats. The datasets can also be cross-compared either by using the delta map tool or the merged map tool. For more advanced users, a WCPS query console is also offered allowing users to process their data with ad-hoc queries and then choose how to display the results. Overall, the user has a rich set of tools that can be used to visualize and cross-compare the aerosol datasets. With our application we have shown how the NASA WorldWind framework can be used to display results processed efficiently - and entirely - on the server side using the expressiveness of the OGC WCPS web-service. The application serves not only as a proof of concept of a new paradigm in working with large geospatial data but also as an useful tool for environmental data analysts.
Implementation of Web 2.0 services in academic, medical and research libraries: a scoping review.
Gardois, Paolo; Colombi, Nicoletta; Grillo, Gaetano; Villanacci, Maria C
2012-06-01
Academic, medical and research libraries frequently implement Web 2.0 services for users. Several reports notwithstanding, characteristics and effectiveness of services are unclear. To find out: the Web 2.0 services implemented by medical, academic and research libraries; study designs, measures and types of data used in included articles to evaluate effectiveness; whether the identified body of literature is amenable to a systematic review of results. Scoping review mapping the literature on the topic. Searches were performed in 19 databases. research articles in English, Italian, German, French and Spanish (publication date ≥ 2006) about Web 2.0 services for final users implemented by academic, medical and research libraries. Reviewers' agreement was measured by Cohen's kappa. From a data set of 6461 articles, 255 (4%) were coded and analysed. Conferencing/chat/instant messaging, blogging, podcasts, social networking, wikis and aggregators were frequently examined. Services were mainly targeted at general academic users of English-speaking countries. Data prohibit a reliable estimate of the relative frequency of implemented Web 2.0 services. Case studies were the prevalent design. Most articles evaluated different outcomes using diverse assessment methodologies. A systematic review is recommended to assess the effectiveness of such services. © 2012 The authors. Health Information and Libraries Journal © 2012 Health Libraries Group.
Savel, Thomas G; Bronstein, Alvin; Duck, William; Rhodes, M Barry; Lee, Brian; Stinn, John; Worthen, Katherine
2010-01-01
Real-time surveillance systems are valuable for timely response to public health emergencies. It has been challenging to leverage existing surveillance systems in state and local communities, and, using a centralized architecture, add new data sources and analytical capacity. Because this centralized model has proven to be difficult to maintain and enhance, the US Centers for Disease Control and Prevention (CDC) has been examining the ability to use a federated model based on secure web services architecture, with data stewardship remaining with the data provider. As a case study for this approach, the American Association of Poison Control Centers and the CDC extended an existing data warehouse via a secure web service, and shared aggregate clinical effects and case counts data by geographic region and time period. To visualize these data, CDC developed a web browser-based interface, Quicksilver, which leveraged the Google Maps API and Flot, a javascript plotting library. Two iterations of the NPDS web service were completed in 12 weeks. The visualization client, Quicksilver, was developed in four months. This implementation of web services combined with a visualization client represents incremental positive progress in transitioning national data sources like BioSense and NPDS to a federated data exchange model. Quicksilver effectively demonstrates how the use of secure web services in conjunction with a lightweight, rapidly deployed visualization client can easily integrate isolated data sources for biosurveillance.
NASA Astrophysics Data System (ADS)
Frigerio, Simone; Skupinski, Grzegorz; Kappes, Melanie; Malet, Jean-Philippe; Puissant, Anne
2010-05-01
Integrative analysis, assessment and management of mountain hazards and risks require (1) the intense cooperation among scientists, local practitioners and stakeholders, (2) the compilation of multi-source GIS database on both the sources of the dangers and their impacts, and (3) the communication of scientific results which is still a challenge. Within the European project Mountain Risks and the French-research initiative OMIV (Multi-disciplinary Observatory on Slope Instabilities; http://eost.u-strasbg.fr/omiv), several approaches are under development aiming at a coherent communication of scientific results to the population in order to inform about hazards and risks and support practical risk management measures. A simple and user-friendly approach with a visual-web-based interface is proposed, able (1) to incorporate geographical information on past events and on controlling factors, (2) to include administrative boundaries and official risk regulation maps, and(3) to integrate all modeling results obtained in the study area (already performed or in progress). The possibility to share information by means of web services offers a double utility: firstly it is a way to decrease the gap between scientific community's results and stakeholders' practical needs (simple interface, easy-to-use buttons in a generally user-friendly approach). Secondly the wide collection of diverse information (records of historical events, conditioning and triggering factors, information on elements at risk and their vulnerability, modeling results) in combination with the possibility of comparison among the data offers a great support in the decision-making process. As first case study, the Barcelonnette Basin (South French Alps) has been chosen for the pilot development of the interface. The objective is to organize, manage and share a wide range of information and calibrate a correct web-service solution. Several steps are planned to achieve this goal: the creation of a hierarchical GeoDB that includes all information available for the area (high resolution airborne and satellite imagery, various DEMs, geo-environmental factor maps, susceptibility and hazard maps, historical events and old photographs, maps of elements at risk, potential consequence maps, existing risk scenarios and risk maps) using different organizational folders (splitted in web-switches), the definition of an OpenSource Cartoweb web-platform (based on GeoDB structure) and finally the adjustment of a POSTGIS and POSTGRESQL environment to accomplish query actions, a metadata support system, and a WMS for external data connection and layer control.
Siberchicot, Aurélie; Bessy, Adrien; Guéguen, Laurent; Marais, Gabriel A B
2017-10-01
Given the importance of meiotic recombination in biology, there is a need to develop robust methods to estimate meiotic recombination rates. A popular approach, called the Marey map approach, relies on comparing genetic and physical maps of a chromosome to estimate local recombination rates. In the past, we have implemented this approach in an R package called MareyMap, which includes many functionalities useful to get reliable recombination rate estimates in a semi-automated way. MareyMap has been used repeatedly in studies looking at the effect of recombination on genome evolution. Here, we propose a simpler user-friendly web service version of MareyMap, called MareyMap Online, which allows a user to get recombination rates from her/his own data or from a publicly available database that we offer in a few clicks. When the analysis is done, the user is asked whether her/his curated data can be placed in the database and shared with other users, which we hope will make meta-analysis on recombination rates including many species easy in the future. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The climate4impact platform: Providing, tailoring and facilitating climate model data access
NASA Astrophysics Data System (ADS)
Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael
2017-04-01
One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European contribution to ESGF and contributes to the ESGF open source effort, notably through the development of search, monitoring, quality control, and metadata services. In its second phase, IS-ENES2 supports the implementation of regional climate model results from the international Coordinated Regional Downscaling Experiments (CORDEX). These services were extended within the European FP7 Climate Information Portal for Copernicus (CLIPC) project, and some could be later integrated into the European Copernicus platform.
a Map Mash-Up Application: Investigation the Temporal Effects of Climate Change on Salt Lake Basin
NASA Astrophysics Data System (ADS)
Kirtiloglu, O. S.; Orhan, O.; Ekercin, S.
2016-06-01
The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB) located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS) environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI) in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI), which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google's free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective "Map Mash-Ups" involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.
NASA Astrophysics Data System (ADS)
Tisdale, M.
2017-12-01
NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying user requirements from government, private, public and academic communities. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), and OGC Web Coverage Services (WCS) while leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams at ASDC are utilizing these services through the development of applications using the Web AppBuilder for ArcGIS and the ArcGIS API for Javascript. These services provide greater exposure of ASDC data holdings to the GIS community and allow for broader sharing and distribution to various end users. These capabilities provide interactive visualization tools and improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry. The presentation will cover how the ASDC is developing geospatial web services and applications to improve data discoverability, accessibility, and interoperability.
Sarkar, Subhra; Witham, Shawn; Zhang, Jie; Zhenirovskyy, Maxim; Rocchia, Walter; Alexov, Emil
2011-01-01
Here we report a web server, the DelPhi web server, which utilizes DelPhi program to calculate electrostatic energies and the corresponding electrostatic potential and ionic distributions, and dielectric map. The server provides extra services to fix structural defects, as missing atoms in the structural file and allows for generation of missing hydrogen atoms. The hydrogen placement and the corresponding DelPhi calculations can be done with user selected force field parameters being either Charmm22, Amber98 or OPLS. Upon completion of the calculations, the user is given option to download fixed and protonated structural file, together with the parameter and Delphi output files for further analysis. Utilizing Jmol viewer, the user can see the corresponding structural file, to manipulate it and to change the presentation. In addition, if the potential map is requested to be calculated, the potential can be mapped onto the molecule surface. The DelPhi web server is available from http://compbio.clemson.edu/delphi_webserver. PMID:24683424
Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps
This map service contains data from aerial radiological surveys of 41 potential uranium mining areas (1,144 square miles) within the Navajo Nation that were conducted during the period from October 1994 through October 1999. The US Environmental Protection Agency (USEPA) Region 9 funded the surveys and the US Department of Energy (USDOE) Remote Sensing Laboratory (RSL) in Las Vegas, Nevada conducted the aerial surveys. The aerial survey data were used to characterize the overall radioactivity and excess Bismuth 214 levels within the surveyed areas.This US EPA Region 9 web service contains the following map layers: Total Terrestrial Gamma Activity Polygons, Total Terrestrial Gamma Activity Contours, Excess Bismuth 214 Contours, Excess Bismuth 214 Polygons, Flight AreasFull FGDC metadata records for each layer can be found by clicking the layer name at the web service endpoint and viewing the layer description.Security Classification: Public. Access Constraints: None. Use Constraints: None. Please check sources, scale, accuracy, currentness and other available information. Please confirm that you are using the most recent copy of both data and metadata. Acknowledgement of the EPA would be appreciated.
Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research
NASA Astrophysics Data System (ADS)
Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.
2011-12-01
Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.
NASA Astrophysics Data System (ADS)
Raup, B. H.; Khalsa, S. S.; Armstrong, R.
2007-12-01
The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), MapInfo, GML (Geography Markup Language) and GMT (Generic Mapping Tools). This "clip-and-ship" function allows users to download only the data they are interested in. Our flexible web interfaces to the database, which includes various support layers (e.g. a layer to help collaborators identify satellite imagery over their region of expertise) will facilitate enhanced analysis to be undertaken on glacier systems, their distribution, and their impacts on other Earth systems.
US EPA Nonattainment Areas and Designations-Annual PM2.5 (1997 NAAQS)
This web service contains the following layers: PM2.5 Annual 1997 NAAQS State Level and PM2.5 Annual 1997 NAAQS National . It also contains the following tables: maps99.FRED_MAP_VIEWER.%fred_area_map_data and maps99.FRED_MAP_VIEWER.%fred_area_map_view. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997PM25Annual/MapServer) and viewing the layer description.These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes the State, County, and Census Block Groups boundaries from the TIGER shapefiles compiled into a single national coverage for each layer. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB).
Expanding the use of Scientific Data through Maps and Apps
NASA Astrophysics Data System (ADS)
Shrestha, S. R.; Zimble, D. A.; Herring, D.; Halpert, M.
2014-12-01
The importance of making scientific data more available can't be overstated. There is a wealth of useful scientific data available and demand for this data is only increasing; however, applying scientific data towards practical uses poses several technical challenges. These challenges can arise from difficulty in handling the data due largely to 1) the complexity, variety and volume of scientific data and 2) applying and operating the techniques and tools needed to visualize and analyze the data. As a result, the combined knowledge required to take advantage of these data requires highly specialized skill sets that in total, limit the ability of scientific data from being used in more practical day-to-day decision making activities. While these challenges are daunting, information technologies do exist that can help mitigate some of these issues. Many organizations for years have already been enjoying the benefits of modern service oriented architectures (SOAs) for everyday enterprise tasks. We can use this approach to modernize how we share and access our scientific data where much of the specialized tools and techniques needed to handle and present scientific data can be automated and executed by servers and done so in an appropriate way. We will discuss and show an approach for preparing file based scientific data (e.g. GRIB, netCDF) for use in standard based scientific web services. These scientific web services are able to encapsulate the logic needed to handle and describe scientific data through a variety of service types including, image, map, feature, geoprocessing, and their respective service methods. By combining these types of services and leveraging well-documented and modern web development APIs, we can afford to focus our attention on the design and development of user-friendly maps and apps. Our scenario will include developing online maps through these services by integrating various forecast data from the Climate Forecast System (CFSv2). This presentation showcases a collaboration between the National Oceanic and Atmospheric Administration's (NOAA) Climate.gov portal, Climate Prediction Center and Esri, Inc. on the implementation of the ArcGIS platform, which is aimed at helping modernize scientific data access through a service oriented architecture.
SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services
Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T
2009-01-01
Background SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. Results There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at , developer tools at , and a portal to third-party ontologies at (a "swap meet"). Conclusion SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs. PMID:19775460
Climate Prediction Center - Outlooks
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Outreach > Publications > Climate Diagnostics Bulletin Climate Diagnostics Bulletin - Tropics Climate Diagnostics Bulletin - Forecast Climate Diagnostics
MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.
Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J
2012-01-01
MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com
Adaptive proxy map server for efficient vector spatial data rendering
NASA Astrophysics Data System (ADS)
Sayar, Ahmet
2013-01-01
The rapid transmission of vector map data over the Internet is becoming a bottleneck of spatial data delivery and visualization in web-based environment because of increasing data amount and limited network bandwidth. In order to improve both the transmission and rendering performances of vector spatial data over the Internet, we propose a proxy map server enabling parallel vector data fetching as well as caching to improve the performance of web-based map servers in a dynamic environment. Proxy map server is placed seamlessly anywhere between the client and the final services, intercepting users' requests. It employs an efficient parallelization technique based on spatial proximity and data density in case distributed replica exists for the same spatial data. The effectiveness of the proposed technique is proved at the end of the article by the application of creating map images enriched with earthquake seismic data records.
Wollbrett, Julien; Larmande, Pierre; de Lamotte, Frédéric; Ruiz, Manuel
2013-04-15
In recent years, a large amount of "-omics" data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic.
2013-01-01
Background In recent years, a large amount of “-omics” data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. Results We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. Conclusions BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic. PMID:23586394
Oregon OCS seafloor mapping: Selected lease blocks relevant to renewable energy
Cochrane, Guy R.; Hemery, Lenaïg G.; Henkel, Sarah K.
2017-05-23
In 2014 the U.S. Geological Survey (USGS) and the Bureau of Ocean Energy Management (BOEM) entered into Intra-agency agreement M13PG00037 to map an area of the Oregon Outer Continental Shelf (OCS) off of Coos Bay, Oregon, under consideration for development of a floating wind energy farm. The BOEM requires seafloor mapping and site characterization studies in order to evaluate the impact of seafloor and sub-seafloor conditions on the installation, operation, and structural integrity of proposed renewable energy projects, as well as to assess the potential effects of construction and operations on archaeological resources. The mission of the USGS is to provide geologic, topographic, and hydrologic information that contributes to the wise management of the Nation's natural resources and that promotes the health, safety, and well being of the people. This information consists of maps, databases, and descriptions and analyses of the water, energy, and mineral resources, land surface, underlying geologic structure, and dynamic processes of the earth.For the Oregon OCS study, the USGS acquired multibeam echo sounder and seafloor video data surrounding the proposed development site, which is 95 km2 in area and 15 miles offshore from Coos Bay. The development site had been surveyed by Solmar Hydro Inc. in 2013 under a contract with WindFloat Pacific. The USGS subsequently produced a bathymetry digital elevation model and a backscatter intensity grid that were merged with existing data collected by the contractor. The merged grids were published along with visual observations of benthic geo-habitat from the video data in an associated USGS data release (Cochrane and others, 2015).This report includes the results of analysis of the video data conducted by Oregon State University and the geo-habitat interpretation of the multibeam echo sounder (MBES) data conducted by the USGS. MBES data was published in Cochrane and others (2015). Interpretive data associated with this publication is published in Cochrane (2017). All the data is provided as geographic information system (GIS) files that contain both Esri ArcGIS geotiffs or shapefiles. For those who do not own the full suite of Esri GIS and mapping software, the data can be read using Esri ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed August 29, 2016). Web services, which consist of standard implementations of ArcGIS representational state transfer (REST) Service and Open Geospatial Consortium (OGC) GIS web map service (WMS), also are available for all published GIS data. Web services were created using an ArcGIS service definition file, resulting in data layers that are symbolized as shown on the associated report figures. Both the ArcGIS REST Service and OGC WMS Service include all the individual GIS layers. Data layers are bundled together in a map-area web service; however, each layer can be symbolized and accessed individually after the web service is ingested into a desktop application or web map. Web services enable users to download and view data, as well as to easily add data to their own workflows, using any browser-enabled, standalone or mobile device.Though the surficial substrate is dominated by combinations of mud and sand substrate, a diverse assortment of geomorphologic features are related to geologic processes—one anticlinal ridge where bedrock is exposed, a slump and associated scarps, and pockmarks. Pockmarks are seen in the form of fields of small pockmarks, a lineation of large pockmarks with methanogenic carbonates, and areas of large pockmarks that have merged into larger variously shaped depressions. The slump appears to have originated at the pockmark lineation. Video-supervised numerical analysis of the MBES backscatter intensity data and vector ruggedness derived from the MBES bathymetry data was used to produce a substrate model called a seafloor character raster for the study area. The seafloor character raster consists of three substrate classes: soft-flat areas, hard-flat areas, and hard-rugged areas. A Coastal and Marine Ecological Classification Standard (CMECS) geoform and substrate map was also produced using depth, slope, and benthic position index classes to delineate geoform boundaries. Seven geoforms were identified in this process, including ridges, slump scars, slump deposits, basins, and pockmarks.Statistical analysis of the video data for correlations between substrate, depth, and invertebrate assemblages resulted in the identification of seven biomes: three hard-bottom biomes and four softbottom biomes. A similar analysis of vertebrate observations produces a similar set of biomes. The biome between-group dissimilarity was very high or high. Invertebrates alone represent most of the structure of the whole benthic community into different assemblages. A biotope map was generated using the seafloor character raster and the substrate and depth values of the biomes. Hard substrate biotopes were small in size and were located primarily on the ridge and in pockmarks along the pockmark lineation. The soft-bottom bitopes consisted of large contiguous areas delimited by isobaths.
Crowdsourcing Physical Network Topology Mapping With Net.Tagger
2016-03-01
backend server infrastructure . This in- cludes a full security audit, better web services handling, and integration with the OSM stack and dataset to...a novel approach to network infrastructure mapping that combines smartphone apps with crowdsourced collection to gather data for offline aggregation...and analysis. The project aims to build a map of physical network infrastructure such as fiber-optic cables, facilities, and access points. The
Robles, Juan; Fonseca León, Joel
2016-01-01
Background Maps have been widely used to provide a visual representation of information of a geographic area. Health atlases are collections of maps related to conditions, infrastructure or services provided. Various countries have put resources towards producing health atlases that support health decision makers to enhance their services to the communities. Latin America, as well as Spain, have produced several atlases of importance such as the interactive mortality atlas of Andalucía, which is very similar to the one that is presented in this paper. In Mexico, the National Institute of Public Health produced the only health atlas found that is of relevance. It was published online in 2003 and is currently still active. Objective The objective of this work is to describe the methods used to develop the Health Atlas of Jalisco (HAJ), and show its characteristics and how it interactively works with the user as a Web-based service. Methods This work has an ecological design in which the analysis units are the 125 municipalities (counties) of the state of Jalisco, Mexico. We created and published online a geographic health atlas displaying a system based on input from official health database of the Health Ministry of Jalisco (HMJ), and some databases from the National Institute of Statistics and Geography (NISGI). The atlas displays 256 different variables as health-direct or health-related indicators. Instant Atlas software was used to generate the online application. The atlas was developed using these procedures: (1) datasheet processing and base maps generation, (2) software arrangements, and (3) website creation. Results The HAJ is a Web-based service that allows users to interact with health and general data, regions, and categories according to their information needs and generates thematic maps (eg, the total population of the state or of a single municipality grouped by age or sex). The atlas is capable of displaying more than 32,000 different maps by combining categories, indicators, municipalities, and regions. Users can select the entire province, one or several municipalities, and the indicator they require. The atlas then generates and displays the requested map. Conclusions This atlas is a Web-based service that interactively allows users to review health indicators such as structure, supplies, processes, and the impact on public health and related sectors in Jalisco, Mexico. One of the main interests is to reduce the number of information requests that the Ministry of Health receives every week from the general public, media reporters, and other government sectors. The atlas will support transparency, information diffusion, health decision-making, and the formulation of new public policies. Furthermore, the research team intends to promote research and education in public health. PMID:27227146
Ramos Herrera, Igor Martin; Gonzalez Castañeda, Miguel; Robles, Juan; Fonseca León, Joel
2016-01-01
Maps have been widely used to provide a visual representation of information of a geographic area. Health atlases are collections of maps related to conditions, infrastructure or services provided. Various countries have put resources towards producing health atlases that support health decision makers to enhance their services to the communities. Latin America, as well as Spain, have produced several atlases of importance such as the interactive mortality atlas of Andalucía, which is very similar to the one that is presented in this paper. In Mexico, the National Institute of Public Health produced the only health atlas found that is of relevance. It was published online in 2003 and is currently still active. The objective of this work is to describe the methods used to develop the Health Atlas of Jalisco (HAJ), and show its characteristics and how it interactively works with the user as a Web-based service. This work has an ecological design in which the analysis units are the 125 municipalities (counties) of the state of Jalisco, Mexico. We created and published online a geographic health atlas displaying a system based on input from official health database of the Health Ministry of Jalisco (HMJ), and some databases from the National Institute of Statistics and Geography (NISGI). The atlas displays 256 different variables as health-direct or health-related indicators. Instant Atlas software was used to generate the online application. The atlas was developed using these procedures: (1) datasheet processing and base maps generation, (2) software arrangements, and (3) website creation. The HAJ is a Web-based service that allows users to interact with health and general data, regions, and categories according to their information needs and generates thematic maps (eg, the total population of the state or of a single municipality grouped by age or sex). The atlas is capable of displaying more than 32,000 different maps by combining categories, indicators, municipalities, and regions. Users can select the entire province, one or several municipalities, and the indicator they require. The atlas then generates and displays the requested map. This atlas is a Web-based service that interactively allows users to review health indicators such as structure, supplies, processes, and the impact on public health and related sectors in Jalisco, Mexico. One of the main interests is to reduce the number of information requests that the Ministry of Health receives every week from the general public, media reporters, and other government sectors. The atlas will support transparency, information diffusion, health decision-making, and the formulation of new public policies. Furthermore, the research team intends to promote research and education in public health.
Semantic Web-based digital, field and virtual geological
NASA Astrophysics Data System (ADS)
Babaie, H. A.
2012-12-01
Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.
Savel, Thomas G; Bronstein, Alvin; Duck, William; Rhodes, M. Barry; Lee, Brian; Stinn, John; Worthen, Katherine
2010-01-01
Objectives Real-time surveillance systems are valuable for timely response to public health emergencies. It has been challenging to leverage existing surveillance systems in state and local communities, and, using a centralized architecture, add new data sources and analytical capacity. Because this centralized model has proven to be difficult to maintain and enhance, the US Centers for Disease Control and Prevention (CDC) has been examining the ability to use a federated model based on secure web services architecture, with data stewardship remaining with the data provider. Methods As a case study for this approach, the American Association of Poison Control Centers and the CDC extended an existing data warehouse via a secure web service, and shared aggregate clinical effects and case counts data by geographic region and time period. To visualize these data, CDC developed a web browser-based interface, Quicksilver, which leveraged the Google Maps API and Flot, a javascript plotting library. Results Two iterations of the NPDS web service were completed in 12 weeks. The visualization client, Quicksilver, was developed in four months. Discussion This implementation of web services combined with a visualization client represents incremental positive progress in transitioning national data sources like BioSense and NPDS to a federated data exchange model. Conclusion Quicksilver effectively demonstrates how the use of secure web services in conjunction with a lightweight, rapidly deployed visualization client can easily integrate isolated data sources for biosurveillance. PMID:23569581
ScotlandsPlaces XML: Bespoke XML or XML Mapping?
ERIC Educational Resources Information Center
Beamer, Ashley; Gillick, Mark
2010-01-01
Purpose: The purpose of this paper is to investigate web services (in the form of parameterised URLs), specifically in the context of the ScotlandsPlaces project. This involves cross-domain querying, data retrieval and display via the development of a bespoke XML standard rather than existing XML formats and mapping between them.…
Building online brand perceptual map.
Chiang, I-Ping; Lin, Chih-Ying; Wang, Kaisheng M
2008-10-01
Many companies have launched their products or services online as a new business focus, but only a few of them have survived the competition and made profits. The most important key to an online business's success is to create "brand value" for the customers. Although the concept of online brand has been discussed in previous studies, there is no empirical study on the measurement of online branding. As Web 2.0 emerges to be critical to online branding, the purpose of this study was to measure Taiwan's major Web sites with a number of personality traits to build a perceptual map for online brands. A pretest identified 10 most representative online brand perceptions. The results of the correspondence analysis showed five groups in the perceptual map. This study provided a practical view of the associations and similarities among online brands for potential alliance or branding strategies. The findings also suggested that brand perceptions can be used with identified consumer needs and behaviors to better position online services. The brand perception map in the study also contributed to a better understanding of the online brands in Taiwan.
Description of the U.S. Geological Survey Geo Data Portal data integration framework
Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Lucido, Jessica M.
2012-01-01
The U.S. Geological Survey has developed an open-standard data integration framework for working efficiently and effectively with large collections of climate and other geoscience data. A web interface accesses catalog datasets to find data services. Data resources can then be rendered for mapping and dataset metadata are derived directly from these web services. Algorithm configuration and information needed to retrieve data for processing are passed to a server where all large-volume data access and manipulation takes place. The data integration strategy described here was implemented by leveraging existing free and open source software. Details of the software used are omitted; rather, emphasis is placed on how open-standard web services and data encodings can be used in an architecture that integrates common geographic and atmospheric data.
The interoperability skill of the Geographic Portal of the ISPRA - Geological Survey of Italy
NASA Astrophysics Data System (ADS)
Pia Congi, Maria; Campo, Valentina; Cipolloni, Carlo; Delogu, Daniela; Ventura, Renato; Battaglini, Loredana
2010-05-01
The Geographic Portal of Geological Survey of Italy (ISPRA) available at http://serviziogeologico.apat.it/Portal was planning according to standard criteria of the INSPIRE directive. ArcIMS services and at the same time WMS and WFS services had been realized to satisfy the different clients. For each database and web-services the metadata had been wrote in agreement with the ISO 19115. The management architecture of the portal allow it to encode the clients input and output requests both in ArcXML and in GML language. The web-applications and web-services had been realized for each database owner of Land Protection and Georesources Department concerning the geological map at the scale 1:50.000 (CARG Project) and 1:100.000, the IFFI landslide inventory, the boreholes due Law 464/84, the large-scale geological map and all the raster format maps. The portal thus far published is at the experimental stage but through the development of a new graphical interface achieves the final version. The WMS and WFS services including metadata will be re-designed. The validity of the methodology and the applied standards allow to look ahead to the growing developments. In addition to this it must be borne in mind that the capacity of the new geological standard language (GeoSciML), which is already incorporated in the web-services deployed, will be allow a better display and query of the geological data according to the interoperability. The characteristics of the geological data demand for the cartographic mapping specific libraries of symbols not yet available in a WMS service. This is an other aspect regards the standards of the geological informations. Therefore at the moment were carried out: - a library of geological symbols to be used for printing, with a sketch of system colors and a library for displaying data on video, which almost completely solves the problems of the coverage point and area data (also directed) but that still introduces problems for the linear data (solutions: ArcIMS services from Arcmap projects or a specific SLD implementation for WMS services); - an update of "Guidelines for the supply of geological data" in a short time will be published; - the Geological Survey of Italy is officially involved in the IUGS-CGI working group for the processing and experimentation on the new GeoSciML language with the WMS/WFS services. The availability of geographic informations occurs through the metadata that can be distributed online so that search engines can find them through specialized research. The collected metadata in catalogs are structured in a standard (ISO 19135). The catalogs are a ‘common' interface to locate, view and query data and metadata services, web services and other resources. Then, while working in a growing sector of the environmental knowledgement the focus is to collect the participation of other subjects that contribute to the enrichment of the informative content available, so as to be able to arrive to a real portal of national interest especially in case of disaster management.
Web-GIS visualisation of permafrost-related Remote Sensing products for ESA GlobPermafrost
NASA Astrophysics Data System (ADS)
Haas, A.; Heim, B.; Schaefer-Neth, C.; Laboor, S.; Nitze, I.; Grosse, G.; Bartsch, A.; Kaab, A.; Strozzi, T.; Wiesmann, A.; Seifert, F. M.
2016-12-01
The ESA GlobPermafrost (www.globpermafrost.info) provides a remote sensing service for permafrost research and applications. The service comprises of data product generation for various sites and regions as well as specific infrastructure allowing overview and access to datasets. Based on an online user survey conducted within the project, the user community extensively applies GIS software to handle remote sensing-derived datasets and requires preview functionalities before accessing them. In response, we develop the Permafrost Information System PerSys which is conceptualized as an open access geospatial data dissemination and visualization portal. PerSys will allow visualisation of GlobPermafrost raster and vector products such as land cover classifications, Landsat multispectral index trend datasets, lake and wetland extents, InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, and land surface temperature datasets. The datasets will be published as WebGIS services relying on OGC-standardized Web Mapping Service (WMS) and Web Feature Service (WFS) technologies for data display and visualization. The WebGIS environment will be hosted at the AWI computing centre where a geodata infrastructure has been implemented comprising of ArcGIS for Server 10.4, PostgreSQL 9.2 and a browser-driven data viewer based on Leaflet (http://leafletjs.com). Independently, we will provide an `Access - Restricted Data Dissemination Service', which will be available to registered users for testing frequently updated versions of project datasets. PerSys will become a core project of the Arctic Permafrost Geospatial Centre (APGC) within the ERC-funded PETA-CARB project (www.awi.de/petacarb). The APGC Data Catalogue will contain all final products of GlobPermafrost, allow in-depth dataset search via keywords, spatial and temporal coverage, data type, etc., and will provide DOI-based links to the datasets archived in the long-term, open access PANGAEA data repository.
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News with the new address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Climate Prediction Center Web Team
ERIC Educational Resources Information Center
Ethridge, Robin R.; Hadden, Cynthia M; Smith, Michael P.
2000-01-01
Describes the Personal Access Web Services (PAWS) at Louisiana State University, a portal application which offers enterprise, workgroup, and personal services. The paper highlights: PAWS project planning; PAWS as a portal; PAWS implementation; account accreditation; user authentication; legacy integration; mapping credentials; transmission of…
Climate Prediction Center - Outlooks
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. Climate Diagnostics Bulletin Climate Diagnostics Bulletin - Home Climate Diagnostics Bulletin - Tropics Climate Diagnostics Bulletin - Extratropics About the Forecast Forum ENSO
The UAH GeoIntegrator: A Web Mapping System for On-site Data Insertion and Viewing
NASA Astrophysics Data System (ADS)
He, M.; Hardin, D.; Sever, T.; Irwin, D.
2005-12-01
There is a growing need in the scientific community to combine data colleted in the field with maps, imagery and other layered sources. For example, a biologist, who has collected pollination data during a field study, may want to see his data presented on a regional map. There are many commercial web mapping tools available, but they are expensive, and may require advanced computer knowledge to operate. Researchers from the Information Technology and Systems Center at the University of Alabama in Huntsville are developing a web mapping system that will allow scientists to map their data in an easy way. This system is called the UAH GeoIntegrator. The UAH GeoIntegrator is built on top of three open-source components: the Apache web server, MapServer, and the Chameleon viewer. Chameleon allows developers to customize its map viewer interface by adding widgets. These widgets provide unique functionality focused to the specific needs of the researcher. The UAH GeoIntegrator utilizes a suite of widgets that bring new functionality focused on specific needs, to a typical web map viewer. Specifically, a common input text file format was defined and widgets developed to convert user's field collections into web map layers. These layers can then laid on top of other map layers to produce data products that are versatile, informative and easy to distribute via web services. The UAH GeoIntegrator is being developed as part of the SERVIR project. SERVIR (a Spanish acronym meaning to serve) is part of an international effort to preserve the remaining forested regions of Mesoamerica and to help establish sustainable development in the region. The National Aeronautics and Space Administration along with the World Bank, the United States Agency for International Development and the Central American Commission for Environment and Development are cooperating in this effort. The UAH GeoIntegrator is part of an advanced decision support system that will provide scientists, educators, and policy makers the capabilities needed to monitor and forecast ecological changes, respond to natural disasters, and better understand both natural and human induced effects in Mesoamerica. In this paper, the architecture of the system, data input format, and details of the suite of will be presented.
Data Access System for Hydrology
NASA Astrophysics Data System (ADS)
Whitenack, T.; Zaslavsky, I.; Valentine, D.; Djokic, D.
2007-12-01
As part of the CUAHSI HIS (Consortium of Universities for the Advancement of Hydrologic Science, Inc., Hydrologic Information System), the CUAHSI HIS team has developed Data Access System for Hydrology or DASH. DASH is based on commercial off the shelf technology, which has been developed in conjunction with a commercial partner, ESRI. DASH is a web-based user interface, developed in ASP.NET developed using ESRI ArcGIS Server 9.2 that represents a mapping, querying and data retrieval interface over observation and GIS databases, and web services. This is the front end application for the CUAHSI Hydrologic Information System Server. The HIS Server is a software stack that organizes observation databases, geographic data layers, data importing and management tools, and online user interfaces such as the DASH application, into a flexible multi- tier application for serving both national-level and locally-maintained observation data. The user interface of the DASH web application allows online users to query observation networks by location and attributes, selecting stations in a user-specified area where a particular variable was measured during a given time interval. Once one or more stations and variables are selected, the user can retrieve and download the observation data for further off-line analysis. The DASH application is highly configurable. The mapping interface can be configured to display map services from multiple sources in multiple formats, including ArcGIS Server, ArcIMS, and WMS. The observation network data is configured in an XML file where you specify the network's web service location and its corresponding map layer. Upon initial deployment, two national level observation networks (USGS NWIS daily values and USGS NWIS Instantaneous values) are already pre-configured. There is also an optional login page which can be used to restrict access as well as providing a alternative to immediate downloads. For large request, users would be notified via email with a link to their data when it is ready.
Smart "geomorphological" map browsing - a tale about geomorphological maps and the internet
NASA Astrophysics Data System (ADS)
Geilhausen, M.; Otto, J.-C.
2012-04-01
With the digital production of geomorphological maps, the dissemination of research outputs now extends beyond simple paper products. Internet technologies can contribute to both, the dissemination of geomorphological maps and access to geomorphologic data and help to make geomorphological knowledge available to a greater public. Indeed, many national geological surveys employ end-to-end digital workflows from data capture in the field to final map production and dissemination. This paper deals with the potential of web mapping applications and interactive, portable georeferenced PDF maps for the distribution of geomorphological information. Web mapping applications such as Google Maps have become very popular and widespread and increased the interest and access to mapping. They link the Internet with GIS technology and are a common way of presenting dynamic maps online. The GIS processing is performed online and maps are visualised in interactive web viewers characterised by different capabilities such as zooming, panning or adding further thematic layers, with the map refreshed after each task. Depending on the system architecture and the components used, advanced symbology, map overlays from different applications and sources and their integration into a Desktop GIS are possible. This interoperability is achieved through the use of international open standards that include mechanisms for the integration and visualisation of information from multiple sources. The portable document format (PDF) is commonly used for printing and is a standard format that can be processed by many graphic software and printers without loss of information. A GeoPDF enables the sharing of geospatial maps and data in PDF documents. Multiple, independent map frames with individual spatial reference systems are possible within a GeoPDF, for example, for map overlays or insets. Geospatial functionality of a GeoPDF includes scalable map display, layer visibility control, access to attribute data, coordinate queries and spatial measurements. The full functionality of GeoPDFs requires free and user-friendly plug-ins for PDF readers and GIS software. A GeoPDF enables fundamental GIS functionality turning the formerly static PDF map into an interactive, portable georeferenced PDF map. GeoPDFs are easy to create and provide an interesting and valuable way to disseminate geomorphological maps. Our motivation to engage with the online distribution of geomorphological maps originates in the increasing number of web mapping applications available today indicating that the Internet has become a medium for displaying geographical information in rich forms and user-friendly interfaces. So, why not use the Internet to distribute geomorphological maps and enhance their practical application? Web mapping and dynamic PDF maps can play a key role in the movement towards a global dissemination of geomorphological information. This will be exemplified by live demonstrations of i.) existing geomorphological WebGIS applications, ii.) data merging from various sources using web map services, and iii.) free to download GeoPDF maps during the presentations.
NASA Astrophysics Data System (ADS)
Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.
2012-12-01
Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor (ASDP) was recently developed to merge PM2.5 estimates from National Aeronautics and Space Administration (NASA) satellite data and AirNow observational data, creating more precise maps and gridded data products for under-monitored areas. The ASDP can easily incorporate other data feeds, including fire and smoke locations, to build enhanced real-time air quality data products. In this presentation, we provide an overview of the features and functions of IMS, an explanation of how data moves through IMS, the rationale of the system architecture, and highlights of the ASDP as an example of the modularity and scalability of IMS.
The SOOS Data Portal, providing access to Southern Oceans data
NASA Astrophysics Data System (ADS)
Proctor, Roger; Finney, Kim; Blain, Peter; Taylor, Fiona; Newman, Louise; Meredith, Mike; Schofield, Oscar
2013-04-01
The Southern Ocean Observing System (SOOS) is an international initiative to enhance, coordinate and expand the strategic observations of the Southern Oceans that are required to address key scientific and societal challenges. A key component of SOOS will be the creation and maintenance of a Southern Ocean Data Portal to provide improved access to historical and ongoing data (Schofield et al., 2012, Eos, Vol. 93, No. 26, pp 241-243). The scale of this effort will require strong leveraging of existing data centres, new cyberinfrastructure development efforts, and defined data collection, quality control, and archiving procedures across the international community. The task of assembling the SOOS data portal is assigned to the SOOS Data Management Sub-Committee. The information infrastructure chosen for the SOOS data portal is based on the Australian Ocean Data Network (AODN, http://portal.aodn.org.au). The AODN infrastructure is built on open-source tools and the use of international standards ensures efficiency of data exchange and interoperability between contributing systems. OGC standard web services protocols are used for serving of data via the internet. These include Web Map Service (WMS) for visualisation, Web Feature Service (WFS) for data download, and Catalogue Service for Web (CSW) for catalogue exchange. The portal offers a number of tools to access and visualize data: - a Search link to the metadata catalogue enables search and discovery by simple text search, by geographic area, temporal extent, keyword, parameter, organisation, or by any combination of these, allowing users to gain access to further information and/or the data for download. Also, searches can be restricted to items which have either data to download, or attached map layers, or both - a Map interface for discovery and display of data, with the ability to change the style and opacity of layers, add additional data layers via OGC Web Map Services, view animated timeseries datastreams - data can be easily accessed and downloaded including directly from OPeNDAP/THREDDS servers. The SOOS data portal (http://soos.aodn.org.au/soos) aims to make access to Southern Ocean data a simple process and the initial layout classifies data into six themes - Heat and Freshwater; Circulation; Ice-sheets and Sea level; Carbon; Sea-ice; and Ecosystems, with the ability to integrate layers between themes. The portal is in its infancy (pilot launched January 2013) with a limited number of datasets available; however, the number of datasets is expected to grow rapidly as the international community becomes fully engaged.
Leveraging the NLM map from SNOMED CT to ICD-10-CM to facilitate adoption of ICD-10-CM.
Cartagena, F Phil; Schaeffer, Molly; Rifai, Dorothy; Doroshenko, Victoria; Goldberg, Howard S
2015-05-01
Develop and test web services to retrieve and identify the most precise ICD-10-CM code(s) for a given clinical encounter. Facilitate creation of user interfaces that 1) provide an initial shortlist of candidate codes, ideally visible on a single screen; and 2) enable code refinement. To satisfy our high-level use cases, the analysis and design process involved reviewing available maps and crosswalks, designing the rule adjudication framework, determining necessary metadata, retrieving related codes, and iteratively improving the code refinement algorithm. The Partners ICD-10-CM Search and Mapping Services (PI-10 Services) are SOAP web services written using Microsoft's.NET 4.0 Framework, Windows Communications Framework, and SQL Server 2012. The services cover 96% of the Partners problem list subset of SNOMED CT codes that map to ICD-10-CM codes and can return up to 76% of the 69,823 billable ICD-10-CM codes prior to creation of custom mapping rules. We consider ways to increase 1) the coverage ratio of the Partners problem list subset of SNOMED CT codes and 2) the upper bound of returnable ICD-10-CM codes by creating custom mapping rules. Future work will investigate the utility of the transitive closure of SNOMED CT codes and other methods to assist in custom rule creation and, ultimately, to provide more complete coverage of ICD-10-CM codes. ICD-10-CM will be easier for clinicians to manage if applications display short lists of candidate codes from which clinicians can subsequently select a code for further refinement. The PI-10 Services support ICD-10 migration by implementing this paradigm and enabling users to consistently and accurately find the best ICD-10-CM code(s) without translation from ICD-9-CM. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Communicating Earth Observation (EO)-based landslide mapping capabilities to practitioners
NASA Astrophysics Data System (ADS)
Albrecht, Florian; Hölbling, Daniel; Eisank, Clemens; Weinke, Elisabeth; Vecchiotti, Filippo; Kociu, Arben
2016-04-01
Current remote sensing methods and the available Earth Observation (EO) data for landslide mapping already can support practitioners in their processes for gathering and for using landslide information. Information derived from EO data can support emergency services and authorities in rapid mapping after landslide-triggering events, in landslide monitoring and can serve as a relevant basis for hazard and risk mapping. These applications also concern owners, maintainers and insurers of infrastructure. Most often practitioners have a rough overview of the potential and limits of EO-based methods for landslide mapping. However, semi-automated image analysis techniques are still rarely used in practice. This limits the opportunity for user feedback, which would contribute to improve the methods for delivering fully adequate results in terms of accuracy, applicability and reliability. Moreover, practitioners miss information on the best way of integrating the methods in their daily processes. Practitioners require easy-to-grasp interfaces for testing new methods, which in turn would provide researchers with valuable user feedback. We introduce ongoing work towards an innovative web service which will allow for fast and efficient provision of EO-based landslide information products and that supports online processing. We investigate the applicability of various very high resolution (VHR), e.g. WorldView-2/3, Pleiades, and high resolution (HR), e.g. Landsat, Sentinel-2, optical EO data for semi-automated mapping based on object-based image analysis (OBIA). The methods, i.e. knowledge-based and statistical OBIA routines, are evaluated regarding their suitability for inclusion in a web service that is easy to use with the least amount of necessary training. The pre-operational web service will be implemented for selected study areas in the Alps (Austria, Italy), where weather-induced landslides have happened in the past. We will test the service on its usability together with potential users from the Geological Survey of Austria (GBA), various geological services of provinces of Austria, Germany and Italy, the Austrian Service for Torrent and Avalanche Control (WLV), the Austrian Federal Forestry Office (ÖBf), the Austrian Mountaineering Club (ÖAV) and infrastructure owners like the Austrian Road Maintenance Agency (ASFINAG). The results will show how EO-based landslide information products can be made accessible to responsible authorities in an innovative and easy manner and how new analysis methods can be promoted among a broad audience. Thus, the communication and knowledge exchange between researchers, the public, stakeholders and practitioners can be improved.
Satellite Imagery Products - Office of Satellite and Product Operations
» Disclaimer » Web Linking Policy » Use of Data and Products » FAQs: Imagery Contact Us Services Argos DCS : Page | VIS | IR | Water Vapor Sample GOES Watervapor composite Detailed Product List Composite Imagery Surface Data GIS Data Available Through Interactive Internet Mapping GIS Fire and Smoke Detection Web Page
NASA Astrophysics Data System (ADS)
Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim
2014-05-01
The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web application enables an intuitive navigation through all available information and allows the visualization of geological maps (2D), seismic transects (2D/3D), wells (2D/3D), and the 3D-model. These achievements will alleviate spatial and geological data management within the German State Geological Offices and foster the interoperability of heterogeneous systems. It will provide guidance to a systematic subsurface management across system, domain and administrative boundaries on the basis of a federated spatial data infrastructure, and include the public in the decision processes (e-Governance). Yet, the interoperability of the systems has to be strongly propelled forward through agreements on standards that need to be decided upon in responsible committees. The project B3D is funded with resources from the European Fund for Regional Development (EFRE).
Cloud GIS Based Watershed Management
NASA Astrophysics Data System (ADS)
Bediroğlu, G.; Colak, H. E.
2017-11-01
In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.
SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.
Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T
2009-09-23
SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.
DOORS to the semantic web and grid with a PORTAL for biomedical computing.
Taswell, Carl
2008-03-01
The semantic web remains in the early stages of development. It has not yet achieved the goals envisioned by its founders as a pervasive web of distributed knowledge and intelligence. Success will be attained when a dynamic synergism can be created between people and a sufficient number of infrastructure systems and tools for the semantic web in analogy with those for the original web. The domain name system (DNS), web browsers, and the benefits of publishing web pages motivated many people to register domain names and publish web sites on the original web. An analogous resource label system, semantic search applications, and the benefits of collaborative semantic networks will motivate people to register resource labels and publish resource descriptions on the semantic web. The Domain Ontology Oriented Resource System (DOORS) and Problem Oriented Registry of Tags and Labels (PORTAL) are proposed as infrastructure systems for resource metadata within a paradigm that can serve as a bridge between the original web and the semantic web. The Internet Registry Information Service (IRIS) registers [corrected] domain names while DNS publishes domain addresses with mapping of names to addresses for the original web. Analogously, PORTAL registers resource labels and tags while DOORS publishes resource locations and descriptions with mapping of labels to locations for the semantic web. BioPORT is proposed as a prototype PORTAL registry specific for the problem domain of biomedical computing.
U.S. Geological Survey spatial data access
Faundeen, John L.; Kanengieter, Ronald L.; Buswell, Michael D.
2002-01-01
The U.S. Geological Survey (USGS) has done a progress review on improving access to its spatial data holdings over the Web. The USGS EROS Data Center has created three major Web-based interfaces to deliver spatial data to the general public; they are Earth Explorer, the Seamless Data Distribution System (SDDS), and the USGS Web Mapping Portal. Lessons were learned in developing these systems, and various resources were needed for their implementation. The USGS serves as a fact-finding agency in the U.S. Government that collects, monitors, analyzes, and provides scientific information about natural resource conditions and issues. To carry out its mission, the USGS has created and managed spatial data since its inception. Originally relying on paper maps, the USGS now uses advanced technology to produce digital representations of the Earth’s features. The spatial products of the USGS include both source and derivative data. Derivative datasets include Digital Orthophoto Quadrangles (DOQ), Digital Elevation Models, Digital Line Graphs, land-cover Digital Raster Graphics, and the seamless National Elevation Dataset. These products, created with automated processes, use aerial photographs, satellite images, or other cartographic information such as scanned paper maps as source data. With Earth Explorer, users can search multiple inventories through metadata queries and can browse satellite and DOQ imagery. They can place orders and make payment through secure credit card transactions. Some USGS spatial data can be accessed with SDDS. The SDDS uses an ArcIMS map service interface to identify the user’s areas of interest and determine the output format; it allows the user to either download the actual spatial data directly for small areas or place orders for larger areas to be delivered on media. The USGS Web Mapping Portal provides views of national and international datasets through an ArcIMS map service interface. In addition, the map portal posts news about new map services available from the USGS, many simultaneously published on the Environmental Systems Research Institute Geography Network. These three information systems use new software tools and expanded hardware to meet the requirements of the users. The systems are designed to handle the required workload and are relatively easy to enhance and maintain. The software tools give users a high level of functionality and help the system conform to industry standards. The hardware and software architecture is designed to handle the large amounts of spatial data and Internet traffic required by the information systems. Last, customer support was needed to answer questions, monitor e-mail, and report customer problems.
MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services
Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.
2012-01-01
Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385
Cleanups In My Community (CIMC) - Removals/Responses, National Layer
This data layer provides access to Removal/Response sites as part of the CIMC web service. Removals are hazardous substance releases that require immediate or short-term response actions. These are generally addressed under the Emergency Response program and are initially tracked centrally by the federal government's National Reporting Center. Cleanups in My Community maps and lists removals that are included in EPA??s epaosc.org site, and provides direct links to information on these sites. CIMC obtains updated removal data through a web service from epaosc.org just before the 18th of each month.The CIMC web service was initially published in 2013, but the data are updated on the 18th of each month. The full schedule for data updates in CIMC is located here: http://iaspub.epa.gov/enviro/data_update_v2.
Communicating and visualizing data quality through Web Map Services
NASA Astrophysics Data System (ADS)
Roberts, Charles; Blower, Jon; Maso, Joan; Diaz, Daniel; Griffiths, Guy; Lewis, Jane
2014-05-01
The sharing and visualization of environmental data through OGC Web Map Services is becoming increasingly common. However, information about the quality of data is rarely presented. (In this presentation we consider mostly data uncertainty as a measure of quality, although we acknowledge that many other quality measures are relevant to the geoscience community.) In the context of the GeoViQua project (http://www.geoviqua.org) we have developed conventions and tools for using WMS to deliver data quality information. The "WMS-Q" convention describes how the WMS specification can be used to publish quality information at the level of datasets, variables and individual pixels (samples). WMS-Q requires no extensions to the WMS 1.3.0 specification, being entirely backward-compatible. (An earlier version of WMS-Q was published as OGC Engineering Report 12-160.) To complement the WMS-Q convention, we have also developed extensions to the OGC Symbology Encoding (SE) specification, enabling uncertain geoscience data to be portrayed using a variety of visualization techniques. These include contours, stippling, blackening, whitening, opacity, bivariate colour maps, confidence interval triangles and glyphs. There may also be more extensive applications of these methods beyond the visual representation of uncertainty. In this presentation we will briefly describe the scope of the WMS-Q and "extended SE" specifications and then demonstrate the innovations using open-source software based upon ncWMS (http://ncwms.sf.net). We apply the tools to a variety of datasets including Earth Observation data from the European Space Agency's Climate Change Initiative. The software allows uncertain raster data to be shared through Web Map Services, giving the user fine control over data visualization.
European Marine Observation Data Network - EMODnet Physics
NASA Astrophysics Data System (ADS)
Manzella, Giuseppe M. R.; Novellino, Antonio; D'Angelo, Paolo; Gorringe, Patrick; Schaap, Dick; Pouliquen, Sylvie; Loubrieu, Thomas; Rickards, Lesley
2015-04-01
The EMODnet-Physics portal (www.emodnet-physics.eu) makes layers of physical data and their metadata available for use and contributes towards the definition of an operational European Marine Observation and Data Network (EMODnet). It is based on a strong collaboration between EuroGOOS associates and its regional operational systems (ROOSs), and it is bringing together two very different marine communities: the "real time" ocean observing institute/centers and the National Oceanographic Data Centres (NODCs) that are in charge of ocean data validation, quality check and update for marine environmental monitoring. The EMODnet-Physics is a Marine Observation and Data Information System that provides a single point of access to near real time and historical achieved data (www.emodnet-physics.eu/map) it is built on existing infrastructure by adding value and avoiding any unless complexity, it provides data access to users, it is aimed at attracting new data holders, better and more data. With a long-term vision for a pan European Ocean Observation System sustainability, the EMODnet-Physics is supporting the coordination of the EuroGOOS Regional components and the empowerment and improvement of their data management infrastructure. In turn, EMODnet-Physics already implemented high-level interoperability features (WMS, Web catalogue, web services, etc…) to facilitate connection and data exchange with the ROOS and the Institutes within the ROOSs (www.emodnet-physics.eu/services). The on-going EMODnet-Physics structure delivers environmental marine physical data from the whole Europe (wave height and period, temperature of the water column, wind speed and direction, salinity of the water column, horizontal velocity of the water column, light attenuation, and sea level) as monitored by fixed stations, ARGO floats, drifting buoys, gliders, and ferry-boxes. It does provide discovering of data sets (both NRT - near real time - and Historical data sets), visualization and free download of data from more than 1500 platforms. The portal is composed mainly of three sections: the Map, the Selection List and the Station Info Panel. The Map is the core of the EMODnet-Physics system: here the user can access all available data, customize the map visualization and set different display layers. It is also possible to interact with all the information on the map using the filters provided by the service that can be used to select the stations of interest depending on the type, physical parameters measured, the time period of the observations in the database of the system, country of origin, the water basin of reference. It is also possible to browse the data in time by means of the slider in the lower part of the page that allows the user to view the stations that recorded data in a particular time period. Finally, it is possible to change the standard map view with different layers that provide additional visual information on the status of the waters. The Station Info panel available from the main map by clicking on a single platform provides information on the measurements carried out by the station. Moreover, the system provides full interoperability with third-party software through WMS service, Web Service and Web catalogue in order to exchange data and products according to the most recent interop standards. Further developments will ensure the compatibility to the OGS-SWE (Sensor Web Enablement) standard for the description of sensors and related observations using OpenGIS specifications (SensorML, O&M, SOS). The full list of services is available at www.emodnet-physics.eu/services. The result is an excellent example of innovative technologies for providing open and free access to geo-referenced data for the creation of new advanced (operational) oceanography services.
Signell, Richard; Camossi, E.
2016-01-01
Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.
NASA Astrophysics Data System (ADS)
Signell, Richard P.; Camossi, Elena
2016-05-01
Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.
Maroney, Susan A; McCool, Mary Jane; Geter, Kenneth D; James, Angela M
2007-01-01
The internet is used increasingly as an effective means of disseminating information. For the past five years, the United States Department of Agriculture (USDA) Veterinary Services (VS) has published animal health information in internet-based map server applications, each oriented to a specific surveillance or outbreak response need. Using internet-based technology allows users to create dynamic, customised maps and perform basic spatial analysis without the need to buy or learn desktop geographic information systems (GIS) software. At the same time, access can be restricted to authorised users. The VS internet mapping applications to date are as follows: Equine Infectious Anemia Testing 1972-2005, National Tick Survey tick distribution maps, the Emergency Management Response System-Mapping Module for disease investigations and emergency outbreaks, and the Scrapie mapping module to assist with the control and eradication of this disease. These services were created using Environmental Systems Research Institute (ESRI)'s internet map server technology (ArcIMS). Other leading technologies for spatial data dissemination are ArcGIS Server, ArcEngine, and ArcWeb Services. VS is prototyping applications using these technologies, including the VS Atlas of Animal Health Information using ArcGIS Server technology and the Map Kiosk using ArcEngine for automating standard map production in the case of an emergency.
Abandoned Uranium Mines (AUM) Site Screening Map Service, 2016, US EPA Region 9
As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using the Comprehensive Database and Atlas to determine which mines should be cleaned up first. US EPA continues to research and identify Potentially Responsible Parties (PRPs) under Superfund to contribute to the costs of cleanup efforts.This US EPA Region 9 web service contains the following map layers:Abandoned Uranium Mines, Priority Mines, Tronox Mines, Navajo Environmental Response Trust Mines, Mines with Enforcement Actions, Superfund AUM Regions, Navajo Nation Administrative Boundaries and Chapter Houses.Mine points have a maximum scale of 1:220,000, while Mine polygons have a minimum scale of 1:220,000. Chapter houses have a minimum scale of 1:200,000. BLM Land Status has a minimum scale of 1:150,000.Full FGDC metadata records for each layer can be found by clicking the layer name at the web service endpoint and viewing the layer description. Data used to create this web service are available for download at https://edg.epa.gov/metadata/catalog/data/data.page.Security Classification: Public. Access Constraints: None. Use Constraints: None. Please check sources, scale, accuracy, currentness and other available information. Please confirm that you are using the most recent copy of both data and metadata. Acknowledgement of the EPA would be appreciated.
Real-time Shakemap implementation in Austria
NASA Astrophysics Data System (ADS)
Weginger, Stefan; Jia, Yan; Papi Isaba, Maria; Horn, Nikolaus
2017-04-01
ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. They are automatically generated within a few minutes after occurrence of an earthquake. We tested and included the USGS ShakeMap 4.0 (experimental code) based on python in the Antelope real-time system with local modified GMPE and Site Effects based on the conditions in Austria. The ShakeMaps are provided in terms of Intensity, PGA, PGV and PSA. Future presentation of ShakeMap contour lines and Ground Motion Parameter with interactive maps and data exchange over Web-Services are shown.
Making large amounts of meteorological plots easily accessible to users
NASA Astrophysics Data System (ADS)
Lamy-Thepaut, Sylvie; Siemen, Stephan; Sahin, Cihan; Raoult, Baudouin
2015-04-01
The European Centre for Medium-Range Weather Forecasts (ECMWF) is an international organisation providing its member organisations with forecasts in the medium time range of 3 to 15 days, and some longer-range forecasts for up to a year ahead, with varying degrees of detail. As part of its mission, ECMWF generates an increasing number of forecast data products for its users. To support the work of forecasters and researchers and to let them make best use of ECMWF forecasts, the Centre also provides tools and interfaces to visualise their products. This allows users to make use of and explore forecasts without having to transfer large amounts of raw data. This is especially true for products based on ECMWF's 50 member ensemble forecast, where some specific processing and visualisation are applied to extract information. Every day, thousands of raw data are being pushed to the ECMWF's interactive web charts application called ecCharts, and thousands of products are processed and pushed to ECMWF's institutional web site ecCharts provides a highly interactive application to display and manipulate recent numerical forecasts to forecasters in national weather services and ECMWF's commercial customers. With ecCharts forecasters are able to explore ECMWF's medium-range forecasts in far greater detail than has previously been possible on the web, and this as soon as the forecast becomes available. All ecCharts's products are also available through a machine-to-machine web map service based on the OGC Web Map Service (WMS) standard. ECMWF institutional web site provides access to a large number of graphical products. It was entirely redesigned last year. It now shares the same infrastructure as ECMWF's ecCharts, and can benefit of some ecCharts functionalities, for example the dashboard. The dashboard initially developed for ecCharts allows users to organise their own collection of products depending on their work flow, and is being further developed. In its first implementation, It presents the user's products in a single interface with fast access to the original product, and possibilities of synchronous animations between them. But its functionalities are being extended to give users the freedom to collect not only ecCharts's 2D maps and graphs, but also other ECMWF Web products such as monthly and seasonal products, scores, and observation monitoring. The dashboard will play a key role to help the user to interpret the large amount of information that ECMWF is providing. This talk will present examples of how the new user interface can organise complex meteorological maps and graphs and show the new possibilities users have gained by using the web as a medium.
Cleanups in My Community (CIMC) is a public web application that enables integrated access through maps, lists and search filtering to site-specific information EPA has across all cleanup programs. CIMC taps into data publicly available from EPA's EnviroFacts (RCRA Corrective Action facilities, Brownfields properties and grant areas, Superfund NPL sites, other facility data) and web services (water monitoring stations, impaired waters, emergency responses, tribal boundaries, congressional districts, etc.) and connects to other applications (e.g., Superfund's CPAD) to provide easy seamless access to site-specific cleanup information with explanatory text and within the context of related data. Data can be filtered by cleanup program, geography, environmental indicators, controls, and cleanup stage. CIMC also provides some web services that integrate these data for others to use in their applications.
NASA Astrophysics Data System (ADS)
Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Hoekstra, J.; Lawler, J. J.; Kareiva, P.
2008-12-01
Now that there is overwhelming evidence of global climate change, scientists, managers and planners (i.e. practitioners) need to assess the potential impacts of climate change on particular ecological systems, within specific geographic areas, and at spatial scales they care about, in order to make better land management, planning, and policy decisions. Unfortunately, this application of climate science to real world decisions and planning has proceeded too slowly because we lack tools for translating cutting-edge climate science and climate-model outputs into something managers and planners can work with at local or regional scales (CCSP 2008). To help increase the accessibility of climate information, we have developed a freely-available, easy-to-use, web-based climate-change analysis toolbox, called ClimateWizard, for assessing how climate has and is projected to change at specific geographic locations throughout the world. The ClimateWizard uses geographic information systems (GIS), web-services (SOAP/XML), statistical analysis platforms (e.g. R- project), and web-based mapping services (e.g. Google Earth/Maps, KML/GML) to provide a variety of different analyses (e.g. trends and departures) and outputs (e.g. maps, graphs, tables, GIS layers). Because ClimateWizard analyzes large climate datasets stored remotely on powerful computers, users of the tool do not need to have fast computers or expensive software, but simply need access to the internet. The analysis results are then provided to users in a Google Maps webpage tailored to the specific climate-change question being asked. The ClimateWizard is not a static product, but rather a framework to be built upon and modified to suit the purposes of specific scientific, management, and policy questions. For example, it can be expanded to include bioclimatic variables (e.g. evapotranspiration) and marine data (e.g. sea surface temperature), as well as improved future climate projections, and climate-change impact analyses involving hydrology, vegetation, wildfire, disease, and food security. By harnessing the power of computer and web- based technologies, the ClimateWizard puts local, regional, and global climate-change analyses in the hands of a wider array of managers, planners, and scientists.
IRRIMET: a web 2.0 advisory service for irrigation water management
NASA Astrophysics Data System (ADS)
De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni
2016-04-01
Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.
Web Services Provide Access to SCEC Scientific Research Application Software
NASA Astrophysics Data System (ADS)
Gupta, N.; Gupta, V.; Okaya, D.; Kamb, L.; Maechling, P.
2003-12-01
Web services offer scientific communities a new paradigm for sharing research codes and communicating results. While there are formal technical definitions of what constitutes a web service, for a user community such as the Southern California Earthquake Center (SCEC), we may conceptually consider a web service to be functionality provided on-demand by an application which is run on a remote computer located elsewhere on the Internet. The value of a web service is that it can (1) run a scientific code without the user needing to install and learn the intricacies of running the code; (2) provide the technical framework which allows a user's computer to talk to the remote computer which performs the service; (3) provide the computational resources to run the code; and (4) bundle several analysis steps and provide the end results in digital or (post-processed) graphical form. Within an NSF-sponsored ITR project coordinated by SCEC, we are constructing web services using architectural protocols and programming languages (e.g., Java). However, because the SCEC community has a rich pool of scientific research software (written in traditional languages such as C and FORTRAN), we also emphasize making existing scientific codes available by constructing web service frameworks which wrap around and directly run these codes. In doing so we attempt to broaden community usage of these codes. Web service wrapping of a scientific code can be done using a "web servlet" construction or by using a SOAP/WSDL-based framework. This latter approach is widely adopted in IT circles although it is subject to rapid evolution. Our wrapping framework attempts to "honor" the original codes with as little modification as is possible. For versatility we identify three methods of user access: (A) a web-based GUI (written in HTML and/or Java applets); (B) a Linux/OSX/UNIX command line "initiator" utility (shell-scriptable); and (C) direct access from within any Java application (and with the correct API interface from within C++ and/or C/Fortran). This poster presentation will provide descriptions of the following selected web services and their origin as scientific application codes: 3D community velocity models for Southern California, geocoordinate conversions (latitude/longitude to UTM), execution of GMT graphical scripts, data format conversions (Gocad to Matlab format), and implementation of Seismic Hazard Analysis application programs that calculate hazard curve and hazard map data sets.
EnviroAtlas - New York, NY - One Meter Resolution Urban Land Cover Data (2008) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The New York, NY EnviroAtlas Meter-scale Urban Land Cover (MULC) Data were generated by the University of Vermont Spatial Analysis Laboratory (SAL) under the direction of Jarlath O'Neil-Dunne as part of the United States Forest Service Urban Tree Canopy (UTC) assessment program. Seven classes were mapped using LiDAR and high resolution orthophotography: Tree Canopy, Grass/Shrub, Bare Soil, Water, Buildings, Roads/Railroads, and Other Paved Surfaces. These data were subsequently merged to fit with the EPA classification. The SAL project covered the five boroughs within the NYC city limits. However the EPA study area encompassed that area plus a 1 kilometer buffer. Additional land cover for the buffer area was generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution from July, 2011 and LiDAR from 2010. Six land cover classes were mapped: water, impervious surfaces, soil and barren land, trees, grass-herbaceous non-woody vegetation, and agriculture. An accuracy assessment of 600 completely random and 55 stratified random photo interpreted reference points yielded an overall User's fuzzy accuracy of 87 percent. The area mapped is the US Census Bureau's 2010 Urban Statistical Area for New Yor
Coherent visualization of spatial data adapted to roles, tasks, and hardware
NASA Astrophysics Data System (ADS)
Wagner, Boris; Peinsipp-Byma, Elisabeth
2012-06-01
Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Mayorga, E.; Tarboton, D. G.; Sazib, N. S.; Horsburgh, J. S.; Cheetham, R.
2016-12-01
The Model My Watershed Web app (http://wikiwatershed.org/model/) was designed to enable citizens, conservation practitioners, municipal decision-makers, educators, and students to interactively select any area of interest anywhere in the continental USA to: (1) analyze real land use and soil data for that area; (2) model stormwater runoff and water-quality outcomes; and (3) compare how different conservation or development scenarios could modify runoff and water quality. The BiG CZ Data Portal is a web application for scientists for intuitive, high-performance map-based discovery, visualization, access and publication of diverse earth and environmental science data via a map-based interface that simultaneously performs geospatial analysis of selected GIS and satellite raster data for a selected area of interest. The two web applications share a common codebase (https://github.com/WikiWatershed and https://github.com/big-cz), high performance geospatial analysis engine (http://geotrellis.io/ and https://github.com/geotrellis) and deployment on the Amazon Web Services (AWS) cloud cyberinfrastructure. Users can use "on-the-fly" rapid watershed delineation over the national elevation model to select their watershed or catchment of interest. The two web applications also share the goal of enabling the scientists, resource managers and students alike to share data, analyses and model results. We will present these functioning web applications and their potential to substantially lower the bar for studying and understanding our water resources. We will also present work in progress, including a prototype system for enabling citizen-scientists to register open-source sensor stations (http://envirodiy.org/mayfly/) to stream data into these systems, so that they can be reshared using Water One Flow web services.
UNAVCO Software and Services for Visualization and Exploration of Geoscience Data
NASA Astrophysics Data System (ADS)
Meertens, C.; Wier, S.
2007-12-01
UNAVCO has been involved in visualization of geoscience data to support education and research for several years. An early and ongoing service is the Jules Verne Voyager, a web browser applet built on the GMT that displays any area on Earth, with many data set choices, including maps, satellite images, topography, geoid heights, sea-floor ages, strain rates, political boundaries, rivers and lakes, earthquake and volcano locations, focal mechanisms, stress axes, and observed and modeled plate motion and deformation velocity vectors from geodetic measurements around the world. As part of the GEON project, UNAVCO has developed the GEON IDV, a research-level, 4D (earth location, depth and/or altitude, and time), Java application for interactive display and analysis of geoscience data. The GEON IDV is designed to meet the challenge of investigating complex, multi-variate, time-varying, three-dimensional geoscience data anywhere on earth. The GEON IDV supports simultaneous displays of data sets from differing sources, with complete control over colors, time animation, map projection, map area, point of view, and vertical scale. The GEON IDV displays gridded and point data, images, GIS shape files, and several other types of data. The GEON IDV has symbols and displays for GPS velocity vectors, seismic tomography, earthquake focal mechanisms, earthquake locations with magnitude or depth, seismic ray paths in 3D, seismic anisotropy, convection model visualization, earth strain axes and strain field imagery, and high-resolution 3D topographic relief maps. Multiple data sources and display types may appear in one view. As an example of GEON IDV utility, it can display hypocenters under a volcano, a surface geology map of the volcano draped over 3D topographic relief, town locations and political boundaries, and real-time 3D weather radar clouds of volcanic ash in the atmosphere, with time animation. The GEON IDV can drive a GeoWall or other 3D stereo system. IDV output includes imagery, movies, and KML files for Google Earth use of IDV static images, where Google Earth can handle the display. The IDV can be scripted to create display images on user request or automatically on data arrival, offering the use of the IDV as a back end to support a data web site. We plan to extend the power of the IDV by accepting new data types and data services, such as GeoSciML. An active program of online and video training in GEON IDV use is planned. UNAVCO will support users who need assistance converting their data to the standard formats used by the GEON IDV. The UNAVCO Facility provides web-accessible support for Google Earth and Google Maps display of any of more than 9500 GPS stations and survey points, including metadata for each installation. UNAVCO provides corresponding Open Geospatial Consortium (OGC) web services with the same data. UNAVCO's goal is to facilitate data access, interoperability, and efficient searches, exploration, and use of data by promoting web services, standards for GEON IDV data formats and metadata, and software able to simultaneously read and display multiple data sources, formats, and map locations or projections. Retention and propagation of semantics and metadata with observational and experimental values is essential for interoperability and understanding diverse data sources.
NASA Technical Reports Server (NTRS)
Pliutau, Denis; Prasad, Narashimha S.
2013-01-01
Current approaches to satellite observation data storage and distribution implement separate visualization and data access methodologies which often leads to the need in time consuming data ordering and coding for applications requiring both visual representation as well as data handling and modeling capabilities. We describe an approach we implemented for a data-encoded web map service based on storing numerical data within server map tiles and subsequent client side data manipulation and map color rendering. The approach relies on storing data using the lossless compression Portable Network Graphics (PNG) image data format which is natively supported by web-browsers allowing on-the-fly browser rendering and modification of the map tiles. The method is easy to implement using existing software libraries and has the advantage of easy client side map color modifications, as well as spatial subsetting with physical parameter range filtering. This method is demonstrated for the ASTER-GDEM elevation model and selected MODIS data products and represents an alternative to the currently used storage and data access methods. One additional benefit includes providing multiple levels of averaging due to the need in generating map tiles at varying resolutions for various map magnification levels. We suggest that such merged data and mapping approach may be a viable alternative to existing static storage and data access methods for a wide array of combined simulation, data access and visualization purposes.
Web-based metabolic network visualization with a zooming user interface
2011-01-01
Background Displaying complex metabolic-map diagrams, for Web browsers, and allowing users to interact with them for querying and overlaying expression data over them is challenging. Description We present a Web-based metabolic-map diagram, which can be interactively explored by the user, called the Cellular Overview. The main characteristic of this application is the zooming user interface enabling the user to focus on appropriate granularities of the network at will. Various searching commands are available to visually highlight sets of reactions, pathways, enzymes, metabolites, and so on. Expression data from single or multiple experiments can be overlaid on the diagram, which we call the Omics Viewer capability. The application provides Web services to highlight the diagram and to invoke the Omics Viewer. This application is entirely written in JavaScript for the client browsers and connect to a Pathway Tools Web server to retrieve data and diagrams. It uses the OpenLayers library to display tiled diagrams. Conclusions This new online tool is capable of displaying large and complex metabolic-map diagrams in a very interactive manner. This application is available as part of the Pathway Tools software that powers multiple metabolic databases including Biocyc.org: The Cellular Overview is accessible under the Tools menu. PMID:21595965
PDBe: towards reusable data delivery infrastructure at protein data bank in Europe
Alhroub, Younes; Anyango, Stephen; Armstrong, David R; Berrisford, John M; Clark, Alice R; Conroy, Matthew J; Dana, Jose M; Gupta, Deepti; Gutmanas, Aleksandras; Haslam, Pauline; Mak, Lora; Mukhopadhyay, Abhik; Nadzirin, Nurul; Paysan-Lafosse, Typhaine; Sehnal, David; Sen, Sanchayita; Smart, Oliver S; Varadi, Mihaly; Kleywegt, Gerard J
2018-01-01
Abstract The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API. PMID:29126160
NASA Astrophysics Data System (ADS)
Kilb, D. L.; Fundis, A. T.; Risien, C. M.
2012-12-01
The focus of the Education and Public Engagement (EPE) component of the NSF's Ocean Observatories Initiative (OOI) is to provide a new layer of cyber-interactivity for undergraduate educators to bring near real-time data from the global ocean into learning environments. To accomplish this, we are designing six online services including: 1) visualization tools, 2) a lesson builder, 3) a concept map builder, 4) educational web services (middleware), 5) collaboration tools and 6) an educational resource database. Here, we report on our Fall 2012 release that includes the first four of these services: 1) Interactive visualization tools allow users to interactively select data of interest, display the data in various views (e.g., maps, time-series and scatter plots) and obtain statistical measures such as mean, standard deviation and a regression line fit to select data. Specific visualization tools include a tool to compare different months of data, a time series explorer tool to investigate the temporal evolution of select data parameters (e.g., sea water temperature or salinity), a glider profile tool that displays ocean glider tracks and associated transects, and a data comparison tool that allows users to view the data either in scatter plot view comparing one parameter with another, or in time series view. 2) Our interactive lesson builder tool allows users to develop a library of online lesson units, which are collaboratively editable and sharable and provides starter templates designed from learning theory knowledge. 3) Our interactive concept map tool allows the user to build and use concept maps, a graphical interface to map the connection between concepts and ideas. This tool also provides semantic-based recommendations, and allows for embedding of associated resources such as movies, images and blogs. 4) Education web services (middleware) will provide an educational resource database API.
NASA Astrophysics Data System (ADS)
Pulsani, B. R.
2017-11-01
Tank Information System is a web application which provides comprehensive information about minor irrigation tanks of Telangana State. As part of the program, a web mapping application using Flex and ArcGIS server was developed to make the data available to the public. In course of time as Flex be-came outdated, a migration of the client interface to the latest JavaScript based technologies was carried out. Initially, the Flex based application was migrated to ArcGIS JavaScript API using Dojo Toolkit. Both the client applications used published services from ArcGIS server. To check the migration pattern from proprietary to open source, the JavaScript based ArcGIS application was later migrated to OpenLayers and Dojo Toolkit which used published service from GeoServer. The migration pattern noticed in the study especially emphasizes upon the use of Dojo Toolkit and PostgreSQL database for ArcGIS server so that migration to open source could be performed effortlessly. The current ap-plication provides a case in study which could assist organizations in migrating their proprietary based ArcGIS web applications to open source. Furthermore, the study reveals cost benefits of adopting open source against commercial software's.
A service relation model for web-based land cover change detection
NASA Astrophysics Data System (ADS)
Xing, Huaqiao; Chen, Jun; Wu, Hao; Zhang, Jun; Li, Songnian; Liu, Boyu
2017-10-01
Change detection with remotely sensed imagery is a critical step in land cover monitoring and updating. Although a variety of algorithms or models have been developed, none of them can be universal for all cases. The selection of appropriate algorithms and construction of processing workflows depend largely on the expertise of experts about the "algorithm-data" relations among change detection algorithms and the imagery data used. This paper presents a service relation model for land cover change detection by integrating the experts' knowledge about the "algorithm-data" relations into the web-based geo-processing. The "algorithm-data" relations are mapped into a set of web service relations with the analysis of functional and non-functional service semantics. These service relations are further classified into three different levels, i.e., interface, behavior and execution levels. A service relation model is then established using the Object and Relation Diagram (ORD) approach to represent the multi-granularity services and their relations for change detection. A set of semantic matching rules are built and used for deriving on-demand change detection service chains from the service relation model. A web-based prototype system is developed in .NET development environment, which encapsulates nine change detection and pre-processing algorithms and represents their service relations as an ORD. Three test areas from Shandong and Hebei provinces, China with different imagery conditions are selected for online change detection experiments, and the results indicate that on-demand service chains can be generated according to different users' demands.
Free Factories: Unified Infrastructure for Data Intensive Web Services
Zaranek, Alexander Wait; Clegg, Tom; Vandewege, Ward; Church, George M.
2010-01-01
We introduce the Free Factory, a platform for deploying data-intensive web services using small clusters of commodity hardware and free software. Independently administered virtual machines called Freegols give application developers the flexibility of a general purpose web server, along with access to distributed batch processing, cache and storage services. Each cluster exploits idle RAM and disk space for cache, and reserves disks in each node for high bandwidth storage. The batch processing service uses a variation of the MapReduce model. Virtualization allows every CPU in the cluster to participate in batch jobs. Each 48-node cluster can achieve 4-8 gigabytes per second of disk I/O. Our intent is to use multiple clusters to process hundreds of simultaneous requests on multi-hundred terabyte data sets. Currently, our applications achieve 1 gigabyte per second of I/O with 123 disks by scheduling batch jobs on two clusters, one of which is located in a remote data center. PMID:20514356
Exploratory visualization of earth science data in a Semantic Web context
NASA Astrophysics Data System (ADS)
Ma, X.; Fox, P. A.
2012-12-01
Earth science data are increasingly unlocked from their local 'safes' and shared online with the global science community as well as the average citizen. The European Union (EU)-funded project OneGeology-Europe (1G-E, www.onegeology-europe.eu) is a typical project that promotes works in that direction. The 1G-E web portal provides easy access to distributed geological data resources across participating EU member states. Similar projects can also be found in other countries or regions, such as the geoscience information network USGIN (www.usgin.org) in United States, the groundwater information network GIN-RIES (www.gw-info.net) in Canada and the earth science infrastructure AuScope (www.auscope.org.au) in Australia. While data are increasingly made available online, we currently face a shortage of tools and services that support information and knowledge discovery with such data. One reason is that earth science data are recorded in professional language and terms, and people without background knowledge cannot understand their meanings well. The Semantic Web provides a new context to help computers as well as users to better understand meanings of data and conduct applications. In this study we aim to chain up Semantic Web technologies (e.g., vocabularies/ontologies and reasoning), data visualization (e.g., an animation underpinned by an ontology) and online earth science data (e.g., available as Web Map Service) to develop functions for information and knowledge discovery. We carried out a case study with data of the 1G-E project. We set up an ontology of geological time scale using the encoding languages of SKOS (Simple Knowledge Organization System) and OWL (Web Ontology Language) from W3C (World Wide Web Consortium, www.w3.org). Then we developed a Flash animation of geological time scale by using the ActionScript language. The animation is underpinned by the ontology and the interrelationships between concepts of geological time scale are visualized in the animation. We linked the animation and the ontology to the online geological data of 1G-E project and developed interactive applications. The animation was used to show legends of rock age layers in geological maps dynamically. In turn, these legends were used as control panels to filter out and generalize geospatial features of certain rock ages on map layers. We tested the functions with maps of various EU member states. As a part of the initial results, legends for rock age layers of EU individual national maps were generated respectively, and the functions for filtering and generalization were examined with the map of United Kingdom. Though new challenges are rising in the tests, like those caused by synonyms (e.g., 'Lower Cambrian' and 'Terreneuvian'), the initial results achieved the designed goals of information and knowledge discovery by using the ontology-underpinned animation. This study shows that (1) visualization lowers the barrier of ontologies, (2) integrating ontologies and visualization adds value to online earth science data services, and (3) exploratory visualization supports the procedure of data processing as well as the display of results.
EnviroAtlas - Austin, TX - Demographics by Block Group
This EnviroAtlas dataset is a summary of key demographic groups for the EnviroAtlas community. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
The OGC Sensor Web Enablement framework
NASA Astrophysics Data System (ADS)
Cox, S. J.; Botts, M.
2006-12-01
Sensor observations are at the core of natural sciences. Improvements in data-sharing technologies offer the promise of much greater utilisation of observational data. A key to this is interoperable data standards. The Open Geospatial Consortium's (OGC) Sensor Web Enablement initiative (SWE) is developing open standards for web interfaces for the discovery, exchange and processing of sensor observations, and tasking of sensor systems. The goal is to support the construction of complex sensor applications through real-time composition of service chains from standard components. The framework is based around a suite of standard interfaces, and standard encodings for the message transferred between services. The SWE interfaces include: Sensor Observation Service (SOS)-parameterized observation requests (by observation time, feature of interest, property, sensor); Sensor Planning Service (SPS)-tasking a sensor- system to undertake future observations; Sensor Alert Service (SAS)-subscription to an alert, usually triggered by a sensor result exceeding some value. The interface design generally follows the pattern established in the OGC Web Map Service (WMS) and Web Feature Service (WFS) interfaces, where the interaction between a client and service follows a standard sequence of requests and responses. The first obtains a general description of the service capabilities, followed by obtaining detail required to formulate a data request, and finally a request for a data instance or stream. These may be implemented in a stateless "REST" idiom, or using conventional "web-services" (SOAP) messaging. In a deployed system, the SWE interfaces are supplemented by Catalogue, data (WFS) and portrayal (WMS) services, as well as authentication and rights management. The standard SWE data formats are Observations and Measurements (O&M) which encodes observation metadata and results, Sensor Model Language (SensorML) which describes sensor-systems, Transducer Model Language (TML) which covers low-level data streams, and domain-specific GML Application Schemas for definitions of the target feature types. The SWE framework has been demonstrated in several interoperability testbeds. These were based around emergency management, security, contamination and environmental monitoring scenarios.
NASA Astrophysics Data System (ADS)
Veenendaal, B.; Brovelli, M. A.; Li, S.; Ivánová, I.
2017-09-01
Although maps have been around for a very long time, web maps are yet very young in their origin. Despite their relatively short history, web maps have been developing very rapidly over the past few decades. The use, users and usability of web maps have rapidly expanded along with developments in web technologies and new ways of mapping. In the process of these developments, the terms and terminology surrounding web mapping have also changed and evolved, often relating to the new technologies or new uses. Examples include web mapping, web GIS, cloud mapping, internet mapping, internet GIS, geoweb, map mashup, online mapping etc., not to mention those with prefixes such as "web-based" and "internet-based". So, how do we keep track of these terms, relate them to each other and have common understandings of their meanings so that references to them are not ambiguous, misunderstood or even different? This paper explores the terms surrounding web mapping and web GIS, and the development of their meaning over time. The paper then suggests the current context in which these terms are used and provides meanings that may assist in better understanding and communicating using these terms in the future.
Feature Positioning on Google Street View Panoramas
NASA Astrophysics Data System (ADS)
Tsai, V. J. D.; Chang, C.-T.
2012-07-01
Location-based services (LBS) on web-based maps and images have come into real-time since Google launched its Street View imaging services in 2007. This research employs Google Maps API and Web Service, GAE for JAVA, AJAX, Proj4js, CSS and HTML in developing an internet platform for accessing the orientation parameters of Google Street View (GSV) panoramas in order to determine the three dimensional position of interest features that appear on two overlapping panoramas by geometric intersection. A pair of GSV panoramas was examined using known points located on the Library Building of National Chung Hsing University (NCHU) with the root-mean-squared errors of ±0.522m, ±1.230m, and ±5.779m for intersection and ±0.142m, ±1.558m, and ±5.733m for resection in X, Y, and h (elevation), respectively. Potential error sources in GSV positioning were analyzed and illustrated that the errors in Google provided GSV positional parameters dominate the errors in geometric intersection. The developed system is suitable for data collection in establishing LBS applications integrated with Google Maps and Google Earth in traffic sign and infrastructure inventory by adding automatic extraction and matching techniques for points of interest (POI) from GSV panoramas.
NASA Astrophysics Data System (ADS)
Tisdale, M.
2016-12-01
NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying government, private, public and academic communities' driven requirements. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), OGC Web Coverage Services (WCS) and leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams and ASDC are utilizing these services, developing applications using the Web AppBuilder for ArcGIS and ArcGIS API for Javascript, and evaluating restructuring their data production and access scripts within the ArcGIS Python Toolbox framework and Geoprocessing service environment. These capabilities yield a greater usage and exposure of ASDC data holdings and provide improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry.
Relax with CouchDB - Into the non-relational DBMS era of Bioinformatics
Manyam, Ganiraju; Payton, Michelle A.; Roth, Jack A.; Abruzzo, Lynne V.; Coombes, Kevin R.
2012-01-01
With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. PMID:22609849
The BCube Crawler: Web Scale Data and Service Discovery for EarthCube.
NASA Astrophysics Data System (ADS)
Lopez, L. A.; Khalsa, S. J. S.; Duerr, R.; Tayachow, A.; Mingo, E.
2014-12-01
Web-crawling, a core component of the NSF-funded BCube project, is researching and applying the use of big data technologies to find and characterize different types of web services, catalog interfaces, and data feeds such as the ESIP OpenSearch, OGC W*S, THREDDS, and OAI-PMH that describe or provide access to scientific datasets. Given the scale of the Internet, which challenges even large search providers such as Google, the BCube plan for discovering these web accessible services is to subdivide the problem into three smaller, more tractable issues. The first, to be able to discover likely sites where relevant data and data services might be found, the second, to be able to deeply crawl the sites discovered to find any data and services which might be present. Lastly, to leverage the use of semantic technologies to characterize the services and data found, and to filter out everything but those relevant to the geosciences. To address the first two challenges BCube uses an adapted version of Apache Nutch (which originated Hadoop), a web scale crawler, and Amazon's ElasticMapReduce service for flexibility and cost effectiveness. For characterization of the services found, BCube is examining existing web service ontologies for their applicability to our needs and will re-use and/or extend these in order to query for services with specific well-defined characteristics in scientific datasets such as the use of geospatial namespaces. The original proposal for the crawler won a grant from Amazon's academic program, which allowed us to become operational; we successfully tested the Bcube Crawler at web scale obtaining a significant corpus, sizeable enough to enable work on characterization of the services and data found. There is still plenty of work to be done, doing "smart crawls" by managing the frontier, developing and enhancing our scoring algorithms and fully implementing the semantic characterization technologies. We describe the current status of the project, our successes and issues encountered. The final goal of the BCube crawler project is to provide relevant data services to other projects on the EarthCube stack and third party partners so they can be brokered and used by a wider scientific community.
NASA Astrophysics Data System (ADS)
Friberg, P. A.; Luis, R. S.; Quintiliani, M.; Lisowski, S.; Hunter, S.
2014-12-01
Recently, a novel set of modules has been included in the Open Source Earthworm seismic data processing system, supporting the use of web applications. These include the Mole sub-system, for storing relevant event data in a MySQL database (see M. Quintiliani and S. Pintore, SRL, 2013), and an embedded webserver, Moleserv, for serving such data to web clients in QuakeML format. These modules have enabled, for the first time using Earthworm, the use of web applications for seismic data processing. These can greatly simplify the operation and maintenance of seismic data processing centers by having one or more servers providing the relevant data as well as the data processing applications themselves to client machines running arbitrary operating systems.Web applications with secure online web access allow operators to work anywhere, without the often cumbersome and bandwidth hungry use of secure shell or virtual private networks. Furthermore, web applications can seamlessly access third party data repositories to acquire additional information, such as maps. Finally, the usage of HTML email brought the possibility of specialized web applications, to be used in email clients. This is the case of EWHTMLEmail, which produces event notification emails that are in fact simple web applications for plotting relevant seismic data.Providing web services as part of Earthworm has enabled a number of other tools as well. One is ISTI's EZ Earthworm, a web based command and control system for an otherwise command line driven system; another is a waveform web service. The waveform web service serves Earthworm data to additional web clients for plotting, picking, and other web-based processing tools. The current Earthworm waveform web service hosts an advanced plotting capability for providing views of event-based waveforms from a Mole database served by Moleserve.The current trend towards the usage of cloud services supported by web applications is driving improvements in JavaScript, css and HTML, as well as faster and more efficient web browsers, including mobile. It is foreseeable that in the near future, web applications are as powerful and efficient as native applications. Hence the work described here has been the first step towards bringing the Open Source Earthworm seismic data processing system to this new paradigm.
Extending Climate Analytics-As to the Earth System Grid Federation
NASA Astrophysics Data System (ADS)
Tamkin, G.; Schnase, J. L.; Duffy, D.; McInerney, M.; Nadeau, D.; Li, J.; Strong, S.; Thompson, J. H.
2015-12-01
We are building three extensions to prior-funded work on climate analytics-as-a-service that will benefit the Earth System Grid Federation (ESGF) as it addresses the Big Data challenges of future climate research: (1) We are creating a cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables from six major reanalysis data sets. This near real-time capability will enable advanced technologies like the Cloudera Impala-based Structured Query Language (SQL) query capabilities and Hadoop-based MapReduce analytics over native NetCDF files while providing a platform for community experimentation with emerging analytic technologies. (2) We are building a full-featured Reanalysis Ensemble Service comprising monthly means data from six reanalysis data sets. The service will provide a basic set of commonly used operations over the reanalysis collections. The operations will be made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services (CDS) API. (3) We are establishing an Open Geospatial Consortium (OGC) WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation ESGF capabilities. The CDS API will be extended to accommodate the new WPS Web service endpoints as well as ESGF's Web service endpoints. These activities address some of the most important technical challenges for server-side analytics and support the research community's requirements for improved interoperability and improved access to reanalysis data.
A simple method for serving Web hypermaps with dynamic database drill-down
Boulos, Maged N Kamel; Roudsari, Abdul V; Carson, Ewart R
2002-01-01
Background HealthCyberMap aims at mapping parts of health information cyberspace in novel ways to deliver a semantically superior user experience. This is achieved through "intelligent" categorisation and interactive hypermedia visualisation of health resources using metadata, clinical codes and GIS. HealthCyberMap is an ArcView 3.1 project. WebView, the Internet extension to ArcView, publishes HealthCyberMap ArcView Views as Web client-side imagemaps. The basic WebView set-up does not support any GIS database connection, and published Web maps become disconnected from the original project. A dedicated Internet map server would be the best way to serve HealthCyberMap database-driven interactive Web maps, but is an expensive and complex solution to acquire, run and maintain. This paper describes HealthCyberMap simple, low-cost method for "patching" WebView to serve hypermaps with dynamic database drill-down functionality on the Web. Results The proposed solution is currently used for publishing HealthCyberMap GIS-generated navigational information maps on the Web while maintaining their links with the underlying resource metadata base. Conclusion The authors believe their map serving approach as adopted in HealthCyberMap has been very successful, especially in cases when only map attribute data change without a corresponding effect on map appearance. It should be also possible to use the same solution to publish other interactive GIS-driven maps on the Web, e.g., maps of real world health problems. PMID:12437788
Climate Prediction Center - The ENSO Cycle
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > El Niño/La Niña > The ENSO Cycle ENSO Cycle Banner Climate for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College
Data visualization in interactive maps and time series
NASA Astrophysics Data System (ADS)
Maigne, Vanessa; Evano, Pascal; Brockmann, Patrick; Peylin, Philippe; Ciais, Philippe
2014-05-01
State-of-the-art data visualization has nothing to do with plots and maps we used few years ago. Many opensource tools are now available to provide access to scientific data and implement accessible, interactive, and flexible web applications. Here we will present a web site opened November 2013 to create custom global and regional maps and time series from research models and datasets. For maps, we explore and get access to data sources from a THREDDS Data Server (TDS) with the OGC WMS protocol (using the ncWMS implementation) then create interactive maps with the OpenLayers javascript library and extra information layers from a GeoServer. Maps become dynamic, zoomable, synchroneaously connected to each other, and exportable to Google Earth. For time series, we extract data from a TDS with the Netcdf Subset Service (NCSS) then display interactive graphs with a custom library based on the Data Driven Documents javascript library (D3.js). This time series application provides dynamic functionalities such as interpolation, interactive zoom on different axes, display of point values, and export to different formats. These tools were implemented for the Global Carbon Atlas (http://www.globalcarbonatlas.org): a web portal to explore, visualize, and interpret global and regional carbon fluxes from various model simulations arising from both human activities and natural processes, a work led by the Global Carbon Project.
EnviroAtlas -- Memphis, TN (2012) -- One Meter Resolution Urban Land Cover Data Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The Memphis, TN EnviroAtlas One Meter-scale Urban Land Cover (MULC) dataset comprises 2,733 km2 around the city of Memphis, surrounding towns, and rural areas. These leaf-on LC data and maps were derived from 1-m pixel, four-band (red, green, blue, and near-infrared) aerial photography acquired from the United States Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) on four dates in 2012: June 15, June 18, June 21 and June 23, and one date in 2013: July 12. Three separate LiDAR (Light Detection and Ranging) data sets collected on February 19, 2009 00e2?? August 2, 2010, December 1-2, 2011 and January 23-24, 2012 were integrated for Shelby Co., TN, Crittenden Co., AR, and DeSoto Co, MS. Five MULC classes were mapped directly from the NAIP and LiDAR data: Water, Impervious, Soil, Trees, and Grass/Herbaceous. Agriculture was derived from USDA Common Land Unit (CLU) data. Woody and emergent wetlands were copied from existing National Wetlands Inventory (NWI) data. Analysis of a random sampling of 612 photo-interpreted land cover reference points yielded an overall users accuracy of 86.9%. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-u
KML Super Overlay to WMS Translator
NASA Technical Reports Server (NTRS)
Plesea, Lucian
2007-01-01
This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.
Genome Maps, a new generation genome browser.
Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín
2013-07-01
Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.
Genome Maps, a new generation genome browser
Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín
2013-01-01
Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955
Perspectives for Web Service Intermediaries: How Influence on Quality Makes the Difference
NASA Astrophysics Data System (ADS)
Scholten, Ulrich; Fischer, Robin; Zirpins, Christian
In the service-oriented computing paradigm and the Web service architecture, the broker role is a key facilitator to leverage technical capabilities of loose coupling to achieve organizational capabilities of dynamic customer-provider-relationships. In practice, this role has quickly evolved into a variety of intermediary concepts that refine and extend the basic functionality of service brokerage with respect to various forms of added value like platform or market mechanisms. While this has initially led to a rich variety of Web service intermediaries, many of these are now going through a phase of stagnation or even decline in customer acceptance. In this paper we present a comparative study on insufficient service quality that is arguably one of the key reasons for this phenomenon. In search of a differentiation with respect to quality monitoring and management patterns, we categorize intermediaries into Infomediaries, e-Hubs, e-Markets and Integrators. A mapping of quality factors and control mechanisms to these categories depicts their respective strengths and weaknesses. The results show that Integrators have the highest overall performance, followed by e-Markets, e-Hubs and lastly Infomediaries. A comparative market survey confirms the conceptual findings.
Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas
Studley, Seth E.
2003-01-01
The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site (http://ks.water.usgs.gov/Kansas/cowskin.floodwatch) was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood recovery teams also have the ability to view the estimated flood-inundation map pertaining to the most recent flood. The availability of these maps and the ability to monitor the real-time stream stage through the U.S. Geological Survey Web site provide emergency management personnel and residents with information that is critical for evacuation and rescue efforts in the event of a flood as well as for post-flood recovery efforts.
A service-based framework for pharmacogenomics data integration
NASA Astrophysics Data System (ADS)
Wang, Kun; Bai, Xiaoying; Li, Jing; Ding, Cong
2010-08-01
Data are central to scientific research and practices. The advance of experiment methods and information retrieval technologies leads to explosive growth of scientific data and databases. However, due to the heterogeneous problems in data formats, structures and semantics, it is hard to integrate the diversified data that grow explosively and analyse them comprehensively. As more and more public databases are accessible through standard protocols like programmable interfaces and Web portals, Web-based data integration becomes a major trend to manage and synthesise data that are stored in distributed locations. Mashup, a Web 2.0 technique, presents a new way to compose content and software from multiple resources. The paper proposes a layered framework for integrating pharmacogenomics data in a service-oriented approach using the mashup technology. The framework separates the integration concerns from three perspectives including data, process and Web-based user interface. Each layer encapsulates the heterogeneous issues of one aspect. To facilitate the mapping and convergence of data, the ontology mechanism is introduced to provide consistent conceptual models across different databases and experiment platforms. To support user-interactive and iterative service orchestration, a context model is defined to capture information of users, tasks and services, which can be used for service selection and recommendation during a dynamic service composition process. A prototype system is implemented and cases studies are presented to illustrate the promising capabilities of the proposed approach.
Contextual advertisement placement in printed media
NASA Astrophysics Data System (ADS)
Liu, Sam; Joshi, Parag
2010-02-01
Advertisements today provide the necessary revenue model supporting the WWW ecosystem. Targeted or contextual ad insertion plays an important role in optimizing the financial return of this model. Nearly all the current ads that appear on web sites are geared for display purposes such as banner and "pay-per-click". Little attention, however, is focused on deriving additional ad revenues when the content is repurposed for alternative mean of presentation, e.g. being printed. Although more and more content is moving to the Web, there are still many occasions where printed output of web content is desirable, such as maps and articles; thus printed ad insertion can potentially be lucrative. In this paper, we describe a contextual ad insertion network aimed to realize new revenue for print service providers for web printing. We introduce a cloud print service that enables contextual ads insertion, with respect to the main web page content, when a printout of the page is requested. To encourage service utilization, it would provide higher quality printouts than what is possible from current browser print drivers, which generally produce poor outputs, e.g. ill formatted pages. At this juncture we will limit the scope to only article-related web pages although the concept can be extended to arbitrary web pages. The key components of this system include (1) the extraction of article from web pages, (2) the extraction of semantics from article, (3) querying the ad database for matching advertisement or coupon, and (4) joint content and ad layout for print outputs.
NASA Astrophysics Data System (ADS)
Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Wei, Y.
2010-12-01
Terrestrial ecology data sets are produced from diverse data sources such as model output, field data collection, laboratory analysis and remote sensing observation. These data sets can be created, distributed, and consumed in diverse ways as well. However, this diversity can hinder the usability of the data, and limit data users’ abilities to validate and reuse data for science and application purposes. Geospatial web services, such as those described in this paper, are an important means of reducing this burden. Terrestrial ecology researchers generally create the data sets in diverse file formats, with file and data structures tailored to the specific needs of their project, possibly as tabular data, geospatial images, or documentation in a report. Data centers may reformat the data to an archive-stable format and distribute the data sets through one or more protocols, such as FTP, email, and WWW. Because of the diverse data preparation, delivery, and usage patterns, users have to invest time and resources to bring the data into the format and structure most useful for their analysis. This time-consuming data preparation process shifts valuable resources from data analysis to data assembly. To address these issues, the ORNL DAAC, a NASA-sponsored terrestrial ecology data center, has utilized geospatial Web service technology, such as Open Geospatial Consortium (OGC) Web Map Service (WMS) and OGC Web Coverage Service (WCS) standards, to increase the usability and availability of terrestrial ecology data sets. Data sets are standardized into non-proprietary file formats and distributed through OGC Web Service standards. OGC Web services allow the ORNL DAAC to store data sets in a single format and distribute them in multiple ways and formats. Registering the OGC Web services through search catalogues and other spatial data tools allows for publicizing the data sets and makes them more available across the Internet. The ORNL DAAC has also created a Web-based graphical user interface called Spatial Data Access Tool (SDAT) that utilizes OGC Web services standards and allows data distribution and consumption for users not familiar with OGC standards. SDAT also allows for users to visualize the data set prior to download. Google Earth visualizations of the data set are also provided through SDAT. The use of OGC Web service standards at the ORNL DAAC has enabled an increase in data consumption. In one case, a data set had ~10 fold increase in download through OGC Web service in comparison to the conventional FTP and WWW method of access. The increase in download suggests that users are not only finding the data sets they need but also able to consume them readily in the format they need.
NASA Astrophysics Data System (ADS)
Meertens, C.; Wier, S.; Ahern, T.; Casey, R.; Weertman, B.; Laughbon, C.
2008-12-01
UNAVCO and the IRIS DMC are data service partners for seismic visualization, particularly for hypocentral data and tomography. UNAVCO provides the GEON Integrated Data Viewer (IDV), an extension of the Unidata IDV, a free, interactive, research-level, software display and analysis tool for data in 3D (latitude, longitude, depth) and 4D (with time), located on or inside the Earth. The GEON IDV is designed to meet the challenge of investigating complex, multi-variate, time-varying, three- dimensional geoscience data in the context of new remote and shared data sources. The GEON IDV supports data access from data sources using HTTP and FTP servers, OPeNDAP servers, THREDDS catalogs, RSS feeds, and WMS (web map) servers. The IRIS DMC (Data Management System) has developed web services providing data for earthquake hypocentral data and seismic tomography model grids. These services can be called by the GEON IDV to access data at IRIS without copying files. The IRIS Earthquake Browser (IEB) is a web-based query tool for hypocentral data. The IEB combines the DMC's large database of more than 1,900,000 earthquakes with the Google Maps web interface. With the IEB you can quickly find earthquakes in any region of the globe and then import this information into the GEON Integrated Data Viewer where the hypocenters may be visualized. You can select earthquakes by location region, time, depth, and magnitude. The IEB gives the IDV a URL to the selected data. The IDV then shows the data as maps or 3D displays, with interactive control of vertical scale, area, map projection, with symbol size and color control by magnitude or depth. The IDV can show progressive time animation of, for example, aftershocks filling a source region. The IRIS Tomoserver converts seismic tomography model output grids to NetCDF for use in the IDV. The Tomoserver accepts a tomographic model file as input from a user and provides an equivalent NetCDF file as output. The service supports NA04, S3D, A1D and CUB input file formats, contributed by their respective creators. The NetCDF file is saved to a location that can be referenced with a URL on an IRIS server. The URL for the NetCDF file is provided to the user. The user can download the data from IRIS, or copy the URL into IDV directly for interpretation, and the IDV will access the data at IRIS. The Tomoserver conversion software was developed by Instrumental Software Technologies, Inc. Use cases with the GEON IDV and IRIS DMC data services will be shown.
NASA Astrophysics Data System (ADS)
Hao, Ming; Rohrdantz, Christian; Janetzko, Halldór; Keim, Daniel; Dayal, Umeshwar; Haug, Lars-Erik; Hsu, Mei-Chun
2012-01-01
Twitter currently receives over 190 million tweets (small text-based Web posts) and manufacturing companies receive over 10 thousand web product surveys a day, in which people share their thoughts regarding a wide range of products and their features. A large number of tweets and customer surveys include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for determining customer sentiments. To explore high-volume customer feedback streams, we integrate three time series-based visual analysis techniques: (1) feature-based sentiment analysis that extracts, measures, and maps customer feedback; (2) a novel idea of term associations that identify attributes, verbs, and adjectives frequently occurring together; and (3) new pixel cell-based sentiment calendars, geo-temporal map visualizations and self-organizing maps to identify co-occurring and influential opinions. We have combined these techniques into a well-fitted solution for an effective analysis of large customer feedback streams such as for movie reviews (e.g., Kung-Fu Panda) or web surveys (buyers).
Performances and recent evolutions of EMSC Real Time Information services
NASA Astrophysics Data System (ADS)
Mazet-Roux, G.; Godey, S.; Bossu, R.
2009-04-01
The EMSC (http://www.emsc-csem.org) operates Real Time Earthquake Information services for the public and the scientific community which aim at providing rapid and reliable information on the seismic-ity of the Euro-Mediterranean region and on significant earthquakes worldwide. These services are based on parametric data rapidly provided by 66 seismological networks which are automatically merged and processed at EMSC. A web page which is updated every minute displays a list and a map of the latest earthquakes as well as additional information like location maps, moment tensors solutions or past regional seismicity. Since 2004, the performances and the popularity of these services have dramatically increased. The number of messages received from the contributors and the number of published events have been multiplied by 2 since 2004 and by 1.6 since 2005 respectively. The web traffic and the numbers of users of the Earthquake Notification Service (ENS) have been multiplied by 15 and 7 respectively. In terms of performances of the ENS, the median dissemination time for Euro-Med events is minutes in 2008. In order to further improve its performances and especially the speed and robustness of the reception of real time data, EMSC has recently implemented a software named QWIDS (Quake Watch Information Distribution System) which provides a quick and robust data exchange system through permanent TCP connections. At the difference with emails that can sometimes be delayed or lost, QWIDS is an actual real time communication system that ensures the data delivery. In terms of hardware, EMSC imple-mented a high availability, dynamic load balancing, redundant and scalable web servers infrastructure, composed of two SUN T2000 and one F5 BIG-IP switch. This will allow coping with constantly increas-ing web traffic and the occurrence of huge peaks of traffic after widely felt earthquakes.
A National Crop Progress Monitoring System Based on NASA Earth Science Results
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Zhang, B.; Deng, M.; Yang, Z.
2011-12-01
Crop progress is an important piece of information for food security and agricultural commodities. Timely monitoring and reporting are mandated for the operation of agricultural statistical agencies. Traditionally, the weekly reporting issued by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is based on reports from the knowledgeable state and county agricultural officials and farmers. The results are spatially coarse and subjective. In this project, a remote-sensing-supported crop progress monitoring system is being developed intensively using the data and derived products from NASA Earth Observing satellites. Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 product - MOD09 (Surface Reflectance) is used for deriving daily normalized vegetation index (NDVI), vegetation condition index (VCI), and mean vegetation condition index (MVCI). Ratio change to previous year and multiple year mean can be also produced on demand. The time-series vegetation condition indices are further combined with the NASS' remote-sensing-derived Cropland Data Layer (CDL) to estimate crop condition and progress crop by crop. To facilitate the operational requirement and increase the accessibility of data and products by different users, each component of the system has being developed and implemented following open specifications under the Web Service reference model of Open Geospatial Consortium Inc. Sensor observations and data are accessed through Web Coverage Service (WCS), Web Feature Service (WFS), or Sensor Observation Service (SOS) if available. Products are also served through such open-specification-compliant services. For rendering and presentation, Web Map Service (WMS) is used. A Web-service based system is set up and deployed at dss.csiss.gmu.edu/NDVIDownload. Further development will adopt crop growth models, feed the models with remotely sensed precipitation and soil moisture information, and incorporate the model results with vegetation-index time series for crop progress stage estimation.
Internet-based information system of digital geological data providing
NASA Astrophysics Data System (ADS)
Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill
2015-04-01
One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.
Kim, Changkug; Park, Dongsuk; Seol, Youngjoo; Hahn, Jangho
2011-01-01
The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage.
NASA Technical Reports Server (NTRS)
Perez Guerrero, Geraldo A.; Armstrong, Duane; Underwood, Lauren
2015-01-01
This project is creating a cloud-enabled, HTML 5 web application to help oyster fishermen and state agencies apply Earth science to improve the management of this important natural and economic resource. The Oyster Fisheries app gathers and analyzes environmental and water quality information, and alerts fishermen and resources managers about problems in oyster fishing waters. An intuitive interface based on Google Maps displays the geospatial information and provides familiar interactive controls to the users. Alerts can be tailored to notify users when conditions in specific leases or public fishing areas require attention. The app is hosted on the Amazon Web Services cloud. It is being developed and tested using some of the latest web development tools such as web components and Polymer.
Data Mining Web Services for Science Data Repositories
NASA Astrophysics Data System (ADS)
Graves, S.; Ramachandran, R.; Keiser, K.; Maskey, M.; Lynnes, C.; Pham, L.
2006-12-01
The maturation of web services standards and technologies sets the stage for a distributed "Service-Oriented Architecture" (SOA) for NASA's next generation science data processing. This architecture will allow members of the scientific community to create and combine persistent distributed data processing services and make them available to other users over the Internet. NASA has initiated a project to create a suite of specialized data mining web services designed specifically for science data. The project leverages the Algorithm Development and Mining (ADaM) toolkit as its basis. The ADaM toolkit is a robust, mature and freely available science data mining toolkit that is being used by several research organizations and educational institutions worldwide. These mining services will give the scientific community a powerful and versatile data mining capability that can be used to create higher order products such as thematic maps from current and future NASA satellite data records with methods that are not currently available. The package of mining and related services are being developed using Web Services standards so that community-based measurement processing systems can access and interoperate with them. These standards-based services allow users different options for utilizing them, from direct remote invocation by a client application to deployment of a Business Process Execution Language (BPEL) solutions package where a complex data mining workflow is exposed to others as a single service. The ability to deploy and operate these services at a data archive allows the data mining algorithms to be run where the data are stored, a more efficient scenario than moving large amounts of data over the network. This will be demonstrated in a scenario in which a user uses a remote Web-Service-enabled clustering algorithm to create cloud masks from satellite imagery at the Goddard Earth Sciences Data and Information Services Center (GES DISC).
GIS Technologies For The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.
2015-12-01
Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.
Uncertainty visualisation in the Model Web
NASA Astrophysics Data System (ADS)
Gerharz, L. E.; Autermann, C.; Hopmann, H.; Stasch, C.; Pebesma, E.
2012-04-01
Visualisation of geospatial data as maps is a common way to communicate spatially distributed information. If temporal and furthermore uncertainty information are included in the data, efficient visualisation methods are required. For uncertain spatial and spatio-temporal data, numerous visualisation methods have been developed and proposed, but only few tools for visualisation of data in a standardised way exist. Furthermore, usually they are realised as thick clients, and lack functionality of handling data coming from web services as it is envisaged in the Model Web. We present an interactive web tool for visualisation of uncertain spatio-temporal data developed in the UncertWeb project. The client is based on the OpenLayers JavaScript library. OpenLayers provides standard map windows and navigation tools, i.e. pan, zoom in/out, to allow interactive control for the user. Further interactive methods are implemented using jStat, a JavaScript library for statistics plots developed in UncertWeb, and flot. To integrate the uncertainty information into existing standards for geospatial data, the Uncertainty Markup Language (UncertML) was applied in combination with OGC Observations&Measurements 2.0 and JavaScript Object Notation (JSON) encodings for vector and NetCDF for raster data. The client offers methods to visualise uncertain vector and raster data with temporal information. Uncertainty information considered for the tool are probabilistic and quantified attribute uncertainties which can be provided as realisations or samples, full probability distributions functions and statistics. Visualisation is supported for uncertain continuous and categorical data. In the client, the visualisation is realised using a combination of different methods. Based on previously conducted usability studies, a differentiation between expert (in statistics or mapping) and non-expert users has been indicated as useful. Therefore, two different modes are realised together in the tool: (i) adjacent maps showing data and uncertainty separately, and (ii) multidimensional mapping providing different visualisation methods in combination to explore the spatial, temporal and uncertainty distribution of the data. Adjacent maps allow a simpler visualisation by separating value and uncertainty maps for non-experts and a first overview. The multidimensional approach allows a more complex exploration of the data for experts by browsing through the different dimensions. It offers the visualisation of maps, statistic plots and time series in different windows and sliders to interactively move through time, space and uncertainty (thresholds).
Ionospheric research for space weather service support
NASA Astrophysics Data System (ADS)
Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata
2016-07-01
Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is investigated. The products of the Project web sites at http://www.cbk.waw.pl/rwc and http://www.izmiran.ru/services/iweather are widely used in scientific investigations and numerous applications by the telecommunication and navigation operators and users whose number at the web sites is growing substantially from month to month.
COEUS: “semantic web in a box” for biomedical applications
2012-01-01
Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467
COEUS: "semantic web in a box" for biomedical applications.
Lopes, Pedro; Oliveira, José Luís
2012-12-17
As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.
The National Atlas of the United States now on the Web and in print
Hutchinson, John A.
2004-01-01
The National Atlas of the United States of America® was published in 1970 as a book, with more than 400 pages and 765 maps. Since then, many people have called for a new edition, and many maps have been published as single sheets using the classic National Atlas 1:7,500,000-scale format. Work began in 1997 on a new, web-based edition of the National Atlas of the United States®. Accessible at http://nationalatlas.gov, the new atlas features an interactive mapmaker with more than 1,000 data layers. Developed as a coordinated package of dynamic webbased map products and services, and printed and printable maps for selected themes, the National Atlas of the United States of America® has grown beyond a book. Yet, the cartographer’s fundamental job remains the same as it was in 1970—to translate national-level geographic data into an understandable view of the nation.
NASA Astrophysics Data System (ADS)
Álvarez Francoso, Jose; Prieto Campos, Antonio; Ojeda Zujar, Jose; Guisado-Pintado, Emilia; Pérez Alcántara, Juan Pedro
2017-04-01
The accessibility to environmental information via web viewers using map services (OGC or proprietary services) has become more frequent since newly information sources (ortophotos, LIDAR, GPS) are of great detailed and thus generate a great volume of data which barely can be disseminated using either analogue (paper maps) or digital (pdf) formats. Moreover, governments and public institutions are concerned about the need of facilitates provision to research results and improve communication about natural hazards to citizens and stakeholders. This information ultimately, if adequately disseminated, it's crucial in decision making processes, risk management approaches and could help to increase social awareness related to environmental issues (particularly climate change impacts). To overcome this issue, two strategies for wide dissemination and communication of the results achieved in the calculation of beach erosion for the 640 km length of the Andalusian coast (South Spain) using web viewer technology are presented. Each of them are oriented to different end users and thus based on different methodologies. Erosion rates has been calculated at 50m intervals for different periods (1956-1977-2001-2011) as part of a National Research Project based on the spasialisation and web-access of coastal vulnerability indicators for Andalusian region. The 1st proposal generates WMS services (following OGC standards) that are made available by Geoserver, using a geoviewer client developed through Leaflet. This viewer is designed to be used by the general public (citizens, politics, etc) by combining a set of tools that give access to related documents (pdfs), visualisation tools (panoramio pictures, geo-localisation with GPS) are which are displayed within an user-friendly interface. Further, the use of WMS services (implemented on Geoserver) provides a detailed semiology (arrows and proportional symbols, using alongshore coastaline buffers to represent data) which not only enhances access to erosion rates but also enables multi-scale data representation. The 2nd proposal, as intended to be used by technicians and specialists on the field, includes a geoviewer with an innovative profile (including visualization of time-ranges, application of different uncertainty levels to the data, etc) to fulfil the needs of these users. For its development, a set of Javascript libraries combined with Openlayers (or Leaflet) are implemented to guarantee all the functionalities existing for the basic geoviewer. Further to this, the viewer has been improved by i) the generation of services by request through the application of a filter in ECQL language (Extended Common Query Language), using the vendor parameter CQL_FILTER from Geoserver. These dynamic filters allow the final user to predefine the visualised variable, its spatial and temporal domain, a range of specific values and other attributes, thus multiplying the generation of real-time cartography; ii) by using the layer's WFS service, the Javascript application exploit the alphanumeric data to generate related statistics in real time (e.g. mean rates, length of eroded coast, etc.) and interactive graphs (via HighCharts.js library) which accurately help in beach erosion rates interpretation (representing trends and bars diagrams, among others. As a result two approaches for communicating scientific results to different audiences based on web-based with complete dataset of geo-information, services and functionalities are implemented. The combination of standardised environmental data with tailor-made exploitation techniques (interactive maps, and real-time statistics) assures the correct access and interpretation of the information.
Using Maps in Web Analytics to Evaluate the Impact of Web-Based Extension Programs
ERIC Educational Resources Information Center
Veregin, Howard
2015-01-01
Maps can be a valuable addition to the Web analytics toolbox for Extension programs that use the Web to disseminate information. Extension professionals use Web analytics tools to evaluate program impacts. Maps add a unique perspective through visualization and analysis of geographic patterns and their relationships to other variables. Maps can…
Volunteered Geographic Information in Wikipedia
ERIC Educational Resources Information Center
Hardy, Darren
2010-01-01
Volunteered geographic information (VGI) refers to the geographic subset of online user-generated content. Through Geobrowsers and online mapping services, which use geovisualization and Web technologies to share and produce VGI, a global digital commons of geographic information has emerged. A notable example is Wikipedia, an online collaborative…
PDBe: towards reusable data delivery infrastructure at protein data bank in Europe.
Mir, Saqib; Alhroub, Younes; Anyango, Stephen; Armstrong, David R; Berrisford, John M; Clark, Alice R; Conroy, Matthew J; Dana, Jose M; Deshpande, Mandar; Gupta, Deepti; Gutmanas, Aleksandras; Haslam, Pauline; Mak, Lora; Mukhopadhyay, Abhik; Nadzirin, Nurul; Paysan-Lafosse, Typhaine; Sehnal, David; Sen, Sanchayita; Smart, Oliver S; Varadi, Mihaly; Kleywegt, Gerard J; Velankar, Sameer
2018-01-04
The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Weather forecasting with open source software
NASA Astrophysics Data System (ADS)
Rautenhaus, Marc; Dörnbrack, Andreas
2013-04-01
To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.
NASA Astrophysics Data System (ADS)
Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan
2010-10-01
The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.
VegScape: U.S. Crop Condition Monitoring Service
NASA Astrophysics Data System (ADS)
mueller, R.; Yang, Z.; Di, L.
2013-12-01
Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government initiatives. NASS developed VegScape in cooperation with the Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA. VegScape Ratio to Median NDVI
OGC and Grid Interoperability in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas
2010-05-01
EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and the OGC Web service protocols, the advantages offered by the Grid technology - such as providing a secure interoperability between the distributed geospatial resource -and the issues introduced by the integration of distributed geospatial data in a secure environment: data and service discovery, management, access and computation. enviroGRIDS project proposes a new architecture which allows a flexible and scalable approach for integrating the geospatial domain represented by the OGC Web services with the Grid domain represented by the gLite middleware. The parallelism offered by the Grid technology is discussed and explored at the data level, management level and computation level. The analysis is carried out for OGC Web service interoperability in general but specific details are emphasized for Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Web Processing Service (WPS) and Catalog Service for Web (CSW). Issues regarding the mapping and the interoperability between the OGC and the Grid standards and protocols are analyzed as they are the base in solving the communication problems between the two environments: grid and geospatial. The presetation mainly highlights how the Grid environment and Grid applications capabilities can be extended and utilized in geospatial interoperability. Interoperability between geospatial and Grid infrastructures provides features such as the specific geospatial complex functionality and the high power computation and security of the Grid, high spatial model resolution and geographical area covering, flexible combination and interoperability of the geographical models. According with the Service Oriented Architecture concepts and requirements of interoperability between geospatial and Grid infrastructures each of the main functionality is visible from enviroGRIDS Portal and consequently, by the end user applications such as Decision Maker/Citizen oriented Applications. The enviroGRIDS portal is the single way of the user to get into the system and the portal faces a unique style of the graphical user interface. Main reference for further information: [1] enviroGRIDS Project, http://www.envirogrids.net/
EnviroAtlas - Woodbine, IA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1 block group in Woodbine, Iowa. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,089 block groups in Pittsburgh, Pennsylvania. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1176 block groups in Portland, Oregon. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 405 block groups in Fresno, California. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New Bedford, MA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 128 block group in New Bedford, Massachusetts. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,833 block groups in Tampa Bay, Florida. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Minneapolis/St. Paul, MN - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,772 block groups in Minneapolis/St. Paul, Minnesota. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Cleveland, OH - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,442 block groups in Cleveland, Ohio. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Milwaukee, WI - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,175 block groups in Milwaukee, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, ME - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 146 block groups in Portland, Maine. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Memphis, TN - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 703 block groups in Memphis, Tennessee. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 155 block groups in Green Bay, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
EnviroAtlas - Austin, TX - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 750 block groups in Austin, Texas. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
The iMars web-GIS - spatio-temporal data queries and single image web map services
NASA Astrophysics Data System (ADS)
Walter, S. H. G.; Steikert, R.; Schreiner, B.; Sidiropoulos, P.; Tao, Y.; Muller, J.-P.; Putry, A. R. D.; van Gasselt, S.
2017-09-01
We introduce a new approach for a system dedicated to planetary surface change detection by simultaneous visualisation of single-image time series in a multi-temporal context. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs.
2009-03-30
Sensors, and Thresher Industries. The web site for the project (www.c3rp.or^), which presents C RP as an interface between Cal Poly and business...air compressor and air dryer that are used in the experiments. These were originally located inside the laboratory. C. Detailed research reports...mapping engine should be factored out into a standalone Web service that could be accessed via the Internet by other 20 ONR Grant No. N00014-06-1-1111
Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo
2011-01-01
The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015
Charting Our Path with a Web Literacy Map
ERIC Educational Resources Information Center
Dalton, Bridget
2015-01-01
Being a literacy teacher today means being a teacher of Web literacies. This article features the "Web Literacy Map", an open source tool from Mozilla's Webmaker project. The map focuses on Exploring (Navigating the Web); Building (creating for the Web), and Connecting (Participating on the Web). Readers are invited to use resources,…
Relax with CouchDB--into the non-relational DBMS era of bioinformatics.
Manyam, Ganiraju; Payton, Michelle A; Roth, Jack A; Abruzzo, Lynne V; Coombes, Kevin R
2012-07-01
With the proliferation of high-throughput technologies, genome-level data analysis has become common in molecular biology. Bioinformaticians are developing extensive resources to annotate and mine biological features from high-throughput data. The underlying database management systems for most bioinformatics software are based on a relational model. Modern non-relational databases offer an alternative that has flexibility, scalability, and a non-rigid design schema. Moreover, with an accelerated development pace, non-relational databases like CouchDB can be ideal tools to construct bioinformatics utilities. We describe CouchDB by presenting three new bioinformatics resources: (a) geneSmash, which collates data from bioinformatics resources and provides automated gene-centric annotations, (b) drugBase, a database of drug-target interactions with a web interface powered by geneSmash, and (c) HapMap-CN, which provides a web interface to query copy number variations from three SNP-chip HapMap datasets. In addition to the web sites, all three systems can be accessed programmatically via web services. Copyright © 2012 Elsevier Inc. All rights reserved.
EFEHR - the European Facilities for Earthquake Hazard and Risk: beyond the web-platform
NASA Astrophysics Data System (ADS)
Danciu, Laurentiu; Wiemer, Stefan; Haslinger, Florian; Kastli, Philipp; Giardini, Domenico
2017-04-01
European Facilities for Earthquake Hazard and Risk (EEFEHR) represents the sustainable community resource for seismic hazard and risk in Europe. The EFEHR web platform is the main gateway to access data, models and tools as well as provide expertise relevant for assessment of seismic hazard and risk. The main services (databases and web-platform) are hosted at ETH Zurich and operated by the Swiss Seismological Service (Schweizerischer Erdbebendienst SED). EFEHR web-portal (www.efehr.org) collects and displays (i) harmonized datasets necessary for hazard and risk modeling, e.g. seismic catalogues, fault compilations, site amplifications, vulnerabilities, inventories; (ii) extensive seismic hazard products, namely hazard curves, uniform hazard spectra and maps for national and regional assessments. (ii) standardized configuration files for re-computing the regional seismic hazard models; (iv) relevant documentation of harmonized datasets, models and web-services. Today, EFEHR distributes full output of the 2013 European Seismic Hazard Model, ESHM13, as developed within the SHARE project (http://www.share-eu.org/); the latest results of the 2014 Earthquake Model of the Middle East (EMME14), derived within the EMME Project (www.emme-gem.org); the 2001 Global Seismic Hazard Assessment Project (GSHAP) results and the 2015 updates of the Swiss Seismic Hazard. New datasets related to either seismic hazard or risk will be incorporated as they become available. We present the currents status of the EFEHR platform, with focus on the challenges, summaries of the up-to-date datasets, user experience and feedback, as well as the roadmap to future technological innovation beyond the web-platform development. We also show the new services foreseen to fully integrate with the seismological core services of European Plate Observing System (EPOS).
EnviroAtlas - Austin, TX - BenMAP Results by Block Group
This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 750 block groups in Austin, Texas. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Travis and Williamson Counties, TX. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
InSAR.no: First results from the Norwegian national deformation mapping service
NASA Astrophysics Data System (ADS)
Dehls, John F.; Larsen, Yngvar; Marinkovic, Petar; Moldestad, Dag Anders
2017-04-01
For more than a decade, InSAR has been used in Norway to study landslides and subsidence. Initial studies concentrated on understanding and validating the technique in various settings. During the last seven years, however, we have moved towards using InSAR in operational settings, primarily using data from Radarsat-2 and TerraSAR-X. In May 2016, we launched a national InSAR-based deformation mapping service, based upon the Sentinel-1 satellites. Its mandate is to provide the public in Norway with nationwide deformation products. The service will provide periodically updated deformation data, with varying resolution for urban and non-urban areas. The products will be made available to various local, regional and national authorities via appropriate web GIS protocols. The data will also be made available to the public via a web map interface with simple tools to query and visualize the information. Scaling up from regional operations, based upon data every 24 days, to a national operation, with data every 6 days, is challenging. In addition to the the challenges of scaling up (processing system, algorithms, products, data management, dissemination), Norway has the additional challenges of long winter seasons and rough topography. In this contribution, we will present our approach by summarizing the basic product requirements from the end user perspective. We will also describe ongoing research and development activities needed to meet the identified requirements. We will conclude by demonstrating an initial version of large-scale deformation maps that are to be provided by InSAR.no.
The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities
NASA Astrophysics Data System (ADS)
Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.
2015-12-01
Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress over such a large expanse of the Arctic. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and other related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 7700 observation sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. During 2015, the web mapping application has been enhanced by the addition of a query builder that allows users to create rich and complex queries. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. Substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies, the AOV data set has been structured and centralized within a relational database and the application front-end has been ported to HTML5 to enable mobile access. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches and an administration web based data management system that allows administrators to add, update, and delete information in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but interoperable resources in this way will help to ensure improved capacities for conducting activities such as assessing the status of arctic observing efforts, optimizing logistic operations, and for quickly accessing external and project-focused web resources for more detailed information and access to scientific data and derived products.
EnviroAtlas -- Fresno, California -- One Meter Resolution Urban Land Cover Data (2010) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Fresno, CA EnviroAtlas One-Meter-scale Urban Land Cover Data were generated via supervised classification of combined aerial photography and LiDAR data. The air photos were United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1-m spatial resolution. Aerial photography ('imagery') was collected on multiple dates in summer 2010. Seven land cover classes were mapped: Water, impervious surfaces (Impervious), soil and barren (Soil), trees and forest (Tree), and grass and herbaceous non-woody vegetation (Grass), agriculture (Ag), and Orchards. An accuracy assessment of 500 completely random and 103 stratified random points yielded an overall User's fuzzy accuracy of 81.1 percent (see below). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Fresno, CA plus a 1-km buffer. Where imagery was available, additional areas outside the 1-km boundary were also mapped but not included in the accuracy assessment. We expect the accuracy of the areas outside of the 1-km boundary to be consistent with those within. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with
The European Location Framework - from National to European
NASA Astrophysics Data System (ADS)
Pauknerova, E.; Sidlichovsky, P.; Urbanas, S.; Med, M.
2016-06-01
The European Location Framework (ELF) means a technical infrastructure which will deliver authoritative, interoperable geospatial reference data from all over Europe for analysing and understanding information connected to places and features. The ELF has been developed and set up through the ELF Project, which has been realized by a consortium of partners (public, private and academic organisations) since March 2013. Their number increased from thirty to forty in the year 2016, together with a project extension from 36 to 44 months. The project is co-funded by the European Commission's Competitiveness and Innovation Framework Programme (CIP) and will end in October 2016. In broad terms, the ELF Project will deliver a unique gateway to the authoritative reference geospatial information for Europe (harmonised pan-European maps, geographic and land information) sourced from the National Mapping and Cadastral Authorities (NMCAs) around Europe and including transparent licensing. This will be provided as an online ELF web service that will deliver an up-to-date topographic base map and also as view & download services for access to the ELF datasets. To develop and build up the ELF, NMCAs are accompanied and collaborate with several research & academia institutes, a standardisation body, system integrators, software developers and application providers. The harmonisation is in progress developing and triggering a number of geo-tools like edge-matching, generalisation, transformation and others. ELF will provide also some centralised tools like Geo Locator for searching location based on geographical names, addresses and administrative units, and GeoProduct Finder for discovering the available web-services and licensing them. ELF combines national reference geo-information through the ELF platform. ELF web services will be offered to users and application developers through open source (OSKARI) and proprietary (ArcGIS Online) cloud platforms. Recently, 29 NMCAs plus the EuroGeographics - their pan-European umbrella association, contribute to the ELF through an enrichment of data coverage. As a result, over 20 European countries will be covered with the ELF topo Base Map in 2016. Most countries will contribute also with other harmonized thematic data for viewing or down-loading. To overcome the heterogeneity of data resources and diversity of languages in tens of European countries, ELF builds on the existing INSPIRE rules and its own coordination and interoperability measures. ELF realisation empowers the implementation of INSPIRE in Europe and it complements related activities of European NMCAs, e.g. Czech Office for Surveying, Mapping and Cadastre (CUZK), which provides a large portfolio of spatial data/services and contributes significantly to the NSDI of Czech Republic. CUZK is also responsible for the Base Register of Territorial Identification, Addresses and Real Estates (RUIAN) - an important pillar of Czech e-Government. CUZK became an early-bird in implementing INSPIRE and it provides to the ELF a number of compliant datasets and web services. CUZK and the Polish NMCA (GUGiK) collaborate in the Central-European ELF Pilot (cluster) and test various cross-border prototypes. The presentation combines the national and crossborder view and experiences of CUZK and the European perspective of EuroGeographics.
EnviroAtlas - Austin, TX - Atlas Area Boundary
This EnviroAtlas dataset shows the boundary of the Austin, TX Atlas Area. It represents the outside edge of all the block groups included in the EnviroAtlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - Riparian Buffer Land Cover by Block Group
This EnviroAtlas dataset describes the percentage of different land cover types within 15- and 50-meters of hydrologically connected streams, rivers, and other water bodies within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Tribal Boundaries, U.S., 2014, EPA/OAR/OAQPS/AQAD
This web service contains a layer depicting the union of TigerWEB AIANNHA map service layers 2 (Federal American Indian Reservations) and 3 (Off-Reservation Trust Lands) located at https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb/AIANNHA/MapServerFederal (federal AIRs) are areas that have been set aside by the United States for the use of tribes, the exterior boundaries of which are more particularly defined in the final tribal treaties, agreements, executive orders, federal statutes, secretarial orders, or judicial determinations. The Bureau of Indian Affairs maintains a list of all federally recognized tribal governments and makes final determination of the inventory federal AIRs. The Census Bureau recognizes federal reservations (and associated off-reservation trust lands) as territory over which American Indian tribes have primary governmental authority. American Indian reservations can be legally described as colonies, communities, Indian colonies, Indian communities, Indian rancheria, Indian reservations, Indian villages, pueblos, rancherias, ranches, reservations, reserves, settlements, or villages. The Census Bureau contacts representatives of American Indian tribal governments to identify the boundaries for federal reservations through its annual Boundary and Annexation Survey. Federal reservations may cross state and all other area boundaries.State (state AIRs) are reservations established by some state governments for tribes recognized by
Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María Del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat
2016-01-01
The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer.
Developing an educational curriculum for EnviroAtlas ...
EnviroAtlas is a web-based tool developed by the EPA and its partners, which provides interactive tools and resources for users to explore the benefits that people receive from nature, often referred to as ecosystem goods and services.Ecosystem goods and services are important to human health and well-being. Using EnviroAtlas, users can access, view, and analyze diverse information to better understand the potential impacts of decisions. EnviroAtlas provides two primary tools, the Interactive Map and the Eco-Health Relationship Browser. EnviroAtlas integrates geospatial data from a variety of sources so that users can visualize the impacts of decision-making on ecosystems. The Interactive Map allows users to investigate various ecosystem elements (i.e. land cover, pollution, and community development) and compare them across localities in the United States. The best part of the Interactive Map is that it does not require specialized software for map application; rather, it requires only a computer and an internet connection. As such, it can be used as a powerful educational tool. The Eco-Health Relationship Browser is also a web-based, highly interactive tool that uses existing scientific literature to visually demonstrate the connections between the environment and human health.As an ASPPH/EPA Fellow with a background in environmental science and secondary science education, I am currently developing an educational curriculum to support the EnviroAtlas to
DataFed: A Federated Data System for Visualization and Analysis of Spatio-Temporal Air Quality Data
NASA Astrophysics Data System (ADS)
Husar, R. B.; Hoijarvi, K.
2017-12-01
DataFed is a distributed web-services-based computing environment for accessing, processing, and visualizing atmospheric data in support of air quality science and management. The flexible, adaptive environment facilitates the access and flow of atmospheric data from provider to users by enabling the creation of user-driven data processing/visualization applications. DataFed `wrapper' components, non-intrusively wrap heterogeneous, distributed datasets for access by standards-based GIS web services. The mediator components (also web services) map the heterogeneous data into a spatio-temporal data model. Chained web services provide homogeneous data views (e.g., geospatial, time views) using a global multi-dimensional data model. In addition to data access and rendering, the data processing component services can be programmed for filtering, aggregation, and fusion of multidimensional data. A complete application software is written in a custom made data flow language. Currently, the federated data pool consists of over 50 datasets originating from globally distributed data providers delivering surface-based air quality measurements, satellite observations, emissions data as well as regional and global-scale air quality models. The web browser-based user interface allows point and click navigation and browsing the XYZT multi-dimensional data space. The key applications of DataFed are for exploring spatial pattern of pollutants, seasonal, weekly, diurnal cycles and frequency distributions for exploratory air quality research. Since 2008, DataFed has been used to support EPA in the implementation of the Exceptional Event Rule. The data system is also used at universities in the US, Europe and Asia.
Palmblad, Magnus; Torvik, Vetle I
2017-01-01
Tropical medicine appeared as a distinct sub-discipline in the late nineteenth century, during a period of rapid European colonial expansion in Africa and Asia. After a dramatic drop after World War II, research on tropical diseases have received more attention and research funding in the twenty-first century. We used Apache Taverna to integrate Europe PMC and MapAffil web services, containing the spatiotemporal analysis workflow from a list of PubMed queries to a list of publication years and author affiliations geoparsed to latitudes and longitudes. The results could then be visualized in the Quantum Geographic Information System (QGIS). Our workflows automatically matched 253,277 affiliations to geographical coordinates for the first authors of 379,728 papers on tropical diseases in a single execution. The bibliometric analyses show how research output in tropical diseases follow major historical shifts in the twentieth century and renewed interest in and funding for tropical disease research in the twenty-first century. They show the effects of disease outbreaks, WHO eradication programs, vaccine developments, wars, refugee migrations, and peace treaties. Literature search and geoparsing web services can be combined in scientific workflows performing a complete spatiotemporal bibliometric analyses of research in tropical medicine. The workflows and datasets are freely available and can be used to reproduce or refine the analyses and test specific hypotheses or look into particular diseases or geographic regions. This work exceeds all previously published bibliometric analyses on tropical diseases in both scale and spatiotemporal range.
Ontology Research and Development. Part 1-A Review of Ontology Generation.
ERIC Educational Resources Information Center
Ding, Ying; Foo, Schubert
2002-01-01
Discusses the role of ontology in knowledge representation, including enabling content-based access, interoperability, communications, and new levels of service on the Semantic Web; reviews current ontology generation studies and projects as well as problems facing such research; and discusses ontology mapping, information extraction, natural…
The EPA is launching a web-based mapping application—EnviroAtlas—which is designed to communicate ecosystem services, their drivers, societal benefits, and potential future status in a user-friendly manner. EnviroAtlas includes a coarse-scale national component, with...
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News National Centers for Environmental Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Climate Prediction Center Web Team Page last modified: December 13, 2005
NASA Astrophysics Data System (ADS)
Manzke, Nina; Kada, Martin; Kastler, Thomas; Xu, Shaojuan; de Lange, Norbert; Ehlers, Manfred
2016-06-01
Urban sprawl and the related landscape fragmentation is a Europe-wide challenge in the context of sustainable urban planning. The URBan land recycling Information services for Sustainable cities (URBIS) project aims for the development, implementation, and validation of web-based information services for urban vacant land in European functional urban areas in order to provide end-users with site specific characteristics and to facilitate the identification and evaluation of potential development areas. The URBIS services are developed based on open geospatial data. In particular, the Copernicus Urban Atlas thematic layers serve as the main data source for an initial inventory of sites. In combination with remotely sensed data like SPOT5 images and ancillary datasets like OpenStreetMap, detailed site specific information is extracted. Services are defined for three main categories: i) baseline services, which comprise an initial inventory and typology of urban land, ii) update services, which provide a regular inventory update as well as an analysis of urban land use dynamics and changes, and iii) thematic services, which deliver specific information tailored to end-users' needs.
Modelling noise propagation using Grid Resources. Progress within GDI-Grid
NASA Astrophysics Data System (ADS)
Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut
2010-05-01
Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation. This immense intensive calculation needs to be performed for a major part of European landscape. A LINUX version of the commercial LimA software for noise mapping analysis has been implemented on a test cluster within the German D-GRID computer network. Results and performance indicators will be presented. The presentation is an extension to last-years presentation "Spatial Data Infrastructures and Grid Computing: the GDI-Grid project" that described the gridification concept developed in the GDI-Grid project and provided an overview of the conceptual gaps between Grid Computing and Spatial Data Infrastructures. Results from the GDI-Grid project are incorporated in the OGC-OGF (Open Grid Forum) collaboration efforts as well as the OGC WPS 2.0 standards working group developing the next major version of the WPS specification.
NASA Astrophysics Data System (ADS)
Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.
2009-12-01
Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world (http://ClimateWizard.org). Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.
Interactive web-based mapping: bridging technology and data for health.
Highfield, Linda; Arthasarnprasit, Jutas; Ottenweller, Cecelia A; Dasprez, Arnaud
2011-12-23
The Community Health Information System (CHIS) online mapping system was first launched in 1998. Its overarching goal was to provide researchers, residents and organizations access to health related data reflecting the overall health and well-being of their communities within the Greater Houston area. In September 2009, initial planning and development began for the next generation of CHIS. The overarching goal for the new version remained to make health data easily accessible for a wide variety of research audiences. However, in the new version we specifically sought to make the CHIS truly interactive and give the user more control over data selection and reporting. In July 2011, a beta version of the next-generation of the application was launched. This next-generation is also a web based interactive mapping tool comprised of two distinct portals: the Breast Health Portal and Project Safety Net. Both are accessed via a Google mapping interface. Geographic coverage for the portals is currently an 8 county region centered on Harris County, Texas. Data accessed by the application include Census 2000, Census 2010 (underway), cancer incidence from the Texas Cancer Registry (TX Dept. of State Health Services), death data from Texas Vital Statistics, clinic locations for free and low-cost health services, along with service lists, hours of operation, payment options and languages spoken, uninsured and poverty data. The system features query on the fly technology, which means the data is not generated until the query is provided to the system. This allows users to interact in real-time with the databases and generate customized reports and maps. To the author's knowledge, the Breast Health Portal and Project Safety Net are the first local-scale interactive online mapping interfaces for public health data which allow users to control the data generated. For example, users may generate breast cancer incidence rates by Census tract, in real time, for women aged 40-64. Conversely, they could then generate the same rates for women aged 35-55. The queries are user controlled.
Miles, Alistair; Zhao, Jun; Klyne, Graham; White-Cooper, Helen; Shotton, David
2010-10-01
Integrating heterogeneous data across distributed sources is a major requirement for in silico bioinformatics supporting translational research. For example, genome-scale data on patterns of gene expression in the fruit fly Drosophila melanogaster are widely used in functional genomic studies in many organisms to inform candidate gene selection and validate experimental results. However, current data integration solutions tend to be heavy weight, and require significant initial and ongoing investment of effort. Development of a common Web-based data integration infrastructure (a.k.a. data web), using Semantic Web standards, promises to alleviate these difficulties, but little is known about the feasibility, costs, risks or practical means of migrating to such an infrastructure. We describe the development of OpenFlyData, a proof-of-concept system integrating gene expression data on D. melanogaster, combining Semantic Web standards with light-weight approaches to Web programming based on Web 2.0 design patterns. To support researchers designing and validating functional genomic studies, OpenFlyData includes user-facing search applications providing intuitive access to and comparison of gene expression data from FlyAtlas, the BDGP in situ database, and FlyTED, using data from FlyBase to expand and disambiguate gene names. OpenFlyData's services are also openly accessible, and are available for reuse by other bioinformaticians and application developers. Semi-automated methods and tools were developed to support labour- and knowledge-intensive tasks involved in deploying SPARQL services. These include methods for generating ontologies and relational-to-RDF mappings for relational databases, which we illustrate using the FlyBase Chado database schema; and methods for mapping gene identifiers between databases. The advantages of using Semantic Web standards for biomedical data integration are discussed, as are open issues. In particular, although the performance of open source SPARQL implementations is sufficient to query gene expression data directly from user-facing applications such as Web-based data fusions (a.k.a. mashups), we found open SPARQL endpoints to be vulnerable to denial-of-service-type problems, which must be mitigated to ensure reliability of services based on this standard. These results are relevant to data integration activities in translational bioinformatics. The gene expression search applications and SPARQL endpoints developed for OpenFlyData are deployed at http://openflydata.org. FlyUI, a library of JavaScript widgets providing re-usable user-interface components for Drosophila gene expression data, is available at http://flyui.googlecode.com. Software and ontologies to support transformation of data from FlyBase, FlyAtlas, BDGP and FlyTED to RDF are available at http://openflydata.googlecode.com. SPARQLite, an implementation of the SPARQL protocol, is available at http://sparqlite.googlecode.com. All software is provided under the GPL version 3 open source license.
NASA Astrophysics Data System (ADS)
Jencks, J. H.; Cartwright, J.; Varner, J. D.
2016-12-01
Exploring, understanding, and managing the global oceans are a challenge when hydrographic maps are available for only 5% of the world's oceans. Seafloor mapping is expensive and most government and academic budgets continue to tighten. The first step for any mapping program, before setting out to map uncharted waters, should be to identify if data currently exist in the area of interest. There are many reasons why this seemingly simple suggestion is easier said than done.While certain datasets are accessible online (e.g., NOAA's NCEI, EMODnet, IHO-DCDB), many are not. In some cases, data that are publicly available are difficult to discover and access. No single agency can successfully resolve the complex and pressing demands of ocean and coastal mapping and the associated data stewardship. The National Oceanic and Atmospheric Administration (NOAA) is an active participant in numerous campaign mapping projects whose goals are to carry out coordinated and comprehensive ocean mapping efforts. One of these international programs is an outcome of the Galway Statement on Atlantic Ocean Cooperation signed by the European Union, Canada, and the United States in 2013. At NOAA's National Centers for Environmental Information (NCEI), resources are focused on ensuring the security and widespread availability of the Nation's scientific marine geophysical data through long-term stewardship. NCEI draws on a variety of software technologies and adheres to international standards to meet this challenge. The result is a geospatial framework built on spatially-enabled databases, standards-based web services, and International Standards Organization (ISO) metadata. Through the use of industry standards, the services are constructed such that they can be combined and re-used in a variety of contexts. For example, users may leverage the services in desktop analysis tools, web applications created by the hosting organizations (e.g. the North Atlantic Data Portal), or in custom applications they develop themselves. In order to maximize the return on campaign mapping investments, legacy and newly acquired data must be easily discoverable and readily accessible by numerous applications and formats now and well into the future. Working together, we can ensure that valuable data are made available to the broadest community.
ERIC Educational Resources Information Center
Wang, Kening; Mulvenon, Sean W.; Stegman, Charles; Anderson, Travis
2008-01-01
Google Maps API (Application Programming Interface), released in late June 2005 by Google, is an amazing technology that allows users to embed Google Maps in their own Web pages with JavaScript. Google Maps API has accelerated the development of new Google Maps based applications. This article reports a Web-based interactive mapping system…
Using the Geospatial Web to Deliver and Teach Giscience Education Programs
NASA Astrophysics Data System (ADS)
Veenendaal, B.
2015-05-01
Geographic information science (GIScience) education has undergone enormous changes over the past years. One major factor influencing this change is the role of the geospatial web in GIScience. In addition to the use of the web for enabling and enhancing GIScience education, it is also used as the infrastructure for communicating and collaborating among geospatial data and users. The web becomes both the means and the content for a geospatial education program. However, the web does not replace the traditional face-to-face environment, but rather is a means to enhance it, expand it and enable an authentic and real world learning environment. This paper outlines the use of the web in both the delivery and content of the GIScience program at Curtin University. The teaching of the geospatial web, web and cloud based mapping, and geospatial web services are key components of the program, and the use of the web and online learning are important to deliver this program. Some examples of authentic and real world learning environments are provided including joint learning activities with partner universities.
NASA Astrophysics Data System (ADS)
Kassin, A.; Cody, R. P.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Score, R.; Escarzaga, S. M.; Tweedie, C. E.
2016-12-01
The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information, including links to data where possible. The latest ARMAP iteration has i) reworked the search user interface (UI) to enable multiple filters to be applied in user-driven queries and ii) implemented ArcGIS Javascript API 4.0 to allow for deployment of 3D maps directly into a users web-browser and enhanced customization of popups. Module additions include i) a dashboard UI powered by a back-end Apache SOLR engine to visualize data in intuitive and interactive charts; and ii) a printing module that allows users to customize maps and export these to different formats (pdf, ppt, gif and jpg). New reference layers and an updated ship tracks layer have also been added. These improvements have been made to improve discoverability, enhance logistics coordination, identify geographic gaps in research/observation effort, and foster enhanced collaboration among the research community. Additionally, ARMAP can be used to demonstrate past, present, and future research effort supported by the U.S. Government.
NASA Astrophysics Data System (ADS)
Schmaltz, J. E.; Ilavajhala, S.; Plesea, L.; Hall, J. R.; Boller, R. A.; Chang, G.; Sadaqathullah, S.; Kim, R.; Murphy, K. J.; Thompson, C. K.
2012-12-01
Expedited processing of imagery from NASA satellites for near-real time use by non-science applications users has a long history, especially since the beginning of the Terra and Aqua missions. Several years ago, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near-real time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. The baseline technology chosen for GIBS was a Tiled Web Mapping Service (TWMS) developed at the Jet Propulsion Laboratory. Using this, global images and mosaics are divided into tiles with fixed bounding boxes for a pyramid of fixed resolutions. Initially, the satellite imagery is created at the existing data systems for each sensor, ensuring the oversight of those most knowledgeable about the science. There, the satellite data is geolocated and converted to an image format such as JPEG, TIFF, or PNG. The GIBS ingest server retrieves imagery from the various data systems and converts them into image tiles, which are stored in a highly-optimized raster format named Meta Raster Format (MRF). The image tiles are then served to users via HTTP by means of an Apache module. Services are available for the entire globe (lat-long projection) and for both polar regions (polar stereographic projection). Requests to the services can be made with the non-standard, but widely known, TWMS format or via the well-known OGC Web Map Tile Service (WMTS) standard format. Standard OGC Web Map Service (WMS) access to the GIBS server is also available. In addition, users may request a KML pyramid. This variety of access methods allows stakeholders to develop visualization/browse clients for a diverse variety of specific audiences. Currently, EOSDIS is providing an OpenLayers web client, Worldview (http://earthdata.nasa.gov/worldview), as an interface to GIBS. A variety of other existing clients can also be developed using such tools as Google Earth, Google Earth browser Plugin, ESRI's Adobe Flash/Flex Client Library, NASA World Wind, Perceptive Pixel Client, Esri's iOS Client Library, and OpenLayers for Mobile. The imagery browse capabilities from GIBS can be combined with other EOSDIS services (i.e. ECHO OpenSearch) via a client that ties them both together to provide an interface that enables data download from the onscreen imagery. Future plans for GIBS include providing imagery based on science quality data from the entire data record of these EOS instruments.
The National 3-D Geospatial Information Web-Based Service of Korea
NASA Astrophysics Data System (ADS)
Lee, D. T.; Kim, C. W.; Kang, I. G.
2013-09-01
3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of spatial information industry of Korea is expected in the near future.
Building Geospatial Web Services for Ecological Monitoring and Forecasting
NASA Astrophysics Data System (ADS)
Hiatt, S. H.; Hashimoto, H.; Melton, F. S.; Michaelis, A. R.; Milesi, C.; Nemani, R. R.; Wang, W.
2008-12-01
The Terrestrial Observation and Prediction System (TOPS) at NASA Ames Research Center is a modeling system that generates a suite of gridded data products in near real-time that are designed to enhance management decisions related to floods, droughts, forest fires, human health, as well as crop, range, and forest production. While these data products introduce great possibilities for assisting management decisions and informing further research, realization of their full potential is complicated by their shear volume and by the need for a necessary infrastructure for remotely browsing, visualizing, and analyzing the data. In order to address these difficulties we have built an OGC-compliant WMS and WCS server based on an open source software stack that provides standardized access to our archive of data. This server is built using the open source Java library GeoTools which achieves efficient I/O and image rendering through Java Advanced Imaging. We developed spatio-temporal raster management capabilities using the PostGrid raster indexation engine. We provide visualization and browsing capabilities through a customized Ajax web interface derived from the kaMap project. This interface allows resource managers to quickly assess ecosystem conditions and identify significant trends and anomalies from within their web browser without the need to download source data or install special software. Our standardized web services also expose TOPS data to a range of potential clients, from web mapping applications to virtual globes and desktop GIS packages. However, support for managing the temporal dimension of our data is currently limited in existing software systems. Future work will attempt to overcome this shortcoming by building time-series visualization and analysis tools that can be integrated with existing geospatial software.
NASA Astrophysics Data System (ADS)
Gray, A. J. G.; Gray, N.; Ounis, I.
2009-09-01
There are multiple vocabularies and thesauri within astronomy, of which the best known are the 1993 IAU Thesaurus and the keyword list maintained by A&A, ApJ and MNRAS. The IVOA has agreed on a standard for publishing vocabularies, based on the W3C skos standard, to allow greater automated interaction with them, in particular on the Web. This allows links with the Semantic Web and looks forward to richer applications using the technologies of that domain. Vocabulary-aware applications can benefit from improvements in both precision and recall when searching for bibliographic or science data, and lightweight intelligent filtering for services such as VOEvent streams. In this paper we present two applications, the Vocabulary Explorer and its companion the Mapping Editor, which have been developed to support the use of vocabularies in the Virtual Observatory. These combine Semantic Web and Information Retrieval technologies to illustrate the way in which formal vocabularies might be used in a practical application, provide an online service which will allow astronomers to explore and relate existing vocabularies, and provide a service which translates free text user queries into vocabulary terms.
Investigating Methods for Serving Visualizations of Vertical Profiles
NASA Astrophysics Data System (ADS)
Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.
2017-12-01
Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.
Services for Emodnet-Chemistry Data Products
NASA Astrophysics Data System (ADS)
Santinelli, Giorgio; Hendriksen, Gerrit; Barth, Alexander
2016-04-01
In the framework of Emodnet Chemistry lot, data products from regional leaders were made available in order to transform information into a database. This has been done by using functions and scripts, reading so-called enriched ODV files and inserting data directly into a cloud relational geodatabase. The main table is the one of observations which contains the main data and meta-data associated with the enriched ODV files. A particular implementation in data loading is used in order to improve on-the-fly computational speed. Data from Baltic Sea, North Sea, Mediterrean, Black Sea and part of the Atlantic region has been entered into the geodatabase, and consequently being instantly available from the OceanBrowser Emodnet portal. Furthermore, Deltares has developed an application that provides additional visualisation services for the aggregated and validated data collections. The visualisations are produced by making use of part of the OpenEarthTool stack (http://www.openearth.eu), by the integration of Web Feature Services and by the implementation of Web Processing Services. The goal is the generation of server-side plots of timeseries, profiles, timeprofiles and maps of selected parameters from data sets of selected stations. Regional data collections are retrieved using Emodnet Chemistry cloud relational geo-database. The spatial resolution in time and the intensity of data availability for selected parameters is shown using Web Service requests via the OceanBrowser Emodnet Web portal. OceanBrowser also shows station reference codes, which are used to establish a link for additional metadata, further data shopping and download.
Image processing and applications based on visualizing navigation service
NASA Astrophysics Data System (ADS)
Hwang, Chyi-Wen
2015-07-01
When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.
Using GeoRSS feeds to distribute house renting and selling information based on Google map
NASA Astrophysics Data System (ADS)
Nong, Yu; Wang, Kun; Miao, Lei; Chen, Fei
2007-06-01
Geographically Encoded Objects RSS (GeoRSS) is a way to encode location in RSS feeds. RSS is a widely supported format for syndication of news and weblogs, and is extendable to publish any sort of itemized data. When Weblogs explode since RSS became new portals, Geo-tagged feed is necessary to show the location that story tells. Geographically Encoded Objects adopts the core of RSS framework, making itself the map annotations specified in the RSS XML format. The case studied illuminates that GeoRSS could be maximally concise in representation and conception, so it's simple to manipulate generation and then mashup GeoRSS feeds with Google Map through API to show the real estate information with other attribute in the information window. After subscribe to feeds of concerned subjects, users could easily check for new bulletin showing on map through syndication. The primary design goal of GeoRSS is to make spatial data creation as easy as regular Web content development. However, it does more for successfully bridging the gap between traditional GIS professionals and amateurs, Web map hackers, and numerous services that enable location-based content for its simplicity and effectiveness.
Molecular structure input on the web.
Ertl, Peter
2010-02-02
A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential.The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.
U.S. Level III and IV Ecoregions (U.S. EPA)
This map service displays Level III and Level IV Ecoregions of the United States and was created from ecoregion data obtained from the U.S. Environmental Protection Agency Office of Research and Development's Western Ecology Division. The original ecoregion data was projected from Albers to Web Mercator for this map service. To download shapefiles of ecoregion data (in Albers), please go to: ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/. IMPORTANT NOTE ABOUT LEVEL IV POLYGON LEGEND DISPLAY IN ARCMAP: Due to the limitations of Graphical Device Interface (GDI) resources per application on Windows, ArcMap does not display the legend in the Table of Contents for the ArcGIS Server service layer if the legend has more than 100 items. As of December 2011, there are 968 unique legend items in the Level IV Ecoregion Polygon legend. Follow this link (http://support.esri.com/en/knowledgebase/techarticles/detail/33741) for instructions about how to increase the maximum number of ArcGIS Server service layer legend items allowed for display in ArcMap. Note the instructions at this link provide a slightly incorrect path to Maximum Legend Count. The correct path is HKEY_CURRENT_USER > Software > ESRI > ArcMap > Server > MapServerLayer > Maximum Legend Count. When editing the Maximum Legend Count, update the field, Value data to 1000. To download a PDF version of the Level IV ecoregion map and legend, go to ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/us/Eco_Level_IV
EnviroAtlas - Austin, TX - Block Groups
This EnviroAtlas dataset is the base layer for the Austin, TX EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on EnviroAtlas criteria described in the procedure log. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Web Map Apps using NASA's Earth Observing Fleet
NASA Astrophysics Data System (ADS)
Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M. M.; King, B. A.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.
2016-12-01
Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASA's Earth observing fleet. Spanning 15+ years and running through as recently as "a few hours ago", GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development.
SSE-GIS v1.03 Web Mapping Application Now Available
Atmospheric Science Data Center
2018-03-16
SSE-GIS v1.03 Web Mapping Application Now Available Wednesday, July 6, 2016 ... you haven’t already noticed the link to the new SSE-GIS web application on the SSE homepage entitled “GIS Web Mapping Applications and Services”, we invite you to visit the site. ...
EnviroAtlas - Historic Places by 12-digit HUC for the Conterminous United States
This EnviroAtlas dataset portrays the total number of historic places located within each 12-digit Hydrologic Unit (HUC). The historic places data were compiled from the National Park Service's National Register of Historic Places (NRHP), which provides official federal lists of districts, sites, buildings, structures and objects significant to American history, architecture, archeology, engineering, and culture. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Map projections and the Internet: Chapter 4
Kessler, Fritz; Battersby, Sarah E.; Finn, Michael P.; Clarke, Keith
2017-01-01
The field of map projections can be described as mathematical, static, and challenging. However, this description is evolving in concert with the development of the Internet. The Internet has enabled new outlets for software applications, learning, and interaction with and about map projections . This chapter examines specific ways in which the Internet has moved map projections from a relatively obscure paper-based setting to a more engaging and accessible online environment. After a brief overview of map projections, this chapter discusses four perspectives on how map projections have been integrated into the Internet. First, map projections and their role in web maps and mapping services is examined. Second, an overview of online atlases and the map projections chosen for their maps is presented. Third, new programming languages and code libraries that enable map projections to be included in mapping applications are reviewed. Fourth, the Internet has facilitated map projection education and research especially with the map reader’s comprehension and understanding of complex topics like map projection distortion is discussed.
Resource Needs and Pedagogical Value of Web Mapping for Spatial Thinking
ERIC Educational Resources Information Center
Manson, Steven; Shannon, Jerry; Eria, Sami; Kne, Len; Dyke, Kevin; Nelson, Sara; Batra, Lalit; Bonsal, Dudley; Kernik, Melinda; Immich, Jennifer; Matson, Laura
2014-01-01
Web mapping involves publishing and using maps via the Internet, and can range from presenting static maps to offering dynamic data querying and spatial analysis. Web mapping is seen as a promising way to support development of spatial thinking in the classroom but there are unanswered questions about how this promise plays out in reality. This…
Connecting long-tail scientists with big data centers using SaaS
NASA Astrophysics Data System (ADS)
Percivall, G. S.; Bermudez, L. E.
2012-12-01
Big data centers and long tail scientists represent two extremes in the geoscience research community. Interoperability and inter-use based on software-as-a-service (SaaS) increases access to big data holdings by this underserved community of scientists. Large, institutional data centers have long been recognized as vital resources in the geoscience community. Permanent data archiving and dissemination centers provide "access to the data and (are) a critical source of people who have experience in the use of the data and can provide advice and counsel for new applications." [NRC] The "long-tail of science" is the geoscience researchers that work separate from institutional data centers [Heidorn]. Long-tail scientists need to be efficient consumers of data from large, institutional data centers. Discussions in NSF EarthCube capture the challenges: "Like the vast majority of NSF-funded researchers, Alice (a long-tail scientist) works with limited resources. In the absence of suitable expertise and infrastructure, the apparently simple task that she assigns to her graduate student becomes an information discovery and management nightmare. Downloading and transforming datasets takes weeks." [Foster, et.al.] The long-tail metaphor points to methods to bridge the gap, i.e., the Web. A decade ago, OGC began building a geospatial information space using open, web standards for geoprocessing [ORM]. Recently, [Foster, et.al.] accurately observed that "by adopting, adapting, and applying semantic web and SaaS technologies, we can make the use of geoscience data as easy and convenient as consumption of online media." SaaS places web services into Cloud Computing. SaaS for geospatial is emerging rapidly building on the first-generation geospatial web, e.g., OGC Web Coverage Service [WCS] and the Data Access Protocol [DAP]. Several recent examples show progress in applying SaaS to geosciences: - NASA's Earth Data Coherent Web has a goal to improve science user experience using Web Services (e.g. W*S, SOAP, RESTful) to reduce barriers to using EOSDIS data [ECW]. - NASA's LANCE provides direct access to vast amounts of satellite data using the OGC Web Map Tile Service (WMTS). - NOAA's Unified Access Framework for Gridded Data (UAF Grid) is a web service based capability for direct access to a variety of datasets using netCDF, OPeNDAP, THREDDS, WMS and WCS. [UAF] Tools to access SaaS's are many and varied: some proprietary, others open source; some run in browsers, others are stand-alone applications. What's required is interoperability using web interfaces offered by the data centers. NOAA's UAF service stack supports Matlab, ArcGIS, Ferret, GrADS, Google Earth, IDV, LAS. Any SaaS that offers OGC Web Services (WMS, WFS, WCS) can be accessed by scores of clients [OGC]. While there has been much progress in the recent year toward offering web services for the long-tail of scientists, more needs to be done. Web services offer data access but more than access is needed for inter-use of data, e.g. defining data schemas that allow for data fusion, addressing coordinate systems, spatial geometry, and semantics for observations. Connecting long-tail scientists with large, data centers using SaaS and, in the future, semantic web, will address this large and currently underserved user community.
EnviroAtlas - Phoenix, AZ - Ecosystem Services by Block Group
This dataset presents environmental benefits of the urban forest in 2,434 block groups in Phoenix, Arizona. Carbon attributes, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. Temperature reduction values for Phoenix will be added when they become available. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
MapMyFlu: visualizing spatio-temporal relationships between related influenza sequences
Nolte, Nicholas; Kurzawa, Nils; Eils, Roland; Herrmann, Carl
2015-01-01
Understanding the molecular dynamics of viral spreading is crucial for anticipating the epidemiological implications of disease outbreaks. In the case of influenza, reassortments or point mutations affect the adaption to new hosts or resistance to anti-viral drugs and can determine whether a new strain will result in a pandemic infection or a less severe progression. To this end, tools integrating molecular information with epidemiological parameters are important to understand how molecular characteristics reflect in the infection dynamics. We present a new web tool, MapMyFlu, which allows to spatially and temporally display influenza viruses related to a query sequence on a Google Map based on BLAST results against the NCBI Influenza Database. Temporal and geographical trends appear clearly and may help in reconstructing the evolutionary history of a particular sequence. The tool is accessible through a web server, hence without the need for local installation. The website has an intuitive design and provides an easy-to-use service, and is available at http://mapmyflu.ipmb.uni-heidelberg.de PMID:25940623
Giovanni: The Bridge between Data and Science
NASA Technical Reports Server (NTRS)
Shen, Suhung; Lynnes, Christopher; Kempler, Steven J.
2012-01-01
NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a web-based remote sensing and model data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional data sets, covering atmospheric dynamics, atmospheric chemistry, hydrology, oceanographic, and land surface. Data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. Visualization options enable comparisons of multiple variables and easier refinement. Recently, new features have been developed, such as interactive scatter plots and maps. The performance is also being improved, in some cases by an order of magnitude for certain analysis functions with optimized software. We are working toward merging current Giovanni portals into a single omnibus portal with all variables in one (virtual) location to help users find a variable easily and enhance the intercomparison capability
GeoNetwork powered GI-cat: a geoportal hybrid solution
NASA Astrophysics Data System (ADS)
Baldini, Alessio; Boldrini, Enrico; Santoro, Mattia; Mazzetti, Paolo
2010-05-01
To the aim of setting up a Spatial Data Infrastructures (SDI) the creation of a system for the metadata management and discovery plays a fundamental role. An effective solution is the use of a geoportal (e.g. FAO/ESA geoportal), that has the important benefit of being accessible from a web browser. With this work we present a solution based integrating two of the available frameworks: GeoNetwork and GI-cat. GeoNetwork is an opensource software designed to improve accessibility of a wide variety of data together with the associated ancillary information (metadata), at different scale and from multidisciplinary sources; data are organized and documented in a standard and consistent way. GeoNetwork implements both the Portal and Catalog components of a Spatial Data Infrastructure (SDI) defined in the OGC Reference Architecture. It provides tools for managing and publishing metadata on spatial data and related services. GeoNetwork allows harvesting of various types of web data sources e.g. OGC Web Services (e.g. CSW, WCS, WMS). GI-cat is a distributed catalog based on a service-oriented framework of modular components and can be customized and tailored to support different deployment scenarios. It can federate a multiplicity of catalogs services, as well as inventory and access services in order to discover and access heterogeneous ESS resources. The federated resources are exposed by GI-cat through several standard catalog interfaces (e.g. OGC CSW AP ISO, OpenSearch, etc.) and by the GI-cat extended interface. Specific components implement mediation services for interfacing heterogeneous service providers, each of which exposes a specific standard specification; such components are called Accessors. These mediating components solve providers data modelmultiplicity by mapping them onto the GI-cat internal data model which implements the ISO 19115 Core profile. Accessors also implement the query protocol mapping; first they translate the query requests expressed according to the interface protocols exposed by GI-cat into the multiple query dialects spoken by the resource service providers. Currently, a number of well-accepted catalog and inventory services are supported, including several OGC Web Services, THREDDS Data Server, SeaDataNet Common Data Index, GBIF and OpenSearch engines. A GeoNetwork powered GI-cat has been developed in order to exploit the best of the two frameworks. The new system uses a modified version of GeoNetwork web interface in order to add the capability of querying also the specified GI-cat catalog and not only the GeoNetwork internal database. The resulting system consists in a geoportal in which GI-cat plays the role of the search engine. This new system allows to distribute the query on the different types of data sources linked to a GI-cat. The metadata results of the query are then visualized by the Geonetwork web interface. This configuration was experimented in the framework of GIIDA, a project of the Italian National Research Council (CNR) focused on data accessibility and interoperability. A second advantage of this solution is achieved setting up a GeoNetwork catalog amongst the accessors of the GI-cat instance. Such a configuration will allow in turn GI-cat to run the query against the internal GeoNetwork database. This allows to have both the harvesting and the metadata editor functionalities provided by GeoNetwork and the distributed search functionality of GI-cat available in a consistent way through the same web interface.
iDEAS: A web-based system for dry eye assessment.
Remeseiro, Beatriz; Barreira, Noelia; García-Resúa, Carlos; Lira, Madalena; Giráldez, María J; Yebra-Pimentel, Eva; Penedo, Manuel G
2016-07-01
Dry eye disease is a public health problem, whose multifactorial etiology challenges clinicians and researchers making necessary the collaboration between different experts and centers. The evaluation of the interference patterns observed in the tear film lipid layer is a common clinical test used for dry eye diagnosis. However, it is a time-consuming task with a high degree of intra- as well as inter-observer variability, which makes the use of a computer-based analysis system highly desirable. This work introduces iDEAS (Dry Eye Assessment System), a web-based application to support dry eye diagnosis. iDEAS provides a framework for eye care experts to collaboratively work using image-based services in a distributed environment. It is composed of three main components: the web client for user interaction, the web application server for request processing, and the service module for image analysis. Specifically, this manuscript presents two automatic services: tear film classification, which classifies an image into one interference pattern; and tear film map, which illustrates the distribution of the patterns over the entire tear film. iDEAS has been evaluated by specialists from different institutions to test its performance. Both services have been evaluated in terms of a set of performance metrics using the annotations of different experts. Note that the processing time of both services has been also measured for efficiency purposes. iDEAS is a web-based application which provides a fast, reliable environment for dry eye assessment. The system allows practitioners to share images, clinical information and automatic assessments between remote computers. Additionally, it save time for experts, diminish the inter-expert variability and can be used in both clinical and research settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
SCHeMA web-based observation data information system
NASA Astrophysics Data System (ADS)
Novellino, Antonio; Benedetti, Giacomo; D'Angelo, Paolo; Confalonieri, Fabio; Massa, Francesco; Povero, Paolo; Tercier-Waeber, Marie-Louise
2016-04-01
It is well recognized that the need of sharing ocean data among non-specialized users is constantly increasing. Initiatives that are built upon international standards will contribute to simplify data processing and dissemination, improve user-accessibility also through web browsers, facilitate the sharing of information across the integrated network of ocean observing systems; and ultimately provide a better understanding of the ocean functioning. The SCHeMA (Integrated in Situ Chemical MApping probe) Project is developing an open and modular sensing solution for autonomous in situ high resolution mapping of a wide range of anthropogenic and natural chemical compounds coupled to master bio-physicochemical parameters (www.schema-ocean.eu). The SCHeMA web system is designed to ensure user-friendly data discovery, access and download as well as interoperability with other projects through a dedicated interface that implements the Global Earth Observation System of Systems - Common Infrastructure (GCI) recommendations and the international Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards. This approach will insure data accessibility in compliance with major European Directives and recommendations. Being modular, the system allows the plug-and-play of commercially available probes as well as new sensor probess under development within the project. The access to the network of monitoring probes is provided via a web-based system interface that, being implemented as a SOS (Sensor Observation Service), is providing standard interoperability and access tosensor observations systems through O&M standard - as well as sensor descriptions - encoded in Sensor Model Language (SensorML). The use of common vocabularies in all metadatabases and data formats, to describe data in an already harmonized and common standard is a prerequisite towards consistency and interoperability. Therefore, the SCHeMA SOS has adopted the SeaVox common vocabularies populated by SeaDataNet network of National Oceanographic Data Centres. The SCHeMA presentation layer, a fundamental part of the software architecture, offers to the user a bidirectional interaction with the integrated system allowing to manage and configure the sensor probes; view the stored observations and metadata, and handle alarms. The overall structure of the web portal developed within the SCHeMA initiative (Sensor Configuration, development of Core Profile interface for data access via OGC standard, external services such as web services, WMS, WFS; and Data download and query manager) will be presented and illustrated with examples of ongoing tests in costal and open sea.
NASA Astrophysics Data System (ADS)
Wright, D. J.; Lassoued, Y.; Dwyer, N.; Haddad, T.; Bermudez, L. E.; Dunne, D.
2009-12-01
Coastal mapping plays an important role in informing marine spatial planning, resource management, maritime safety, hazard assessment and even national sovereignty. As such, there is now a plethora of data/metadata catalogs, pre-made maps, tabular and text information on resource availability and exploitation, and decision-making tools. A recent trend has been to encapsulate these in a special class of web-enabled geographic information systems called a coastal web atlas (CWA). While multiple benefits are derived from tailor-made atlases, there is great value added from the integration of disparate CWAs. CWAs linked to one another can query more successfully to optimize planning and decision-making. If a dataset is missing in one atlas, it may be immediately located in another. Similar datasets in two atlases may be combined to enhance study in either region. *But how best to achieve semantic interoperability to mitigate vague data queries, concepts or natural language semantics when retrieving and integrating data and information?* We report on the development of a new prototype seeking to interoperate between two initial CWAs: the Marine Irish Digital Atlas (MIDA) and the Oregon Coastal Atlas (OCA). These two mature atlases are used as a testbed for more regional connections, with the intent for the OCA to use lessons learned to develop a regional network of CWAs along the west coast, and for MIDA to do the same in building and strengthening atlas networks with the UK, Belgium, and other parts of Europe. Our prototype uses semantic interoperability via services harmonization and ontology mediation, allowing local atlases to use their own data structures, and vocabularies (ontologies). We use standard technologies such as OGC Web Map Services (WMS) for delivering maps, and OGC Catalogue Service for the Web (CSW) for delivering and querying ISO-19139 metadata. The metadata records of a given CWA use a given ontology of terms called local ontology. Human or machine users formulate their requests using a common ontology of metadata terms, called global ontology. A CSW mediator rewrites the user’s request into CSW requests over local CSWs using their own (local) ontologies, collects the results and sends them back to the user. To extend the system, we have recently added global maritime boundaries and are also considering nearshore ocean observing system data. Ongoing work includes adding WFS, error management, and exception handling, enabling Smart Searches, and writing full documentation. This prototype is a central research project of the new International Coastal Atlas Network (ICAN), a group of 30+ organizations from 14 nations (and growing) dedicated to seeking interoperability approaches to CWAs in support of coastal zone management and the translation of coastal science to coastal decision-making.
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.
NASA Astrophysics Data System (ADS)
Jacobsen, Jurma; Edlich, Stefan
2009-02-01
There is a broad range of potential useful mobile location-based applications. One crucial point seems to be to make them available to the public at large. This case illuminates the abilities of Android - the operating system for mobile devices - to fulfill this demand in the mashup way by use of some special geocoding web services and one integrated web service for getting the nearest cash machines data. It shows an exemplary approach for building mobile location-based mashups for everyone: 1. As a basis for reaching as many people as possible the open source Android OS is assumed to spread widely. 2. Everyone also means that the handset has not to be an expensive GPS device. This is realized by re-utilization of the existing GSM infrastructure with the Cell of Origin (COO) method which makes a lookup of the CellID in one of the growing web available CellID databases. Some of these databases are still undocumented and not yet published. Furthermore the Google Maps API for Mobile (GMM) and the open source counterpart OpenCellID are used. The user's current position localization via lookup of the closest cell to which the handset is currently connected to (COO) is not as precise as GPS, but appears to be sufficient for lots of applications. For this reason the GPS user is the most pleased one - for this user the system is fully automated. In contrary there could be some users who doesn't own a GPS cellular. This user should refine his/her location by one click on the map inside of the determined circular region. The users are then shown and guided by a path to the nearest cash machine by integrating Google Maps API with an overlay. Additionally, the GPS user can keep track of him- or herself by getting a frequently updated view via constantly requested precise GPS data for his or her position.
Exploring NASA OMI Level 2 Data With Visualization
NASA Technical Reports Server (NTRS)
Wei, Jennifer; Yang, Wenli; Johnson, James; Zhao, Peisheng; Gerasimov, Irina; Pham, Long; Vicente, Gilberto
2014-01-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme events (such as volcano eruptions, dust storms,... etc.). Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by allowing users to visualize satellite data as "images", with accurate pixel-level (Level-2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting Aura OMI Level-2 Data with GIS-like capabilities. Functionality includes selecting data sources (e.g., multiple parameters under the same scene, like NO2 and SO2, or the same parameter with different aggregation methods, like NO2 in OMNO2G and OMNO2D products), user-defined area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting, reformatting, and reprojection. The system will allow any user-defined portal interface (front-end) to connect to our backend server with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. This back-end service should greatly enhance its expandability to integrate additional outside data/map sources.
Exploring NASA OMI Level 2 Data With Visualization
NASA Technical Reports Server (NTRS)
Wei, Jennifer C.; Yang, Wenli; Johnson, James; Zhao, Peisheng; Gerasimov, Irina; Pham, Long; Vincente, Gilbert
2014-01-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme events (such as volcano eruptions, dust storms, etc.).Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by allowing users to visualize satellite data as images, with accurate pixel-level (Level-2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting Aura OMI Level-2 Data with GIS-like capabilities. Functionality includes selecting data sources (e.g., multiple parameters under the same scene, like NO2 and SO2, or the same parameter with different aggregation methods, like NO2 in OMNO2G and OMNO2D products), user-defined area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting, reformatting, and reprojection. The system will allow any user-defined portal interface (front-end) to connect to our backend server with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. This back-end service should greatly enhance its expandability to integrate additional outside data-map sources.
Mobile service for open data visualization on geo-based images
NASA Astrophysics Data System (ADS)
Lee, Kiwon; Kim, Kwangseob; Kang, Sanggoo
2015-12-01
Since the early 2010s, governments in most countries have adopted and promoted open data policy and open data platform. Korea are in the same situation, and government and public organizations have operated the public-accessible open data portal systems since 2011. The number of open data and data type have been increasing every year. These trends are more expandable or extensible on mobile environments. The purpose of this study is to design and implement a mobile application service to visualize various typed or formatted public open data with geo-based images on the mobile web. Open data cover downloadable data sets or open-accessible data application programming interface API. Geo-based images mean multi-sensor satellite imageries which are referred in geo-coordinates and matched with digital map sets. System components for mobile service are fully based on open sources and open development environments without any commercialized tools: PostgreSQL for database management system, OTB for remote sensing image processing, GDAL for data conversion, GeoServer for application server, OpenLayers for mobile web mapping, R for data analysis and D3.js for web-based data graphic processing. Mobile application in client side was implemented by using HTML5 for cross browser and cross platform. The result shows many advantageous points such as linking open data and geo-based data, integrating open data and open source, and demonstrating mobile applications with open data. It is expected that this approach is cost effective and process efficient implementation strategy for intelligent earth observing data.
Cool Apps: Building Cryospheric Data Applications With Standards-Based Service Oriented Architecture
NASA Astrophysics Data System (ADS)
Collins, J. A.; Truslove, I.; Billingsley, B. W.; Oldenburg, J.; Brodzik, M.; Lewis, S.; Liu, M.
2012-12-01
The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high-quality software in a timely manner, we have adopted a Service-Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-specific RESTful services. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal) which depends on many of the aforementioned services, and clearly exhibits many of the advantages of building applications atop a service-oriented architecture. This presentation outlines the architectural approach and components and open standards and protocols adopted at NSIDC, demonstrates the interactions and uses of public and internal service interfaces currently powering applications including the IceBridge Data Portal, and outlines the benefits and challenges of this approach.
Geoscience data visualization and analysis using GeoMapApp
NASA Astrophysics Data System (ADS)
Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha
2013-04-01
Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D visualizations into common formats including grids, images, text files, spreadsheets, etc. Examples of interdisciplinary investigations that make use of GeoMapApp visualization and analysis functionality will be provided.
NASA Astrophysics Data System (ADS)
Quang Truong, Xuan; Luan Truong, Xuan; Nguyen, Tuan Anh; Nguyen, Dinh Tuan; Cong Nguyen, Chi
2017-12-01
The objective of this study is to design and implement a WebGIS Decision Support System (WDSS) for reducing uncertainty and supporting to improve the quality of exploration decisions in the Sin-Quyen copper mine, northern Vietnam. The main distinctive feature of the Sin-Quyen deposit is an unusual composition of ores. Computer and software applied to the exploration problem have had a significant impact on the exploration process over the past 25 years, but up until now, no online system has been undertaken. The system was completely built on open source technology and the Open Geospatial Consortium Web Services (OWS). The input data includes remote sensing (RS), Geographical Information System (GIS) and data from drillhole explorations, the drillhole exploration data sets were designed as a geodatabase and stored in PostgreSQL. The WDSS must be able to processed exploration data and support users to access 2-dimensional (2D) or 3-dimensional (3D) cross-sections and map of boreholles exploration data and drill holes. The interface was designed in order to interact with based maps (e.g., Digital Elevation Model, Google Map, OpenStreetMap) and thematic maps (e.g., land use and land cover, administrative map, drillholes exploration map), and to provide GIS functions (such as creating a new map, updating an existing map, querying and statistical charts). In addition, the system provides geological cross-sections of ore bodies based on Inverse Distance Weighting (IDW), nearest neighbour interpolation and Kriging methods (e.g., Simple Kriging, Ordinary Kriging, Indicator Kriging and CoKriging). The results based on data available indicate that the best estimation method (of 23 borehole exploration data sets) for estimating geological cross-sections of ore bodies in Sin-Quyen copper mine is Ordinary Kriging. The WDSS could provide useful information to improve drilling efficiency in mineral exploration and for management decision making.
Using Web Maps to Analyze the Construction of Global Scale Cognitive Maps
ERIC Educational Resources Information Center
Pingel, Thomas J.
2018-01-01
Game-based Web sites and applications are changing the ways in which students learn the world map. In this study, a Web map-based digital learning tool was used as a study aid for a university-level geography course in order to examine the way in which global scale cognitive maps are constructed. A network analysis revealed that clicks were…
Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat
2016-01-01
The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer. PMID:28269882
Cloud/web mapping and geoprocessing services - Intelligently linking geoinformation
NASA Astrophysics Data System (ADS)
Veenendaal, Bert; Brovelli, Maria Antonia; Wu, Lixin
2016-04-01
We live in a world that is alive with information and geographies. "Everything happens somewhere" (Tosta, 2001). This reality is being exposed in the digital earth technologies providing a multi-dimensional, multi-temporal and multi-resolution model of the planet, based on the needs of diverse actors: from scientists to decision makers, communities and citizens (Brovelli et al., 2015). We are building up a geospatial information infrastructure updated in real time thanks to mobile, positioning and sensor observations. Users can navigate, not only through space but also through time, to access historical data and future predictions based on social and/or environmental models. But how do we find the information about certain geographic locations or localities when it is scattered in the cloud and across the web of data behind a diversity of databases, web services and hyperlinked pages? We need to be able to link geoinformation together in order to integrate it, make sense of it, and use it appropriately for managing the world and making decisions.
Soil food web properties explain ecosystem services across European land use systems.
de Vries, Franciska T; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C; d'Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W H Gera; Hotes, Stefan; Mortimer, Simon R; Setälä, Heikki; Sgardelis, Stefanos P; Uteseny, Karoline; van der Putten, Wim H; Wolters, Volkmar; Bardgett, Richard D
2013-08-27
Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
Soil food web properties explain ecosystem services across European land use systems
de Vries, Franciska T.; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A.; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C.; d’Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W. H. Gera; Hotes, Stefan; Mortimer, Simon R.; Setälä, Heikki; Sgardelis, Stefanos P.; Uteseny, Karoline; van der Putten, Wim H.; Wolters, Volkmar; Bardgett, Richard D.
2013-01-01
Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world. PMID:23940339
Developing a Web-based system by integrating VGI and SDI for real estate management and marketing
NASA Astrophysics Data System (ADS)
Salajegheh, J.; Hakimpour, F.; Esmaeily, A.
2014-10-01
Property importance of various aspects, especially the impact on various sectors of the economy and the country's macroeconomic is clear. Because of the real, multi-dimensional and heterogeneous nature of housing as a commodity, the lack of an integrated system includes comprehensive information of property, the lack of awareness of some actors in this field about comprehensive information about property and the lack of clear and comprehensive rules and regulations for the trading and pricing, several problems arise for the people involved in this field. In this research implementation of a crowd-sourced Web-based real estate support system is desired. Creating a Spatial Data Infrastructure (SDI) in this system for collecting, updating and integrating all official data about property is also desired in this study. In this system a Web2.0 broker and technologies such as Web services and service composition has been used. This work aims to provide comprehensive and diverse information about property from different sources. For this purpose five-level real estate support system architecture is used. PostgreSql DBMS is used to implement the desired system. Geoserver software is also used as map server and reference implementation of OGC (Open Geospatial Consortium) standards. And Apache server is used to run web pages and user interfaces. Integration introduced methods and technologies provide a proper environment for various users to use the system and share their information. This goal is only achieved by cooperation between all involved organizations in real estate with implementation their required infrastructures in interoperability Web services format.
NASA Astrophysics Data System (ADS)
Siarto, J.
2014-12-01
As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.
EnviroAtlas - Memphis, TN - Tree Cover Configuration and Connectivity, Water Background
This EnviroAtlas dataset categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). Forest is defined as Trees & Forest and Woody Wetlands. Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Riparian Buffer Land Cover by Block Group
This EnviroAtlas dataset describes the percentage of forested, vegetated, and impervious land within 15- and 50-meters of hydrologically connected streams, rivers, and other water bodies within the EnviroAtlas community area. Forest is defined as Trees & Forest. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Estimated Percent Green Space Along Walkable Roads
This EnviroAtlas dataset estimates green space along walkable roads. Green space within 25 meters of the road centerline is included and the percentage is based on the total area between street intersections. Green space provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Land Cover by Block Group
This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, and agriculture. Forest is defined as Trees & Forest. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. This dataset also includes the area per capita for each block group for some land cover types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Park Access by Block Group
This EnviroAtlas dataset shows the block group population that is within and beyond an easy walking distance (500m) of a park entrance. Park entrances were included in this analysis if they were within 5km of the EnviroAtlas community boundary. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Impervious Proximity Gradient
In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of impervious surface within 1 square kilometer centered over the given point. Water is shown as '-99999' in this dataset to distinguish it from land areas with low impervious. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Greenspace Around Schools by Block Group
This EnviroAtlas data set shows the number of schools in each block group in the EnviroAtlas community boundary as well as the number of schools where less than 25% of the area within 100 meters of the school is classified as greenspace. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Historic Places by Census Block Group
This EnviroAtlas dataset portrays the total number of historic places located within each Census Block Group (CBG). The historic places data were compiled from the National Register of Historic Places, which provides official federal lists of districts, sites, buildings, structures and objects significant to American history, architecture, archeology, engineering, and culture.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
75 FR 26709 - Clarke County Water Supply Project, Clarke County, IA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... Project, Clarke County, IA AGENCY: Natural Resources Conservation Service. ACTION: Notice of intent to... Conservationist for Planning, 210 Walnut Street, Room 693, Des Moines, IA 50309-2180, telephone: 515-284- 4769... available at the Iowa NRCS Web site at http://www.ia.nrcs.usda.gov . A map of the Clarke County Water Supply...
How Homeland Security Affects Spatial Information
ERIC Educational Resources Information Center
Zellmer, Linda
2004-01-01
A recent article in Security-Focus described the fact that several U.S. government buildings in Washington DC could no longer be clearly seen by people using MapQuest's aerial photo database. In addition, the photos of these buildings were altered at the Web sites wherein they are posted at the request of the U.S. Secret Service. This is an…
Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.
2011-01-01
Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach), run the two-dimensional hydraulic model, and produce flood-inundation maps. The application used local building data and depth-damage curves to estimate flood losses based on the maps, and it served inundation maps and flood-loss estimates through a Web-based graphical user interface.
The iMars WebGIS - Spatio-Temporal Data Queries and Single Image Map Web Services
NASA Astrophysics Data System (ADS)
Walter, Sebastian; Steikert, Ralf; Schreiner, Bjoern; Muller, Jan-Peter; van Gasselt, Stephan; Sidiropoulos, Panagiotis; Lanz-Kroechert, Julia
2017-04-01
Introduction: Web-based planetary image dissemination platforms usually show outline coverages of the data and offer querying for metadata as well as preview and download, e.g. the HRSC Mapserver (Walter & van Gasselt, 2014). Here we introduce a new approach for a system dedicated to change detection by simultanous visualisation of single-image time series in a multi-temporal context. While the usual form of presenting multi-orbit datasets is the merge of the data into a larger mosaic, we want to stay with the single image as an important snapshot of the planetary surface at a specific time. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs. Additionally we make use of the existing bundle-adjusted HRSC single images available at the PDS archives. A prototype demonstrating the presented features is available at http://imars.planet.fu-berlin.de. Multi-temporal database: In order to locate multiple coverage of images and select images based on spatio-temporal queries, we converge available coverage catalogs for various NASA imaging missions into a relational database management system with geometry support. We harvest available metadata entries during our processing pipeline using the Integrated Software for Imagers and Spectrometers (ISIS) software. Currently, this database contains image outlines from the MGS/MOC, MRO/CTX and the MO/THEMIS instruments with imaging dates ranging from 1996 to the present. For the MEx/HRSC data, we already maintain a database which we automatically update with custom software based on the VICAR environment. Web Map Service with time support: The MapServer software is connected to the database and provides Web Map Services (WMS) with time support based on the START_TIME image attribute. It allows temporal WMS GetMap requests by setting additional TIME parameter values in the request. The values for the parameter represent an interval defined by its lower and upper bounds. As the WMS time standard only supports one time variable, only the start times of the images are considered. If no time values are submitted with the request, the full time range of all images is assumed as the default. Dynamic single image WMS: To compare images from different acquisition times at sites of multiple coverage, we have to load every image as a single WMS layer. Due to the vast amount of single images we need a way to set up the layers in a dynamic way - the map server does not know the images to be served beforehand. We use the MapScript interface to dynamically access MapServer's objects and configure the file name and path of the requested image in the map configuration. The layers are created on-the-fly each representing only one single image. On the frontend side, the vendor-specific WMS request parameter (PRODUCTID) has to be appended to the regular set of WMS parameters. The request is then passed on to the MapScript instance. Web Map Tile Cache: In order to speed up access of the WMS requests, a MapCache instance has been integrated in the pipeline. As it is not aware of the available PDS product IDs which will be queried, the PRODUCTID parameter is configured as an additional dimension of the cache. The WMS request is received by the Apache webserver configured with the MapCache module. If the tile is available in the tile cache, it is immediately commited to the client. If not available, the tile request is forwarded to Apache and the MapScript module. The Python script intercepts the WMS request and extracts the product ID from the parameter chain. It loads the layer object from the map file and appends the file name and path of the inquired image. After some possible further image processing inside the script (stretching, color matching), the request is submitted to the MapServer backend which in turn delivers the response back to the MapCache instance. Web frontend: We have implemented a web-GIS frontend based on various OpenLayers components. The basemap is a global color-hillshaded HRSC bundle-adjusted DTM mosaic with a resolution of 50 m per pixel. The new bundle-block-adjusted qudrangle mosaics of the MC-11 quadrangle, both image and DTM, are included with opacity slider options. The layer user interface has been adapted on the base of the ol3-layerswitcher and extended by foldable and switchable groups, layer sorting (by resolution, by time and alphabeticallly) and reordering (drag-and-drop). A collapsible time panel accomodates a time slider interface where the user can filter the visible data by a range of Mars or Earth dates and/or by solar longitudes. The visualisation of time-series of single images is controlled by a specific toolbar enabling the workflow of image selection (by point or bounding box), dynamic image loading and playback of single images in a video player-like environment. During a stress-test campaign we could demonstrate that the system is capable of serving up to 10 simultaneous users on its current lightweight development hardware. It is planned to relocate the software to more powerful hardware by the time of this conference. Conclusions/Outlook: The iMars webGIS is an expert tool for the detection and visualization of surface changes. We demonstrate a technique to dynamically retrieve and display single images based on the time-series structure of the data. Together with the multi-temporal database and its MapServer/MapCache backend it provides a stable and high performance environment for the dissemination of the various iMars products. Acknowledgements: This research has received funding from the EU's FP7 Programme under iMars 607379 and by the German Space Agency (DLR Bonn), grant 50 QM 1301 (HRSC on Mars Express).
Improvements in the Protein Identifier Cross-Reference service.
Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A
2012-07-01
The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.
The Future of Web Maps in Next Generation Textbooks
NASA Astrophysics Data System (ADS)
DiBiase, D.; Prasad, S.
2014-12-01
The reformation of the "Object Formerly Known as Textbook" (coined by the Chronicle of Higher Education) toward a digital future is underway. Emerging nextgen texts look less like electronic books ("ebooks") and more like online courseware. In addition to text and illustrations, nextgen textbooks for STEM subjects are likely to combine quizzes, grade management tools, support for social learning, and interactive media including web maps. Web maps are interactive, multi-scale, online maps that enable teachers and learners to explore, interrogate, and mash up the wide variety of map layers available in the cloud. This presentation will show how web maps coupled with interactive quizzes enable students' purposeful explorations and interpretations of spatial patterns related to humankind's interactions with the earth. Attendees will also learn about Esri's offer to donate ArcGIS Online web mapping subscriptions to every U.S. school as part of the President Obama's ConnectED initiative.
Displaying R spatial statistics on Google dynamic maps with web applications created by Rwui
2012-01-01
Background The R project includes a large variety of packages designed for spatial statistics. Google dynamic maps provide web based access to global maps and satellite imagery. We describe a method for displaying directly the spatial output from an R script on to a Google dynamic map. Methods This is achieved by creating a Java based web application which runs the R script and then displays the results on the dynamic map. In order to make this method easy to implement by those unfamiliar with programming Java based web applications, we have added the method to the options available in the R Web User Interface (Rwui) application. Rwui is an established web application for creating web applications for running R scripts. A feature of Rwui is that all the code for the web application being created is generated automatically so that someone with no knowledge of web programming can make a fully functional web application for running an R script in a matter of minutes. Results Rwui can now be used to create web applications that will display the results from an R script on a Google dynamic map. Results may be displayed as discrete markers and/or as continuous overlays. In addition, users of the web application may select regions of interest on the dynamic map with mouse clicks and the coordinates of the region of interest will automatically be made available for use by the R script. Conclusions This method of displaying R output on dynamic maps is designed to be of use in a number of areas. Firstly it allows statisticians, working in R and developing methods in spatial statistics, to easily visualise the results of applying their methods to real world data. Secondly, it allows researchers who are using R to study health geographics data, to display their results directly onto dynamic maps. Thirdly, by creating a web application for running an R script, a statistician can enable users entirely unfamiliar with R to run R coded statistical analyses of health geographics data. Fourthly, we envisage an educational role for such applications. PMID:22998945
Displaying R spatial statistics on Google dynamic maps with web applications created by Rwui.
Newton, Richard; Deonarine, Andrew; Wernisch, Lorenz
2012-09-24
The R project includes a large variety of packages designed for spatial statistics. Google dynamic maps provide web based access to global maps and satellite imagery. We describe a method for displaying directly the spatial output from an R script on to a Google dynamic map. This is achieved by creating a Java based web application which runs the R script and then displays the results on the dynamic map. In order to make this method easy to implement by those unfamiliar with programming Java based web applications, we have added the method to the options available in the R Web User Interface (Rwui) application. Rwui is an established web application for creating web applications for running R scripts. A feature of Rwui is that all the code for the web application being created is generated automatically so that someone with no knowledge of web programming can make a fully functional web application for running an R script in a matter of minutes. Rwui can now be used to create web applications that will display the results from an R script on a Google dynamic map. Results may be displayed as discrete markers and/or as continuous overlays. In addition, users of the web application may select regions of interest on the dynamic map with mouse clicks and the coordinates of the region of interest will automatically be made available for use by the R script. This method of displaying R output on dynamic maps is designed to be of use in a number of areas. Firstly it allows statisticians, working in R and developing methods in spatial statistics, to easily visualise the results of applying their methods to real world data. Secondly, it allows researchers who are using R to study health geographics data, to display their results directly onto dynamic maps. Thirdly, by creating a web application for running an R script, a statistician can enable users entirely unfamiliar with R to run R coded statistical analyses of health geographics data. Fourthly, we envisage an educational role for such applications.
The use of interactive graphical maps for browsing medical/health Internet information resources
Boulos, Maged N Kamel
2003-01-01
As online information portals accumulate metadata descriptions of Web resources, it becomes necessary to develop effective ways for visualising and navigating the resultant huge metadata repositories as well as the different semantic relationships and attributes of described Web resources. Graphical maps provide a good method to visualise, understand and navigate a world that is too large and complex to be seen directly like the Web. Several examples of maps designed as a navigational aid for Web resources are presented in this review with an emphasis on maps of medical and health-related resources. The latter include HealthCyberMap maps , which can be classified as conceptual information space maps, and the very abstract and geometric Visual Net maps of PubMed (for demos). Information resources can be also organised and navigated based on their geographic attributes. Some of the maps presented in this review use a Kohonen Self-Organising Map algorithm, and only HealthCyberMap uses a Geographic Information System to classify Web resource data and render the maps. Maps based on familiar metaphors taken from users' everyday life are much easier to understand. Associative and pictorial map icons that enable instant recognition and comprehension are preferred to geometric ones and are key to successful maps for browsing medical/health Internet information resources. PMID:12556244
Flood-inundation maps for the Scioto River at La Rue, Ohio
Whitehead, Matthew
2015-08-26
Digital flood-inundation maps for a 3-mile (mi) reach of the Scioto River that extends about 1/2 mi upstream and 1/2 mi downstream of the corporate boundary for La Rue, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of La Rue, Marion County Commissioners, Montgomery Township, and Marion County Scioto River Conservancy. The flood-inundation maps show estimates of the areal extent and depth of flooding correspond ing to selected water levels (stages) at the USGS streamgage on the Scioto River at La Rue (station number 03217500). The maps can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_ inundation/ . Near-real-time stages at this streamgage can be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/oh/nwis/uv/?site_no=03217500 or the National Weather Service (NWS) Advanced Hydro - logic Prediction Service at http://water.weather.gov/ahps2/ hydrograph.php?wfo=cle&gage=LARO1 , which also forecasts flood hydrographs at this site.
Cleanups In My Community (CIMC) - Federal facilities that are also Superfund sites, National Layer
Federal facilities are properties owned by the federal government. This data layer provides access to Federal facilities that are Superfund sites as part of the CIMC web service. Data are collected using the Superfund Enterprise Management System (SEMS) and transferred to Envirofacts for access by the public. Data about Federal facility Superfund sites are located on their own EPA web pages, and CIMC links to those pages. Links to the relevant web pages for each site are provided within the attribute table. Federal facility sites can be either Superfund sites or RCRA Corrective Action sites, or they may have moved from one program to the other and back. In Cleanups in My Community, you can map or list any of these Federal Facility sites. This data layer shows only those facilities that are Superfund Sites. RCRA federal facility sites and other Superfund NPL sites are included in other data layers as part of this web service.Superfund is a program administered by the EPA to locate, investigate, and clean up worst hazardous waste sites throughout the United States. EPA administers the Superfund program in cooperation with individual states and tribal governments. These sites include abandoned warehouses, manufacturing facilities, processing plants, and landfills - the key word here being abandoned. The CIMC web service was initially published in 2013, but the data are updated on the 18th of each month. The full schedule for data updates in CIMC is located here:
Web GIS in practice VI: a demo playlist of geo-mashups for public health neogeographers
Boulos, Maged N Kamel; Scotch, Matthew; Cheung, Kei-Hoi; Burden, David
2008-01-01
'Mashup' was originally used to describe the mixing together of musical tracks to create a new piece of music. The term now refers to Web sites or services that weave data from different sources into a new data source or service. Using a musical metaphor that builds on the origin of the word 'mashup', this paper presents a demonstration "playlist" of four geo-mashup vignettes that make use of a range of Web 2.0, Semantic Web, and 3-D Internet methods, with outputs/end-user interfaces spanning the flat Web (two-dimensional – 2-D maps), a three-dimensional – 3-D mirror world (Google Earth) and a 3-D virtual world (Second Life ®). The four geo-mashup "songs" in this "playlist" are: 'Web 2.0 and GIS (Geographic Information Systems) for infectious disease surveillance', 'Web 2.0 and GIS for molecular epidemiology', 'Semantic Web for GIS mashup', and 'From Yahoo! Pipes to 3-D, avatar-inhabited geo-mashups'. It is hoped that this showcase of examples and ideas, and the pointers we are providing to the many online tools that are freely available today for creating, sharing and reusing geo-mashups with minimal or no coding, will ultimately spark the imagination of many public health practitioners and stimulate them to start exploring the use of these methods and tools in their day-to-day practice. The paper also discusses how today's Web is rapidly evolving into a much more intensely immersive, mixed-reality and ubiquitous socio-experiential Metaverse that is heavily interconnected through various kinds of user-created mashups. PMID:18638385
Linked data and provenance in biological data webs.
Zhao, Jun; Miles, Alistair; Klyne, Graham; Shotton, David
2009-03-01
The Web is now being used as a platform for publishing and linking life science data. The Web's linking architecture can be exploited to join heterogeneous data from multiple sources. However, as data are frequently being updated in a decentralized environment, provenance information becomes critical to providing reliable and trustworthy services to scientists. This article presents design patterns for representing and querying provenance information relating to mapping links between heterogeneous data from sources in the domain of functional genomics. We illustrate the use of named resource description framework (RDF) graphs at different levels of granularity to make provenance assertions about linked data, and demonstrate that these assertions are sufficient to support requirements including data currency, integrity, evidential support and historical queries.
Development of web tools to disseminate space geodesy data-related products
NASA Astrophysics Data System (ADS)
Soudarin, Laurent; Ferrage, Pascale; Mezerette, Adrien
2015-04-01
In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). A database was created to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).
NASA Astrophysics Data System (ADS)
Minnett, R. C.; Koppers, A. A.; Staudigel, D.; Staudigel, H.
2008-12-01
EarthRef.org is comprehensive and convenient resource for Earth Science reference data and models. It encompasses four main portals: the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Seamount Biogeosciences Network (SBN), and the Enduring Resources for Earth Science Education (ERESE). Their underlying databases are publically available and the scientific community has contributed widely and is urged to continue to do so. However, the net result is a vast and largely heterogeneous warehouse of geospatial data ranging from carefully prepared maps of seamounts to geochemical data/metadata, daily reports from seagoing expeditions, large volumes of raw and processed multibeam data, images of paleomagnetic sampling sites, etc. This presents a considerable obstacle for integrating other rich media content, such as videos, images, data files, cruise tracks, and interoperable database results, without overwhelming the web user. The four EarthRef.org portals clearly lend themselves to a more intuitive user interface and has, therefore, been an invaluable test bed for the design and implementation of FlashMap, a versatile KML-driven geospatial browser written for reliability and speed in Adobe Flash. FlashMap allows layers of content to be loaded and displayed over a streaming high-resolution map which can be zoomed and panned similarly to Google Maps and Google Earth. Many organizations, from National Geographic to the USGS, have begun using Google Earth software to display geospatial content. However, Google Earth, as a desktop application, does not integrate cleanly with existing websites requiring the user to navigate away from the browser and focus on a separate application and Google Maps, written in Java Script, does not scale up reliably to large datasets. FlashMap remedies these problems as a web-based application that allows for seamless integration of the real-time display power of Google Earth and the flexibility of the web without losing scalability and control of the base maps. Our Flash-based application is fully compatible with KML (Keyhole Markup Language) 2.2, the most recent iteration of KML, allowing users with existing Google Earth KML files to effortlessly display their geospatial content embedded in a web page. As a test case for FlashMap, the annual Iron-Oxidizing Microbial Observatory (FeMO) dive cruise to the Loihi Seamount, in conjunction with data available from ongoing and published FeMO laboratory studies, showcases the flexibility of this single web-based application. With a KML 2.2 compatible web-service providing the content, any database can display results in FlashMap. The user can then hide and show multiple layers of content, potentially from several data sources, and rapidly digest a vast quantity of information to narrow the search results. This flexibility gives experienced users the ability to drill down to exactly the record they are looking for (SERC at Carleton College's educational application of FlashMap at http://serc.carleton.edu/sp/erese/activities/22223.html) and allows users familiar with Google Earth the ability to load and view geospatial data content within a browser from any computer with an internet connection.
Enhancing Access to Drought Information Using the CUAHSI Hydrologic Information System
NASA Astrophysics Data System (ADS)
Schreuders, K. A.; Tarboton, D. G.; Horsburgh, J. S.; Sen Gupta, A.; Reeder, S.
2011-12-01
The National Drought Information System (NIDIS) Upper Colorado River Basin pilot study is investigating and establishing capabilities for better dissemination of drought information for early warning and management. As part of this study we are using and extending functionality from the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS) to provide better access to drought-related data in the Upper Colorado River Basin. The CUAHSI HIS is a federated system for sharing hydrologic data. It is comprised of multiple data servers, referred to as HydroServers, that publish data in a standard XML format called Water Markup Language (WaterML), using web services referred to as WaterOneFlow web services. HydroServers can also publish geospatial data using Open Geospatial Consortium (OGC) web map, feature and coverage services and are capable of hosting web and map applications that combine geospatial datasets with observational data served via web services. HIS also includes a centralized metadata catalog that indexes data from registered HydroServers and a data access client referred to as HydroDesktop. For NIDIS, we have established a HydroServer to publish drought index values as well as the input data used in drought index calculations. Primary input data required for drought index calculation include streamflow, precipitation, reservoir storages, snow water equivalent, and soil moisture. We have developed procedures to redistribute the input data to the time and space scales chosen for drought index calculation, namely half monthly time intervals for HUC 10 subwatersheds. The spatial redistribution approaches used for each input parameter are dependent on the spatial linkages for that parameter, i.e., the redistribution procedure for streamflow is dependent on the upstream/downstream connectivity of the stream network, and the precipitation redistribution procedure is dependent on elevation to account for orographic effects. A set of drought indices are then calculated from the redistributed data. We have created automated data and metadata harvesters that periodically scan and harvest new data from each of the input databases, and calculates extensions to the resulting derived data sets, ensuring that the data available on the drought server is kept up to date. This paper will describe this system, showing how it facilitates the integration of data from multiple sources to inform the planning and management of water resources during drought. The system may be accessed at http://drought.usu.edu.
NASA Astrophysics Data System (ADS)
Ebner, M.; Schiegl, M.; Stöckl, W.; Heger, H.
2012-04-01
The Geological Survey of Austria is legally obligated by the INSPIRE directive to provide data that fall under this directive (geology, mineral resources and natural risk zones) to the European commission in a semantically harmonized and technically interoperable way. Until recently the focus was entirely on the publication of high quality printed cartographic products. These have a complex (carto-)graphic data-model, which allows visualizing several thematic aspects, such as lithology, stratigraphy, tectonics, geologic age, mineral resources, mass movements, geomorphology etc. in a single planar map/product. Nonetheless these graphic data-models do not allow retrieving individual thematic aspects since these were coded in a complex portrayal scheme. Automatic information retrieval is thus impossible; and domain knowledge is necessary to interpret these "encrypted datasets". With INSPIRE becoming effective and a variety of conceptual models (e.g. GeoSciML), built around a semantic framework (i.e. controlled vocabularies), being available it is necessary to develop a strategy and workflow for semantic harmonization of such datasets. In this contribution we demonstrate the development of a multistage workflow which will allow us to transform our printed maps to semantically enabled datasets and services and discuss some prerequisites, foundations and problems. In a first step in our workflow we analyzed our maps and developed controlled vocabularies that describe the thematic content of our data. We then developed a physical data-model which we use to attribute our spatial data with thematic information from our controlled vocabularies to form core thematic data sets. This physical data model is geared towards use on an organizational level but builds upon existing standards (INSPIRE, GeoSciML) to allow transformation to international standards. In a final step we will develop a standardized mapping scheme to publish INSPIRE conformant services from our core datasets. This two-step transformation is necessary since a direct mapping to international standards is not possible for traditional map-based data. Controlled vocabularies provide the foundation of a semantic harmonization. For the encoding of the vocabularies we build upon the W3C standard SKOS (=Simple Knowledge Organisation System), a thesaurus specification for the semantic web, which is itself based on the Resource Description Framework (RDF) and RDF Schema and added some DublinCore and VoID for the metadata of our vocabularies and resources. For the development of these thesauri we use the commercial software PoolParty, which is a tool specially build to develop, manage and publish multilingual thesauri. The corporate thesauri of the Austrian Geological Survey are exposed via a web-service that is conformant with the linked data principles. This web-service gives access to a (1) RDF/HTML representation of the resources via a simple, robust and thus persistent http URIs (2) a download of the complete vocabularies in RDF-format (3) a full-fledged SPARQL-Endpoint to query the thesaurus. With the development of physical data-models (based on preexisting conceptual models) one must dismiss the classical schemes of map-based portrayal of data. E.g. for individual Geological units on traditional geological maps usually a single age range is given (e.g. formation age). But one might want to attribute several geologic ages (formation age, metamorphic age, cooling ages etc.) to individual units. Such issues have to be taken into account when developing robust physical data-models. Based on our experience we are convinced that individual institutions need to develop their own controlled vocabularies and individual data-models that fit the specific needs on an organizational level. If externally developed vocabularies and data-models are introduced to established workflows newly generated and existing data may be diverging and it will be hard to achieve or maintain a common standard. We thus suggest that it is necessary for institutions to keep (or develop) to their organizational standards and vocabularies and map them to generally agreed international standards such as INSPIRE or GeoSciML in a fashion suggested by the linked data principles.
Implications of Web Mercator and its Use in Online Mapping
Battersby, Sarah E.; Finn, Michael P.; Usery, E. Lynn; Yamamoto, Kristina H.
2014-01-01
Online interactive maps have become a popular means of communicating with spatial data. In most online mapping systems, Web Mercator has become the dominant projection. While the Mercator projection has a long history of discussion about its inappropriateness for general-purpose mapping, particularly at the global scale, and seems to have been virtually phased out for general-purpose global-scale print maps, it has seen a resurgence in popularity in Web Mercator form. This article theorizes on how Web Mercator came to be widely used for online maps and what this might mean in terms of data display, technical aspects of map generation and distribution, design, and cognition of spatial patterns. The authors emphasize details of where the projection excels and where it does not, as well as some of its advantages and disadvantages for cartographic communication, and conclude with some research directions that may help to develop better solutions to the problem of projections for general-purpose, multi-scale Web mapping.
IntegratedMap: a Web interface for integrating genetic map data.
Yang, Hongyu; Wang, Hongyu; Gingle, Alan R
2005-05-01
IntegratedMap is a Web application and database schema for storing and interactively displaying genetic map data. Its Web interface includes a menu for direct chromosome/linkage group selection, a search form for selection based on mapped object location and linkage group displays. An overview display provides convenient access to the full range of mapped and anchored object types with genetic locus details, such as numbers, types and names of mapped/anchored objects displayed in a compact scrollable list box that automatically updates based on selected map location and object type. Also, multilinkage group and localized map views are available along with links that can be configured for integration with other Web resources. IntegratedMap is implemented in C#/ASP.NET and the package, including a MySQL schema creation script, is available from http://cggc.agtec.uga.edu/Data/download.asp
Using Standardized Lexicons for Report Template Validation with LexMap, a Web-based Application.
Hostetter, Jason; Wang, Kenneth; Siegel, Eliot; Durack, Jeremy; Morrison, James J
2015-06-01
An enormous amount of data exists in unstructured diagnostic and interventional radiology reports. Free text or non-standardized terminologies limit the ability to parse, extract, and analyze these report data elements. Medical lexicons and ontologies contain standardized terms for relevant concepts including disease entities, radiographic technique, and findings. The use of standardized terms offers the potential to improve reporting consistency and facilitate computer analysis. The purpose of this project was to implement an interface to aid in the creation of standards-compliant reporting templates for use in interventional radiology. Non-standardized procedure report text was analyzed and referenced to RadLex, SNOMED-CT, and LOINC. Using JavaScript, a web application was developed which determined whether exact terms or synonyms in reports existed within these three reference resources. The NCBO BioPortal Annotator web service was used to map terms, and output from this application was used to create an interactive annotated version of the original report. The application was successfully used to analyze and modify five distinct reports for the Society of Interventional Radiology's standardized reporting project.
Exploiting Aura OMI Level 2 Data with High Resolution Visualization
NASA Astrophysics Data System (ADS)
Wei, J. C.; Yang, W.; Johnson, J. E.; Zhao, P.; Gerasimov, I. V.; Pham, L.; Vicente, G. A.; Shen, S.
2014-12-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, …etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. One way to help users better understand the satellite data is to provide data along with 'Images', including accurate pixel-level (Level 2) information, pixel coverage area delineation, and science team recommended quality screening for individual geophysical parameters. Goddard Earth Sciences Data and Information Services Center (GES DISC) always strives to best support (i.e., Software-as-a-service, SaaS) the user-community for NASA Earth Science Data. In this case, we will present a new visualization tool that helps users exploiting Aura Ozone Monitoring Instrument (OMI) Level 2 data. This new visualization service utilizes Open Geospatial Consortium (OGC) standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls in the backend infrastructure. The functionality of the service allows users to select data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from OMI Level 2 or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources (such as Global Imagery Browse Services (GIBS)).
OpenFIRE - A Web GIS Service for Distributing the Finnish Reflection Experiment Datasets
NASA Astrophysics Data System (ADS)
Väkevä, Sakari; Aalto, Aleksi; Heinonen, Aku; Heikkinen, Pekka; Korja, Annakaisa
2017-04-01
The Finnish Reflection Experiment (FIRE) is a land-based deep seismic reflection survey conducted between 2001 and 2003 by a research consortium of the Universities of Helsinki and Oulu, the Geological Survey of Finland, and a Russian state-owned enterprise SpetsGeofysika. The dataset consists of 2100 kilometers of high-resolution profiles across the Archaean and Proterozoic nuclei of the Fennoscandian Shield. Although FIRE data have been available on request since 2009, the data have remained underused outside the original research consortium. The original FIRE data have been quality-controlled. The shot gathers have been cross-checked and comprehensive errata has been created. The brute stacks provided by the Russian seismic contractor have been reprocessed into seismic sections and replotted. A complete documentation of the intermediate processing steps is provided together with guidelines for setting up a computing environment and plotting the data. An open access web service "OpenFIRE" for the visualization and the downloading of FIRE data has been created. The service includes a mobile-responsive map application capable of enriching seismic sections with data from other sources such as open data from the National Land Survey and the Geological Survey of Finland. The AVAA team of the Finnish Open Science and Research Initiative has provided a tailored Liferay portal with necessary web components such as an API (Application Programming Interface) for download requests. INSPIRE (Infrastructure for Spatial Information in Europe) -compliant discovery metadata have been produced and geospatial data will be exposed as Open Geospatial Consortium standard services. The technical guidelines of the European Plate Observing System have been followed and the service could be considered as a reference application for sharing reflection seismic data. The OpenFIRE web service is available at www.seismo.helsinki.fi/openfire
U.S. Geological Survey (USGS) Earthquake Web Applications
NASA Astrophysics Data System (ADS)
Fee, J.; Martinez, E.
2015-12-01
USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/
KinMap: a web-based tool for interactive navigation through human kinome data.
Eid, Sameh; Turk, Samo; Volkamer, Andrea; Rippmann, Friedrich; Fulle, Simone
2017-01-05
Annotations of the phylogenetic tree of the human kinome is an intuitive way to visualize compound profiling data, structural features of kinases or functional relationships within this important class of proteins. The increasing volume and complexity of kinase-related data underlines the need for a tool that enables complex queries pertaining to kinase disease involvement and potential therapeutic uses of kinase inhibitors. Here, we present KinMap, a user-friendly online tool that facilitates the interactive navigation through kinase knowledge by linking biochemical, structural, and disease association data to the human kinome tree. To this end, preprocessed data from freely-available sources, such as ChEMBL, the Protein Data Bank, and the Center for Therapeutic Target Validation platform are integrated into KinMap and can easily be complemented by proprietary data. The value of KinMap will be exemplarily demonstrated for uncovering new therapeutic indications of known kinase inhibitors and for prioritizing kinases for drug development efforts. KinMap represents a new generation of kinome tree viewers which facilitates interactive exploration of the human kinome. KinMap enables generation of high-quality annotated images of the human kinome tree as well as exchange of kinome-related data in scientific communications. Furthermore, KinMap supports multiple input and output formats and recognizes alternative kinase names and links them to a unified naming scheme, which makes it a useful tool across different disciplines and applications. A web-service of KinMap is freely available at http://www.kinhub.org/kinmap/ .
NASA Astrophysics Data System (ADS)
Bilas, George; Dionysiou, Nina; Karapetsas, Nikolaos; Silleos, Nikolaos; Kosmas, Konstantinos; Misopollinos, Nikolaos
2016-04-01
This project was funded by OPEKEPE, Ministry of Agricultural Development and Food, Greece and involves development of a national geodatabase and a WebGIS that encompass soil data of all the agricultural areas of Greece in order to supply the country with a multi-purpose master plan for agricultural land management. The area mapped covered more than 385,000 ha divided in more than 9.000 Soil Mapping Units (SMUs) based on physiographic analysis, field work and photo interpretation of satellite images. The field work included description and sampling in three depths (0-30, 30-60 and >60 cm) of 2,000 soil profiles and 8,000 augers (sampling 0-30 and >30 cm). In total more than 22,000 soil samples were collected and analyzed for determining main soil properties associated with soil classification and soil evaluation. Additionally the project included (1) integration of all data in the Soil Geodatabase, (2) finalization of SMUs, (3) development of a Master Plan for Agricultural Land Management and (4) development and operational testing of the Web Portal for e-information and e-services. The integrated system is expected, after being fully operational, to provide important electronic services and benefits to farmers, private sector and governmental organizations. An e-book with the soil maps of Greece was also provided including 570 sheets with data description and legends. The Master Plan for Agricultural Land Management includes soil quality maps for 30 agricultural crops, together with maps showing soil degradation risks, such as erosion, desertification, salinity and nitrates, thus providing the tools for soil conservation and sustainable land management.
Developing of operational hydro-meteorological simulating and displaying system
NASA Astrophysics Data System (ADS)
Wang, Y.; Shih, D.; Chen, C.
2010-12-01
Hydrological hazards, which often occur in conjunction with extreme precipitation events, are the most frequent type of natural disaster in Taiwan. Hence, the researchers at the Taiwan Typhoon and Flood Research Institute (TTFRI) are devoted to analyzing and gaining a better understanding of the causes and effects of natural disasters, and in particular, typhoons and floods. The long-term goal of the TTFRI is to develop a unified weather-hydrological-oceanic model suitable for simulations with local parameterizations in Taiwan. The development of a fully coupled weather-hydrology interaction model is not yet completed but some operational hydro-meteorological simulations are presented as a step in the direction of completing a full model. The predicted rainfall data from Weather Research Forecasting (WRF) are used as our meteorological forcing on watershed modeling. The hydrology and hydraulic modeling are conducted by WASH123D numerical model. And the WRF/WASH123D coupled system is applied to simulate floods during the typhoon landfall periods. The daily operational runs start at 04UTC, 10UTC, 16UTC and 22UTC, about 4 hours after data downloaded from NCEP GFS. This system will execute 72-hr weather forecasts. The simulation of WASH123D will sequentially trigger after receiving WRF rainfall data. This study presents the preliminary framework of establishing this system, and our goal is to build this earlier warning system to alert the public form dangerous. The simulation results are further display by a 3D GIS web service system. This system is established following the Open Geospatial Consortium (OGC) standardization process for GIS web service, such as Web Map Service (WMS) and Web Feature Service (WFS). The traditional 2D GIS data, such as high resolution aerial photomaps and satellite images are integrated into 3D landscape model. The simulated flooding and inundation area can be dynamically mapped on Wed 3D world. The final goal of this system is to real-time forecast flood and the results can be visually displayed on the virtual catchment. The policymaker can easily and real-time gain visual information for decision making at any site through internet.
NASA Astrophysics Data System (ADS)
Albeke, S. E.; Perkins, D. G.; Ewers, S. L.; Ewers, B. E.; Holbrook, W. S.; Miller, S. N.
2015-12-01
The sharing of data and results is paramount for advancing scientific research. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) is a multidisciplinary group that is driving scientific breakthroughs to help manage water resources in the Western United States. WyCEHG is mandated by the National Science Foundation (NSF) to share their data. However, the infrastructure from which to share such diverse, complex and massive amounts of data did not exist within the University of Wyoming. We developed an innovative framework to meet the data organization, sharing, and discovery requirements of WyCEHG by integrating both open and closed source software, embedded metadata tags, semantic web technologies, and a web-mapping application. The infrastructure uses a Relational Database Management System as the foundation, providing a versatile platform to store, organize, and query myriad datasets, taking advantage of both structured and unstructured formats. Detailed metadata are fundamental to the utility of datasets. We tag data with Uniform Resource Identifiers (URI's) to specify concepts with formal descriptions (i.e. semantic ontologies), thus allowing users the ability to search metadata based on the intended context rather than conventional keyword searches. Additionally, WyCEHG data are geographically referenced. Using the ArcGIS API for Javascript, we developed a web mapping application leveraging database-linked spatial data services, providing a means to visualize and spatially query available data in an intuitive map environment. Using server-side scripting (PHP), the mapping application, in conjunction with semantic search modules, dynamically communicates with the database and file system, providing access to available datasets. Our approach provides a flexible, comprehensive infrastructure from which to store and serve WyCEHG's highly diverse research-based data. This framework has not only allowed WyCEHG to meet its data stewardship requirements, but can provide a template for others to follow.
Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois
Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.
2012-01-01
Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
EnviroAtlas -Durham, NC- One Meter Resolution Urban Area Land Cover Map (2010)
The EnviroAtlas Durham, NC land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from July 2010 at 1 m spatial resolution. Five land cover classes were mapped: impervious surface, soil and barren, grass and herbaceous, trees and forest, and water. An accuracy assessment using a stratified random sampling of 500 samples yielded an overall accuracy of 83 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Durham, and includes the cities of Durham, Chapel Hill, Carrboro and Hillsborough, NC. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
Interactive web-based mapping: bridging technology and data for health
2011-01-01
Background The Community Health Information System (CHIS) online mapping system was first launched in 1998. Its overarching goal was to provide researchers, residents and organizations access to health related data reflecting the overall health and well-being of their communities within the Greater Houston area. In September 2009, initial planning and development began for the next generation of CHIS. The overarching goal for the new version remained to make health data easily accessible for a wide variety of research audiences. However, in the new version we specifically sought to make the CHIS truly interactive and give the user more control over data selection and reporting. Results In July 2011, a beta version of the next-generation of the application was launched. This next-generation is also a web based interactive mapping tool comprised of two distinct portals: the Breast Health Portal and Project Safety Net. Both are accessed via a Google mapping interface. Geographic coverage for the portals is currently an 8 county region centered on Harris County, Texas. Data accessed by the application include Census 2000, Census 2010 (underway), cancer incidence from the Texas Cancer Registry (TX Dept. of State Health Services), death data from Texas Vital Statistics, clinic locations for free and low-cost health services, along with service lists, hours of operation, payment options and languages spoken, uninsured and poverty data. Conclusions The system features query on the fly technology, which means the data is not generated until the query is provided to the system. This allows users to interact in real-time with the databases and generate customized reports and maps. To the author's knowledge, the Breast Health Portal and Project Safety Net are the first local-scale interactive online mapping interfaces for public health data which allow users to control the data generated. For example, users may generate breast cancer incidence rates by Census tract, in real time, for women aged 40-64. Conversely, they could then generate the same rates for women aged 35-55. The queries are user controlled. PMID:22195603
NASA Astrophysics Data System (ADS)
Tamkin, G.; Schnase, J. L.; Duffy, D.; Li, J.; Strong, S.; Thompson, J. H.
2016-12-01
We are extending climate analytics-as-a-service, including: (1) A high-performance Virtual Real-Time Analytics Testbed supporting six major reanalysis data sets using advanced technologies like the Cloudera Impala-based SQL and Hadoop-based MapReduce analytics over native NetCDF files. (2) A Reanalysis Ensemble Service (RES) that offers a basic set of commonly used operations over the reanalysis collections that are accessible through NASA's climate data analytics Web services and our client-side Climate Data Services Python library, CDSlib. (3) An Open Geospatial Consortium (OGC) WPS-compliant Web service interface to CDSLib to accommodate ESGF's Web service endpoints. This presentation will report on the overall progress of this effort, with special attention to recent enhancements that have been made to the Reanalysis Ensemble Service, including the following: - An CDSlib Python library that supports full temporal, spatial, and grid-based resolution services - A new reanalysis collections reference model to enable operator design and implementation - An enhanced library of sample queries to demonstrate and develop use case scenarios - Extended operators that enable single- and multiple reanalysis area average, vertical average, re-gridding, and trend, climatology, and anomaly computations - Full support for the MERRA-2 reanalysis and the initial integration of two additional reanalyses - A prototype Jupyter notebook-based distribution mechanism that combines CDSlib documentation with interactive use case scenarios and personalized project management - Prototyped uncertainty quantification services that combine ensemble products with comparative observational products - Convenient, one-stop shopping for commonly used data products from multiple reanalyses, including basic subsetting and arithmetic operations over the data and extractions of trends, climatologies, and anomalies - The ability to compute and visualize multiple reanalysis intercomparisons
IRIS Earthquake Browser with Integration to the GEON IDV for 3-D Visualization of Hypocenters.
NASA Astrophysics Data System (ADS)
Weertman, B. R.
2007-12-01
We present a new generation of web based earthquake query tool - the IRIS Earthquake Browser (IEB). The IEB combines the DMC's large set of earthquake catalogs (provided by USGS/NEIC, ISC and the ANF) with the popular Google Maps web interface. With the IEB you can quickly and easily find earthquakes in any region of the globe. Using Google's detailed satellite images, earthquakes can be easily co-located with natural geographic features such as volcanoes as well as man made features such as commercial mines. A set of controls allow earthquakes to be filtered by time, magnitude, and depth range as well as catalog name, contributor name and magnitude type. Displayed events can be easily exported in NetCDF format into the GEON Integrated Data Viewer (IDV) where hypocenters may be visualized in three dimensions. Looking "under the hood", the IEB is based on AJAX technology and utilizes REST style web services hosted at the IRIS DMC. The IEB is part of a broader effort at the DMC aimed at making our data holdings available via web services. The IEB is useful both educationally and as a research tool.
Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data
NASA Astrophysics Data System (ADS)
Zhao, P.; Lynnes, C.; Vollmer, B.; Savtchenko, A. K.; Yang, W.
2011-12-01
Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real time Capability for EOS (LANCE) provide the information on the global and regional atmospheric state with very low latency. An open and interoperable platform is useful to facilitate access to and integration of LANCE AIRS NRT data. This paper discusses the use of open-source software components to build Web services for publishing and accessing AIRS NRT data in the context of Service Oriented Architecture (SOA). The AIRS NRT data have also been made available through an OPeNDAP server. OPeNDAP allows several open-source netCDF-based tools such as Integrated Data Viewer, Ferret and Panoply to directly display the Level 2 data over the network. To enable users to locate swath data files in the OPeNDAP server that lie within a certain geographical area, graphical "granule maps" are being added to show the outline of each file on a map of the Earth. The metadata of AIRS NRT data and services is then explored to implement information advertisement and discovery in catalogue systems. Datacasting, an RSS-based technology for accessing Earth Science data and information to facilitate the subscriptions to AIRS NRT data availability, filtering, downloading and viewing data, is also discussed. To provide an easy entry point to AIRS NRT data and services, a Web portal designed for customized data downloading and visualization is introduced.
Care maps for children with medical complexity.
Adams, Sherri; Nicholas, David; Mahant, Sanjay; Weiser, Natalie; Kanani, Ronik; Boydell, Katherine; Cohen, Eyal
2017-12-01
Children with medical complexity require multiple providers and services to keep them well and at home. A care map is a patient/family-created diagram that pictorially maps out this complex web of services. This study explored what care maps mean for families and healthcare providers to inform potential for clinical use. Parents (n=15) created care maps (hand drawn n=10 and computer-generated n=5) and participated in semi-structured interviews about the process of developing care maps and their perceived impact. Healthcare providers (n=30) reviewed the parent-created care maps and participated in semi-structured interviews. Data were analysed for themes and emerging theory using a grounded theory analytical approach. Data analysis revealed 13 overarching themes that were further categorized into three domains: features (characteristics of care maps), functions (what care maps do), and emerging outcomes (benefits of care map use). These domains further informed a definition and a theoretical model of how care maps work. Our findings suggest that care maps may be a way of supporting patient- and family-centred care by graphically identifying and integrating experiences of the family as well as priorities for moving forward. Care maps were endorsed as a useful tool by families and providers. They help healthcare providers better understand parental priorities for care. Parents can create care maps to demonstrate the complex burden of care. They are a unique visual way to incorporate narrative medicine into practice. © 2017 Mac Keith Press.
Participating in the Geospatial Web: Collaborative Mapping, Social Networks and Participatory GIS
NASA Astrophysics Data System (ADS)
Rouse, L. Jesse; Bergeron, Susan J.; Harris, Trevor M.
In 2005, Google, Microsoft and Yahoo! released free Web mapping applications that opened up digital mapping to mainstream Internet users. Importantly, these companies also released free APIs for their platforms, allowing users to geo-locate and map their own data. These initiatives have spurred the growth of the Geospatial Web and represent spatially aware online communities and new ways of enabling communities to share information from the bottom up. This chapter explores how the emerging Geospatial Web can meet some of the fundamental needs of Participatory GIS projects to incorporate local knowledge into GIS, as well as promote public access and collaborative mapping.
The Live Access Server Scientific Product Generation Through Workflow Orchestration
NASA Astrophysics Data System (ADS)
Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.
2006-12-01
The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google Earth layers using KML; generation of maps via WMS or ArcIMS protocols; and data manipulation with Unix utilities.
Physical Webbing: Collaborative Kinesthetic Three-Dimensional Mind Maps[R
ERIC Educational Resources Information Center
Williams, Marian H.
2012-01-01
Mind Mapping has predominantly been used by individuals or collaboratively in groups as a paper-based or computer-generated learning strategy. In an effort to make Mind Mapping kinesthetic, collaborative, and three-dimensional, an innovative pedagogical strategy, termed Physical Webbing, was devised. In the Physical Web activity, groups…
EnviroAtlas - Big Game Hunting Recreation Demand by 12-Digit HUC in the Conterminous United States
This EnviroAtlas dataset includes the total number of recreational days per year demanded by people ages 18 and over for big game hunting by location in the contiguous United States. Big game includes deer, elk, bear, and wild turkey. These values are based on 2010 population distribution, 2011 U.S. Fish and Wildlife Service (FWS) Fish, Hunting, and Wildlife-Associated Recreation (FHWAR) survey data, and 2011 U.S. Department of Agriculture (USDA) Forest Service National Visitor Use Monitoring program data, and have been summarized by 12-digit hydrologic unit code (HUC). This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Exploring NASA Satellite Data with High Resolution Visualization
NASA Astrophysics Data System (ADS)
Wei, J. C.; Yang, W.; Johnson, J. E.; Shen, S.; Zhao, P.; Gerasimov, I. V.; Vollmer, B.; Vicente, G. A.; Pham, L.
2013-12-01
Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, ...etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by providing satellite data as ';Images' with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We will present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from Ozone Monitoring Instrument (OMI), or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The portal interface will connect to the backend services with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources.
ERDDAP - An Easier Way for Diverse Clients to Access Scientific Data From Diverse Sources
NASA Astrophysics Data System (ADS)
Mendelssohn, R.; Simons, R. A.
2008-12-01
ERDDAP is a new open-source, web-based service that aggregates data from other web services: OPeNDAP grid servers (THREDDS), OPeNDAP sequence servers (Dapper), NOS SOAP service, SOS (IOOS, OOStethys), microWFS, DiGIR (OBIS, BMDE). Regardless of the data source, ERDDAP makes all datasets available to clients via standard (and enhanced) DAP requests and makes some datasets accessible via WMS. A client's request also specifies the desired format for the results, e.g., .asc, .csv, .das, .dds, .dods, htmlTable, XHTML, .mat, netCDF, .kml, .png, or .pdf (formats more directly useful to clients). ERDDAP interprets a client request, requests the data from the data source (in the appropriate way), reformats the data source's response, and sends the result to the client. Thus ERDDAP makes data from diverse sources available to diverse clients via standardized interfaces. Clients don't have to install libraries to get data from ERDDAP because ERDDAP is RESTful and resource-oriented: a URL completely defines a data request and the URL can be used in any application that can send a URL and receive a file. This also makes it easy to use ERDDAP in mashups with other web services. ERDDAP could be extended to support other protocols. ERDDAP's hub and spoke architecture simplifies adding support for new types of data sources and new types of clients. ERDDAP includes metadata management support, catalog services, and services to make graphs and maps.
Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy. PMID:24688429
Story Maps as an Effective Social Medium for Data Synthesis, Communication, and Dissemination
NASA Astrophysics Data System (ADS)
Wright, D. J.; Verrill, A.; Artz, M.; Deming, R.
2014-12-01
The story map is a new medium for sharing not only data, but also photos, videos, sounds, and maps, as a way to tell a specific and compelling story by way of that content. It is emerging as a popular and effective social media too. The user may employ some fairly sophisticated cartographic functionality without advanced training in cartography or GIS. Story maps are essentially web map applications built from web maps, which in turn are built from web-accessible data (including OGC WMS, WFS). This paper will emphasize the approaches and technologies of web-based GIS to tell "stories" about important connections among scientists, resource managers, and policy makers focused on oceans and coasts within the US; and how combining the new medium of "intelligent Web maps" with text, multimedia content, and intuitive user experiences has a great potential to synthesize the data, and it primary interpretative message in order to inform, educate, and inspire about a wide variety of ocean science and policy issues.
PREFER: a European service providing forest fire management support products
NASA Astrophysics Data System (ADS)
Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George
2015-06-01
PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.
Web-based visualization of gridded dataset usings OceanBrowser
NASA Astrophysics Data System (ADS)
Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie
2015-04-01
OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).
Finding past weather...Fast - Public Affairs - NOAA's National Weather
government web resources and services. Home >>Climate Data Finding past weather...Fast Climate data Weather Forecast Offices (WFOs). First, find the location you need climate data for on the following map the left side of the page there will be a section called Climate in yellow-colored text. You may have
Roland, Mark A.; Hoffman, Scott A.
2011-01-01
Streamflow data, water-surface-elevation profiles derived from a Hydrologic Engineering Center River Analysis System hydraulic model, and geographical information system digital elevation models were used to develop a set of 18 flood-inundation maps for an approximately 5-mile reach of the West Branch Susquehanna River near the Borough of Jersey Shore, Pa. The inundation maps were created by the U.S. Geological Survey in cooperation with the Susquehanna River Basin Commission and Lycoming County as part of an ongoing effort by the National Oceanic and Atmospheric Administration's National Weather Service to focus on continued improvements to the flood forecasting and warning abilities in the Susquehanna River Basin and to modernize flood-forecasting methodologies. The maps, ranging from 23.0 to 40.0 feet in 1-foot increments, correspond to river stage at the U.S. Geological Survey streamgage 01549760 at Jersey Shore. The electronic files used to develop the maps were provided to the National Weather Service for incorporation into their Advanced Hydrologic Prediction Service website. The maps are displayed on this website, which serves as a web-based floodwarning system, and can be used to identify areas of predicted flood inundation associated with forecasted flood-peak stages. During times of flooding or predicted flooding, these maps can be used by emergency managers and the public to take proactive steps to protect life and reduce property damage caused by floods.
High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers
NASA Astrophysics Data System (ADS)
Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.
2017-12-01
The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
Application of open source standards and technologies in the http://climate4impact.eu/ portal
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Pagé, Christian; Tatarinova, Natalia
2015-04-01
This presentation will demonstrate how to calculate and visualize the climate indice SU (number of summer days) on the climate4impact portal. The following topics will be covered during the demonstration: - Security: Login using OpenID for access to the Earth System Grid Fedeation (ESGF) data nodes. The ESGF works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESGF search services. A catalog browser allows for browsing through CMIP5 and any other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Processing using Web Processing Services (WPS): Transform data, subset, export into other formats, and perform climate indices calculations using Web Processing Services implemented by PyWPS, based on NCAR NCPP OpenClimateGIS and IS-ENES2 ICCLIM. - Visualization using Web Map Services (WMS): Visualize data from ESGF data nodes using ADAGUC Web Map Services. The aim of climate4impact is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 21 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the European projects IS-ENES and IS-ENES2 for more than 5 years, and its development currently continues within IS-ENES2 and CLIPC. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in the ENES portal interface for climate impact communities and can be visited at http://climate4impact.eu/ The current main objectives for climate4impact can be summarized in two objectives. The first one is to work on a web interface which automatically generates a graphical user interface on WPS endpoints. The WPS calculates climate indices and subset data using OpenClimateGIS/ICCLIM on data stored in ESGF data nodes. Data is then transmitted from ESGF nodes over secured OpenDAP and becomes available in a new, per user, secured OpenDAP server. The results can then be visualized again using ADAGUC WMS. Dedicated wizards for processing of climate indices will be developed in close collaboration with users. The second one is to expose climate4impact services, so as to offer standardized services which can be used by other portals. This has the advantage to add interoperability between several portals, as well as to enable the design of specific portals aimed at different impact communities, either thematic or national, for example.
YouGenMap: a web platform for dynamic multi-comparative mapping and visualization of genetic maps
Keith Batesole; Kokulapalan Wimalanathan; Lin Liu; Fan Zhang; Craig S. Echt; Chun Liang
2014-01-01
Comparative genetic maps are used in examination of genome organization, detection of conserved gene order, and exploration of marker order variations. YouGenMap is an open-source web tool that offers dynamic comparative mapping capability of users' own genetic mapping between 2 or more map sets. Users' genetic map data and optional gene annotations are...
A web portal for hydrodynamical, cosmological simulations
NASA Astrophysics Data System (ADS)
Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.
2017-07-01
This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.
Conducting Retrospective Ontological Clinical Trials in ICD-9-CM in the Age of ICD-10-CM.
Venepalli, Neeta K; Shergill, Ardaman; Dorestani, Parvaneh; Boyd, Andrew D
2014-01-01
To quantify the impact of International Classification of Disease 10th Revision Clinical Modification (ICD-10-CM) transition in cancer clinical trials by comparing coding accuracy and data discontinuity in backward ICD-10-CM to ICD-9-CM mapping via two tools, and to develop a standard ICD-9-CM and ICD-10-CM bridging methodology for retrospective analyses. While the transition to ICD-10-CM has been delayed until October 2015, its impact on cancer-related studies utilizing ICD-9-CM diagnoses has been inadequately explored. Three high impact journals with broad national and international readerships were reviewed for cancer-related studies utilizing ICD-9-CM diagnoses codes in study design, methods, or results. Forward ICD-9-CM to ICD-10-CM mapping was performing using a translational methodology with the Motif web portal ICD-9-CM conversion tool. Backward mapping from ICD-10-CM to ICD-9-CM was performed using both Centers for Medicare and Medicaid Services (CMS) general equivalence mappings (GEMs) files and the Motif web portal tool. Generated ICD-9-CM codes were compared with the original ICD-9-CM codes to assess data accuracy and discontinuity. While both methods yielded additional ICD-9-CM codes, the CMS GEMs method provided incomplete coverage with 16 of the original ICD-9-CM codes missing, whereas the Motif web portal method provided complete coverage. Of these 16 codes, 12 ICD-9-CM codes were present in 2010 Illinois Medicaid data, and accounted for 0.52% of patient encounters and 0.35% of total Medicaid reimbursements. Extraneous ICD-9-CM codes from both methods (Centers for Medicare and Medicaid Services general equivalent mapping [CMS GEMs, n = 161; Motif web portal, n = 246]) in excess of original ICD-9-CM codes accounted for 2.1% and 2.3% of total patient encounters and 3.4% and 4.1% of total Medicaid reimbursements from the 2010 Illinois Medicare database. Longitudinal data analyses post-ICD-10-CM transition will require backward ICD-10-CM to ICD-9-CM coding, and data comparison for accuracy. Researchers must be aware that all methods for backward coding are not comparable in yielding original ICD-9-CM codes. The mandated delay is an opportunity for organizations to better understand areas of financial risk with regards to data management via backward coding. Our methodology is relevant for all healthcare-related coding data, and can be replicated by organizations as a strategy to mitigate financial risk.
Electrical and Structural Characterization of Web Dendrite Crystals
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.
1985-01-01
Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.
EnviroAtlas -Portland, ME- One Meter Resolution Urban Land Cover (2010)
The EnviroAtlas Portland, ME land cover map was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Eight land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a stratified random sampling of 600 samples yielded an overall accuracy of 87.5 percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Portland. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas -Milwaukee, WI- One Meter Resolution Urban Land Cover Data (2010)
The EnviroAtlas Milwaukee, WI land cover data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2010 at 1 m spatial resolution. Nine land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, agriculture, and wetlands (woody and emergent). An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 85.39% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Milwaukee. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas -- Woodbine, IA -- One Meter Resolution Urban Land Cover Data (2011)
The EnviroAtlas Woodbine, IA land cover (LC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near infrared) aerial photography from Late Summer 2011 at 1 m spatial resolution. Six land cover classes were mapped: water, impervious surfaces (dark and light), soil and barren land, trees and forest, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 600 samples yielded an overall accuracy of 87.03% percent using a minimum mapping unit of 9 pixels (3x3 pixel window). The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Woodbine. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
The Climate-G Portal: a Grid Enabled Scientifc Gateway for Climate Change
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Negro, Alessandro; Aloisio, Giovanni
2010-05-01
Grid portals are web gateways aiming at concealing the underlying infrastructure through a pervasive, transparent, user-friendly, ubiquitous and seamless access to heterogeneous and geographical spread resources (i.e. storage, computational facilities, services, sensors, network, databases). Definitively they provide an enhanced problem-solving environment able to deal with modern, large scale scientific and engineering problems. Scientific gateways are able to introduce a revolution in the way scientists and researchers organize and carry out their activities. Access to distributed resources, complex workflow capabilities, and community-oriented functionalities are just some of the features that can be provided by such a web-based environment. In the context of the EGEE NA4 Earth Science Cluster, Climate-G is a distributed testbed focusing on climate change research topics. The Euro-Mediterranean Center for Climate Change (CMCC) is actively participating in the testbed providing the scientific gateway (Climate-G Portal) to access to the entire infrastructure. The Climate-G Portal has to face important and critical challenges as well as has to satisfy and address key requirements. In the following, the most relevant ones are presented and discussed. Transparency: the portal has to provide a transparent access to the underlying infrastructure preventing users from dealing with low level details and the complexity of a distributed grid environment. Security: users must be authenticated and authorized on the portal to access and exploit portal functionalities. A wide set of roles is needed to clearly assign the proper one to each user. The access to the computational grid must be completely secured, since the target infrastructure to run jobs is a production grid environment. A security infrastructure (based on X509v3 digital certificates) is strongly needed. Pervasivity and ubiquity: the access to the system must be pervasive and ubiquitous. This is easily true due to the nature of the needed web approach. Usability and simplicity: the portal has to provide simple, high level and user friendly interfaces to ease the access and exploitation of the entire system. Coexistence of general purpose and domain oriented services: along with general purpose services (file transfer, job submission, etc.), the portal has to provide domain based services and functionalities. Subsetting of data, visualization of 2D maps around a virtual globe, delivery of maps through OGC compliant interfaces (i.e. Web Map Service - WMS) are just some examples. Since april 2009, about 70 users (85% coming from the climate change community) got access to the portal. A key challenge of this work is the idea to provide users with an integrated working environment, that is a place where scientists can find huge amount of data, complete metadata support, a wide set of data access services, data visualization and analysis tools, easy access to the underlying grid infrastructure and advanced monitoring interfaces.
Change and Anomaly Detection in Real-Time GPS Data
NASA Astrophysics Data System (ADS)
Granat, R.; Pierce, M.; Gao, X.; Bock, Y.
2008-12-01
The California Real-Time Network (CRTN) is currently generating real-time GPS position data at a rate of 1-2Hz at over 80 locations. The CRTN data presents the possibility of studying dynamical solid earth processes in a way that complements existing seismic networks. To realize this possibility we have developed a prototype system for detecting changes and anomalies in the real-time data. Through this system, we can can correlate changes in multiple stations in order to detect signals with geographical extent. Our approach involves developing a statistical model for each GPS station in the network, and then using those models to segment the time series into a number of discrete states described by the model. We use a hidden Markov model (HMM) to describe the behavior of each station; fitting the model to the data requires neither labeled training examples nor a priori information about the system. As such, HMMs are well suited to this problem domain, in which the data remains largely uncharacterized. There are two main components to our approach. The first is the model fitting algorithm, regularized deterministic annealing expectation- maximization (RDAEM), which provides robust, high-quality results. The second is a web service infrastructure that connects the data to the statistical modeling analysis and allows us to easily present the results of that analysis through a web portal interface. This web service approach facilitates the automatic updating of station models to keep pace with dynamical changes in the data. Our web portal interface is critical to the process of interpreting the data. A Google Maps interface allows users to visually interpret state changes not only on individual stations but across the entire network. Users can drill down from the map interface to inspect detailed results for individual stations, download the time series data, and inspect fitted models. Alternatively, users can use the web portal look at the evolution of changes on the network by moving backwards and forwards in time.
NASA Astrophysics Data System (ADS)
French, N. H.; Erickson, T.; McKenzie, D.
2008-12-01
A major goal of the North American Carbon Program is to resolve uncertainties in understanding and managing the carbon cycle of North America. As carbon modeling tools become more comprehensive and spatially oriented, accurate datasets to spatially quantify carbon emissions from fire are needed, and these data resources need to be accessible to users for decision-making. Under a new NASA Carbon Cycle Science project, Drs. Nancy French and Tyler Erickson, of the Michigan Technological University, Michigan Tech Research Institute (MTRI), are teaming with specialists with the USDA Forest Service Fire and Environmental Research Applications (FERA) team to provide information for mapping fire-derived carbon emissions to users. The project focus includes development of a web-based system to provide spatially resolved fire emissions estimates for North America in a user-friendly environment. The web-based Decision Support System will be based on a variety of open source technologies. The Fuel Characteristic Classification System (FCCS) raster map of fuels and MODIS-derived burned area vector maps will be processed using the Geographic Data Abstraction Library (GDAL) and OGR Simple Features Library. Tabular and spatial project data will be stored in a PostgreSQL/PostGIS, a spatially enabled relational database server. The browser-based user interface will be created using the Django web page framework to allow user input for the decision support system. The OpenLayers mapping framework will be used to provide users with interactive maps within the browser. In addition, the data products will be made available in standard open data formats such as KML, to allow for easy integration into other spatial models and data systems.
Data Integration Using SOAP in the VSO
NASA Astrophysics Data System (ADS)
Tian, K. Q.; Bogart, R. S.; Davey, A.; Dimitoglou, G.; Gurman, J. B.; Hill, F.; Martens, P. C.; Wampler, S.
2003-05-01
The Virtual Solar Observatory (VSO) project has implemented a time interval search for all four participating data archives. The back-end query services are implemented as web services, and are accessible via SOAP. SOAP (Simple Object Access Protocol) defines an RPC (Remote Procedure Call) mechanism that employs HTTP as its transport and encodes the client-server interactions (request and response messages) in XML (eXtensible Markup Language) documents. In addition to its core function of identifying relevant datasets in the local archive, the SOAP server at each data provider acts as a "wrapper" that maps descriptions in an abstract data model to those in the provider-specific data model, and vice versa. It is in this way that VSO integrates heterogeneous data services and allows access to them using a common interface. Our experience with SOAP has been fruitful. It has proven to be a better alternative to traditional web access methods, namely POST and GET, because of its flexibility and interoperability.
A Story of a Crashed Plane in US-Mexican border
NASA Astrophysics Data System (ADS)
Bermudez, Luis; Hobona, Gobe; Vretanos, Peter; Peterson, Perry
2013-04-01
A plane has crashed on the US-Mexican border. The search and rescue command center planner needs to find information about the crash site, a mountain, nearby mountains for the establishment of a communications tower, as well as ranches for setting up a local incident center. Events like this one occur all over the world and exchanging information seamlessly is key to save lives and prevent further disasters. This abstract describes an interoperability testbed that applied this scenario using technologies based on Open Geospatial Consortium (OGC) standards. The OGC, which has about 500 members, serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC Interoperability Program conducts international interoperability testbeds, such as the OGC Web Services Phase 9 (OWS-9), that encourages rapid development, testing, validation, demonstration and adoption of open, consensus based standards and best practices. The Cross-Community Interoperability (CCI) thread in OWS-9 advanced the Web Feature Service for Gazetteers (WFS-G) by providing a Single Point of Entry Global Gazetteer (SPEGG), where a user can submit a single query and access global geographic names data across multiple Federal names databases. Currently users must make two queries with differing input parameters against two separate databases to obtain authoritative cross border geographic names data. The gazetteers in this scenario included: GNIS and GNS. GNIS or Geographic Names Information System is managed by USGS. It was first developed in 1964 and contains information about domestic and Antarctic names. GNS or GeoNET Names Server provides the Geographic Names Data Base (GNDB) and it is managed by National Geospatial Intelligence Agency (NGA). GNS has been in service since 1994, and serves names for areas outside the United States and its dependent areas, as well as names for undersea features. The following challenges were advanced: Cascaded WFS-G servers (allowing to query multiple WFSs with a "parent" WFS), implemented query names filters (e.g. fuzzy search, text search), implemented dealing with multilingualism and diacritics, implemented advanced spatial constraints (e.g. search by radial search and nearest neighbor) and semantically mediated feature types (e.g. mountain vs. hill). To enable semantic mediation, a series of semantic mappings were defined between the NGA GNS, USGS GNIS and the Alexandria Digital Library (ADL) Gazetteer. The mappings were encoded in the Web Ontology Language (OWL) to enable them to be used by semantic web technologies. The semantic mappings were then published for ingestion into a semantic mediator that used the mappings to associate location types from one gazetteer with location types in another. The semantic mediator was then able to transform requests on the fly, providing a single point of entry WFS-G to multiple gazetteers. The presentation will provide a live presentation of the work performed, highlight main developments, and discuss future development.
Turning Interoperability Operational with GST
NASA Astrophysics Data System (ADS)
Schaeben, Helmut; Gabriel, Paul; Gietzel, Jan; Le, Hai Ha
2013-04-01
GST - Geosciences in space and time is being developed and implemented as hub to facilitate the exchange of spatially and temporally indexed multi-dimensional geoscience data and corresponding geomodels amongst partners. It originates from TUBAF's contribution to the EU project "ProMine" and its perspective extensions are TUBAF's contribution to the actual EU project "GeoMol". As of today, it provides basic components of a geodata infrastructure as required to establish interoperability with respect to geosciences. Generally, interoperability means the facilitation of cross-border and cross-sector information exchange, taking into account legal, organisational, semantic and technical aspects, cf. Interoperability Solutions for European Public Administrations (ISA), cf. http://ec.europa.eu/isa/. Practical interoperability for partners of a joint geoscience project, say European Geological Surveys acting in a border region, means in particular provision of IT technology to exchange spatially and maybe additionally temporally indexed multi-dimensional geoscience data and corresponding models, i.e. the objects composing geomodels capturing the geometry, topology, and various geoscience contents. Geodata Infrastructure (GDI) and interoperability are objectives of several inititatives, e.g. INSPIRE, OneGeology-Europe, and most recently EGDI-SCOPE to name just the most prominent ones. Then there are quite a few markup languages (ML) related to geographical or geological information like GeoSciML, EarthResourceML, BoreholeML, ResqML for reservoir characterization, earth and reservoir models, and many others featuring geoscience information. Several Web Services are focused on geographical or geoscience information. The Open Geospatial Consortium (OGC) promotes specifications of a Web Feature Service (WFS), a Web Map Service (WMS), a Web Coverage Serverice (WCS), a Web 3D Service (W3DS), and many more. It will be clarified how GST is related to these initiatives, especially how it complies with existing or developing standards or quasi-standards and how it applies and extents services towards interoperability in the Earth sciences.
This map service displays all air-related layers used in the USEPA Community/Tribal-Focused Exposure and Risk Screening Tool (C/T-FERST) mapping application (https://www.epa.gov/c-ferst). The following data sources (and layers) are contained in this service:USEPA's 2005 National-Scale Air Toxic Assessment (NATA) data. Data are shown at the census tract level (2000 census tract boundaries, US Census Bureau) for Cumulative Cancer and Non-Cancer risks (Neurological and Respiratory) from 139 air toxics. In addition, individual pollutant estimates of Ambient Concentration, Exposure Concentration, Cancer, and Non-Cancer risks (Neurological and Respiratory) are provided for: Acetaldehyde, Acrolein, Arsenic, Benzene, 1,3-Butadiene, Chromium, Diesel PM, Formaldehyde, Lead, Naphthalene, and Polycyclic Aromatic Hydrocarbon (PAH). The original Access tables were downloaded from USEPA's Office of Air and Radiation (OAR) https://www.epa.gov/national-air-toxics-assessment/2005-national-air-toxics-assessment. The data classification (defined interval) for this map service was developed for USEPA's Office of Research and Development's (ORD) Community-Focused Exposure and Risk Screening Tool (C-FERST) per guidance provided by OAR.The 2005 NATA provides information on 177 of the 187 Clean Air Act air toxics (https://www.epa.gov/sites/production/files/2015-10/documents/2005-nata-pollutants.pdf) plus diesel particulate matter (diesel PM was assessed for non-cancer only). For addit
An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm.
Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya
2015-01-01
Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the "quality of service" as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.
2016-06-01
of technology and near-global Internet accessibility, a web -based program incorporating interactive maps to record personal combat experiences does...not exist. The Combat Stories Map addresses this deficiency. The Combat Stories Map is a web -based Geographic Information System specifically designed...iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Despite the proliferation of technology and near-global Internet accessibility, a web
Development of web tools to disseminate space geodesy data-related products
NASA Astrophysics Data System (ADS)
Soudarin, L.; Ferrage, P.; Mezerette, A.
2014-12-01
In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). The next step currently in progress is the creation of a database to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).
GeoSciML and EarthResourceML Update, 2012
NASA Astrophysics Data System (ADS)
Richard, S. M.; Commissionthe Management; Application Inte, I.
2012-12-01
CGI Interoperability Working Group activities during 2012 include deployment of services using the GeoSciML-Portrayal schema, addition of new vocabularies to support properties added in version 3.0, improvements to server software for deploying services, introduction of EarthResourceML v.2 for mineral resources, and collaboration with the IUSS on a markup language for soils information. GeoSciML and EarthResourceML have been used as the basis for the INSPIRE Geology and Mineral Resources specifications respectively. GeoSciML-Portrayal is an OGC GML simple-feature application schema for presentation of geologic map unit, contact, and shear displacement structure (fault and ductile shear zone) descriptions in web map services. Use of standard vocabularies for geologic age and lithology enables map services using shared legends to achieve visual harmonization of maps provided by different services. New vocabularies have been added to the collection of CGI vocabularies provided to support interoperable GeoSciML services, and can be accessed through http://resource.geosciml.org. Concept URIs can be dereferenced to obtain SKOS rdf or html representations using the SISSVoc vocabulary service. New releases of the FOSS GeoServer application greatly improve support for complex XML feature schemas like GeoSciML, and the ArcGIS for INSPIRE extension implements similar complex feature support for ArcGIS Server. These improved server implementations greatly facilitate deploying GeoSciML services. EarthResourceML v2 adds features for information related to mining activities. SoilML provides an interchange format for soil material, soil profile, and terrain information. Work is underway to add GeoSciML to the portfolio of Open Geospatial Consortium (OGC) specifications.
Flexible Web services integration: a novel personalised social approach
NASA Astrophysics Data System (ADS)
Metrouh, Abdelmalek; Mokhati, Farid
2018-05-01
Dynamic composition or integration remains one of the key objectives of Web services technology. This paper aims to propose an innovative approach of dynamic Web services composition based on functional and non-functional attributes and individual preferences. In this approach, social networks of Web services are used to maintain interactions between Web services in order to select and compose Web services that are more tightly related to user's preferences. We use the concept of Web services community in a social network of Web services to reduce considerably their search space. These communities are created by the direct involvement of Web services providers.
An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm
Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya
2015-01-01
Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the “quality of service” as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services. PMID:26504894
Map-IT! A Web-Based GIS Tool for Watershed Science Education.
ERIC Educational Resources Information Center
Curtis, David H.; Hewes, Christopher M.; Lossau, Matthew J.
This paper describes the development of a prototypic, Web-accessible GIS solution for K-12 science education and citizen-based watershed monitoring. The server side consists of ArcView IMS running on an NT workstation. The client is built around MapCafe. The client interface, which runs through a standard Web browser, supports standard MapCafe…
Web Mapping for Promoting Interaction and Collaboration in Community Land Planning
NASA Astrophysics Data System (ADS)
Veenendaal, B.; Dhliwayo, M.
2013-10-01
There is an inherent advantage of geographic information Systems (GIS) and mapping in facilitating dialogue between experts and non-experts during land use plan development. Combining visual mapping information and effective user interaction can result in considerable benefits for developing countries like Botswana. Although the adoption of information and communication technologies has lagged behind that for developed countries, initiatives by the Botswana government in providing suitable information infrastructures, including internet and web based communications, are enabling multiple users to interact and collaborate in community land planning. A web mapping application was developed for the Maun Development Plan (MDP) in the Okavango Delta region in Botswana. It was designed according to requirements of land planners and managers and implemented using ArcGIS Viewer for Flex. Land planners and managers from two organisations in Maun involved in the development of the MDP were asked to evaluate the web mapping tools. This paper describes the results of implementation and some preliminary results of the web mapping evaluation.
Expanding Access and Usage of NASA Near Real-Time Imagery and Data
NASA Astrophysics Data System (ADS)
Cechini, M.; Murphy, K. J.; Boller, R. A.; Schmaltz, J. E.; Thompson, C. K.; Huang, T.; McGann, J. M.; Ilavajhala, S.; Alarcon, C.; Roberts, J. T.
2013-12-01
In late 2009, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. Since that time, NASA's Earth Observing System Data and Information System (EOSDIS) developed the Global Imagery Browse Services (GIBS) to provide highly responsive, scalable, and expandable imagery services that distribute near real-time imagery in an intuitive and geo-referenced format. The GIBS imagery services provide access through standards-based protocols such as the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) and standard mapping file formats such as the Keyhole Markup Language (KML). Leveraging these standard mechanisms opens NASA near real-time imagery to a broad landscape of mapping libraries supporting mobile applications. By easily integrating with mobile application development libraries, GIBS makes it possible for NASA imagery to become a reliable and valuable source for end-user applications. Recently, EOSDIS has taken steps to integrate near real-time metadata products into the EOS ClearingHOuse (ECHO) metadata repository. Registration of near real-time metadata allows for near real-time data discovery through ECHO clients. In kind with the near real-time data processing requirements, the ECHO ingest model allows for low-latency metadata insertion and updates. Combining with the ECHO repository, the fast visual access of GIBS imagery can now be linked directly back to the source data file(s). Through the use of discovery standards such as OpenSearch, desktop and mobile applications can connect users to more than just an image. As data services, such as OGC Web Coverage Service, become more prevalent within the EOSDIS system, applications may even be able to connect users from imagery to data values. In addition, the full resolution GIBS imagery provides visual context to other GIS data and tools. The NASA near real-time imagery covers a broad set of Earth science disciplines. By leveraging the ECHO and GIBS services, these data can become a visual context within which other GIS activities are performed. The focus of this presentation is to discuss the GIBS imagery and ECHO metadata services facilitating near real-time discovery and usage. Existing synergies and future possibilities will also be discussed. The NASA Worldview demonstration client will be used to show an existing application combining the ECHO and GIBS services.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.
2015-12-01
Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.
NASA Astrophysics Data System (ADS)
Qin, Rufu; Lin, Liangzhao
2017-06-01
Coastal seiches have become an increasingly important issue in coastal science and present many challenges, particularly when attempting to provide warning services. This paper presents the methodologies, techniques and integrated services adopted for the design and implementation of a Seiches Monitoring and Forecasting Integration Framework (SMAF-IF). The SMAF-IF is an integrated system with different types of sensors and numerical models and incorporates the Geographic Information System (GIS) and web techniques, which focuses on coastal seiche events detection and early warning in the North Jiangsu shoal, China. The in situ sensors perform automatic and continuous monitoring of the marine environment status and the numerical models provide the meteorological and physical oceanographic parameter estimates. A model outputs processing software was developed in C# language using ArcGIS Engine functions, which provides the capabilities of automatically generating visualization maps and warning information. Leveraging the ArcGIS Flex API and ASP.NET web services, a web based GIS framework was designed to facilitate quasi real-time data access, interactive visualization and analysis, and provision of early warning services for end users. The integrated framework proposed in this study enables decision-makers and the publics to quickly response to emergency coastal seiche events and allows an easy adaptation to other regional and scientific domains related to real-time monitoring and forecasting.
Active Wiki Knowledge Repository
2012-10-01
data using SPARQL queries or RESTful web-services; ‘gardening’ tools for examining the semantically tagged content in the wiki; high-level language tool...Tagging & RDF triple-store Fusion and inferences for collaboration Tools for Consuming Data SPARQL queries or RESTful WS Inference & Gardening tools...other stores using AW SPARQL queries and rendering templates; and 4) Interactively share maps and other content using annotation tools to post notes
NASA Astrophysics Data System (ADS)
Scarth, P.; Trevithick, B.; Beutel, T.
2016-12-01
VegMachine Online is a freely available browser application that allows ranchers across Australia to view and interact with satellite derived ground cover state and change maps on their property and extract this information in a graphical format using interactive tools. It supports the delivery and communication of a massive earth observation data set in an accessible, producer friendly way . Around 250,000 Landsat TM, ETM and OLI images were acquired across Australia, converted to terrain corrected surface reflectance and masked for cloud, cloud shadow, terrain shadow and water. More than 2500 field sites across the Australian rangelands were used to derive endmembers used in a constrained unmixing approach to estimate the per-pixel proportion of bare, green and non-green vegetation for all images. A seasonal metoid compositing method was used to produce national fractional cover virtual mosaics for each three month period since 1988. The time series of green fraction is used to estimate the persistent green due to tree and shrub canopies, and this estimate is used to correct the fractional cover to ground cover for our mixed tree-grass rangeland systems. Finally, deciles are produced for key metrics every season to track a pixels relativity to the entire time series. These data are delivered through time series enabled web mapping services and customised web processing services that enable the full time series over any spatial extent to be interrogated in seconds via a RESTful interface. These services interface with a front end browser application that provides product visualization for any date in the time series, tools to draw or import polygon boundaries, plot time series ground cover comparisons, look at the effect of historical rainfall and tools to run the revised universal soil loss equation in web time to assess the effect of proposed changes in cover retention. VegMachine Online is already being used by ranchers monitoring paddock condition, organisations supporting land management initiatives in Great Barrier Reef catchments, by students developing tools to understand land condition and degradation and the underlying data and APIs are supporting several other land condition mapping tools.
Proteus - A Free and Open Source Sensor Observation Service (SOS) Client
NASA Astrophysics Data System (ADS)
Henriksson, J.; Satapathy, G.; Bermudez, L. E.
2013-12-01
The Earth's 'electronic skin' is becoming ever more sophisticated with a growing number of sensors measuring everything from seawater salinity levels to atmospheric pressure. To further the scientific application of this data collection effort, it is important to make the data easily available to anyone who wants to use it. Making Earth Science data readily available will allow the data to be used in new and potentially groundbreaking ways. The US National Science and Technology Council made this clear in its most recent National Strategy for Civil Earth Observations report, when it remarked that Earth observations 'are often found to be useful for additional purposes not foreseen during the development of the observation system'. On the road to this goal the Open Geospatial Consortium (OGC) is defining uniform data formats and service interfaces to facilitate the discovery and access of sensor data. This is being done through the Sensor Web Enablement (SWE) stack of standards, which include the Sensor Observation Service (SOS), Sensor Model Language (SensorML), Observations & Measurements (O&M) and Catalog Service for the Web (CSW). End-users do not have to use these standards directly, but can use smart tools that leverage and implement them. We have developed such a tool named Proteus. Proteus is an open-source sensor data discovery client. The goal of Proteus is to be a general-purpose client that can be used by anyone for discovering and accessing sensor data via OGC-based services. Proteus is a desktop client and supports a straightforward workflow for finding sensor data. The workflow takes the user through the process of selecting appropriate services, bounding boxes, observed properties, time periods and other search facets. NASA World Wind is used to display the matching sensor offerings on a map. Data from any sensor offering can be previewed in a time series. The user can download data from a single sensor offering, or download data in bulk from all matching sensor offerings. Proteus leverages NASA World Wind's WMS capabilities and allow overlaying sensor offerings on top of any map. Specific search criteria (i.e. user discoveries) can be saved and later restored. Proteus is supports two user types: 1) the researcher/scientist interested in discovering and downloading specific sensor data as input to research processes, and 2) the data manager responsible for maintaining sensor data services (e.g. SOSs) and wants to ensure proper data and metadata delivery, verify sensor data, and receive sensor data alerts. Proteus has a Web-based companion product named the Community Hub that is used to generate sensor data alerts. Alerts can be received via an RSS feed, viewed in a Web browser or displayed directly in Proteus via a Web-based API. To advance the vision of making Earth Science data easily discoverable and accessible to end-users, professional or laymen, Proteus is available as open-source on GitHub (https://github.com/intelligentautomation/proteus).
Proposal for a Web Encoding Service (wes) for Spatial Data Transactio
NASA Astrophysics Data System (ADS)
Siew, C. B.; Peters, S.; Rahman, A. A.
2015-10-01
Web services utilizations in Spatial Data Infrastructure (SDI) have been well established and standardized by Open Geospatial Consortium (OGC). Similar web services for 3D SDI are also being established in recent years, with extended capabilities to handle 3D spatial data. The increasing popularity of using City Geographic Markup Language (CityGML) for 3D city modelling applications leads to the needs for large spatial data handling for data delivery. This paper revisits the available web services in OGC Web Services (OWS), and propose the background concepts and requirements for encoding spatial data via Web Encoding Service (WES). Furthermore, the paper discusses the data flow of the encoder within web service, e.g. possible integration with Web Processing Service (WPS) or Web 3D Services (W3DS). The integration with available web service could be extended to other available web services for efficient handling of spatial data, especially 3D spatial data.
Innovative Visualization Techniques applied to a Flood Scenario
NASA Astrophysics Data System (ADS)
Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael
2013-04-01
The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other windows. These concepts can be part of a collaborative platform, where multiple people share and work together on the data, via online access, which also allows its remote usage from a mobile platform. Storytelling augments analysis and decision-making capabilities allowing to assimilate complex situations and reach informed decisions, in addition to helping the public visualize information. In our visualization scenario, developed in the context of the VA-4D project for the European Space Agency (see http://www.ca3-uninova.org/project_va4d), we make use of the GAV (GeoAnalytics Visualization) framework, a web-oriented visual analytics application based on multiple interactive views. The final visualization that we produce includes multiple interactive views, including a dynamic multi-layer map surrounded by other visualizations such as bar charts, time graphs and scatter plots. The map provides flood and building information, on top of a base city map (street maps and/or satellite imagery provided by online map services such as Google Maps, Bing Maps etc.). Damage over time for selected buildings, damage for all buildings at a chosen time period, correlation between damage and water depth can be analysed in the other views. This interactive web-based visualization that incorporates the ideas of storytelling, web-based linked views, and other visualization techniques, for a 4 hour flood event in Lisbon in 2010, can be found online at http://www.ncomva.se/flash/projects/esa/flooding/.
NASA Astrophysics Data System (ADS)
Davis, L.; Weatherley, J.; Bhushan, S.; Khan, H.; de La Chica, S.; Deardorff, R.
2004-12-01
An exciting pilot program took place this summer, pioneering the development of Digital Library for Earth System Education (DLESE) Teaching Boxes with the Univ. of CA. Berkeley Museum of Paleontology, SF State Univ., USGS and 7 middle/high school teachers from the San Francisco area. This session will share the DLESE Teaching Box concept, explain the pilot program, and explore the tremendous opportunities for expanding this notion to embrace interdisciplinary approaches to learning about the Earth in the undergraduate science and pre-service teaching arenas. A Teaching Box is a metaphor for an online assembly of interrelated learning concepts, digital resources, and cohesive narration that bridges the gap between discrete resources and understanding. Within a Teaching Box, an instructor or student can pick a topic and see the concepts that build an understanding of that topic, explore online resources that support learning of those concepts, and benefit from the narration (the glue) that weaves concepts, activities, and background information together into a complete teaching/learning story. In this session, we will demonstrate the emerging Teaching Box prototypes and explore how this platform may promote STEM learning by utilizing DLESE tools and services in ways that begin to blur traditional disciplinary boundaries, overcome limitations of discipline-specific vocabularies, and foster collaboration. We will show ways in which new DLESE Web Services could support learning in this highly contextualized environment. We will see glimpses of how learners and educators will be able to modify or create their own Teaching Boxes specific to a unit of study or course, and perhaps share them with the Earth Science Education community. We will see ways to stay abreast of current Earth events, emerging research, and real-time data and incorporate such dynamic information into one learning environment. Services will be described and demonstrated in the context of Teaching Boxes: - DLESE Web Services provide a programmatic interface that allows the Teaching Box (or any web page) to have the same DLESE search, bookmarking features, and data management that are found at the DLESE web site. - DLESE Smart Links are hyperlinks that can be created by anyone and implemented as easily as defining a specific query. Clicking a Smart Link displays a list of resources that corresponds to the specific query. We'll talk about how this service can help to bridge the gap between vocabularies and disciplines and the interesting possibilities it presents for contextualizing searches and building custom topical menus. - The Really Simple Syndication (RSS) service delivers online information immediately, and allows end-users to subscribe to receive regular news, events, and data on a given Teaching Box topic. This opens the door to event-based learning. - Strand Maps, developed by the AAAS, are diagrams of interconnected learning concepts across a range of science, technology, engineering, and mathematics disciplines. The University of Colorado and its project partners are developing the Strand Map Service (SMS) to provide an interactive interface to interrelated learning goals, content knowledge, (including student misconceptions) and educational resources in the National Science Digital Library and DLESE.
EnviroAtlas - 303(d) Impairments by 12-digit HUC for the Conterminous United States
This EnviroAtlas dataset depicts the total length of stream or river flowlines that have impairments submitted to the EPA by states under section 303(d) of the Clean Water Act. It also contains the total lengths of streams, rivers, and canals, total waterbody area, and stream density (stream length per area) from the US Geological Survey's high-resolution National Hydrography Dataset (NHD).This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Memphis, TN - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, ME - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New York, NY - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Paterson, NJ - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Des Moines, IA - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Phoenix, AZ - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Milwaukee, WI - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Durham, NC - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New Bedford, MA - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Woodbine, IA - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New York, NY - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Paterson, NJ - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Des Moines, IA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Woodbine, IA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Phoenix, AZ - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New Bedford, MA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Milwaukee, WI - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Proximity to Parks
This EnviroAtlas dataset shows the approximate walking distance from a park entrance at any given location within the EnviroAtlas community boundary. The zones are estimated in 1/4 km intervals up to 1km then in 1km intervals up to 5km. Park entrances were included in this analysis if they were within 5km of the community boundary. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Estimated Percent Tree Cover Along Walkable Roads
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Green Space Proximity Gradient
In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Tree Cover Configuration and Connectivity, Water Background
This EnviroAtlas dataset categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). In this community, Forest is defined as Trees & Forest (Trees & Forest - 40 = 1; All Else = 0). Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Cleveland, OH - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, ME - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Durham, NC - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Memphis, TN - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Woodbine, Iowa - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, Maine - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Forest Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Vegetated Cover
This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New York, NY - Green Space Proximity Gradient
In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. In this community, green space is defined as Trees & Forest and Grass & Herbaceous. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Des Moines, IA - Green Space Proximity Gradient
In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Cleveland, OH - Green Space Proximity Gradient
In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. In this community, green space is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Memphis, TN - Green Space Proximity Gradient
In any given 1-square meter point in this EnviroAtlas dataset, the value shown gives the percentage of square meters of greenspace within 1/4 square kilometer centered over the given point. Green space is defined as Trees & Forest, Grass & Herbaceous, Agriculture, Woody Wetlands, and Emergent Wetlands. Water is shown as -99999 in this dataset to distinguish it from land areas with very low green space. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - Land Cover by Block Group
This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, wetland, and agriculture. Impervious is a combination of dark and light impervious. Forest is a combination of trees and forest and woody wetlands. Green space is a combination of trees and forest, grass and herbaceous, agriculture, woody wetlands, and emergent wetlands. Wetlands includes both Woody and Emergent Wetlands.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Durham, NC - Land Cover Summaries by Block Group
This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, wetland, and agriculture. Impervious is a combination of dark and light impervious. Green space is a combination of trees and forest and grass and herbaceous. This dataset also includes the area per capita for each block group for impervious, forest, and green space land cover. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
Online, interactive assessment of geothermal energy potential in the U.S
NASA Astrophysics Data System (ADS)
Allison, M. L.; Richard, S. M.; Clark, R.; Coleman, C.; Love, D.; Pape, E.; Musil, L.
2011-12-01
Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online 'mashups,' data integration, and applications. Emphasis is first to make as much information as possible accessible, with a long range goal to make data interoperable through standardized services and interchange formats. Resources may be made available as documents (files) in whatever format they are currently in, converted to tabular files using standard content models, or published as Open Geospatial Consortium or ESRI Web services using the standard xml schema. An initial set of thirty geoscience data content models are in use or under development to define standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps (depth to bedrock), aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from NGDS participating institutions (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive, holistic set of data critical to geothermal energy development. As of August 2011, over 33,000 data resources have been registered in the system catalog, along with scores of Web services to deliver integrated data to the desktop for free downloading or online use. The data exchange mechanism is built on the U.S. Geoscience Information Network (USGIN, http://lab.usgin.org) protocols and standards developed in partnership with the U.S. Geological Survey.
The International Solid Earth Research Virtual Observatory
NASA Astrophysics Data System (ADS)
Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.
2004-12-01
We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these specifications with the powerful portlet architecture using WSRP and JSR168 supported by such portal containers as uPortal, WebSphere, and Apache JetSpeed2. The latter portal aggregates component user interfaces for each iSERVO service allowing flexible customization of the user interface. We exploit the portlets produced by the NSF NMI (Middleware initiative) OGCE activity. iSERVO also uses specifications from the Open Geographical Information Systems (GIS) Consortium (OGC) that defines a number of standards for modeling earth surface feature data and services for interacting with this data. The data models are expressed in the XML-based Geography Markup Language (GML), and the OGC service framework are being adapted to use the Web Service model. The SERVO prototype includes a GIS Grid that currently includes the core WMS and WFS (Map and Feature) services. We will follow the best practice in the Grid and Web Service field and will adapt our technology as appropriate. For example, we expect to support services built on WS-RF when is finalized and to make use of the database interfaces OGSA-DAI and its WS-I+ versions. Finally, we review advances in Web Service scripting (such as HPSearch) and workflow systems (such as GCF) and their applications to iSERVO.
Using a Metro Map Metaphor for Organizing Web-Based Learning Resources.
ERIC Educational Resources Information Center
Bang, Tove; Gronbaek, Kaj; Hansen, Per Steen
This paper briefly describes the WebNize system and how it applies a Metro Map metaphor for organizing guided tours in Web based resources. Then, experiences in using the Metro Map based tours in a Knowledge Sharing project at the library at Aarhus School of Business (ASB) in Denmark, are discussed. The Library has been involved in establishing a…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... of National Environmental Policy Act Categorical Exclusion Survey Posted on DOT/FHWA Web Site AGENCY... review is now available on the FHWA Web site, http://www.fhwa.dot.gov/map21 , and FTA Web site, http://www.fta.dot.gov/map21 . DATES: These reports were posted on the Web site on December 7, 2012...
Enhanced Management of and Access to Hurricane Sandy Ocean and Coastal Mapping Data
NASA Astrophysics Data System (ADS)
Eakins, B.; Neufeld, D.; Varner, J. D.; McLean, S. J.
2014-12-01
NOAA's National Geophysical Data Center (NGDC) has significantly improved the discovery and delivery of its geophysical data holdings, initially targeting ocean and coastal mapping (OCM) data in the U.S. coastal region impacted by Hurricane Sandy in 2012. We have developed a browser-based, interactive interface that permits users to refine their initial map-driven data-type choices prior to bulk download (e.g., by selecting individual surveys), including the ability to choose ancillary files, such as reports or derived products. Initial OCM data types now available in a U.S. East Coast map viewer, as well as underlying web services, include: NOS hydrographic soundings and multibeam sonar bathymetry. Future releases will include trackline geophysics, airborne topographic and bathymetric-topographic lidar, bottom sample descriptions, and digital elevation models.This effort also includes working collaboratively with other NOAA offices and partners to develop automated methods to receive and verify data, stage data for archive, and notify data providers when ingest and archive are completed. We have also developed improved metadata tools to parse XML and auto-populate OCM data catalogs, support the web-based creation and editing of ISO-compliant metadata records, and register metadata in appropriate data portals. This effort supports a variety of NOAA mission requirements, from safe navigation to coastal flood forecasting and habitat characterization.
NASA Astrophysics Data System (ADS)
Cao, Y. B.; Hua, Y. X.; Zhao, J. X.; Guo, S. M.
2013-11-01
With China's rapid economic development and comprehensive national strength growing, Border work has become a long-term and important task in China's diplomatic work. How to implement rapid plotting, real-time sharing and mapping surrounding affairs has taken great significance for government policy makers and diplomatic staff. However, at present the already exists Boundary information system are mainly have problems of Geospatial data update is heavily workload, plotting tools are in a state of serious lack of, Geographic events are difficult to share, this phenomenon has seriously hampered the smooth development of the border task. The development and progress of Geographic information system technology especially the development of Web GIS offers the possibility to solve the above problems, this paper adopts four layers of B/S architecture, with the support of Google maps service, uses the free API which is offered by Google maps and its features of openness, ease of use, sharing characteristics, highresolution images to design and implement the surrounding transaction plotting and management system based on the web development technology of ASP.NET, C#, Ajax. The system can provide decision support for government policy makers as well as diplomatic staff's real-time plotting and sharing of surrounding information. The practice has proved that the system has good usability and strong real-time.
Sand, Olivier; Thomas-Chollier, Morgane; Vervisch, Eric; van Helden, Jacques
2008-01-01
This protocol shows how to access the Regulatory Sequence Analysis Tools (RSAT) via a programmatic interface in order to automate the analysis of multiple data sets. We describe the steps for writing a Perl client that connects to the RSAT Web services and implements a workflow to discover putative cis-acting elements in promoters of gene clusters. In the presented example, we apply this workflow to lists of transcription factor target genes resulting from ChIP-chip experiments. For each factor, the protocol predicts the binding motifs by detecting significantly overrepresented hexanucleotides in the target promoters and generates a feature map that displays the positions of putative binding sites along the promoter sequences. This protocol is addressed to bioinformaticians and biologists with programming skills (notions of Perl). Running time is approximately 6 min on the example data set.
Cleanups In My Community (CIMC) - Brownfields Grant Jurisdictions, National Layer
This data layer provides access to Brownfields Grant Jurisdictions as part of the CIMC web service. The data represent polygonal boundaries that show different types of grants. Only properties benefiting from EPA Brownfields grant funding and technical assistance appear in Cleanups in My Community. There are different types of grants and each grant covers a specific area of geography. Grant areas can overlap, and often do. On the map, Brownfields jurisdictions will be shown as colored boundaries. Grant Jurisdictions have their own reports and fact sheet. For more information on Brownfields grants, see Brownfields Grants and Funding at https://www.epa.gov/brownfields/types-brownfields-grant-funding.The CIMC web service was initially published in 2013, but the data are updated on the 18th of each month. The full schedule for data updates in CIMC is located here: https://iaspub.epa.gov/enviro/data_update_v2.
TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment
NASA Astrophysics Data System (ADS)
Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano
2016-04-01
Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an interface supporting Web-based GIS functionalities, making the model accessible through the World Wide Web. Furthermore, WebGIS technology allows georeferenced model input data and simulation results to be produced, managed, displayed and processed in a unique and intuitive working environment. Thanks to its large flexibility, TRENT2D WG was equipped also with a BUWAL-type procedure (Heinimann et al., 1998) to assess and map debris-flow hazard. In this way, model results can be used straightforwardly as input data of the hazard-mapping procedure, avoiding work fragmentation and taking wide advantage of the functionalities offered by WebGIS technology. TRENT2D WG is intended to become a reliable tool for researchers, practitioners and stakeholders, supporting modelling and hazard mapping effectively and encouraging connections between the research field and professional needs at a working scale.
EnviroAtlas -Pittsburgh, PA- One Meter Resolution Urban Land Cover Data (2010)
The EnviroAtlas Pittsburgh, PA land cover map was generated from United States Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) four band (red, green, blue, and near infrared) aerial photography at 1 m spatial resolution. Imagery was collected on multiple dates in June 2010. Five land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, and grass and herbaceous non-woody vegetation. An accuracy assessment of 500 completely random and 81 stratified random points yielded an overall accuracy of 86.57 percent. The area mapped is defined by the US Census Bureau's 2010 Urban Statistical Area for Pittsburgh, PA. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).