A brief introduction to web-based genome browsers.
Wang, Jun; Kong, Lei; Gao, Ge; Luo, Jingchu
2013-03-01
Genome browser provides a graphical interface for users to browse, search, retrieve and analyze genomic sequence and annotation data. Web-based genome browsers can be classified into general genome browsers with multiple species and species-specific genome browsers. In this review, we attempt to give an overview for the main functions and features of web-based genome browsers, covering data visualization, retrieval, analysis and customization. To give a brief introduction to the multiple-species genome browser, we describe the user interface and main functions of the Ensembl and UCSC genome browsers using the human alpha-globin gene cluster as an example. We further use the MSU and the Rice-Map genome browsers to show some special features of species-specific genome browser, taking a rice transcription factor gene OsSPL14 as an example.
Setting Up the JBrowse Genome Browser
Skinner, Mitchell E; Holmes, Ian H
2010-01-01
JBrowse is a web-based tool for visualizing genomic data. Unlike most other web-based genome browsers, JBrowse exploits the capabilities of the user's web browser to make scrolling and zooming fast and smooth. It supports the browsers used by almost all internet users, and is relatively simple to install. JBrowse can utilize multiple types of data in a variety of common genomic data formats, including genomic feature data in bioperl databases, GFF files, and BED files, and quantitative data in wiggle files. This unit describes how to obtain the JBrowse software, set it up on a Linux or Mac OS X computer running as a web server and incorporate genome annotation data from multiple sources into JBrowse. After completing the protocols described in this unit, the reader will have a web site that other users can visit to browse the genomic data. PMID:21154710
Genome Maps, a new generation genome browser.
Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín
2013-07-01
Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.
Genome Maps, a new generation genome browser
Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín
2013-01-01
Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955
phiGENOME: an integrative navigation throughout bacteriophage genomes.
Stano, Matej; Klucar, Lubos
2011-11-01
phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.
D3GB: An Interactive Genome Browser for R, Python, and WordPress.
Barrios, David; Prieto, Carlos
2017-05-01
Genome browsers are useful not only for showing final results but also for improving analysis protocols, testing data quality, and generating result drafts. Its integration in analysis pipelines allows the optimization of parameters, which leads to better results. New developments that facilitate the creation and utilization of genome browsers could contribute to improving analysis results and supporting the quick visualization of genomic data. D3 Genome Browser is an interactive genome browser that can be easily integrated in analysis protocols and shared on the Web. It is distributed as an R package, a Python module, and a WordPress plugin to facilitate its integration in pipelines and the utilization of platform capabilities. It is compatible with popular data formats such as GenBank, GFF, BED, FASTA, and VCF, and enables the exploration of genomic data with a Web browser.
Web Apollo: a web-based genomic annotation editing platform.
Lee, Eduardo; Helt, Gregg A; Reese, Justin T; Munoz-Torres, Monica C; Childers, Chris P; Buels, Robert M; Stein, Lincoln; Holmes, Ian H; Elsik, Christine G; Lewis, Suzanna E
2013-08-30
Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world.
Web Apollo: a web-based genomic annotation editing platform
2013-01-01
Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world. PMID:24000942
The Genomic HyperBrowser: an analysis web server for genome-scale data
Sandve, Geir K.; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K.; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalaš, Matúš; Lien, Tonje; Rye, Morten B.; Frigessi, Arnoldo; Hovig, Eivind
2013-01-01
The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome. PMID:23632163
The Genomic HyperBrowser: an analysis web server for genome-scale data.
Sandve, Geir K; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalas, Matús; Lien, Tonje; Rye, Morten B; Frigessi, Arnoldo; Hovig, Eivind
2013-07-01
The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome.
Gobe: an interactive, web-based tool for comparative genomic visualization.
Pedersen, Brent S; Tang, Haibao; Freeling, Michael
2011-04-01
Gobe is a web-based tool for viewing comparative genomic data. It supports viewing multiple genomic regions simultaneously. Its simple text format and flash-based rendering make it an interactive, exploratory research tool. Gobe can be used without installation through our web service, or downloaded and customized with stylesheets and javascript callback functions. Gobe is a flash application that runs in all modern web-browsers. The full source-code, including that for the online web application is available under the MIT license at: http://github.com/brentp/gobe. Sample applications are hosted at http://try-gobe.appspot.com/ and http://synteny.cnr.berkeley.edu/gobe-app/.
Choosing a genome browser for a Model Organism Database: surveying the Maize community
Sen, Taner Z.; Harper, Lisa C.; Schaeffer, Mary L.; Andorf, Carson M.; Seigfried, Trent E.; Campbell, Darwin A.; Lawrence, Carolyn J.
2010-01-01
As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly. Database URL: http://gbrowse.maizegdb.org/ PMID:20627860
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Comparative analysis and visualization of multiple collinear genomes
2012-01-01
Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897
Using GBrowse 2.0 to visualize and share next-generation sequence data
2013-01-01
GBrowse is a mature web-based genome browser that is suitable for deployment on both public and private web sites. It supports most of genome browser features, including qualitative and quantitative (wiggle) tracks, track uploading, track sharing, interactive track configuration, semantic zooming and limited smooth track panning. As of version 2.0, GBrowse supports next-generation sequencing (NGS) data by providing for the direct display of SAM and BAM sequence alignment files. SAM/BAM tracks provide semantic zooming and support both local and remote data sources. This article provides step-by-step instructions for configuring GBrowse to display NGS data. PMID:23376193
pileup.js: a JavaScript library for interactive and in-browser visualization of genomic data.
Vanderkam, Dan; Aksoy, B Arman; Hodes, Isaac; Perrone, Jaclyn; Hammerbacher, Jeff
2016-08-01
P: ileup.js is a new browser-based genome viewer. It is designed to facilitate the investigation of evidence for genomic variants within larger web applications. It takes advantage of recent developments in the JavaScript ecosystem to provide a modular, reliable and easily embedded library. The code and documentation for pileup.js is publicly available at https://github.com/hammerlab/pileup.js under the Apache 2.0 license. correspondence@hammerlab.org. © The Author 2016. Published by Oxford University Press.
Navigating protected genomics data with UCSC Genome Browser in a Box.
Haeussler, Maximilian; Raney, Brian J; Hinrichs, Angie S; Clawson, Hiram; Zweig, Ann S; Karolchik, Donna; Casper, Jonathan; Speir, Matthew L; Haussler, David; Kent, W James
2015-03-01
Genome Browser in a Box (GBiB) is a small virtual machine version of the popular University of California Santa Cruz (UCSC) Genome Browser that can be run on a researcher's own computer. Once GBiB is installed, a standard web browser is used to access the virtual server and add personal data files from the local hard disk. Annotation data are loaded on demand through the Internet from UCSC or can be downloaded to the local computer for faster access. Software downloads and installation instructions are freely available for non-commercial use at https://genome-store.ucsc.edu/. GBiB requires the installation of open-source software VirtualBox, available for all major operating systems, and the UCSC Genome Browser, which is open source and free for non-commercial use. Commercial use of GBiB and the Genome Browser requires a license (http://genome.ucsc.edu/license/). © The Author 2014. Published by Oxford University Press.
QMachine: commodity supercomputing in web browsers.
Wilkinson, Sean R; Almeida, Jonas S
2014-06-09
Ongoing advancements in cloud computing provide novel opportunities in scientific computing, especially for distributed workflows. Modern web browsers can now be used as high-performance workstations for querying, processing, and visualizing genomics' "Big Data" from sources like The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) without local software installation or configuration. The design of QMachine (QM) was driven by the opportunity to use this pervasive computing model in the context of the Web of Linked Data in Biomedicine. QM is an open-sourced, publicly available web service that acts as a messaging system for posting tasks and retrieving results over HTTP. The illustrative application described here distributes the analyses of 20 Streptococcus pneumoniae genomes for shared suffixes. Because all analytical and data retrieval tasks are executed by volunteer machines, few server resources are required. Any modern web browser can submit those tasks and/or volunteer to execute them without installing any extra plugins or programs. A client library provides high-level distribution templates including MapReduce. This stark departure from the current reliance on expensive server hardware running "download and install" software has already gathered substantial community interest, as QM received more than 2.2 million API calls from 87 countries in 12 months. QM was found adequate to deliver the sort of scalable bioinformatics solutions that computation- and data-intensive workflows require. Paradoxically, the sandboxed execution of code by web browsers was also found to enable them, as compute nodes, to address critical privacy concerns that characterize biomedical environments.
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web.
Miller, Chase A; Anthony, Jon; Meyer, Michelle M; Marth, Gabor
2013-02-01
High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported.
mod_bio: Apache modules for Next-Generation sequencing data.
Lindenbaum, Pierre; Redon, Richard
2015-01-01
We describe mod_bio, a set of modules for the Apache HTTP server that allows the users to access and query fastq, tabix, fasta and bam files through a Web browser. Those data are made available in plain text, HTML, XML, JSON and JSON-P. A javascript-based genome browser using the JSON-P communication technique is provided as an example of cross-domain Web service. https://github.com/lindenb/mod_bio. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rice-Map: a new-generation rice genome browser.
Wang, Jun; Kong, Lei; Zhao, Shuqi; Zhang, He; Tang, Liang; Li, Zhe; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge
2011-03-30
The concurrent release of rice genome sequences for two subspecies (Oryza sativa L. ssp. japonica and Oryza sativa L. ssp. indica) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively. More than one hundred annotation tracks (81 for japonica and 82 for indica) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria. Rice-Map delivers abundant up-to-date japonica and indica annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at http://www.ricemap.org/, with all data available for free downloading.
A web-based genome browser for 'SNP-aware' assay design
USDA-ARS?s Scientific Manuscript database
Human and animal genomes contain an abundance of single nucleotide polymorphisms (SNPs) that are useful for genetic testing. However, the relatively large number of SNPs present in diverse populations can pose serious problems when designing assays. It is important to “mask” some SNP positions so ...
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-09-18
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-01-01
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. PMID:25990738
Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web
Miller, Chase A.; Anthony, Jon; Meyer, Michelle M.; Marth, Gabor
2013-01-01
Motivation: High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Results: Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Availability and implementation: Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported. Contact: gabor.marth@bc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23172864
Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context
Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi
2007-01-01
Background Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. Results lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. Conclusion lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired. PMID:17877794
Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context.
Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi
2007-09-18
Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.
Designing, Implementing, and Evaluating Secure Web Browsers
ERIC Educational Resources Information Center
Grier, Christopher L.
2009-01-01
Web browsers are plagued with vulnerabilities, providing hackers with easy access to computer systems using browser-based attacks. Efforts that retrofit existing browsers have had limited success since modern browsers are not designed to withstand attack. To enable more secure web browsing, we design and implement new web browsers from the ground…
ABrowse--a customizable next-generation genome browser framework.
Kong, Lei; Wang, Jun; Zhao, Shuqi; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge
2012-01-05
With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome has been built at http://arabidopsis.cbi.edu.cn/.
Park, Byeonghyeok; Baek, Min-Jeong; Min, Byoungnam; Choi, In-Geol
2017-09-01
Genome annotation is a primary step in genomic research. To establish a light and portable prokaryotic genome annotation pipeline for use in individual laboratories, we developed a Shiny app package designated as "P-CAPS" (Prokaryotic Contig Annotation Pipeline Server). The package is composed of R and Python scripts that integrate publicly available annotation programs into a server application. P-CAPS is not only a browser-based interactive application but also a distributable Shiny app package that can be installed on any personal computer. The final annotation is provided in various standard formats and is summarized in an R markdown document. Annotation can be visualized and examined with a public genome browser. A benchmark test showed that the annotation quality and completeness of P-CAPS were reliable and compatible with those of currently available public pipelines.
QMachine: commodity supercomputing in web browsers
2014-01-01
Background Ongoing advancements in cloud computing provide novel opportunities in scientific computing, especially for distributed workflows. Modern web browsers can now be used as high-performance workstations for querying, processing, and visualizing genomics’ “Big Data” from sources like The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) without local software installation or configuration. The design of QMachine (QM) was driven by the opportunity to use this pervasive computing model in the context of the Web of Linked Data in Biomedicine. Results QM is an open-sourced, publicly available web service that acts as a messaging system for posting tasks and retrieving results over HTTP. The illustrative application described here distributes the analyses of 20 Streptococcus pneumoniae genomes for shared suffixes. Because all analytical and data retrieval tasks are executed by volunteer machines, few server resources are required. Any modern web browser can submit those tasks and/or volunteer to execute them without installing any extra plugins or programs. A client library provides high-level distribution templates including MapReduce. This stark departure from the current reliance on expensive server hardware running “download and install” software has already gathered substantial community interest, as QM received more than 2.2 million API calls from 87 countries in 12 months. Conclusions QM was found adequate to deliver the sort of scalable bioinformatics solutions that computation- and data-intensive workflows require. Paradoxically, the sandboxed execution of code by web browsers was also found to enable them, as compute nodes, to address critical privacy concerns that characterize biomedical environments. PMID:24913605
STAR: an integrated solution to management and visualization of sequencing data.
Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei
2013-12-15
Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.
GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes.
Hallin, Peter F; Stærfeldt, Hans-Henrik; Rotenberg, Eva; Binnewies, Tim T; Benham, Craig J; Ussery, David W
2009-09-25
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.
GenColors: annotation and comparative genomics of prokaryotes made easy.
Romualdi, Alessandro; Felder, Marius; Rose, Dominic; Gausmann, Ulrike; Schilhabel, Markus; Glöckner, Gernot; Platzer, Matthias; Sühnel, Jürgen
2007-01-01
GenColors (gencolors.fli-leibniz.de) is a new web-based software/database system aimed at an improved and accelerated annotation of prokaryotic genomes considering information on related genomes and making extensive use of genome comparison. It offers a seamless integration of data from ongoing sequencing projects and annotated genomic sequences obtained from GenBank. A variety of export/import filters manages an effective data flow from sequence assembly and manipulation programs (e.g., GAP4) to GenColors and back as well as to standard GenBank file(s). The genome comparison tools include best bidirectional hits, gene conservation, syntenies, and gene core sets. Precomputed UniProt matches allow annotation and analysis in an effective manner. In addition to these analysis options, base-specific quality data (coverage and confidence) can also be handled if available. The GenColors system can be used both for annotation purposes in ongoing genome projects and as an analysis tool for finished genomes. GenColors comes in two types, as dedicated genome browsers and as the Jena Prokaryotic Genome Viewer (JPGV). Dedicated genome browsers contain genomic information on a set of related genomes and offer a large number of options for genome comparison. The system has been efficiently used in the genomic sequencing of Borrelia garinii and is currently applied to various ongoing genome projects on Borrelia, Legionella, Escherichia, and Pseudomonas genomes. One of these dedicated browsers, the Spirochetes Genome Browser (sgb.fli-leibniz.de) with Borrelia, Leptospira, and Treponema genomes, is freely accessible. The others will be released after finalization of the corresponding genome projects. JPGV (jpgv.fli-leibniz.de) offers information on almost all finished bacterial genomes, as compared to the dedicated browsers with reduced genome comparison functionality, however. As of January 2006, this viewer includes 632 genomic elements (e.g., chromosomes and plasmids) of 293 species. The system provides versatile quick and advanced search options for all currently known prokaryotic genomes and generates circular and linear genome plots. Gene information sheets contain basic gene information, database search options, and links to external databases. GenColors is also available on request for local installation.
Introduction to the fathead minnow genome browser and ...
Ab initio gene prediction and evidence alignment were used to produce the first annotations for the fathead minnow SOAPdenovo genome assembly. Additionally, a genome browser hosted at genome.setac.org provides simplified access to the annotation data in context with fathead minnow genomic sequence. This work is meant to extend the utility of fathead minnow genome as a resource and enable the continued development of this species as a model organism. The fathead minnow (Pimephales promelas) is a laboratory model organism widely used in regulatory toxicity testing and ecotoxicology research. Despite, the wealth of toxicological data for this organism, until recently genome scale information was lacking for the species, which limited the utility of the species for pathway-based toxicity testing and research. As part of a EPA Pathfinder Innovation Project, next generation sequencing was applied to generate a draft genome assembly, which was published in 2016. However, application of those genome-scale sequencing resources was still limited by the lack of available gene annotations for fathead minnow. Here we report on development of a first generation genome annotation for fathead minnow and the dissemination of that information through a web-based browser that makes it easy to search for genes of interest, extract the corresponding sequence, identify intron and exon boundaries and regulatory regions, and align the computationally predicted genes with other supporti
BigWig and BigBed: enabling browsing of large distributed datasets.
Kent, W J; Zweig, A S; Barber, G; Hinrichs, A S; Karolchik, D
2010-09-01
BigWig and BigBed files are compressed binary indexed files containing data at several resolutions that allow the high-performance display of next-generation sequencing experiment results in the UCSC Genome Browser. The visualization is implemented using a multi-layered software approach that takes advantage of specific capabilities of web-based protocols and Linux and UNIX operating systems files, R trees and various indexing and compression tricks. As a result, only the data needed to support the current browser view is transmitted rather than the entire file, enabling fast remote access to large distributed data sets. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code for the creation and visualization software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. The UCSC Genome Browser is available at http://genome.ucsc.edu.
STAR: an integrated solution to management and visualization of sequencing data
Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei
2013-01-01
Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702
ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.
Morota, Gota
2017-12-20
Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.
Information-Flow-Based Access Control for Web Browsers
NASA Astrophysics Data System (ADS)
Yoshihama, Sachiko; Tateishi, Takaaki; Tabuchi, Naoshi; Matsumoto, Tsutomu
The emergence of Web 2.0 technologies such as Ajax and Mashup has revealed the weakness of the same-origin policy[1], the current de facto standard for the Web browser security model. We propose a new browser security model to allow fine-grained access control in the client-side Web applications for secure mashup and user-generated contents. We propose a browser security model that is based on information-flow-based access control (IBAC) to overcome the dynamic nature of the client-side Web applications and to accurately determine the privilege of scripts in the event-driven programming model.
BrainBrowser: distributed, web-based neurological data visualization.
Sherif, Tarek; Kassis, Nicolas; Rousseau, Marc-Étienne; Adalat, Reza; Evans, Alan C
2014-01-01
Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used to analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible.
BrainBrowser: distributed, web-based neurological data visualization
Sherif, Tarek; Kassis, Nicolas; Rousseau, Marc-Étienne; Adalat, Reza; Evans, Alan C.
2015-01-01
Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used to analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible. PMID:25628562
Cytoscape: the network visualization tool for GenomeSpace workflows.
Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P
2014-01-01
Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.
Cytoscape: the network visualization tool for GenomeSpace workflows
Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.
2014-01-01
Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537
Schofield, E C; Carver, T; Achuthan, P; Freire-Pritchett, P; Spivakov, M; Todd, J A; Burren, O S
2016-08-15
Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets. CHiCP is freely accessible from www.chicp.org and supports most major HTML5 compliant web browsers. Full source code and installation instructions are available from http://github.com/D-I-L/django-chicp ob219@cam.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved.
G2S: a web-service for annotating genomic variants on 3D protein structures.
Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong
2018-06-01
Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that supports programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online.
The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes.
Kapopoulou, Adamandia; Lew, Jocelyne M; Cole, Stewart T
2011-01-01
In this paper, we present the MycoBrowser portal (http://mycobrowser.epfl.ch/), a resource that provides both in silico generated and manually reviewed information within databases dedicated to the complete genomes of Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium marinum and Mycobacterium smegmatis. A central component of MycoBrowser is TubercuList (http://tuberculist.epfl.ch), which has recently benefited from a new data management system and web interface. These improvements were extended to all MycoBrowser databases. We provide an overview of the functionalities available and the different ways of interrogating the data then discuss how both the new information and the latest features are helping the mycobacterial research communities. Copyright © 2010 Elsevier Ltd. All rights reserved.
Enabling interspecies epigenomic comparison with CEpBrowser.
Cao, Xiaoyi; Zhong, Sheng
2013-05-01
We developed the Comparative Epigenome Browser (CEpBrowser) to allow the public to perform multi-species epigenomic analysis. The web-based CEpBrowser integrates, manages and visualizes sequencing-based epigenomic datasets. Five key features were developed to maximize the efficiency of interspecies epigenomic comparisons. CEpBrowser is a web application implemented with PHP, MySQL, C and Apache. URL: http://www.cepbrowser.org/.
JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures
Dong, Min; Graham, Mitchell; Yadav, Nehul
2017-01-01
Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416
GenomeD3Plot: a library for rich, interactive visualizations of genomic data in web applications.
Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L
2015-10-15
A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations. GenomeD3Plot is being utilized in the recently released Islandviewer 3 (www.pathogenomics.sfu.ca/islandviewer/) to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general. GenomeD3Plot is licensed under the GNU-GPL v3 at https://github.com/brinkmanlab/GenomeD3Plot/. brinkman@sfu.ca. © The Author 2015. Published by Oxford University Press.
HotJava: Sun's Animated Interactive World Wide Web Browser for the Internet.
ERIC Educational Resources Information Center
Machovec, George S., Ed.
1995-01-01
Examines HotJava and Java, World Wide Web technology for use on the Internet. HotJava, an interactive, animated Web browser, based on the object-oriented Java programming language, is different from HTML-based browsers such as Netscape. Its client/server design does not understand Internet protocols but can dynamically find what it needs to know.…
Ajax and Firefox: New Web Applications and Browsers
ERIC Educational Resources Information Center
Godwin-Jones, Bob
2005-01-01
Alternative browsers are gaining significant market share, and both Apple and Microsoft are releasing OS upgrades which portend some interesting changes in Web development. Of particular interest for language learning professionals may be new developments in the area of Web browser based applications, particularly using an approach dubbed "Ajax."…
Reaction time effects in lab- versus Web-based research: Experimental evidence.
Hilbig, Benjamin E
2016-12-01
Although Web-based research is now commonplace, it continues to spur skepticism from reviewers and editors, especially whenever reaction times are of primary interest. Such persistent preconceptions are based on arguments referring to increased variation, the limits of certain software and technologies, and a noteworthy lack of comparisons (between Web and lab) in fully randomized experiments. To provide a critical test, participants were randomly assigned to complete a lexical decision task either (a) in the lab using standard experimental software (E-Prime), (b) in the lab using a browser-based version (written in HTML and JavaScript), or (c) via the Web using the same browser-based version. The classical word frequency effect was typical in size and corresponded to a very large effect in all three conditions. There was no indication that the Web- or browser-based data collection was in any way inferior. In fact, if anything, a larger effect was obtained in the browser-based conditions than in the condition relying on standard experimental software. No differences between Web and lab (within the browser-based conditions) could be observed, thus disconfirming any substantial influence of increased technical or situational variation. In summary, the present experiment contradicts the still common preconception that reaction time effects of only a few hundred milliseconds cannot be detected in Web experiments.
UCbase 2.0: ultraconserved sequences database (2014 update)
Lomonaco, Vincenzo; Martoglia, Riccardo; Mandreoli, Federica; Anderlucci, Laura; Emmett, Warren; Bicciato, Silvio; Taccioli, Cristian
2014-01-01
UCbase 2.0 (http://ucbase.unimore.it) is an update, extension and evolution of UCbase, a Web tool dedicated to the analysis of ultraconserved sequences (UCRs). UCRs are 481 sequences >200 bases sharing 100% identity among human, mouse and rat genomes. They are frequently located in genomic regions known to be involved in cancer or differentially expressed in human leukemias and carcinomas. UCbase 2.0 is a platform-independent Web resource that includes the updated version of the human genome annotation (hg19), information linking disorders to chromosomal coordinates based on the Systematized Nomenclature of Medicine classification, a query tool to search for Single Nucleotide Polymorphisms (SNPs) and a new text box to directly interrogate the database using a MySQL interface. To facilitate the interactive visual interpretation of UCR chromosomal positioning, UCbase 2.0 now includes a graph visualization interface directly linked to UCSC genome browser. Database URL: http://ucbase.unimore.it PMID:24951797
Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine
Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.
2016-01-01
We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564
Evaluating Web accessibility at different processing phases
NASA Astrophysics Data System (ADS)
Fernandes, N.; Lopes, R.; Carriço, L.
2012-09-01
Modern Web sites use several techniques (e.g. DOM manipulation) that allow for the injection of new content into their Web pages (e.g. AJAX), as well as manipulation of the HTML DOM tree. This has the consequence that the Web pages that are presented to users (i.e. after browser processing) are different from the original structure and content that is transmitted through HTTP communication (i.e. after browser processing). This poses a series of challenges for Web accessibility evaluation, especially on automated evaluation software. This article details an experimental study designed to understand the differences posed by accessibility evaluation after Web browser processing. We implemented a Javascript-based evaluator, QualWeb, that can perform WCAG 2.0 based accessibility evaluations in the two phases of browser processing. Our study shows that, in fact, there are considerable differences between the HTML DOM trees in both phases, which have the consequence of having distinct evaluation results. We discuss the impact of these results in the light of the potential problems that these differences can pose to designers and developers that use accessibility evaluators that function before browser processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, Patrick; Lo, Chien-Chi; Li, Po-E
EDGE bioinformatics was developed to help biologists process Next Generation Sequencing data (in the form of raw FASTQ files), even if they have little to no bioinformatics expertise. EDGE is a highly integrated and interactive web-based platform that is capable of running many of the standard analyses that biologists require for viral, bacterial/archaeal, and metagenomic samples. EDGE provides the following analytical workflows: quality trimming and host removal, assembly and annotation, comparisons against known references, taxonomy classification of reads and contigs, whole genome SNP-based phylogenetic analysis, and PCR analysis. EDGE provides an intuitive web-based interface for user input, allows users tomore » visualize and interact with selected results (e.g. JBrowse genome browser), and generates a final detailed PDF report. Results in the form of tables, text files, graphic files, and PDFs can be downloaded. A user management system allows tracking of an individual’s EDGE runs, along with the ability to share, post publicly, delete, or archive their results.« less
Khan, Mohd Shoaib; Gupta, Amit Kumar; Kumar, Manoj
2016-01-01
To develop a computational resource for viral epigenomic methylation profiles from diverse diseases. Methylation patterns of Epstein-Barr virus and hepatitis B virus genomic regions are provided as web platform developed using open source Linux-Apache-MySQL-PHP (LAMP) bundle: programming and scripting languages, that is, HTML, JavaScript and PERL. A comprehensive and integrated web resource ViralEpi v1.0 is developed providing well-organized compendium of methylation events and statistical analysis associated with several diseases. Additionally, it also facilitates 'Viral EpiGenome Browser' for user-affable browsing experience using JavaScript-based JBrowse. This web resource would be helpful for research community engaged in studying epigenetic biomarkers for appropriate prognosis and diagnosis of diseases and its various stages.
ERIC Educational Resources Information Center
Shen, Siu-Tsen
2016-01-01
This paper presents an ongoing study of the development of a customizable web browser information organization and management system, which the author has named Lexicon Sextant (LS). LS is a user friendly, graphical web based add-on to the latest generation of web browsers, such as Google Chrome, making it easier and more intuitive to store and…
NASA Astrophysics Data System (ADS)
Navarro-Arribas, Guillermo; Garcia-Alfaro, Joaquin
Web browsers are becoming the universal interface to reach applications and services related with these systems. Different browsing contexts may be required in order to reach them, e.g., use of VPN tunnels, corporate proxies, anonymisers, etc. By browsing context we mean how the user browsers the Web, including mainly the concrete configuration of its browser. When the context of the browser changes, its security requirements also change. In this work, we present the use of authorisation policies to automatise the process of controlling the resources of a Web browser when its context changes. The objective of our proposal is oriented towards easing the adaptation to the security requirements of the new context and enforce them in the browser without the need for user intervention. We present a concrete application of our work as a plug-in for the adaption of security requirements in Mozilla/Firefox browser when a context of anonymous navigation through the Tor network is enabled.
NEIBank: Genomics and bioinformatics resources for vision research
Peterson, Katherine; Gao, James; Buchoff, Patee; Jaworski, Cynthia; Bowes-Rickman, Catherine; Ebright, Jessica N.; Hauser, Michael A.; Hoover, David
2008-01-01
NEIBank is an integrated resource for genomics and bioinformatics in vision research. It includes expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. PMID:18648525
svviz: a read viewer for validating structural variants.
Spies, Noah; Zook, Justin M; Salit, Marc; Sidow, Arend
2015-12-15
Visualizing read alignments is the most effective way to validate candidate structural variants (SVs) with existing data. We present svviz, a sequencing read visualizer for SVs that sorts and displays only reads relevant to a candidate SV. svviz works by searching input bam(s) for potentially relevant reads, realigning them against the inferred sequence of the putative variant allele as well as the reference allele and identifying reads that match one allele better than the other. Separate views of the two alleles are then displayed in a scrollable web browser view, enabling a more intuitive visualization of each allele, compared with the single reference genome-based view common to most current read browsers. The browser view facilitates examining the evidence for or against a putative variant, estimating zygosity, visualizing affected genomic annotations and manual refinement of breakpoints. svviz supports data from most modern sequencing platforms. svviz is implemented in python and freely available from http://svviz.github.io/. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
SoyFN: a knowledge database of soybean functional networks.
Xu, Yungang; Guo, Maozu; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Many databases for soybean genomic analysis have been built and made publicly available, but few of them contain knowledge specifically targeting the omics-level gene-gene, gene-microRNA (miRNA) and miRNA-miRNA interactions. Here, we present SoyFN, a knowledge database of soybean functional gene networks and miRNA functional networks. SoyFN provides user-friendly interfaces to retrieve, visualize, analyze and download the functional networks of soybean genes and miRNAs. In addition, it incorporates much information about KEGG pathways, gene ontology annotations and 3'-UTR sequences as well as many useful tools including SoySearch, ID mapping, Genome Browser, eFP Browser and promoter motif scan. SoyFN is a schema-free database that can be accessed as a Web service from any modern programming language using a simple Hypertext Transfer Protocol call. The Web site is implemented in Java, JavaScript, PHP, HTML and Apache, with all major browsers supported. We anticipate that this database will be useful for members of research communities both in soybean experimental science and bioinformatics. Database URL: http://nclab.hit.edu.cn/SoyFN.
An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People.
Martinez-Cagigal, Victor; Gomez-Pilar, Javier; Alvarez, Daniel; Hornero, Roberto
2017-08-01
This paper presents an electroencephalographic (EEG) P300-based brain-computer interface (BCI) Internet browser. The system uses the "odd-ball" row-col paradigm for generating the P300 evoked potentials on the scalp of the user, which are immediately processed and translated into web browser commands. There were previous approaches for controlling a BCI web browser. However, to the best of our knowledge, none of them was focused on an assistive context, failing to test their applications with a suitable number of end users. In addition, all of them were synchronous applications, where it was necessary to introduce a "read-mode" command in order to avoid a continuous command selection. Thus, the aim of this study is twofold: 1) to test our web browser with a population of multiple sclerosis (MS) patients in order to assess the usefulness of our proposal to meet their daily communication needs; and 2) to overcome the aforementioned limitation by adding a threshold that discerns between control and non-control states, allowing the user to calmly read the web page without undesirable selections. The browser was tested with sixteen MS patients and five healthy volunteers. Both quantitative and qualitative metrics were obtained. MS participants reached an average accuracy of 84.14%, whereas 95.75% was achieved by control subjects. Results show that MS patients can successfully control the BCI web browser, improving their personal autonomy.
WebVR: an interactive web browser for virtual environments
NASA Astrophysics Data System (ADS)
Barsoum, Emad; Kuester, Falko
2005-03-01
The pervasive nature of web-based content has lead to the development of applications and user interfaces that port between a broad range of operating systems and databases, while providing intuitive access to static and time-varying information. However, the integration of this vast resource into virtual environments has remained elusive. In this paper we present an implementation of a 3D Web Browser (WebVR) that enables the user to search the internet for arbitrary information and to seamlessly augment this information into virtual environments. WebVR provides access to the standard data input and query mechanisms offered by conventional web browsers, with the difference that it generates active texture-skins of the web contents that can be mapped onto arbitrary surfaces within the environment. Once mapped, the corresponding texture functions as a fully integrated web-browser that will respond to traditional events such as the selection of links or text input. As a result, any surface within the environment can be turned into a web-enabled resource that provides access to user-definable data. In order to leverage from the continuous advancement of browser technology and to support both static as well as streamed content, WebVR uses ActiveX controls to extract the desired texture skin from industry strength browsers, providing a unique mechanism for data fusion and extensibility.
KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella.
Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki
2013-07-09
The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with useful annotation information with easy-to-use web interfaces, which helps researchers to efficiently search for target sequences such as insect resistance-related genes. KONAGAbase will be continuously updated and additional genomic/transcriptomic resources and analysis tools will be provided for further efficient analysis of the mechanism of insecticide resistance and the development of effective insecticides with a novel mode of action for DBM.
UCbase 2.0: ultraconserved sequences database (2014 update).
Lomonaco, Vincenzo; Martoglia, Riccardo; Mandreoli, Federica; Anderlucci, Laura; Emmett, Warren; Bicciato, Silvio; Taccioli, Cristian
2014-01-01
UCbase 2.0 (http://ucbase.unimore.it) is an update, extension and evolution of UCbase, a Web tool dedicated to the analysis of ultraconserved sequences (UCRs). UCRs are 481 sequences >200 bases sharing 100% identity among human, mouse and rat genomes. They are frequently located in genomic regions known to be involved in cancer or differentially expressed in human leukemias and carcinomas. UCbase 2.0 is a platform-independent Web resource that includes the updated version of the human genome annotation (hg19), information linking disorders to chromosomal coordinates based on the Systematized Nomenclature of Medicine classification, a query tool to search for Single Nucleotide Polymorphisms (SNPs) and a new text box to directly interrogate the database using a MySQL interface. To facilitate the interactive visual interpretation of UCR chromosomal positioning, UCbase 2.0 now includes a graph visualization interface directly linked to UCSC genome browser. Database URL: http://ucbase.unimore.it. © The Author(s) 2014. Published by Oxford University Press.
Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data.
Robinson, James T; Turner, Douglass; Durand, Neva C; Thorvaldsdóttir, Helga; Mesirov, Jill P; Aiden, Erez Lieberman
2018-02-28
Contact mapping experiments such as Hi-C explore how genomes fold in 3D. Here, we introduce Juicebox.js, a cloud-based web application for exploring the resulting datasets. Like the original Juicebox application, Juicebox.js allows users to zoom in and out of such datasets using an interface similar to Google Earth. Juicebox.js also has many features designed to facilitate data reproducibility and sharing. Furthermore, Juicebox.js encodes the exact state of the browser in a shareable URL. Creating a public browser for a new Hi-C dataset does not require coding and can be accomplished in under a minute. The web app also makes it possible to create interactive figures online that can complement or replace ordinary journal figures. When combined with Juicer, this makes the entire process of data analysis transparent, insofar as every step from raw reads to published figure is publicly available as open source code. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
iSeq: Web-Based RNA-seq Data Analysis and Visualization.
Zhang, Chao; Fan, Caoqi; Gan, Jingbo; Zhu, Ping; Kong, Lei; Li, Cheng
2018-01-01
Transcriptome sequencing (RNA-seq) is becoming a standard experimental methodology for genome-wide characterization and quantification of transcripts at single base-pair resolution. However, downstream analysis of massive amount of sequencing data can be prohibitively technical for wet-lab researchers. A functionally integrated and user-friendly platform is required to meet this demand. Here, we present iSeq, an R-based Web server, for RNA-seq data analysis and visualization. iSeq is a streamlined Web-based R application under the Shiny framework, featuring a simple user interface and multiple data analysis modules. Users without programming and statistical skills can analyze their RNA-seq data and construct publication-level graphs through a standardized yet customizable analytical pipeline. iSeq is accessible via Web browsers on any operating system at http://iseq.cbi.pku.edu.cn .
i5k | National Agricultural Library
genome browser, and the Apollo manual curation service. Over 50 arthropod genomes are now part of the i5k (done by Dan Hughes at Baylor) with manual annotations by the research community (done via Web Apollo with manual annotations by the research community (via the Apollo manual annotation software). insects
NASA Astrophysics Data System (ADS)
Parikh, Ashesh; Mehta, Nihal
2015-03-01
Recent advances in internet browser technologies makes it possible to incorporate advanced functionality of a traditional PACS for viewing DICOM medical images on standard web browsers without the need to pre-install any plug-ins, apps or software. We demonstrate some of the capabilities of standard web browsers setting the stage for a cloud-based PACS.
Sealife: a semantic grid browser for the life sciences applied to the study of infectious diseases.
Schroeder, Michael; Burger, Albert; Kostkova, Patty; Stevens, Robert; Habermann, Bianca; Dieng-Kuntz, Rose
2006-01-01
The objective of Sealife is the conception and realisation of a semantic Grid browser for the life sciences, which will link the existing Web to the currently emerging eScience infrastructure. The SeaLife Browser will allow users to automatically link a host of Web servers and Web/Grid services to the Web content he/she is visiting. This will be accomplished using eScience's growing number of Web/Grid Services and its XML-based standards and ontologies. The browser will identify terms in the pages being browsed through the background knowledge held in ontologies. Through the use of Semantic Hyperlinks, which link identified ontology terms to servers and services, the SeaLife Browser will offer a new dimension of context-based information integration. In this paper, we give an overview over the different components of the browser and their interplay. This SeaLife Browser will be demonstrated within three application scenarios in evidence-based medicine, literature & patent mining, and molecular biology, all relating to the study of infectious diseases. The three applications vertically integrate the molecule/cell, the tissue/organ and the patient/population level by covering the analysis of high-throughput screening data for endocytosis (the molecular entry pathway into the cell), the expression of proteins in the spatial context of tissue and organs, and a high-level library on infectious diseases designed for clinicians and their patients. For more information see http://www.biote.ctu-dresden.de/sealife.
GenExp: an interactive web-based genomic DAS client with client-side data rendering.
Gel Moreno, Bernat; Messeguer Peypoch, Xavier
2011-01-01
The Distributed Annotation System (DAS) offers a standard protocol for sharing and integrating annotations on biological sequences. There are more than 1000 DAS sources available and the number is steadily increasing. Clients are an essential part of the DAS system and integrate data from several independent sources in order to create a useful representation to the user. While web-based DAS clients exist, most of them do not have direct interaction capabilities such as dragging and zooming with the mouse. Here we present GenExp, a web based and fully interactive visual DAS client. GenExp is a genome oriented DAS client capable of creating informative representations of genomic data zooming out from base level to complete chromosomes. It proposes a novel approach to genomic data rendering and uses the latest HTML5 web technologies to create the data representation inside the client browser. Thanks to client-side rendering most position changes do not need a network request to the server and so responses to zooming and panning are almost immediate. In GenExp it is possible to explore the genome intuitively moving it with the mouse just like geographical map applications. Additionally, in GenExp it is possible to have more than one data viewer at the same time and to save the current state of the application to revisit it later on. GenExp is a new interactive web-based client for DAS and addresses some of the short-comings of the existing clients. It uses client-side data rendering techniques resulting in easier genome browsing and exploration. GenExp is open source under the GPL license and it is freely available at http://gralggen.lsi.upc.edu/recerca/genexp.
GenExp: An Interactive Web-Based Genomic DAS Client with Client-Side Data Rendering
Gel Moreno, Bernat; Messeguer Peypoch, Xavier
2011-01-01
Background The Distributed Annotation System (DAS) offers a standard protocol for sharing and integrating annotations on biological sequences. There are more than 1000 DAS sources available and the number is steadily increasing. Clients are an essential part of the DAS system and integrate data from several independent sources in order to create a useful representation to the user. While web-based DAS clients exist, most of them do not have direct interaction capabilities such as dragging and zooming with the mouse. Results Here we present GenExp, a web based and fully interactive visual DAS client. GenExp is a genome oriented DAS client capable of creating informative representations of genomic data zooming out from base level to complete chromosomes. It proposes a novel approach to genomic data rendering and uses the latest HTML5 web technologies to create the data representation inside the client browser. Thanks to client-side rendering most position changes do not need a network request to the server and so responses to zooming and panning are almost immediate. In GenExp it is possible to explore the genome intuitively moving it with the mouse just like geographical map applications. Additionally, in GenExp it is possible to have more than one data viewer at the same time and to save the current state of the application to revisit it later on. Conclusions GenExp is a new interactive web-based client for DAS and addresses some of the short-comings of the existing clients. It uses client-side data rendering techniques resulting in easier genome browsing and exploration. GenExp is open source under the GPL license and it is freely available at http://gralggen.lsi.upc.edu/recerca/genexp. PMID:21750706
Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.
Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E
2016-01-04
We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
An optimized web-based approach for collaborative stereoscopic medical visualization
Kaspar, Mathias; Parsad, Nigel M; Silverstein, Jonathan C
2013-01-01
Objective Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration among multiple viewing locations, we developed an open source approach requiring only a standard web browser with no added client-side software. Materials and Methods Our collaborative, web-based, stereoscopic, visualization system, CoWebViz, has been used successfully for the past 2 years at the University of Chicago to teach immersive virtual anatomy classes. It is a server application that streams server-side visualization applications to client front-ends, comprised solely of a standard web browser with no added software. Results We describe optimization considerations, usability, and performance results, which make CoWebViz practical for broad clinical use. We clarify technical advances including: enhanced threaded architecture, optimized visualization distribution algorithms, a wide range of supported stereoscopic presentation technologies, and the salient theoretical and empirical network parameters that affect our web-based visualization approach. Discussion The implementations demonstrate usability and performance benefits of a simple web-based approach for complex clinical visualization scenarios. Using this approach overcomes technical challenges that require third-party web browser plug-ins, resulting in the most lightweight client. Conclusions Compared to special software and hardware deployments, unmodified web browsers enhance remote user accessibility to interactive medical visualization. Whereas local hardware and software deployments may provide better interactivity than remote applications, our implementation demonstrates that a simplified, stable, client approach using standard web browsers is sufficient for high quality three-dimensional, stereoscopic, collaborative and interactive visualization. PMID:23048008
JBrowse: a dynamic web platform for genome visualization and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buels, Robert; Yao, Eric; Diesh, Colin M.
JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a maturemore » web application suitable for genome visualization and analysis.« less
JBrowse: a dynamic web platform for genome visualization and analysis.
Buels, Robert; Yao, Eric; Diesh, Colin M; Hayes, Richard D; Munoz-Torres, Monica; Helt, Gregg; Goodstein, David M; Elsik, Christine G; Lewis, Suzanna E; Stein, Lincoln; Holmes, Ian H
2016-04-12
JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a mature web application suitable for genome visualization and analysis.
Soybean Knowledge Base (SoyKB): a Web Resource for Soybean Translational Genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Trupti; Patil, Kapil; Fitzpatrick, Michael R.
2012-01-17
Background: Soybean Knowledge Base (SoyKB) is a comprehensive all-inclusive web resource for soybean translational genomics. SoyKB is designed to handle the management and integration of soybean genomics, transcriptomics, proteomics and metabolomics data along with annotation of gene function and biological pathway. It contains information on four entities, namely genes, microRNAs, metabolites and single nucleotide polymorphisms (SNPs). Methods: SoyKB has many useful tools such as Affymetrix probe ID search, gene family search, multiple gene/ metabolite search supporting co-expression analysis, and protein 3D structure viewer as well as download and upload capacity for experimental data and annotations. It has four tiers ofmore » registration, which control different levels of access to public and private data. It allows users of certain levels to share their expertise by adding comments to the data. It has a user-friendly web interface together with genome browser and pathway viewer, which display data in an intuitive manner to the soybean researchers, producers and consumers. Conclusions: SoyKB addresses the increasing need of the soybean research community to have a one-stop-shop functional and translational omics web resource for information retrieval and analysis in a user-friendly way. SoyKB can be publicly accessed at http://soykb.org/.« less
Bringing Control System User Interfaces to the Web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xihui; Kasemir, Kay
With the evolution of web based technologies, especially HTML5 [1], it becomes possible to create web-based control system user interfaces (UI) that are cross-browser and cross-device compatible. This article describes two technologies that facilitate this goal. The first one is the WebOPI [2], which can seamlessly display CSS BOY [3] Operator Interfaces (OPI) in web browsers without modification to the original OPI file. The WebOPI leverages the powerful graphical editing capabilities of BOY and provides the convenience of re-using existing OPI files. On the other hand, it uses generic JavaScript and a generic communication mechanism between the web browser andmore » web server. It is not optimized for a control system, which results in unnecessary network traffic and resource usage. Our second technology is the WebSocket-based Process Data Access (WebPDA) [4]. It is a protocol that provides efficient control system data communication using WebSocket [5], so that users can create web-based control system UIs using standard web page technologies such as HTML, CSS and JavaScript. WebPDA is control system independent, potentially supporting any type of control system.« less
Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads
Gautier, Laurent; Lund, Ole
2013-01-01
Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc. PMID:24391826
Low-bandwidth and non-compute intensive remote identification of microbes from raw sequencing reads.
Gautier, Laurent; Lund, Ole
2013-01-01
Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc.
Nessi: An EEG-Controlled Web Browser for Severely Paralyzed Patients
Bensch, Michael; Karim, Ahmed A.; Mellinger, Jürgen; Hinterberger, Thilo; Tangermann, Michael; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels
2007-01-01
We have previously demonstrated that an EEG-controlled web browser based on self-regulation of slow cortical potentials (SCPs) enables severely paralyzed patients to browse the internet independently of any voluntary muscle control. However, this system had several shortcomings, among them that patients could only browse within a limited number of web pages and had to select links from an alphabetical list, causing problems if the link names were identical or if they were unknown to the user (as in graphical links). Here we describe a new EEG-controlled web browser, called Nessi, which overcomes these shortcomings. In Nessi, the open source browser, Mozilla, was extended by graphical in-place markers, whereby different brain responses correspond to different frame colors placed around selectable items, enabling the user to select any link on a web page. Besides links, other interactive elements are accessible to the user, such as e-mail and virtual keyboards, opening up a wide range of hypertext-based applications. PMID:18350132
Soh, Jung; Gordon, Paul MK; Taschuk, Morgan L; Dong, Anguo; Ah-Seng, Andrew C; Turinsky, Andrei L; Sensen, Christoph W
2008-01-01
Background The Bluejay genome browser has been developed over several years to address the challenges posed by the ever increasing number of data types as well as the increasing volume of data in genome research. Beginning with a browser capable of rendering views of XML-based genomic information and providing scalable vector graphics output, we have now completed version 1.0 of the system with many additional features. Our development efforts were guided by our observation that biologists who use both gene expression profiling and comparative genomics gain functional insights above and beyond those provided by traditional per-gene analyses. Results Bluejay 1.0 is a genome viewer integrating genome annotation with: (i) gene expression information; and (ii) comparative analysis with an unlimited number of other genomes in the same view. This allows the biologist to see a gene not just in the context of its genome, but also its regulation and its evolution. Bluejay now has rich provision for personalization by users: (i) numerous display customization features; (ii) the availability of waypoints for marking multiple points of interest on a genome and subsequently utilizing them; and (iii) the ability to take user relevance feedback of annotated genes or textual items to offer personalized recommendations. Bluejay 1.0 also embeds the Seahawk browser for the Moby protocol, enabling users to seamlessly invoke hundreds of Web Services on genomic data of interest without any hard-coding. Conclusion Bluejay offers a unique set of customizable genome-browsing features, with the goal of allowing biologists to quickly focus on, analyze, compare, and retrieve related information on the parts of the genomic data they are most interested in. We expect these capabilities of Bluejay to benefit the many biologists who want to answer complex questions using the information available from completely sequenced genomes. PMID:18940007
Toward Exposing Timing-Based Probing Attacks in Web Applications †
Mao, Jian; Chen, Yue; Shi, Futian; Jia, Yaoqi; Liang, Zhenkai
2017-01-01
Web applications have become the foundation of many types of systems, ranging from cloud services to Internet of Things (IoT) systems. Due to the large amount of sensitive data processed by web applications, user privacy emerges as a major concern in web security. Existing protection mechanisms in modern browsers, e.g., the same origin policy, prevent the users’ browsing information on one website from being directly accessed by another website. However, web applications executed in the same browser share the same runtime environment. Such shared states provide side channels for malicious websites to indirectly figure out the information of other origins. Timing is a classic side channel and the root cause of many recent attacks, which rely on the variations in the time taken by the systems to process different inputs. In this paper, we propose an approach to expose the timing-based probing attacks in web applications. It monitors the browser behaviors and identifies anomalous timing behaviors to detect browser probing attacks. We have prototyped our system in the Google Chrome browser and evaluated the effectiveness of our approach by using known probing techniques. We have applied our approach on a large number of top Alexa sites and reported the suspicious behavior patterns with corresponding analysis results. Our theoretical analysis illustrates that the effectiveness of the timing-based probing attacks is dramatically limited by our approach. PMID:28245610
Toward Exposing Timing-Based Probing Attacks in Web Applications.
Mao, Jian; Chen, Yue; Shi, Futian; Jia, Yaoqi; Liang, Zhenkai
2017-02-25
Web applications have become the foundation of many types of systems, ranging from cloud services to Internet of Things (IoT) systems. Due to the large amount of sensitive data processed by web applications, user privacy emerges as a major concern in web security. Existing protection mechanisms in modern browsers, e.g., the same origin policy, prevent the users' browsing information on one website from being directly accessed by another website. However, web applications executed in the same browser share the same runtime environment. Such shared states provide side channels for malicious websites to indirectly figure out the information of other origins. Timing is a classic side channel and the root cause of many recent attacks, which rely on the variations in the time taken by the systems to process different inputs. In this paper, we propose an approach to expose the timing-based probing attacks in web applications. It monitors the browser behaviors and identifies anomalous timing behaviors to detect browser probing attacks. We have prototyped our system in the Google Chrome browser and evaluated the effectiveness of our approach by using known probing techniques. We have applied our approach on a large number of top Alexa sites and reported the suspicious behavior patterns with corresponding analysis results. Our theoretical analysis illustrates that the effectiveness of the timing-based probing attacks is dramatically limited by our approach.
plas.io: Open Source, Browser-based WebGL Point Cloud Visualization
NASA Astrophysics Data System (ADS)
Butler, H.; Finnegan, D. C.; Gadomski, P. J.; Verma, U. K.
2014-12-01
Point cloud data, in the form of Light Detection and Ranging (LiDAR), RADAR, or semi-global matching (SGM) image processing, are rapidly becoming a foundational data type to quantify and characterize geospatial processes. Visualization of these data, due to overall volume and irregular arrangement, is often difficult. Technological advancement in web browsers, in the form of WebGL and HTML5, have made interactivity and visualization capabilities ubiquitously available which once only existed in desktop software. plas.io is an open source JavaScript application that provides point cloud visualization, exploitation, and compression features in a web-browser platform, reducing the reliance for client-based desktop applications. The wide reach of WebGL and browser-based technologies mean plas.io's capabilities can be delivered to a diverse list of devices -- from phones and tablets to high-end workstations -- with very little custom software development. These properties make plas.io an ideal open platform for researchers and software developers to communicate visualizations of complex and rich point cloud data to devices to which everyone has easy access.
MEGANTE: A Web-Based System for Integrated Plant Genome Annotation
Numa, Hisataka; Itoh, Takeshi
2014-01-01
The recent advancement of high-throughput genome sequencing technologies has resulted in a considerable increase in demands for large-scale genome annotation. While annotation is a crucial step for downstream data analyses and experimental studies, this process requires substantial expertise and knowledge of bioinformatics. Here we present MEGANTE, a web-based annotation system that makes plant genome annotation easy for researchers unfamiliar with bioinformatics. Without any complicated configuration, users can perform genomic sequence annotations simply by uploading a sequence and selecting the species to query. MEGANTE automatically runs several analysis programs and integrates the results to select the appropriate consensus exon–intron structures and to predict open reading frames (ORFs) at each locus. Functional annotation, including a similarity search against known proteins and a functional domain search, are also performed for the predicted ORFs. The resultant annotation information is visualized with a widely used genome browser, GBrowse. For ease of analysis, the results can be downloaded in Microsoft Excel format. All of the query sequences and annotation results are stored on the server side so that users can access their own data from virtually anywhere on the web. The current release of MEGANTE targets 24 plant species from the Brassicaceae, Fabaceae, Musaceae, Poaceae, Salicaceae, Solanaceae, Rosaceae and Vitaceae families, and it allows users to submit a sequence up to 10 Mb in length and to save up to 100 sequences with the annotation information on the server. The MEGANTE web service is available at https://megante.dna.affrc.go.jp/. PMID:24253915
Worldwide Research, Worldwide Participation: Web-Based Test Logger
NASA Technical Reports Server (NTRS)
Clark, David A.
1998-01-01
Thanks to the World Wide Web, a new paradigm has been born. ESCORT (steady state data system) facilities can now be configured to use a Web-based test logger, enabling worldwide participation in tests. NASA Lewis Research Center's new Web-based test logger for ESCORT automatically writes selected test and facility parameters to a browser and allows researchers to insert comments. All data can be viewed in real time via Internet connections, so anyone with a Web browser and the correct URL (universal resource locator, or Web address) can interactively participate. As the test proceeds and ESCORT data are taken, Web browsers connected to the logger are updated automatically. The use of this logger has demonstrated several benefits. First, researchers are free from manual data entry and are able to focus more on the tests. Second, research logs can be printed in report format immediately after (or during) a test. And finally, all test information is readily available to an international public.
JBrowse: A dynamic web platform for genome visualization and analysis
Buels, Robert; Yao, Eric; Diesh, Colin M.; ...
2016-04-12
Background: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Results: Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. Conclusions: JBrowsemore » is a mature web application suitable for genome visualization and analysis.« less
Maser: one-stop platform for NGS big data from analysis to visualization
Kinjo, Sonoko; Monma, Norikazu; Misu, Sadahiko; Kitamura, Norikazu; Imoto, Junichi; Yoshitake, Kazutoshi; Gojobori, Takashi; Ikeo, Kazuho
2018-01-01
Abstract A major challenge in analyzing the data from high-throughput next-generation sequencing (NGS) is how to handle the huge amounts of data and variety of NGS tools and visualize the resultant outputs. To address these issues, we developed a cloud-based data analysis platform, Maser (Management and Analysis System for Enormous Reads), and an original genome browser, Genome Explorer (GE). Maser enables users to manage up to 2 terabytes of data to conduct analyses with easy graphical user interface operations and offers analysis pipelines in which several individual tools are combined as a single pipeline for very common and standard analyses. GE automatically visualizes genome assembly and mapping results output from Maser pipelines, without requiring additional data upload. With this function, the Maser pipelines can graphically display the results output from all the embedded tools and mapping results in a web browser. Therefore Maser realized a more user-friendly analysis platform especially for beginners by improving graphical display and providing the selected standard pipelines that work with built-in genome browser. In addition, all the analyses executed on Maser are recorded in the analysis history, helping users to trace and repeat the analyses. The entire process of analysis and its histories can be shared with collaborators or opened to the public. In conclusion, our system is useful for managing, analyzing, and visualizing NGS data and achieves traceability, reproducibility, and transparency of NGS analysis. Database URL: http://cell-innovation.nig.ac.jp/maser/ PMID:29688385
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... Change Regarding Providing Participants With a New Optional Settlement Web Interface February 22, 2011... Rule Change The proposed rule change will establish a new browser-based interface, the ``Settlement Web... Browser System (``PBS'').\\4\\ Based on request from its Participants, DTC has created a more user-friendly...
GSuite HyperBrowser: integrative analysis of dataset collections across the genome and epigenome.
Simovski, Boris; Vodák, Daniel; Gundersen, Sveinung; Domanska, Diana; Azab, Abdulrahman; Holden, Lars; Holden, Marit; Grytten, Ivar; Rand, Knut; Drabløs, Finn; Johansen, Morten; Mora, Antonio; Lund-Andersen, Christin; Fromm, Bastian; Eskeland, Ragnhild; Gabrielsen, Odd Stokke; Ferkingstad, Egil; Nakken, Sigve; Bengtsen, Mads; Nederbragt, Alexander Johan; Thorarensen, Hildur Sif; Akse, Johannes Andreas; Glad, Ingrid; Hovig, Eivind; Sandve, Geir Kjetil
2017-07-01
Recent large-scale undertakings such as ENCODE and Roadmap Epigenomics have generated experimental data mapped to the human reference genome (as genomic tracks) representing a variety of functional elements across a large number of cell types. Despite the high potential value of these publicly available data for a broad variety of investigations, little attention has been given to the analytical methodology necessary for their widespread utilisation. We here present a first principled treatment of the analysis of collections of genomic tracks. We have developed novel computational and statistical methodology to permit comparative and confirmatory analyses across multiple and disparate data sources. We delineate a set of generic questions that are useful across a broad range of investigations and discuss the implications of choosing different statistical measures and null models. Examples include contrasting analyses across different tissues or diseases. The methodology has been implemented in a comprehensive open-source software system, the GSuite HyperBrowser. To make the functionality accessible to biologists, and to facilitate reproducible analysis, we have also developed a web-based interface providing an expertly guided and customizable way of utilizing the methodology. With this system, many novel biological questions can flexibly be posed and rapidly answered. Through a combination of streamlined data acquisition, interoperable representation of dataset collections, and customizable statistical analysis with guided setup and interpretation, the GSuite HyperBrowser represents a first comprehensive solution for integrative analysis of track collections across the genome and epigenome. The software is available at: https://hyperbrowser.uio.no. © The Author 2017. Published by Oxford University Press.
A browser-based event display for the CMS Experiment at the LHC using WebGL
NASA Astrophysics Data System (ADS)
McCauley, T.
2017-10-01
Modern web browsers are powerful and sophisticated applications that support an ever-wider range of uses. One such use is rendering high-quality, GPU-accelerated, interactive 2D and 3D graphics in an HTML canvas. This can be done via WebGL, a JavaScript API based on OpenGL ES. Applications delivered via the browser have several distinct benefits for the developer and user. For example, they can be implemented using well-known and well-developed technologies, while distribution and use via a browser allows for rapid prototyping and deployment and ease of installation. In addition, delivery of applications via the browser allows for easy use on mobile, touch-enabled devices such as phones and tablets. iSpy WebGL is an application for visualization of events detected and reconstructed by the CMS Experiment at the Large Hadron Collider at CERN. The first event display developed for an LHC experiment to use WebGL, iSpy WebGL is a client-side application written in JavaScript, HTML, and CSS and uses the WebGL API three.js. iSpy WebGL is used for monitoring of CMS detector performance, for production of images and animations of CMS collisions events for the public, as a virtual reality application using Google Cardboard, and asa tool available for public education and outreach such as in the CERN Open Data Portal and the CMS masterclasses. We describe here its design, development, and usage as well as future plans.
A browser-based event display for the CMS experiment at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hategan, M.; McCauley, T.; Nguyen, P.
2012-01-01
The line between native and web applications is becoming increasingly blurred as modern web browsers are becoming powerful platforms on which applications can be run. Such applications are trivial to install and are readily extensible and easy to use. In an educational setting, web applications permit a way to deploy deploy tools in a highly-restrictive computing environment. The I2U2 collaboration has developed a browser-based event display for viewing events in data collected and released to the public by the CMS experiment at the LHC. The application itself reads a JSON event format and uses the JavaScript 3D rendering engine pre3d.more » The only requirement is a modern browser using HTML5 canvas. The event display has been used by thousands of high school students in the context of programs organized by I2U2, QuarkNet, and IPPOG. This browser-based approach to display of events can have broader usage and impact for experts and public alike.« less
A web implementation: the good and the not-so-good.
Bergsneider, C; Piraino, D; Fuerst, M
2001-06-01
E-commerce, e-mail, e-greeting, e-this, and e-that everywhere you turn there is a new "e" word for an internet or Web application. We, at the Cleveland Clinic Foundation, have been "e-nlightened" and will discuss in this report the implementation of a web-based radiology information system (RIS) in our radiology division or "e-radiology" division. The application, IDXRad Version 10.0 from IDX Corp, Burlington, VT, is in use at the Cleveland Clinic Foundation and has both intranet (for use in Radiology) and internet (referring physician viewing) modules. We will concentrate on the features of using a web browser for the application's front-end, including easy prototyping for screen review, easier mock-ups of demonstrations by vendors and developers, and easier training as more people become web-addicted. Project communication can be facilitated with an internal project web page, and use of the web browser can accommodate quicker turnaround of software upgrades as the software code is centrally located. Compared with other technologies, including client/server, there is a smaller roll out cost when using a standard web browser. However, the new technology requires a change and changes are never implemented without challenges. A seasoned technologist using a legacy system can enter data quicker using function keys than using a graphical user interface and pointing and clicking through a series of pop-up windows. Also, effective use of a web browser depends on intuitive design for it to be easily implemented and accepted by the user. Some software packages will not work on both of the popular web browsers and then are tailored to specific release levels. As computer-based patient records become a standard, patient confidentiality must be enforced. The technical design and application security features that support the web-based software package will be discussed. Also web technologies have their own implementation issues.
Browser-Based Online Applications: Something for Everyone!
ERIC Educational Resources Information Center
Descy, Don E.
2007-01-01
Just as many people log onto a Web mail site (Gmail, Yahoo, MSN, etc.) to read, write and store their email, there are Web sites out there with word processing, database, and a myriad of other software applications that are not downloadable but used on the site through a Web browser. The user does not have to download the applications to a…
An automated image-collection system for crystallization experiments using SBS standard microplates.
Brostromer, Erik; Nan, Jie; Su, Xiao Dong
2007-02-01
As part of a structural genomics platform in a university laboratory, a low-cost in-house-developed automated imaging system for SBS microplate experiments has been designed and constructed. The imaging system can scan a microplate in 2-6 min for a 96-well plate depending on the plate layout and scanning options. A web-based crystallization database system has been developed, enabling users to follow their crystallization experiments from a web browser. As the system has been designed and built by students and crystallographers using commercially available parts, this report is aimed to serve as a do-it-yourself example for laboratory robotics.
AGORA : Organellar genome annotation from the amino acid and nucleotide references.
Jung, Jaehee; Kim, Jong Im; Jeong, Young-Sik; Yi, Gangman
2018-03-29
Next-generation sequencing (NGS) technologies have led to the accumulation of highthroughput sequence data from various organisms in biology. To apply gene annotation of organellar genomes for various organisms, more optimized tools for functional gene annotation are required. Almost all gene annotation tools are mainly focused on the chloroplast genome of land plants or the mitochondrial genome of animals.We have developed a web application AGORA for the fast, user-friendly, and improved annotations of organellar genomes. AGORA annotates genes based on a BLAST-based homology search and clustering with selected reference sequences from the NCBI database or user-defined uploaded data. AGORA can annotate the functional genes in almost all mitochondrion and plastid genomes of eukaryotes. The gene annotation of a genome with an exon-intron structure within a gene or inverted repeat region is also available. It provides information of start and end positions of each gene, BLAST results compared with the reference sequence, and visualization of gene map by OGDRAW. Users can freely use the software, and the accessible URL is https://bigdata.dongguk.edu/gene_project/AGORA/.The main module of the tool is implemented by the python and php, and the web page is built by the HTML and CSS to support all browsers. gangman@dongguk.edu.
The Cancer Analysis Virtual Machine (CAVM) project will leverage cloud technology, the UCSC Cancer Genomics Browser, and the Galaxy analysis workflow system to provide investigators with a flexible, scalable platform for hosting, visualizing and analyzing their own genomic data.
Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu
2016-06-01
MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. © 2016 WILEY PERIODICALS, INC.
Savel, Craig; Mierzwa, Stan; Gorbach, Pamina M; Souidi, Samir; Lally, Michelle; Zimet, Gregory; Interventions, Aids
2016-01-01
This paper reports on a specific Web-based self-report data collection system that was developed for a public health research study in the United States. Our focus is on technical outcome results and lessons learned that may be useful to other projects requiring such a solution. The system was accessible from any device that had a browser that supported HTML5. Report findings include: which hardware devices, Web browsers, and operating systems were used; the rate of survey completion; and key considerations for employing Web-based surveys in a clinical trial setting.
jsPsych: a JavaScript library for creating behavioral experiments in a Web browser.
de Leeuw, Joshua R
2015-03-01
Online experiments are growing in popularity, and the increasing sophistication of Web technology has made it possible to run complex behavioral experiments online using only a Web browser. Unlike with offline laboratory experiments, however, few tools exist to aid in the development of browser-based experiments. This makes the process of creating an experiment slow and challenging, particularly for researchers who lack a Web development background. This article introduces jsPsych, a JavaScript library for the development of Web-based experiments. jsPsych formalizes a way of describing experiments that is much simpler than writing the entire experiment from scratch. jsPsych then executes these descriptions automatically, handling the flow from one task to another. The jsPsych library is open-source and designed to be expanded by the research community. The project is available online at www.jspsych.org .
A user-centred evaluation framework for the Sealife semantic web browsers
Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma
2009-01-01
Background Semantically-enriched browsing has enhanced the browsing experience by providing contextualised dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. Methods This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. Results It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Conclusion Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues. PMID:19796398
A user-centred evaluation framework for the Sealife semantic web browsers.
Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma
2009-10-01
Semantically-enriched browsing has enhanced the browsing experience by providing contextualized dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues.
Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi
2013-02-01
The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.
Web Browser Trends and Technologies.
ERIC Educational Resources Information Center
Goodwin-Jones, Bob
2000-01-01
Discusses Web browsers and how their capabilities have been expanded, support for Web browsing on different devices (cell phones, palmtop computers, TV sets), and browser support for the next-generation Web authoring language, XML ("extensible markup language"). (Author/VWL)
Using Galaxy to Perform Large-Scale Interactive Data Analyses
Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton
2012-01-01
Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy (galaxyproject.org) provides a powerful solution that simplifies data acquisition and analysis in an intuitive web-application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together 1) data retrieval from public and private sources, for example, UCSC’s Eukaryote and Microbial Genome Browsers (genome.ucsc.edu), 2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations) and 3rd party analysis tools, for example, Bowtie/Tuxedo Suite (bowtie-bio.sourceforge.net), Lastz (www.bx.psu.edu/~rsharris/lastz/), SAMTools (samtools.sourceforge.net), FASTX-toolkit (hannonlab.cshl.edu/fastx_toolkit), and MACS (liulab.dfci.harvard.edu/MACS), and creates results formatted for visualization in tools such as the Galaxy Track Browser (GTB, galaxyproject.org/wiki/Learn/Visualization), UCSC Genome Browser (genome.ucsc.edu), Ensembl (www.ensembl.org), and GeneTrack (genetrack.bx.psu.edu). Galaxy rapidly has become the most popular choice for integrated next generation sequencing (NGS) analytics and collaboration, where users can perform, document, and share complex analysis within a single interface in an unprecedented number of ways. PMID:18428782
Edwards, J D; Baldo, A M; Mueller, L A
2016-01-01
Ricebase (http://ricebase.org) is an integrative genomic database for rice (Oryza sativa) with an emphasis on combining datasets in a way that maintains the key links between past and current genetic studies. Ricebase includes DNA sequence data, gene annotations, nucleotide variation data and molecular marker fragment size data. Rice research has benefited from early adoption and extensive use of simple sequence repeat (SSR) markers; however, the majority of rice SSR markers were developed prior to the latest rice pseudomolecule assembly. Interpretation of new research using SNPs in the context of literature citing SSRs requires a common coordinate system. A new pipeline, using a stepwise relaxation of stringency, was used to map SSR primers onto the latest rice pseudomolecule assembly. The SSR markers and experimentally assayed amplicon sizes are presented in a relational database with a web-based front end, and are available as a track loaded in a genome browser with links connecting the browser and database. The combined capabilities of Ricebase link genetic markers, genome context, allele states across rice germplasm and potentially user curated phenotypic interpretations as a community resource for genetic discovery and breeding in rice. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.
ERIC Educational Resources Information Center
Technology & Learning, 2005
2005-01-01
In recent years, the widespread availability of networks and the flexibility of Web browsers have shifted the industry from a client-server model to a Web-based one. In the client-server model of computing, clients run applications locally, with the servers managing storage, printing functions, and network traffic. Because every client is…
GWIPS-viz: development of a ribo-seq genome browser
Michel, Audrey M.; Fox, Gearoid; M. Kiran, Anmol; De Bo, Christof; O’Connor, Patrick B. F.; Heaphy, Stephen M.; Mullan, James P. A.; Donohue, Claire A.; Higgins, Desmond G.; Baranov, Pavel V.
2014-01-01
We describe the development of GWIPS-viz (http://gwips.ucc.ie), an online genome browser for viewing ribosome profiling data. Ribosome profiling (ribo-seq) is a recently developed technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome-protected messenger RNA (mRNA) fragments, which allows the ribosome density along all mRNA transcripts present in the cell to be quantified. Since its inception, ribo-seq has been carried out in a number of eukaryotic and prokaryotic organisms. Owing to the increasing interest in ribo-seq, there is a pertinent demand for a dedicated ribo-seq genome browser. GWIPS-viz is based on The University of California Santa Cruz (UCSC) Genome Browser. Ribo-seq tracks, coupled with mRNA-seq tracks, are currently available for several genomes: human, mouse, zebrafish, nematode, yeast, bacteria (Escherichia coli K12, Bacillus subtilis), human cytomegalovirus and bacteriophage lambda. Our objective is to continue incorporating published ribo-seq data sets so that the wider community can readily view ribosome profiling information from multiple studies without the need to carry out computational processing. PMID:24185699
GREAT: a web portal for Genome Regulatory Architecture Tools
Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François
2016-01-01
GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. PMID:27151196
CNV-WebStore: online CNV analysis, storage and interpretation.
Vandeweyer, Geert; Reyniers, Edwin; Wuyts, Wim; Rooms, Liesbeth; Kooy, R Frank
2011-01-05
Microarray technology allows the analysis of genomic aberrations at an ever increasing resolution, making functional interpretation of these vast amounts of data the main bottleneck in routine implementation of high resolution array platforms, and emphasising the need for a centralised and easy to use CNV data management and interpretation system. We present CNV-WebStore, an online platform to streamline the processing and downstream interpretation of microarray data in a clinical context, tailored towards but not limited to the Illumina BeadArray platform. Provided analysis tools include CNV analsyis, parent of origin and uniparental disomy detection. Interpretation tools include data visualisation, gene prioritisation, automated PubMed searching, linking data to several genome browsers and annotation of CNVs based on several public databases. Finally a module is provided for uniform reporting of results. CNV-WebStore is able to present copy number data in an intuitive way to both lab technicians and clinicians, making it a useful tool in daily clinical practice.
Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks.
Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly
2014-02-01
Hybrid mobile applications (apps) combine the features of Web applications and "native" mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources-file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies "bridges" that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources-the ability to read and write contacts list, local files, etc.-to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content and explain why they are ineffectual. We then present NoFrak, a capability-based defense against fracking attacks. NoFrak is platform-independent, compatible with any framework and embedded browser, requires no changes to the code of the existing hybrid apps, and does not break their advertising-supported business model.
World-Wide Web: Adding Multimedia to Cyberspace.
ERIC Educational Resources Information Center
Descy, Don E.
1994-01-01
Describes the World-Wide Web (WWW), a network information resource based on hypertext. How to access WWW browsers through remote login (telnet) or though free browser software, such as Mosaic, is provided. Eight information sources that can be accessed through the WWW are listed. The address of a listserv reporting on Internet developments is…
Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools
NASA Astrophysics Data System (ADS)
Sánchez Pineda, A.
2015-12-01
We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.
Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo
2017-12-01
Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.
Savel, Craig; Mierzwa, Stan; Gorbach, Pamina M.; Souidi, Samir; Lally, Michelle; Zimet, Gregory; Interventions, AIDS
2016-01-01
This paper reports on a specific Web-based self-report data collection system that was developed for a public health research study in the United States. Our focus is on technical outcome results and lessons learned that may be useful to other projects requiring such a solution. The system was accessible from any device that had a browser that supported HTML5. Report findings include: which hardware devices, Web browsers, and operating systems were used; the rate of survey completion; and key considerations for employing Web-based surveys in a clinical trial setting. PMID:28149445
Neugebauer, Tomasz; Bordeleau, Eric; Burrus, Vincent; Brzezinski, Ryszard
2015-01-01
Data visualization methods are necessary during the exploration and analysis activities of an increasingly data-intensive scientific process. There are few existing visualization methods for raw nucleotide sequences of a whole genome or chromosome. Software for data visualization should allow the researchers to create accessible data visualization interfaces that can be exported and shared with others on the web. Herein, novel software developed for generating DNA data visualization interfaces is described. The software converts DNA data sets into images that are further processed as multi-scale images to be accessed through a web-based interface that supports zooming, panning and sequence fragment selection. Nucleotide composition frequencies and GC skew of a selected sequence segment can be obtained through the interface. The software was used to generate DNA data visualization of human and bacterial chromosomes. Examples of visually detectable features such as short and long direct repeats, long terminal repeats, mobile genetic elements, heterochromatic segments in microbial and human chromosomes, are presented. The software and its source code are available for download and further development. The visualization interfaces generated with the software allow for the immediate identification and observation of several types of sequence patterns in genomes of various sizes and origins. The visualization interfaces generated with the software are readily accessible through a web browser. This software is a useful research and teaching tool for genetics and structural genomics.
Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T H; Tan, Adrian K S; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S; Ku, Chee-Seng; Lee, Edmund J D; Seielstad, Mark; Chia, Kee-Seng
2009-11-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.
Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations
Teo, Yik-Ying; Sim, Xueling; Ong, Rick T.H.; Tan, Adrian K.S.; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S.; Ku, Chee-Seng; Lee, Edmund J.D.; Seielstad, Mark; Chia, Kee-Seng
2009-01-01
The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser. PMID:19700652
A web access script language to support clinical application development.
O'Kane, K C; McColligan, E E
1998-02-01
This paper describes the development of a script language to support the implementation of decentralized, clinical information applications on the World Wide Web (Web). The goal of this work is to facilitate construction of low overhead, fully functional clinical information systems that can be accessed anywhere by low cost Web browsers to search, retrieve and analyze stored patient data. The Web provides a model of network access to data bases on a global scale. Although it was originally conceived as a means to exchange scientific documents, Web browsers and servers currently support access to a wide variety of audio, video, graphical and text based data to a rapidly growing community. Access to these services is via inexpensive client software browsers that connect to servers by means of the open architecture of the Internet. In this paper, the design and implementation of a script language that supports the development of low cost, Web-based, distributed clinical information systems for both Inter- and Intra-Net use is presented. The language is based on the Mumps language and, consequently, supports many legacy applications with few modifications. Several enhancements, however, have been made to support modern programming practices and the Web interface. The interpreter for the language also supports standalone program execution on Unix, MS-Windows, OS/2 and other operating systems.
tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes.
Lowe, Todd M; Chan, Patricia P
2016-07-08
High-throughput genome sequencing continues to grow the need for rapid, accurate genome annotation and tRNA genes constitute the largest family of essential, ever-present non-coding RNA genes. Newly developed tRNAscan-SE 2.0 has advanced the state-of-the-art methodology in tRNA gene detection and functional prediction, captured by rich new content of the companion Genomic tRNA Database. Previously, web-server tRNA detection was isolated from knowledge of existing tRNAs and their annotation. In this update of the tRNAscan-SE On-line resource, we tie together improvements in tRNA classification with greatly enhanced biological context via dynamically generated links between web server search results, the most relevant genes in the GtRNAdb and interactive, rich genome context provided by UCSC genome browsers. The tRNAscan-SE On-line web server can be accessed at http://trna.ucsc.edu/tRNAscan-SE/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes
Fong, Christine; Rohmer, Laurence; Radey, Matthew; Wasnick, Michael; Brittnacher, Mitchell J
2008-01-01
Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT) is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any web browser with no client side software setup or installation required. Source code is freely available to researchers interested in setting up a local version of PSAT for analysis of genomes not available through the public server. Access to the public web server and instructions for obtaining source code can be found at . PMID:18366802
Gramene database in 2010: updates and extensions.
Youens-Clark, Ken; Buckler, Ed; Casstevens, Terry; Chen, Charles; Declerck, Genevieve; Derwent, Paul; Dharmawardhana, Palitha; Jaiswal, Pankaj; Kersey, Paul; Karthikeyan, A S; Lu, Jerry; McCouch, Susan R; Ren, Liya; Spooner, William; Stein, Joshua C; Thomason, Jim; Wei, Sharon; Ware, Doreen
2011-01-01
Now in its 10th year, the Gramene database (http://www.gramene.org) has grown from its primary focus on rice, the first fully-sequenced grass genome, to become a resource for major model and crop plants including Arabidopsis, Brachypodium, maize, sorghum, poplar and grape in addition to several species of rice. Gramene began with the addition of an Ensembl genome browser and has expanded in the last decade to become a robust resource for plant genomics hosting a wide array of data sets including quantitative trait loci (QTL), metabolic pathways, genetic diversity, genes, proteins, germplasm, literature, ontologies and a fully-structured markers and sequences database integrated with genome browsers and maps from various published studies (genetic, physical, bin, etc.). In addition, Gramene now hosts a variety of web services including a Distributed Annotation Server (DAS), BLAST and a public MySQL database. Twice a year, Gramene releases a major build of the database and makes interim releases to correct errors or to make important updates to software and/or data.
Panoptes: web-based exploration of large scale genome variation data.
Vauterin, Paul; Jeffery, Ben; Miles, Alistair; Amato, Roberto; Hart, Lee; Wright, Ian; Kwiatkowski, Dominic
2017-10-15
The size and complexity of modern large-scale genome variation studies demand novel approaches for exploring and sharing the data. In order to unlock the potential of these data for a broad audience of scientists with various areas of expertise, a unified exploration framework is required that is accessible, coherent and user-friendly. Panoptes is an open-source software framework for collaborative visual exploration of large-scale genome variation data and associated metadata in a web browser. It relies on technology choices that allow it to operate in near real-time on very large datasets. It can be used to browse rich, hybrid content in a coherent way, and offers interactive visual analytics approaches to assist the exploration. We illustrate its application using genome variation data of Anopheles gambiae, Plasmodium falciparum and Plasmodium vivax. Freely available at https://github.com/cggh/panoptes, under the GNU Affero General Public License. paul.vauterin@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
visPIG--a web tool for producing multi-region, multi-track, multi-scale plots of genetic data.
Scales, Matthew; Jäger, Roland; Migliorini, Gabriele; Houlston, Richard S; Henrion, Marc Y R
2014-01-01
We present VISual Plotting Interface for Genetics (visPIG; http://vispig.icr.ac.uk), a web application to produce multi-track, multi-scale, multi-region plots of genetic data. visPIG has been designed to allow users not well versed with mathematical software packages and/or programming languages such as R, Matlab®, Python, etc., to integrate data from multiple sources for interpretation and to easily create publication-ready figures. While web tools such as the UCSC Genome Browser or the WashU Epigenome Browser allow custom data uploads, such tools are primarily designed for data exploration. This is also true for the desktop-run Integrative Genomics Viewer (IGV). Other locally run data visualisation software such as Circos require significant computer skills of the user. The visPIG web application is a menu-based interface that allows users to upload custom data tracks and set track-specific parameters. Figures can be downloaded as PDF or PNG files. For sensitive data, the underlying R code can also be downloaded and run locally. visPIG is multi-track: it can display many different data types (e.g association, functional annotation, intensity, interaction, heat map data,…). It also allows annotation of genes and other custom features in the plotted region(s). Data tracks can be plotted individually or on a single figure. visPIG is multi-region: it supports plotting multiple regions, be they kilo- or megabases apart or even on different chromosomes. Finally, visPIG is multi-scale: a sub-region of particular interest can be 'zoomed' in. We describe the various features of visPIG and illustrate its utility with examples. visPIG is freely available through http://vispig.icr.ac.uk under a GNU General Public License (GPLv3).
WEBSLIDE: A "Virtual" Slide Projector Based on World Wide Web
NASA Astrophysics Data System (ADS)
Barra, Maria; Ferrandino, Salvatore; Scarano, Vittorio
1999-03-01
We present here the design key concepts of WEBSLIDE, a software project whose objective is to provide a simple, cheap and efficient solution for showing slides during lessons in computer labs. In fact, WEBSLIDE allows the video monitors of several client machines (the "STUDENTS") to be synchronously updated by the actions of a particular client machine, called the "INSTRUCTOR." The system is based on the World Wide Web and the software components of WEBSLIDE mainly consists in a WWW server, browsers and small Cgi-Bill scripts. What makes WEBSLIDE particularly appealing for small educational institutions is that WEBSLIDE is built with "off the shelf" products: it does not involve using a specifically designed program but any Netscape browser, one of the most popular browsers available on the market, is sufficient. Another possible use is to use our system to implement "guided automatic tours" through several pages or Intranets internal news bulletins: the company Web server can broadcast to all employees relevant information on their browser.
WebCSD: the online portal to the Cambridge Structural Database
Thomas, Ian R.; Bruno, Ian J.; Cole, Jason C.; Macrae, Clare F.; Pidcock, Elna; Wood, Peter A.
2010-01-01
WebCSD, a new web-based application developed by the Cambridge Crystallographic Data Centre, offers fast searching of the Cambridge Structural Database using only a standard internet browser. Search facilities include two-dimensional substructure, molecular similarity, text/numeric and reduced cell searching. Text, chemical diagrams and three-dimensional structural information can all be studied in the results browser using the efficient entry summaries and embedded three-dimensional viewer. PMID:22477776
GenomeHubs: simple containerized setup of a custom Ensembl database and web server for any species
Kumar, Sujai; Stevens, Lewis; Blaxter, Mark
2017-01-01
Abstract As the generation and use of genomic datasets is becoming increasingly common in all areas of biology, the need for resources to collate, analyse and present data from one or more genome projects is becoming more pressing. The Ensembl platform is a powerful tool to make genome data and cross-species analyses easily accessible through a web interface and a comprehensive application programming interface. Here we introduce GenomeHubs, which provide a containerized environment to facilitate the setup and hosting of custom Ensembl genome browsers. This simplifies mirroring of existing content and import of new genomic data into the Ensembl database schema. GenomeHubs also provide a set of analysis containers to decorate imported genomes with results of standard analyses and functional annotations and support export to flat files, including EMBL format for submission of assemblies and annotations to International Nucleotide Sequence Database Collaboration. Database URL: http://GenomeHubs.org PMID:28605774
Arachne—A web-based event viewer for MINERνA
NASA Astrophysics Data System (ADS)
Tagg, N.; Brangham, J.; Chvojka, J.; Clairemont, M.; Day, M.; Eberly, B.; Felix, J.; Fields, L.; Gago, A. M.; Gran, R.; Harris, D. A.; Kordosky, M.; Lee, H.; Maggi, G.; Maher, E.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Mislivec, A.; Mousseau, J.; Osmanov, B.; Osta, J.; Paolone, V.; Perdue, G.; Ransome, R. D.; Ray, H.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Walding, J.; Walton, T.; Wolcott, J.; Zhang, D.; Ziemer, B. P.; MinerνA Collaboration
2012-06-01
Neutrino interaction events in the MINERνA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERνA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.
Arachne - A web-based event viewer for MINERvA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagg, N.; /Otterbein Coll.; Brangham, J.
2011-11-01
Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERvA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.
Meyer, Michael J; Geske, Philip; Yu, Haiyuan
2016-05-15
Biological sequence databases are integral to efforts to characterize and understand biological molecules and share biological data. However, when analyzing these data, scientists are often left holding disparate biological currency-molecular identifiers from different databases. For downstream applications that require converting the identifiers themselves, there are many resources available, but analyzing associated loci and variants can be cumbersome if data is not given in a form amenable to particular analyses. Here we present BISQUE, a web server and customizable command-line tool for converting molecular identifiers and their contained loci and variants between different database conventions. BISQUE uses a graph traversal algorithm to generalize the conversion process for residues in the human genome, genes, transcripts and proteins, allowing for conversion across classes of molecules and in all directions through an intuitive web interface and a URL-based web service. BISQUE is freely available via the web using any major web browser (http://bisque.yulab.org/). Source code is available in a public GitHub repository (https://github.com/hyulab/BISQUE). haiyuan.yu@cornell.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
GWATCH: a web platform for automated gene association discovery analysis.
Svitin, Anton; Malov, Sergey; Cherkasov, Nikolay; Geerts, Paul; Rotkevich, Mikhail; Dobrynin, Pavel; Shevchenko, Andrey; Guan, Li; Troyer, Jennifer; Hendrickson, Sher; Dilks, Holli Hutcheson; Oleksyk, Taras K; Donfield, Sharyne; Gomperts, Edward; Jabs, Douglas A; Sezgin, Efe; Van Natta, Mark; Harrigan, P Richard; Brumme, Zabrina L; O'Brien, Stephen J
2014-01-01
As genome-wide sequence analyses for complex human disease determinants are expanding, it is increasingly necessary to develop strategies to promote discovery and validation of potential disease-gene associations. Here we present a dynamic web-based platform - GWATCH - that automates and facilitates four steps in genetic epidemiological discovery: 1) Rapid gene association search and discovery analysis of large genome-wide datasets; 2) Expanded visual display of gene associations for genome-wide variants (SNPs, indels, CNVs), including Manhattan plots, 2D and 3D snapshots of any gene region, and a dynamic genome browser illustrating gene association chromosomal regions; 3) Real-time validation/replication of candidate or putative genes suggested from other sources, limiting Bonferroni genome-wide association study (GWAS) penalties; 4) Open data release and sharing by eliminating privacy constraints (The National Human Genome Research Institute (NHGRI) Institutional Review Board (IRB), informed consent, The Health Insurance Portability and Accountability Act (HIPAA) of 1996 etc.) on unabridged results, which allows for open access comparative and meta-analysis. GWATCH is suitable for both GWAS and whole genome sequence association datasets. We illustrate the utility of GWATCH with three large genome-wide association studies for HIV-AIDS resistance genes screened in large multicenter cohorts; however, association datasets from any study can be uploaded and analyzed by GWATCH.
On-demand server-side image processing for web-based DICOM image display
NASA Astrophysics Data System (ADS)
Sakusabe, Takaya; Kimura, Michio; Onogi, Yuzo
2000-04-01
Low cost image delivery is needed in modern networked hospitals. If a hospital has hundreds of clients, cost of client systems is a big problem. Naturally, a Web-based system is the most effective solution. But a Web browser could not display medical images with certain image processing such as a lookup table transformation. We developed a Web-based medical image display system using Web browser and on-demand server-side image processing. All images displayed on a Web page are generated from DICOM files on a server, delivered on-demand. User interaction on the Web page is handled by a client-side scripting technology such as JavaScript. This combination makes a look-and-feel of an imaging workstation not only for its functionality but also for its speed. Real time update of images with tracing mouse motion is achieved on Web browser without any client-side image processing which may be done by client-side plug-in technology such as Java Applets or ActiveX. We tested performance of the system in three cases. Single client, small number of clients in a fast speed network, and large number of clients in a normal speed network. The result shows that there are very slight overhead for communication and very scalable in number of clients.
PhytoPath: an integrative resource for plant pathogen genomics.
Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian
2016-01-04
PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update
Horn, Thomas; Boutros, Michael
2010-01-01
The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at http://www.e-rnai.org/, provides a computational resource for the optimized design and evaluation of RNAi reagents. The 2010 update of E-RNAi now covers 12 genomes, including Drosophila, Caenorhabditis elegans, human, emerging model organisms such as Schmidtea mediterranea and Acyrthosiphon pisum, as well as the medically relevant vectors Anopheles gambiae and Aedes aegypti. The web service calculates RNAi reagents based on the input of target sequences, sequence identifiers or by visual selection of target regions through a genome browser interface. It identifies optimized RNAi target-sites by ranking sequences according to their predicted specificity, efficiency and complexity. E-RNAi also facilitates the design of secondary RNAi reagents for validation experiments, evaluation of pooled siRNA reagents and batch design. Results are presented online, as a downloadable HTML report and as tab-delimited files. PMID:20444868
Brain-controlled applications using dynamic P300 speller matrices.
Halder, Sebastian; Pinegger, Andreas; Käthner, Ivo; Wriessnegger, Selina C; Faller, Josef; Pires Antunes, João B; Müller-Putz, Gernot R; Kübler, Andrea
2015-01-01
Access to the world wide web and multimedia content is an important aspect of life. We present a web browser and a multimedia user interface adapted for control with a brain-computer interface (BCI) which can be used by severely motor impaired persons. The web browser dynamically determines the most efficient P300 BCI matrix size to select the links on the current website. This enables control of the web browser with fewer commands and smaller matrices. The multimedia player was based on an existing software. Both applications were evaluated with a sample of ten healthy participants and three end-users. All participants used a visual P300 BCI with face-stimuli for control. The healthy participants completed the multimedia player task with 90% accuracy and the web browsing task with 85% accuracy. The end-users completed the tasks with 62% and 58% accuracy. All healthy participants and two out of three end-users reported that they felt to be in control of the system. In this study we presented a multimedia application and an efficient web browser implemented for control with a BCI. Both applications provide access to important areas of modern information retrieval and entertainment. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of a Web-Based Periscope Simulator for Submarine Officer Training
2014-09-01
31 2. The Evolution of Web-Based technology .........................................32...DEVELOPMENT ............................................................................65 A. TECHNOLOGY ...the possibility to deliver 3D simulations using the web browsers and web technology . The objective is to create an effective and efficient WBLE that
YADBrowser: A Browser for Web-Based Educational Applications
ERIC Educational Resources Information Center
Zaldivar, Vicente Arturo Romero; Arandia, Jon Ander Elorriaga; Brito, Mateo Lezcano
2005-01-01
In this article, the main characteristics of the educational browser YADBrowser are described. One of the main objectives of this project is to define new languages and object models which facilitate the creation of educational applications for the Internet. The fundamental characteristics of the object model of the browser are also described.…
Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks
Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly
2014-01-01
Hybrid mobile applications (apps) combine the features of Web applications and “native” mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources—file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies “bridges” that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources—the ability to read and write contacts list, local files, etc.—to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content and explain why they are ineffectual. We then present NoFrak, a capability-based defense against fracking attacks. NoFrak is platform-independent, compatible with any framework and embedded browser, requires no changes to the code of the existing hybrid apps, and does not break their advertising-supported business model. PMID:25485311
GREAT: a web portal for Genome Regulatory Architecture Tools.
Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François
2016-07-08
GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
LookSeq: a browser-based viewer for deep sequencing data.
Manske, Heinrich Magnus; Kwiatkowski, Dominic P
2009-11-01
Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.
[A web-based biomedical image mosaicing system].
Zhang, Meng; Yan, Zhuang-zhi; Pan, Zhi-jun; Shao, Shi-jie
2006-11-01
This paper describes a web service for biomedical image mosaicing. A web site based on CGI (Common Gateway Interface) is implemented. The system is based on Browser/Server model and is tested in www. Finally implementation examples and experiment results are provided.
Implementing WebGL and HTML5 in Macromolecular Visualization and Modern Computer-Aided Drug Design.
Yuan, Shuguang; Chan, H C Stephen; Hu, Zhenquan
2017-06-01
Web browsers have long been recognized as potential platforms for remote macromolecule visualization. However, the difficulty in transferring large-scale data to clients and the lack of native support for hardware-accelerated applications in the local browser undermine the feasibility of such utilities. With the introduction of WebGL and HTML5 technologies in recent years, it is now possible to exploit the power of a graphics-processing unit (GPU) from a browser without any third-party plugin. Many new tools have been developed for biological molecule visualization and modern drug discovery. In contrast to traditional offline tools, real-time computing, interactive data analysis, and cross-platform analyses feature WebGL- and HTML5-based tools, facilitating biological research in a more efficient and user-friendly way. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B; Almon, Richard R; DuBois, Debra C; Jusko, William J; Hoffman, Eric P
2004-01-01
Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp).
Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B.; Almon, Richard R.; DuBois, Debra C.; Jusko, William J.; Hoffman, Eric P.
2004-01-01
Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp). PMID:14681485
NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.
Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh
2016-01-01
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.
NeisseriaBase: a specialised Neisseria genomic resource and analysis platform
Zheng, Wenning; Mutha, Naresh V.R.; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S.; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah
2016-01-01
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my. PMID:27017950
Concept Mapping Your Web Searches: A Design Rationale and Web-Enabled Application
ERIC Educational Resources Information Center
Lee, Y.-J.
2004-01-01
Although it has become very common to use World Wide Web-based information in many educational settings, there has been little research on how to better search and organize Web-based information. This paper discusses the shortcomings of Web search engines and Web browsers as learning environments and describes an alternative Web search environment…
Ajax Architecture Implementation Techniques
NASA Astrophysics Data System (ADS)
Hussaini, Syed Asadullah; Tabassum, S. Nasira; Baig, Tabassum, M. Khader
2012-03-01
Today's rich Web applications use a mix of Java Script and asynchronous communication with the application server. This mechanism is also known as Ajax: Asynchronous JavaScript and XML. The intent of Ajax is to exchange small pieces of data between the browser and the application server, and in doing so, use partial page refresh instead of reloading the entire Web page. AJAX (Asynchronous JavaScript and XML) is a powerful Web development model for browser-based Web applications. Technologies that form the AJAX model, such as XML, JavaScript, HTTP, and XHTML, are individually widely used and well known. However, AJAX combines these technologies to let Web pages retrieve small amounts of data from the server without having to reload the entire page. This capability makes Web pages more interactive and lets them behave like local applications. Web 2.0 enabled by the Ajax architecture has given rise to a new level of user interactivity through web browsers. Many new and extremely popular Web applications have been introduced such as Google Maps, Google Docs, Flickr, and so on. Ajax Toolkits such as Dojo allow web developers to build Web 2.0 applications quickly and with little effort.
arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays
Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo
2005-01-01
Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681
Web-Based Testing: Exploring the Relationship between Hardware Usability and Test Performance
ERIC Educational Resources Information Center
Huff, Kyle; Cline, Melinda; Guynes, Carl S.
2012-01-01
Web-based testing has recently become common in both academic and professional settings. A web-based test is administered through a web browser. Individuals may complete a web-based test at nearly any time and at any place. In addition, almost any computer lab can become a testing center. It is important to understand the environmental issues that…
NASA Astrophysics Data System (ADS)
Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko
This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.
Molecular structure input on the web.
Ertl, Peter
2010-02-02
A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential.The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on technologies like JavaScript and Flash, is discussed.
Web-based visualization of gridded dataset usings OceanBrowser
NASA Astrophysics Data System (ADS)
Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie
2015-04-01
OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).
The Evolution of Web Searching.
ERIC Educational Resources Information Center
Green, David
2000-01-01
Explores the interrelation between Web publishing and information retrieval technologies and lists new approaches to Web indexing and searching. Highlights include Web directories; search engines; portalisation; Internet service providers; browser providers; meta search engines; popularity based analysis; natural language searching; links-based…
Web3DMol: interactive protein structure visualization based on WebGL.
Shi, Maoxiang; Gao, Juntao; Zhang, Michael Q
2017-07-03
A growing number of web-based databases and tools for protein research are being developed. There is now a widespread need for visualization tools to present the three-dimensional (3D) structure of proteins in web browsers. Here, we introduce our 3D modeling program-Web3DMol-a web application focusing on protein structure visualization in modern web browsers. Users submit a PDB identification code or select a PDB archive from their local disk, and Web3DMol will display and allow interactive manipulation of the 3D structure. Featured functions, such as sequence plot, fragment segmentation, measure tool and meta-information display, are offered for users to gain a better understanding of protein structure. Easy-to-use APIs are available for developers to reuse and extend Web3DMol. Web3DMol can be freely accessed at http://web3dmol.duapp.com/, and the source code is distributed under the MIT license. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wick, Ryan R; Heinz, Eva; Holt, Kathryn E; Wyres, Kelly L
2018-06-01
As whole-genome sequencing becomes an established component of the microbiologist's toolbox, it is imperative that researchers, clinical microbiologists, and public health professionals have access to genomic analysis tools for the rapid extraction of epidemiologically and clinically relevant information. For the Gram-negative hospital pathogens such as Klebsiella pneumoniae , initial efforts have focused on the detection and surveillance of antimicrobial resistance genes and clones. However, with the resurgence of interest in alternative infection control strategies targeting Klebsiella surface polysaccharides, the ability to extract information about these antigens is increasingly important. Here we present Kaptive Web, an online tool for the rapid typing of Klebsiella K and O loci, which encode the polysaccharide capsule and lipopolysaccharide O antigen, respectively. Kaptive Web enables users to upload and analyze genome assemblies in a web browser. The results can be downloaded in tabular format or explored in detail via the graphical interface, making it accessible for users at all levels of computational expertise. We demonstrate Kaptive Web's utility by analyzing >500 K. pneumoniae genomes. We identify extensive K and O locus diversity among 201 genomes belonging to the carbapenemase-associated clonal group 258 (25 K and 6 O loci). The characterization of a further 309 genomes indicated that such diversity is common among the multidrug-resistant clones and that these loci represent useful epidemiological markers for strain subtyping. These findings reinforce the need for rapid, reliable, and accessible typing methods such as Kaptive Web. Kaptive Web is available for use at http://kaptive.holtlab.net/, and the source code is available at https://github.com/kelwyres/Kaptive-Web. Copyright © 2018 Wick et al.
Thin client (web browser)-based collaboration for medical imaging and web-enabled data.
Le, Tuong Huu; Malhi, Nadeem
2002-01-01
Utilizing thin client software and open source server technology, a collaborative architecture was implemented allowing for sharing of Digital Imaging and Communications in Medicine (DICOM) and non-DICOM images with real-time markup. Using the Web browser as a thin client integrated with standards-based components, such as DHTML (dynamic hypertext markup language), JavaScript, and Java, collaboration was achieved through a Web server/proxy server combination utilizing Java Servlets and Java Server Pages. A typical collaborative session involved the driver, who directed the navigation of the other collaborators, the passengers, and provided collaborative markups of medical and nonmedical images. The majority of processing was performed on the server side, allowing for the client to remain thin and more accessible.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... representative, already holds an NRC- issued digital ID certificate). Based upon this information, the Secretary... online, Web-based submission form. In order to serve documents through EIE, users will be required to install a Web browser plug-in from the NRC Web site. Further information on the Web- based submission form...
The PubChem chemical structure sketcher
2009-01-01
PubChem is an important public, Web-based information source for chemical and bioactivity information. In order to provide convenient structure search methods on compounds stored in this database, one mandatory component is a Web-based drawing tool for interactive sketching of chemical query structures. Web-enabled chemical structure sketchers are not new, being in existence for years; however, solutions available rely on complex technology like Java applets or platform-dependent plug-ins. Due to general policy and support incident rate considerations, Java-based or platform-specific sketchers cannot be deployed as a part of public NCBI Web services. Our solution: a chemical structure sketching tool based exclusively on CGI server processing, client-side JavaScript functions, and image sequence streaming. The PubChem structure editor does not require the presence of any specific runtime support libraries or browser configurations on the client. It is completely platform-independent and verified to work on all major Web browsers, including older ones without support for Web2.0 JavaScript objects. PMID:20298522
Mugler, Emily M; Ruf, Carolin A; Halder, Sebastian; Bensch, Michael; Kubler, Andrea
2010-12-01
An electroencephalographic (EEG) brain-computer interface (BCI) internet browser was designed and evaluated with 10 healthy volunteers and three individuals with advanced amyotrophic lateral sclerosis (ALS), all of whom were given tasks to execute on the internet using the browser. Participants with ALS achieved an average accuracy of 73% and a subsequent information transfer rate (ITR) of 8.6 bits/min and healthy participants with no prior BCI experience over 90% accuracy and an ITR of 14.4 bits/min. We define additional criteria for unrestricted internet access for evaluation of the presented and future internet browsers, and we provide a review of the existing browsers in the literature. The P300-based browser provides unrestricted access and enables free web surfing for individuals with paralysis.
Optimizing real-time Web-based user interfaces for observatories
NASA Astrophysics Data System (ADS)
Gibson, J. Duane; Pickering, Timothy E.; Porter, Dallan; Schaller, Skip
2008-08-01
In using common HTML/Ajax approaches for web-based data presentation and telescope control user interfaces at the MMT Observatory (MMTO), we rapidly were confronted with web browser performance issues. Much of the operational data at the MMTO is highly dynamic and is constantly changing during normal operations. Status of telescope subsystems must be displayed with minimal latency to telescope operators and other users. A major motivation of migrating toward web-based applications at the MMTO is to provide easy access to current and past observatory subsystem data for a wide variety of users on their favorite operating system through a familiar interface, their web browser. Performance issues, especially for user interfaces that control telescope subsystems, led to investigations of more efficient use of HTML/Ajax and web server technologies as well as other web-based technologies, such as Java and Flash/Flex. The results presented here focus on techniques for optimizing HTML/Ajax web applications with near real-time data display. This study indicates that direct modification of the contents or "nodeValue" attribute of text nodes is the most efficient method of updating data values displayed on a web page. Other optimization techniques are discussed for web-based applications that display highly dynamic data.
Development of a Global Marine Environmental Library
2010-06-01
Gulf. Marine Geology , 129, 237- 269. [4] Lerner, S., & Maffei, A. (2001). 4DGeoBrowser: A Web-based data browser and server for accessing and...Digital Library as a Catalyst for Collaboration: Voyages across Disciplinary and Institutional Boundaries with SIO Explorer; Digital Scholarship
The UCSC genome browser and associated tools
Haussler, David; Kent, W. James
2013-01-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting. PMID:22908213
The UCSC genome browser and associated tools.
Kuhn, Robert M; Haussler, David; Kent, W James
2013-03-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.
Lamprey: tracking users on the World Wide Web.
Felciano, R M; Altman, R B
1996-01-01
Tracking individual web sessions provides valuable information about user behavior. This information can be used for general purpose evaluation of web-based user interfaces to biomedical information systems. To this end, we have developed Lamprey, a tool for doing quantitative and qualitative analysis of Web-based user interfaces. Lamprey can be used from any conforming browser, and does not require modification of server or client software. By rerouting WWW navigation through a centralized filter, Lamprey collects the sequence and timing of hyperlinks used by individual users to move through the web. Instead of providing marginal statistics, it retains the full information required to recreate a user session. We have built Lamprey as a standard Common Gateway Interface (CGI) that works with all standard WWW browsers and servers. In this paper, we describe Lamprey and provide a short demonstration of this approach for evaluating web usage patterns.
Cloud-based interactive analytics for terabytes of genomic variants data.
Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S
2017-12-01
Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. cuiping@stanford.edu or ptsao@stanford.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
Cloud-based interactive analytics for terabytes of genomic variants data
Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S
2017-01-01
Abstract Motivation Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. Results We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Availability and implementation Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. Contact cuiping@stanford.edu or ptsao@stanford.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28961771
3DNOW: Image-Based 3d Reconstruction and Modeling via Web
NASA Astrophysics Data System (ADS)
Tefera, Y.; Poiesi, F.; Morabito, D.; Remondino, F.; Nocerino, E.; Chippendale, P.
2018-05-01
This paper presents a web-based 3D imaging pipeline, namely 3Dnow, that can be used by anyone without the need of installing additional software other than a browser. By uploading a set of images through the web interface, 3Dnow can generate sparse and dense point clouds as well as mesh models. 3D reconstructed models can be downloaded with standard formats or previewed directly on the web browser through an embedded visualisation interface. In addition to reconstructing objects, 3Dnow offers the possibility to evaluate and georeference point clouds. Reconstruction statistics, such as minimum, maximum and average intersection angles, point redundancy and density can also be accessed. The paper describes all features available in the web service and provides an analysis of the computational performance using servers with different GPU configurations.
A Web Based Collaborative Design Environment for Spacecraft
NASA Technical Reports Server (NTRS)
Dunphy, Julia
1998-01-01
In this era of shrinking federal budgets in the USA we need to dramatically improve our efficiency in the spacecraft engineering design process. We have come up with a method which captures much of the experts' expertise in a dataflow design graph: Seamlessly connectable set of local and remote design tools; Seamlessly connectable web based design tools; and Web browser interface to the developing spacecraft design. We have recently completed our first web browser interface and demonstrated its utility in the design of an aeroshell using design tools located at web sites at three NASA facilities. Multiple design engineers and managers are now able to interrogate the design engine simultaneously and find out what the design looks like at any point in the design cycle, what its parameters are, and how it reacts to adverse space environments.
Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing
Nguyen, Nga Thi Thuy; Vincens, Pierre
2018-01-01
Abstract Since 2010, the Genomicus web server is available online at http://genomicus.biologie.ens.fr/genomicus. This graphical browser provides access to comparative genomic analyses in four different phyla (Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can analyse genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants, in an integrated evolutionary context. New analyses and visualization tools have recently been implemented in Genomicus Vertebrate. Karyotype structures from several genomes can now be compared along an evolutionary pathway (Multi-KaryotypeView), and synteny blocks can be computed and visualized between any two genomes (PhylDiagView). PMID:29087490
Plugin free remote visualization in the browser
NASA Astrophysics Data System (ADS)
Tamm, Georg; Slusallek, Philipp
2015-01-01
Today, users access information and rich media from anywhere using the web browser on their desktop computers, tablets or smartphones. But the web evolves beyond media delivery. Interactive graphics applications like visualization or gaming become feasible as browsers advance in the functionality they provide. However, to deliver large-scale visualization to thin clients like mobile devices, a dedicated server component is necessary. Ideally, the client runs directly within the browser the user is accustomed to, requiring no installation of a plugin or native application. In this paper, we present the state-of-the-art of technologies which enable plugin free remote rendering in the browser. Further, we describe a remote visualization system unifying these technologies. The system transfers rendering results to the client as images or as a video stream. We utilize the upcoming World Wide Web Consortium (W3C) conform Web Real-Time Communication (WebRTC) standard, and the Native Client (NaCl) technology built into Chrome, to deliver video with low latency.
Use of Web Technology to Access and Update College Plans
ERIC Educational Resources Information Center
Valeau, Edward J.; Luan, Jing
2007-01-01
In this study, the process and outcome of a web-based planning application, called Ports of Call, are discussed. The application allows college management to create, edit, and report out activities relating to college plans, all through a web browser. Its design was based on best practices in modern web technology and the application can be easily…
Genomes as geography: using GIS technology to build interactive genome feature maps
Dolan, Mary E; Holden, Constance C; Beard, M Kate; Bult, Carol J
2006-01-01
Background Many commonly used genome browsers display sequence annotations and related attributes as horizontal data tracks that can be toggled on and off according to user preferences. Most genome browsers use only simple keyword searches and limit the display of detailed annotations to one chromosomal region of the genome at a time. We have employed concepts, methodologies, and tools that were developed for the display of geographic data to develop a Genome Spatial Information System (GenoSIS) for displaying genomes spatially, and interacting with genome annotations and related attribute data. In contrast to the paradigm of horizontally stacked data tracks used by most genome browsers, GenoSIS uses the concept of registered spatial layers composed of spatial objects for integrated display of diverse data. In addition to basic keyword searches, GenoSIS supports complex queries, including spatial queries, and dynamically generates genome maps. Our adaptation of the geographic information system (GIS) model in a genome context supports spatial representation of genome features at multiple scales with a versatile and expressive query capability beyond that supported by existing genome browsers. Results We implemented an interactive genome sequence feature map for the mouse genome in GenoSIS, an application that uses ArcGIS, a commercially available GIS software system. The genome features and their attributes are represented as spatial objects and data layers that can be toggled on and off according to user preferences or displayed selectively in response to user queries. GenoSIS supports the generation of custom genome maps in response to complex queries about genome features based on both their attributes and locations. Our example application of GenoSIS to the mouse genome demonstrates the powerful visualization and query capability of mature GIS technology applied in a novel domain. Conclusion Mapping tools developed specifically for geographic data can be exploited to display, explore and interact with genome data. The approach we describe here is organism independent and is equally useful for linear and circular chromosomes. One of the unique capabilities of GenoSIS compared to existing genome browsers is the capacity to generate genome feature maps dynamically in response to complex attribute and spatial queries. PMID:16984652
WebGL for Rosetta Science Planning
NASA Astrophysics Data System (ADS)
Schmidt, Albrecht; Völk, Stefan; Grieger, Björn
2013-04-01
Rosetta is a mission of the European Space Agency (ESA) to rendez-vous with comet Churyumov-Gerasimenko in 2014. The trajectory and operations of the mission are particularly complex, have many free parameters and are novel to the community. To support science planning, communicate operational ideas and disseminate operational scenarios to the scientific community, the science ground segment makes use of Web-based visualisation technologies. Using the recent standard WebGL, static pages of time-dependent three-dimensional views of the spacecraft and the field-of-views of the instruments are generated, directly from the operational files. These can then be viewed in modern Web browsers for understanding or verification, be analysed and correlated with other studies. Variable timesteps make it possible to provide both overviews and detailed animated scenes. The technical challenges that are particular to Web-based environments include: (1) In traditional OpenGL, is much easier to compute needed data on demand since the visualisation runs natively on a usually quite powerful computer. In WebGL application, since requests for additional data have to be passed through a Web server, they are more complex and also require a more complex infrastructure. (2) The volume of data that can be kept in a browser environment is limited and has to be transferred over often slow network links. Thus, careful design and reduction of data is required. (3) Although browser support for WebGL has improved since the authors started using it, it is often not well supported on mobile and small devices. (4) Web browsers often only support limited end user interactions with a mouse or keyboards. While some of the challenges can be expected to become less important as technological progress continues, others seem to be more inherent to the approach. On the positive side, the authors' experiences include: (1) low threshold in the community to using the visualisations, (2), thus, cooperative use of the products, and (3) good and still improving tool and library support.
ERIC Educational Resources Information Center
Adler, Steve
2000-01-01
Explains the use of Adobe Acrobat's Portable Document Format (PDF) for school Web sites and Intranets. Explains the PDF workflow; components for Web-based PDF delivery, including the Web server, preparing content of the PDF files, and the browser; incorporating PDFs into the Web site; incorporating multimedia; and software. (LRW)
Modelling Safe Interface Interactions in Web Applications
NASA Astrophysics Data System (ADS)
Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael
Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.
Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes.
McKain, Michael R; Hartsock, Ryan H; Wohl, Molly M; Kellogg, Elizabeth A
2017-01-01
Chloroplast genomes are now produced in the hundreds for angiosperm phylogenetics projects, but current methods for annotation, alignment and tree estimation still require some manual intervention reducing throughput and increasing analysis time for large chloroplast systematics projects. Verdant is a web-based software suite and database built to take advantage a novel annotation program, annoBTD. Using annoBTD, Verdant provides accurate annotation of chloroplast genomes without manual intervention. Subsequent alignment and tree estimation can incorporate newly annotated and publically available plastomes and can accommodate a large number of taxa. Verdant sharply reduces the time required for analysis of assembled chloroplast genomes and removes the need for pipelines and software on personal hardware. Verdant is available at: http://verdant.iplantcollaborative.org/plastidDB/ It is implemented in PHP, Perl, MySQL, Javascript, HTML and CSS with all major browsers supported. mrmckain@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Gai, Xiaowu; Perin, Juan C; Murphy, Kevin; O'Hara, Ryan; D'arcy, Monica; Wenocur, Adam; Xie, Hongbo M; Rappaport, Eric F; Shaikh, Tamim H; White, Peter S
2010-02-04
Recent studies have shown that copy number variations (CNVs) are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist. We developed a suite of software tools and resources (CNV Workshop) for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV. To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and is an ideal platform for coordinating multiple associated projects. Available on the web at: http://sourceforge.net/projects/cnv.
UCSC genome browser: deep support for molecular biomedical research.
Mangan, Mary E; Williams, Jennifer M; Lathe, Scott M; Karolchik, Donna; Lathe, Warren C
2008-01-01
The volume and complexity of genomic sequence data, and the additional experimental data required for annotation of the genomic context, pose a major challenge for display and access for biomedical researchers. Genome browsers organize this data and make it available in various ways to extract useful information to advance research projects. The UCSC Genome Browser is one of these resources. The official sequence data for a given species forms the framework to display many other types of data such as expression, variation, cross-species comparisons, and more. Visual representations of the data are available for exploration. Data can be queried with sequences. Complex database queries are also easily achieved with the Table Browser interface. Associated tools permit additional query types or access to additional data sources such as images of in situ localizations. Support for solving researcher's issues is provided with active discussion mailing lists and by providing updated training materials. The UCSC Genome Browser provides a source of deep support for a wide range of biomedical molecular research (http://genome.ucsc.edu).
Next generation tools for genomic data generation, distribution, and visualization
2010-01-01
Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq. PMID:20828407
WEB-BASED MODELING OF A FERTILIZER SOLUTION SPILL IN THE OHIO RIVER
Environmental computer models are usually desktop models. Some web-enabled models are beginning to appear where the user can use a browser to run the models on a central web server. Several issues arise when a desktop model is transferred to a web architecture. This paper discuss...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M Pauline
2007-06-30
The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less
pWeb: A High-Performance, Parallel-Computing Framework for Web-Browser-Based Medical Simulation.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2014-01-01
This work presents a pWeb - a new language and compiler for parallelization of client-side compute intensive web applications such as surgical simulations. The recently introduced HTML5 standard has enabled creating unprecedented applications on the web. Low performance of the web browser, however, remains the bottleneck of computationally intensive applications including visualization of complex scenes, real time physical simulations and image processing compared to native ones. The new proposed language is built upon web workers for multithreaded programming in HTML5. The language provides fundamental functionalities of parallel programming languages as well as the fork/join parallel model which is not supported by web workers. The language compiler automatically generates an equivalent parallel script that complies with the HTML5 standard. A case study on realistic rendering for surgical simulations demonstrates enhanced performance with a compact set of instructions.
Implementing a distributed intranet-based information system.
O'Kane, K C; McColligan, E E; Davis, G A
1996-11-01
The article discusses Internet and intranet technologies and describes how to install an intranet-based information system using the Merle language facility and other readily available components. Merle is a script language designed to support decentralized medical record information retrieval applications on the World Wide Web. The goal of this work is to provide a script language tool to facilitate construction of efficient, fully functional, multipoint medical record information systems that can be accessed anywhere by low-cost Web browsers to search, retrieve, and analyze patient information. The language allows legacy MUMPS applications to function in a Web environment and to make use of the Web graphical, sound, and video presentation services. It also permits downloading of script applets for execution on client browsers, and it can be used in standalone mode with the Unix, Windows 95, Windows NT, and OS/2 operating systems.
Oncogenomic portals for the visualization and analysis of genome-wide cancer data
Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr
2016-01-01
Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice. PMID:26484415
Oncogenomic portals for the visualization and analysis of genome-wide cancer data.
Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr
2016-01-05
Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice.
Digital hand atlas and computer-aided bone age assessment via the Web
NASA Astrophysics Data System (ADS)
Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente
1999-07-01
A frequently used assessment method of bone age is atlas matching by a radiological examination of a hand image against a reference set of atlas patterns of normal standards. We are in a process of developing a digital hand atlas with a large standard set of normal hand and wrist images that reflect the skeletal maturity, race and sex difference, and current child development. The digital hand atlas will be used for a computer-aided bone age assessment via Web. We have designed and partially implemented a computer-aided diagnostic (CAD) system for Web-based bone age assessment. The system consists of a digital hand atlas, a relational image database and a Web-based user interface. The digital atlas is based on a large standard set of normal hand an wrist images with extracted bone objects and quantitative features. The image database uses a content- based indexing to organize the hand images and their attributes and present to users in a structured way. The Web-based user interface allows users to interact with the hand image database from browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, will be extracted and compared with patterns from the atlas database to assess the bone age. The relevant reference imags and the final assessment report will be sent back to the user's browser via Web. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. In this paper, we present the system design and Web-based client-server model for computer-assisted bone age assessment and our initial implementation of the digital atlas database.
Baby Steps: Starting Out on the World Wide Web.
ERIC Educational Resources Information Center
Simpson, Carol; McElmeel, Sharron L.
1997-01-01
While the Internet is the physical medium used to transport data, the World Wide Web is the collection of protocols and standards used to access the information. This article provides a basic explanation of what the Web is and describes common browser commands. Discusses graphic Web browsers; universal resource locators (URLs); file, message,…
The i5k Workspace@NAL—enabling genomic data access, visualization and curation of arthropod genomes
Poelchau, Monica; Childers, Christopher; Moore, Gary; Tsavatapalli, Vijaya; Evans, Jay; Lee, Chien-Yueh; Lin, Han; Lin, Jun-Wei; Hackett, Kevin
2015-01-01
The 5000 arthropod genomes initiative (i5k) has tasked itself with coordinating the sequencing of 5000 insect or related arthropod genomes. The resulting influx of data, mostly from small research groups or communities with little bioinformatics experience, will require visualization, dissemination and curation, preferably from a centralized platform. The National Agricultural Library (NAL) has implemented the i5k Workspace@NAL (http://i5k.nal.usda.gov/) to help meet the i5k initiative's genome hosting needs. Any i5k member is encouraged to contact the i5k Workspace with their genome project details. Once submitted, new content will be accessible via organism pages, genome browsers and BLAST search engines, which are implemented via the open-source Tripal framework, a web interface for the underlying Chado database schema. We also implement the Web Apollo software for groups that choose to curate gene models. New content will add to the existing body of 35 arthropod species, which include species relevant for many aspects of arthropod genomic research, including agriculture, invasion biology, systematics, ecology and evolution, and developmental research. PMID:25332403
Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing.
Nguyen, Nga Thi Thuy; Vincens, Pierre; Roest Crollius, Hugues; Louis, Alexandra
2018-01-04
Since 2010, the Genomicus web server is available online at http://genomicus.biologie.ens.fr/genomicus. This graphical browser provides access to comparative genomic analyses in four different phyla (Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can analyse genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants, in an integrated evolutionary context. New analyses and visualization tools have recently been implemented in Genomicus Vertebrate. Karyotype structures from several genomes can now be compared along an evolutionary pathway (Multi-KaryotypeView), and synteny blocks can be computed and visualized between any two genomes (PhylDiagView). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water
NASA Astrophysics Data System (ADS)
Saini-Eidukat, Bernhardt; Yahin, Andrew
1999-05-01
A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.
Setti, E; Musumeci, R
2001-06-01
The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.
The EMBL nucleotide sequence database
Stoesser, Guenter; Baker, Wendy; van den Broek, Alexandra; Camon, Evelyn; Garcia-Pastor, Maria; Kanz, Carola; Kulikova, Tamara; Lombard, Vincent; Lopez, Rodrigo; Parkinson, Helen; Redaschi, Nicole; Sterk, Peter; Stoehr, Peter; Tuli, Mary Ann
2001-01-01
The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) is maintained at the European Bioinformatics Institute (EBI) in an international collaboration with the DNA Data Bank of Japan (DDBJ) and GenBank at the NCBI (USA). Data is exchanged amongst the collaborating databases on a daily basis. The major contributors to the EMBL database are individual authors and genome project groups. Webin is the preferred web-based submission system for individual submitters, whilst automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO). Database releases are produced quarterly. Network services allow free access to the most up-to-date data collection via ftp, email and World Wide Web interfaces. EBI’s Sequence Retrieval System (SRS), a network browser for databanks in molecular biology, integrates and links the main nucleotide and protein databases plus many specialized databases. For sequence similarity searching a variety of tools (e.g. Blitz, Fasta, BLAST) are available which allow external users to compare their own sequences against the latest data in the EMBL Nucleotide Sequence Database and SWISS-PROT. PMID:11125039
Map-IT! A Web-Based GIS Tool for Watershed Science Education.
ERIC Educational Resources Information Center
Curtis, David H.; Hewes, Christopher M.; Lossau, Matthew J.
This paper describes the development of a prototypic, Web-accessible GIS solution for K-12 science education and citizen-based watershed monitoring. The server side consists of ArcView IMS running on an NT workstation. The client is built around MapCafe. The client interface, which runs through a standard Web browser, supports standard MapCafe…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, X; Liu, L; Xing, L
Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform through a web browser and exhibited potential for future cloud based radiotherapy.« less
MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.
Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G
2012-12-07
MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.
GreenPhylDB v2.0: comparative and functional genomics in plants.
Rouard, Mathieu; Guignon, Valentin; Aluome, Christelle; Laporte, Marie-Angélique; Droc, Gaëtan; Walde, Christian; Zmasek, Christian M; Périn, Christophe; Conte, Matthieu G
2011-01-01
GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery.
D-peaks: a visual tool to display ChIP-seq peaks along the genome.
Brohée, Sylvain; Bontempi, Gianluca
2012-01-01
ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.
Web-Accessible Scientific Workflow System for Performance Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roelof Versteeg; Roelof Versteeg; Trevor Rowe
2006-03-01
We describe the design and implementation of a web accessible scientific workflow system for environmental monitoring. This workflow environment integrates distributed, automated data acquisition with server side data management and information visualization through flexible browser based data access tools. Component technologies include a rich browser-based client (using dynamic Javascript and HTML/CSS) for data selection, a back-end server which uses PHP for data processing, user management, and result delivery, and third party applications which are invoked by the back-end using webservices. This environment allows for reproducible, transparent result generation by a diverse user base. It has been implemented for several monitoringmore » systems with different degrees of complexity.« less
Fulfillment of HTTP Authentication Based on Alcatel OmniSwitch 9700
NASA Astrophysics Data System (ADS)
Liu, Hefu
This paper provides a way of HTTP authentication On Alcatel OmniSwitch 9700. Authenticated VLANs control user access to network resources based on VLAN assignment and user authentication. The user can be authenticated through the switch via any standard Web browser software. Web browser client displays the username and password prompts. Then a way for HTML forms can be given to pass HTTP authentication data when it's submitted. A radius server will provide a database of user information that the switch checks whenever it tries to authenticate through the switch. Before or after authentication, the client can get an address from a Dhcp server.
COPRED: prediction of fold, GO molecular function and functional residues at the domain level.
López, Daniel; Pazos, Florencio
2013-07-15
Only recently the first resources devoted to the functional annotation of proteins at the domain level started to appear. The next step is to develop specific methodologies for predicting function at the domain level based on these resources, and to implement them in web servers to be used by the community. In this work, we present COPRED, a web server for the concomitant prediction of fold, molecular function and functional sites at the domain level, based on a methodology for domain molecular function prediction and a resource of domain functional annotations previously developed and benchmarked. COPRED can be freely accessed at http://csbg.cnb.csic.es/copred. The interface works in all standard web browsers. WebGL (natively supported by most browsers) is required for the in-line preview and manipulation of protein 3D structures. The website includes a detailed help section and usage examples. pazos@cnb.csic.es.
A Bookmarking Service for Organizing and Sharing URLs
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Wolfe, Shawn R.; Chen, James R.; Mathe, Nathalie; Rabinowitz, Joshua L.
1997-01-01
Web browser bookmarking facilities predominate as the method of choice for managing URLs. In this paper, we describe some deficiencies of current bookmarking schemes, and examine an alternative to current approaches. We present WebTagger(TM), an implemented prototype of a personal bookmarking service that provides both individuals and groups with a customizable means of organizing and accessing Web-based information resources. In addition, the service enables users to supply feedback on the utility of these resources relative to their information needs, and provides dynamically-updated ranking of resources based on incremental user feedback. Individuals may access the service from anywhere on the Internet, and require no special software. This service greatly simplifies the process of sharing URLs within groups, in comparison with manual methods involving email. The underlying bookmark organization scheme is more natural and flexible than current hierarchical schemes supported by the major Web browsers, and enables rapid access to stored bookmarks.
Web Program for Development of GUIs for Cluster Computers
NASA Technical Reports Server (NTRS)
Czikmantory, Akos; Cwik, Thomas; Klimeck, Gerhard; Hua, Hook; Oyafuso, Fabiano; Vinyard, Edward
2003-01-01
WIGLAF (a Web Interface Generator and Legacy Application Facade) is a computer program that provides a Web-based, distributed, graphical-user-interface (GUI) framework that can be adapted to any of a broad range of application programs, written in any programming language, that are executed remotely on any cluster computer system. WIGLAF enables the rapid development of a GUI for controlling and monitoring a specific application program running on the cluster and for transferring data to and from the application program. The only prerequisite for the execution of WIGLAF is a Web-browser program on a user's personal computer connected with the cluster via the Internet. WIGLAF has a client/server architecture: The server component is executed on the cluster system, where it controls the application program and serves data to the client component. The client component is an applet that runs in the Web browser. WIGLAF utilizes the Extensible Markup Language to hold all data associated with the application software, Java to enable platform-independent execution on the cluster system and the display of a GUI generator through the browser, and the Java Remote Method Invocation software package to provide simple, effective client/server networking.
Addressing an I/O Bottleneck in a Web-Based CERES QC Tool
NASA Astrophysics Data System (ADS)
Heckert, E.; Sun-Mack, S.; Chen, Y.; Chu, C.; Smith, R. A.
2016-12-01
In this poster, we explore the technologies we have used to overcome the problem of transmitting and analyzing large datasets in our web-based CERES Quality Control tool and consider four technologies to potentially adopt for future performance improvements. The CERES team uses this tool to validate pixel-level data from Terra, Aqua, SNPP, MSG, MTSAT, and many geostationary GOES satellites, as well as to develop cloud retrieval algorithms. The tool includes a histogram feature that allows the user to aggregate data from many different timestamps and different scenes globally or locally selected by the user by drawing bounding boxes. In order to provide a better user experience, the tool passes a large amount of data to the user's browser. The browser then processes the data in order to present it to users in various formats, for example as a histogram. In addition to using multiple servers to subset data and pass a smaller set of data to the browser, the tool also makes use of a compression technology, Gzip, to reduce the size of the data. However, sometimes the application in the browser is still slow when dealing with these large sets of data due to the delay in the browser receiving the server's response. To address this I/O bottleneck, we will investigate four alternatives and present the results in this poster: 1) sending uncompressed data, 2) ESRI's Limited Error Raster Compression (LERC), 3) Gzip, and 4) WebSocket protocol. These approaches are compared to each other and to the uncompressed control to determine the optimal solution.
Accountable Information Flow for Java-Based Web Applications
2010-01-01
runtime library Swift server runtime Java servlet framework HTTP Web server Web browser Figure 2: The Swift architecture introduced an open-ended...On the server, the Java application code links against Swift’s server-side run-time library, which in turn sits on top of the standard Java servlet ...AFRL-RI-RS-TR-2010-9 Final Technical Report January 2010 ACCOUNTABLE INFORMATION FLOW FOR JAVA -BASED WEB APPLICATIONS
A Web Browser Interface to Manage the Searching and Organizing of Information on the Web by Learners
ERIC Educational Resources Information Center
Li, Liang-Yi; Chen, Gwo-Dong
2010-01-01
Information Gathering is a knowledge construction process. Web learners make a plan for their Information Gathering task based on their prior knowledge. The plan is evolved with new information encountered and their mental model is constructed through continuously assimilating and accommodating new information gathered from different Web pages. In…
Science Plan Visualisation for Rosetta
NASA Astrophysics Data System (ADS)
Schmidt, A.; Grieger, B.; Völk, S.
2013-12-01
Rosetta is a mission of the European Space Agency (ESA) to rendez-vous with comet Churyumov-Gerasimenko in mid-2014. The trajectories and their corresponding operations are flexible and particularly complex. To make informed decisions among the many free parameters novel ways to communicate operations to the community have been explored. To support science planning by communicating operational ideas and disseminating operational scenarios, the science ground segment makes use of Web-based visualisation technologies. To keep the threshold to analysing operations proposals as low as possible, various implementation techniques have been investigated. An important goal was to use the Web to make the content as accessible as possible. By adopting the recent standard WebGL and generating static pages of time-dependent three-dimensional views of the spacecraft as well as the corresponding field-of-views of instruments, directly from the operational and for-study files, users are given the opportunity to explore interactively in their Web browsers what is being proposed in addition to using the traditional file products and analysing them in detail. The scenes and animations can be viewed in any modern Web browser and be combined with other analyses. This is to facilitate verification and cross-validation of complex products, often done by comparing different independent analyses and studies. By providing different timesteps in animations, it is possible to focus on long-term planning or short-term planning without distracting the user from the essentials. This is particularly important since the information that can be displayed in a Web browser is somewhat related to data volume that can be transferred across the wire. In Web browsers, it is more challenging to do numerical calculations on demand. Since requests for additional data have to be passed through a Web server, they are more complex and also require a more complex infrastructure. The volume of data that can be kept in a browser environment is limited and might have to be transferred over often slow network links. Thus, careful design and reduction of data is required. Regarding user interaction, Web browsers are often limited to a mouse and keyboards. In terms of benefits, the threshold and turn-around times for discussing operational ideas by using the visualisation techniques described here are lowered. An additional benefit of the approach was the cooperative use of products by distributed users which resulted in higher-quality software and data by incorporating more feedback than what would usually have been available.
Communication of Science Plans in the Rosetta Mission
NASA Astrophysics Data System (ADS)
Schmidt, Albrecht; Grieger, Björn; Völk, Stefan
2014-05-01
Rosetta is a mission of the European Space Agency (ESA) to rendez-vous with comet Churyumov-Gerasimenko in mid-2014. The trajectories and their corresponding operations are both flexible and particularly complex. To make informed decisions among the many free parameters, novel ways to communicate operations to the community have been explored. To support science planning by communicating operational ideas and disseminating operational scenarios, the science ground segment makes use of Web-based visualisation technologies. To keep the threshold to analysing operations proposals as low as possible, various implementation techniques have been investigated. An important goal was to use the Web to make the content as accessible as possible. By adopting the recent standard WebGL and generating static pages of time-dependent three-dimensional views of the spacecraft as well as the corresponding field-of-views of instruments, directly from the operational and for-study files, users are given the opportunity to explore interactively in their Web browsers what is being proposed in addition to using the traditional file products and analysing them in detail. The scenes and animations can be viewed in any modern Web browser and be combined with other analyses. This is to facilitate verification and cross-validation of complex products, often done by comparing different independent analyses and studies. By providing different timesteps in animations, it is possible to focus on long-term planning or short-term planning without distracting the user from the essentials. This is particularly important since the information that can be displayed in a Web browser is somewhat related to data volume that can be transferred across the wire. In Web browsers, it is more challenging to do numerical calculations on demand. Since requests for additional data have to be passed through a Web server, they are more complex and also require a more complex infrastructure. The volume of data that can be kept in a browser environment is limited and might have to be transferred over often slow network links. Thus, careful design and reduction of data is required. Regarding user interaction, Web browsers are often limited to a mouse and keyboards. In terms of benefits, the threshold and turn-around times for discussing operational ideas by using the visualisation techniques described here are lowered. An additional benefit of the approach was the cooperative use of products by distributed users which resulted in higher-quality software and data by incorporating more feedback than what would usually have been available.
JavaScript Access to DICOM Network and Objects in Web Browser.
Drnasin, Ivan; Grgić, Mislav; Gogić, Goran
2017-10-01
Digital imaging and communications in medicine (DICOM) 3.0 standard provides the baseline for the picture archiving and communication systems (PACS). The development of Internet and various communication media initiated demand for non-DICOM access to PACS systems. Ever-increasing utilization of the web browsers, laptops and handheld devices, as opposed to desktop applications and static organizational computers, lead to development of different web technologies. The DICOM standard officials accepted those subsequently as tools of alternative access. This paper provides an overview of the current state of development of the web access technology to the DICOM repositories. It presents a different approach of using HTML5 features of the web browsers through the JavaScript language and the WebSocket protocol by enabling real-time communication with DICOM repositories. JavaScript DICOM network library, DICOM to WebSocket proxy and a proof-of-concept web application that qualifies as a DICOM 3.0 device were developed.
Dynamic online surveys and experiments with the free open-source software dynQuest.
Rademacher, Jens D M; Lippke, Sonia
2007-08-01
With computers and the World Wide Web widely available, collecting data through Web browsers is an attractive method utilized by the social sciences. In this article, conducting PC- and Web-based trials with the software package dynQuest is described. The software manages dynamic questionnaire-based trials over the Internet or on single computers, possibly as randomized control trials (RCT), if two or more groups are involved. The choice of follow-up questions can depend on previous responses, as needed for matched interventions. Data are collected in a simple text-based database that can be imported easily into other programs for postprocessing and statistical analysis. The software consists of platform-independent scripts written in the programming language PERL that use the common gateway interface between Web browser and server for submission of data through HTML forms. Advantages of dynQuest are parsimony, simplicity in use and installation, transparency, and reliability. The program is available as open-source freeware from the authors.
Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-01-01
Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313
Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-06-01
Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.
The Papillomavirus Episteme: a major update to the papillomavirus sequence database.
Van Doorslaer, Koenraad; Li, Zhiwen; Xirasagar, Sandhya; Maes, Piet; Kaminsky, David; Liou, David; Sun, Qiang; Kaur, Ramandeep; Huyen, Yentram; McBride, Alison A
2017-01-04
The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. This update describes the addition of major new features. The papillomavirus genomes within PaVE have been further annotated, and now includes the major spliced mRNA transcripts. Viral genes and transcripts can be visualized on both linear and circular genome browsers. Evolutionary relationships among PaVE reference protein sequences can be analysed using multiple sequence alignments and phylogenetic trees. To assist in viral discovery, PaVE offers a typing tool; a simplified algorithm to determine whether a newly sequenced virus is novel. PaVE also now contains an image library containing gross clinical and histopathological images of papillomavirus infected lesions. Database URL: https://pave.niaid.nih.gov/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Open-Source web-based geographical information system for health exposure assessment
2012-01-01
This paper presents the design and development of an open source web-based Geographical Information System allowing users to visualise, customise and interact with spatial data within their web browser. The developed application shows that by using solely Open Source software it was possible to develop a customisable web based GIS application that provides functions necessary to convey health and environmental data to experts and non-experts alike without the requirement of proprietary software. PMID:22233606
On the Nets. Comparing Web Browsers: Mosaic, Cello, Netscape, WinWeb and InternetWorks Life.
ERIC Educational Resources Information Center
Notess, Greg R.
1995-01-01
World Wide Web browsers are compared by speed, setup, hypertext transport protocol (HTTP) handling, management of file transfer protocol (FTP), telnet, gopher, and wide area information server (WAIS); bookmark options; and communication functions. Netscape has the most features, the fastest retrieval, sophisticated bookmark capabilities. (JMV)
Visits, Hits, Caching and Counting on the World Wide Web: Old Wine in New Bottles?
ERIC Educational Resources Information Center
Berthon, Pierre; Pitt, Leyland; Prendergast, Gerard
1997-01-01
Although web browser caching speeds up retrieval, reduces network traffic, and decreases the load on servers and browser's computers, an unintended consequence for marketing research is that Web servers undercount hits. This article explores counting problems, caching, proxy servers, trawler software and presents a series of correction factors…
Decoding Technology: Web Browsers
ERIC Educational Resources Information Center
Walker, Tim; Donohue, Chip
2007-01-01
More than ever, early childhood administrators are relying on the Internet for information. A key to becoming an exceptional Web "surfer" is getting to know the ins and outs of the Web browser being used. There are several options available, and almost all can be downloaded for free. However, many of the functions and features they offer are very…
Introduction to the fathead minnow genome browser and opportunities for collaborative development
Ab initio gene prediction and evidence alignment were used to produce the first annotations for the fathead minnow SOAPdenovo genome assembly. Additionally, a genome browser hosted at genome.setac.org provides simplified access to the annotation data in context with fathead minno...
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data.
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data.
IBM techexplorer and MathML: Interactive Multimodal Scientific Documents
NASA Astrophysics Data System (ADS)
Diaz, Angel
2001-06-01
The World Wide Web provides a standard publishing platform for disseminating scientific and technical articles, books, journals, courseware, or even homework on the internet; however, the transition from paper to web-based interactive content has brought new opportunities for creating interactive content. Students, scientists, and engineers are now faced with the task of rendering the 2D presentational structure of mathematics, harnessing the wealth of scientific and technical software, and creating truly accessible scientific portals across international boundaries and markets. The recent emergence of World Wide Web Consortium (W3C) standards such as the Mathematical Markup Language (MathML), Language (XSL), and Aural CSS (ACSS) provide a foundation whereby mathematics can be displayed, enlivened, computed, and audio formatted. With interoperability ensured by standards, software applications can be easily brought together to create extensible and interactive scientific content. In this presentation we will provide an overview of the IBM techexplorer Hypermedia Browser, a web browser plug-in and ActiveX control aimed at bringing interactive mathematics to the masses across platforms and applications. We will demonstrate "live" mathematics where documents that contain MathML expressions can be edited and computed right inside your favorite web browser. This demonstration will be generalized as we show how MathML can be used to enliven even PowerPoint presentations. Finally, we will close the loop by demonstrating a novel approach to spoken mathematics based on MathML, DOM, XSL, ACSS, techexplorer, and IBM ViaVoice. By making use of techexplorer as the glue that binds the rendered content to the web browser, the back-end computation software, the Java applets that augment the exposition, and voice-rendering systems such as ViaVoice, authors can indeed create truly extensible and interactive scientific content. For more information see: [http://www.software.ibm.com/techexplorer] [http://www.alphaworks.ibm.com] [http://www.w3.org
Perspectives for Electronic Books in the World Wide Web Age.
ERIC Educational Resources Information Center
Bry, Francois; Kraus, Michael
2002-01-01
Discusses the rapid growth of the World Wide Web and the lack of use of electronic books and suggests that specialized contents and device independence can make Web-based books compete with print. Topics include enhancing the hypertext model of XML; client-side adaptation, including browsers and navigation; and semantic modeling. (Author/LRW)
CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline.
Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M; Tettelin, Hervé; White, Owen; Angiuoli, Samuel V; Mahurkar, Anup; Fricke, W Florian
2017-04-27
The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise.
A web-based approach for electrocardiogram monitoring in the home.
Magrabi, F; Lovell, N H; Celler, B G
1999-05-01
A Web-based electrocardiogram (ECG) monitoring service in which a longitudinal clinical record is used for management of patients, is described. The Web application is used to collect clinical data from the patient's home. A database on the server acts as a central repository where this clinical information is stored. A Web browser provides access to the patient's records and ECG data. We discuss the technologies used to automate the retrieval and storage of clinical data from a patient database, and the recording and reviewing of clinical measurement data. On the client's Web browser, ActiveX controls embedded in the Web pages provide a link between the various components including the Web server, Web page, the specialised client side ECG review and acquisition software, and the local file system. The ActiveX controls also implement FTP functions to retrieve and submit clinical data to and from the server. An intelligent software agent on the server is activated whenever new ECG data is sent from the home. The agent compares historical data with newly acquired data. Using this method, an optimum patient care strategy can be evaluated, a summarised report along with reminders and suggestions for action is sent to the doctor and patient by email.
Integrated genome browser: visual analytics platform for genomics.
Freese, Nowlan H; Norris, David C; Loraine, Ann E
2016-07-15
Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.
The UCSC Genome Browser database: extensions and updates 2013.
Meyer, Laurence R; Zweig, Ann S; Hinrichs, Angie S; Karolchik, Donna; Kuhn, Robert M; Wong, Matthew; Sloan, Cricket A; Rosenbloom, Kate R; Roe, Greg; Rhead, Brooke; Raney, Brian J; Pohl, Andy; Malladi, Venkat S; Li, Chin H; Lee, Brian T; Learned, Katrina; Kirkup, Vanessa; Hsu, Fan; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Goldman, Mary; Giardine, Belinda M; Fujita, Pauline A; Dreszer, Timothy R; Diekhans, Mark; Cline, Melissa S; Clawson, Hiram; Barber, Galt P; Haussler, David; Kent, W James
2013-01-01
The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation 'tracks' are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal.
Implications of the Tribolium genome project for pest biology
USDA-ARS?s Scientific Manuscript database
The universal availability of the complete Tribolium castaneum genome sequence assembly and annotation and concomitant development of the versatile Tribolium genome browser, BeetleBase (http://beetlebase.org/) open new realms of possibility for stored-product pest control by greatly simplifying the...
Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan
2009-01-01
Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385
Prototyping Tool for Web-Based Multiuser Online Role-Playing Game
NASA Astrophysics Data System (ADS)
Okamoto, Shusuke; Kamada, Masaru; Yonekura, Tatsuhiro
This letter proposes a prototyping tool for Web-based Multiuser Online Role-Playing Game (MORPG). The design goal is to make this tool simple and powerful. The tool is comprised of a GUI editor, a translator and a runtime environment. The GUI editor is used to edit state-transition diagrams, each of which defines the behavior of the fictional characters. The state-transition diagrams are translated into C program codes, which plays the role of a game engine in RPG system. The runtime environment includes PHP, JavaScript with Ajax and HTML. So the prototype system can be played on the usual Web browser, such as Fire-fox, Safari and IE. On a click or key press by a player, the Web browser sends it to the Web server to reflect its consequence on the screens which other players are looking at. Prospected users of this tool include programming novices and schoolchildren. The knowledge or skill of any specific programming languages is not required to create state-transition diagrams. Its structure is not only suitable for the definition of a character behavior but also intuitive to help novices understand. Therefore, the users can easily create Web-based MORPG system with the tool.
Engineering Analysis Using a Web-based Protocol
NASA Technical Reports Server (NTRS)
Schoeffler, James D.; Claus, Russell W.
2002-01-01
This paper reviews the development of a web-based framework for engineering analysis. A one-dimensional, high-speed analysis code called LAPIN was used in this study, but the approach can be generalized to any engineering analysis tool. The web-based framework enables users to store, retrieve, and execute an engineering analysis from a standard web-browser. We review the encapsulation of the engineering data into the eXtensible Markup Language (XML) and various design considerations in the storage and retrieval of application data.
Almeida, Jonas S.; Iriabho, Egiebade E.; Gorrepati, Vijaya L.; Wilkinson, Sean R.; Grüneberg, Alexander; Robbins, David E.; Hackney, James R.
2012-01-01
Background: Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. Materials and Methods: ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Results: Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. Conclusions: The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local “download and installation”. PMID:22934238
Almeida, Jonas S; Iriabho, Egiebade E; Gorrepati, Vijaya L; Wilkinson, Sean R; Grüneberg, Alexander; Robbins, David E; Hackney, James R
2012-01-01
Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local "download and installation".
Using Web Speech Technology with Language Learning Applications
ERIC Educational Resources Information Center
Daniels, Paul
2015-01-01
In this article, the author presents the history of human-to-computer interaction based upon the design of sophisticated computerized speech recognition algorithms. Advancements such as the arrival of cloud-based computing and software like Google's Web Speech API allows anyone with an Internet connection and Chrome browser to take advantage of…
Exploratory Visual Analytics of a Dynamically Built Network of Nodes in a WebGL-Enabled Browser
2014-01-01
dimensionality reduction, feature extraction, high-dimensional data, t-distributed stochastic neighbor embedding, neighbor retrieval visualizer, visual...WebGL-enabled rendering is supported natively by browsers such as the latest Mozilla Firefox , Google Chrome, and Microsoft Internet Explorer 11. At the...appropriate names. The resultant 26-node network is displayed in a Mozilla Firefox browser in figure 2 (also see appendix B). 3 Figure 1. The
Future View: Web Navigation based on Learning User's Browsing Strategy
NASA Astrophysics Data System (ADS)
Nagino, Norikatsu; Yamada, Seiji
In this paper, we propose a Future View system that assists user's usual Web browsing. The Future View will prefetch Web pages based on user's browsing strategies and present them to a user in order to assist Web browsing. To learn user's browsing strategy, the Future View uses two types of learning classifier systems: a content-based classifier system for contents change patterns and an action-based classifier system for user's action patterns. The results of learning is applied to crawling by Web robots, and the gathered Web pages are presented to a user through a Web browser interface. We experimentally show effectiveness of navigation using the Future View.
Argonne National Laboratory High Energy Physics Division Windows Desktops Problem Report Service Request Password Help New Users Back to HEP Computing Email on ANL Exchange: See Windows Clients section (Outlook or Thunderbird recommended) Web Browsers: Web Browsers for Windows Desktops Software: Available
Density-based parallel skin lesion border detection with webCL
2015-01-01
Background Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Methods Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Results Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. Conclusions When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser. PMID:26423836
Density-based parallel skin lesion border detection with webCL.
Lemon, James; Kockara, Sinan; Halic, Tansel; Mete, Mutlu
2015-01-01
Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In current practice, dermatologists often delineate borders through a hand drawn representation based upon visual inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common. Because of this, the automated assessment of lesion borders in dermoscopic images has become an important area of study. Fast density based skin lesion border detection method has been implemented in parallel with a new parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware resources such as multi cores and GPUs. Developed WebCL-parallel density based skin lesion border detection method runs efficiently from internet browsers. Previous research indicates that one of the highest accuracy rates can be achieved using density based clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units) by transforming the technique into a series of independent concurrent operations. Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%, mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version's speedup factor for 100 dermoscopy images' lesion border detection averages around ~491.2. When large amount of high resolution dermoscopy images considered in a usual clinical setting along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for compiled code to run directly from the Web Browser.
Vcs.js - Visualization Control System for the Web
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Lipsa, D.; Doutriaux, C.; Beezley, J. D.; Williams, D. N.; Fries, S.; Harris, M. B.
2016-12-01
VCS is a general purpose visualization library, optimized for climate data, which is part of the UV-CDAT system. It provides a Python API for drawing 2D plots such as lineplots, scatter plots, Taylor diagrams, data colored by scalar values, vector glyphs, isocontours and map projections. VCS is based on the VTK library. Vcs.js is the corresponding JavaScript API, designed to be as close as possible to the original VCS Python API and to provide similar functionality for the Web. Vcs.js includes additional functionality when compared with VCS. This additional API is used to introspect data files available on the server and variables available in a data file. Vcs.js can display plots in the browser window. It always works with a server that reads a data file, extracts variables from the file and subsets the data. From this point, two alternate paths are possible. First the system can render the data on the server using VCS producing an image which is send to the browser to be displayed. This path works for for all plot types and produces a reference image identical with the images produced by VCS. This path uses the VTK-Web library. As an optimization, usable in certain conditions, a second path is possible. Data is packed, and sent to the browser which uses a JavaScript plotting library, such as plotly, to display the data. Plots that work well in the browser are line-plots, scatter-plots for any data and many other plot types for small data and supported grid types. As web technology matures, more plots could be supported for rendering in the browser. Rendering can be done either on the client or on the server and we expect that the best place to render will change depending on the available web technology, data transfer costs, server management costs and value provided to users. We intend to provide a flexible solution that allows for both client and server side rendering and a meaningful way to choose between the two. We provide a web-based user interface called vCdat which uses Vcs.js as its visualization library. Our paper will discuss the principles guiding our design choices for Vcs.js, present our design in detail and show a sample usage of the library.
Web-based DAQ systems: connecting the user and electronics front-ends
NASA Astrophysics Data System (ADS)
Lenzi, Thomas
2016-12-01
Web technologies are quickly evolving and are gaining in computational power and flexibility, allowing for a paradigm shift in the field of Data Acquisition (DAQ) systems design. Modern web browsers offer the possibility to create intricate user interfaces and are able to process and render complex data. Furthermore, new web standards such as WebSockets allow for fast real-time communication between the server and the user with minimal overhead. Those improvements make it possible to move the control and monitoring operations from the back-end servers directly to the user and to the front-end electronics, thus reducing the complexity of the data acquisition chain. Moreover, web-based DAQ systems offer greater flexibility, accessibility, and maintainability on the user side than traditional applications which often lack portability and ease of use. As proof of concept, we implemented a simplified DAQ system on a mid-range Spartan6 Field Programmable Gate Array (FPGA) development board coupled to a digital front-end readout chip. The system is connected to the Internet and can be accessed from any web browser. It is composed of custom code to control the front-end readout and of a dual soft-core Microblaze processor to communicate with the client.
[A solution for display and processing of DICOM images in web PACS].
Xue, Wei-jing; Lu, Wen; Wang, Hai-yang; Meng, Jian
2009-03-01
Use the technique of Java Applet to realize the supporting of DICOM image in ordinary Web browser, thereby to expand the processing function of medical image. First analyze the format of DICOM file and design a class which can acquire the pixels, then design two Applet classes, of which one is used to disposal the DICOM image, the other is used to display DICOM image that have been disposaled in the first Applet. They all embedded in the View page, and they communicate by Applet Context object. The method designed in this paper can make users display and process DICOM images directly by using ordinary Web browser, which makes Web PACS not only have the advantages of B/S model, but also have the advantages of the C/S model. Java Applet is the key for expanding the Web browser's function in Web PACS, which provides a guideline to sharing of medical images.
The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video.
Harper, Lisa C; Schaeffer, Mary L; Thistle, Jordan; Gardiner, Jack M; Andorf, Carson M; Campbell, Darwin A; Cannon, Ethalinda K S; Braun, Bremen L; Birkett, Scott M; Lawrence, Carolyn J; Sen, Taner Z
2011-01-01
Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is 'Using the MaizeGDB Genome Browser', which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser. Database
The UCSC genome browser: what every molecular biologist should know.
Mangan, Mary E; Williams, Jennifer M; Kuhn, Robert M; Lathe, Warren C
2009-10-01
Electronic data resources can enable molecular biologists to query and display many useful features that make benchwork more efficient and drive new discoveries. The UCSC Genome Browser provides a wealth of data and tools that advance one's understanding of genomic context for many species, enable detailed understanding of data, and provide the ability to interrogate regions of interest. Researchers can also supplement the standard display with their own data to query and share with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser.
New Interfaces to Web Documents and Services
NASA Technical Reports Server (NTRS)
Carlisle, W. H.
1996-01-01
This paper reports on investigations into how to extend capabilities of the Virtual Research Center (VRC) for NASA's Advanced Concepts Office. The work was performed as part of NASA's 1996 Summer Faculty Fellowship program, and involved research into and prototype development of software components that provide documents and services for the World Wide Web (WWW). The WWW has become a de-facto standard for sharing resources over the internet, primarily because web browsers are freely available for the most common hardware platforms and their operating systems. As a consequence of the popularity of the internet, tools, and techniques associated with web browsers are changing rapidly. New capabilities are offered by companies that support web browsers in order to achieve or remain a dominant participant in internet services. Because a goal of the VRC is to build an environment for NASA centers, universities, and industrial partners to share information associated with Advanced Concepts Office activities, the VRC tracks new techniques and services associated with the web in order to determine the their usefulness for distributed and collaborative engineering research activities. Most recently, Java has emerged as a new tool for providing internet services. Because the major web browser providers have decided to include Java in their software, investigations into Java were conducted this summer.
Controlling EPICS from a web browser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, K., Jr.
1999-04-13
An alternative to using a large graphical display manager like MEDM [1,2] to interface to a control system, is to use individual control objects, such as text boxes, meters, etc., running in a browser. This paper presents three implementations of this concept, one using ActiveX controls, one with Java applets, and another with Microsoft Agent. The ActiveX controls have performance nearing that of MEDM, but they only work on Windows platforms. The Java applets require a server to get around Web security restrictions and are not as fast, but they have the advantage of working on most platforms and withmore » both of the leading Web browsers. The agent works on Windows platforms with and without a browser and allows voice recognition and speech synthesis, making it somewhat more innovative than MEDM.« less
Multi-Sector Sustainability Browser (MSSB) User Manual: A ...
EPA’s Sustainable and Healthy Communities (SHC) Research Program is developing methodologies, resources, and tools to assist community members and local decision makers in implementing policy choices that facilitate sustainable approaches in managing their resources affecting the built environment, natural environment, and human health. In order to assist communities and decision makers in implementing sustainable practices, EPA is developing computer-based systems including models, databases, web tools, and web browsers to help communities decide upon approaches that support their desired outcomes. Communities need access to resources that will allow them to achieve their sustainability objectives through intelligent decisions in four key sustainability areas: • Land Use • Buildings and Infrastructure • Transportation • Materials Management (i.e., Municipal Solid Waste [MSW] processing and disposal) The Multi-Sector Sustainability Browser (MSSB) is designed to support sustainable decision-making for communities, local and regional planners, and policy and decision makers. Document is an EPA Technical Report, which is the user manual for the Multi-Sector Sustainability Browser (MSSB) tool. The purpose of the document is to provide basic guidance on use of the tool for users
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data. PMID:26848255
The Innate Immune Database (IIDB)
Korb, Martin; Rust, Aistair G; Thorsson, Vesteinn; Battail, Christophe; Li, Bin; Hwang, Daehee; Kennedy, Kathleen A; Roach, Jared C; Rosenberger, Carrie M; Gilchrist, Mark; Zak, Daniel; Johnson, Carrie; Marzolf, Bruz; Aderem, Alan; Shmulevich, Ilya; Bolouri, Hamid
2008-01-01
Background As part of a National Institute of Allergy and Infectious Diseases funded collaborative project, we have performed over 150 microarray experiments measuring the response of C57/BL6 mouse bone marrow macrophages to toll-like receptor stimuli. These microarray expression profiles are available freely from our project web site . Here, we report the development of a database of computationally predicted transcription factor binding sites and related genomic features for a set of over 2000 murine immune genes of interest. Our database, which includes microarray co-expression clusters and a host of web-based query, analysis and visualization facilities, is available freely via the internet. It provides a broad resource to the research community, and a stepping stone towards the delineation of the network of transcriptional regulatory interactions underlying the integrated response of macrophages to pathogens. Description We constructed a database indexed on genes and annotations of the immediate surrounding genomic regions. To facilitate both gene-specific and systems biology oriented research, our database provides the means to analyze individual genes or an entire genomic locus. Although our focus to-date has been on mammalian toll-like receptor signaling pathways, our database structure is not limited to this subject, and is intended to be broadly applicable to immunology. By focusing on selected immune-active genes, we were able to perform computationally intensive expression and sequence analyses that would currently be prohibitive if applied to the entire genome. Using six complementary computational algorithms and methodologies, we identified transcription factor binding sites based on the Position Weight Matrices available in TRANSFAC. For one example transcription factor (ATF3) for which experimental data is available, over 50% of our predicted binding sites coincide with genome-wide chromatin immnuopreciptation (ChIP-chip) results. Our database can be interrogated via a web interface. Genomic annotations and binding site predictions can be automatically viewed with a customized version of the Argo genome browser. Conclusion We present the Innate Immune Database (IIDB) as a community resource for immunologists interested in gene regulatory systems underlying innate responses to pathogens. The database website can be freely accessed at . PMID:18321385
Unified web-based network management based on distributed object orientated software agents
NASA Astrophysics Data System (ADS)
Djalalian, Amir; Mukhtar, Rami; Zukerman, Moshe
2002-09-01
This paper presents an architecture that provides a unified web interface to managed network devices that support CORBA, OSI or Internet-based network management protocols. A client gains access to managed devices through a web browser, which is used to issue management operations and receive event notifications. The proposed architecture is compatible with both the OSI Management reference Model and CORBA. The steps required for designing the building blocks of such architecture are identified.
Integration and visualization of systems biology data in context of the genome
2010-01-01
Background High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment. PMID:20642854
ERIC Educational Resources Information Center
Khatun, Nazma; Miwa, Jouji
2016-01-01
This research project was aimed to develop an intelligent Bengali handwriting education system to improve the literacy level in Bangladesh. Due to the socio-economical limitation, all of the population does not have the chance to go to school. Here, we developed a prototype of web-based (iPhone/smartphone or computer browser) intelligent…
77 FR 47867 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... phenology information to Nature's Notebook through a browser-based web application or via mobile applications for iPhone and Android operating systems, meeting GPEA requirements. The web application interface... techniques or other forms of information technology. Please note that the comments submitted in response to...
The biodigital human: a web-based 3D platform for medical visualization and education.
Qualter, John; Sculli, Frank; Oliker, Aaron; Napier, Zachary; Lee, Sabrina; Garcia, Julio; Frenkel, Sally; Harnik, Victoria; Triola, Marc
2012-01-01
NYU School of Medicine's Division of Educational Informatics in collaboration with BioDigital Systems LLC (New York, NY) has created a virtual human body dataset that is being used for visualization, education and training and is accessible over modern web browsers.
Toyoda, Tetsuro
2011-01-01
Synthetic biology requires both engineering efficiency and compliance with safety guidelines and ethics. Focusing on the rational construction of biological systems based on engineering principles, synthetic biology depends on a genome-design platform to explore the combinations of multiple biological components or BIO bricks for quickly producing innovative devices. This chapter explains the differences among various platform models and details a methodology for promoting open innovation within the scope of the statutory exemption of patent laws. The detailed platform adopts a centralized evaluation model (CEM), computer-aided design (CAD) bricks, and a freemium model. It is also important for the platform to support the legal aspects of copyrights as well as patent and safety guidelines because intellectual work including DNA sequences designed rationally by human intelligence is basically copyrightable. An informational platform with high traceability, transparency, auditability, and security is required for copyright proof, safety compliance, and incentive management for open innovation in synthetic biology. GenoCon, which we have organized and explained here, is a competition-styled, open-innovation method involving worldwide participants from scientific, commercial, and educational communities that aims to improve the designs of genomic sequences that confer a desired function on an organism. Using only a Web browser, a participating contributor proposes a design expressed with CAD bricks that generate a relevant DNA sequence, which is then experimentally and intensively evaluated by the GenoCon organizers. The CAD bricks that comprise programs and databases as a Semantic Web are developed, executed, shared, reused, and well stocked on the secure Semantic Web platform called the Scientists' Networking System or SciNetS/SciNeS, based on which a CEM research center for synthetic biology and open innovation should be established. Copyright © 2011 Elsevier Inc. All rights reserved.
phpMs: A PHP-Based Mass Spectrometry Utilities Library.
Collins, Andrew; Jones, Andrew R
2018-03-02
The recent establishment of cloud computing, high-throughput networking, and more versatile web standards and browsers has led to a renewed interest in web-based applications. While traditionally big data has been the domain of optimized desktop and server applications, it is now possible to store vast amounts of data and perform the necessary calculations offsite in cloud storage and computing providers, with the results visualized in a high-quality cross-platform interface via a web browser. There are number of emerging platforms for cloud-based mass spectrometry data analysis; however, there is limited pre-existing code accessible to web developers, especially for those that are constrained to a shared hosting environment where Java and C applications are often forbidden from use by the hosting provider. To remedy this, we provide an open-source mass spectrometry library for one of the most commonly used web development languages, PHP. Our new library, phpMs, provides objects for storing and manipulating spectra and identification data as well as utilities for file reading, file writing, calculations, peptide fragmentation, and protein digestion as well as a software interface for controlling search engines. We provide a working demonstration of some of the capabilities at http://pgb.liv.ac.uk/phpMs .
Eco-Health Relationship Browser
The Eco-Health Relationship Browser (Browser) is a web tool designed to portray, in an engaging and intuitive way, the linkages between ecosystems, their services, and potential health outcomes that have been associated with those services in the literature. It functions an inte...
Web accessibility and open source software.
Obrenović, Zeljko
2009-07-01
A Web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long-term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for Web accessibility can be found as open source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the Web. To address these problems, we have started several activities that aim at exploiting the potential of open-source software for Web accessibility. The first of these activities is the development of Adaptable Multi-Interface COmmunicator (AMICO):WEB, an infrastructure that facilitates efficient reuse and integration of open source software components into the Web environment. The main contribution of AMICO:WEB is in enabling the syntactic and semantic interoperability between Web extension mechanisms and a variety of integration mechanisms used by open source and free software components. Its design is based on our experiences in solving practical problems where we have used open source components to improve accessibility of rich media Web applications. The second of our activities involves improving education, where we have used our platform to teach students how to build advanced accessibility solutions from diverse open-source software. We are also partially involved in the recently started Eclipse projects called Accessibility Tools Framework (ACTF), the aim of which is development of extensible infrastructure, upon which developers can build a variety of utilities that help to evaluate and enhance the accessibility of applications and content for people with disabilities. In this article we briefly report on these activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... rule, the participant must file the document using the NRC's online, Web-based submission form. In... form, including the installation of the Web browser plug-in, is available on the NRC's public Web site... 61010, and near Braidwood at the Fossil Ridge (Braidwood) Public Library, 386 W. Kennedy Road, Braidwood...
JSXGraph--Dynamic Mathematics with JavaScript
ERIC Educational Resources Information Center
Gerhauser, Michael; Valentin, Bianca; Wassermann, Alfred
2010-01-01
Since Java applets seem to be on the retreat in web application, other approaches for displaying interactive mathematics in the web browser are needed. One such alternative could be our open-source project JSXGraph. It is a cross-browser library for displaying interactive geometry, function plotting, graphs, and data visualization in a web…
The UCSC Genome Browser: What Every Molecular Biologist Should Know
Mangan, Mary E.; Williams, Jennifer M.; Kuhn, Robert M.; Lathe, Warren C.
2016-01-01
Electronic data resources can enable molecular biologists to query and display many useful features that make benchwork more efficient and drive new discoveries. The UCSC Genome Browser provides a wealth of data and tools that advance one’s understanding of genomic context for many species, enable detailed understanding of data, and provide the ability to interrogate regions of interest. Researchers can also supplement the standard display with their own data to query and share with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser. PMID:19816931
NASA Astrophysics Data System (ADS)
Buszko, Marian L.; Buszko, Dominik; Wang, Daniel C.
1998-04-01
A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance.
World Wide Web Page Design: A Structured Approach.
ERIC Educational Resources Information Center
Gregory, Gwen; Brown, M. Marlo
1997-01-01
Describes how to develop a World Wide Web site based on structured programming concepts. Highlights include flowcharting, first page design, evaluation, page titles, documenting source code, text, graphics, and browsers. Includes a template for HTML writers, tips for using graphics, a sample homepage, guidelines for authoring structured HTML, and…
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
Damienikan, Aliaksandr U.
2016-01-01
The majority of bacterial genome annotations are currently automated and based on a ‘gene by gene’ approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows) open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators) in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB) and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp.) and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn’t fit with regulatory information allowed us to correct product and gene names for over 300 loci. PMID:27257541
The rendering context for stereoscopic 3D web
NASA Astrophysics Data System (ADS)
Chen, Qinshui; Wang, Wenmin; Wang, Ronggang
2014-03-01
3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.
Alignment-Annotator web server: rendering and annotating sequence alignments.
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-07-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alignment-Annotator web server: rendering and annotating sequence alignments
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-01-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445
Database resources of the National Center for Biotechnology Information
Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.
2001-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap’99, Human–Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov. PMID:11125038
Using a Web Browser for Environmental and Climate Change Studies
NASA Technical Reports Server (NTRS)
Bess, T. Dale; Stackhouse, Paul; Mangosing, Daniel; Smith, G. Louis
2002-01-01
A new web browser for viewing and manipulating meteorological data sets is located on a web server at NASA, Langley Research Center. The browser uses a live access server (LAS) developed by the Thermal Modeling and Analysis Project at NOAA's Pacific Marine Environmental Laboratory. LAS allows researchers to interact directly with the data to view, select, and subset the data in terms of location (latitude, longitude) and time such as day, month, or year. In addition, LAS can compare two data sets and can perform averages and variances, LAS is used here to show how it functions as an internet/web browser for use by the scientific and educational community. In particular its versatility in displaying and manipulating data sets of atmospheric measurements in the earth s radiation budget (ERB) or energy balance, which includes measurements of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation is demonstrated. These measurements are from the Clouds and the Earth s Radiant Energy System (CERES) experiment and the surface radiation budget (SRB) experiment.
Using a Web Browser for Environmental and Climate Change Studies
NASA Technical Reports Server (NTRS)
Bess, T. Dale; Stackhouse, Paul; Mangosing, Daniel; Smith, G. Louis
2005-01-01
A new web browser for viewing and manipulating meteorological data sets is located on a web server at NASA, Langley Research Center. The browser uses a live access server (LAS) developed by the Thermal Modeling and Analysis Project at NOAA's Pacific Marine Environmental Laboratory. LAS allows researchers to interact directly with the data to view, select, and subset the data in terms of location (latitude, longitude) and time such as day, month, or year. In addition, LAS can compare two data sets and can perform averages and variances, LAS is used here to show how it functions as an internet/web browser for use by the scientific and educational community. In particular its versatility in displaying and manipulating data sets of atmospheric measurements in the earth's radiation budget (ERB) or energy balance, which includes measurements of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation is demonstrated. These measurements are from the Clouds and the Earth's Radiant Energy System (CERES) experiment and the surface radiation budget (SRB) experiment.
2017-06-01
for GIFT Cloud, the web -based application version of the Generalized Intelligent Framework for Tutoring (GIFT). GIFT is a modular, open-source...external applications. GIFT is available to users with a GIFT Account at no cost. GIFT Cloud is an implementation of GIFT. This web -based application...section. Approved for public release; distribution is unlimited. 3 3. Requirements for GIFT Cloud GIFT Cloud is accessed via a web browser
Generalized Intelligent Framework for Tutoring (GIFT) Cloud/Virtual Open Campus Quick-Start Guide
2016-03-01
distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This document serves as the quick-start guide for GIFT Cloud, the web -based...to users with a GIFT Account at no cost. GIFT Cloud is a new implementation of GIFT. This web -based application allows learners, authors, and...distribution is unlimited. 3 3. Requirements for GIFT Cloud GIFT Cloud is accessed via a web browser. Officially, GIFT Cloud has been tested to work on
The Cadmio XML healthcare record.
Barbera, Francesco; Ferri, Fernando; Ricci, Fabrizio L; Sottile, Pier Angelo
2002-01-01
The management of clinical data is a complex task. Patient related information reported in patient folders is a set of heterogeneous and structured data accessed by different users having different goals (in local or geographical networks). XML language provides a mechanism for describing, manipulating, and visualising structured data in web-based applications. XML ensures that the structured data is managed in a uniform and transparent manner independently from the applications and their providers guaranteeing some interoperability. Extracting data from the healthcare record and structuring them according to XML makes the data available through browsers. The MIC/MIE model (Medical Information Category/Medical Information Elements), which allows the definition and management of healthcare records and used in CADMIO, a HISA based project, is described in this paper, using XML for allowing the data to be visualised through web browsers.
Interactive metagenomic visualization in a Web browser.
Ondov, Brian D; Bergman, Nicholas H; Phillippy, Adam M
2011-09-30
A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net.
shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics.
Khomtchouk, Bohdan B; Hennessy, James R; Wahlestedt, Claes
2017-01-01
Transcriptomics, metabolomics, metagenomics, and other various next-generation sequencing (-omics) fields are known for their production of large datasets, especially across single-cell sequencing studies. Visualizing such big data has posed technical challenges in biology, both in terms of available computational resources as well as programming acumen. Since heatmaps are used to depict high-dimensional numerical data as a colored grid of cells, efficiency and speed have often proven to be critical considerations in the process of successfully converting data into graphics. For example, rendering interactive heatmaps from large input datasets (e.g., 100k+ rows) has been computationally infeasible on both desktop computers and web browsers. In addition to memory requirements, programming skills and knowledge have frequently been barriers-to-entry for creating highly customizable heatmaps. We propose shinyheatmap: an advanced user-friendly heatmap software suite capable of efficiently creating highly customizable static and interactive biological heatmaps in a web browser. shinyheatmap is a low memory footprint program, making it particularly well-suited for the interactive visualization of extremely large datasets that cannot typically be computed in-memory due to size restrictions. Also, shinyheatmap features a built-in high performance web plug-in, fastheatmap, for rapidly plotting interactive heatmaps of datasets as large as 105-107 rows within seconds, effectively shattering previous performance benchmarks of heatmap rendering speed. shinyheatmap is hosted online as a freely available web server with an intuitive graphical user interface: http://shinyheatmap.com. The methods are implemented in R, and are available as part of the shinyheatmap project at: https://github.com/Bohdan-Khomtchouk/shinyheatmap. Users can access fastheatmap directly from within the shinyheatmap web interface, and all source code has been made publicly available on Github: https://github.com/Bohdan-Khomtchouk/fastheatmap.
Network Analysis of Reconnaissance and Intrusion of an Industrial Control System
2016-09-01
simulated a plant engineer using the engineering workstation web browser to authenticate to the vegetable cooker HMI. While the engineer established the...observed the vegetable cooker HMI web display, the attacker stopped capturing network traffic. Acting as the attacker, we searched the attacker’s pcap...manually controlled by human activity. In this testbed network, only web browser traffic (HTTP) is created by an operator to view an HMI status
Buszko; Buszko; Wang
1998-04-01
A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance. Copyright 1998 Academic Press.
SU-E-J-114: Web-Browser Medical Physics Applications Using HTML5 and Javascript.
Bakhtiari, M
2012-06-01
Since 2010, there has been a great attention about HTML5. Application developers and browser makers fully embrace and support the web of the future. Consumers have started to embrace HTML5, especially as more users understand the benefits and potential that HTML5 can mean for the future.Modern browsers such as Firefox, Google Chrome, and Safari are offering better and more robust support for HTML5, CSS3, and JavaScript. The idea is to introduce the HTML5 to medical physics community for open source software developments. The benefit of using HTML5 is developing portable software systems. The HTML5, CSS, and JavaScript programming languages were used to develop several applications for Quality Assurance in radiation therapy. The canvas element of HTML5 was used for handling and displaying the images, and JavaScript was used to manipulate the data. Sample application were developed to: 1. analyze the flatness and symmetry of the radiotherapy fields in a web browser, 2.analyze the Dynalog files from Varian machines, 3. visualize the animated Dynamic MLC files, 4. Simulation via Monte Carlo, and 5. interactive image manipulation. The programs showed great performance and speed in uploading the data and displaying the results. The flatness and symmetry program and Dynalog file analyzer ran in a fraction of second. The reason behind this performance is using JavaScript language which is a lower level programming language in comparison to the most of the scientific programming packages such as Matlab. The second reason is that JavaScript runs locally on client side computers not on the web-servers. HTML5 and JavaScript can be used to develop useful applications that can be run online or offline on different modern web-browsers. The programming platform can be also one of the modern web-browsers which are mostly open source (such as Firefox). © 2012 American Association of Physicists in Medicine.
Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil
2015-01-01
Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044
Web-based segmentation and display of three-dimensional radiologic image data.
Silverstein, J; Rubenstein, J; Millman, A; Panko, W
1998-01-01
In many clinical circumstances, viewing sequential radiological image data as three-dimensional models is proving beneficial. However, designing customized computer-generated radiological models is beyond the scope of most physicians, due to specialized hardware and software requirements. We have created a simple method for Internet users to remotely construct and locally display three-dimensional radiological models using only a standard web browser. Rapid model construction is achieved by distributing the hardware intensive steps to a remote server. Once created, the model is automatically displayed on the requesting browser and is accessible to multiple geographically distributed users. Implementation of our server software on large scale systems could be of great service to the worldwide medical community.
Digital hand atlas for web-based bone age assessment: system design and implementation
NASA Astrophysics Data System (ADS)
Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente
2000-04-01
A frequently used assessment method of skeletal age is atlas matching by a radiological examination of a hand image against a small set of Greulich-Pyle patterns of normal standards. The method however can lead to significant deviation in age assessment, due to a variety of observers with different levels of training. The Greulich-Pyle atlas based on middle upper class white populations in the 1950s, is also not fully applicable for children of today, especially regarding the standard development in other racial groups. In this paper, we present our system design and initial implementation of a digital hand atlas and computer-aided diagnostic (CAD) system for Web-based bone age assessment. The digital atlas will remove the disadvantages of the currently out-of-date one and allow the bone age assessment to be computerized and done conveniently via Web. The system consists of a hand atlas database, a CAD module and a Java-based Web user interface. The atlas database is based on a large set of clinically normal hand images of diverse ethnic groups. The Java-based Web user interface allows users to interact with the hand image database form browsers. Users can use a Web browser to push a clinical hand image to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, is then extracted and compared with patterns from the atlas database to assess the bone age.
Phased development of a web-based PACS viewer
NASA Astrophysics Data System (ADS)
Gidron, Yoad; Shani, Uri; Shifrin, Mark
2000-05-01
The Web browser is an excellent environment for the rapid development of an effective and inexpensive PACS viewer. In this paper we will share our experience in developing a browser-based viewer, from the inception and prototype stages to its current state of maturity. There are many operational advantages to a browser-based viewer, even when native viewers already exist in the system (with multiple and/or high resolution screens): (1) It can be used on existing personal workstations throughout the hospital. (2) It is easy to make the service available from physician's homes. (3) The viewer is extremely portable and platform independent. There is a wide variety of means available for implementing the browser- based viewer. Each file sent to the client by the server can perform some end-user or client/server interaction. These means range from HTML (for HyperText Markup Language) files, through Java Script, to Java applets. Some data types may also invoke plug-in code in the client, although this would reduce the portability of the viewer, it would provide the needed efficiency in critical places. On the server side the range of means is also very rich: (1) A set of files: html, Java Script, Java applets, etc. (2) Extensions of the server via cgi-bin programs, (3) Extensions of the server via servlets, (4) Any other helper application residing and working with the server to access the DICOM archive. The viewer architecture consists of two basic parts: The first part performs query and navigation through the DICOM archive image folders. The second part does the image access and display. While the first part deals with low data traffic, it involves many database transactions. The second part is simple as far as access transactions are concerned, but requires much more data traffic and display functions. Our web-based viewer has gone through three development stages characterized by the complexity of the means and tools employed on both client and server sides.
Devailly, Guillaume; Mantsoki, Anna; Joshi, Anagha
2016-11-01
Better protocols and decreasing costs have made high-throughput sequencing experiments now accessible even to small experimental laboratories. However, comparing one or few experiments generated by an individual lab to the vast amount of relevant data freely available in the public domain might be limited due to lack of bioinformatics expertise. Though several tools, including genome browsers, allow such comparison at a single gene level, they do not provide a genome-wide view. We developed Heat*seq, a web-tool that allows genome scale comparison of high throughput experiments chromatin immuno-precipitation followed by sequencing, RNA-sequencing and Cap Analysis of Gene Expression) provided by a user, to the data in the public domain. Heat*seq currently contains over 12 000 experiments across diverse tissues and cell types in human, mouse and drosophila. Heat*seq displays interactive correlation heatmaps, with an ability to dynamically subset datasets to contextualize user experiments. High quality figures and tables are produced and can be downloaded in multiple formats. Web application: http://www.heatstarseq.roslin.ed.ac.uk/ Source code: https://github.com/gdevailly CONTACT: Guillaume.Devailly@roslin.ed.ac.uk or Anagha.Joshi@roslin.ed.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
RNAcentral: an international database of ncRNA sequences
Williams, Kelly Porter
2014-10-28
The field of non-coding RNA biology has been hampered by the lack of availability of a comprehensive, up-to-date collection of accessioned RNA sequences. Here we present the first release of RNAcentral, a database that collates and integrates information from an international consortium of established RNA sequence databases. The initial release contains over 8.1 million sequences, including representatives of all major functional classes. A web portal (http://rnacentral.org) provides free access to data, search functionality, cross-references, source code and an integrated genome browser for selected species.
ERIC Educational Resources Information Center
Baumbach, Donna J.
2009-01-01
The World Wide Web has come a long way in a very short time. A little more than a decade ago, with the invention of Mosaic, the first browser to display images inline with text instead of displaying images in a separate window, and Netscape, the first graphical user interface (browser), people began to experience a rapid expansion of information.…
Visual Links in the World-Wide Web: The Uses and Limitations of Image Maps.
ERIC Educational Resources Information Center
Cochenour, John J.; And Others
As information delivery systems on the Internet increasingly evolve into World Wide Web browsers, understanding key graphical elements of the browser interface is critical to the design of effective information display and access tools. Image maps are one such element, and this document describes a pilot study that collected, reviewed, and…
The Ensembl Web Site: Mechanics of a Genome Browser
Stalker, James; Gibbins, Brian; Meidl, Patrick; Smith, James; Spooner, William; Hotz, Hans-Rudolf; Cox, Antony V.
2004-01-01
The Ensembl Web site (http://www.ensembl.org/) is the principal user interface to the data of the Ensembl project, and currently serves >500,000 pages (∼2.5 million hits) per week, providing access to >80 GB (gigabyte) of data to users in more than 80 countries. Built atop an open-source platform comprising Apache/mod_perl and the MySQL relational database management system, it is modular, extensible, and freely available. It is being actively reused and extended in several different projects, and has been downloaded and installed in companies and academic institutions worldwide. Here, we describe some of the technical features of the site, with particular reference to its dynamic configuration that enables it to handle disparate data from multiple species. PMID:15123591
The Ensembl Web site: mechanics of a genome browser.
Stalker, James; Gibbins, Brian; Meidl, Patrick; Smith, James; Spooner, William; Hotz, Hans-Rudolf; Cox, Antony V
2004-05-01
The Ensembl Web site (http://www.ensembl.org/) is the principal user interface to the data of the Ensembl project, and currently serves >500,000 pages (approximately 2.5 million hits) per week, providing access to >80 GB (gigabyte) of data to users in more than 80 countries. Built atop an open-source platform comprising Apache/mod_perl and the MySQL relational database management system, it is modular, extensible, and freely available. It is being actively reused and extended in several different projects, and has been downloaded and installed in companies and academic institutions worldwide. Here, we describe some of the technical features of the site, with particular reference to its dynamic configuration that enables it to handle disparate data from multiple species.
PGen: large-scale genomic variations analysis workflow and browser in SoyKB.
Liu, Yang; Khan, Saad M; Wang, Juexin; Rynge, Mats; Zhang, Yuanxun; Zeng, Shuai; Chen, Shiyuan; Maldonado Dos Santos, Joao V; Valliyodan, Babu; Calyam, Prasad P; Merchant, Nirav; Nguyen, Henry T; Xu, Dong; Joshi, Trupti
2016-10-06
With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed "PGen", an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. PGen workflow has been optimized for the most efficient analysis of soybean data using thorough testing and validation. This research serves as an example of best practices for development of genomics data analysis workflows by integrating remote HPC resources and efficient data management with ease of use for biological users. PGen workflow can also be easily customized for analysis of data in other species.
EDGE3: A web-based solution for management and analysis of Agilent two color microarray experiments
Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A
2009-01-01
Background The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE3 was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. Results EDGE3 has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE3 is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Conclusion Here, we present EDGE3, an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE3 provides a means for managing RNA samples and arrays during the hybridization process. EDGE3 is freely available for download at . PMID:19732451
Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A
2009-09-04
The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE(3) was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. EDGE(3) has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE(3) is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Here, we present EDGE(3), an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE(3) provides a means for managing RNA samples and arrays during the hybridization process. EDGE(3) is freely available for download at http://edge.oncology.wisc.edu/.
A topological framework for interactive queries on 3D models in the Web.
Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina
2014-01-01
Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications.
A Topological Framework for Interactive Queries on 3D Models in the Web
Figueiredo, Mauro; Rodrigues, José I.; Silvestre, Ivo; Veiga-Pires, Cristina
2014-01-01
Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications. PMID:24977236
Using Galaxy to Perform Large-Scale Interactive Data Analyses
Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton
2014-01-01
Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy provides a powerful solution that simplifies data acquisition and analysis in an intuitive Web application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together (1) data retrieval from public and private sources, for example, UCSC's Eukaryote and Microbial Genome Browsers, (2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations), and 3rd-party analysis tools. PMID:22700312
Lehmann, Eldon D.; DeWolf, Dennis K.; Novotny, Christopher A.; Reed, Karen; Gotwals, Robert R.
2014-01-01
Background. AIDA is a widely available downloadable educational simulator of glucose-insulin interaction in diabetes. Methods. A web-based version of AIDA was developed that utilises a server-based architecture with HTML FORM commands to submit numerical data from a web-browser client to a remote web server. AIDA online, located on a remote server, passes the received data through Perl scripts which interactively produce 24 hr insulin and glucose simulations. Results. AIDA online allows users to modify the insulin regimen and diet of 40 different prestored “virtual diabetic patients” on the internet or create new “patients” with user-generated regimens. Multiple simulations can be run, with graphical results viewed via a standard web-browser window. To date, over 637,500 diabetes simulations have been run at AIDA online, from all over the world. Conclusions. AIDA online's functionality is similar to the downloadable AIDA program, but the mode of implementation and usage is different. An advantage to utilising a server-based application is the flexibility that can be offered. New modules can be added quickly to the online simulator. This has facilitated the development of refinements to AIDA online, which have instantaneously become available around the world, with no further local downloads or installations being required. PMID:24511312
Lehmann, Eldon D; Dewolf, Dennis K; Novotny, Christopher A; Reed, Karen; Gotwals, Robert R
2014-01-01
Background. AIDA is a widely available downloadable educational simulator of glucose-insulin interaction in diabetes. Methods. A web-based version of AIDA was developed that utilises a server-based architecture with HTML FORM commands to submit numerical data from a web-browser client to a remote web server. AIDA online, located on a remote server, passes the received data through Perl scripts which interactively produce 24 hr insulin and glucose simulations. Results. AIDA online allows users to modify the insulin regimen and diet of 40 different prestored "virtual diabetic patients" on the internet or create new "patients" with user-generated regimens. Multiple simulations can be run, with graphical results viewed via a standard web-browser window. To date, over 637,500 diabetes simulations have been run at AIDA online, from all over the world. Conclusions. AIDA online's functionality is similar to the downloadable AIDA program, but the mode of implementation and usage is different. An advantage to utilising a server-based application is the flexibility that can be offered. New modules can be added quickly to the online simulator. This has facilitated the development of refinements to AIDA online, which have instantaneously become available around the world, with no further local downloads or installations being required.
Xu, Zheng; Zhang, Guosheng; Duan, Qing; Chai, Shengjie; Zhang, Baqun; Wu, Cong; Jin, Fulai; Yue, Feng; Li, Yun; Hu, Ming
2016-03-11
Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with complex traits and diseases. However, most of them are located in the non-protein coding regions, and therefore it is challenging to hypothesize the functions of these non-coding GWAS variants. Recent large efforts such as the ENCODE and Roadmap Epigenomics projects have predicted a large number of regulatory elements. However, the target genes of these regulatory elements remain largely unknown. Chromatin conformation capture based technologies such as Hi-C can directly measure the chromatin interactions and have generated an increasingly comprehensive catalog of the interactome between the distal regulatory elements and their potential target genes. Leveraging such information revealed by Hi-C holds the promise of elucidating the functions of genetic variants in human diseases. In this work, we present HiView, the first integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants. HiView is able to display Hi-C data and statistical evidence for chromatin interactions in genomic regions surrounding any given GWAS variant, enabling straightforward visualization and interpretation. We believe that as the first GWAS variants-centered Hi-C genome browser, HiView is a useful tool guiding post-GWAS functional genomics studies. HiView is freely accessible at: http://www.unc.edu/~yunmli/HiView .
Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.
Reimers, Stian; Stewart, Neil
2016-09-01
Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.
SVGMap: configurable image browser for experimental data.
Rafael-Palou, Xavier; Schroeder, Michael P; Lopez-Bigas, Nuria
2012-01-01
Spatial data visualization is very useful to represent biological data and quickly interpret the results. For instance, to show the expression pattern of a gene in different tissues of a fly, an intuitive approach is to draw the fly with the corresponding tissues and color the expression of the gene in each of them. However, the creation of these visual representations may be a burdensome task. Here we present SVGMap, a java application that automatizes the generation of high-quality graphics for singular data items (e.g. genes) and biological conditions. SVGMap contains a browser that allows the user to navigate the different images created and can be used as a web-based results publishing tool. SVGMap is freely available as precompiled java package as well as source code at http://bg.upf.edu/svgmap. It requires Java 6 and any recent web browser with JavaScript enabled. The software can be run on Linux, Mac OS X and Windows systems. nuria.lopez@upf.edu
ERIC Educational Resources Information Center
Smith, Peter, Ed.
Topics addressed by the papers including in this proceedings include: multimedia in the classroom; World Wide Web site development; the evolution of academic library services; a Web-based literature course; development of a real-time intelligent network environment; serving grades over the Internet; e-mail over a Web browser; using technology to…
WebScope: A New Tool for Fusion Data Analysis and Visualization
NASA Astrophysics Data System (ADS)
Yang, Fei; Dang, Ningning; Xiao, Bingjia
2010-04-01
A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.
EntrezAJAX: direct web browser access to the Entrez Programming Utilities.
Loman, Nicholas J; Pallen, Mark J
2010-06-21
Web applications for biology and medicine often need to integrate data from Entrez services provided by the National Center for Biotechnology Information. However, direct access to Entrez from a web browser is not possible due to 'same-origin' security restrictions. The use of "Asynchronous JavaScript and XML" (AJAX) to create rich, interactive web applications is now commonplace. The ability to access Entrez via AJAX would be advantageous in the creation of integrated biomedical web resources. We describe EntrezAJAX, which provides access to Entrez eUtils and is able to circumvent same-origin browser restrictions. EntrezAJAX is easily implemented by JavaScript developers and provides identical functionality as Entrez eUtils as well as enhanced functionality to ease development. We provide easy-to-understand developer examples written in JavaScript to illustrate potential uses of this service. For the purposes of speed, reliability and scalability, EntrezAJAX has been deployed on Google App Engine, a freely available cloud service. The EntrezAJAX webpage is located at http://entrezajax.appspot.com/
Interactive Web Graphs with Fewer Restrictions
NASA Technical Reports Server (NTRS)
Fiedler, James
2012-01-01
There is growing popularity for interactive, statistical web graphs and programs to generate them. However, it seems that these programs tend to be somewhat restricted in which web browsers and statistical software are supported. For example, the software might use SVG (e.g., Protovis, gridSVG) or HTML canvas, both of which exclude most versions of Internet Explorer, or the software might be made specifically for R (gridSVG, CRanvas), thus excluding users of other stats software. There are more general tools (d3, Rapha lJS) which are compatible with most browsers, but using one of these to make statistical graphs requires more coding than is probably desired, and requires learning a new tool. This talk will present a method for making interactive web graphs, which, by design, attempts to support as many browsers and as many statistical programs as possible, while also aiming to be relatively easy to use and relatively easy to extend.
GIANT API: an application programming interface for functional genomics
Roberts, Andrew M.; Wong, Aaron K.; Fisk, Ian; Troyanskaya, Olga G.
2016-01-01
GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. PMID:27098035
Database resources of the National Center for Biotechnology Information: 2002 update
Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.
2002-01-01
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, Human¡VMouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:11752242
GobyWeb: Simplified Management and Analysis of Gene Expression and DNA Methylation Sequencing Data
Dorff, Kevin C.; Chambwe, Nyasha; Zeno, Zachary; Simi, Manuele; Shaknovich, Rita; Campagne, Fabien
2013-01-01
We present GobyWeb, a web-based system that facilitates the management and analysis of high-throughput sequencing (HTS) projects. The software provides integrated support for a broad set of HTS analyses and offers a simple plugin extension mechanism. Analyses currently supported include quantification of gene expression for messenger and small RNA sequencing, estimation of DNA methylation (i.e., reduced bisulfite sequencing and whole genome methyl-seq), or the detection of pathogens in sequenced data. In contrast to previous analysis pipelines developed for analysis of HTS data, GobyWeb requires significantly less storage space, runs analyses efficiently on a parallel grid, scales gracefully to process tens or hundreds of multi-gigabyte samples, yet can be used effectively by researchers who are comfortable using a web browser. We conducted performance evaluations of the software and found it to either outperform or have similar performance to analysis programs developed for specialized analyses of HTS data. We found that most biologists who took a one-hour GobyWeb training session were readily able to analyze RNA-Seq data with state of the art analysis tools. GobyWeb can be obtained at http://gobyweb.campagnelab.org and is freely available for non-commercial use. GobyWeb plugins are distributed in source code and licensed under the open source LGPL3 license to facilitate code inspection, reuse and independent extensions http://github.com/CampagneLaboratory/gobyweb2-plugins. PMID:23936070
Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe
NASA Astrophysics Data System (ADS)
Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.
2016-06-01
GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.
Visualization of data in radiotherapy using web services for optimization of workflow.
Kirrmann, Stefan; Gainey, Mark; Röhner, Fred; Hall, Markus; Bruggmoser, Gregor; Schmucker, Marianne; Heinemann, Felix E
2015-01-20
Every day a large amount of data is produced within a radiotherapy department. Although this data is available in one form or other within the centralised systems, it is often not in the form which is of interest to the departmental staff. This work presents a flexible browser based reporting and visualization system for clinical and scientific use, not currently found in commercially available software such as MOSAIQ(TM) or ARIA(TM). Moreover, the majority of user merely wish to retrieve data and not record and/or modify data. Thus the idea was conceived, to present the user with all relevant information in a simple and effective manner in the form of web-services. Due to the widespread availability of the internet, most people can master the use of a web-browser. Ultimately the aim is to optimize clinical procedures, enhance transparency and improve revenue. Our working group (BAS) examined many internal procedures, to find out whether relevant information suitable for our purposes lay therein. After the results were collated, it was necessary to select an effective software platform. After a more detailed analysis of all data, it became clear that the implementation of web-services was appropriate. In our institute several such web-based information services had already been developed over the last few years, with which we gained invaluable experience. Moreover, we strived for high acceptance amongst staff members. By employing web-services, we attained high effectiveness, transparency and efficient information processing for the user. Furthermore, we achieved an almost maintenance-free and low support system. The aim of the project, making web-based information available to the user from the departmental system MOSAIQ, physician letter system MEDATEC(R) and the central finding server MiraPlus (laboratory, pathology and radiology) were implemented without restrictions. Due to widespread use of web-based technology the training effort was effectively nil, since practically every member of staff can master the use of a web-browser. Moreover, we have achieved high acceptance amongst staff members and have improved our effectiveness resulting in a considerable time saving. The many MOSAIQ-specific parts of the system can be readily used by departments which use MOSAIQ as the departmental system.
IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application
NASA Astrophysics Data System (ADS)
Gopu, A.; Hayashi, S.; Young, M. D.
2014-05-01
Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.
Lee, Mikyung; Kim, Yangseok
2009-12-16
Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square test. By successive operations of two modules, users can clarify how gene expression levels are affected by the phenotype specific genomic alterations. As CHESS was developed in both Java application and web environments, it can be run on a web browser or a local machine. It also supports all experimental platforms if a properly formatted text file is provided to include the chromosomal position of probes and their gene identifiers. CHESS is a user-friendly tool for investigating disease specific genomic alterations and quantitative relationships between those genomic alterations and genome-wide gene expression profiling.
Firefox add-ons for medical reference.
Hoy, Matthew B
2010-07-01
Firefox is a Web browser created by the Mozilla project, an open-source software group. Features of the browser include automated updates, advanced security and standards compliance, and the ability to add functionality through add-ons and extensions. First introduced in 2004, Firefox now accounts for roughly 30% of the browser market. This article will focus primarily on add-ons and extensions available for the browser that are useful to medical researchers.
Interactive 3d Landscapes on Line
NASA Astrophysics Data System (ADS)
Fanini, B.; Calori, L.; Ferdani, D.; Pescarin, S.
2011-09-01
The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.
New Perspectives on Popular Culture, Science and Technology: Web Browsers and the New Illiteracy
ERIC Educational Resources Information Center
Charters, Elizabeth
2004-01-01
Analysts predict that the knowledge economy of the near future will require people to be both computer literate and print literate. However, some of the reading and thinking habits of current college students suggest that electronic media such as web browsers may be limiting the new generation's ability to absorb and process what they read. Their…
Teaching bioinformatics and neuroinformatics by using free web-based tools.
Grisham, William; Schottler, Natalie A; Valli-Marill, Joanne; Beck, Lisa; Beatty, Jackson
2010-01-01
This completely computer-based module's purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. Students integrate information gathered from websites dealing with anatomy (Mouse Brain Library), quantitative trait locus analysis (WebQTL from GeneNetwork), bioinformatics and gene expression analyses (University of California, Santa Cruz Genome Browser, National Center for Biotechnology Information's Entrez Gene, and the Allen Brain Atlas), and information resources (PubMed). Instructors can use these various websites in concert to teach genetics from the phenotypic level to the molecular level, aspects of neuroanatomy and histology, statistics, quantitative trait locus analysis, and molecular biology (including in situ hybridization and microarray analysis), and to introduce bioinformatic resources. Students use these resources to discover 1) the region(s) of chromosome(s) influencing the phenotypic trait, 2) a list of candidate genes-narrowed by expression data, 3) the in situ pattern of a given gene in the region of interest, 4) the nucleotide sequence of the candidate gene, and 5) articles describing the gene. Teaching materials such as a detailed student/instructor's manual, PowerPoints, sample exams, and links to free Web resources can be found at http://mdcune.psych.ucla.edu/modules/bioinformatics.
Interactive metagenomic visualization in a Web browser
2011-01-01
Background A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Results Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Conclusions Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net. PMID:21961884
Seahawk: moving beyond HTML in Web-based bioinformatics analysis.
Gordon, Paul M K; Sensen, Christoph W
2007-06-18
Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therefore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis. We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format. As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, ad hoc analysis workflow creation without the assistance of a programmer.
Seahawk: moving beyond HTML in Web-based bioinformatics analysis
Gordon, Paul MK; Sensen, Christoph W
2007-01-01
Background Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis. Results We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format. Conclusion As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, ad hoc analysis workflow creation without the assistance of a programmer. PMID:17577405
A web-based solution for 3D medical image visualization
NASA Astrophysics Data System (ADS)
Hou, Xiaoshuai; Sun, Jianyong; Zhang, Jianguo
2015-03-01
In this presentation, we present a web-based 3D medical image visualization solution which enables interactive large medical image data processing and visualization over the web platform. To improve the efficiency of our solution, we adopt GPU accelerated techniques to process images on the server side while rapidly transferring images to the HTML5 supported web browser on the client side. Compared to traditional local visualization solution, our solution doesn't require the users to install extra software or download the whole volume dataset from PACS server. By designing this web-based solution, it is feasible for users to access the 3D medical image visualization service wherever the internet is available.
NASA Astrophysics Data System (ADS)
Suftin, I.; Read, J. S.; Walker, J.
2013-12-01
Scientists prefer not having to be tied down to a specific machine or operating system in order to analyze local and remote data sets or publish work. Increasingly, analysis has been migrating to decentralized web services and data sets, using web clients to provide the analysis interface. While simplifying workflow access, analysis, and publishing of data, the move does bring with it its own unique set of issues. Web clients used for analysis typically offer workflows geared towards a single user, with steps and results that are often difficult to recreate and share with others. Furthermore, workflow results often may not be easily used as input for further analysis. Older browsers further complicate things by having no way to maintain larger chunks of information, often offloading the job of storage to the back-end server or trying to squeeze it into a cookie. It has been difficult to provide a concept of "session storage" or "workflow sharing" without a complex orchestration of the back-end for storage depending on either a centralized file system or database. With the advent of HTML5, browsers gained the ability to store more information through the use of the Web Storage API (a browser-cookie holds a maximum of 4 kilobytes). Web Storage gives us the ability to store megabytes of arbitrary data in-browser either with an expiration date or just for a session. This allows scientists to create, update, persist and share their workflow without depending on the backend to store session information, providing the flexibility for new web-based workflows to emerge. In the DSASWeb portal ( http://cida.usgs.gov/DSASweb/ ), using these techniques, the representation of every step in the analyst's workflow is stored as plain-text serialized JSON, which we can generate as a text file and provide to the analyst as an upload. This file may then be shared with others and loaded back into the application, restoring the application to the state it was in when the session file was generated. A user may then view results produced during that session or go back and alter input parameters, creating new results and producing new, unique sessions which they can then again share. This technique not only provides independence for the user to manage their session as they like, but also allows much greater freedom for the application provider to scale out without having to worry about carrying over user information or maintaining it in a central location.
Bare, J Christopher; Shannon, Paul T; Schmid, Amy K; Baliga, Nitin S
2007-01-01
Background Information resources on the World Wide Web play an indispensable role in modern biology. But integrating data from multiple sources is often encumbered by the need to reformat data files, convert between naming systems, or perform ongoing maintenance of local copies of public databases. Opportunities for new ways of combining and re-using data are arising as a result of the increasing use of web protocols to transmit structured data. Results The Firegoose, an extension to the Mozilla Firefox web browser, enables data transfer between web sites and desktop tools. As a component of the Gaggle integration framework, Firegoose can also exchange data with Cytoscape, the R statistical package, Multiexperiment Viewer (MeV), and several other popular desktop software tools. Firegoose adds the capability to easily use local data to query KEGG, EMBL STRING, DAVID, and other widely-used bioinformatics web sites. Query results from these web sites can be transferred to desktop tools for further analysis with a few clicks. Firegoose acquires data from the web by screen scraping, microformats, embedded XML, or web services. We define a microformat, which allows structured information compatible with the Gaggle to be embedded in HTML documents. We demonstrate the capabilities of this software by performing an analysis of the genes activated in the microbe Halobacterium salinarum NRC-1 in response to anaerobic environments. Starting with microarray data, we explore functions of differentially expressed genes by combining data from several public web resources and construct an integrated view of the cellular processes involved. Conclusion The Firegoose incorporates Mozilla Firefox into the Gaggle environment and enables interactive sharing of data between diverse web resources and desktop software tools without maintaining local copies. Additional web sites can be incorporated easily into the framework using the scripting platform of the Firefox browser. Performing data integration in the browser allows the excellent search and navigation capabilities of the browser to be used in combination with powerful desktop tools. PMID:18021453
Bare, J Christopher; Shannon, Paul T; Schmid, Amy K; Baliga, Nitin S
2007-11-19
Information resources on the World Wide Web play an indispensable role in modern biology. But integrating data from multiple sources is often encumbered by the need to reformat data files, convert between naming systems, or perform ongoing maintenance of local copies of public databases. Opportunities for new ways of combining and re-using data are arising as a result of the increasing use of web protocols to transmit structured data. The Firegoose, an extension to the Mozilla Firefox web browser, enables data transfer between web sites and desktop tools. As a component of the Gaggle integration framework, Firegoose can also exchange data with Cytoscape, the R statistical package, Multiexperiment Viewer (MeV), and several other popular desktop software tools. Firegoose adds the capability to easily use local data to query KEGG, EMBL STRING, DAVID, and other widely-used bioinformatics web sites. Query results from these web sites can be transferred to desktop tools for further analysis with a few clicks. Firegoose acquires data from the web by screen scraping, microformats, embedded XML, or web services. We define a microformat, which allows structured information compatible with the Gaggle to be embedded in HTML documents. We demonstrate the capabilities of this software by performing an analysis of the genes activated in the microbe Halobacterium salinarum NRC-1 in response to anaerobic environments. Starting with microarray data, we explore functions of differentially expressed genes by combining data from several public web resources and construct an integrated view of the cellular processes involved. The Firegoose incorporates Mozilla Firefox into the Gaggle environment and enables interactive sharing of data between diverse web resources and desktop software tools without maintaining local copies. Additional web sites can be incorporated easily into the framework using the scripting platform of the Firefox browser. Performing data integration in the browser allows the excellent search and navigation capabilities of the browser to be used in combination with powerful desktop tools.
Phylowood: interactive web-based animations of biogeographic and phylogeographic histories.
Landis, Michael J; Bedford, Trevor
2014-01-01
Phylowood is a web service that uses JavaScript to generate in-browser animations of biogeographic and phylogeographic histories from annotated phylogenetic input. The animations are interactive, allowing the user to adjust spatial and temporal resolution, and highlight phylogenetic lineages of interest. All documentation and source code for Phylowood is freely available at https://github.com/mlandis/phylowood, and a live web application is available at https://mlandis.github.io/phylowood.
An Analysis of the Elements of Collaboration Associated with Top Collaborative Tools
2010-03-01
lets you access your e-mail, calendar, and files from any web browser anywhere in the world. Web based www.hotoffice.com Noodle Vialect’s (parent...www.taroby.org Yuuguu Yuuguu is an instant screen sharing, web conferencing, remote support, desktop remote control and messaging tool. Client...Office, Noodle , Novlet, Revizr, Taroby, and Yuuguu) received all seven NS ratings (see Table 20 below). The overall ratings for the major elements
Design and implementation of a cloud based lithography illumination pupil processing application
NASA Astrophysics Data System (ADS)
Zhang, Youbao; Ma, Xinghua; Zhu, Jing; Zhang, Fang; Huang, Huijie
2017-02-01
Pupil parameters are important parameters to evaluate the quality of lithography illumination system. In this paper, a cloud based full-featured pupil processing application is implemented. A web browser is used for the UI (User Interface), the websocket protocol and JSON format are used for the communication between the client and the server, and the computing part is implemented in the server side, where the application integrated a variety of high quality professional libraries, such as image processing libraries libvips and ImageMagic, automatic reporting system latex, etc., to support the program. The cloud based framework takes advantage of server's superior computing power and rich software collections, and the program could run anywhere there is a modern browser due to its web UI design. Compared to the traditional way of software operation model: purchased, licensed, shipped, downloaded, installed, maintained, and upgraded, the new cloud based approach, which is no installation, easy to use and maintenance, opens up a new way. Cloud based application probably is the future of the software development.
Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples.
Lin, Jake; Kramna, Lenka; Autio, Reija; Hyöty, Heikki; Nykter, Matti; Cinek, Ondrej
2017-05-15
Next generation sequencing (NGS) technology allows laboratories to investigate virome composition in clinical and environmental samples in a culture-independent way. There is a need for bioinformatic tools capable of parallel processing of virome sequencing data by exactly identical methods: this is especially important in studies of multifactorial diseases, or in parallel comparison of laboratory protocols. We have developed a web-based application allowing direct upload of sequences from multiple virome samples using custom parameters. The samples are then processed in parallel using an identical protocol, and can be easily reanalyzed. The pipeline performs de-novo assembly, taxonomic classification of viruses as well as sample analyses based on user-defined grouping categories. Tables of virus abundance are produced from cross-validation by remapping the sequencing reads to a union of all observed reference viruses. In addition, read sets and reports are created after processing unmapped reads against known human and bacterial ribosome references. Secured interactive results are dynamically plotted with population and diversity charts, clustered heatmaps and a sortable and searchable abundance table. The Vipie web application is a unique tool for multi-sample metagenomic analysis of viral data, producing searchable hits tables, interactive population maps, alpha diversity measures and clustered heatmaps that are grouped in applicable custom sample categories. Known references such as human genome and bacterial ribosomal genes are optionally removed from unmapped ('dark matter') reads. Secured results are accessible and shareable on modern browsers. Vipie is a freely available web-based tool whose code is open source.
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology
Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron
2016-01-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094
Meta4: a web application for sharing and annotating metagenomic gene predictions using web services.
Richardson, Emily J; Escalettes, Franck; Fotheringham, Ian; Wallace, Robert J; Watson, Mick
2013-01-01
Whole-genome shotgun metagenomics experiments produce DNA sequence data from entire ecosystems, and provide a huge amount of novel information. Gene discovery projects require up-to-date information about sequence homology and domain structure for millions of predicted proteins to be presented in a simple, easy-to-use system. There is a lack of simple, open, flexible tools that allow the rapid sharing of metagenomics datasets with collaborators in a format they can easily interrogate. We present Meta4, a flexible and extensible web application that can be used to share and annotate metagenomic gene predictions. Proteins and predicted domains are stored in a simple relational database, with a dynamic front-end which displays the results in an internet browser. Web services are used to provide up-to-date information about the proteins from homology searches against public databases. Information about Meta4 can be found on the project website, code is available on Github, a cloud image is available, and an example implementation can be seen at.
Design and evaluation of web-based image transmission and display with different protocols
NASA Astrophysics Data System (ADS)
Tan, Bin; Chen, Kuangyi; Zheng, Xichuan; Zhang, Jianguo
2011-03-01
There are many Web-based image accessing technologies used in medical imaging area, such as component-based (ActiveX Control) thick client Web display, Zerofootprint thin client Web viewer (or called server side processing Web viewer), Flash Rich Internet Application(RIA) ,or HTML5 based Web display. Different Web display methods have different peformance in different network environment. In this presenation, we give an evaluation on two developed Web based image display systems. The first one is used for thin client Web display. It works between a PACS Web server with WADO interface and thin client. The PACS Web server provides JPEG format images to HTML pages. The second one is for thick client Web display. It works between a PACS Web server with WADO interface and thick client running in browsers containing ActiveX control, Flash RIA program or HTML5 scripts. The PACS Web server provides native DICOM format images or JPIP stream for theses clients.
CPTAC Proteomics Data on UCSC Genome Browser | Office of Cancer Clinical Proteomics Research
The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data via the UCSC Genome Browser. This effort extends accessibility of the CPTAC data to more researchers and provides an additional level of analysis to assist the cancer biology community.
DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.
Yang, Jian-Hua; Qu, Liang-Hu
2012-01-01
Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.
Using a Java Web-based Graphical User Interface to access the SOHO Data Arch ive
NASA Astrophysics Data System (ADS)
Scholl, I.; Girard, Y.; Bykowski, A.
This paper presents the architecture of a Java web-based graphical interface dedicated to the access of the SOHO Data archive. This application allows local and remote users to search in the SOHO data catalog and retrieve the SOHO data files from the archive. It has been developed at MEDOC (Multi-Experiment Data and Operations Centre), located at the Institut d'Astrophysique Spatiale (Orsay, France), which is one of the European Archives for the SOHO data. This development is part of a joint effort between ESA, NASA and IAS in order to implement long term archive systems for the SOHO data. The software architecture is built as a client-server application using Java language and SQL above a set of components such as an HTTP server, a JDBC gateway, a RDBMS server, a data server and a Web browser. Since HTML pages and CGI scripts are not powerful enough to allow user interaction during a multi-instrument catalog search, this type of requirement enforces the choice of Java as the main language. We also discuss performance issues, security problems and portability on different Web browsers and operating syste ms.
IRIS Earthquake Browser with Integration to the GEON IDV for 3-D Visualization of Hypocenters.
NASA Astrophysics Data System (ADS)
Weertman, B. R.
2007-12-01
We present a new generation of web based earthquake query tool - the IRIS Earthquake Browser (IEB). The IEB combines the DMC's large set of earthquake catalogs (provided by USGS/NEIC, ISC and the ANF) with the popular Google Maps web interface. With the IEB you can quickly and easily find earthquakes in any region of the globe. Using Google's detailed satellite images, earthquakes can be easily co-located with natural geographic features such as volcanoes as well as man made features such as commercial mines. A set of controls allow earthquakes to be filtered by time, magnitude, and depth range as well as catalog name, contributor name and magnitude type. Displayed events can be easily exported in NetCDF format into the GEON Integrated Data Viewer (IDV) where hypocenters may be visualized in three dimensions. Looking "under the hood", the IEB is based on AJAX technology and utilizes REST style web services hosted at the IRIS DMC. The IEB is part of a broader effort at the DMC aimed at making our data holdings available via web services. The IEB is useful both educationally and as a research tool.
Display gamma is an important factor in Web image viewing
NASA Astrophysics Data System (ADS)
Zhang, Xuemei; Lavin, Yingmei; Silverstein, D. Amnon
2001-06-01
We conducted a perceptual image preference experiment over the web to find our (1) if typical computer users have significant variations in their display gamma settings, and (2) if so, do the gamma settings have significant perceptual effect on the appearance of images in their web browsers. The digital image renderings used were found to have preferred tone characteristics from a previous lab- controlled experiment. They were rendered with 4 different gamma settings. The subjects were asked to view the images over the web, with their own computer equipment and web browsers. The subjects werewe asked to view the images over the web, with their own computer equipment and web browsers. The subjects made pair-wise subjective preference judgements on which rendering they liked bets for each image. Each subject's display gamma setting was estimated using a 'gamma estimator' tool, implemented as a Java applet. The results indicated that (1) the user's gamma settings, as estimated in the experiment, span a wide range from about 1.8 to about 3.0; (2) the subjects preferred images that werewe rendered with a 'correct' gamma value matching their display setting. Subjects disliked images rendered with a gamma value not matching their displays'. This indicates that display gamma estimation is a perceptually significant factor in web image optimization.
Web-based metabolic network visualization with a zooming user interface
2011-01-01
Background Displaying complex metabolic-map diagrams, for Web browsers, and allowing users to interact with them for querying and overlaying expression data over them is challenging. Description We present a Web-based metabolic-map diagram, which can be interactively explored by the user, called the Cellular Overview. The main characteristic of this application is the zooming user interface enabling the user to focus on appropriate granularities of the network at will. Various searching commands are available to visually highlight sets of reactions, pathways, enzymes, metabolites, and so on. Expression data from single or multiple experiments can be overlaid on the diagram, which we call the Omics Viewer capability. The application provides Web services to highlight the diagram and to invoke the Omics Viewer. This application is entirely written in JavaScript for the client browsers and connect to a Pathway Tools Web server to retrieve data and diagrams. It uses the OpenLayers library to display tiled diagrams. Conclusions This new online tool is capable of displaying large and complex metabolic-map diagrams in a very interactive manner. This application is available as part of the Pathway Tools software that powers multiple metabolic databases including Biocyc.org: The Cellular Overview is accessible under the Tools menu. PMID:21595965
Wu, Hui-Qun; Lv, Zheng-Min; Geng, Xing-Yun; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng
2013-01-01
To address issues in interoperability between different fundus image systems, we proposed a web eye-picture archiving and communication system (PACS) framework in conformance with digital imaging and communication in medicine (DICOM) and health level 7 (HL7) protocol to realize fundus images and reports sharing and communication through internet. Firstly, a telemedicine-based eye care work flow was established based on integrating the healthcare enterprise (IHE) Eye Care technical framework. Then, a browser/server architecture eye-PACS system was established in conformance with the web access to DICOM persistent object (WADO) protocol, which contains three tiers. In any client system installed with web browser, clinicians could log in the eye-PACS to observe fundus images and reports. Multipurpose internet mail extensions (MIME) type of a structured report is saved as pdf/html with reference link to relevant fundus image using the WADO syntax could provide enough information for clinicians. Some functions provided by open-source Oviyam could be used to query, zoom, move, measure, view DICOM fundus images. Such web eye-PACS in compliance to WADO protocol could be used to store and communicate fundus images and reports, therefore is of great significance for teleophthalmology.
SNPversity: a web-based tool for visualizing diversity
Schott, David A; Vinnakota, Abhinav G; Portwood, John L; Andorf, Carson M
2018-01-01
Abstract Many stand-alone desktop software suites exist to visualize single nucleotide polymorphism (SNP) diversity, but web-based software that can be easily implemented and used for biological databases is absent. SNPversity was created to answer this need by building an open-source visualization tool that can be implemented on a Unix-like machine and served through a web browser that can be accessible worldwide. SNPversity consists of a HDF5 database back-end for SNPs, a data exchange layer powered by TASSEL libraries that represent data in JSON format, and an interface layer using PHP to visualize SNP information. SNPversity displays data in real-time through a web browser in grids that are color-coded according to a given SNP’s allelic status and mutational state. SNPversity is currently available at MaizeGDB, the maize community’s database, and will be soon available at GrainGenes, the clade-oriented database for Triticeae and Avena species, including wheat, barley, rye, and oat. The code and documentation are uploaded onto github, and they are freely available to the public. We expect that the tool will be highly useful for other biological databases with a similar need to display SNP diversity through their web interfaces. Database URL: https://www.maizegdb.org/snpversity PMID:29688387
Using ZFIN: Data Types, Organization, and Retrieval.
Van Slyke, Ceri E; Bradford, Yvonne M; Howe, Douglas G; Fashena, David S; Ramachandran, Sridhar; Ruzicka, Leyla
2018-01-01
The Zebrafish Model Organism Database (ZFIN; zfin.org) was established in 1994 as the primary genetic and genomic resource for the zebrafish research community. Some of the earliest records in ZFIN were for people and laboratories. Since that time, services and data types provided by ZFIN have grown considerably. Today, ZFIN provides the official nomenclature for zebrafish genes, mutants, and transgenics and curates many data types including gene expression, phenotypes, Gene Ontology, models of human disease, orthology, knockdown reagents, transgenic constructs, and antibodies. Ontologies are used throughout ZFIN to structure these expertly curated data. An integrated genome browser provides genomic context for genes, transgenics, mutants, and knockdown reagents. ZFIN also supports a community wiki where the research community can post new antibody records and research protocols. Data in ZFIN are accessible via web pages, download files, and the ZebrafishMine (zebrafishmine.org), an installation of the InterMine data warehousing software. Searching for data at ZFIN utilizes both parameterized search forms and a single box search for searching or browsing data quickly. This chapter aims to describe the primary ZFIN data and services, and provide insight into how to use and interpret ZFIN searches, data, and web pages.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2005-01-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Web-based hydrodynamics computing
NASA Astrophysics Data System (ADS)
Shimoide, Alan; Lin, Luping; Hong, Tracie-Lynne; Yoon, Ilmi; Aragon, Sergio R.
2004-12-01
Proteins are long chains of amino acids that have a definite 3-d conformation and the shape of each protein is vital to its function. Since proteins are normally in solution, hydrodynamics (describes the movement of solvent around a protein as a function of shape and size of the molecule) can be used to probe the size and shape of proteins compared to those derived from X-ray crystallography. The computation chain needed for these hydrodynamics calculations consists of several separate programs by different authors on various platforms and often requires 3D visualizations of intermediate results. Due to the complexity, tools developed by a particular research group are not readily available for use by other groups, nor even by the non-experts within the same research group. To alleviate this situation, and to foment the easy and wide distribution of computational tools worldwide, we developed a web based interactive computational environment (WICE) including interactive 3D visualization that can be used with any web browser. Java based technologies were used to provide a platform neutral, user-friendly solution. Java Server Pages (JSP), Java Servlets, Java Beans, JOGL (Java bindings for OpenGL), and Java Web Start were used to create a solution that simplifies the computing chain for the user allowing the user to focus on their scientific research. WICE hides complexity from the user and provides robust and sophisticated visualization through a web browser.
Quantifying the web browser ecosystem
Ferdman, Sela; Minkov, Einat; Gefen, David
2017-01-01
Contrary to the assumption that web browsers are designed to support the user, an examination of a 900,000 distinct PCs shows that web browsers comprise a complex ecosystem with millions of addons collaborating and competing with each other. It is possible for addons to “sneak in” through third party installations or to get “kicked out” by their competitors without user involvement. This study examines that ecosystem quantitatively by constructing a large-scale graph with nodes corresponding to users, addons, and words (terms) that describe addon functionality. Analyzing addon interactions at user level using the Personalized PageRank (PPR) random walk measure shows that the graph demonstrates ecological resilience. Adapting the PPR model to analyzing the browser ecosystem at the level of addon manufacturer, the study shows that some addon companies are in symbiosis and others clash with each other as shown by analyzing the behavior of 18 prominent addon manufacturers. Results may herald insight on how other evolving internet ecosystems may behave, and suggest a methodology for measuring this behavior. Specifically, applying such a methodology could transform the addon market. PMID:28644833
vMon-mobile provides wireless connection to the electronic patient record
NASA Astrophysics Data System (ADS)
Oliveira, Pedro P., Jr.; Rebelo, Marina; Pilon, Paulo E.; Gutierrez, Marco A.; Tachinardi, Umberto
2002-05-01
This work presents the development of a set of tools to help doctors to continuously monitor critical patients. Real-time monitoring signals are displayed via a Web Based Electronic Patient Record (Web-EPR) developed at the Heart Institute. Any computer on the Hospital's Intranet can access the Web-EPR that will open a browser plug-in called vMon. Recently vMon was adapted to wireless mobile devices providing the same real-time visualization of vital signals of its desktop counterpart. The monitoring network communicates with the hospital network through a gateway using HL7 messages and has the ability to export waveforms in real time using the multicast protocol through an API library. A dedicated ActiveX component was built that establishes the streaming of the biomedical signals under monitoring and displays them on an Internet Explorer 5.x browser. The mobile version - called vMon-mobile - will parse the browser window and deliver it to a PDA device connected to a local area network. The result is a virtual monitor presenting real-time data on a mobile device. All parameters and signals acquired from the moment the patient is connected to the monitors are stored for a few days. The most clinically relevant information is added to patient's EPR.
EntrezAJAX: direct web browser access to the Entrez Programming Utilities
2010-01-01
Web applications for biology and medicine often need to integrate data from Entrez services provided by the National Center for Biotechnology Information. However, direct access to Entrez from a web browser is not possible due to 'same-origin' security restrictions. The use of "Asynchronous JavaScript and XML" (AJAX) to create rich, interactive web applications is now commonplace. The ability to access Entrez via AJAX would be advantageous in the creation of integrated biomedical web resources. We describe EntrezAJAX, which provides access to Entrez eUtils and is able to circumvent same-origin browser restrictions. EntrezAJAX is easily implemented by JavaScript developers and provides identical functionality as Entrez eUtils as well as enhanced functionality to ease development. We provide easy-to-understand developer examples written in JavaScript to illustrate potential uses of this service. For the purposes of speed, reliability and scalability, EntrezAJAX has been deployed on Google App Engine, a freely available cloud service. The EntrezAJAX webpage is located at http://entrezajax.appspot.com/ PMID:20565938
Web Extensible Display Manager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slominski, Ryan; Larrieu, Theodore L.
Jefferson Lab's Web Extensible Display Manager (WEDM) allows staff to access EDM control system screens from a web browser in remote offices and from mobile devices. Native browser technologies are leveraged to avoid installing and managing software on remote clients such as browser plugins, tunnel applications, or an EDM environment. Since standard network ports are used firewall exceptions are minimized. To avoid security concerns from remote users modifying a control system, WEDM exposes read-only access and basic web authentication can be used to further restrict access. Updates of monitored EPICS channels are delivered via a Web Socket using a webmore » gateway. The software translates EDM description files (denoted with the edl suffix) to HTML with Scalable Vector Graphics (SVG) following the EDM's edl file vector drawing rules to create faithful screen renderings. The WEDM server parses edl files and creates the HTML equivalent in real-time allowing existing screens to work without modification. Alternatively, the familiar drag and drop EDM screen creation tool can be used to create optimized screens sized specifically for smart phones and then rendered by WEDM.« less
Detecting Heap-Spraying Code Injection Attacks in Malicious Web Pages Using Runtime Execution
NASA Astrophysics Data System (ADS)
Choi, Younghan; Kim, Hyoungchun; Lee, Donghoon
The growing use of web services is increasing web browser attacks exponentially. Most attacks use a technique called heap spraying because of its high success rate. Heap spraying executes a malicious code without indicating the exact address of the code by copying it into many heap objects. For this reason, the attack has a high potential to succeed if only the vulnerability is exploited. Thus, attackers have recently begun using this technique because it is easy to use JavaScript to allocate the heap memory area. This paper proposes a novel technique that detects heap spraying attacks by executing a heap object in a real environment, irrespective of the version and patch status of the web browser. This runtime execution is used to detect various forms of heap spraying attacks, such as encoding and polymorphism. Heap objects are executed after being filtered on the basis of patterns of heap spraying attacks in order to reduce the overhead of the runtime execution. Patterns of heap spraying attacks are based on analysis of how an web browser accesses benign web sites. The heap objects are executed forcibly by changing the instruction register into the address of them after being loaded into memory. Thus, we can execute the malicious code without having to consider the version and patch status of the browser. An object is considered to contain a malicious code if the execution reaches a call instruction and then the instruction accesses the API of system libraries, such as kernel32.dll and ws_32.dll. To change registers and monitor execution flow, we used a debugger engine. A prototype, named HERAD(HEap spRAying Detector), is implemented and evaluated. In experiments, HERAD detects various forms of exploit code that an emulation cannot detect, and some heap spraying attacks that NOZZLE cannot detect. Although it has an execution overhead, HERAD produces a low number of false alarms. The processing time of several minutes is negligible because our research focuses on detecting heap spraying. This research can be applied to existing systems that collect malicious codes, such as Honeypot.
Wang, Likun; Yang, Luhe; Peng, Zuohan; Lu, Dan; Jin, Yan; McNutt, Michael; Yin, Yuxin
2015-01-01
With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services.
2015-01-01
Background With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. Results With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. Conclusions This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services. PMID:25708840
The Plant Genome Integrative Explorer Resource: PlantGenIE.org.
Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R
2015-12-01
Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Frank, M S; Dreyer, K
2001-06-01
We describe a virtual web site hosting technology that enables educators in radiology to emblazon and make available for delivery on the world wide web their own interactive educational content, free from dependencies on in-house resources and policies. This suite of technologies includes a graphically oriented software application, designed for the computer novice, to facilitate the input, storage, and management of domain expertise within a database system. The database stores this expertise as choreographed and interlinked multimedia entities including text, imagery, interactive questions, and audio. Case-based presentations or thematic lectures can be authored locally, previewed locally within a web browser, then uploaded at will as packaged knowledge objects to an educator's (or department's) personal web site housed within a virtual server architecture. This architecture can host an unlimited number of unique educational web sites for individuals or departments in need of such service. Each virtual site's content is stored within that site's protected back-end database connected to Internet Information Server (Microsoft Corp, Redmond WA) using a suite of Active Server Page (ASP) modules that incorporate Microsoft's Active Data Objects (ADO) technology. Each person's or department's electronic teaching material appears as an independent web site with different levels of access--controlled by a username-password strategy--for teachers and students. There is essentially no static hypertext markup language (HTML). Rather, all pages displayed for a given site are rendered dynamically from case-based or thematic content that is fetched from that virtual site's database. The dynamically rendered HTML is displayed within a web browser in a Socratic fashion that can assess the recipient's current fund of knowledge while providing instantaneous user-specific feedback. Each site is emblazoned with the logo and identification of the participating institution. Individuals with teacher-level access can use a web browser to upload new content as well as manage content already stored on their virtual site. Each virtual site stores, collates, and scores participants' responses to the interactive questions posed on line. This virtual web site strategy empowers the educator with an end-to-end solution for creating interactive educational content and hosting that content within the educator's personalized and protected educational site on the world wide web, thus providing a valuable outlet that can magnify the impact of his or her talents and contributions.
Web Searching: A Process-Oriented Experimental Study of Three Interactive Search Paradigms.
ERIC Educational Resources Information Center
Dennis, Simon; Bruza, Peter; McArthur, Robert
2002-01-01
Compares search effectiveness when using query-based Internet search via the Google search engine, directory-based search via Yahoo, and phrase-based query reformulation-assisted search via the Hyperindex browser by means of a controlled, user-based experimental study of undergraduates at the University of Queensland. Discusses cognitive load,…
Comparing Commercial WWW Browsers.
ERIC Educational Resources Information Center
Notess, Greg R.
1995-01-01
Four commercial World Wide Web browsers are evaluated for features such as handling of WWW protocols and different URLs: FTP, Telnet, Gopher and WAIS, and e-mail and news; bookmark capabilities; navigation features; file management; and security support. (JKP)
CBrowse: a SAM/BAM-based contig browser for transcriptome assembly visualization and analysis.
Li, Pei; Ji, Guoli; Dong, Min; Schmidt, Emily; Lenox, Douglas; Chen, Liangliang; Liu, Qi; Liu, Lin; Zhang, Jie; Liang, Chun
2012-09-15
To address the impending need for exploring rapidly increased transcriptomics data generated for non-model organisms, we developed CBrowse, an AJAX-based web browser for visualizing and analyzing transcriptome assemblies and contigs. Designed in a standard three-tier architecture with a data pre-processing pipeline, CBrowse is essentially a Rich Internet Application that offers many seamlessly integrated web interfaces and allows users to navigate, sort, filter, search and visualize data smoothly. The pre-processing pipeline takes the contig sequence file in FASTA format and its relevant SAM/BAM file as the input; detects putative polymorphisms, simple sequence repeats and sequencing errors in contigs and generates image, JSON and database-compatible CSV text files that are directly utilized by different web interfaces. CBowse is a generic visualization and analysis tool that facilitates close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors in transcriptome sequencing projects. CBrowse is distributed under the GNU General Public License, available at http://bioinfolab.muohio.edu/CBrowse/ liangc@muohio.edu or liangc.mu@gmail.com; glji@xmu.edu.cn Supplementary data are available at Bioinformatics online.
WhopGenome: high-speed access to whole-genome variation and sequence data in R.
Wittelsbürger, Ulrich; Pfeifer, Bastian; Lercher, Martin J
2015-02-01
The statistical programming language R has become a de facto standard for the analysis of many types of biological data, and is well suited for the rapid development of new algorithms. However, variant call data from population-scale resequencing projects are typically too large to be read and processed efficiently with R's built-in I/O capabilities. WhopGenome can efficiently read whole-genome variation data stored in the widely used variant call format (VCF) file format into several R data types. VCF files can be accessed either on local hard drives or on remote servers. WhopGenome can associate variants with annotations such as those available from the UCSC genome browser, and can accelerate the reading process by filtering loci according to user-defined criteria. WhopGenome can also read other Tabix-indexed files and create indices to allow fast selective access to FASTA-formatted sequence files. The WhopGenome R package is available on CRAN at http://cran.r-project.org/web/packages/WhopGenome/. A Bioconductor package has been submitted. lercher@cs.uni-duesseldorf.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
PopHuman: the human population genomics browser
Mulet, Roger; Villegas-Mirón, Pablo; Hervas, Sergi; Sanz, Esteve; Velasco, Daniel; Bertranpetit, Jaume; Laayouni, Hafid
2018-01-01
Abstract The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat. PMID:29059408
Tran, Frances; Penniket, Carolyn; Patel, Rohan V; Provart, Nicholas J; Laroche, André; Rowland, Owen; Robert, Laurian S
2013-06-01
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser. © 2013 Her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada.
Web-Based Interface for Command and Control of Network Sensors
NASA Technical Reports Server (NTRS)
Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.
2010-01-01
This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events
Eng, J
1997-01-01
Java is a programming language that runs on a "virtual machine" built into World Wide Web (WWW)-browsing programs on multiple hardware platforms. Web pages were developed with Java to enable Web-browsing programs to overlay transparent graphics and text on displayed images so that the user could control the display of labels and annotations on the images, a key feature not available with standard Web pages. This feature was extended to include the presentation of normal radiologic anatomy. Java programming was also used to make Web browsers compatible with the Digital Imaging and Communications in Medicine (DICOM) file format. By enhancing the functionality of Web pages, Java technology should provide greater incentive for using a Web-based approach in the development of radiology teaching material.
Exploring the enjoyment of playing browser games.
Klimmt, Christoph; Schmid, Hannah; Orthmann, Julia
2009-04-01
Browser games--mostly persistent game worlds that can be used without client software and monetary cost with a Web browser--belong to the understudied digital game types, although they attract large player communities and motivate sustained play. The present work reports findings from an online survey of 8,203 players of a German strategy browser game ("Travian"). Results suggest that multiplayer browser games are enjoyed primarily because of the social relationships involved in game play and the specific time and flexibility characteristics ("easy-in, easy-out"). Competition, in contrast, seems to be less important for browser gamers than for users of other game types. Findings are discussed in terms of video game enjoyment and game addiction.
Formats and Network Protocols for Browser Access to 2D Raster Data
NASA Astrophysics Data System (ADS)
Plesea, L.
2015-12-01
Tiled web maps in browsers are a major success story, forming the foundation of many current web applications. Enabling tiled data access is the next logical step, and is likely to meet with similar success. Many ad-hoc approaches have already started to appear, and something similar is explored within the Open Geospatial Consortium. One of the main obstacles in making browser data access a reality is the lack of a well-known data format. This obstacle also represents an opportunity to analyze the requirements and possible candidates, applying lessons learned from web tiled image services and protocols. Similar to the image counterpart, a web tile raster data format needs to have good intrinsic compression and be able to handle high byte count data types including floating point. An overview of a possible solution to the format problem, a 2D data raster compression algorithm called Limited Error Raster Compression (LERC) will be presented. In addition to the format, best practices for high request rate HTTP services also need to be followed. In particular, content delivery network (CDN) caching suitability needs to be part of any design, not an after-thought. Last but not least, HTML 5 browsers will certainly be part of any solution since they provide improved access to binary data, as well as more powerful ways to view and interact with the data in the browser. In a simple but relevant application, digital elevation model (DEM) raster data is served as LERC compressed data tiles which are used to generate terrain by a HTML5 scene viewer.
Shiny-phyloseq: Web application for interactive microbiome analysis with provenance tracking.
McMurdie, Paul J; Holmes, Susan
2015-01-15
We have created a Shiny-based Web application, called Shiny-phyloseq, for dynamic interaction with microbiome data that runs on any modern Web browser and requires no programming, increasing the accessibility and decreasing the entrance requirement to using phyloseq and related R tools. Along with a data- and context-aware dynamic interface for exploring the effects of parameter and method choices, Shiny-phyloseq also records the complete user input and subsequent graphical results of a user's session, allowing the user to archive, share and reproduce the sequence of steps that created their result-without writing any new code themselves. Shiny-phyloseq is implemented entirely in the R language. It can be hosted/launched by any system with R installed, including Windows, Mac OS and most Linux distributions. Information technology administrators can also host Shiny--phyloseq from a remote server, in which case users need only have a Web browser installed. Shiny-phyloseq is provided free of charge under a GPL-3 open-source license through GitHub at http://joey711.github.io/shiny-phyloseq/. © The Author 2014. Published by Oxford University Press.
Extracting Related Words from Anchor Text Clusters by Focusing on the Page Designer's Intention
NASA Astrophysics Data System (ADS)
Liu, Jianquan; Chen, Hanxiong; Furuse, Kazutaka; Ohbo, Nobuo
Approaches for extracting related words (terms) by co-occurrence work poorly sometimes. Two words frequently co-occurring in the same documents are considered related. However, they may not relate at all because they would have no common meanings nor similar semantics. We address this problem by considering the page designer’s intention and propose a new model to extract related words. Our approach is based on the idea that the web page designers usually make the correlative hyperlinks appear in close zone on the browser. We developed a browser-based crawler to collect “geographically” near hyperlinks, then by clustering these hyperlinks based on their pixel coordinates, we extract related words which can well reflect the designer’s intention. Experimental results show that our method can represent the intention of the web page designer in extremely high precision. Moreover, the experiments indicate that our extracting method can obtain related words in a high average precision.
Integrating Socioeconomic and Earth Science Data Using Geobrowsers and Web Services: A Demonstration
NASA Astrophysics Data System (ADS)
Schumacher, J. A.; Yetman, G. G.
2007-12-01
The societal benefit areas identified as the focus for the Global Earth Observing System of Systems (GEOSS) 10- year implementation plan are an indicator of the importance of integrating socioeconomic data with earth science data to support decision makers. To aid this integration, CIESIN is delivering its global and U.S. demographic data to commercial and open source Geobrowsers and providing open standards based services for data access. Currently, data on population distribution, poverty, and detailed census data for the U.S. are available for visualization and access in Google Earth, NASA World Wind, and a browser-based 2-dimensional mapping client. The mapping client allows for the creation of web map documents that pull together layers from distributed servers and can be saved and shared. Visualization tools with Geobrowsers, user-driven map creation and sharing via browser-based clients, and a prototype for characterizing populations at risk to predicted precipitation deficits will be demonstrated.
Use of mobile devices to answer online surveys: implications for research.
Cunningham, John A; Neighbors, Clayton; Bertholet, Nicolas; Hendershot, Christian S
2013-07-08
There is a growing use of mobile devices to access the Internet. We examined whether participants who used a mobile device to access a brief online survey were quicker to respond to the survey but also, less likely to complete it than participants using a traditional web browser. Using data from a recently completed online intervention trial, we found that participants using mobile devices were quicker to access the survey but less likely to complete it compared to participants using a traditional web browser. More concerning, mobile device users were also less likely to respond to a request to complete a six week follow-up survey compared to those using traditional web browsers. With roughly a third of participants using mobile devices to answer an online survey in this study, the impact of mobile device usage on survey completion rates is a concern. ClinicalTrials.gov: NCT01521078.
CliniSpace: a multiperson 3D online immersive training environment accessible through a browser.
Dev, Parvati; Heinrichs, W LeRoy; Youngblood, Patricia
2011-01-01
Immersive online medical environments, with dynamic virtual patients, have been shown to be effective for scenario-based learning (1). However, ease of use and ease of access have been barriers to their use. We used feedback from prior evaluation of these projects to design and develop CliniSpace. To improve usability, we retained the richness of prior virtual environments but modified the user interface. To improve access, we used a Software-as-a-Service (SaaS) approach to present a richly immersive 3D environment within a web browser.
Distributing medical images with internet technologies: a DICOM web server and a DICOM java viewer.
Fernàndez-Bayó, J; Barbero, O; Rubies, C; Sentís, M; Donoso, L
2000-01-01
With the advent of filmless radiology, it becomes important to be able to distribute radiologic images digitally throughout an entire hospital. A new approach based on World Wide Web technologies was developed to accomplish this objective. This approach involves a Web server that allows the query and retrieval of images stored in a Digital Imaging and Communications in Medicine (DICOM) archive. The images can be viewed inside a Web browser with use of a small Java program known as the DICOM Java Viewer, which is executed inside the browser. The system offers several advantages over more traditional picture archiving and communication systems (PACS): It is easy to install and maintain, is platform independent, allows images to be manipulated and displayed efficiently, and is easy to integrate with existing systems that are already making use of Web technologies. The system is user-friendly and can easily be used from outside the hospital if a security policy is in place. The simplicity and flexibility of Internet technologies makes them highly preferable to the more complex PACS workstations. The system works well, especially with magnetic resonance and computed tomographic images, and can help improve and simplify interdepartmental relationships in a filmless hospital environment.
Web-Based Distributed Simulation of Aeronautical Propulsion System
NASA Technical Reports Server (NTRS)
Zheng, Desheng; Follen, Gregory J.; Pavlik, William R.; Kim, Chan M.; Liu, Xianyou; Blaser, Tammy M.; Lopez, Isaac
2001-01-01
An application was developed to allow users to run and view the Numerical Propulsion System Simulation (NPSS) engine simulations from web browsers. Simulations were performed on multiple INFORMATION POWER GRID (IPG) test beds. The Common Object Request Broker Architecture (CORBA) was used for brokering data exchange among machines and IPG/Globus for job scheduling and remote process invocation. Web server scripting was performed by JavaServer Pages (JSP). This application has proven to be an effective and efficient way to couple heterogeneous distributed components.
GBshape: a genome browser database for DNA shape annotations
Chiu, Tsu-Pei; Yang, Lin; Zhou, Tianyin; Main, Bradley J.; Parker, Stephen C.J.; Nuzhdin, Sergey V.; Tullius, Thomas D.; Rohs, Remo
2015-01-01
Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species. PMID:25326329
NASA Astrophysics Data System (ADS)
Slater, Gregory L.; Schiff, David; De Pontieu, Bart; Tarbell, Theodore D.; Freeland, Samuel L.
2017-08-01
We present Cruiser, a new web tool for the precision interactive blending of image series across time and wavelength domains. Scrolling in two dimensions enables discovery and investigation of similarities and differences in structure and evolution across multiple wavelengths. Cruiser works in the latest versions of standards compliant browsers on both desktop and IOS platforms. Co-aligned data cubes have been generated for AIA, IRIS, and Hinode SOT FG, and image data from additional instruments, both space-based and ground-based, can be data sources. The tool has several movie playing and image adjustment controls which will be described in the poster and demonstrated on a MacOS notebook and iPad.
GIANT API: an application programming interface for functional genomics.
Roberts, Andrew M; Wong, Aaron K; Fisk, Ian; Troyanskaya, Olga G
2016-07-08
GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
EarthServer - 3D Visualization on the Web
NASA Astrophysics Data System (ADS)
Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes
2013-04-01
EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client and on top of HTML5, WebGL and JavaScript we have developed the X3DOM framework (www.x3dom.org), which makes possible to embed declarative X3D scenegraphs, an ISO standard XML-based file format for representing 3D computer graphics, directly within HTML, thus enabling developers to rapidly design 3D content that blends seamlessly into HTML interfaces using Javascript. This approach (commonly referred to as a polyfill layer) is used to mimic native web browser support for declarative 3D content and is an important component in our web client architecture.
Wasabi: An Integrated Platform for Evolutionary Sequence Analysis and Data Visualization.
Veidenberg, Andres; Medlar, Alan; Löytynoja, Ari
2016-04-01
Wasabi is an open source, web-based environment for evolutionary sequence analysis. Wasabi visualizes sequence data together with a phylogenetic tree within a modern, user-friendly interface: The interface hides extraneous options, supports context sensitive menus, drag-and-drop editing, and displays additional information, such as ancestral sequences, associated with specific tree nodes. The Wasabi environment supports reproducibility by automatically storing intermediate analysis steps and includes built-in functions to share data between users and publish analysis results. For computational analysis, Wasabi supports PRANK and PAGAN for phylogeny-aware alignment and alignment extension, and it can be easily extended with other tools. Along with drag-and-drop import of local files, Wasabi can access remote data through URL and import sequence data, GeneTrees and EPO alignments directly from Ensembl. To demonstrate a typical workflow using Wasabi, we reproduce key findings from recent comparative genomics studies, including a reanalysis of the EGLN1 gene from the tiger genome study: These case studies can be browsed within Wasabi at http://wasabiapp.org:8000?id=usecases. Wasabi runs inside a web browser and does not require any installation. One can start using it at http://wasabiapp.org. All source code is licensed under the AGPLv3. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Krause, Sue A; Pandit, Aniruddha; Davies, Shireen A
2018-01-01
Abstract FlyAtlas 2 (www.flyatlas2.org) is part successor, part complement to the FlyAtlas database and web application for studying the expression of the genes of Drosophila melanogaster in different tissues of adults and larvae. Although generated in the same lab with the same fly line raised on the same diet as FlyAtlas, the FlyAtlas2 resource employs a completely new set of expression data based on RNA-Seq, rather than microarray analysis, and so it allows the user to obtain information for the expression of different transcripts of a gene. Furthermore, the data for somatic tissues are now available for both male and female adult flies, allowing studies of sexual dimorphism. Gene coverage has been extended by the inclusion of microRNAs and many of the RNA genes included in Release 6 of the Drosophila reference genome. The web interface has been modified to accommodate the extra data, but at the same time has been adapted for viewing on small mobile devices. Users also have access to the RNA-Seq reads displayed alongside the annotated Drosophila genome in the (external) UCSC browser, and are able to link out to the previous FlyAtlas resource to compare the data obtained by RNA-Seq with that obtained using microarrays. PMID:29069479
WebCIS: large scale deployment of a Web-based clinical information system.
Hripcsak, G; Cimino, J J; Sengupta, S
1999-01-01
WebCIS is a Web-based clinical information system. It sits atop the existing Columbia University clinical information system architecture, which includes a clinical repository, the Medical Entities Dictionary, an HL7 interface engine, and an Arden Syntax based clinical event monitor. WebCIS security features include authentication with secure tokens, authorization maintained in an LDAP server, SSL encryption, permanent audit logs, and application time outs. WebCIS is currently used by 810 physicians at the Columbia-Presbyterian center of New York Presbyterian Healthcare to review and enter data into the electronic medical record. Current deployment challenges include maintaining adequate database performance despite complex queries, replacing large numbers of computers that cannot run modern Web browsers, and training users that have never logged onto the Web. Although the raised expectations and higher goals have increased deployment costs, the end result is a far more functional, far more available system.
The Ruby UCSC API: accessing the UCSC genome database using Ruby.
Mishima, Hiroyuki; Aerts, Jan; Katayama, Toshiaki; Bonnal, Raoul J P; Yoshiura, Koh-ichiro
2012-09-21
The University of California, Santa Cruz (UCSC) genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser) and several means for programmatic queries. A simple application programming interface (API) in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby. The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast.The API uses the bin index-if available-when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby). Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/.
The Ruby UCSC API: accessing the UCSC genome database using Ruby
2012-01-01
Background The University of California, Santa Cruz (UCSC) genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser) and several means for programmatic queries. A simple application programming interface (API) in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby. Results The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast. The API uses the bin index—if available—when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby). Conclusions Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/. PMID:22994508
Savant Genome Browser 2: visualization and analysis for population-scale genomics.
Fiume, Marc; Smith, Eric J M; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M; Robinson, Mark D; Wodak, Shoshana J; Brudno, Michael
2012-07-01
High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com.
Savant Genome Browser 2: visualization and analysis for population-scale genomics
Smith, Eric J. M.; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M.; Robinson, Mark D.; Wodak, Shoshana J.; Brudno, Michael
2012-01-01
High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com. PMID:22638571
Microreact: visualizing and sharing data for genomic epidemiology and phylogeography
Argimón, Silvia; Abudahab, Khalil; Goater, Richard J. E.; Fedosejev, Artemij; Bhai, Jyothish; Glasner, Corinna; Feil, Edward J.; Holden, Matthew T. G.; Yeats, Corin A.; Grundmann, Hajo; Spratt, Brian G.
2016-01-01
Visualization is frequently used to aid our interpretation of complex datasets. Within microbial genomics, visualizing the relationships between multiple genomes as a tree provides a framework onto which associated data (geographical, temporal, phenotypic and epidemiological) are added to generate hypotheses and to explore the dynamics of the system under investigation. Selected static images are then used within publications to highlight the key findings to a wider audience. However, these images are a very inadequate way of exploring and interpreting the richness of the data. There is, therefore, a need for flexible, interactive software that presents the population genomic outputs and associated data in a user-friendly manner for a wide range of end users, from trained bioinformaticians to front-line epidemiologists and health workers. Here, we present Microreact, a web application for the easy visualization of datasets consisting of any combination of trees, geographical, temporal and associated metadata. Data files can be uploaded to Microreact directly via the web browser or by linking to their location (e.g. from Google Drive/Dropbox or via API), and an integrated visualization via trees, maps, timelines and tables provides interactive querying of the data. The visualization can be shared as a permanent web link among collaborators, or embedded within publications to enable readers to explore and download the data. Microreact can act as an end point for any tool or bioinformatic pipeline that ultimately generates a tree, and provides a simple, yet powerful, visualization method that will aid research and discovery and the open sharing of datasets. PMID:28348833
X3DOM as Carrier of the Virtual Heritage
NASA Astrophysics Data System (ADS)
Jung, Y.; Behr, J.; Graf, H.
2011-09-01
Virtual Museums (VM) are a new model of communication that aims at creating a personalized, immersive, and interactive way to enhance our understanding of the world around us. The term "VM" is a short-cut that comprehends various types of digital creations. One of the carriers for the communication of the virtual heritage at future internet level as de-facto standard is browser front-ends presenting the content and assets of museums. A major driving technology for the documentation and presentation of heritage driven media is real-time 3D content, thus imposing new strategies for a web inclusion. 3D content must become a first class web media that can be created, modified, and shared in the same way as text, images, audio and video are handled on the web right now. A new integration model based on a DOM integration into the web browsers' architecture opens up new possibilities for declarative 3 D content on the web and paves the way for new application scenarios for the virtual heritage at future internet level. With special regards to the X3DOM project as enabling technology for declarative 3D in HTML, this paper describes application scenarios and analyses its technological requirements for an efficient presentation and manipulation of virtual heritage assets on the web.
Smits, Samuel A; Ouverney, Cleber C
2010-08-18
Many software packages have been developed to address the need for generating phylogenetic trees intended for print. With an increased use of the web to disseminate scientific literature, there is a need for phylogenetic trees to be viewable across many types of devices and feature some of the interactive elements that are integral to the browsing experience. We propose a novel approach for publishing interactive phylogenetic trees. We present a javascript library, jsPhyloSVG, which facilitates constructing interactive phylogenetic trees from raw Newick or phyloXML formats directly within the browser in Scalable Vector Graphics (SVG) format. It is designed to work across all major browsers and renders an alternative format for those browsers that do not support SVG. The library provides tools for building rectangular and circular phylograms with integrated charting. Interactive features may be integrated and made to respond to events such as clicks on any element of the tree, including labels. jsPhyloSVG is an open-source solution for rendering dynamic phylogenetic trees. It is capable of generating complex and interactive phylogenetic trees across all major browsers without the need for plugins. It is novel in supporting the ability to interpret the tree inference formats directly, exposing the underlying markup to data-mining services. The library source code, extensive documentation and live examples are freely accessible at www.jsphylosvg.com.
A tool for improving the Web accessibility of visually handicapped persons.
Fujiki, Tadayoshi; Hanada, Eisuke; Yamada, Tomomi; Noda, Yoshihiro; Antoku, Yasuaki; Nakashima, Naoki; Nose, Yoshiaki
2006-04-01
Abstract Much has been written concerning the difficulties faced by visually handicapped persons when they access the internet. To solve some of the problems and to make web pages more accessible, we developed a tool we call the "Easy Bar," which works as a toolbar on the web browser. The functions of the Easy Bar are to change the size of web texts and images, to adjust the color, and to clear cached data that is automatically saved by the web browser. These functions are executed with ease by clicking buttons and operating a pull-down list. Since the icons built into Easy Bar are quite large, it is not necessary for the user to deal with delicate operations. The functions of Easy Bar run on any web page without increasing the processing time. For the visually handicapped, Easy Bar would contribute greatly to improved web accessibility to medical information.
xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud[OPEN
Merchant, Nirav
2016-01-01
Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today’s pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant’s Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. PMID:27020957
xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud.
Duvick, Jon; Standage, Daniel S; Merchant, Nirav; Brendel, Volker P
2016-04-01
Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today's pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant's Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. © 2016 American Society of Plant Biologists. All rights reserved.
NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites
NASA Technical Reports Server (NTRS)
Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.;
2006-01-01
At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.
VirGO: A Visual Browser for the ESO Science Archive Facility
NASA Astrophysics Data System (ADS)
Hatziminaoglou, Evanthia; Chéreau, Fabien
2009-03-01
VirGO is the next generation Visual Browser for the ESO Science Archive Facility (SAF) developed in the Virtual Observatory Project Office. VirGO enables astronomers to discover and select data easily from millions of observations in a visual and intuitive way. It allows real-time access and the graphical display of a large number of observations by showing instrumental footprints and image previews, as well as their selection and filtering for subsequent download from the ESO SAF web interface. It also permits the loading of external FITS files or VOTables, as well as the superposition of Digitized Sky Survey images to be used as background. All data interfaces are based on Virtual Observatory (VO) standards that allow access to images and spectra from external data centres, and interaction with the ESO SAF web interface or any other VO applications.
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.
Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron
2016-09-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Database Reports Over the Internet
NASA Technical Reports Server (NTRS)
Smith, Dean Lance
2002-01-01
Most of the summer was spent developing software that would permit existing test report forms to be printed over the web on a printer that is supported by Adobe Acrobat Reader. The data is stored in a DBMS (Data Base Management System). The client asks for the information from the database using an HTML (Hyper Text Markup Language) form in a web browser. JavaScript is used with the forms to assist the user and verify the integrity of the entered data. Queries to a database are made in SQL (Sequential Query Language), a widely supported standard for making queries to databases. Java servlets, programs written in the Java programming language running under the control of network server software, interrogate the database and complete a PDF form template kept in a file. The completed report is sent to the browser requesting the report. Some errors are sent to the browser in an HTML web page, others are reported to the server. Access to the databases was restricted since the data are being transported to new DBMS software that will run on new hardware. However, the SQL queries were made to Microsoft Access, a DBMS that is available on most PCs (Personal Computers). Access does support the SQL commands that were used, and a database was created with Access that contained typical data for the report forms. Some of the problems and features are discussed below.
EPA's EnviroAtlas Educational Curriculum
U.S. EPA’s EnviroAtlas provides a collection of web-based, interactive tools for exploring ecosystem services: an Interactive Map, which provides access to 300+ maps at multiple extents for the U.S., and an Eco-Health Relationship Browser, which displays the linkages betwee...
CSAR-web: a web server of contig scaffolding using algebraic rearrangements.
Chen, Kun-Tze; Lu, Chin Lung
2018-05-04
CSAR-web is a web-based tool that allows the users to efficiently and accurately scaffold (i.e. order and orient) the contigs of a target draft genome based on a complete or incomplete reference genome from a related organism. It takes as input a target genome in multi-FASTA format and a reference genome in FASTA or multi-FASTA format, depending on whether the reference genome is complete or incomplete, respectively. In addition, it requires the users to choose either 'NUCmer on nucleotides' or 'PROmer on translated amino acids' for CSAR-web to identify conserved genomic markers (i.e. matched sequence regions) between the target and reference genomes, which are used by the rearrangement-based scaffolding algorithm in CSAR-web to order and orient the contigs of the target genome based on the reference genome. In the output page, CSAR-web displays its scaffolding result in a graphical mode (i.e. scalable dotplot) allowing the users to visually validate the correctness of scaffolded contigs and in a tabular mode allowing the users to view the details of scaffolds. CSAR-web is available online at http://genome.cs.nthu.edu.tw/CSAR-web.
A demanding web-based PACS supported by web services technology
NASA Astrophysics Data System (ADS)
Costa, Carlos M. A.; Silva, Augusto; Oliveira, José L.; Ribeiro, Vasco G.; Ribeiro, José
2006-03-01
During the last years, the ubiquity of web interfaces have pushed practically all PACS suppliers to develop client applications in which clinical practitioners can receive and analyze medical images, using conventional personal computers and Web browsers. However, due to security and performance issues, the utilization of these software packages has been restricted to Intranets. Paradigmatically, one of the most important advantages of digital image systems is to simplify the widespread sharing and remote access of medical data between healthcare institutions. This paper analyses the traditional PACS drawbacks that contribute to their reduced usage in the Internet and describes a PACS based on Web Services technology that supports a customized DICOM encoding syntax and a specific compression scheme providing all historical patient data in a unique Web interface.
RPAN: rice pan-genome browser for ∼3000 rice genomes.
Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun
2017-01-25
A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
PopHuman: the human population genomics browser.
Casillas, Sònia; Mulet, Roger; Villegas-Mirón, Pablo; Hervas, Sergi; Sanz, Esteve; Velasco, Daniel; Bertranpetit, Jaume; Laayouni, Hafid; Barbadilla, Antonio
2018-01-04
The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.
2017-12-01
The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.
We describe the development and implementation of a Physiological and Anatomical Visual Analytics tool (PAVA), a web browser-based application, used to visualize experimental/simulated chemical time-course data (dosimetry), epidemiological data and Physiologically-Annotated Data ...
JAX Colony Management System (JCMS): an extensible colony and phenotype data management system.
Donnelly, Chuck J; McFarland, Mike; Ames, Abigail; Sundberg, Beth; Springer, Dave; Blauth, Peter; Bult, Carol J
2010-04-01
The Jackson Laboratory Colony Management System (JCMS) is a software application for managing data and information related to research mouse colonies, associated biospecimens, and experimental protocols. JCMS runs directly on computers that run one of the PC Windows operating systems, but can be accessed via web browser interfaces from any computer running a Windows, Macintosh, or Linux operating system. JCMS can be configured for a single user or multiple users in small- to medium-size work groups. The target audience for JCMS includes laboratory technicians, animal colony managers, and principal investigators. The application provides operational support for colony management and experimental workflows, sample and data tracking through transaction-based data entry forms, and date-driven work reports. Flexible query forms allow researchers to retrieve database records based on user-defined criteria. Recent advances in handheld computers with integrated barcode readers, middleware technologies, web browsers, and wireless networks add to the utility of JCMS by allowing real-time access to the database from any networked computer.
Stieger, Stefan; Göritz, Anja S; Voracek, Martin
2011-05-01
In Web-based studies, Web browsers are used to display online questionnaires. If an online questionnaire relies on non-standard technologies (e.g., Java applets), it is often necessary to install a particular browser plug-in. This can lead to technically induced dropout because some participants lack the technological know-how or the willingness to install the plug-in. In two thematically identical online studies conducted across two time points in two different participant pools (N = 1,527 and 805), we analyzed whether using a Java applet produces dropout and distortion of demographics in the final sample. Dropout was significantly higher on the Java applet questionnaire page than on the preceding and subsequent questionnaire pages. Age-specific effects were found only in one sample (i.e., dropouts were older), whereas sex-specific effects were found in both samples (i.e., women dropped out more frequently than men on the Java applet page). These results additionally support the recommendation that using additional technologies (e.g., Java applets) can be dangerous in producing a sample that is biased toward both younger and male respondents.
GBshape: a genome browser database for DNA shape annotations.
Chiu, Tsu-Pei; Yang, Lin; Zhou, Tianyin; Main, Bradley J; Parker, Stephen C J; Nuzhdin, Sergey V; Tullius, Thomas D; Rohs, Remo
2015-01-01
Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
JANIS 4: An Improved Version of the NEA Java-based Nuclear Data Information System
NASA Astrophysics Data System (ADS)
Soppera, N.; Bossant, M.; Dupont, E.
2014-06-01
JANIS is software developed to facilitate the visualization and manipulation of nuclear data, giving access to evaluated data libraries, and to the EXFOR and CINDA databases. It is stand-alone Java software, downloadable from the web and distributed on DVD. Used offline, the system also makes use of an internet connection to access the NEA Data Bank database. It is now also offered as a full web application, only requiring a browser. The features added in the latest version of the software and this new web interface are described.
NASA Astrophysics Data System (ADS)
Mann, Christopher; Narasimhamurthi, Natarajan
1998-08-01
This paper discusses a specific implementation of a web and complement based simulation systems. The overall simulation container is implemented within a web page viewed with Microsoft's Internet Explorer 4.0 web browser. Microsoft's ActiveX/Distributed Component Object Model object interfaces are used in conjunction with the Microsoft DirectX graphics APIs to provide visualization functionality for the simulation. The MathWorks' Matlab computer aided control system design program is used as an ActiveX automation server to provide the compute engine for the simulations.
JANIS 4: An Improved Version of the NEA Java-based Nuclear Data Information System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soppera, N., E-mail: nicolas.soppera@oecd.org; Bossant, M.; Dupont, E.
JANIS is software developed to facilitate the visualization and manipulation of nuclear data, giving access to evaluated data libraries, and to the EXFOR and CINDA databases. It is stand-alone Java software, downloadable from the web and distributed on DVD. Used offline, the system also makes use of an internet connection to access the NEA Data Bank database. It is now also offered as a full web application, only requiring a browser. The features added in the latest version of the software and this new web interface are described.
ASCIIGenome: a command line genome browser for console terminals.
Beraldi, Dario
2017-05-15
Current genome browsers are designed to work via graphical user interfaces (GUIs), which, however intuitive, are not amenable to operate within console terminals and therefore are difficult to streamline or integrate in scripts. To circumvent these limitations, ASCIIGenome runs exclusively via command line interface to display genomic data directly in a terminal window. By following the same philosophy of UNIX tools, ASCIIGenome aims to be easily integrated with the command line, including batch processing of data, and therefore enables an effective exploration of the data. ASCIIGenome is written in Java. Consequently, it is a cross-platform tool and requires minimal or no installation. Some of the common genomic data types are supported and data access on remote ftp servers is possible. Speed and memory footprint are comparable to or better than those of common genome browsers. Software and source code (MIT License) are available at https://github.com/dariober/ASCIIGenome with detailed documentation at http://asciigenome.readthedocs.io . Dario.beraldi@cruk.cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
The UCSC Genome Browser: What Every Molecular Biologist Should Know
Mangan, Mary E.; Williams, Jennifer M.; Kuhn, Robert M.; Lathe, Warren C.
2014-01-01
Electronic data resources can enable molecular biologists to quickly get information from around the world that a decade ago would have been buried in papers scattered throughout the library. The ability to access, query, and display these data make benchwork much more efficient and drive new discoveries. Increasingly, mastery of software resources and corresponding data repositories is required to fully explore the volume of data generated in biomedical and agricultural research, because only small amounts of data are actually found in traditional publications. The UCSC Genome Browser provides a wealth of data and tools that advance understanding of genomic context for many species, enable detailed analysis of data, and provide the ability to interrogate regions of interest across disparate data sets from a wide variety of sources. Researchers can also supplement the standard display with their own data to query and share this with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser. PMID:24984850
MDB: the Metalloprotein Database and Browser at The Scripps Research Institute
Castagnetto, Jesus M.; Hennessy, Sean W.; Roberts, Victoria A.; Getzoff, Elizabeth D.; Tainer, John A.; Pique, Michael E.
2002-01-01
The Metalloprotein Database and Browser (MDB; http://metallo.scripps.edu) at The Scripps Research Institute is a web-accessible resource for metalloprotein research. It offers the scientific community quantitative information on geometrical parameters of metal-binding sites in protein structures available from the Protein Data Bank (PDB). The MDB also offers analytical tools for the examination of trends or patterns in the indexed metal-binding sites. A user can perform interactive searches, metal-site structure visualization (via a Java applet), and analysis of the quantitative data by accessing the MDB through a web browser without requiring an external application or platform-dependent plugin. The MDB also has a non-interactive interface with which other web sites and network-aware applications can seamlessly incorporate data or statistical analysis results from metal-binding sites. The information contained in the MDB is periodically updated with automated algorithms that find and index metal sites from new protein structures released by the PDB. PMID:11752342
Makita, Yuko; Kawashima, Mika; Lau, Nyok Sean; Othman, Ahmad Sofiman; Matsui, Minami
2018-01-19
Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene. A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome data of RNA-seq, full-length cDNAs including PacBio Isoform sequencing (Iso-Seq), ESTs and genome wide transcription start sites (TSSs) derived from CAGE technology. Using our original and publically available RNA-seq data, we calculated co-expressed genes for identifying functionally related gene sets and/or genes regulated by the same transcription factor (TF). Users can access multi-transcriptome data through both a gene-oriented web page and a genome browser. For the gene searching system, we provide keyword search, sequence homology search and gene expression search; users can also select their expression threshold easily. The rubber genome and transcriptome DB provides rubber tree genome sequence and multi-transcriptomics data. This DB is useful for comprehensive understanding of the rubber transcriptome. This will assist both industrial and academic researchers for rubber and economically important close relatives such as R. communis, M. esculenta and J. curcas. The Rubber Transcriptome DB release 2017.03 is accessible at http://matsui-lab.riken.jp/rubber/ .
Ham, Timothy S; Dmytriv, Zinovii; Plahar, Hector; Chen, Joanna; Hillson, Nathan J; Keasling, Jay D
2012-10-01
The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about 'legacy' parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects.
NASA Technical Reports Server (NTRS)
Schreiner, John; Clancy, Daniel (Technical Monitor)
2002-01-01
The Collaborative Information Portal (CIP) is a web-based information management and retrieval system. Its purpose is to provide users at MER (Mars Exploration Rover) mission operations with easy access to a broad range of mission data and products and contextual information such as the current operations schedule. The CIP web-server provides this content in a user customizable web-portal environment. Since CIP is still under development, only a subset of the full feature set will be available for the EDO field test. The CIP web-portal will be accessed through a standard web browser. CIP is intended to be intuitive and simple to use, however, at the training session, users will receive a one to two page reference guide, which should aid them in using CIP. Users must provide their own computers for accessing CIP during the field test. These computers should be configured with Java 1.3 and a Java 2 enabled browser. Macintosh computers should be running OS 10.1.3 or later. Classic Mac OS (OS 9) is not supported. For more information please read section 7.3 in the FIASCO Rover Science Operations Test Mission Plan. Several screen shots of the Beta Release of CIP are shown on the following pages.
The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video
Harper, Lisa C.; Schaeffer, Mary L.; Thistle, Jordan; Gardiner, Jack M.; Andorf, Carson M.; Campbell, Darwin A.; Cannon, Ethalinda K.S.; Braun, Bremen L.; Birkett, Scott M.; Lawrence, Carolyn J.; Sen, Taner Z.
2011-01-01
Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is ‘Using the MaizeGDB Genome Browser’, which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser. Database URL: http://www.maizegdb.org/ PMID:21565781
Web-based interactive visualization in a Grid-enabled neuroimaging application using HTML5.
Siewert, René; Specovius, Svenja; Wu, Jie; Krefting, Dagmar
2012-01-01
Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging.
VisGets: coordinated visualizations for web-based information exploration and discovery.
Dörk, Marian; Carpendale, Sheelagh; Collins, Christopher; Williamson, Carey
2008-01-01
In common Web-based search interfaces, it can be difficult to formulate queries that simultaneously combine temporal, spatial, and topical data filters. We investigate how coordinated visualizations can enhance search and exploration of information on the World Wide Web by easing the formulation of these types of queries. Drawing from visual information seeking and exploratory search, we introduce VisGets--interactive query visualizations of Web-based information that operate with online information within a Web browser. VisGets provide the information seeker with visual overviews of Web resources and offer a way to visually filter the data. Our goal is to facilitate the construction of dynamic search queries that combine filters from more than one data dimension. We present a prototype information exploration system featuring three linked VisGets (temporal, spatial, and topical), and used it to visually explore news items from online RSS feeds.
Design and implementation of a unified certification management system based on seismic business
NASA Astrophysics Data System (ADS)
Tang, Hongliang
2018-04-01
Many business software for seismic systems are based on web pages, users can simply open a browser and enter their IP address. However, how to achieve unified management and security management of many IP addresses, this paper introduces the design concept based on seismic business and builds a unified authentication management system using ASP technology.
OpenHealth Platform for Interactive Contextualization of Population Health Open Data.
Almeida, Jonas S; Hajagos, Janos; Crnosija, Ivan; Kurc, Tahsin; Saltz, Mary; Saltz, Joel
The financial incentives for data science applications leading to improved health outcomes, such as DSRIP (bit.ly/dsrip), are well-aligned with the broad adoption of Open Data by State and Federal agencies. This creates entirely novel opportunities for analytical applications that make exclusive use of the pervasive Web Computing platform. The framework described here explores this new avenue to contextualize Health data in a manner that relies exclusively on the native JavaScript interpreter and data processing resources of the ubiquitous Web Browser. The OpenHealth platform is made publicly available, and is publicly hosted with version control and open source, at https://github.com/mathbiol/openHealth. The different data/analytics workflow architectures explored are accompanied with live applications ranging from DSRIP, such as Hospital Inpatient Prevention Quality Indicators at http://bit.ly/pqiSuffolk, to The Cancer Genome Atlas (TCGA) as illustrated by http://bit.ly/tcgascopeGBM.
Surfing the World Wide Web to Education Hot-Spots.
ERIC Educational Resources Information Center
Dyrli, Odvard Egil
1995-01-01
Provides a brief explanation of Web browsers and their use, as well as technical information for those considering access to the WWW (World Wide Web). Curriculum resources and addresses to useful Web sites are included. Sidebars show sample searches using Yahoo and Lycos search engines, and a list of recommended Web resources. (JKP)
Development of a Browser-Based Mobile Audience Response System for Large Classrooms
ERIC Educational Resources Information Center
Andergassen, Monika; Guerra, Victor; Ledermüller, Karl; Neumann, Gustaf
2013-01-01
Didactical advantages of audience response systems (ARS) have been discussed extensively ever since they have been used in classes. However, conventional ARS bear some drawbacks, such as requiring specific hardware, generating costs (text messaging based and web service fees) and creating a dependency on external hosts. In this paper we present a…
Using NetCloak to develop server-side Web-based experiments without writing CGI programs.
Wolfe, Christopher R; Reyna, Valerie F
2002-05-01
Server-side experiments use the Web server, rather than the participant's browser, to handle tasks such as random assignment, eliminating inconsistencies with JAVA and other client-side applications. Heretofore, experimenters wishing to create server-side experiments have had to write programs to create common gateway interface (CGI) scripts in programming languages such as Perl and C++. NetCloak uses simple, HTML-like commands to create CGIs. We used NetCloak to implement an experiment on probability estimation. Measurements of time on task and participants' IP addresses assisted quality control. Without prior training, in less than 1 month, we were able to use NetCloak to design and create a Web-based experiment and to help graduate students create three Web-based experiments of their own.
Vulnerability Assessment of Open Source Wireshark and Chrome Browser
2013-08-01
UNLIMITED 5 We spent much of the initial time learning about the logical model that modern HTML5 web browsers support, including how users interact with...are supposed to protect users of that site against cross-site scripting) and the new powerful an all-encompassing HTML5 standard. This vulnerability
Airborne Hazards and Open Burn Pit Registry
... Burn Pit Registry requires a common web browser technology to guide you through the registry questionnaire. You may try a different browser, or you may try from a different computer. You may also see this problem if you are in a high security environment where this is disabled by a network policy. ...
Securing a web-based teleradiology platform according to German law and "best practices".
Spitzer, Michael; Ullrich, Tobias; Ueckert, Frank
2009-01-01
The Medical Data and Picture Exchange platform (MDPE), as a teleradiology system, facilitates the exchange of digital medical imaging data among authorized users. It features extensive support of the DICOM standard including networking functions. Since MDPE is designed as a web service, security and confidentiality of data and communication pose an outstanding challenge. To comply with demands of German laws and authorities, a generic data security concept considered as "best practice" in German health telematics was adapted to the specific demands of MDPE. The concept features strict logical and physical separation of diagnostic and identity data and thus an all-encompassing pseudonymization throughout the system. Hence, data may only be merged at authorized clients. MDPE's solution of merging data from separate sources within a web browser avoids technically questionable techniques such as deliberate cross-site scripting. Instead, data is merged dynamically by JavaScriptlets running in the user's browser. These scriptlets are provided by one server, while content and method calls are generated by another server. Additionally, MDPE uses encrypted temporary IDs for communication and merging of data.
The design and implementation of stereoscopic 3D scalable vector graphics based on WebKit
NASA Astrophysics Data System (ADS)
Liu, Zhongxin; Wang, Wenmin; Wang, Ronggang
2014-03-01
Scalable Vector Graphics (SVG), which is a language designed based on eXtensible Markup Language (XML), is used to describe basic shapes embedded in webpages, such as circles and rectangles. However, it can only depict 2D shapes. As a consequence, web pages using classical SVG can only display 2D shapes on a screen. With the increasing development of stereoscopic 3D (S3D) technology, binocular 3D devices have been widely used. Under this circumstance, we intend to extend the widely used web rendering engine WebKit to support the description and display of S3D webpages. Therefore, the extension of SVG is of necessity. In this paper, we will describe how to design and implement SVG shapes with stereoscopic 3D mode. Two attributes representing the depth and thickness are added to support S3D shapes. The elimination of hidden lines and hidden surfaces, which is an important process in this project, is described as well. The modification of WebKit is also discussed, which is made to support the generation of both left view and right view at the same time. As is shown in the result, in contrast to the 2D shapes generated by the Google Chrome web browser, the shapes got from our modified browser are in S3D mode. With the feeling of depth and thickness, the shapes seem to be real 3D objects away from the screen, rather than simple curves and lines as before.
A Browser-Based Multi-User Working Environment for Physicists
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.
2014-06-01
Many programs in experimental particle physics do not yet have a graphical interface, or demand strong platform and software requirements. With the most recent development of the VISPA project, we provide graphical interfaces to existing software programs and access to multiple computing clusters through standard web browsers. The scalable clientserver system allows analyses to be performed in sizable teams, and disburdens the individual physicist from installing and maintaining a software environment. The VISPA graphical interfaces are implemented in HTML, JavaScript and extensions to the Python webserver. The webserver uses SSH and RPC to access user data, code and processes on remote sites. As example applications we present graphical interfaces for steering the reconstruction framework OFFLINE of the Pierre-Auger experiment, and the analysis development toolkit PXL. The browser based VISPA system was field-tested in biweekly homework of a third year physics course by more than 100 students. We discuss the system deployment and the evaluation by the students.
CAI System with Multi-Media Text Through Web Browser for NC Lathe Programming
NASA Astrophysics Data System (ADS)
Mizugaki, Yoshio; Kikkawa, Koichi; Mizui, Masahiko; Kamijo, Keisuke
A new Computer Aided Instruction (CAI) system for NC lathe programming has been developed with use of multi-media texts including movies, animations, pictures, sound and texts through Web browser. Although many CAI systems developed previously for NC programming consist of text-based instructions, it is difficult for beginners to learn NC programming with use of them. In the developed CAI system, multi-media texts are adopted for the help of users' understanding, and it is available through Web browser anytime and anywhere. Also the error log is automatically recorded for the future references. According to the NC programming coded by a user, the movement of the NC lathe is animated and shown in the monitor screen in front of the user. If its movement causes the collision between a cutting tool and the lathe, some sound and the caution remark are generated. If the user makes mistakes some times at a certain stage in learning NC, the corresponding suggestion is shown in the form of movies, animations, and so forth. By using the multimedia texts, users' attention is kept concentrated during a training course. In this paper, the configuration of the CAI system is explained and the actual procedures for users to learn the NC programming are also explained too. Some beginners tested this CAI system and their results are illustrated and discussed from the viewpoint of the efficiency and usefulness of this CAI system. A brief conclusion is also mentioned.
R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server
Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles
2015-01-01
The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960
An Online Virtual Laboratory of Electricity
ERIC Educational Resources Information Center
Gómez Tejedor, J. A.; Moltó Martínez, G.; Barros Vidaurre, C.
2008-01-01
In this article, we describe a Java-based virtual laboratory, accessible via the Internet by means of a Web browser. This remote laboratory enables the students to build both direct and alternating current circuits. The program includes a graphical user interface which resembles the connection board, and also the electrical components and tools…
Sharing the Knowledge: Browser Based Writing Business Applications.
ERIC Educational Resources Information Center
Evans, Nancy R.; Tuzi, Frank
The focus of this paper is the combination of oral and written response and technology, the components that form electronic feedback, and their possible benefits to business. The paper proposes that Web writing applications can provide numerous benefits to businesses and increase the communication and management of that communication. With the…
Estimation of toxicity using a Java based software tool
A software tool has been developed that will allow a user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be accessed using a web browser (or alternatively downloaded and ran as a stand alone applic...
WheatGenome.info: A Resource for Wheat Genomics Resource.
Lai, Kaitao
2016-01-01
An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .
SensA: web-based sensitivity analysis of SBML models.
Floettmann, Max; Uhlendorf, Jannis; Scharp, Till; Klipp, Edda; Spiesser, Thomas W
2014-10-01
SensA is a web-based application for sensitivity analysis of mathematical models. The sensitivity analysis is based on metabolic control analysis, computing the local, global and time-dependent properties of model components. Interactive visualization facilitates interpretation of usually complex results. SensA can contribute to the analysis, adjustment and understanding of mathematical models for dynamic systems. SensA is available at http://gofid.biologie.hu-berlin.de/ and can be used with any modern browser. The source code can be found at https://bitbucket.org/floettma/sensa/ (MIT license) © The Author 2014. Published by Oxford University Press.
Panorama: A Targeted Proteomics Knowledge Base
2015-01-01
Panorama is a web application for storing, sharing, analyzing, and reusing targeted assays created and refined with Skyline,1 an increasingly popular Windows client software tool for targeted proteomics experiments. Panorama allows laboratories to store and organize curated results contained in Skyline documents with fine-grained permissions, which facilitates distributed collaboration and secure sharing of published and unpublished data via a web-browser interface. It is fully integrated with the Skyline workflow and supports publishing a document directly to a Panorama server from the Skyline user interface. Panorama captures the complete Skyline document information content in a relational database schema. Curated results published to Panorama can be aggregated and exported as chromatogram libraries. These libraries can be used in Skyline to pick optimal targets in new experiments and to validate peak identification of target peptides. Panorama is open-source and freely available. It is distributed as part of LabKey Server,2 an open source biomedical research data management system. Laboratories and organizations can set up Panorama locally by downloading and installing the software on their own servers. They can also request freely hosted projects on https://panoramaweb.org, a Panorama server maintained by the Department of Genome Sciences at the University of Washington. PMID:25102069
Yang, Jian-Hua; Li, Jun-Hao; Jiang, Shan; Zhou, Hui; Qu, Liang-Hu
2013-01-01
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.
Value of Information Web Application
2015-04-01
their understanding of VoI attributes (source reliable, information content, and latency). The VoI web application emulates many features of a...only when using the Firefox web browser on those computers (Internet Explorer was not viable due to unchangeable user settings). During testing, the
Technical Services and the World Wide Web.
ERIC Educational Resources Information Center
Scheschy, Virginia M.
The World Wide Web and browsers such as Netscape and Mosaic have simplified access to electronic resources. Today, technical services librarians can share in the wealth of information available on the Web. One of the premier Web sites for acquisitions librarians is AcqWeb, a cousin of the AcqNet listserv. In addition to interesting news items,…
Database resources of the National Center for Biotechnology Information.
Wheeler, David L; Barrett, Tanya; Benson, Dennis A; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Geer, Lewis Y; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J; Madden, Thomas L; Maglott, Donna R; Ostell, James; Miller, Vadim; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Steven T; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L; Tatusova, Tatiana A; Wagner, Lukas; Yaschenko, Eugene
2007-01-01
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link(BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace and Assembly Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Viral Genotyping Tools, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
Database resources of the National Center for Biotechnology Information
Wheeler, David L.; Barrett, Tanya; Benson, Dennis A.; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J.; Madden, Thomas L.; Maglott, Donna R.; Miller, Vadim; Ostell, James; Pruitt, Kim D.; Schuler, Gregory D.; Shumway, Martin; Sequeira, Edwin; Sherry, Steven T.; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L.; Tatusova, Tatiana A.; Wagner, Lukas; Yaschenko, Eugene
2008-01-01
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:18045790
iHOPerator: user-scripting a personalized bioinformatics Web, starting with the iHOP website
Good, Benjamin M; Kawas, Edward A; Kuo, Byron Yu-Lin; Wilkinson, Mark D
2006-01-01
Background User-scripts are programs stored in Web browsers that can manipulate the content of websites prior to display in the browser. They provide a novel mechanism by which users can conveniently gain increased control over the content and the display of the information presented to them on the Web. As the Web is the primary medium by which scientists retrieve biological information, any improvements in the mechanisms that govern the utility or accessibility of this information may have profound effects. GreaseMonkey is a Mozilla Firefox extension that facilitates the development and deployment of user-scripts for the Firefox web-browser. We utilize this to enhance the content and the presentation of the iHOP (information Hyperlinked Over Proteins) website. Results The iHOPerator is a GreaseMonkey user-script that augments the gene-centred pages on iHOP by providing a compact, configurable visualization of the defining information for each gene and by enabling additional data, such as biochemical pathway diagrams, to be collected automatically from third party resources and displayed in the same browsing context. Conclusion This open-source script provides an extension to the iHOP website, demonstrating how user-scripts can personalize and enhance the Web browsing experience in a relevant biological setting. The novel, user-driven controls over the content and the display of Web resources made possible by user-scripts, such as the iHOPerator, herald the beginning of a transition from a resource-centric to a user-centric Web experience. We believe that this transition is a necessary step in the development of Web technology that will eventually result in profound improvements in the way life scientists interact with information. PMID:17173692
FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN
NASA Astrophysics Data System (ADS)
Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando
2014-06-01
The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.
Concertina browsers: a formative evaluation of user preference.
Harper, Simon; Christophorou, Nicola
2008-09-01
Evidence suggests that concertina browsers - browsers with the facility to expand and contract sections of information - are important in providing the reader with an enhanced cognition of small to medium amounts of information. These systems have been shown to be useful for visually disabled users surfing the World Wide Web (Web), and with the development of the Mobile Web, there has been renewed interest in their use. This is due to the similarities of reduced or constrained vision found to exist between visually impaired users and the users of mobile devices. The cognition of information fragments is key to the user experience and the reduction of 'information overload'; as such we are concerned with assisting designers of concertina browsers in providing an enhanced user experience by ascertaining user preference through a formative evaluation of concertina summaries. This aspect of browsing is important because in all concertina systems there is a distinct cognition speed/depth trade-off. Here we investigate a number of these concertina summarization techniques against each other. We describe a formative evaluation which concludes that users prefer concertina summarization of Web documents starting from 6.25% slices of both the top and bottom and expanding from the top in 2% steps to a target maximum of 18.50% (being 12.25% from the top and 6.25% from the bottom). These preferences were found to be representative of documents of less than 600 words of content, and included the preference to not fragment an individual sentence even if that meant slightly increasing the target: Starting, maximum, and step percentage slices.
The UCSC Genome Browser: What Every Molecular Biologist Should Know.
Mangan, Mary E; Williams, Jennifer M; Kuhn, Robert M; Lathe, Warren C
2014-07-01
Electronic data resources can enable molecular biologists to quickly get information from around the world that a decade ago would have been buried in papers scattered throughout the library. The ability to access, query, and display these data makes benchwork much more efficient and drives new discoveries. Increasingly, mastery of software resources and corresponding data repositories is required to fully explore the volume of data generated in biomedical and agricultural research, because only small amounts of data are actually found in traditional publications. The UCSC Genome Browser provides a wealth of data and tools that advance understanding of genomic context for many species, enable detailed analysis of data, and provide the ability to interrogate regions of interest across disparate data sets from a wide variety of sources. Researchers can also supplement the standard display with their own data to query and share this with others. Effective use of these resources has become crucial to biological research today, and this unit describes some practical applications of the UCSC Genome Browser. Copyright © 2014 John Wiley & Sons, Inc.
Specification and Verification of Web Applications in Rewriting Logic
NASA Astrophysics Data System (ADS)
Alpuente, María; Ballis, Demis; Romero, Daniel
This paper presents a Rewriting Logic framework that formalizes the interactions between Web servers and Web browsers through a communicating protocol abstracting HTTP. The proposed framework includes a scripting language that is powerful enough to model the dynamics of complex Web applications by encompassing the main features of the most popular Web scripting languages (e.g. PHP, ASP, Java Servlets). We also provide a detailed characterization of browser actions (e.g. forward/backward navigation, page refresh, and new window/tab openings) via rewrite rules, and show how our models can be naturally model-checked by using the Linear Temporal Logic of Rewriting (LTLR), which is a Linear Temporal Logic specifically designed for model-checking rewrite theories. Our formalization is particularly suitable for verification purposes, since it allows one to perform in-depth analyses of many subtle aspects related to Web interaction. Finally, the framework has been completely implemented in Maude, and we report on some successful experiments that we conducted by using the Maude LTLR model-checker.
Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration
NASA Technical Reports Server (NTRS)
Lin, Risheng; Afjeh, Abdollah A.
2003-01-01
This paper discusses the detailed design of an XML databinding framework for aircraft engine simulation. The framework provides an object interface to access and use engine data. while at the same time preserving the meaning of the original data. The Language independent representation of engine component data enables users to move around XML data using HTTP through disparate networks. The application of this framework is demonstrated via a web-based turbofan propulsion system simulation using the World Wide Web (WWW). A Java Servlet based web component architecture is used for rendering XML engine data into HTML format and dealing with input events from the user, which allows users to interact with simulation data from a web browser. The simulation data can also be saved to a local disk for archiving or to restart the simulation at a later time.
A Study and Taxonomy of Vulnerabilities in Web Based Animation and Interactivity Software
2010-12-01
Flash Player is available as a plugin for most common Web browsers (Firefox, Mozilla, Netscape, Opera) and as an ActiveX control for Internet...script or HTML via (1) a swf file that uses the asfunction: protocol or (2) the navigateToURL function when used with the Flash Player ActiveX ...malicious page or open a malicious file. 2. Coding an Exploit The specific flaw exists in the Flash Player ActiveX Control’s handling of the
Simulation Platform: a cloud-based online simulation environment.
Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro
2011-09-01
For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.
Reprint of: Simulation Platform: a cloud-based online simulation environment.
Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro
2011-11-01
For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Masseroli, Marco; Pinciroli, Francesco
2000-12-01
To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.
NASA Technical Reports Server (NTRS)
Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.
2013-01-01
Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.
Web-based X-ray quality control documentation.
David, George; Burnett, Lou Ann; Schenkel, Robert
2003-01-01
The department of radiology at the Medical College of Georgia Hospital and Clinics has developed an equipment quality control web site. Our goal is to provide immediate access to virtually all medical physics survey data. The web site is designed to assist equipment engineers, department management and technologists. By improving communications and access to equipment documentation, we believe productivity is enhanced. The creation of the quality control web site was accomplished in three distinct steps. First, survey data had to be placed in a computer format. The second step was to convert these various computer files to a format supported by commercial web browsers. Third, a comprehensive home page had to be designed to provide convenient access to the multitude of surveys done in the various x-ray rooms. Because we had spent years previously fine-tuning the computerization of the medical physics quality control program, most survey documentation was already in spreadsheet or database format. A major technical decision was the method of conversion of survey spreadsheet and database files into documentation appropriate for the web. After an unsatisfactory experience with a HyperText Markup Language (HTML) converter (packaged with spreadsheet and database software), we tried creating Portable Document Format (PDF) files using Adobe Acrobat software. This process preserves the original formatting of the document and takes no longer than conventional printing; therefore, it has been very successful. Although the PDF file generated by Adobe Acrobat is a proprietary format, it can be displayed through a conventional web browser using the freely distributed Adobe Acrobat Reader program that is available for virtually all platforms. Once a user installs the software, it is automatically invoked by the web browser whenever the user follows a link to a file with a PDF extension. Although no confidential patient information is available on the web site, our legal department recommended that we secure the site in order to keep out those wishing to make mischief. Our interim solution has not been to password protect the page, which we feared would hinder access for occasional legitimate users, but also not to provide links to it from other hospital and department pages. Utility and productivity were improved and time and money were saved by making radiological equipment quality control documentation instantly available on-line.
Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures
NASA Astrophysics Data System (ADS)
Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.
2010-11-01
A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.
Browser-Based Accessibility Evaluation Tools for Beginners
ERIC Educational Resources Information Center
McHale, Nina
2011-01-01
There are hundreds of Web accessibility software options out in the world that serve many different functions. Not surprisingly, many of them are designed for users with a wide range of abilities, with the intent of making the use of computers and the Internet easier for both work and entertainment. There are, however, numerous products available…
Benefits of Using Online Student Response Systems in Japanese EFL Classrooms
ERIC Educational Resources Information Center
Mork, Cathrine-Mette
2014-01-01
Online student response systems (OSRSs) are fast replacing classroom response systems (CRSs), also known as personal or audience response systems or "clickers". OSRSs can more easily be implemented in the classroom because they are web-based and allow students to use any browser and device to do the "clicking" required to…
Usability of Browser-Based Tools for Web-Search Privacy
2010-03-01
What might Italians call maize? — Polenta From which country do french fries originate? — Belgium In Peru, which color potatoes are grown, in addition...What is kartofflen? — Potato Dumplings What is the name of the flatbread eaten with most Indian cuisine ? — Naan What type of cuisine offers Dim Sum
Augmenting Research, Education, and Outreach with Client-Side Web Programming.
Abriata, Luciano A; Rodrigues, João P G L M; Salathé, Marcel; Patiny, Luc
2018-05-01
The evolution of computing and web technologies over the past decade has enabled the development of fully fledged scientific applications that run directly on web browsers. Powered by JavaScript, the lingua franca of web programming, these 'web apps' are starting to revolutionize and democratize scientific research, education, and outreach. Copyright © 2017 Elsevier Ltd. All rights reserved.
XML Content Finally Arrives on the Web!
ERIC Educational Resources Information Center
Funke, Susan
1998-01-01
Explains extensible markup language (XML) and how it differs from hypertext markup language (HTML) and standard generalized markup language (SGML). Highlights include features of XML, including better formatting of documents, better searching capabilities, multiple uses for hyperlinking, and an increase in Web applications; Web browsers; and what…
Dynamic alarm response procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, J.; Gordon, P.; Fitch, K.
2006-07-01
The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as Apache{sup R}, IIS{sup R}, TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphicsmore » (SVG), such as Netscape{sup R}, Microsoft Internet Explorer{sup R}, Mozilla Firefox{sup R}, Opera{sup R}, and others. (authors)« less
XML — an opportunity for
NASA Astrophysics Data System (ADS)
Houlding, Simon W.
2001-08-01
Extensible markup language (XML) is a recently introduced meta-language standard on the Web. It provides the rules for development of metadata (markup) standards for information transfer in specific fields. XML allows development of markup languages that describe what information is rather than how it should be presented. This allows computer applications to process the information in intelligent ways. In contrast hypertext markup language (HTML), which fuelled the initial growth of the Web, is a metadata standard concerned exclusively with presentation of information. Besides its potential for revolutionizing Web activities, XML provides an opportunity for development of meaningful data standards in specific application fields. The rapid endorsement of XML by science, industry and e-commerce has already spawned new metadata standards in such fields as mathematics, chemistry, astronomy, multi-media and Web micro-payments. Development of XML-based data standards in the geosciences would significantly reduce the effort currently wasted on manipulating and reformatting data between different computer platforms and applications and would ensure compatibility with the new generation of Web browsers. This paper explores the evolution, benefits and status of XML and related standards in the more general context of Web activities and uses this as a platform for discussion of its potential for development of data standards in the geosciences. Some of the advantages of XML are illustrated by a simple, browser-compatible demonstration of XML functionality applied to a borehole log dataset. The XML dataset and the associated stylesheet and schema declarations are available for FTP download.
A RESTful interface to pseudonymization services in modern web applications.
Lablans, Martin; Borg, Andreas; Ückert, Frank
2015-02-07
Medical research networks rely on record linkage and pseudonymization to determine which records from different sources relate to the same patient. To establish informational separation of powers, the required identifying data are redirected to a trusted third party that has, in turn, no access to medical data. This pseudonymization service receives identifying data, compares them with a list of already reported patient records and replies with a (new or existing) pseudonym. We found existing solutions to be technically outdated, complex to implement or not suitable for internet-based research infrastructures. In this article, we propose a new RESTful pseudonymization interface tailored for use in web applications accessed by modern web browsers. The interface is modelled as a resource-oriented architecture, which is based on the representational state transfer (REST) architectural style. We translated typical use-cases into resources to be manipulated with well-known HTTP verbs. Patients can be re-identified in real-time by authorized users' web browsers using temporary identifiers. We encourage the use of PID strings for pseudonyms and the EpiLink algorithm for record linkage. As a proof of concept, we developed a Java Servlet as reference implementation. The following resources have been identified: Sessions allow data associated with a client to be stored beyond a single request while still maintaining statelessness. Tokens authorize for a specified action and thus allow the delegation of authentication. Patients are identified by one or more pseudonyms and carry identifying fields. Relying on HTTP calls alone, the interface is firewall-friendly. The reference implementation has proven to be production stable. The RESTful pseudonymization interface fits the requirements of web-based scenarios and allows building applications that make pseudonymization transparent to the user using ordinary web technology. The open-source reference implementation implements the web interface as well as a scientifically grounded algorithm to generate non-speaking pseudonyms.
Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.
Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney
2004-08-01
We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. Copyright 2004 Genetics Society of America
Rational analyses of information foraging on the web.
Pirolli, Peter
2005-05-06
This article describes rational analyses and cognitive models of Web users developed within information foraging theory. This is done by following the rational analysis methodology of (a) characterizing the problems posed by the environment, (b) developing rational analyses of behavioral solutions to those problems, and (c) developing cognitive models that approach the realization of those solutions. Navigation choice is modeled as a random utility model that uses spreading activation mechanisms that link proximal cues (information scent) that occur in Web browsers to internal user goals. Web-site leaving is modeled as an ongoing assessment by the Web user of the expected benefits of continuing at a Web site as opposed to going elsewhere. These cost-benefit assessments are also based on spreading activation models of information scent. Evaluations include a computational model of Web user behavior called Scent-Based Navigation and Information Foraging in the ACT Architecture, and the Law of Surfing, which characterizes the empirical distribution of the length of paths of visitors at a Web site. 2005 Lawrence Erlbaum Associates, Inc.
The Electricity Data Browser shows generation, consumption, fossil fuel receipts, stockpiles, retail sales, and electricity prices. The data appear on an interactive web page and are updated each month. The Electricity Data Browser includes all the datasets collected and published in EIA's Electric Power Monthly and allows users to perform dynamic charting of data sets as well as map the data by state. The data browser includes a series of reports that appear in the Electric Power Monthly and allows readers to drill down to plant level statistics, where available. All images and datasets are available for download. Users can also link to the data series in EIA's Application Programming Interface (API). An API makes our data machine-readable and more accessible to users.
Lekschas, Fritz; Stachelscheid, Harald; Seltmann, Stefanie; Kurtz, Andreas
2015-03-01
Advancing technologies generate large amounts of molecular and phenotypic data on cells, tissues and organisms, leading to an ever-growing detail and complexity while information retrieval and analysis becomes increasingly time-consuming. The Semantic Body Browser is a web application for intuitively exploring the body of an organism from the organ to the subcellular level and visualising expression profiles by means of semantically annotated anatomical illustrations. It is used to comprehend biological and medical data related to the different body structures while relying on the strong pattern recognition capabilities of human users. The Semantic Body Browser is a JavaScript web application that is freely available at http://sbb.cellfinder.org. The source code is provided on https://github.com/flekschas/sbb. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Online interactive analysis of protein structure ensembles with Bio3D-web.
Skjærven, Lars; Jariwala, Shashank; Yao, Xin-Qiu; Grant, Barry J
2016-11-15
Bio3D-web is an online application for analyzing the sequence, structure and conformational heterogeneity of protein families. Major functionality is provided for identifying protein structure sets for analysis, their alignment and refined structure superposition, sequence and structure conservation analysis, mapping and clustering of conformations and the quantitative comparison of their predicted structural dynamics. Bio3D-web is based on the Bio3D and Shiny R packages. All major browsers are supported and full source code is available under a GPL2 license from http://thegrantlab.org/bio3d-web CONTACT: bjgrant@umich.edu or lars.skjarven@uib.no. © The Author 2016. Published by Oxford University Press.
Finding, Browsing and Getting Data Easily Using SPDF Web Services
NASA Technical Reports Server (NTRS)
Candey, R.; Chimiak, R.; Harris, B.; Johnson, R.; Kovalick, T.; Lal, N.; Leckner, H.; Liu, M.; McGuire, R.; Papitashvili, N.;
2010-01-01
The NASA GSFC Space Physics Data Facility (5PDF) provides heliophysics science-enabling information services for enhancing scientific research and enabling integration of these services into the Heliophysics Data Environment paradigm, via standards-based approach (SOAP) and Representational State Transfer (REST) web services in addition to web browser, FTP, and OPeNDAP interfaces. We describe these interfaces and the philosophies behind these web services, and show how to call them from various languages, such as IDL and Perl. We are working towards a "one simple line to call" philosophy extolled in the recent VxO discussions. Combining data from many instruments and missions enables broad research analysis and correlation and coordination with other experiments and missions.
Just-in-time Database-Driven Web Applications
2003-01-01
"Just-in-time" database-driven Web applications are inexpensive, quickly-developed software that can be put to many uses within a health care organization. Database-driven Web applications garnered 73873 hits on our system-wide intranet in 2002. They enabled collaboration and communication via user-friendly Web browser-based interfaces for both mission-critical and patient-care-critical functions. Nineteen database-driven Web applications were developed. The application categories that comprised 80% of the hits were results reporting (27%), graduate medical education (26%), research (20%), and bed availability (8%). The mean number of hits per application was 3888 (SD = 5598; range, 14-19879). A model is described for just-in-time database-driven Web application development and an example given with a popular HTML editor and database program. PMID:14517109
Streamlining Data for Cross-Platform Web Delivery
ERIC Educational Resources Information Center
Watkins, Sean; Battles, Jason; Vacek, Rachel
2013-01-01
Smartphone users expect the presentation of Web sites on their mobile browsers to look and feel like native applications. With the pressure on library Web developers to produce app-like mobile sites, there is often a rush to get a site up without considering the importance of reusing or even restructuring the data driving the Web sites. An…
WebTag: Web browsing into sensor tags over NFC.
Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio
2012-01-01
Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.
WebTag: Web Browsing into Sensor Tags over NFC
Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Álvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio
2012-01-01
Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm. PMID:23012511
those with slower Internet access. Users may also simply type in a ZIP Code and find the hardiness zone : Find Javascript is not enabled in this Internet Browser For a better experience throughout this web site, please enable Javascript in your Internet Browser What is a Captcha and why am I seeing one (on
Elucidating and mining the Tulipa and Lilium transcriptomes.
Moreno-Pachon, Natalia M; Leeggangers, Hendrika A C F; Nijveen, Harm; Severing, Edouard; Hilhorst, Henk; Immink, Richard G H
2016-10-01
Genome sequencing remains a challenge for species with large and complex genomes containing extensive repetitive sequences, of which the bulbous and monocotyledonous plants tulip and lily are examples. In such a case, sequencing of only the active part of the genome, represented by the transcriptome, is a good alternative to obtain information about gene content. In this study we aimed to generate a high quality transcriptome of tulip and lily and to make this data available as an open-access resource via a user-friendly web-based interface. The Illumina HiSeq 2000 platform was applied and the transcribed RNA was sequenced from a collection of different lily and tulip tissues, respectively. In order to obtain good transcriptome coverage and to facilitate effective data mining, assembly was done using different filtering parameters for clearing out contamination and noise of the RNAseq datasets. This analysis revealed limitations of commonly applied methods and parameter settings used in de novo transcriptome assembly. The final created transcriptomes are publicly available via a user friendly Transcriptome browser ( http://www.bioinformatics.nl/bulbs/db/species/index ). The usefulness of this resource has been exemplified by a search for all potential transcription factors in lily and tulip, with special focus on the TCP transcription factor family. This analysis and other quality parameters point out the quality of the transcriptomes, which can serve as a basis for further genomics studies in lily, tulip, and bulbous plants in general.
2015-01-01
1 3.0 Methods, Assumptions, and Procedures ...18 4.6.3. LineUp Web... Procedures A search of the internet looking at web sites specializing in graphics, graphics engines, web browser applications, and games was conducted to
A Course Evolves-Physical Anthropology.
ERIC Educational Resources Information Center
O'Neil, Dennis
2001-01-01
Describes the development of an online physical anthropology course at Palomar College (California) that evolved from online tutorials. Discusses the ability to update materials on the Web more quickly than in traditional textbooks; creating Web pages that are readable by most Web browsers; test security issues; and clarifying ownership of online…
Sequence alignment visualization in HTML5 without Java.
Gille, Christoph; Birgit, Weyand; Gille, Andreas
2014-01-01
Java has been extensively used for the visualization of biological data in the web. However, the Java runtime environment is an additional layer of software with an own set of technical problems and security risks. HTML in its new version 5 provides features that for some tasks may render Java unnecessary. Alignment-To-HTML is the first HTML-based interactive visualization for annotated multiple sequence alignments. The server side script interpreter can perform all tasks like (i) sequence retrieval, (ii) alignment computation, (iii) rendering, (iv) identification of a homologous structural models and (v) communication with BioDAS-servers. The rendered alignment can be included in web pages and is displayed in all browsers on all platforms including touch screen tablets. The functionality of the user interface is similar to legacy Java applets and includes color schemes, highlighting of conserved and variable alignment positions, row reordering by drag and drop, interlinked 3D visualization and sequence groups. Novel features are (i) support for multiple overlapping residue annotations, such as chemical modifications, single nucleotide polymorphisms and mutations, (ii) mechanisms to quickly hide residue annotations, (iii) export to MS-Word and (iv) sequence icons. Alignment-To-HTML, the first interactive alignment visualization that runs in web browsers without additional software, confirms that to some extend HTML5 is already sufficient to display complex biological data. The low speed at which programs are executed in browsers is still the main obstacle. Nevertheless, we envision an increased use of HTML and JavaScript for interactive biological software. Under GPL at: http://www.bioinformatics.org/strap/toHTML/.
R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.
Cannone, Jamie J; Sweeney, Blake A; Petrov, Anton I; Gutell, Robin R; Zirbel, Craig L; Leontis, Neocles
2015-07-01
The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Masseroli, M; Bonacina, S; Pinciroli, F
2004-01-01
The actual development of distributed information technologies and Java programming enables employing them also in the medical arena to support the retrieval, integration and evaluation of heterogeneous data and multimodal images in a web browser environment. With this aim, we used them to implement a client-server architecture based on software agents. The client side is a Java applet running in a web browser and providing a friendly medical user interface to browse and visualize different patient and medical test data, integrating them properly. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. Based on the Java Advanced Imaging API, processing and analysis tools were developed to support the evaluation of remotely retrieved bioimages through the quantification of their features in different regions of interest. The Java platform-independence allows the centralized management of the implemented prototype and its deployment to each site where an intranet or internet connection is available. Giving healthcare providers effective support for comprehensively browsing, visualizing and evaluating medical images and records located in different remote repositories, the developed prototype can represent an important aid in providing more efficient diagnoses and medical treatments.
Accident/Mishap Investigation System
NASA Technical Reports Server (NTRS)
Keller, Richard; Wolfe, Shawn; Gawdiak, Yuri; Carvalho, Robert; Panontin, Tina; Williams, James; Sturken, Ian
2007-01-01
InvestigationOrganizer (IO) is a Web-based collaborative information system that integrates the generic functionality of a database, a document repository, a semantic hypermedia browser, and a rule-based inference system with specialized modeling and visualization functionality to support accident/mishap investigation teams. This accessible, online structure is designed to support investigators by allowing them to make explicit, shared, and meaningful links among evidence, causal models, findings, and recommendations.
Bernal-Rusiel, Jorge L; Rannou, Nicolas; Gollub, Randy L; Pieper, Steve; Murphy, Shawn; Robertson, Richard; Grant, Patricia E; Pienaar, Rudolph
2017-01-01
In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView , a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.
Proposal and Implementation of SSH Client System Using Ajax
NASA Astrophysics Data System (ADS)
Kosuda, Yusuke; Sasaki, Ryoichi
Technology called Ajax gives web applications the functionality and operability of desktop applications. In this study, we propose and implement a Secure Shell (SSH) client system using Ajax, independent of the OS or Java execution environment. In this system, SSH packets are generated on a web browser by using JavaScript and a web server works as a proxy in communication with an SSH server to realize end-to-end SSH communication. We implemented a prototype program and confirmed by experiment that it runs on several web browsers and mobile phones. This system has enabled secure SSH communication from a PC at an Internet cafe or any mobile phone. By measuring the processing performance, we verified satisfactory performance for emergency use, although the speed was unsatisfactory in some cases with mobile phone. The system proposed in this study will be effective in various fields of E-Business.
WebCN: A web-based computation tool for in situ-produced cosmogenic nuclides
NASA Astrophysics Data System (ADS)
Ma, Xiuzeng; Li, Yingkui; Bourgeois, Mike; Caffee, Marc; Elmore, David; Granger, Darryl; Muzikar, Paul; Smith, Preston
2007-06-01
Cosmogenic nuclide techniques are increasingly being utilized in geoscience research. For this it is critical to establish an effective, easily accessible and well defined tool for cosmogenic nuclide computations. We have been developing a web-based tool (WebCN) to calculate surface exposure ages and erosion rates based on the nuclide concentrations measured by the accelerator mass spectrometry. WebCN for 10Be and 26Al has been finished and published at http://www.physics.purdue.edu/primelab/for_users/rockage.html. WebCN for 36Cl is under construction. WebCN is designed as a three-tier client/server model and uses the open source PostgreSQL for the database management and PHP for the interface design and calculations. On the client side, an internet browser and Microsoft Access are used as application interfaces to access the system. Open Database Connectivity is used to link PostgreSQL and Microsoft Access. WebCN accounts for both spatial and temporal distributions of the cosmic ray flux to calculate the production rates of in situ-produced cosmogenic nuclides at the Earth's surface.
Chemical Space: Big Data Challenge for Molecular Diversity.
Awale, Mahendra; Visini, Ricardo; Probst, Daniel; Arús-Pous, Josep; Reymond, Jean-Louis
2017-10-25
Chemical space describes all possible molecules as well as multi-dimensional conceptual spaces representing the structural diversity of these molecules. Part of this chemical space is available in public databases ranging from thousands to billions of compounds. Exploiting these databases for drug discovery represents a typical big data problem limited by computational power, data storage and data access capacity. Here we review recent developments of our laboratory, including progress in the chemical universe databases (GDB) and the fragment subset FDB-17, tools for ligand-based virtual screening by nearest neighbor searches, such as our multi-fingerprint browser for the ZINC database to select purchasable screening compounds, and their application to discover potent and selective inhibitors for calcium channel TRPV6 and Aurora A kinase, the polypharmacology browser (PPB) for predicting off-target effects, and finally interactive 3D-chemical space visualization using our online tools WebDrugCS and WebMolCS. All resources described in this paper are available for public use at www.gdb.unibe.ch.
Lee, HoJoon; Palm, Jennifer; Grimes, Susan M; Ji, Hanlee P
2015-10-27
The Cancer Genome Atlas (TCGA) project has generated genomic data sets covering over 20 malignancies. These data provide valuable insights into the underlying genetic and genomic basis of cancer. However, exploring the relationship among TCGA genomic results and clinical phenotype remains a challenge, particularly for individuals lacking formal bioinformatics training. Overcoming this hurdle is an important step toward the wider clinical translation of cancer genomic/proteomic data and implementation of precision cancer medicine. Several websites such as the cBio portal or University of California Santa Cruz genome browser make TCGA data accessible but lack interactive features for querying clinically relevant phenotypic associations with cancer drivers. To enable exploration of the clinical-genomic driver associations from TCGA data, we developed the Cancer Genome Atlas Clinical Explorer. The Cancer Genome Atlas Clinical Explorer interface provides a straightforward platform to query TCGA data using one of the following methods: (1) searching for clinically relevant genes, micro RNAs, and proteins by name, cancer types, or clinical parameters; (2) searching for genomic/proteomic profile changes by clinical parameters in a cancer type; or (3) testing two-hit hypotheses. SQL queries run in the background and results are displayed on our portal in an easy-to-navigate interface according to user's input. To derive these associations, we relied on elastic-net estimates of optimal multiple linear regularized regression and clinical parameters in the space of multiple genomic/proteomic features provided by TCGA data. Moreover, we identified and ranked gene/micro RNA/protein predictors of each clinical parameter for each cancer. The robustness of the results was estimated by bootstrapping. Overall, we identify associations of potential clinical relevance among genes/micro RNAs/proteins using our statistical analysis from 25 cancer types and 18 clinical parameters that include clinical stage or smoking history. The Cancer Genome Atlas Clinical Explorer enables the cancer research community and others to explore clinically relevant associations inferred from TCGA data. With its accessible web and mobile interface, users can examine queries and test hypothesis regarding genomic/proteomic alterations across a broad spectrum of malignancies.
First generation annotations for the fathead minnow (Pimephales promelas) genome
Ab initio gene prediction and evidence alignment were used to produce the first annotations for the fathead minnow SOAPdenovo genome assembly. Additionally, a genome browser hosted at genome.setac.org provides simplified access to the annotation data in context with fathead minno...
Monfort, Matthias; Furlong, Eileen E M; Girardot, Charles
2017-07-15
Visualization of genomic data is fundamental for gaining insights into genome function. Yet, co-visualization of a large number of datasets remains a challenge in all popular genome browsers and the development of new visualization methods is needed to improve the usability and user experience of genome browsers. We present Dynamix, a JBrowse plugin that enables the parallel inspection of hundreds of genomic datasets. Dynamix takes advantage of a priori knowledge to automatically display data tracks with signal within a genomic region of interest. As the user navigates through the genome, Dynamix automatically updates data tracks and limits all manual operations otherwise needed to adjust the data visible on screen. Dynamix also introduces a new carousel view that optimizes screen utilization by enabling users to independently scroll through groups of tracks. Dynamix is hosted at http://furlonglab.embl.de/Dynamix . charles.girardot@embl.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation.
Bolleman, Jerven T; Mungall, Christopher J; Strozzi, Francesco; Baran, Joachim; Dumontier, Michel; Bonnal, Raoul J P; Buels, Robert; Hoehndorf, Robert; Fujisawa, Takatomo; Katayama, Toshiaki; Cock, Peter J A
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco; ...
2016-06-13
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolleman, Jerven T.; Mungall, Christopher J.; Strozzi, Francesco
Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. In this paper, we have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned “omics” areas. Using the same data formatmore » to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. Our ontology allows users to uniformly describe – and potentially merge – sequence annotations from multiple sources. Finally, data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.« less
Anekthanakul, Krittima; Hongsthong, Apiradee; Senachak, Jittisak; Ruengjitchatchawalya, Marasri
2018-04-20
Bioactive peptides, including biological sources-derived peptides with different biological activities, are protein fragments that influence the functions or conditions of organisms, in particular humans and animals. Conventional methods of identifying bioactive peptides are time-consuming and costly. To quicken the processes, several bioinformatics tools are recently used to facilitate screening of the potential peptides prior their activity assessment in vitro and/or in vivo. In this study, we developed an efficient computational method, SpirPep, which offers many advantages over the currently available tools. The SpirPep web application tool is a one-stop analysis and visualization facility to assist bioactive peptide discovery. The tool is equipped with 15 customized enzymes and 1-3 miscleavage options, which allows in silico digestion of protein sequences encoded by protein-coding genes from single, multiple, or genome-wide scaling, and then directly classifies the peptides by bioactivity using an in-house database that contains bioactive peptides collected from 13 public databases. With this tool, the resulting peptides are categorized by each selected enzyme, and shown in a tabular format where the peptide sequences can be tracked back to their original proteins. The developed tool and webpages are coded in PHP and HTML with CSS/JavaScript. Moreover, the tool allows protein-peptide alignment visualization by Generic Genome Browser (GBrowse) to display the region and details of the proteins and peptides within each parameter, while considering digestion design for the desirable bioactivity. SpirPep is efficient; it takes less than 20 min to digest 3000 proteins (751,860 amino acids) with 15 enzymes and three miscleavages for each enzyme, and only a few seconds for single enzyme digestion. Obviously, the tool identified more bioactive peptides than that of the benchmarked tool; an example of validated pentapeptide (FLPIL) from LC-MS/MS was demonstrated. The web and database server are available at http://spirpepapp.sbi.kmutt.ac.th . SpirPep, a web-based bioactive peptide discovery application, is an in silico-based tool with an overview of the results. The platform is a one-stop analysis and visualization facility; and offers advantages over the currently available tools. This tool may be useful for further bioactivity analysis and the quantitative discovery of desirable peptides.
Ban, Nobuhiko; Takahashi, Fumiaki; Ono, Koji; Hasegawa, Takayuki; Yoshitake, Takayasu; Katsunuma, Yasushi; Sato, Kaoru; Endo, Akira; Kai, Michiaki
2011-07-01
A web-based dose computation system, WAZA-ARI, is being developed for patients undergoing X-ray CT examinations. The system is implemented in Java on a Linux server running Apache Tomcat. Users choose scanning options and input parameters via a web browser over the Internet. Dose coefficients, which were calculated in a Japanese adult male phantom (JM phantom) are called upon user request and are summed over the scan range specified by the user to estimate a normalised dose. Tissue doses are finally computed based on the radiographic exposure (mA s) and the pitch factor. While dose coefficients are currently available only for limited CT scanner models, the system has achieved a high degree of flexibility and scalability without the use of commercial software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macumber, Daniel L; Horowitz, Scott G; Schott, Marjorie
Across most industries, desktop applications are being rapidly migrated to web applications for a variety of reasons. Web applications are inherently cross platform, mobile, and easier to distribute than desktop applications. Fueling this trend are a wide range of free, open source libraries and frameworks that make it incredibly easy to develop powerful web applications. The building energy modeling community is just beginning to pick up on these larger trends, with a small but growing number of building energy modeling applications starting on or moving to the web. This paper presents a new, open source, web based geometry editor formore » Building Energy Modeling (BEM). The editor is written completely in JavaScript and runs in a modern web browser. The editor works on a custom JSON file format and is designed to be integrated into a variety of web and desktop applications. The web based editor is available to use as a standalone web application at: https://nrel.github.io/openstudio-geometry-editor/. An example integration is demonstrated with the OpenStudio desktop application. Finally, the editor can be easily integrated with a wide range of possible building energy modeling web applications.« less
Hay, Elizabeth A; Cowie, Philip; MacKenzie, Alasdair
2017-01-01
There can now be little doubt that the cis-regulatory genome represents the largest information source within the human genome essential for health. In addition to containing up to five times more information than the coding genome, the cis-regulatory genome also acts as a major reservoir of disease-associated polymorphic variation. The cis-regulatory genome, which is comprised of enhancers, silencers, promoters, and insulators, also acts as a major functional target for epigenetic modification including DNA methylation and chromatin modifications. These epigenetic modifications impact the ability of cis-regulatory sequences to maintain tissue-specific and inducible expression of genes that preserve health. There has been limited ability to identify and characterize the functional components of this huge and largely misunderstood part of the human genome that, for decades, was ignored as "Junk" DNA. In an attempt to address this deficit, the current chapter will first describe methods of identifying and characterizing functional elements of the cis-regulatory genome at a genome-wide level using databases such as ENCODE, the UCSC browser, and NCBI. We will then explore the databases on the UCSC genome browser, which provides access to DNA methylation and chromatin modification datasets. Finally, we will describe how we can superimpose the huge volume of study data contained in the NCBI archives onto that contained within the UCSC browser in order to glean relevant in vivo study data for any locus within the genome. An ability to access and utilize these information sources will become essential to informing the future design of experiments and subsequent determination of the role of epigenetics in health and disease and will form a critical step in our development of personalized medicine.
Design and Development of a Web-Based Self-Monitoring System to Support Wellness Coaching.
Zarei, Reza; Kuo, Alex
2017-01-01
We analyzed, designed and deployed a web-based, self-monitoring system to support wellness coaching. A wellness coach can plan for clients' exercise and diet through the system and is able to monitor the changes in body dimensions and body composition that the client reports. The system can also visualize the client's data in form of graphs for both the client and the coach. Both parties can also communicate through the messaging feature embedded in the application. A reminder system is also incorporated into the system and sends reminder messages to the clients when their reporting is due. The web-based self-monitoring application uses Oracle 11g XE as the backend database and Application Express 4.2 as user interface development tool. The system allowed users to access, update and modify data through web browser anytime, anywhere, and on any device.
Pienaar, Rudolph; Rannou, Nicolas; Bernal, Jorge; Hahn, Daniel; Grant, P Ellen
2015-01-01
The utility of web browsers for general purpose computing, long anticipated, is only now coming into fruition. In this paper we present a web-based medical image data and information management software platform called ChRIS ([Boston] Children's Research Integration System). ChRIS' deep functionality allows for easy retrieval of medical image data from resources typically found in hospitals, organizes and presents information in a modern feed-like interface, provides access to a growing library of plugins that process these data - typically on a connected High Performance Compute Cluster, allows for easy data sharing between users and instances of ChRIS and provides powerful 3D visualization and real time collaboration.
Mobile Monitoring Stations and Web Visualization of Biotelemetric System - Guardian II
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej; Janckulik, Dalibor; Motalova, Leona; Kufel, Jan
The main area of interest of our project is to provide solution which can be used in different areas of health care and which will be available through PDAs (Personal Digital Assistants), web browsers or desktop clients. The realized system deals with an ECG sensor connected to mobile equipment, such as PDA/Embedded, based on Microsoft Windows Mobile operating system. The whole system is based on the architecture of .NET Compact Framework, and Microsoft SQL Server. Visualization possibilities of web interface and ECG data are also discussed and final suggestion is made to Microsoft Silverlight solution along with current screenshot representation of implemented solution. The project was successfully tested in real environment in cryogenic room (-136OC).
HopBase: a unified resource for Humulus genomics
Hill, Steven T.; Sudarsanam, Ramcharan
2017-01-01
Abstract Hop (Humulus lupulus L. var lupulus) is a dioecious plant of worldwide significance, used primarily for bittering and flavoring in brewing beer. Studies on the medicinal properties of several unique compounds produced by hop have led to additional interest from pharmacy and healthcare industries as well as livestock production as a natural antibiotic. Genomic research in hop has resulted a published draft genome and transcriptome assemblies. As research into the genomics of hop has gained interest, there is a critical need for centralized online genomic resources. To support the growing research community, we report the development of an online resource "HopBase.org." In addition to providing a gene annotation to the existing Shinsuwase draft genome, HopBase makes available genome assemblies and annotations for both the cultivar “Teamaker” and male hop accession number USDA 21422M. These genome assemblies, gene annotations, along with other common data, coupled with a genome browser and BLAST database enable the hop community to enter the genomic age. The HopBase genomic resource is accessible at http://hopbase.org and http://hopbase.cgrb.oregonstate.edu. PMID:28415075
EPA MED-DULUTH'S ECOTOX AND ECO-SSL WEB APPLICATIONS
The ECOTOX (ECOTOXicology Database) system developed by the USEPA, National Health and Environmental Effects Research Laboratory (NHEERL), Mid-Continent Ecology Division in Duluth, MN (MED-Duluth), provides a web browser search interface for locating aquatic and terrestrial toxic...
Resource Management Scheme Based on Ubiquitous Data Analysis
Lee, Heung Ki; Jung, Jaehee
2014-01-01
Resource management of the main memory and process handler is critical to enhancing the system performance of a web server. Owing to the transaction delay time that affects incoming requests from web clients, web server systems utilize several web processes to anticipate future requests. This procedure is able to decrease the web generation time because there are enough processes to handle the incoming requests from web browsers. However, inefficient process management results in low service quality for the web server system. Proper pregenerated process mechanisms are required for dealing with the clients' requests. Unfortunately, it is difficult to predict how many requests a web server system is going to receive. If a web server system builds too many web processes, it wastes a considerable amount of memory space, and thus performance is reduced. We propose an adaptive web process manager scheme based on the analysis of web log mining. In the proposed scheme, the number of web processes is controlled through prediction of incoming requests, and accordingly, the web process management scheme consumes the least possible web transaction resources. In experiments, real web trace data were used to prove the improved performance of the proposed scheme. PMID:25197692
SeWeR: a customizable and integrated dynamic HTML interface to bioinformatics services.
Basu, M K
2001-06-01
Sequence analysis using Web Resources (SeWeR) is an integrated, Dynamic HTML (DHTML) interface to commonly used bioinformatics services available on the World Wide Web. It is highly customizable, extendable, platform neutral, completely server-independent and can be hosted as a web page as well as being used as stand-alone software running within a web browser.
Learning To Use the World Wide Web. Academic Edition.
ERIC Educational Resources Information Center
Ackerman, Ernest
This book emphasizes how to use Netscape Navigator to access the World Wide Web and associated resources and services in a step-by-step, organized manner. Chapters include -- Chapter 1: Introduction to the World Wide Web and the Internet; Chapter 2: Using a Web Browser; Chapter 3: The Basics of Electronic Mail and Using Netscape Email; Chapter 4:…
HTT-DB: horizontally transferred transposable elements database.
Dotto, Bruno Reis; Carvalho, Evelise Leis; Silva, Alexandre Freitas; Duarte Silva, Luiz Fernando; Pinto, Paulo Marcos; Ortiz, Mauro Freitas; Wallau, Gabriel Luz
2015-09-01
Horizontal transfer of transposable (HTT) elements among eukaryotes was discovered in the mid-1980s. As then, >300 new cases have been described. New findings about HTT are revealing the evolutionary impact of this phenomenon on host genomes. In order to provide an up to date, interactive and expandable database for such events, we developed the HTT-DB database. HTT-DB allows easy access to most of HTT cases reported along with rich information about each case. Moreover, it allows the user to generate tables and graphs based on searches using Transposable elements and/or host species classification and export them in several formats. This database is freely available on the web at http://lpa.saogabriel.unipampa.edu.br:8080/httdatabase. HTT-DB was developed based on Java and MySQL with all major browsers supported. Tools and software packages used are free for personal or non-profit projects. bdotto82@gmail.com or gabriel.wallau@gmail.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia
2009-01-01
StreamStats is a Web-based Geographic Information System (GIS) application that was developed by the U.S. Geological Survey (USGS) in cooperation with Environmental Systems Research Institute, Inc. (ESRI) to provide access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and selected ungaged sites. StreamStats also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that can affect streamflow conditions. This functionality can be accessed through a map-based interface with the user's Web browser or through individual functions requested remotely through other Web applications.
Google Wave: Collaboration Reworked
ERIC Educational Resources Information Center
Rethlefsen, Melissa L.
2010-01-01
Over the past several years, Internet users have become accustomed to Web 2.0 and cloud computing-style applications. It's commonplace and even intuitive to drag and drop gadgets on personalized start pages, to comment on a Facebook post without reloading the page, and to compose and save documents through a web browser. The web paradigm has…
A Web Service and Interface for Remote Electronic Device Characterization
ERIC Educational Resources Information Center
Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.
2011-01-01
A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…
Tsukamoto, Takafumi; Yasunaga, Takuo
2014-11-01
Eos (Extensible object-oriented system) is one of the powerful applications for image processing of electron micrographs. In usual cases, Eos works with only character user interfaces (CUI) under the operating systems (OS) such as OS-X or Linux, not user-friendly. Thus, users of Eos need to be expert at image processing of electron micrographs, and have a little knowledge of computer science, as well. However, all the persons who require Eos does not an expert for CUI. Thus we extended Eos to a web system independent of OS with graphical user interfaces (GUI) by integrating web browser.Advantage to use web browser is not only to extend Eos with GUI, but also extend Eos to work under distributed computational environment. Using Ajax (Asynchronous JavaScript and XML) technology, we implemented more comfortable user-interface on web browser. Eos has more than 400 commands related to image processing for electron microscopy, and the usage of each command is different from each other. Since the beginning of development, Eos has managed their user-interface by using the interface definition file of "OptionControlFile" written in CSV (Comma-Separated Value) format, i.e., Each command has "OptionControlFile", which notes information for interface and its usage generation. Developed GUI system called "Zephyr" (Zone for Easy Processing of HYpermedia Resources) also accessed "OptionControlFIle" and produced a web user-interface automatically, because its mechanism is mature and convenient,The basic actions of client side system was implemented properly and can supply auto-generation of web-form, which has functions of execution, image preview, file-uploading to a web server. Thus the system can execute Eos commands with unique options for each commands, and process image analysis. There remain problems of image file format for visualization and workspace for analysis: The image file format information is useful to check whether the input/output file is correct and we also need to provide common workspace for analysis because the client is physically separated from a server. We solved the file format problem by extension of rules of OptionControlFile of Eos. Furthermore, to solve workspace problems, we have developed two type of system. The first system is to use only local environments. The user runs a web server provided by Eos, access to a web client through a web browser, and manipulate the local files with GUI on the web browser. The second system is employing PIONE (Process-rule for Input/Output Negotiation Environment), which is our developing platform that works under heterogenic distributed environment. The users can put their resources, such as microscopic images, text files and so on, into the server-side environment supported by PIONE, and so experts can write PIONE rule definition, which defines a workflow of image processing. PIONE run each image processing on suitable computers, following the defined rule. PIONE has the ability of interactive manipulation, and user is able to try a command with various setting values. In this situation, we contribute to auto-generation of GUI for a PIONE workflow.As advanced functions, we have developed a module to log user actions. The logs include information such as setting values in image processing, procedure of commands and so on. If we use the logs effectively, we can get a lot of advantages. For example, when an expert may discover some know-how of image processing, other users can also share logs including his know-hows and so we may obtain recommendation workflow of image analysis, if we analyze logs. To implement social platform of image processing for electron microscopists, we have developed system infrastructure, as well. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
WebViz: A web browser based application for collaborative analysis of 3D data
NASA Astrophysics Data System (ADS)
Ruegg, C. S.
2011-12-01
In the age of high speed Internet where people can interact instantly, scientific tools have lacked technology which can incorporate this concept of communication using the web. To solve this issue a web application for geological studies has been created, tentatively titled WebViz. This web application utilizes tools provided by Google Web Toolkit to create an AJAX web application capable of features found in non web based software. Using these tools, a web application can be created to act as piece of software from anywhere in the globe with a reasonably speedy Internet connection. An application of this technology can be seen with data regarding the recent tsunami from the major japan earthquakes. After constructing the appropriate data to fit a computer render software called HVR, WebViz can request images of the tsunami data and display it to anyone who has access to the application. This convenience alone makes WebViz a viable solution, but the option to interact with this data with others around the world causes WebViz to be taken as a serious computational tool. WebViz also can be used on any javascript enabled browser such as those found on modern tablets and smart phones over a fast wireless connection. Due to the fact that WebViz's current state is built using Google Web Toolkit the portability of the application is in it's most efficient form. Though many developers have been involved with the project, each person has contributed to increase the usability and speed of the application. In the project's most recent form a dramatic speed increase has been designed as well as a more efficient user interface. The speed increase has been informally noticed in recent uses of the application in China and Australia with the hosting server being located at the University of Minnesota. The user interface has been improved to not only look better but the functionality has been improved. Major functions of the application are rotating the 3D object using buttons. These buttons have been replaced with a new layout that is easier to understand the function and is also easy to use with mobile devices. With these new changes, WebViz is easier to control and use for general use.
Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial
Miller, Benjamin T.; Singh, Rishi P.; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S.; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R.; Woodcock, H. Lee
2014-01-01
This article describes the development, implementation, and use of web-based “lessons” to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that “point and click” simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988