Maternal perinatal diet induces developmental programming of bone architecture.
Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L
2013-04-01
Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (P<0.05 for both). WBBMC was 12% lower at 14 weeks and 5% lower at 26 weeks, but trabecular bone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (P<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower body fat (%) at 14 weeks and lower serum leptin at 26 weeks vs. N-N (P<0.05 for both). Serum insulin was higher at 14 weeks and lower at 26 weeks in HF-N vs. N-N (P<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 weeks vs. N-N (P<0.05 for both). These data suggest that maternal HF diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.
Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine
2017-12-01
The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.
Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D.; Planer, David; Ben-Dov, Iddo Z.; Meir, Karen; Sosna, Jacob; Lotan, Chaim
2008-01-01
Aims Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Methods and results Sprague–Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks (‘diet group’). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet (‘low-phosphate group’, n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor κB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. Conclusion We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies. PMID:18390899
Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D; Planer, David; Ben-Dov, Iddo Z; Meir, Karen; Sosna, Jacob; Lotan, Chaim
2008-08-01
Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Sprague-Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks ('diet group'). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet ('low-phosphate group', n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor kappaB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies.
Effect of diet on oxidation of 17 beta-estradiol in vivo.
Musey, P I; Collins, D C; Bradlow, H L; Gould, K G; Preedy, J R
1987-10-01
The effect of a high fat, low carbohydrate, low protein diet on the in vivo oxidation of 17 beta-estradiol was studied using radiometric methods. Five male chimpanzees were fed a normal (13%) fat diet or a high (65%) fat diet for 8 weeks. After a 4-week rest period, the animals were fed the alternative diet. The mean percent oxidation of 16 alpha-[3H]estradiol-17 beta 24 h after injection was 3.8 +/- 1.3% (+/- SD) on the normal diet vs. 18.4 +/- 4.7% on the high fat diet (P less than 0.01). In contrast, the mean percent oxidation of 2-[3H]estradiol 24 h after injection was 31.6 +/- 3.8% (+/- SD) on the normal diet vs. 20.0 +/- 3.5% on the high fat diet (P less than 0.05). These results suggest that the oxidation of 17 beta-estradiol to estriols relative to that to catechol estrogens is increased by a high fat diet.
BLOOD PLASMA PROTEIN REGENERATION AS INFLUENCED BY FASTING, INFECTION, AND DIET FACTORS
Madden, S. C.; George, W. E.; Waraich, G. S.; Whipple, H.
1938-01-01
When blood plasma proteins are depleted by bleeding, with return of the washed red cells (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a uniform plasma protein production on a basal low protein diet. These dogs are clinically normal with normal appetite, no anemia and normal nitrogen metabolism. These dogs become test subjects by which various factors relating to plasma protein production may be tested. The normal dog (10 to 13 kg.) has a substantial reserve store of plasma protein building material (10 to 60+ gm.) which requires 2 to 6 weeks plasmapheresis for its complete removal. After this period the dog will produce uniform amounts of plasma protein each week on a fixed basal diet. Dogs previously depleted by plasmapheresis and then permitted to return to normal during a long rest period of many weeks, may show much higher reserve stores of protein building material in subsequent periods of plasma depletion (see Table 1). Under uniform conditions of low protein diet intake when plasmapheresis is discontinued for 2 weeks the plasma protein building material is stored quantitatively in the body and can subsequently be recovered (Table 4) in the next 2 to 3 weeks of plasmapheresis. Given complete depletion of plasma protein building reserve stores the dog can produce very little (2± gm. per week) plasma protein on a protein-free diet. This may be related to the wear and tear of body protein and conservation of these split products. Abscesses produced in a depleted dog during a fast may cause some excess production of plasma protein which is probably related to products of tissue destruction conserved for protein anabolism. Gelatin alone added to the basal diet causes very little plasma protein production but when supplemented by tryptophane gives a large protein output, while tryptophane alone is inert. PMID:19870748
2013-01-01
Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning capacity unlike dietary control. PMID:24098984
Lee, Hye-Sung; Choi, Jun-Hyeok; Kim, Young-Eon; Kim, In-Ho; Kim, Byoung-Mok; Lee, Chang-Ho
2013-09-01
The purpose of this study was to investigate the effects of the ethanol extract of Cynanchum wilfordii (ECW) on the blood lipid profile of hypercholesterolemic rats. Thirty 7-week-old male Sprague-Dawley rats were allowed free access to either a normal diet (AIN-93 diet), or 1% high-cholesterol diet with or without 0.5% or 1% ECW for 5 weeks. After sacrifice, the rat serum lipid profile was analyzed. The diets containing ECW decreased body weight gains compared to the normal diet. Serum HDL-cholesterol levels of ECW-fed groups were significantly increased in the hypercholesterolemic groups and normal groups (P<0.05). When 1% ECW was fed to the normal group, total cholesterol level was increased. Moreover, treatment of ECW in hypercholesterolemic groups yielded a dose-dependent and highly significant decrease in the atherogenic index as compared to the control. These results suggest that intake of Cynanchum wilfordii may help reduce the risks of hypercholesterolemia by increasing blood HDL-cholesterol and lowering the atherogenic index.
Itagaki, Hiroko; Shimizu, Kazuhiko; Morikawa, Shunichi; Ogawa, Kenji; Ezaki, Taichi
2013-01-01
Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), appears to be increasingly common worldwide. Its histopathology and the effects of nutrition on liver function have not been fully determined. To elucidate the cellular mechanisms of NAFLD induced by a methionine-choline-deficient (MCD) diet in mice. Particular focus was placed on the role of phagocytic cells. Male C57BL/6 mice were fed an MCD diet for 30 weeks. A recovery model was also established wherein a normal control diet was provided for 2 weeks after a period of 8, 16, or 30 weeks. Mice fed the MCD diet for ≥ 2 weeks exhibited severe steatohepatitis with elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Steatohepatitis was accompanied by the infiltration of CD68-positive macrophages (Kupffer cells). The severity of steatohepatitis increased in the first 16 weeks but was seen to lessen by week 30. Fibrosis began to develop at 10 weeks and continued thereafter. Steatohepatitis and elevated serum hepatic enzyme concentrations returned to normal levels after switching the diet back to the control within the first 16 weeks, but fibrosis and CD68-positive macrophages remained. The histopathological changes and irreversible fibrosis seen in this model were caused by prolonged feeding of an MCD diet. These results were accompanied by changes in the activity of CD68-positive cells with temporary elevation of CCL-2, MMP-13, and MMP-9 levels, all of which may trigger early steatohepatitis and late fibrosis through phagocytosis-associated MMP induction.
Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA
2013-01-01
Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668
Lee, Hye-Sung; Choi, Jun-Hyeok; Kim, Young-Eon; Kim, In-Ho; Kim, Byoung-Mok; Lee, Chang-Ho
2013-01-01
The purpose of this study was to investigate the effects of the ethanol extract of Cynanchum wilfordii (ECW) on the blood lipid profile of hypercholesterolemic rats. Thirty 7-week-old male Sprague-Dawley rats were allowed free access to either a normal diet (AIN-93 diet), or 1% high-cholesterol diet with or without 0.5% or 1% ECW for 5 weeks. After sacrifice, the rat serum lipid profile was analyzed. The diets containing ECW decreased body weight gains compared to the normal diet. Serum HDL-cholesterol levels of ECW-fed groups were significantly increased in the hypercholesterolemic groups and normal groups (P<0.05). When 1% ECW was fed to the normal group, total cholesterol level was increased. Moreover, treatment of ECW in hypercholesterolemic groups yielded a dose-dependent and highly significant decrease in the atherogenic index as compared to the control. These results suggest that intake of Cynanchum wilfordii may help reduce the risks of hypercholesterolemia by increasing blood HDL-cholesterol and lowering the atherogenic index. PMID:24471126
Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Sokuza, Yui; Mori, Chiharu; Nishikawa, Tomoki; Honoki, Kanya; Tsujiuchi, Toshifumi
2007-09-01
The authors investigated the DNA methylation patterns of the E-cadherin, Connexin 26 (Cx26), Rassf1a and c-fos genes in the early phase of rat hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined (CDAA) diet. Six-week-old F344 male rats were continuously fed with the CDAA diet, and three animals were then killed at each of 4 and 8 days and 3 weeks. Genomic DNA was extracted from livers for assessment of methylation status in the 5' upstream regions of E-cadherin, Cx26, Rassf1a and c-fos genes by bisulfite sequencing, compared with normal livers. The livers of rats fed the CDAA diet for 4 and 8 days and 3 weeks were methylated in E-cadherin, Cx26 and Rassf1a genes, while normal livers were all unmethylated. In contrast, normal livers were highly methylated in c-fos gene. Although the livers at 4 days were weakly methylated, those at 8 days and 3 weeks were markedly unmethylated. Methylation patterns of CpG sites in E-cadherin, Cx26 and Rassf1a were sparse and the methylation was not associated with gene repression. These results indicate that gene-specific DNA methylation patterns were found in livers of rats after short-term feeding of the CDAA diet, suggesting gene-specific hypermethylation might be involved in the early phase of rat hepatocarcinogenesis induced by the CDAA diet.
Su, Zhi-Wen; Liao, Jia-Yi; Zhang, Hui; Zhang, Tao; Wu, Fan; Tian, Xiao-Hua; Zhang, Fei-Tong; Sun, Wei-Wen; Cui, Qi-Liang
2015-06-22
The present study investigated whether a high-protein diet affects spatial learning and memory in premature rats via modulation of mammalian target of rapamycin (mTOR) signaling. Pre- and full-term Sprague-Dawley pups were fed a normal (18% protein) or high-protein (30% protein) diet (HPD) for 6 or 8 weeks after weaning. Spatial learning and memory were tested in the Morris water maze at week 6 and 8. The activation of mTOR signaling pathway components was evaluated by western blotting. Spatial memory performance of premature rats consuming a normal and HPD was lower than that of full-term rats on the same diet at 6 weeks, and was associated with lower levels of ribosomal protein S6 kinase p70 subtype (p70S6K) and initiation factor 4E-binding protein 1 (4EBP1) phosphorylation in the hippocampus. Spatial memory was improved in 8-week-old premature rats on an HPD as compared to those on a normal diet. Premature rats on an HPD had p70S6K and 4EBP1 phosphorylation levels in the hippocampus that were comparable to those of full-term rats on an HPD. Long-term consumption of a protein-rich diet can restore the impairment in learning and memory in pre-term rats via upregulation of mTOR/p70S6K signaling. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, H; Jiang, H W; Ding, Q
2015-04-01
We aimed to investigate the role of IGF-1 related pathway in high-fat diet (HFD) promotion of TRAMP mouse PCa progression. TRAMP mice were randomly divided into two groups: HFD group and normal diet group. TRAMP mice of both groups were sacrificed and sampled on the 20th, 24th and 28th week respectively. Serum levels of insulin, IGF-1 and IGF-2 were tested by ELISA. Prostate tissue of TRAMP mice was used for both HE staining and immunohistochemical staining of IGF-1 related pathway proteins, including IGF-1Rα, IGF -1Rβ, IGFBPs and AKT. The mortality of TRAMP mice from HFD group was significantly higher than that of normal diet group (23.81% and 7.14%, p=.035). The tumor incidence of HFD TRAMP mice at 20(th) week was significantly higher than normal diet group (78.57% and 35.71%, p=.022). Serum IGF-1 level of HFD TRAMP mice was significantly higher than that of normal diet TRAMP mice. Serum IGF-1 level tended to increase with HFD TRAMP mice's age. HFD TRAMP mice had higher positive staining rate of IGF-1Rα, IGF-1Rβ, IGFBP3 and Akt than normal diet TRAMP mice. IGF-1 related pathway played an important role in high-fat diet promotion of TRAMP mouse PCa development and progression. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A
2015-10-01
Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p < 0.0001) and homeostatic model assessment of insulin resistance (HOMA-IR; 846.5 ± 1723.3%, p < 0.01). Mediation analyses showed that increases in chemerin explained a substantial amount of the diet-induced increases in insulin and HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.
Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki
2014-01-01
Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.
Iishi, H; Tatsuta, M; Baba, M; Hirasawa, R; Sakai, N; Yano, H; Uehara, H; Nakaizumi, A
1999-07-01
Sodium chloride (NaCl) initiates and promotes experimental carcinogenesis in rats. We recently found that a high-protein diet attenuates NaCl-enhanced gastric carcinogenesis in Wistar rats. To investigate the effect of a purified low-protein diet on NaCl-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Wistar rats, rats were fed a purified diet with an equalized caloric content containing 1% or 2% NaCl and 25% casein (normal-protein diet) or 10% casein (low-protein diet) after oral treatment with MNNG for 25 weeks. In week 52, neither 1% nor 2% NaCl had a significant effect on gastric carcinogenesis in rats fed a normal-protein diet. However, oral administration of 2%, but not 1%, NaCl significantly increased the incidence of gastric cancers in rats fed a low-protein diet. Oral administration of 2% NaCl also significantly increased the bromodeoxyuridine (BrdU)-labeling index and the ornithine decarboxylase (ODC) activity and decreased apoptosis of gastric cancers in rats fed a low-protein diet. However, 2% NaCl had no significant effect on these three parameters in rats fed a normal-protein diet. These findings indicate that a low-protein diet enhances the effect of NaCl in gastric carcinogenesis and that this enhancement may be mediated by increased cell proliferation and reduced apoptosis of gastric cancers.
Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats.
Sato, Takuya; Shinohara, Yasutomo; Kaneko, Daisuke; Nishimura, Ikuko; Matsuyama, Asahi
2010-12-01
Wheel running by rodents is thought to reflect voluntary exercise in humans. The present study examined the effect of fermented soymilk (FSM) on voluntary wheel running in rats. FSM was prepared from soymilk (SM) using the bacteria Leuconostoc pseudomesenteroides. The rats were fed a normal diet for 3 weeks followed by a 3-week administration of diet containing FSM or SM (5% w/w), and then the diets were switched back to a normal diet for 3 weeks. The voluntary wheel running activity was increased by FSM administration, although no changes were observed by SM administration. This effect was observed 2 weeks after FSM administration and lasted 1 week after deprivation of FSM. Then we evaluated the effect of FSM on sexual behavior in male rats. FSM administration for 10 days significantly increased the number of mounts. The protein expression of tyrosine hydroxylase (TH) increased in the hippocampus by FSM administration and it is suggested that FSM may change norepinephrine or dopamine signaling in the brain. Our study provides the first evidence that FSM increases voluntary wheel running activity and sexual behavior and suggests that TH may be involved in these effects.
Lomer, Miranda C E; Grainger, Stephen L; Ede, Roland; Catterall, Adrian P; Greenfield, Simon M; Cowan, Russell E; Vicary, F Robin; Jenkins, Anthony P; Fidler, Helen; Harvey, Rory S; Ellis, Richard; McNair, Alistair; Ainley, Colin C; Thompson, Richard P H; Powell, Jonathan J
2005-03-01
Dietary microparticles, which are bacteria-sized and non-biological, found in the modern Western diet, have been implicated in both the aetiology and pathogenesis of Crohn's disease. Following on from the findings of a previous pilot study, we aimed to confirm whether a reduction in the amount of dietary microparticles facilitates induction of remission in patients with active Crohn's disease, in a single-blind, randomized, multi-centre, placebo controlled trial. Eighty-three patients with active Crohn's disease were randomly allocated in a 2 x 2 factorial design to a diet low or normal in microparticles and/or calcium for 16 weeks. All patients received a reducing dose of prednisolone for 6 weeks. Outcome measures were Crohn's disease activity index, Van Hees index, quality of life and a series of objective measures of inflammation including erythrocyte sedimentation rate, C-reactive protein, intestinal permeability and faecal calprotectin. After 16 weeks patients returned to their normal diet and were followed up for a further 36 weeks. Dietary manipulation provided no added effect to corticosteroid treatment on any of the outcome measures during the dietary trial (16 weeks) or follow-up (to 1 year); e.g., for logistic regression of Crohn's disease activity index based rates of remission (P=0.1) and clinical response (P=0.8), in normal versus low microparticle groups. Our adequately powered and carefully controlled dietary trial found no evidence that reducing microparticle intake aids remission in active Crohn's disease.
Lloyd, Jesse W.; Zerfass, Kristy M.; Heckstall, Ebony M.; Evans, Kristin A.
2015-01-01
Objectives: Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. Methods: We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Results: Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p < 0.0001) and homeostatic model assessment of insulin resistance (HOMA-IR; 846.5 ± 1723.3%, p < 0.01). Mediation analyses showed that increases in chemerin explained a substantial amount of the diet-induced increases in insulin and HOMA-IR. Conclusion: Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin. PMID:26445641
Kim, Yoona; Keogh, Jennifer B; Clifton, Peter M
2016-10-30
Epidemiological studies suggest that a diet high in processed meat, with a high glycemic index is associated with an increased risk of type 2 diabetes. It is not clear if this is due to altered insulin sensitivity or an enhanced postprandial glucose. We aimed to compare the acute metabolic response of two different types of meals after ingestion of the matching diet for four weeks. The study was a randomized, crossover acute meal study. Volunteers consumed either a red meat/refined grain meal or a dairy/chicken/nuts/wholegrain meal after four weeks of the matching diet. After a three-week washout period and four weeks of the alternate diet, they consumed the matching meal. The diets differed with respect to both protein and carbohydrate sources. Blood samples were taken for 180 min for the measurement of glucose, insulin, C-peptide and triglyceride. Fifty-one participants (age: 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m², 17 with normal and 34 with impaired glucose tolerance) completed two meal tests. The area under the curve ( p < 0.001) and incremental area under the curve ( p = 0.001) for insulin was significantly higher after the red meat/refined grain diet than after the dairy/chicken/nuts/whole grain diet. There was an interaction between meal and glucose tolerance group ( p < 0.05) in the area under the curve (AUC) and the incremental area under the curve (iAUC) of glucose; the red meat/refined grain diet increased glucose relative to the dairy/chicken/nuts/whole grain diet only in the normal group (+2.5 mmol/L/3 h). The red meat/refined grain diet increased glucose and insulin responses compared with the dairy/chicken/nuts/whole grain diet. This meal pattern would increase pancreatic stress long term and may account for the increased risk of type 2 diabetes with this diet.
Antonio, Jose; Ellerbroek, Anya; Silver, Tobin; Vargas, Leonel; Peacock, Corey
2016-01-01
Eight weeks of a high protein diet (>3 g/kg/day) coupled with a periodized heavy resistance training program has been shown to positively affect body composition with no deleterious effects on health. Using a randomized, crossover design, resistance-trained male subjects underwent a 16-week intervention (i.e., two 8-week periods) in which they consumed either their normal (i.e., habitual) or a higher protein diet (>3 g/kg/day). Thus, the purpose of this study was to ascertain if significantly increasing protein intake would affect clinical markers of health (i.e., lipids, kidney function, etc.) as well as performance and body composition in young males with extensive resistance training experience. Twelve healthy resistance-trained men volunteered for this study (mean ± SD: age 25.9 ± 3.7 years; height 178.0 ± 8.5 cm; years of resistance training experience 7.6 ± 3.6) with 11 subjects completing most of the assessments. In a randomized crossover trial, subjects were tested at baseline and after two 8-week treatment periods (i.e., habitual [normal] diet and high protein diet) for body composition, measures of health (i.e., blood lipids, comprehensive metabolic panel) and performance. Each subject maintained a food diary for the 16-week treatment period (i.e., 8 weeks on their normal or habitual diet and 8 weeks on a high protein diet). Each subject provided a food diary of two weekdays and one weekend day per week. In addition, subjects kept a diary of their training regimen that was used to calculate total work performed. During the normal and high protein phase of the treatment period, subjects consumed 2.6 ± 0.8 and 3.3 ± 0.8 g/kg/day of dietary protein, respectively. The mean protein intake over the 4-month period was 2.9 ± 0.9 g/kg/day. The high protein group consumed significantly more calories and protein (p < 0.05) than the normal protein group. There were no differences in dietary intake between the groups for any other measure. Moreover, there were no significant changes in body composition or markers of health in either group. There were no side effects (i.e., blood lipids, glucose, renal, kidney function etc.) regarding high protein consumption. In resistance-trained young men who do not significantly alter their training regimen, consuming a high protein diet (2.6 to 3.3 g/kg/day) over a 4-month period has no effect on blood lipids or markers of renal and hepatic function. Nor were there any changes in performance or body composition. This is the first crossover trial using resistance-trained subjects in which the elevation of protein intake to over four times the recommended dietary allowance has shown no harmful effects.
Fujita, Yuko; Goto, Shota; Ichikawa, Maika; Hamaguchi, Ayako; Maki, Kenshi
2016-12-01
We examined the effects of a low-calcium diet and altered diet hardness on bone architecture and metabolism in the maxilla and mandible. Male rats (n=48, 3 weeks old) were divided into six groups. In total, 24 rats were given a normal-calcium diet and the others were given a low-calcium diet. Each group was then divided into three subgroups, which were fed a 'hard̕ diet for 8 weeks, a 'soft̕ die for 8 weeks, or switched from the soft diet after 4 weeks to the hard diet for 4 weeks. The bone architecture was analyzed using cephalometry and micro-computed tomography, in addition, the bone metabolism was analyzed using serum bone markers and bone histomorphometry in the maxilla and mandible. Moreover, the bone formation patterns were evaluated using histopathologically in the midpalatal suture. The low-calcium diet affected bone architecture by increasing bone turnover and the soft diet affected bone architecture mainly by increasing bone resorption. The soft diet changed the chondrocyte cell layers into fibrous connective tissues in the midpalatal suture. At 4 weeks after the return to a hard diet from a soft diet, recovery of the deterioration in bone architectures was seen in the maxilla and mandible. We demonstrated that mastication with a hard diet is effective for recovering the collapsed equilibrium of jaw bone turnover and the deteriorating jaw bone architectures due to the poor masticatory function during the growing period. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi
2014-05-01
Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.
[Formula diets as baseline therapy for type 2 diabetes].
Martin, S; Kempf, K
2014-05-01
Case 1: 59-year-old man with newly diagnosed type 2 diabetes mellitus. Case 2: 69-year-old woman with poorly controlled type 2 diabetes mellitus. Case 1: BMI 36,8 kg/m2. Biochemical evaluation were normal except elevated transaminases. Case 2: BMI 37,0 kg/m2. Abdominal ultrasound showed a fatty liver. THERAPY AND FOLLOW UP: Both patients underwent a 12-week interven tion with a formula diet. In the first week the three principle meals were replaced by the formular diet. The three following weeks the patients received 2 meals of formular diet and a low-carb lunch. In the last 8 weeks only the dinner was replaced by the formular diet. In both patients HbA1c and body weight improved after 3, 6 and 12 months. Using formula diets a fast weight loss and improvement of metabolic control can be achieved. Formula diets can be used as baseline therapy for newly diagnosed type 2 diabetes as well as to regain treatability in case of poorly controlled type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.
Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2018-05-01
Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.
Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria
2013-01-01
Background Secondary hyperoxaluria either based on increased intestinal absorption of oxalate (enteric), or high oxalate intake (dietary), is a major risk factor of calcium oxalate urolithiasis. Oxalate-degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Methods Twenty healthy subjects were studied initially while consuming a diet normal in oxalate. Study participants were then placed on a controlled oxalate-rich diet for a period of 6 weeks. Starting with week 2 of the oxalate-rich diet, participants received 2.6 g/day of a lactic acid bacteria preparation for 5 weeks. Finally, subjects were examined 4 weeks after treatment while consuming again a normal-oxalate diet. Participants provided weekly 24-hour urine specimens. Analyses of blood samples were performed before and at the end of treatment. Results Urinary oxalate excretion increased significantly from 0.354 ± 0.097 at baseline to 0.542 ± 0.163 mmol/24 h under the oxalate-rich diet and remained elevated until the end of treatment, as did relative supersaturation of calcium oxalate. Plasma oxalate concentration was significantly higher after 5 weeks of treatment compared to baseline. Four weeks after treatment, urinary oxalate excretion and relative supersaturation of calcium oxalate fell to reach initial values. Conclusions Persistent dietary hyperoxaluria and increased plasma oxalate concentration can already be induced in healthy subjects without disorders of oxalate metabolism. The study preparation neither reduced urinary oxalate excretion nor plasma oxalate concentration. The preparation may be altered to select for lactic acid bacteria strains with the highest oxalate-degrading activity. PMID:24330782
Agardh, Carl-David; Ahrén, Bo
2012-03-01
Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.
The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice.
Campbell, Sara C; Wisniewski, Paul J; Noji, Michael; McGuinness, Lora R; Häggblom, Max M; Lightfoot, Stanley A; Joseph, Laurie B; Kerkhof, Lee J
2016-01-01
The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.
Boots, C.E.; Boudoures, A.; Zhang, W.; Drury, A.; Moley, K.H.
2016-01-01
STUDY QUESTION Does supplementation with co-enzyme Q10 (CoQ10) improve the oocyte mitochondrial abnormalities associated with obesity in mice? SUMMARY ANSWER In an obese mouse model, CoQ10 improves the mitochondrial function of oocytes. WHAT IS KNOWN ALREADY Obesity impairs oocyte quality. Oocytes from mice fed a high-fat/high-sugar (HF/HS) diet have abnormalities in mitochondrial distribution and function and in meiotic progression. STUDY DESIGN, SIZE, DURATION Mice were randomly assigned to a normal, chow diet or an isocaloric HF/HS diet for 12 weeks. After 6 weeks on the diet, half of the mice receiving a normal diet and half of the mice receiving a HF/HS diet were randomly assigned to receive CoQ10 supplementation injections for the remaining 6 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Dietary intervention was initiated on C57Bl6 female mice at 4 weeks of age, CoQ10 versus vehicle injections were assigned at 10 weeks, and assays were conducted at 16 weeks of age. Mice were super-ovulated, and oocytes were collected and stained to assess mitochondrial distribution, quantify reactive oxygen species (ROS), assess meiotic spindle formation, and measure metabolites. In vitro fertilization was performed, and blastocyst embryos were transferred into control mice. Oocyte number, fertilization rate, blastulation rate and implantation rate were compared between the four cohorts. Bivariate statistics were performed appropriately. MAIN RESULTS AND THE ROLE OF CHANCE HF/HS mice weighed significantly more than normal diet mice (29 versus 22 g, P< 0.001). CoQ10 supplementation did not influence weight. Levels of ATP, citrate, and phosphocreatine were lower and ROS levels were higher in HF/HS mice than in controls (P< 0.001). CoQ10 supplementation significantly increased the levels of metabolites and decreased ROS levels in oocytes from normal diet mice but not in oocytes from HF/HS mice. However, CoQ10 completely prevented the mitochondrial distribution abnormalities observed in the HF/HS mice. Overall, CoQ10 supplementation significantly increased the percentage of normal spindle and chromosome alignment (92.3 versus 80.2%, P= 0.039). In the sub-analysis by diet, the difference did not reach statistical significance. When undergoing IVF, there were no statistically significant differences in the number of mature oocytes, the fertilization rate, blastocyst formation rates, implantation rates, resorption rates or litter size between HF/HS mice receiving CoQ10 or vehicle injections. LIMITATIONS, REASONS FOR CAUTION Experiments were limited to one species and strain of mice. The majority of experiments were performed after ovulation induction, which may not represent natural cycle fertility. WIDER IMPLICATIONS OF THE FINDINGS Improvement in oocyte mitochondrial distribution and function of normal, chow-fed mice and HF/HS-fed mice demonstrates the importance of CoQ10 and the efficiency of the mitochondrial respiratory chain in oocyte competence. Clinical studies are now needed to evaluate the therapeutic potential of CoQ10 in women's reproductive health. STUDY FUNDING/COMPETING INTEREST(S) C.E.B. received support from the National Research Training Program in Reproductive Medicine sponsored by the National Institute of Health (T32 HD040135-13) and the Scientific Advisory Board of Vivere Health. K.H.M received support from the American Diabetes Association and the National Institute of Health (R01 HD083895). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER This study is not a clinical trial. PMID:27432748
Meibomian Gland Dysfunction Model in Hairless Mice Fed a Special Diet With Limited Lipid Content.
Miyake, Hideki; Oda, Tomoko; Katsuta, Osamu; Seno, Masaharu; Nakamura, Masatsugu
2016-06-01
A novel meibomian gland dysfunction (MGD) model was developed to facilitate understanding of the pathophysiology of MGD and to evaluate treatment with azithromycin ophthalmic solution (azithromycin). MGD was induced in HR-1 hairless mice by feeding them a special diet with limited lipid content (HR-AD). Male HR-1 hairless mice were fed an HR-AD diet for 16 weeks. Development of MGD was assessed by histopathology at 4-week intervals. The lid margin was observed by slit-lamp examination. After cessation of the HR-AD diet, the mice were fed a normal diet to restore normal eye conditions. Expression of cytokeratin 6 was determined by immunostaining. We evaluated the effects of topically applied azithromycin on the plugged orifice in this model. After mice were fed the HR-AD diet, histopathology analysis showed hyperkeratinization of the ductal epithelium in the meibomian gland. Ductal hyperkeratinization resulted in the loss of acini, followed by atrophy of the gland. Slit-lamp examination revealed a markedly plugged orifice, telangiectasia, and a toothpaste-like meibum compared with that of a normal eyelid. Cessation of feeding with HR-AD ameliorated both the MGD signs and the expression of cytokeratin 6, restoring the tissue to a histologically normal state. Azithromycin treatment significantly decreased the number of plugged orifices and ameliorated atrophy, as revealed by histopathologic analysis. We developed a novel model that mimics human MGD signs in HR-1 hairless mice fed an HR-AD diet. Azithromycin treatment led to therapeutic improvement in this model. This MGD model could be useful for the evaluation of drug candidates for MGD.
Winzell, Maria Sörhede; Magnusson, Caroline; Ahrén, Bo
2007-01-01
The high fat-fed mouse is an experimental model for studies of islet dysfunction as a mechanism for glucose intolerance and for evaluation of therapeutic targets. This model is, however, dynamic with a temporal and dietary fat content-dependent impact on islet function and glucose tolerance, the details of which are unknown. This study therefore examined the time course of changes in the insulin response to intravenous glucose (1 g/kg) in relation to glucose tolerance in female mice after 1, 3, 8, or 16 weeks of feeding with diets containing 11% fat (normal diet [ND]), 30% fat (medium-fat diet [MFD]), or 58% fat (high-fat diet [HFD]; by energy). High-fat diet increased body weight and body fat content, whereas MFD did not. The insulin response (postglucose suprabasal mean 1- and 5-minute insulin) was impaired after 1 week on MFD (481+/- 33 pmol/L) or HFD (223 +/- 31 pmol/L) compared with ND (713 +/- 46 pmol/L, both P < .001). This was accompanied by impaired glucose elimination compared with ND (both P < .001). Over the 16-week study period, the insulin response adaptively increased in the groups fed with HFD and MFD, to be not significantly different from ND after 16 weeks. This compensation normalized glucose tolerance in MFD, whereas the glucose tolerance was still below normal in HFD. Insulin clearance, as judged by elimination of intravenous human insulin, was not altered in HFD, suggesting that the observed changes in insulin responses to glucose are due to changes in insulin secretion rather than to changes in insulin clearance. We conclude that time- and dietary fat-dependent dynamic adaptive islet compensation evolves after introducing HFD in mice and that MFD-fed mice is a novel nonobese model of glucose intolerance.
Kim, Misung; Na, Woori; Sohn, Cheongmin
2013-09-01
Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet group or a 45% kcal high-fat diet group, with or without 200 mg/1000 g vitamin K1 (Normal diet + K1, high-fat diet + K1) and 200 mg/1000 g vitamin K2 (Normal diet + K2, high-fat diet + K2) for 12 weeks. Serum levels of osteocalcin were higher in the high-fat diet + K2 group than in the high-fat diet group. Serum OPG level of the high-fat diet group, high-fat diet + K1 group, and high-fat diet + K2 group was 2.31 ± 0.31 ng/ml, 2.35 ± 0.12 ng/ml, and 2.90 ± 0.11 ng/ml, respectively. Serum level of RANKL in the high-fat diet group was significantly higher than that in the high-fat diet + K1 group and high-fat diet + K2 group (p<0.05). Vitamin K supplementation seems to tend to prevent bone loss in high-fat diet induced obese state. These findings suggest that vitamin K supplementation reversed the high fat diet induced bone deterioration by modulating osteoblast and osteoclast activities and prevent bone loss in a high-fat diet-induced obese mice.
Wells, Amanda M.; Haub, Mark D.; Fluckey, James; Williams, D. Keith; Chernoff, Ronni; Campbell, Wayne W.
2008-01-01
Objective To test the hypothesis that older men who consumed a vegetarian (lacto-ovo) diet would develop a lower iron status compared with older men who consumed a beef-containing diet during a period of resistive training (RT). Design Experimental, repeated measures study. Subjects Twenty-one healthy men aged 59 to 78 years, with a BMI range of 24 to 33 kg/m2, completed the study. Intervention All men consumed a vegetarian diet for 2 weeks (baseline). After this, the men were randomly assigned to one of two dietary groups. Eleven men consumed a beef-containing diet, and 10 men continued to consume a vegetarian diet for 12 weeks. During this time all subjects participated in RT three days per week, designated as RT1 to RT12. Main outcome measures Serum ferritin and serum iron concentrations, transferrin saturation, transferrin receptor, total iron binding capacity, and selected hematological variables, as well as selected nutrient intakes and estimated iron bioavailability from three-day diet records, were determined at baseline, RT5, and RT12. Statistical analyses A general linear model repeated-measures ANOVA was used to examine the effects of group, time, and group×time interactions for iron status and dietary data. Results Total iron intake was not different between the two groups; however, the beef group had a three to four times greater intake of bioavailable iron (P<.01) than the vegetarian group. Serum iron, total iron binding capacity, transferrin saturation, and transferrin receptor were not significantly different between the beef and vegetarian groups, or changed over time with RT. Serum ferritin decreased over time in both the beef and vegetarian groups during RT (P<.01). Re-introduction of beef into the diets of the beef group increased hemoglobin concentration and hematocrit compared with the vegetarian group during the 12 weeks of RT (group×time, P<.05). These changes were within clinically normal limits. Applications/Conclusions Older men who consume a beef-containing, higher-bioavailable-iron diet, compared with a vegetarian, lower-bioavailable-iron diet, have an increased hematological profile during a 12-week period of RT. Older men who consume either a beef-containing or a vegetarian diet maintain a hematological profile within clinically normal limits during 12 weeks of RT. PMID:12728219
Temporal microbiota changes of high-protein diet intake in a rat model.
Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Zhu, Weiyun
2017-10-01
Alterations of specific microbes serve as important indicators that link gut health with specific diet intake. Although a six-week high-protein diet (45% protein) upregulates the pro-inflammatory response and oxidative stress in colon of rats, the dynamic alteration of gut microbiota remains unclear. To dissect temporal changes of microbiota, dynamic analyses of fecal microbiota were conducted using a rat model. Adult rats were fed a normal-protein diet or an HPD for 6 weeks, and feces collected at different weeks were used for microbiota and metabolite analysis. The structural alteration of fecal microbiota was observed after 4 weeks, especially for the decreased appearance of bands related to Akkermansia species. HPD increased numbers of Escherichia coli while decreased Akkermansia muciniphila, Bifidobacterium, Prevotella, Ruminococcus bromii, and Roseburia/Eubacterium rectale (P < 0.05), compared to the normal-protein diet. HPD also decreased the copies of genes encoding butyryl-CoA:acetate CoA-transferase and Prevotella-associated methylmalonyl-CoA decarboxylase α-subunit (P < 0.05). The concentrations of acetate, propionate, and butyrate were decreased by HPD (P < 0.05). Additionally, HPD tended to decrease (P = 0.057) the concentration of IgG in the colonic lumen, which was positively correlated with fecal butyrate at week 6 (P < 0.05). Collectively, this study found the temporal alteration of fecal microbiota related to the decreased numbers and activity of propionate- and butyrate-producing bacteria in feces after the HPD. These findings may provide important reference for linking changes of specific fecal microbes with gut health under high-protein diet. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Yoona; Keogh, Jennifer B.; Clifton, Peter M.
2016-01-01
Epidemiological studies suggest that a diet high in processed meat, with a high glycemic index is associated with an increased risk of type 2 diabetes. It is not clear if this is due to altered insulin sensitivity or an enhanced postprandial glucose. We aimed to compare the acute metabolic response of two different types of meals after ingestion of the matching diet for four weeks. The study was a randomized, crossover acute meal study. Volunteers consumed either a red meat/refined grain meal or a dairy/chicken/nuts/wholegrain meal after four weeks of the matching diet. After a three-week washout period and four weeks of the alternate diet, they consumed the matching meal. The diets differed with respect to both protein and carbohydrate sources. Blood samples were taken for 180 min for the measurement of glucose, insulin, C-peptide and triglyceride. Fifty-one participants (age: 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m2, 17 with normal and 34 with impaired glucose tolerance) completed two meal tests. The area under the curve (p < 0.001) and incremental area under the curve (p = 0.001) for insulin was significantly higher after the red meat/refined grain diet than after the dairy/chicken/nuts/whole grain diet. There was an interaction between meal and glucose tolerance group (p < 0.05) in the area under the curve (AUC) and the incremental area under the curve (iAUC) of glucose; the red meat/refined grain diet increased glucose relative to the dairy/chicken/nuts/whole grain diet only in the normal group (+2.5 mmol/L/3 h). The red meat/refined grain diet increased glucose and insulin responses compared with the dairy/chicken/nuts/whole grain diet. This meal pattern would increase pancreatic stress long term and may account for the increased risk of type 2 diabetes with this diet. PMID:27809219
Xu, Wei-Na; Chen, Dan-Hong; Chen, Qing-Qing; Liu, Wen-Bin
2017-09-01
A 8-week feeding trial was conducted to evaluate the effect of different berberine-dietary feeding modes on growth, non-specific immune responses and disease resistance of blunt snout bream, Megalobrama amblycephala. Fish (average initial weight 4.70 ± 0.02 g) were fed two fat levels (5% and 10%) diets in three berberine-feeding modes (supplementing 50 mg/kg berberine continuously, two-week or four-week intervals) with four replicates, respectively. Then, fish were challenged by Aeromonas hydrophila and mortality was recorded for the next 96 h after feeding trial. The results showed that different feeding modes of berberine significantly influenced growth, innate immunity and antioxidant capability of fish. Fish fed normal diet with 50 mg/kg berberine at two-week interval mode reflected remarkably (P < 0.05) high weight gain (WG). Plasma TC and TG contents were significantly (P < 0.05) decreased. The lysozyme (LYZ) activities, complement component 3 (C3) and complement component 4 (C4) concentrations were significantly (P < 0.05) increased. Fish not only exhibited relatively low hepatopancreas malondialdehyde (MDA) and lipid peroxide (LPO) contents, but also significantly (P < 0.05) improved superoxide dismutase (SOD) and catalase (CAT) activities. Fish mortality after challenged by Aeromonas hydrophila was decreased. Same results were also presented in fish fed high-fat diet with 50 mg/kg berberine at two-week, four-week intervals or continuous feeding modes. Based on fish healthy improvement and feeding cost saving, blunt snout bream fed normal diet with 50 mg/kg berberine at two-week interval or fed high-fat diet with berberine at two-week or four-week intervals were optimal feeding mode, respectively. Copyright © 2017. Published by Elsevier Ltd.
Childhood and adolescent obesity and long-term cognitive consequences during aging.
Wang, Jun; Freire, Daniel; Knable, Lindsay; Zhao, Wei; Gong, Bing; Mazzola, Paolo; Ho, Lap; Levine, Samara; Pasinetti, Giulio M
2015-04-01
The prevalence of childhood/adolescent obesity and insulin resistance has reached an epidemic level. Obesity's immediate clinical impacts have been extensively studied; however, current clinical evidence underscores the long-term implications. The current study explored the impacts of brief childhood/adolescent obesity and insulin resistance on cognitive function in later life. To mimic childhood/adolescent obesity and insulin resistance, we exposed 9-week-old C57BL/6J mice to a high-fat diet for 15 weeks, after which the mice exhibited diet-induced obesity and insulin resistance. We then put these mice back on a normal low-fat diet, after which the mice exhibited normal body weight and glucose tolerance. However, a spatial memory test in the forms of the Morris water maze (MWM) and contextual fear conditioning at 85 weeks of age showed that these mice had severe deficits in learning and long-term memory consolidation. Mechanistic investigations identified increased expression of histone deacetylases 5, accompanied by reduced expression of brain-derived neurotrophic factor, in the brains 61 weeks after the mice had been off the high-fat diet. Electrophysiology studies showed that hippocampal slices isolated from these mice are more susceptible to synaptic impairments compared with slices isolated from the control mice. We demonstrated that a 15-week occurrence of obesity and insulin resistance during childhood/adolescence induces irreversible epigenetic modifications in the brain that persist following restoration of normal metabolic homeostasis, leading to brain synaptic dysfunction during aging. Our study provides experimental evidence that limited early-life exposure to obesity and insulin resistance may have long-term deleterious consequences in the brain, contributing to the onset/progression of cognitive dysfunction during aging. © 2014 Wiley Periodicals, Inc.
Effects of chronic stress and high-fat diet on metabolic and nutritional parameters in Wistar rats.
Bruder-Nascimento, Thiago; Campos, Dijon Henrique Salomé; Alves, Carlos; Thomaz, Samuel; Cicogna, Antônio Carlos; Cordellini, Sandra
2013-11-01
The aim of this study was assess the role of chronic stress on the metabolic and nutritional profile of rats exposed to a high-fat diet. Thirty-day-old male Wistar rats (70-100 g) were distributed into four groups: normal-diet (NC), chronic stress (St), high-fat diet (HD), and chronic stress/high-fat diet (HD/St). Stress consisted at immobilization during 15 weeks, 5 times per week, 1h per day; and exposure to the high-fat diet lasted 15 weeks. Nutritional and metabolic parameters were assessed. The level of significance was 5%. The HD group had final body weight, total fat, as well as insulin and leptin increased, and they were insulin resistant. The St and HD/St had arterial hypertension and increased levels of corticosterone. Stress blocked the effects of the high-fat diet. Chronic stress prevented the appearance of obesity. Our results help to clarify the mechanisms involved in metabolic and nutritional dysfunction, and contribute to clinical cases linked to stress and high-fat diet.
Wang, Liang; Fumoto, Toshio; Masumoto, Saeko; Shoji, Toshihiko; Miura, Tomisato; Naraoka, Masato; Matsuda, Naoya; Imaizumi, Tadaatsu; Ohkuma, Hiroki
2017-03-01
Apple polyphenol contains abundant procyanidins, which have been associated with an anti-atherosclerosis and cholesterol-lowering effect. The aim of this study was to investigate whether apple procyanidins (APCs) feature therapeutic efficacy in terms of regressing atherosclerosis and whether this efficacy is due to mechanisms other than a cholesterol-lowering effect. After eight weeks on an atherogenic diet, rabbits were given a normal diet for another eight weeks to normalize the increased serum lipids level. The rabbits in the baseline group were sacrificed at this stage. The control group was subsequently fed a normal diet for eight weeks, while the APCs group was administrated 50 mg/kg/day of APCs in addition to the normal diet. Serum lipids and aortic intimal-medial thickness (IMT) were serially examined, and the resected aorta was examined histologically and through molecular biology. Aortic IMT on ultrasonography and the lipid accumulation area examined using Sudan IV staining were significantly reduced in the APCs group as compared to the control group. Serum lipid profiles were not different between the groups. Immunohistochemistry showed significantly decreased staining of an oxidative stress marker and significantly increased staining of ATP-binding cassette subfamily A member 1 (ABCA1) in the APCs group. Western blotting and RT-PCR also showed increased expression of ABCA1 mRNA and its protein in the APCs group. This study revealed that APCs administration causes a regression of atherosclerosis. APCs might hold promise as an anti-atherosclerotic agent. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice
Wisniewski, Paul J.; Noji, Michael; McGuinness, Lora R.; Lightfoot, Stanley A.
2016-01-01
Background The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Methods Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Results Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. Conclusion These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host. PMID:26954359
Severe lactose intolerance with lactosuria and vomiting.
Hosková, A; Sabacký, J; Mrskos, A; Pospísil, R
1980-01-01
An infant with lactose intolerance is described. A breast-fed infant developed vomiting at 3 weeks, and became dehydrated. Lactosuria, aminoaciduria, and liver damage were preesent. A milk-free diet led to rapid recovery. At 6 months a normal diet was well tolerated. PMID:7416780
Microalgal Oil Supplementation Has an Anti-Obesity Effect in C57BL/6J Mice Fed a High Fat Diet
Yook, Jin-Seon; Kim, Kyung-Ah; Park, Jeong Eun; Lee, Seon-Hwa; Cha, Youn-Soo
2015-01-01
This study investigated the impact of microalgal oil (MO) on body weight management in C57BL/6J mice. Obesity was induced for 8 weeks and animals were orally supplemented with the following for 8 additional weeks: beef tallow (BT), corn oil, fish oil (FO), microalgal oil (MO), or none, as a high fat diet control group (HD). A normal control group was fed with a normal diet. After completing the experiment, the FO and MO groups showed significant decreases in body weight gain, epididymal fat pad weights, serum triglycerides, and total cholesterol levels compared to the HD and BT groups. A lower mRNA expression level of lipid anabolic gene and higher levels of lipid catabolic genes were observed in both FO and MO groups. Serum insulin and leptin concentrations were lower in the MO group. These results indicated that microalgal oil has an anti-obesity effect that can combat high fat diet-induced obesity in mice. PMID:26770909
Gu, Jiaojiao; Jing, Lulu; Ma, Xiaotao; Zhang, Zhaofeng; Guo, Qianying; Li, Yong
2015-12-01
The present study aimed to explore the metabolic response of oat bran consumption in dyslipidemic rats by a high-throughput metabolomics approach. Four groups of Sprague-Dawley rats were used: N group (normal chow diet), M group (dyslipidemia induced by 4-week high-fat feeding, then normal chow diet), OL group and OH group (dyslipidemia induced, then normal chow diet supplemented with 10.8% or 43.4% naked oat bran). Intervention lasted for 12weeks. Gas chromatography quadrupole time-of-flight mass spectrometry was used to identify serum metabolite profiles. Results confirmed the effects of oat bran on improving lipidemic variables and showed distinct metabolomic profiles associated with diet intervention. A number of endogenous molecules were changed by high-fat diet and normalized following supplementation of naked oat bran. Elevated levels of serum unsaturated fatty acids including arachidonic acid (Log2Fold of change=0.70, P=.02 OH vs. M group), palmitoleic acid (Log2Fold of change=1.24, P=.02 OH vs. M group) and oleic acid (Log2Fold of change=0.66, P=.04 OH vs. M group) were detected after oat bran consumption. Furthermore, consumption of oat bran was also characterized by higher levels of methionine and S-adenosylmethionine. Pathway exploration found that most of the discriminant metabolites were involved in fatty acid biosynthesis, biosynthesis and metabolism of amino acids, microbial metabolism in diverse environments and biosynthesis of plant secondary metabolites. These results point to potential biomarkers and underlying benefit of naked oat bran in the context of diet-induced dyslipidemia and offer some insights into the mechanism exploration. Copyright © 2015 Elsevier Inc. All rights reserved.
Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...
Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H
2017-04-01
Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P < 0.001). Nitric oxide excretion was 2935 ± 256 μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178 μ mol /24 hrs P < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats.
Sen, Sarbattama; Simmons, Rebecca A
2010-12-01
Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. Female Sprague Dawley rats were started on the designated diet at 4 weeks of age. Four groups of animals were studied: control chow (control); control + antioxidants (control+Aox); Western diet (Western); and Western diet + antioxidants (Western+Aox). The rats were mated at 12 to 14 weeks of age, and all pups were weaned onto control diet. Offspring from dams fed the Western diet had significantly increased adiposity as early as 2 weeks of age as well as impaired glucose tolerance compared with offspring of dams fed a control diet. Inflammation and oxidative stress were increased in preimplantation embryos, fetuses, and newborns of Western diet-fed rats. Gene expression of proadipogenic and lipogenic genes was altered in fat tissue of rats at 2 weeks and 2 months of age. The addition of an antioxidant supplement decreased adiposity and normalized glucose tolerance. CONCLUSIONS; Inflammation and oxidative stress appear to play a key role in the development of increased adiposity in the offspring of Western diet-fed pregnant dams. Restoration of the antioxidant balance during pregnancy in the Western diet-fed dam is associated with decreased adiposity in offspring.
Diet Change After Sleeve Gastrectomy Is More Effective for Weight Loss Than Surgery Only.
Rossell, Joana; González, Marta; Mestres, Núria; Pardina, Eva; Ricart-Jané, David; Peinado-Onsurbe, Julia; Baena-Fustegueras, Juan Antonio
2017-10-01
Bariatric surgery with or without diet change has become one of the most effective treatments for obesity. The objective of this study was to observe the effects of vertical sleeve gastrectomy (VSG) and diet change in Sprague-Dawley rats on both body and tissue weights. Eighteen rats were fed with a standard chow diet (SCD) (C group), and 36 rats were fed with a high-fat diet (HFD) (diet-induced obesity (DIO) group). After 8 weeks, the animals underwent VSG, sham surgery or no surgery (NS). After surgery, a third of the rats fed with the HFD changed to the SCD (DIO + C group). Body weight, food and energy intake were recorded daily during the experiment (12 weeks). Food efficiency (%) (FE) was determined from weekly weight gain and weekly kilocalorie consumed measurements. The DIO group had higher and significant weight gain than the C group at the time of surgery (p < 0.001). The major weight loss (WL) was observed in the DIO + C-VSG group, during the 4 weeks after surgery. Adipose tissues in the DIO + C-VSG group were drastically reduced and had a weight similar to those in the C-VSG group. VSG and the diet change combination led to a greater WL, which was maintained during the 4 weeks post-surgery, leading to a normalization of body weight. VSG and diet change also affected most of the tissues, not only adipose, showing a global change in whole body composition.
Normal distribution of body weight gain in male Sprague-Dawley rats fed a high-energy diet.
Archer, Zoe A; Rayner, D Vernon; Rozman, Jan; Klingenspor, Martin; Mercer, Julian G
2003-11-01
To investigate the effect of a high-energy (HE) diet on caloric intake, body weight, and related parameters in outbred male Sprague-Dawley (SD) rats. Twenty-eight SD rats were fed either chow (C) for 19 weeks or HE diet for 14 weeks and then C for 5 weeks. Blood hormones and metabolites were assayed, and expression of uncoupling protein-1 and hypothalamic energy-balance-related genes were determined by Northern blotting and in situ hybridization, respectively. HE rats gained body weight more rapidly than C animals with a range of weight gains, but there was no evidence that weight gain was bimodally distributed. Caloric intake was transiently elevated after introduction of the HE diet. Transfer of HE rats back to C resulted in a drop in caloric intake, but a stable body weight. In terminal analysis, two of four dissected adipose tissue depots were heavier in rats that had previously been fed HE diet. Blood leptin, insulin, glucose, and nonesterified fatty acids were not different between the groups. Uncoupling protein-1 mRNA was elevated in interscapular brown adipose tissue from HE rats. There was a trend for agouti-related peptide mRNA in the hypothalamic arcuate nucleus to be higher in HE rats. Contrary to other studies of the SD rat on HE diet, body weight and other measured parameters were normally distributed. There was no segregation into two distinct populations on the basis of susceptibility to diet-induced obesity. This characteristic may be dependent on the breeding colony from which animals were sourced.
Helge, J W; Bentley, D; Schjerling, P; Willer, M; Gibala, M J; Franch, J; Tapia-Laliena, M A; Daugaard, J R; Andersen, J L
2007-09-01
Fatty acid metabolism is influenced by training and diet with exercise training mediating this through activation of nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in skeletal muscle. This study investigated the effect of training and high fat or normal diet on PPARalpha expression in human skeletal muscle. Thirteen men trained one leg (T) four weeks (31.5 h in total), while the other leg (UT) served as control. During the 4 weeks six subjects consumed high fat (FAT) diet and seven subjects maintained a normal (CHO) diet. Biopsies were obtained from vastus lateralis muscle in both legs before and after training. After the biopsy, one-leg extension exercise was performed in random order with both legs 30 min at 95% of workload max. A training effect was evident as citrate synthase activity increased (P < 0.05) by 15% in the trained, but not the control leg in both groups. During exercise respiratory exchange ratio was lower in FAT (0.86 +/- 0.01, 0.83 +/- 0.01, mean +/- SEM) than CHO (0.96 +/- 0.02, 0.94 +/- 0.03) and in UT than T legs, respectively. The PPARalpha protein (144 +/- 44, 104 +/- 28, 79 +/- 15, 79 +/- 14, % of pre level) and PPARalpha mRNA (69 +/- [2, 2], 78 +/- [7, 6], 92 +/- [22, 18], 106 +/- [21, 18], % of pre level, geometric mean +/- SEM) expression remained unchanged by diet and training in FAT (UT, T) and CHO (UT, T), respectively. After the training and diet CS, HAD, PPARalpha, UCP2, UCP3 and mFABP mRNA content remained unchanged, whereas GLUT4 mRNA was lower in both groups and LDHA mRNA was lower (P < 0.05) only in FAT. 4 weeks one leg knee extensor training did not affect PPARalpha protein or mRNA expression. Furthermore, higher fat oxidation during exercise after fat rich diet was not accompanied by an increased PPARalpha protein or mRNA expression after 4 weeks.
NASA Astrophysics Data System (ADS)
Atho'illah, Mochammad Fitri; Widyarti, Sri; Rifa'i, Muhaimin
2017-05-01
Obesity is a metabolic disorder characterized by the central distribution of abdominal fat, hyperglycemia, hyperlipidemia, and hypertension. A high-fat diet can lead to overnutrition and directly trigger inflammation in adipose tissue. Regulatory T cells (Tregs) are essential negative regulators of inflammation. Soybean (Glycine max L.) has a variety of beneficial health. It contains isoflavones, particularly daidzein and genistein which can be transformed using microbial and physical stimuli to enhance bioactivity. The aim of this study was to analyze the effect of elicited soybean extract (ESE) on Treg activity in high fat-fructose (HFFD) mice. Twenty-eight female Balb/C mice were divided into seven groups: normal diet (ND) only, ND + ESE 104 mg/kg BW, HFFD only, HFFD + Simvastatin 2.8 mg/kg, HFFD + ESE 78 mg/kg BW, HFFD + ESE 104 mg/kg BW, and HFFD + ESE 130 mg/kg BW. The high fat-fructose diet was given over a period of 20 weeks, and ESE was administered orally per day after 20 weeks for four weeks. At week 24, the animals were sacrificed and the spleen was collected. Tregs were labeled as CD4+CD25+CD62L+ and the relative Treg number was measured using flow cytometry. The HFFD treatment significantly decreased Treg number (p < 0.05) compared to a normal diet. The ESE treatment in HFFD mice could improve Treg numbers compared to HFFD mice. Our results suggest that ESE has potential to be used as a supplement to suppress chronic inflammation via increased Treg number.
Goularte, Jéferson F; Ferreira, Maria B C; Sanvitto, Gilberto L
2012-10-28
Obesity affects a large number of people around the world and appears to be the result of changes in food intake, eating habits and physical activity levels. Changes in dietary patterns and physical exercise are therefore strongly recommended to treat obesity and its complications. The present study tested the hypothesis that obesity and metabolic changes produced by a cafeteria diet can be prevented with dietary changes and/or physical exercise. A total of fifty-six female Wistar rats underwent one of five treatments: chow diet; cafeteria diet; cafeteria diet followed by a chow diet; cafeteria diet plus exercise; cafeteria diet followed by a chow diet plus exercise. The duration of the experiment was 34 weeks. The cafeteria diet resulted in higher energy intake, weight gain, increased visceral adipose tissue and liver weight, and insulin resistance. The cafeteria diet followed by the chow diet resulted in energy intake, body weight, visceral adipose tissue and liver weight and insulin sensitivity equal to that of the controls. Exercise increased total energy intake at week 34, but produced no changes in the animals' body weight or adipose tissue mass. However, insulin sensitivity in animals subjected to exercise and the diet was similar to that of the controls. The present study found that exposure to palatable food caused obesity and insulin resistance and a diet change was sufficient to prevent cafeteria diet-induced obesity and to maintain insulin sensitivity at normal levels. In addition, exercise resulted in normal insulin sensitivity in obese rats. These results may help to develop new approaches for the treatment of obesity and type 2 diabetes mellitus.
Harmon, Kristin A; Gerard, Lori; Jensen, Dalan R; Kealey, Elizabeth H; Hernandez, Teri L; Reece, Melanie S; Barbour, Linda A; Bessesen, Daniel H
2011-10-01
We sought to define 24-h glycemia in normal-weight and obese pregnant women using continuous glucose monitoring (CGM) while they consumed a habitual and controlled diet both early and late in pregnancy. Glycemia was prospectively measured in early (15.7 ± 2.0 weeks' gestation) and late (27.7 ± 1.7 weeks' gestation) pregnancy in normal-weight (n = 22) and obese (n = 16) pregnant women on an ad libitum and controlled diet. Fasting glucose, triglycerides (early pregnancy only), nonesterified fatty acids (FFAs), and insulin also were measured. The 24-h glucose area under the curve was higher in obese women than in normal-weight women both early and late in pregnancy despite controlled diets. Nearly all fasting and postprandial glycemic parameters were higher in the obese women later in pregnancy, as were fasting insulin, triglycerides, and FFAs. Infants born to obese mothers had greater adiposity. Maternal BMI (r = 0.54, P = 0.01), late average daytime glucose (r = 0.48, P < 0.05), and late fasting insulin (r = 0.49, P < 0.05) correlated with infant percentage body fat. However, early fasting triglycerides (r = 0.67, P < 0.001) and late fasting FFAs (r = 0.54, P < 0.01) were even stronger correlates. This is the first study to demonstrate that obese women without diabetes have higher daytime and nocturnal glucose profiles than normal-weight women despite a controlled diet both early and late in gestation. Body fat in infants, not birth weight, was related to maternal BMI, glucose, insulin, and FFAs, but triglycerides were the strongest predictor. These metabolic findings may explain higher rates of infant macrosomia in obese women, which might be targeted in trials to prevent excess fetal growth.
Ngo, Ha Thi; Hetland, Ragna Bogen; Steffensen, Inger-Lise
2015-01-01
We studied how obesogenic conditions during various life periods affected obesity and intestinal tumorigenesis in adult C57BL/6J-Min (multiple intestinal neoplasia)/+ mice. The mice were given a 10% fat diet throughout life (negative control) or a 45% fat diet in utero, during nursing, during both in utero and nursing, during adult life, or during their whole life-span, and terminated at 11 weeks for tumorigenesis (Min/+) or 23 weeks for obesogenic effect (wild-type). Body weight at 11 weeks was increased after a 45% fat diet during nursing, during both in utero and nursing, and throughout life, but had normalized at 23 weeks. In the glucose tolerance test, the early exposure to a 45% fat diet in utero, during nursing, or during both in utero and nursing, did not affect blood glucose, whereas a 45% fat diet given to adults or throughout life did. However, a 45% fat diet during nursing or during in utero and nursing increased the number of small intestinal tumors. So did exposures to a 45% fat diet in adult life or throughout life, but without increasing the tumor numbers further. The intrauterine and nursing period is a window of susceptibility for dietary fat-induced obesity and intestinal tumor development. PMID:25874125
Association of Diet With Skin Histological Features in UV-B-Exposed Mice.
Bhattacharyya, Tapan K; Hsia, Yvonne; Weeks, David M; Dixon, Tatiana K; Lepe, Jessica; Thomas, J Regan
2017-09-01
Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B-exposed animals who received the obesity diet. Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. NA.
High-fat diet effects on metabolic responses to chronic stress.
Nemati, Marzieh; Zardooz, Homeira; Rostamkhani, Fatemeh; Abadi, Alireza; Foroughi, Forough
2017-07-01
High-fat diets and chronic stress are prevalent risk factors for various chronic diseases in modern societies. This study investigated the effect of high-fat diet on glucose-related metabolic responses to chronic foot-shock stress. Male rats were divided into high-fat diet (containing 54.21% saturated and 44.89% unsaturated fatty acids) and normal diet groups and then into stress and non-stress subgroups. The diets were applied for 5 weeks, and stress was induced during the last week of the diet course. Plasma levels of metabolic parameters, HOMA-IR index, intra-abdominal fat weight, and islets' insulin secretion were assessed. High-fat diet increased abdominal fat weight and plasma leptin, and insulin levels in response to stress without affecting HOMA-IR index and islets' insulin secretion. High proportion of unsaturated fat may not lead to deleterious metabolic responses; however combined with chronic stress has a synergistic and adverse effect on visceral adiposity and results in elevated plasma leptin.
Zelzer, Sieglinde; Mangge, Harald; Pailer, Sabine; Ainoedhofer, Herwig; Kieslinger, Petra; Stojakovic, Tatjana; Scharnagl, Hubert; Prüller, Florian; Weghuber, Daniel; Datz, Christian; Haybaeck, Johannes; Obermayer-Pietsch, Barbara; Trummer, Christian; Gostner, Johanna; Gruber, Hans-Jürgen
2015-05-21
Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding) on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66) were grouped into normal diet (n = 30) and high-fat diet (n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL), malondialdehyde (MDA), 4-hydroxynonenal (HNE), the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats.
Mechanical Stress and Antioxidant Protection in the Retina of Hindlimb Suspended Rats
NASA Technical Reports Server (NTRS)
Glass, Aziza; Theriot, Corey A.; Alway, Stephen E.; Zanello, Susana B.
2012-01-01
It has been postulated that hindlimb suspension (HS) causes a cephalad fluid shift in quadrupeds similar to that occurring to humans in microgravity. Therefore, HS may provide a suitable animal model in which to recapitulate the ocular changes observed in the human Visual Impairment and Intracranial Pressure (VIIP) syndrome. This work reports preliminary results from a tissue sharing project using 34 week-old Brown Norway rats. Two different experiments compared normal posture controls and HS rats for 2 weeks and rats exposed to HS for 2 weeks but allowed to recover in normal posture for 2 additional weeks. The effects of two nutritional countermeasures, green tea extract (GT) and plant polyphenol resveratrol (Rv), were also evaluated. Green tea contains the antioxidant epigallocatechin gallate (EGCG). qPCR gene expression analysis of selected targets was performed on RNA from isolated retinas, and histologic analysis was done on one fixed eye per rat. The transcription factor early growth response protein 1 (Egr1) was upregulated almost 2-fold in HS retinas relative to controls (P = 0.059), and its expression returned to control levels after 2 weeks of recovery in normal posture (P = 0.023). HS-induced upregulation of Egr1 was attenuated (but not significantly) in retinas from rats fed an antioxidant rich (GT extract) diet. In rats fed the GT-enriched diet, antioxidant enzymes were induced, evidenced by the upregulation of the gene heme oxygenase 1 (Hmox1) (P = 0.042) and the gene superoxide dismutase 2 (Sod2) (P = 0.0001). Egr1 is a stretch-activated transcription factor, and the Egr1 mechanosensitive response to HS may have been caused by a change in the translaminal pressure and/or mechanical deformation of the eye globe. The observed histologic measurements of the various retinal layers in the HS rats were lower in value than those of the control animal (n = 1), however insufficient data were available for statistical analysis. Aquaporin 4, a water-selective channel involved in interstitial fluid homeostasis, showed an upregulated trend in HS retinas; however, these results are preliminary. Total retinal thickness increased significantly (P = 0.049) in HS rats fed a resveratrol enriched diet compared to HS rats on a normal diet. This change appeared to be reversed during the 2 weeks of recovery post HS, but no differences in retina thickness were observed between HS animals and HS recovered animals when both groups consumed a normal diet. The reversibility of the increase in retinal thickness induced by resveratrol during HS may therefore reflect an interaction between the stress provoked by HS and the cytoprotective mechanisms elicited by resveratrol
Bladder overdistension with polyuria in a hypertensive rat model.
Velasquez Flores, Monica; Mossa, Abubakr H; Cammisotto, Philippe; Campeau, Lysanne
2018-03-31
Polyuria can lead to progressive chronic bladder overdistension. The impact of polyuria on the bladder has been extensively studied in settings of either diabetes or sucrose diuresis in animals. The goal of this study was to investigate the outcomes of polyuria in a hypertension setting. Male Dahl/SS rats, a hypertension model, received a high-salt or normal diet for 6 weeks. Twenty-four-hour water intake, micturition patterns, and blood pressures were recorded biweekly. Conscious cystometry was carried out at the end of this period. Bladders were collected to measure contractile force and for histological analysis. Paired t-tests were used to compare changes between Week 0 and Week 6 within each group. Unpaired t-tests were used for comparisons between groups for all parameters at Week 6. Six weeks of high-salt diet significantly increased water intake and total urine. Blood pressures and volume of urine per micturition was higher in rats on high-salt diet. Bladder overdistension in the high-salt diet group was confirmed by cystometry, shown by a significantly higher bladder capacity, and compliance. No difference in detrusor contractility was observed between both groups. Collagen content was significantly higher in the lamina propria of the high-salt group compared to the normal group, while the opposite was observed in the muscularis. Polyuria, in a hypertension context, leads to changes in bladder morphology and function. These findings help clarify the deleterious clinical impact of polyuria on voiding function, highlighting the variable consequences of bladder overdistension according to the underlying pathology. © 2018 Wiley Periodicals, Inc.
Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine
2010-01-01
Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hypertrophied myocardium. Rats with either normal myocardium or cardiac hypertrophy induced by 8 weeks of abdominal aortic banding were fed one of four diets: control diet without DHA or EPA or diets enriched with either DHA, EPA, or DHA + EPA (1:1 ratio) at 2.5% of energy intake for 17 weeks. Aortic banding caused a 27% increase in left ventricular mass and 25% depletion in DHA in mitochondrial phosopholipids in rats fed the control diet. DHA supplementation raised DHA in phospholipids ∼2-fold in both normal and hypertrophied hearts and increased EPA. DHA + EPA supplementation also increased DHA, but to a lesser extent than DHA alone. EPA supplementation increased EPA, but did not affect DHA compared with the control diet. Ca2+-induced MPTP opening was delayed by DHA and DHA + EPA supplementation in both normal and hypertrophied hearts, but EPA had no effect on MPTP opening. These results show that supplementation with DHA alone effectively increases both DHA and EPA in cardiac mitochondrial phospholipids and delays MPTP and suggest that treatment with DHA + EPA offers no advantage over DHA alone. PMID:20624993
Gordon, C J; Phillips, P M; Johnstone, A F M; Beasley, T E; Ledbetter, A D; Schladweiler, M C; Snow, S J; Kodavanti, U P
2016-04-01
Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (O3); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and then exposed to O3 (acute - air or 0.8 ppm O3 for 5 h, or subacute - air or 0.8 ppm O3 for 5 h/d 1 d/week for 4 weeks). Body composition was measured non-invasively using NMR. Ventilatory parameters and exploratory behavior were measured after the third week of subacute exposure. Bronchoalveolar lavage fluid (BALF) and blood chemistry data were collected 18 h after acute O3 and 18 h after the fourth week of subacute O3. The diets led to increased body fat in male but not female rats. O3-induced changes in ventilatory function were either unaffected or improved with the fructose and fat diets. O3-induced reduction in exploratory behavior was attenuated with fructose and fat diets in males and partially in females. O3 led to a significant decrease in body fat of males fed control diet but not the fructose or fat diet. O3 led to significant increases in BALF eosinophils, increase in albumin, and reductions in macrophages. Female rats appeared to be more affected than males to O3 regardless of diet. Overall, treatment with high-fructose and high-fat diets attenuated some O3 induced effects on pulmonary function, behavior, and metabolism. Exacerbation of toxicity was observed less frequently.
De Campeneere, S; Fiems, L O; De Boever, J L; Vanacker, J M; De Brabander, D L
2002-02-01
The critical roughage part (CRP) of 2 diet types was determined in a cross-over design with 6 double-muscled and 6 normally conformed Belgian Blue bulls fitted with rumen cannulae. The roughage:concentrate ratio was lowered weekly until signs of a lack of physical structure were observed. For diet 1, consisting of maize silage and concentrates, the initial proportion of maize silage was 25% of DM but it decreased weekly with 5% units of DM. For the second diet, consisting of wheat straw and concentrate, 12% straw (DM basis) was provided during the first week and thereafter the proportion of straw decreased weekly with 3% units of DM. Several directly observable parameters (rumen pH, feed intake, bloat, faecal consistency) were evaluated weekly for each bull. Apart from these direct indicators of acidosis, also other parameters, whose results were only available after the end of the trial, were determined (volatile fatty acid profile, lactic acid concentration, chewing time). The roughage part between the part fed when signs of a lack of physical structure was first observed and the part that was fed the week before, was considered as the CRP. Most animals showed no acute signs of clinical acidosis (directly observable parameters) and finished the trial on a 100% concentrate diet. However, in sacco rumen DM-degradabilities of maize silage, grass silage and wheat grain was depressed considerably when low roughage diets were fed. Based on all observed parameters, the mean CRP was calculated to be 14.7% for diet 1 and 8.1% for diet 2. The beef type (double-muscled or not) had no influence on the CRP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Weiling; Payne, Valerie; Tommasi, Ellen
2007-01-01
Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration ofmore » Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.« less
The role of fire in shaping avian communities in sagebrush ecosystems
Holmes, Aaron; Knick, Steven T.; Miller, R.F.
2005-01-01
Four experiments were conducted to examine the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Quail fed purified diets deficient in either riboflavin, niacin, pantothenic acid or choline grew poorly and high mortality occurred by 5 weeks of age. Under the conditions of these experiments, it was found that: (1) young quail require approximately 3.8 mg. riboflavin/kg. diet for satisfactory growth and survival; (2) no more than 31 mg. niacin/kg. diet are required for normal growth and survival of young quail; (3) the requirement for pantothenic acid is higher than has previously been reported, quail in these studies requiring 12.6 mg. pantothenic acid/kg. feed for growth and survival; and (4) the requirement for choline for reducing mortality is approximately 1000 mg./kg., while the amount necessary for normal growth of young quail is no greater than 1500 mg./kg. when the diet contains ample amounts of methionine. Quail fed a niacin-deficient diet developed stiff, shortened feathers and an erythema about the head; those receiving a riboflavin-deficient ration developed enlarged hocks and bowed legs, as did quail fed diets low or devoid of choline. Aside from slow growth, poor feathering was the only other indication that a deficient diet was being fed when quail were placed on a basal ration without pantothenic acid for five weeks.
Studies on the riboflavin, niacin, pantothenic acid and choline requirements of young bobwhite quail
Serafin, J.A.
1974-01-01
Four experiments were conducted to examine the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Quail fed purified diets deficient in either riboflavin, niacin, pantothenic acid or choline grew poorly and high mortality occurred by 5 weeks of age. Under the conditions of these experiments, it was found that: (1) young quail require approximately 3.8 mg. riboflavin/kg. diet for satisfactory growth and survival; (2) no more than 31 mg. niacin/kg. diet are required for normal growth and survival of young quail; (3) the requirement for pantothenic acid is higher than has previously been reported, quail in these studies requiring 12.6 mg. pantothenic acid/kg. feed for growth and survival; and (4) the requirement for choline for reducing mortality is approximately 1000 mg./kg., while the amount necessary for normal growth of young quail is no greater than 1500 mg./kg. when the diet contains ample amounts of methionine. Quail fed a niacin-deficient diet developed stiff, shortened feathers and an erythema about the head; those receiving a riboflavin-deficient ration developed enlarged hocks and bowed legs, as did quail fed diets low or devoid of choline. Aside from slow growth, poor feathering was the only other indication that a deficient diet was being fed when quail were placed on a basal ration without pantothenic acid for five weeks.
Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum
2016-07-01
We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.
[Nutritional implications of bariatric surgery on the gastrointestinal tract].
Rubio, M A; Moreno, C
2007-05-01
Anatomical change in the anatomy of the gastrointestinal tract after bariatric surgery leads to modification of dietary patterns that have to be adapted to new physiological conditions, either related with the volume of intakes or the characteristics of the macro- and micronutrients to be administered. Restrictive diet after bariatric surgery (basically gastric bypass and restrictive procedures) is done at several steps. The first phase after surgery consists in the administration of clear liquids for 2-3 days, followed by completely low-fat and high-protein content (> 50-60 g/day) liquid diet for 2-4 weeks, normally by means of formula-diets. Soft or grinded diet including very soft protein-rich foods, such as egg, low-calories cheese, and lean meats such as chicken, cow, pork, or fish (red meats are not so well tolerated) is recommended 2-4 weeks after hospital discharge. Normal diet may be started within 8 weeks from surgery or even later. It is important to incorporate hyperproteic foods with each meal, such egg whites, lean meats, cheese or milk. All these indications should be done under the supervision of an expert nutrition professional to always advise the patients and adapting the diet to some special situations (nausea/vomiting, constipation, diarrhea, dumping syndrome, dehydration, food intolerances, overfeeding, etc.). The most frequent vitamin and mineral deficiencies in the different types of surgeries are reviewed, with a special focus on iron, vitamin B12, calcium, and vitamin D metabolism. It should not be forgotten that the aim of obesity surgery is making the patient loose weight and thus post-surgery diet is designed to achieve that goal although without forgetting the essential role that nutritional education has on the learning of new dietary habits contributing to maintain that weight loss over time.
Patel, Yogesh; Vadgama, Vishalkumar; Baxi, Seema; Chandrabhanu; Tripathi, B
2011-01-01
Our aim of the study was to evaluate the hypolipidemic activity of leaf juice of Catharanthus roseus (Linn.) G. Donn. in guinea pigs. Adult guinea pigs of either sex were divided into seven groups: group 1 - normal diet; group 2 - high fat diet; group 3 and 4 - normal diet plus leaf juice of Catharanthus roseus (Linn.) G. Donn. in the dose of 0.5 and 1 mL/kg, respectively; group 5 and 6- high fat diet with leaf juice of Catharanthus roseus (Linn.) G. Donn. in the dose of 0.5 and 1 mL/kg, respectively; group 7 - high fat diet plus atorvastatin (3 mg/kg). Above diet treatment was given for six weeks and drug was given during last three weeks. Serum lipid profile (total cholesterol, triglycerides, LDL-c, VLDL-c, HDL-c) was performed in each group of animals before and at the end of six weeks. Histological study of aorta, liver and kidney was done in group 1, 2, 6 and 7 and blood cell count was done in animals that were treated juice of C. roseus (Linn.) G. Donn. before and after juice administration. Simultaneous administration of leaf juice of C. roseus (Linn.) G. Donn. in the dose of 0.5 mL/kg prevents the rise of serum lipid parameters and decreases the fatty changes in the tissue induced by high fat diet, whereas in the dose of 1 mL/kg not only counteracts the elevation, but also significantly (p < 0.05) reduces the serum level LDL-c and the ratio of total cholesterol and HDL-c. Leaf juice of C. roseus (Linn.) G. Donn. possesses significant lipid lowering and anti atherosclerotic activity.
Trevizan, Luciano; de Mello Kessler, Alexandre; Bigley, Karen E; Anderson, Wendy H; Waldron, Mark K; Bauer, John E
2010-04-01
To determine possible diet aversion and lipid and lipoprotein alterations in cats fed diets containing medium-chain triglycerides (MCTs). 19 clinically normal adult female cats. Cats were assigned to 2 groups (low MCT diet [n = 10] and high MCT diet [9]) and fed the diets for 9 weeks according to metabolic body weight (100 kcal of metabolizable energy [ME] x kg(-0.67)/d). Daily consumption records and weekly body weight and body condition score (BCS) were used to adjust amounts fed and calculate daily ME factors for each cat to maintain ideal BCS. Blood samples were obtained after withholding food on days 0, 14, 28, and 56 for measurement of plasma triglyceride and total cholesterol concentrations and lipoprotein-cholesterol distributions. Repeated-measures ANOVA and Tukey multiple comparison tests were performed. No diet differences were found for food consumption, body weight, BCS, and ME factors. A significant increase in plasma triglyceride concentration was detected for the high MCT diet; however, values were within the reference ranges. No diet effects were observed for total cholesterol concentrations or lipoprotein-cholesterol distributions, although increases over time were observed. Inclusion of MCT in diets of cats did not result in feed refusal and had minimal effects on lipid metabolism. Such diets may be useful for both clinically normal cats and cats with metabolic disorders. The MCT oils are an example of a bioactive dietary lipid that may benefit feline metabolism and can serve as a useful functional food ingredient for cats.
Manobhavan, M; Elangovan, A V; Sridhar, M; Shet, D; Ajith, S; Pal, D T; Gowda, N K S
2016-02-01
A feeding trial was designed to assess the effect of super dosing of phytase in corn-soya-based diets of broiler chicken. One hundred and sixty-eight day-old broilers were selected and randomly allocated to four dietary treatment groups, with 6 replicates having 7 chicks per treatment group. Two-phased diets were used. The starter and finisher diet was fed from 0 to 3 weeks and 4 to 5 weeks of age respectively. The dietary treatments were consisted of normal phosphorus (NP) group without any phytase enzyme (4.5 g/kg available/non-phytin phosphorus (P) during starter and 4.0 g/kg during finisher phase), three low-phosphorus (LP) groups (3.2 g/kg available/non-phytin P during starter and 2.8 g/kg during finisher phase) supplemented with phytase at 500, 2500, 5000 FTU/kg diet, respectively, to full fill their phosphorus requirements. The results showed that super doses of phytase (at 2500 FTU and 5000 FTU/kg) on low-phosphorus diet improved feed intake, body weight gain, ileal digestibility (serine, aspartic acid, calcium, phosphorus), blood P levels and bone minerals such as calcium (Ca), P, magnesium (Mg) and zinc (Zn) content. It could be concluded that super doses of phytase in low-phosphorus diet were beneficial than the normal standard dose (at 500 FTU/kg) of phytase in diet of broiler chicken. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Hanai, Miho; Esashi, Takatoshi
2007-04-01
The purpose of this study was to clarify the effects of nutrients on the gonadal development of male rats kept under constant darkness as a model of disturbed daily rhythm. The present study examined protein and vitamins, and their interactions. This study was based on three-way ANOVA; the three factors were lighting conditions, dietary protein and dietary vitamins, respectively. The levels of dietary protein were low or normal: 9% casein or 20% casein. The levels of dietary vitamins were low, normal or high: 1/3.3 of normal (AIN-93G diet) content, normal content, or three times the normal content, respectively. Other compositions were the same as those of the AIN-93G diet, and six kinds of experimental diet were prepared. Four-week-old rats (Fischer 344 strain) were kept under constant darkness or normal lighting (12-h light/dark cycle) for 4 wk. After 4 wk, the gonadal weights and serum testosterone content were evaluated. In the constant darkness groups (D-groups), the low-protein diet induced reduction of gonadal organ weights and serum testosterone concentrations. This reduction of gonadal organ weights was exacerbated by progressively higher levels of dietary vitamins. In the case of a normal-protein diet, the depression of gonadal development was not accelerated by high-vitamin intake. In the normal lighting groups (N-groups), the low-protein and high-vitamin diet slightly depressed gonadal development. These results suggest that the metabolism of protein and vitamins is different in rats being kept under constant darkness, and that excess dietary vitamins have an adverse effect on gonadal development in rats fed a low-protein diet.
Crujeiras, A B; Zulet, M A; Abete, I; Amil, M; Carreira, M C; Martínez, J A; Casanueva, F F
2016-03-01
The understanding of the potential role of betatrophin in human metabolic disorders is a current challenge. The present research evaluated circulating betatrophin levels in obese patients with metabolic syndrome (MetSyn) features under energy-restricted weight-loss programs and in normal weight in order to establish the putative interplay between the levels of this hormone, diet and metabolic risk factors linked to obesity and associated comorbidities. One hundred forty-three participants were enrolled in the study (95 obese-MetSyn; age 49.5±9.4 years; body mass index (BMI) 35.7±4.5 kg m(-2) and 48 normal weight; age 35.71±8.8 years; BMI 22.9±2.2 kg m(-2)). A nutritional therapy consisting in two hypocaloric strategies (control diet based on the AHA recommendations and the RESMENA (MEtabolic Syndrome REduction in Navarra) diet, a novel dietary program with changes in the macronutrient distribution) was only prescribed to obese-MetSyn participants who were randomly allocated to the dietary strategies. Dietary records, anthropometrical and biochemical variables as well as betatrophin levels were analyzed before (pre-intervention, week 0), at 8 weeks (post-intervention, week 8) and after 4 additional months of self-control period (follow-up, week 24). Betatrophin levels were higher in obese-MetSyn patients than normal-weight subjects (1.24±0.43 vs 0.97±0.69 ng ml(-1), respectively, P=0.012), and levels were positively associated with body composition, metabolic parameters, leptin and irisin in all participants at baseline. Notably, low pre-intervention (week 0) betatrophin levels in obese patients were significantly associated with higher dietary-induced changes in atherogenic risk factors after 8 weeks. Moreover, protein intake, especially proteins from animal sources, was an independent determinant of betatrophin levels after dietary treatment (B=-0.27; P=0.012). Betatrophin is elevated in obese patients with MetSyn features and is associated with poorer nutritional outcomes of adiposity and dyslipidemia traits after a weight-loss program. Dietary protein intake could be a relevant modulator of betatrophin secretion and activity.
Mao, Jie; Sun, Xing; Cheng, Jian-Hua; Shi, Yong-Jie; Wang, Xin-Zheng; Qin, Jun-Jie; Sang, Zhi-Hong; He, Kun; Xia, Qing
2016-09-01
A 52-week feeding study in cynomolgus macaques was carried out to evaluate the safety of Bt rice Huahui 1 (HH1), a transgenic rice line expressing Cry1Ab/1Ac protein. Monkeys were fed a diet with 20% or 60% HH1 rice, 20% or 60% parental rice (Minghui 63, MH63), normal diet, normal diet spiked with purified recombinant Cry1Ab/1Ac fusion protein or bovine serum albumin (BSA) respectively. During the feeding trail, clinical observations were conducted daily, and multiple parameters, including body weight, body temperature, electrocardiogram, hematology, blood biochemistry, serum metabolome and gut microbiome were examined at regular intervals. Upon sacrifice, the organs were weighted, and the macroscopic, microscopic and electron microscopic examinations were performed. The results show no adverse or toxic effects of Bt rice HH1 or Cry1Ab/1Ac fusion protein on monkeys. Therefore, the present 52-week primate feeding study suggests that the transgenic rice containing Cry 1Ab/1Ac is equivalent to its parental rice line MH63. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficacy of the ketogenic diet in the 6-Hz seizure test
Hartman, Adam L.; Lyle, Megan; Rogawski, Michael A.; Gasior, Maciej
2008-01-01
SUMMARY Purpose Since the ketogenic diet is effective in drug-resistant epilepsies, we sought to determine whether it is active in the 6-Hz seizure test, which identifies agents with a broader spectrum of activity than conventional antiepileptic screening tests. Methods Male (3–4 week old) NIH Swiss mice were fed a normal or ketogenic diet ad libitum for 2–21 days. The intensity of the corneal stimulation current required to elicit seizures in the 6-Hz test was measured. Blood glucose and β-hydroxybutyrate were measured on the day of seizure testing. Results CC50 (current intensity producing seizures in 50% of mice tested) was 50.6 mA and 15 mA in mice fed for 12 days with a ketogenic or normal diet, respectively (p < 0.001). CC50 was elevated in separate experiments after 16, but not 2, 5, and 21 days of ketogenic diet exposure. CC50 values of growing mice fed the normal diet does not differ, indicating CC50 does not vary with mouse weight during a rapid growth phase. β-Hydroxybutyrate was significantly higher, and glucose was significantly lower in mice fed the ketogenic diet than those fed the normal diet. Blood glucose and β-hydroxybutyrate levels did not correlate with CC50. Discussion The ketogenic diet significantly elevates the seizure threshold in the 6-Hz test in a time-specific manner. Protection from seizures in this model was not related to level of ketosis. CC50 was insensitive to body weight in mice fed the normal diet, demonstrating that the 6-Hz model can assess anticonvulsant regimens where weight is a confounding factor. PMID:18070095
Gotthardt, Juliet D; Bello, Nicholas T
2017-05-15
Alternate day, intermittent fasting (IMF) can be an effective weight loss strategy. However, the effects of IMF on eating behaviors are not well characterized. We investigated the acute and residual effects of IMF for weight loss on meal patterns in adult obese male C57BL/6 mice. After 8weeks of ad libitum high-fat diet to induce diet-induced obesity (DIO), mice were either continued on ad libitum high-fat diet (HFD) or placed on one of 5 diet strategies for weight loss: IMF of high-fat diet (IMF-HFD), pair-fed to IMF-HFD group (PF-HFD), ad libitum low-fat diet (LFD), IMF of low-fat diet (IMF-LFD), or pair-fed to IMF-LFD group (PF-LFD). After the 4-week diet period, all groups were refed the high-fat diet for 6weeks. By the end of the diet period, all 5 groups had lost weight compared with HFD group, but after 6weeks of HFD re-feeding all groups had similar body weights. On (Day 2) of the diet period, IMF-HFD had greater first meal size and faster eating rate compared with HFD. Also, first meal duration was greater in LFD and IMF-LFD compared with HFD. At the end of the diet period (Day 28), the intermittent fasting groups (IMF-HFD and IMF-LFD) had greater first meal sizes and faster first meal eating rate compared with their respective ad libitum fed groups on similar diets (HFD and LFD). Also, average meal duration was longer on Day 28 in the low-fat diet groups (LFD and IMF-LFD) compared with high-fat diet groups (HFD and IMF-HFD). After 6weeks of HFD re-feeding (Day 70), there were no differences in meal patterns in groups that had previously experienced intermittent fasting compared with ad libitum fed groups. These findings suggest that meal patterns are only transiently altered during alternate day intermittent fasting for weight loss in obese male mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Hosseini, Mohsen; Asgary, Sedigheh
2012-01-01
BACKGROUND Coronary heart disease is the leading cause of mortality worldwide. A high-fat diet, rich in saturated fatty acids and low in polyunsaturated fatty acids, is said to be an important cause of atherosclerosis and cardiovascular diseases. METHODS In this experimental study, 40 male rabbits were randomly assigned to eight groups of five to receive normal diet, hypercholesterolemic diet, normal diet plus ghee, normal diet plus olive oil, normal diet plus hydrogenated oil, hypercholesterolemic diet plus ghee, hypercholesterolemic diet plus olive oil, and hypercholesterolemic diet plus hydrogenated oil. They received rabbit chow for a period of 12 weeks. At the start and end of the study, fasting blood samples were taken from all animals to measure biochemical factors including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), fasting blood sugar (FBS), and C-reactive protein (CRP). Moreover, aorta, left and right coronary arteries were dissected at the end of the study to investigate fatty streak formation (FSF). Data was analyzed in SPSS at a significance level of 0.05. RESULTS In rabbits under normal diet, ghee significantly increased TC, LDL, and HDL compared to the beginning (P < 0.01) and also to the other two types of fat (P < 0.05). Moreover, normal diet plus olive oil significantly enhanced FSF in left coronary arteries and aorta compared to normal diet plus ghee. In groups receiving hypercholesterolemic diets, ghee significantly increased HDL and CRP (P < 0.05) and significantly decreased FBS (P < 0.01). The hypecholesterolemic diet plus olive oil significantly increased HDL (P < 0.01). Supplementation of hypecholesterolemic diet with ghee significantly increased HDL and FBS in comparison with hydrogenated oil. Significant increase of FBS was also detected with the use of ghee compared to olive oil. Ghee also significantly reduced FSF in left and right coronary arteries compared to olive oil. FSF in left coronary arteries was significantly lower in the hypecholesterolemic diet plus ghee group compared to the hypecholesterolemic diet plus hydrogenated oil group. CONCLUSION According to the achieved results, future clinical trial studies and investigation of other risk factors such as inflammatory factors are required. PMID:23358722
Association of Diet With Skin Histological Features in UV-B–Exposed Mice
Hsia, Yvonne; Weeks, David M.; Dixon, Tatiana K.; Lepe, Jessica; Thomas, J. Regan
2017-01-01
Importance Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. Objectives To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. Design, Setting, and Participants In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Main Outcomes and Measures Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Results Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B–exposed animals who received the obesity diet. Conclusions and Relevance Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. Level of Evidence NA. PMID:28418519
A case of remission from pre-diabetes following intermittent hypoxic training.
Fuller, Nicholas R; Courtney, Rosalba
2016-01-01
A female patient (49 years of age) with obesity (body mass index: 35.3kg/m(2)) and diagnosed with pre-diabetes presented to the clinic of one of the authors (RC) with recent weight gain (approximately 10kg) over the preceding 12 months, despite several unsuccessful attempts at weight loss. She reported being short of breath performing light activities and feeling fatigued the majority of the time. Treatment consisted of a run in period of five weeks following the Commonwealth Scientific and Industrial Research Organisation (CSIRO) diet, followed by four weeks of the CSIRO diet plus intermittent hypoxic training (IHT) using the GO2(®) altitude training device. Anthropometric measures, bloods and questionnaires were completed before treatment (week 0), end of diet phase (week 5), and end of diet plus IHT phase (week 9). At the end of week five, the patient had lost some weight and had an improvement in glycaemic control. However, there was a clinically greater improvement in weight loss and glycaemic control from week five to nine following the IHT, resulting in remission from pre-diabetes. This case study shows that incorporation of IHT has benefits existing beyond a standard dietary approach, helping to achieve remission from pre-diabetes back to a normal fasting glucose state. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
[Effect of early high fat diet on pancreatic β cellularity and insulin sensibility in young rats].
Xie, Kun-Xia; Xiao, Yan-Feng; Xu, Er-Di; Yin, Chun-Yan; Yi, Xiao-Qing; Chang, Ming
2010-09-01
To study the effects of early high fat diet on sugar metaboliam, insulin sensibility and pancreatic β cellularity in young rats. Sixty male weaned young rats were randomly fed with high fat diet (high fat group) and normal diet (control group). The body weight, viscus fattiness and fasting plasma glucose (FPG) were measured after 3, 6 and 9 weeks. Serum insulin level was measured with radioimmunoassay. The ultrastructure of pancreas was observed under an electricmicroscope. The high fat group had significantly higher body weight and visceral fat weight than the control group after 3 weeks. There were no significant differences in the FPG level between the two groups at all time points. The levels of fasting insulin and HOMAIR in the high fat group were significantly higher than those in the control group after 3, 6 and 9 weeks (P<0.01). Dilation of rough endoplasmic reticulum and mild swelling of mitochondria of islet β-cells were observed in the high fat group after 6 weeks. Early high fat diet may induce a reduction in insulin sensitivity and produce insulin resistance in young rats. Endoplasmic reticulum expansion in β-cells may be an early sign of β-cell damage due to obesity.
Monosodium glutamate intake affect the function of the kidney through NMDA receptor.
Mahieu, Stella; Klug, Maximiliano; Millen, Néstor; Fabro, Ana; Benmelej, Adriana; Contini, Maria Del Carmen
2016-03-15
We investigated whether the chronic intake of monosodium glutamate (MSG) with food affects kidney function, and renal response to glycine. We also established if the NMDA receptors are involved in the changes observed. Male Wistar rats (5weeks old) were fed a diet supplemented with MSG (3g/kg b.w./day), five days a week, and spontaneous ingestion of a 1% MSG solution during 16weeks. NaCl rats were fed a diet with NaCl (1g/kg b.w./day) and 0.35% NaCl solution at the same frequency and time. Control group was fed with normal chow and tap water. We utilized clearance techniques to examine glomerular filtration rate (GFR) and cortical renal plasma flow (CRPF) response to glycine and glycine+MK-801 (antagonist NMDA-R), and we determined NMDA-R1 in kidney by immunohistochemistry. The addition of MSG in the diet of rats increased both GFR and CRPF with an increase of absolute sodium reabsorption. However, hyperfiltration was accompanied with a normal response to glycine infusion. Immunostain of kidney demonstrate that the NMDA receptor is upregulated in rats fed with MSG diet. NMDA-R antagonist MK-801 significantly reduced both the GFR and CRPF; however the percentage of reduction was significantly higher in the group MSG. MK-801 also reduces fractional excretion of water, sodium and potassium in the three groups. Renal NMDAR may be conditioned by the addition of MSG in the diet, favoring the hyperfiltration and simultaneously Na retention in the body. Copyright © 2016 Elsevier Inc. All rights reserved.
Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René
2010-06-01
Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.
Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.
Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching
2011-03-01
The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.
Hong, Ki Bae; Hong, Sung-Yong; Joung, Eun Young; Kim, Byung Hee; Bae, Song-Hwan; Park, Yooheon; Suh, Hyung Joo
2015-01-01
The cauliflower culinary-medicinal mushroom, Sparassis crispa, possesses various biological activities that have been widely reported to have therapeutic applications. We examined the effects of S. crispa on serum cholesterol, hepatic enzymes related to cholesterol metabolism, and fecal sterol excretion in rats fed a cholesterol-rich diet for 4 weeks. Male Sprague-Dawley rats (8 weeks old) were randomly divided into 5 groups (n = 6 mice per group): normal diet (normal control [NC]), cholesterol-rich diet (cholesterol control [CC]), cholesterol-rich diet plus S. crispa fruiting body (SC), cholesterol-rich diet plus S. crispa extract (SCE), and cholesterol-rich diet plus S. crispa residue (SCR). SCE supplementation significantly enhanced hepatic cholesterol catabolism through the upregulation of cholesterol 7α-hydroxylase (CYP7A1) messenger RNA (mRNA) expression (2.55-fold compared with that in the NC group; P < 0.05) and the downregulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA expression (0.57-fold compared with that in the NC group; P < 0.05). Additionally, the SCE diet resulted in the highest fecal excretion of cholesterol and bile acid in hypercholesterolemic rats. In conclusion, mRNA expression of CYP7A1 and HMG-CoA reductase were significantly modulated by the absorption of SCE samples. Also, SCE samples had a significant effect on fecal bile acid and cholesterol excretion. These results suggest that SCE samples can induce hypocholesterolic effects through cholesterol metabolism and the reduction of circulating cholesterol levels.
Rossi, Emily L; de Angel, Rebecca E; Bowers, Laura W; Khatib, Subreen A; Smith, Laura A; Van Buren, Eric; Bhardwaj, Priya; Giri, Dilip; Estecio, Marcos R; Troester, Melissa A; Hair, Brionna Y; Kirk, Erin L; Gong, Ting; Shen, Jianjun; Dannenberg, Andrew J; Hursting, Stephen D
2016-05-01
Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR. ©2016 American Association for Cancer Research.
Antioxidant and anti-atherogenic activities of three Piper species on atherogenic diet fed hamsters.
Agbor, Gabriel A; Vinson, Joe A; Sortino, Julianne; Johnson, Robert
2012-05-01
Atherogenic diet is known to induce high plasma lipid concentration, oxidative stress and early atherosclerosis. Antioxidants have potentials to counter the effect of atherogenic diet. The present research aims at evaluating the antioxidant and anti-atherosclerotic activities of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) on atherogenic diet fed hamsters. Hamsters divided into 8 groups: normal control, atherosclerotic control and six test groups. The normal animals fed normal rodent chow, the atherosclerotic control animals fed the same rodent chow supplemented with 0.2% cholesterol and 10% coconut oil (high cholesterol diet). The 6 test groups' animals fed same diet as the atherosclerotic control group but with additional supplementation of 2 graded doses (1 and 0.25 mg/kg body weight, o.p.) of plant extracts for 12 weeks. The atherogenic diet induced a collapse of the erythrocyte antioxidant defense system (significant decrease in superoxide dismutase, catalase and glutathione peroxidase activities). Atherogenic diet also induced an increase in plasma total cholesterol, triglyceride, thiobarbituric acid reactive substances (TBARS), oxidation of low density lipoprotein cholesterol (LDL) and accumulation of foam cells in the aorta a hall mark for atherosclerosis. Administration of the Piper species prevented the collapse of the antioxidant system and the increase of plasma parameters maintaining them towards normality. The Piper species also prevented LDL oxidation by increasing the time (lag time) for its oxidation. The results suggest that these Piper species have significant antioxidant and anti-atherogenic effect against atherogenic diet intoxication. Copyright © 2010 Elsevier GmbH. All rights reserved.
Quantifying progression and regression of thrombotic risk in experimental atherosclerosis.
Palekar, Rohun U; Jallouk, Andrew P; Goette, Matthew J; Chen, Junjie; Myerson, Jacob W; Allen, John S; Akk, Antonina; Yang, Lihua; Tu, Yizheng; Miller, Mark J; Pham, Christine T N; Wickline, Samuel A; Pan, Hua
2015-07-01
Currently, there are no generally applicable noninvasive methods for defining the relationship between atherosclerotic vascular damage and risk of focal thrombosis. Herein, we demonstrate methods to delineate the progression and regression of vascular damage in response to an atherogenic diet by quantifying the in vivo accumulation of semipermeable 200-300 nm perfluorocarbon core nanoparticles (PFC-NP) in ApoE null mouse plaques with [(19)F] magnetic resonance spectroscopy (MRS). Permeability to PFC-NP remained minimal until 12 weeks on diet, then increased rapidly following 12 weeks, but regressed to baseline within 8 weeks after diet normalization. Markedly accelerated clotting (53.3% decrease in clotting time) was observed in carotid artery preparations of fat-fed mice subjected to photochemical injury as defined by the time to flow cessation. For all mice on and off diet, an inverse linear relationship was observed between the permeability to PFC-NP and accelerated thrombosis (P = 0.02). Translational feasibility for quantifying plaque permeability and vascular damage in vivo was demonstrated with clinical 3 T MRI of PFC-NP accumulating in plaques of atherosclerotic rabbits. These observations suggest that excessive permeability to PFC-NP may indicate prothrombotic risk in damaged atherosclerotic vasculature, which resolves within weeks after dietary therapy. © FASEB.
Wat, Elaine; Wang, Yanping; Chan, Ken; Law, Hon Wai; Koon, Chi Man; Lau, Kit Man; Leung, Ping Chung; Yan, Choly; Lau, Clara Bik San
2018-03-15
Metabolic syndrome is the cluster of risk factors that leads to increased episodes of cardiovascular disease (CVD). These risk factors include but are not limited to obesity, non-alcoholic fatty liver (NAFLD), dyslipidemia, and type 2 diabetes. Since the pathogenesis of metabolic syndrome has multiple metabolic origins, there is no single treatment for it. Pharmacological approaches consist of separate drugs which target at individual risk factors which pose various side effects. Functional foods or nutraceuticals which have potentially important anti-obesity properties have thus attracted great attention. Schisandrae Fructus is a Chinese herb traditionally used as a liver tonic. Silymarin, an extract of the milk thistle (Silybum marianum), is a dietary supplement that is widely used in western society for the prevention and treatment of liver problems. Crataegus Fructus (hawthorn) is traditionally used to promote digestion and dissipate food stagnation. Momordica charantia (bitter melon) is traditionally used for treatment of diabetes in Ayurvedic Medicine. We aimed to develop a multi-targeted herbal formula to target on the multiple risk factors of metabolic syndrome using individual herbs. This proposed herbal formula include sylimarin and Schisandrae Fructus, for NAFLD; Crataegus Fructus for obesity and hyperlipidemia; and Momordica charantia for hyperglycemia. For in vitro study, we carried out insulin-induced 3T3-L1 adipocytes differentiation and fluorescent tagged cholesterol-treated Caco-2 cell assay to study for adipogenesis and cholesterol uptake into Caco-2 cells, respectively. Oleic acid-induced HepG2 cell assay was used to study for oleic acid-induced fatty liver, and brush border membrane vesicles (BBMV) assay was used to study for glucose uptake from the gut. For in vivo study, we performed an 8-week and a 12-week treatment studies, with each study comprising of 4 groups of C57Bl/6 male mice given: (i) Normal-chow diet; (ii)-(iv) High-fat diet (contains 21% fat and 0.15% cholesterol). After the initial 8 weeks of normal chow or high-fat diet feeding to induce obesity, animals were given: (i) Normal-chow diet; (ii) High-fat diet; (iii) High-fat diet + 2% herbal formula; or (iv) High-fat diet + 4% herbal formula as treatment for another 8 weeks or 12 weeks. Our in vitro results suggested Crataegus Fructus aqueous extract exerted potent inhibitory effects on 3T3-L1 preadipocytes differentiation and cholesterol uptake into Caco-2 cells. Schisandrae Fructus aqueous extract and milk thistle exerted inhibitory effects on oleic acid-induced fatty liver in HepG2 cells. Momordica charantia extract on the other hand, exerted significant inhibitory effect on glucose uptake into BBMV. Our in vivo results showed that our herbal formula exhibited a trend to reduce diet-induced increase in body weight and fat pad mass (epididymal, perirenal and inguinal fat); and significantly reduced diet-induced increase in liver weight, liver lipid, and plasma lipid dose-dependently. Besides, high-fat diet induced a significant reduction in adiponectin level which was significantly improved by herbal formula supplementation at 4%. There was however no significant effect of the herbal formula on diet-induced increase in plasma glucose or insulin levels at either dose. Herbal formula also significantly reduced diet-induced inflammation in the liver at both doses. Taken together, these data suggested the potential of our novel multi-targeted herbal formula to be used as a therapeutic agent for diet-induced metabolic syndrome, with special emphasis on NAFLD. Copyright © 2018. Published by Elsevier GmbH.
Biochemical Response of Late Rickets and Osteomalacia to a Chupatty-free Diet
Ford, J. A.; Colhoun, E. M.; McIntosh, W. B.; Dunnigan, M. G.
1972-01-01
Eight Pakistani children with late rickets and two Pakistani women with osteomalacia were given a chupatty-free diet for seven weeks, substituting leavened bread of lower extraction. On this diet serum calcium levels rose to normal or near normal, levels of serum inorganic phosphorus rose slightly but significantly, and serum alkaline phosphatase levels showed a definite rise indicative of healing bone disease. It is concluded that the high phytate content of unleavened bread is the major cause of late rickets and osteomalacia in Pakistani and Indian communities in the United Kingdom. The simplest prophylactic measure seems to be the additional fortification with calcium carbonate of the high extraction flour used in preparing unleavened bread. PMID:5069221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, J.P.; Fenton, M.R.
1991-03-15
This study was designed to assess the effects of diets high in fish and corn oil on peripheral nerve metabolism in streptozotocin (STZ) induced diabetic rats. A type I diabetic state was induced in female Sprague-Dawley rats by injection of STZ. Animals were divided into three dietary groups; normal rat chow, high corn oil diet and high fish oil diet. After 4 weeks animals were analyzed for nerve conduction velocity, bled and then sacrificed. Sciatic nerves were removed, processed and several biochemical parameters determined. Plasma zinc levels were elevated in the STZ normal chow group compared to non-diabetic controls. Bothmore » corn oil and fish oil diets tended to eliminate the rise in plasma zinc. Differences in subcellular distribution of zinc in sciatic nerves were also observed. Normal chow STZ animals displayed a 20% decrease in nerve conduction velocity compared to control. Dietary supplementation with either fish or corn oil seemed to ameliorate these effects. Biochemical analysis of Na{sup +}-K{sup +}-ATPase and protein kinase C revealed a decrease in activity in normal chow animals compared to control groups. Again, dietary intervention with either fish or corn oil seemed to return these activities back to normal. The results suggest a link between zinc metabolism and peripheral nerve metabolism which can be modified by dietary intervention.« less
Lee, Geun-Shik; Byun, Hyuk-Soo; Kim, Man-Hee; Lee, Bo-Mi; Ko, Sang-Hwan; Jung, Eui-Man; Gwak, Ki-Seob; Choi, In-Gyu; Kang, Ha-Young; Jo, Hyun-Jin; Lee, Hak-Ju; Jeung, Eui-Bae
2008-11-01
The sap of Acer mono has been called 'bone-benefit-water' in Korea because of its mineral and sugar content. In particular, the calcium concentration of the sap of A. mono is 37.5 times higher than commercial spring water. In the current study, we examined whether A. mono sap could improve or prevent osteoporosis-like symptoms in a mouse model. Male mice (3 weeks old) were fed a low-calcium diet supplemented with 25, 50 or 100 % A. mono sap, commercial spring water or a high calcium-containing solution as a beverage for 7 weeks. There were no differences in weekly weight gain and food intake among all the groups. Mice that were given a low-calcium diet supplemented with commercial spring water developed osteoporosis-like symptoms. To assess the effect of sap on osteoporosis-like symptoms, we examined serum calcium concentration, and femur density and length, and carried out a histological examination. Serum calcium levels were significantly lower in mice that received a low-calcium diet supplemented with commercial spring water (the negative control group), and in the 25 % sap group compared to mice fed a normal diet, but were normal in the 50 and 100 % sap and high-calcium solution groups. Femur density and length were significantly reduced in the negative control and 25 % sap groups. These results indicate that a 50 % sap solution can mitigate osteoporosis-like symptoms induced by a low-calcium diet. We also examined the regulation of expression of calcium-processing genes in the duodenum and kidney. Duodenal TRPV6 and renal calbindin-D9k were up-regulated dose-dependently by sap, and the levels of these factors were higher than those attained in the spring water-treated control. The results demonstrate that the sap of A. mono ameliorates the low bone density induced by a low-calcium diet, most likely by increasing calcium ion absorption.
Effects of dietary gelatin hydrolysates on bone mineral density in magnesium-deficient rats.
Noma, Teruyuki; Takasugi, Satoshi; Shioyama, Miho; Yamaji, Taketo; Itou, Hiroyuki; Suzuki, Yoshio; Sakuraba, Keishoku; Sawaki, Keisuke
2017-09-05
The major types of commercially available gelatin hydrolysates are prepared from mammals or fish. Dietary gelatin hydrolysates from mammals were reported to improve bone mineral density (BMD) in some animal models. In contrast, there is limited study showing the effects of dietary gelatin hydrolysates from fish on BMD. The quantity and structure of peptides in the plasma after oral administration of gelatin hydrolysates depend on the gelatin source, which suggests that the biological activity of gelatin hydrolysates depend on the gelatin source. This study examined the effects of fish-derived gelatin hydrolysate (FGH) or porcine-derived gelatin hydrolysate (PGH) intake on BMD and intrinsic biomechanical properties in magnesium (Mg)-deficient rats as a model showing the decrease in both BMD and intrinsic biomechanical properties. Four-week-old male Wistar rats were assigned into four groups: a normal group was fed a normal diet (48 mg Mg/100 g diet), a Mg-deficient (MgD) group was fed a MgD diet (7 mg Mg/100 g diet), a FGH group was fed a MgD + FGH diet (5% FGH), and a PGH group was fed a MgD + PGH diet (5% PGH) for 8 weeks. At the end of the study, BMD and intrinsic biomechanical properties of the femur were measured. The MgD group showed significantly lower Young's modulus, an intrinsic biomechanical property, and trabecular BMD of the femur than the normal group; however, the MgD diet did not affect cortical BMD and cortical thickness. Both the FGH and the PGH groups showed significantly higher cortical thickness and ultimate displacement of the femur than the normal group, but neither type of gelatin hydrolysate affected Young's modulus. Furthermore, the FGH group, but not the PGH group, showed significantly higher trabecular BMD than the MgD group. This study indicates that FGH and PGH increase cortical thickness but only FGH prevents the decrease in trabecular BMD seen in Mg-deficient rats, while neither type of gelatin hydrolysate affect intrinsic biomechanical properties.
... week, and lasts 3 to 5 hours each time. Blood travels through the artificial kidney, where waste products are ... eat a more normal diet and have more time for work and travel. Peritoneal dialysis is not for everyone, however. A ...
Xi, S; Mao, L; Chen, X; Bai, W
2017-04-01
This study aimed to evaluate the effect of health education combining diet and exercise supervision on menopausal symptoms and diet/exercise habits. The randomized controlled study enrolled 60 patients with perimenopausal syndrome (Kupperman Menopause Index (KMI) score ≥15). The participants were randomized into either an intervention group (n = 30) or a control group (n = 30). Women were interviewed with questionnaires about perimenopausal symptoms, diet pattern and exercise habit. Their height and weight were measured. Women in the intervention group received health education, diet supervision and exercise supervision twice a week while those in the control group continued as normal. The total KMI score, scores of individual symptoms, diet pattern and exercise habit were measured after intervention. The total KMI score, the individual KMI scores for paresthesia, irritability, depression/suspicious, fatigue, arthralgia/myalgia, and palpitations of the intervention group were significantly lower compared with the control group after intervention. The intake of cereal, meat, fats and oils of the intervention group were significantly lower at week 12 compared with baseline. The percentage of women with a regular exercise habit was significantly higher in the intervention group than in the control group after intervention. Twelve weeks intervention of health education combining diet and exercise supervision could improve perimenopausal symptoms and help the patients establish good living habits.
Vitamin E prevents steroid-induced osteonecrosis in rabbits
Kuribayashi, Masaaki; Takahashi, Kenji A; Arai, Yuji; Ishida, Masashi; Goto, Tsuyoshi; Kubo, Toshikazu
2010-01-01
Background and purpose Prevention of osteonecrosis after corticosteroid administration would be important. We examined the potential of vitamin E (α-tocopherol) to reduce the incidence of corticosteroid-induced osteonecrosis in an animal model. Methods Japanese white rabbits were divided into 2 groups; the control group was fed a normal diet and the experimental group was fed α-tocopherol-supplemented diet in which α-tocopherol (600 mg/kg diet) was added to the normal diet. To induce osteonecrosis, high-dose methylprednisolone acetate (MPSL) (20 mg/kg body weight) was injected once into the right gluteus medius muscle of all rabbits. 4 weeks after the injection of MPSL, the presence or absence of osteonecrosis of bilateral femurs was examined histopathologically. The tocopherol/cholesterol ratios were calculated. The plasma levels of thiobarbituric acid-reactive substances (TBARS) were measured. Results Alpha-tocopherol-supplemented diet reduced the incidence of osteonecrosis, which developed in 14 of 20 rabbits in the control group and 5 of 21 rabbits in the experimental group (p = 0.004). The tocopherol/cholesterol ratio was higher in the experimental group than in the control group after the α-tocopherol administration. The plasma TBARS level was lower in the experimental group than in the control group at 4 weeks after the MPSL administration. Interpretation Our findings may offer a new approach for the prevention of corticosteroid-induced osteonecrosis. PMID:20146637
Famurewa, Ademola C; Ekeleme-Egedigwe, Chima A; Nwali, Sophia C; Agbo, Ngozi N; Obi, Joy N; Ezechukwu, Goodness C
2018-05-04
Research findings that suggest beneficial health effects of dietary supplementation with virgin coconut oil (VCO) are limited in the published literature. This study investigated the in vivo effects of a 5-week VCO-supplemented diet on lipid profile, hepatic antioxidant status, hepatorenal function, and cardiovascular risk indices in normal rats. Rats were randomly divided into 3 groups: 1 control and 2 treatment groups (10% and 15% VCO-supplemented diets) for 5 weeks. Serum and homogenate samples were used to analyze lipid profile, hepatorenal function markers, hepatic activities of antioxidant enzymes, and malondialdehyde level. Lipid profile of animals fed VCO diets showed significant reduction in total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels; high-density lipoprotein (HDL) level increased significantly (p < .05) compared to control; and there were beneficial effects on cardiovascular risk indices. The level of malondialdehyde (MDA), a lipid peroxidation marker, remarkably reduced and activities of hepatic antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)-were markedly increased in VCO diet-fed rats. The VCO diet significantly modulated creatinine, sodium (Na + ), potassium (K + ), chloride (Cl - ), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) compared to control. The findings suggest a beneficial effect of VCO on lipid profile, renal status, hepatic antioxidant defense system, and cardiovascular risk indices in rats.
Lee, Bo Ra; Ko, Yu Mi; Cho, Mi Hee; Yoon, Young Ran; Kye, Seung Hee; Park, Yoo Kyoung
2016-04-01
This study investigated the effect of switching normal diet to vegetarian diet rich in vegetables and fruits for school foodservice and home meal on the nutritional status, bowel habit improvement and stress reduction of teachers and adolescents. A total of 40 research subjects (26 students, 14 teachers) from one middle school voluntarily participated in the research. Questionnaire surveys and blood analysis were conducted before and after a 12-week vegetarian diet period. The participants were asked on their dietary habit, bowel habit and stress measurement. After 12 weeks, reduction of BMI (kg/m(2)) in the students (p < 0.05) and reduction of TC (mg/dL) in both teachers and students (p < 0.05) were observed. Also reduction of LDL-C (mg/dL) was observed in the teachers (p < 0.05) whereas serum calcium and Vitamin B12 was increased in the students and teachers (p < 0.005). The teacher's stress level was reduced (p < 0.05) after the 12-week vegetarian diet. As for the changes in bowel habit, the number of the students and teachers classified as experiencing functional constipation was decreased respectively from 10 to 7, from 7 to 5. Based on the result, it is considered that the vegetarian diet rich in fruits and vegetables improved general health status of study subjects suggesting that such a dietary habit would substantially contribute to improving nutritional status and bowel habit.
Lee, Bo Ra; Ko, Yu Mi; Cho, Mi Hee; Yoon, Young Ran
2016-01-01
This study investigated the effect of switching normal diet to vegetarian diet rich in vegetables and fruits for school foodservice and home meal on the nutritional status, bowel habit improvement and stress reduction of teachers and adolescents. A total of 40 research subjects (26 students, 14 teachers) from one middle school voluntarily participated in the research. Questionnaire surveys and blood analysis were conducted before and after a 12-week vegetarian diet period. The participants were asked on their dietary habit, bowel habit and stress measurement. After 12 weeks, reduction of BMI (kg/m2) in the students (p < 0.05) and reduction of TC (mg/dL) in both teachers and students (p < 0.05) were observed. Also reduction of LDL-C (mg/dL) was observed in the teachers (p < 0.05) whereas serum calcium and Vitamin B12 was increased in the students and teachers (p < 0.005). The teacher's stress level was reduced (p < 0.05) after the 12-week vegetarian diet. As for the changes in bowel habit, the number of the students and teachers classified as experiencing functional constipation was decreased respectively from 10 to 7, from 7 to 5. Based on the result, it is considered that the vegetarian diet rich in fruits and vegetables improved general health status of study subjects suggesting that such a dietary habit would substantially contribute to improving nutritional status and bowel habit. PMID:27152300
Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.
Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland
2018-01-01
Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.
Huang, Yan-Hong; Ye, Ting-Ting; Liu, Chong-Xiao; Wang, Lei; Chen, Yuan-Wen; Dong, Yan
2017-01-01
This study aimed to assess the impact of perinatal high-fat (HF) diet in female Sprague-Dawley rats (F0) on glucose metabolism and islet function in their early life of second-generation of offspring (F2). F0 rats were fed with a standard chow (SC) or HF diet for 8 weeks before mating, up to termination of lactation for their first-generation of offspring (F1-SC and F1-HF). F1 females were mated with normal males at the age of week 11, and producing F2 offspring (F2-SC, F2-HF). All the offspring were fed SC diet after weaning for 3 weeks. The glucose level and islet function of F2 offspring were assessed at the age of week 3 and 12. The F2-HF offspring had a high birth weight and maintained a higher body mass at the age of week 3 and 12, along with an impaired glucose tolerance and lower serum insulin levels compared with the F2-SC. β-cell proliferation was also impaired in the islets of F2-HF rats at the age of week 3 and 12. The pancreatic and duodenal homeobox factor-1 (Pdx1) and Neurogenic differentiation 1 (NeuroD1) expressions were decreased in the islet of F2-HF rats at the age of week 12. Maternal HF diet during pre-gestation, gestation, and lactation in rats could result in the increased body weight and glucose intolerance in their early life of F2 offspring due to impaired β-cell function and proliferation.
Houde, Martin; Desbiens, Louisane; Schwertani, Adel; Pejler, Gunnar; Iglarz, Marc; D'Orléans-Juste, Pedro
2016-08-15
To determine the impact of mixed endothelin receptor antagonist and mouse mast cell protease-4 (mMCP-4) in the development of atherosclerosis in the mouse model. Apolipoprotein E (ApoE) KO mice were crossed with mMCP-4 KO mice to generate ApoE/mMCP-4 double KO mice. Atherosclerosis was induced with a normal- or high-fat diet for 12, 27 or 52weeks. Macitentan (30mg/kg/day), a dual ETA/ETB receptor antagonist, was given orally for 6weeks (27week protocol). At sacrifice, aortas and brachiocephalic arteries (BCAs) were collected. En face Sudan IV staining was performed on aortas and BCA sections were subjected to Masson's trichrome stain and α-smooth muscle actin labeling. Under normal diet, both macitentan treatment and the absence of mMCP-4 reduced the development of aortic atherosclerotic lesions in 27-week old ApoE KO mice, but mMCP-4 deletion failed to maintain this effect on 52-week old mice. Under high-fat diet (WD), macitentan, but not the absence of mMCP-4, reduced aortic lesion development in ApoE KO mice. On BCA lesions of 27-week old WD mice, macitentan treatment had a small impact while mMCP-4 deletion showed improved features of plaque stability. These results suggest that the inhibition of mMCP-4 reduces lesion spreading in the earlier phases of atherosclerosis development and can help stabilise the more advanced plaque. Macitentan treatment was more effective to prevent lesion spreading but did not improve plaque features to the same extent. Copyright © 2016 Elsevier Inc. All rights reserved.
Kačarević, Željka Perić; Grgić, Anđela; Šnajder, Darija; Bijelić, Nikola; Belovari, Tatjana; Cvijanović, Olga; Blažičević, Valerija; Radić, Radivoje
2017-09-01
Obesity is related to increased TNF-alpha production in different tissues. TNF-alpha is connected to mitochondrial dysfunction in the liver and also development of fatty infiltration of the liver. Also, postnatal change from normal to high-fat diet causes a significant increase in TNF-alpha serum levels. The aim of this research was to determine how maternal diet and switching male offspring to a different dietary regime after lactation influences rat liver. Ten female Sprague Dawley rats at nine weeks of age were randomly divided in two groups and fed either standard laboratory chow or high-fat diet during six weeks, and then mated with the same male subject. After birth and lactation male offspring from both groups were further divided into four subgroups depending on their subsequent diet. At 22 weeks of age, the animals were weighted, sacrificed and major organs were collected and weighted. Immunohistochemistry for TNF-alpha was performed on liver, and liver samples were analyzed for pathohistological changes. The group in which mothers were fed standard chow and offspring high-fat diet had the most pronounced changes: heaviest liver, poorest histopathological findings and strongest TNF-alpha immunohistochemical staining of liver parenchyma. High-fat diet during pregnancy and lactation and switching to high-fat diet postnatally affects liver weight, histological structure and TNF-alpha expression in male offspring. Copyright © 2017 Elsevier GmbH. All rights reserved.
Persistence of neurological damage induced by dietary vitamin B-12 deficiency in infancy
von Schenck, U.; Bender-Gotze, C.; Koletzko, B.
1997-01-01
Accepted 9 April 1997 A case is reported of a 14 month old boy with severe dietary vitamin B-12 deficiency caused by his mother's vegan diet. Cinical, electroencephalography (EEG), and haematological findings are described. Cranial magnetic resonance imaging (MRI) showed severe frontal and frontoparietal cranial atrophy. Vitamin B-12 supplements led to a rapid improvement of haematological and neurological symptoms. Serum vitamin B-12 and urinary methylmalonate excretion were normal 10 days after treatment began. After six weeks, EEG was normal and cranial MRI after 10 weeks showed complete disappearance of all structural abnormalities. Cognitive and language development, however, remained seriously retarded at the age of 2 years. It is concluded that infantile vitamin B-12 deficiency induced by maternal vegan diets may cause lasting neurodisability even though vitamin B-12 supplementation leads to rapid resolution of cerebral atrophy and electroencephalographic abnormality. PMID:9301352
Maternal Perinatal Diet Induces Developmental Programming of Bone Architecture
Devlin, MJ; Grasemann, C; Cloutier, AM; Louis, L; Alm, C; Palmert, MR; Bouxsein, ML
2013-01-01
Maternal high fat diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal high fat diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed high fat or normal diet from preconception through lactation. Three-week-old male and female pups from high fat (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 wks of age included body mass, body composition, whole body bone mineral content via pDXA, femoral cortical and trabecular architecture via μCT, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower %body fat but higher serum leptin at 14 wks vs. N-N (p<0.05 for both). Whole body bone mineral content was 12% lower at 14 wks and 5% lower at 26 wks, but trabecular bone volume fraction was 20% higher at 14 wks in female HF-N vs. N-N (p<0.05 for all). Male HF-N had normal body mass and mildly impaired glucose tolerance, with lower %body fat at 14 wks and lower serum leptin at 26 wks vs. N-N (p<0.05 for both). Serum insulin was higher at 14 wks and lower at 26 wks in HF-N vs. N-N (p<0.05). Trabecular BV/TV was 34% higher and cortical bone area was 6% higher at 14 wks vs. N-N (p<0.05 for both). These data suggest maternal high fat diet has complex effects on offspring bone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis. PMID:23503967
Impaired cognitive functioning during spontaneous dieting.
Green, M W; Rogers, P J
1995-09-01
In one of a continuing series of studies, the cognitive performance of normal weight female dieters was compared on two sessions, 3 weeks apart. Those who reported themselves as being on a weight-reducing diet on only one of the two sessions displayed poorer vigilance performance, slower reaction times and poorer immediate recall of words when they were dieting. In contrast, performance on a low processing load tapping task was unaffected. Self-report measures showed that dietary restraint, but not state anxiety or depression was increased during dieting. These results are interpreted in terms of an association between dieting behaviour and high levels of distractibility, and extend earlier findings by demonstrating that these deficits in cognitive performance are closely related to dieting or the perceived need to diet per se.
Zhao, Xiaona; Shen, Cheng; Zhu, Hong; Wang, Cong; Liu, Xiangwei; Sun, Xiaolei; Han, Shasha; Wang, Peng; Dong, Zhen; Ma, Xin; Hu, Kai; Sun, Aijun; Ge, Junbo
2016-05-30
Trans-fatty acid consumption has been reported as a risk factor for metabolic disorders and targeted organ damages. Nonetheless, little is known about the roles and mechanisms of trans-fatty acids in obesity, insulin resistance (IR) and hepatic steatosis. Adult C57BL/6 male mice were fed with four different diets for 20 weeks: normal diet (ND), high fat diet (HFD), low trans-fatty acids diet (LTD) and high trans-fatty acid diet (HTD). The diet-induced metabolic disorders were assessed by evaluating body weight, glucose tolerance test, hepatic steatosis and plasma lipid profiles post 20-week diet. Histological (H&E, Oil-Red-O) staining and western blot analysis were employed to assess liver steatosis and potential signaling pathways. After 20-weeks of diet, the body weights of the four groups were 29.61 ± 1.89 g (ND), 39.04 ± 4.27 g (HFD), 34.09 ± 2.62 g (LTD) and 43.78 ± 4.27 g (HTD) (p < 0.05), respectively. HFD intake significantly impaired glucose tolerance, which was impaired further in the mice consuming the HTD diet. The effect was further exacerbated by HTD diet. Moreover, the HTD group exhibited significantly more severe liver steatosis compared with HFD group possibly through regulating adipose triglyceride lipase. The group consuming the HTD also exhibited significantly reduced levels of IRS1, phosphor-PKC and phosphor-AKT. These results support our hypothesis that consumption of a diet high in trans-fatty acids induces higher rates of obesity, IR and hepatic steatosis in male C57BL/6 mice, possibly by suppressing the IRS1dependent pathway.
Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats.
Shao, Shan-shan; Zhao, Yuan-fei; Song, Yong-feng; Xu, Chao; Yang, Jian-mei; Xuan, Shi-meng; Yan, Hui-li; Yu, Chun-xiao; Zhao, Meng; Xu, Jin; Zhao, Jia-jun
2014-11-01
Excess dietary fat intake can induce lipotoxicity in non-adipose tissues. The aim of this study was to observe the effects of dietary high-fat lard intake on thyroid in rats. Male Sprague-Dawley rats were fed a high-fat lard diet for 24 weeks, and then the rats were fed a normal control diet (acute dietary modification) or the high-fat lard diet for another 6 weeks. The serum lipid profile, total thyroxine (TT4), free thyroxine (FT4) and thyrotropin (TSH) levels were determined at the 12, 18, 24 and 30 weeks. High-frequency ultrasound scanning of the thyroid glands was performed at the 24 or 30 weeks. After the rats were sacrificed, the thyroid glands were collected for histological and immunohistochemical analyses. The high-fat lard diet significantly increased triglyceride levels in both the serum and thyroid, and decreased serum TT4 and FT4 levels in parallel with elevated serum TSH levels. Ultrasonic imaging revealed enlarged thyroid glands with lowered echotexture and relatively heterogeneous features in the high-fat lard fed rats. The thyroid glands from the high-fat lard fed rats exhibited enlarged follicle cavities and flattened follicular epithelial cells under light microscopy, and dilated endoplasmic reticulum cisternae, twisted nuclei, fewer microvilli and secretory vesicles under transmission electron microscopy. Furthermore, the thyroid glands from the high-fat lard fed rats showed markedly low levels of thyroid hormone synthesis-related proteins TTF-1 and NIS. Acute dietary modification by withdrawal of the high-fat lard diet for 6 weeks failed to ameliorate the high-fat lard diet-induced thyroid changes. Dietary high-fat lard intake induces significant thyroid dysfunction and abnormal morphology in rats, which can not be corrected by short-term dietary modification.
Liver triacylglycerol content and gestational diabetes: effects of moderate energy restriction.
Hodson, Kenneth; Dalla Man, Chiara; Smith, Fiona E; Barnes, Alison; McParlin, Catherine; Cobelli, Claudio; Robson, Stephen C; Araújo-Soares, Vera; Taylor, Roy
2017-02-01
Women with a history of gestational diabetes mellitus (GDM) have raised liver triacylglycerol. Restriction of energy intake in type 2 diabetes can normalise glucose control and liver triacylglycerol concentration but it is not known whether similar benefits could be achieved in GDM. The aim of this work was to examine liver triacylglycerol accumulation in women with GDM and the effect of modest energy restriction. Sixteen women with GDM followed a 4 week diet (5 MJ [1200 kcal]/day). Liver triacylglycerol, before and after diet and postpartum, was measured by magnetic resonance. Insulin secretion and sensitivity were assessed before and after diet. Twenty-six women who underwent standard antenatal care for GDM (matched for age, BMI, parity and ethnicity) were used as a comparator group. Fourteen women, who completed the study, achieved a weight loss of 1.6 ± 1.7 kg over the 4 week dietary period. Mean weight change was -0.4 kg/week in the study group vs +0.3 kg/week in the comparator group (p = 0.002). Liver triacylglycerol level was normal but decreased following diet (3.7% [interquartile range, IQR 1.2-6.1%] vs 1.8% [IQR 0.7-3.1%], p = 0.004). There was no change in insulin sensitivity or production. Insulin was required in six comparator women vs none in the study group (eight vs two required metformin). Blood glucose control was similar for both groups. The hypo-energetic diet was well accepted. Liver triacylglycerol in women with GDM was not elevated, unlike observations in non-pregnant women with a history of GDM. A 4 week hypo-energetic diet resulted in weight loss, reduced liver triacylglycerol and minimised pharmacotherapy. The underlying pathophysiology of glucose metabolism appeared unchanged.
The effects of beta-adrenergic blockade on body composition in free-fed and diet-restricted rats.
Ji, L L; Doan, T D; Lennon, D L; Nagle, F J; Lardy, H A
1987-04-01
The effects of the non-selective beta-adrenergic blocking agent propranolol (known for its anti-lipolytic activity) on body composition were investigated in growing male rats on normal unrestricted diet (N = 7) and on diet restriction (N = 7, 95% of controls). Three animals in each group were injected i.p. with 30 mg propranolol per kg body weight (bw) dissolved in saline, 5 days/week. This dose attenuates exercising heart rate by 25% and exercise training-induced enzyme activity. The remaining animals received saline. Fat, glycogen, moisture and non-ether extractable residue were determined in the homogenized residue of the whole animal. After 9 weeks on the experimental regimen, bw gain was significantly lower in the diet restricted rats, whereas propranolol had no effect on the bw gain. The percentage of fat, moisture and non-ether extractable residue were unchanged by either propranolol or diet restriction. However, glycogen content was significantly lower in the beta-blocked rats either with or without diet restriction. These data indicated that neither beta-adrenergic blockade nor minimal diet restriction influences the percentage body fat, whereas body glycogen content is decreased under both conditions.
Kim, Juyoung; Kim, Hyunae; Jeong, Do Hyeon; Kim, Sung Han; Park, Seong Kyu; Cho, Yunhi
2006-09-01
To compare the systemic efficacy of borage oil (Borago officinalis: BO) and gromwell (Lithospermum erythrorhizon), two plant species of the Boraginaceae family, epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut oil diet for 8 weeks. Subsequently, guinea pigs were fed diets of BO (group HBO), organic extract (group HGO), or water extract (group HGW) of gromwell for 2 weeks. In groups HGO and HGW, proliferation scores and the level of ceramides, the major lipid maintaining epidermal barrier, were similar with those in normal control group BO fed BO diet for 10 weeks. Despite accumulation of 15-hydroxyeicosatrienoic acid (15-HETrE), the potent anti-proliferative metabolite of gamma-linolenic acid (GLA: major polyunsaturated fatty acid in BO), the reversal of epidermal hyperproliferation and the ceramide level of group HBO were less than those of groups HGO and HGW. Taken together, our data demonstrate that gromwell is more effective in reversing epidermal hyperproliferation with a marked increase in ceramides.
Murphy, V A; Rapoport, S I
1988-06-28
Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.
The adverse effects of high fat induced obesity on female reproductive cycle and hormones
NASA Astrophysics Data System (ADS)
Donthireddy, Laxminarasimha Reddy
The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (p<0.001) increase in leptin levels in 6 month VHFD treated animals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.
Salomé Campos, Dijon Henrique; Grippa Sant’Ana, Paula; Okoshi, Katashi; Padovani, Carlos Roberto; Masahiro Murata, Gilson; Nguyen, Son; Kolwicz, Stephen C.; Cicogna, Antonio Carlos
2018-01-01
Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue. PMID:29494668
Wright, N; Wilson, L; Smith, M; Duncan, B; McHugh, P
2017-03-20
There is little randomised evidence using a whole food plant-based (WFPB) diet as intervention for elevated body mass index (BMI) or dyslipidaemia. We investigated the effectiveness of a community-based dietary programme. Primary end points: BMI and cholesterol at 6 months (subsequently extended). Ages 35-70, from one general practice in Gisborne, New Zealand. Diagnosed with obesity or overweight and at least one of type 2 diabetes, ischaemic heart disease, hypertension or hypercholesterolaemia. Of 65 subjects randomised (control n=32, intervention n=33), 49 (75.4%) completed the study to 6 months. Twenty-three (70%) intervention participants were followed up at 12 months. All participants received normal care. Intervention participants attended facilitated meetings twice-weekly for 12 weeks, and followed a non-energy-restricted WFPB diet with vitamin B 12 supplementation. At 6 months, mean BMI reduction was greater with the WFPB diet compared with normal care (4.4 vs 0.4, difference: 3.9 kg m -2 (95% confidence interval (CI)±1), P<0.0001). Mean cholesterol reduction was greater with the WFPB diet, but the difference was not significant compared with normal care (0.71 vs 0.26, difference: 0.45 mmol l -1 (95% CI±0.54), P=0.1), unless dropouts were excluded (difference: 0.56 mmol l -1 (95% CI±0.54), P=0.05). Twelve-month mean reductions for the WFPB diet group were 4.2 (±0.8) kg m - 2 BMI points and 0.55 (±0.54, P=0.05) mmol l -1 total cholesterol. No serious harms were reported. This programme led to significant improvements in BMI, cholesterol and other risk factors. To the best of our knowledge, this research has achieved greater weight loss at 6 and 12 months than any other trial that does not limit energy intake or mandate regular exercise.
Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet.
Boutagy, Nabil E; Neilson, Andrew P; Osterberg, Kristin L; Smithson, Andrew T; Englund, Tessa R; Davy, Brenda M; Hulver, Matthew W; Davy, Kevin P
2015-12-01
The objective of this study was to test the hypothesis that the multi-strain probiotic VSL#3 would attenuate the increase in fasting plasma concentrations of trimethylamine-N-oxide (TMAO) following a high-fat diet. Nineteen healthy, non-obese males (18-30 years) participated in the present study. Following a 2-week eucaloric control diet, subjects were randomized to either VSL#3 (900 billion live bacteria) or placebo (cornstarch) during the consumption of a hypercaloric (+1,000 kcal day(-1) ), high-fat diet (55% fat) for 4 weeks. Plasma TMAO, L-carnitine, choline, and betaine (UPLC-MS/MS) were measured at baseline and following a high-fat diet. Plasma TMAO significantly increased 89% ± 66% vs. 115% ± 61% in both the VSL#3 and placebo groups, respectively; however, the magnitude of change in plasma TMAO was not different (P > 0.05) between them. Plasma L-carnitine, choline, and betaine concentrations did not increase following the high-fat diet in either group. A high-fat diet increases plasma TMAO in healthy, normal-weight, young males. However, VSL#3 treatment does not appear to influence plasma TMAO concentrations following a high-fat diet. Future studies are needed to determine whether other therapeutic strategies can attenuate the production of TMAO. © 2015 The Obesity Society.
De Sibio, Maria Teresa; Luvizotto, Renata Azevedo Melo; Olimpio, Regiane Marques Castro; Corrêa, Camila Renata; Marino, Juliana; de Oliveira, Miriane; Conde, Sandro José; Ferreira, Ana Lúcia dos Anjos; Padovani, Carlos Roberto; Nogueira, Célia Regina
2013-01-01
This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3) in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10) and obese (OB; n = 40). The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20) were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR), whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS) given a supraphysiological dose of T3 (25 µg/100 g body weight) along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10), and one that received the supraphysiological dose of T3 (25 µg/100 g body weight) along with the hypercaloric diet (OS, n = 10) for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress.
De Sibio, Maria Teresa; Luvizotto, Renata Azevedo Melo; Olimpio, Regiane Marques Castro; Corrêa, Camila Renata; Marino, Juliana; de Oliveira, Miriane; Conde, Sandro José; Ferreira, Ana Lúcia dos Anjos; Padovani, Carlos Roberto; Nogueira, Célia Regina
2013-01-01
This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3) in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10) and obese (OB; n = 40). The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20) were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR), whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS) given a supraphysiological dose of T3 (25 µg/100 g body weight) along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10), and one that received the supraphysiological dose of T3 (25 µg/100 g body weight) along with the hypercaloric diet (OS, n = 10) for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress. PMID:23468891
Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn
2014-01-01
Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127
Mason, Jeffrey L.; Toews, Arrel; Hostettler, Janell D.; Morell, Pierre; Suzuki, Kinuko; Goldman, James E.; Matsushima, Glenn K.
2004-01-01
To understand mechanisms that may underlie the progression of a demyelinated lesion to a chronic state, we have used the cuprizone model of chronic demyelination. In this study, we investigated the fate of oligodendrocytes during the progression of a demyelinating lesion to a chronic state and determined whether transplanted adult oligodendrocyte progenitors could remyelinate the chronically demyelinated axons. Although there is rapid regeneration of the oligodendrocyte population following an acute lesion, most of these newly regenerated cells undergo apoptosis if mice remain on a cuprizone diet. Furthermore, the oligodendrocyte progenitors also become progressively depleted within the lesion, which appears to contribute to the chronic demyelination. Interestingly, even if the mice are returned to a normal diet following 12 weeks of exposure to cuprizone, remyelination and oligodendrocyte regeneration does not occur. However, if adult O4+ progenitors are transplanted into the chronically demyelinated lesion of mice treated with cuprizone for 12 weeks, mature oligodendrocyte regeneration and remyelination occurs after the mice are returned to a normal diet. Thus, the formation of chronically demyelinated lesions induced by cuprizone appears to be the result of oligodendrocyte depletion within the lesion and not due to the inability of the chronically demyelinated axons to be remyelinated. PMID:15111314
Oboshi, Makiko; Naito, Yoshiro; Sawada, Hisashi; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Masuyama, Tohru
2015-01-01
Deep vein thrombosis (DVT) is a major cause of pulmonary thromboembolism and sudden death. Thus, it is important to consider the pathophysiology of DVT. Recently, iron has been reported to be associated with thrombotic diseases. Hence, in this study, we investigate the effects of dietary iron restriction on the process of thrombus resolution in a rat model of DVT. We induced DVT in 8-week-old male Sprague-Dawley rats by performing ligations of their inferior venae cavae. The rats were then given either a normal diet (DVT group) or an iron-restricted diet (DVT+IR group). Thrombosed inferior venae cavae were harvested at 5 days after ligation. The iron-restricted diet reduced venous thrombus size compared to the normal diet. Intrathrombotic collagen content was diminished in the DVT+IR group compared to the DVT group. In addition, intrathrombotic gene expression and the activity of matrix metalloproteinase-9 were increased in the DVT+IR group compared to the DVT group. Furthermore, the DVT+IR group had greater intrathrombotic neovascularization as well as higher gene expression levels of urokinase-type plasminogen activator and tissue-type plasminogen activator than the DVT group. The iron-restricted diet decreased intrathrombotic superoxide production compared to the normal diet. These results suggest that dietary iron restriction affects the process of thrombus resolution in DVT.
Oboshi, Makiko; Naito, Yoshiro; Sawada, Hisashi; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Masuyama, Tohru
2015-01-01
Background Deep vein thrombosis (DVT) is a major cause of pulmonary thromboembolism and sudden death. Thus, it is important to consider the pathophysiology of DVT. Recently, iron has been reported to be associated with thrombotic diseases. Hence, in this study, we investigate the effects of dietary iron restriction on the process of thrombus resolution in a rat model of DVT. Methods We induced DVT in 8-week-old male Sprague-Dawley rats by performing ligations of their inferior venae cavae. The rats were then given either a normal diet (DVT group) or an iron-restricted diet (DVT+IR group). Thrombosed inferior venae cavae were harvested at 5 days after ligation. Results The iron-restricted diet reduced venous thrombus size compared to the normal diet. Intrathrombotic collagen content was diminished in the DVT+IR group compared to the DVT group. In addition, intrathrombotic gene expression and the activity of matrix metalloproteinase-9 were increased in the DVT+IR group compared to the DVT group. Furthermore, the DVT+IR group had greater intrathrombotic neovascularization as well as higher gene expression levels of urokinase-type plasminogen activator and tissue-type plasminogen activator than the DVT group. The iron-restricted diet decreased intrathrombotic superoxide production compared to the normal diet. Conclusions These results suggest that dietary iron restriction affects the process of thrombus resolution in DVT. PMID:25962140
Robbins, C.S.
1990-01-01
In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.
van der Post, J A; van Buul, B J; Hart, A A; van Heerikhuize, J J; Pesman, G; Legros, J J; Steegers, E A; Swaab, D F; Boer, K
1997-03-01
Neurohypophysial hormones are thought to be involved in alterations in fluid balance during pregnancy and delivery. In the course of normal pregnancy intravascular volume is increased whereas sodium restriction is thought to reduce plasma volume and cardiac output. In the present study, we measured the effect of long-term severe sodium restriction on vasopressin (AVP) and oxytocin (OT) levels during normal pregnancy and after delivery. Fifty-nine healthy nulliparous women were randomized either for a low sodium diet (20 mmol sodium daily) or for a normal diet from week 12 of pregnancy onwards. Circulating plasma levels and urinary excretion of AVP and OT, their neurophysins (Np-AVP and Np-OT) and AVP bound to platelets were determined at regular intervals during pregnancy and after delivery. After completion of the study, women on a sodium-restricted diet were compared with control women on a normal diet using repeated measurement ANOVA with adjustment for potentially confounding variables. After randomization, a reduction in urinary sodium excretion of, on average, 40-82% was found. In general, no effect of sodium restriction could be demonstrated on the various parameters (0.53 < P < 0.98) with the exception of a significantly lower 24-h urinary AVP excretion by non-smokers with sodium restriction compared with non-smokers having a normal diet (P = 0.018). For all parameters, clear changes were found in the course of pregnancy and puerperium (P < 0.0001 to P < 0.005). Platelet-bound AVP decreased and Np-OT increased during pregnancy. After birth, free plasma AVP, platelet-bound AVP, OT, osmolality, sodium and potassium increased, while Np-AVP and Np-OT decreased. Although elevated Np-AVP and Np-OT levels during pregnancy seem to indicate increased release of neurohypophysial hormones, pregnancy up to 36 weeks of gestation is accompanied by low circulating AVP and OT levels. Long-term severe sodium restriction diminishes urinary AVP excretion in (non-smoking) pregnant women, without changing circulating levels of AVP and OT, despite the known reduction in circulating volume. The reduced circulating (platelet-bound) AVP levels during pregnancy, whether or not in combination with severe sodium restriction, support the absence of significant non-osmotic stimulation of AVP during pregnancy.
Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.
Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E
2015-04-15
Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.
Wang, Y; Mu, J J; Liu, F Q; Ren, K Y; Xiao, H Y; Yang, Z; Yuan, Z Y
2014-02-01
Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13(BN) rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.
Cui, BoKang; Liu, Su; Lin, XiaoJun; Wang, Jun; Li, ShuHong; Wang, QiBo; Li, ShengPing
2011-11-01
This study evaluated the protective effects of aqueous extract of Lycium barbarum (LBAE) and ethanol extract of Lycium barbarum (LBEE) on blood lipid levels, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities and liver tissue antioxidant enzyme activities in rats fed a high fat diet (HF). The rats were randomly divided into seven groups of ten rats each and fed a different diet for eight weeks as follows: One group (NC group) was fed a standard diet, one group was fed a high-fat diet (HF group), one group was fed a high-fat diet and orally fed with 20 mg/kg b.w. simvastatin (HF + simvastatin group), and the other group was fed the high fat diet and orally fed with 50 mg/kg b.w. or 100 mg/kg b.w. LBAE (HF + LBAE), or 50 mg/kg b.w. or 100 mg/kg b.w. LBEE (HF + LBEE), respectively. After eight weeks, the HF diet caused deleterious metabolic effects. Rats fed the HF diet alone showed increased hepatocellular enzyme activities in plasma, a significant decline in antioxidant enzyme activities, and elevated liver lipid peroxidation indices. LBAE and LBEE administration significantly reduced liver damage and oxidative changes, and brought back the antioxidants and lipids towards normal levels. These data suggest that these antioxidants protect against toxicity parameters in HF rats.
[Protein metabolism in vegans].
Okuda, T; Miyoshi-Nishimura, H; Makita, T; Sugawa-Katayama, Y; Hazama, T; Simizu, T; Yamaguchi, Y
1994-11-01
To elucidate the mechanisms of adaptation to a low-energy and low-protein vegan diet, we carried out dietary surveys and nitrogen balance studies five times during one year on two women and a man who ate raw brown rice, raw green vegetables, three kinds of raw roots, fruit and salt daily. Individual subjects modified this vegan diet slightly. The mean daily energy intake of the subjects was 18, 14, and 32 kcal/kg, of body weight. The loss of body weight was about 10% of the initial level. The daily nitrogen balance was -32, -33, and -11 mg N/kg of body weight. In spite of the negative nitrogen balance, the results of routine clinical tests, initially normal, did not change with the vegan diet. Ten months after the start of the vegan diet, the subjects were given 15N urea orally. The incorporation of 15N into serum proteins suggested that these subjects could utilize urea nitrogen for body protein synthesis. The level of 15N in serum proteins was close to the level in other normal adult men on a low-protein diet with adequate energy for 2 weeks.
Gainey, Stephen J.; Kwakwa, Kristin A.; Bray, Julie K.; Pillote, Melissa M.; Tir, Vincent L.; Towers, Albert E.; Freund, Gregory G.
2016-01-01
Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K+ (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies. PMID:27563288
Dai, Yanyan; Yang, Fan; Zhou, Nan; Sha, Lijun; Zhou, Shanshan; Wang, Junle; Li, Xiaonan
2016-11-01
Early life is considered a critical period for determining long-term metabolic health. Postnatal over-nutrition may alter glucocorticoid (GC) metabolism and increase the risk of developing obesity and metabolic disorders in adulthood. Our aim was to assess the effects of the dose and timing of a fish oil diet on obesity and the expression of GC-activated enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD1) in postnatal overfed rats. Litter sizes were adjusted to three (small litter (SL)) or ten (normal litter) rats on postnatal day 3 to induce overfeeding or normal feeding. The SL rats were divided into three groups after weaning: high-dose fish oil (HFO), low-dose fish oil (LFO) and standard-diet groups. After 10 weeks, the HFO diet reduced body weight gain (16 %, P0·05). In conclusion, the post-weaning HFO diet could reverse adverse outcomes and decrease tissue GC activity in postnatal overfed rats.
2011-01-01
Background Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise. Methods Twenty four Sprague-Dawley rats (weighing 320-370 gm) were divided into four groups; a control group of sedentary rats which were given a normal diet, second group of sedentary rats with oral supplementation of 30 mg/kg/d of Tri E®, third group comprised of exercised rats on a normal diet, and the fourth group of exercised rats with oral supplementation of 30 mg/kg/d of Tri E®. The exercising rats were trained on a treadmill for 30 minutes per day for 8 weeks. Blood samples were taken before and after 8 weeks of the study to determine SOD, GPx, Cat activities and DNA damage. Results SOD activity decreased significantly in all the groups compared to baseline, however both exercised groups showed significant reduction in SOD activity as compared to the sedentary groups. Sedentary control groups showed significantly higher GPx and Cat activity compared to baseline and exercised groups. The supplemented groups, both exercised and non exercised groups, showed significant decrease in Cat activity as compared to their control groups with normal diet. DNA damage was significantly higher in exercising rats as compared to sedentary control. However in exercising groups, the DNA damage in supplemented group is significantly lower as compared to the non-supplemented group. Conclusions In conclusion, antioxidant enzymes activity were generally reduced in rats supplemented with Tri E® probably due to its synergistic anti-oxidative defence, as evidenced by the decrease in DNA damage in Tri E® supplemented exercise group. PMID:21513540
Abd Hamid, Noor Aini; Hasrul, Mohd A; Ruzanna, Rusdiah J; Ibrahim, Ibrahim A; Baruah, Prasamit S; Mazlan, Musalmah; Yusof, Yasmin Anum Mohd; Ngah, Wan Zurinah Wan
2011-04-23
Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise. Twenty four Sprague-Dawley rats (weighing 320-370 gm) were divided into four groups; a control group of sedentary rats which were given a normal diet, second group of sedentary rats with oral supplementation of 30 mg/kg/d of Tri E®, third group comprised of exercised rats on a normal diet, and the fourth group of exercised rats with oral supplementation of 30 mg/kg/d of Tri E®. The exercising rats were trained on a treadmill for 30 minutes per day for 8 weeks. Blood samples were taken before and after 8 weeks of the study to determine SOD, GPx, Cat activities and DNA damage. SOD activity decreased significantly in all the groups compared to baseline, however both exercised groups showed significant reduction in SOD activity as compared to the sedentary groups. Sedentary control groups showed significantly higher GPx and Cat activity compared to baseline and exercised groups. The supplemented groups, both exercised and non exercised groups, showed significant decrease in Cat activity as compared to their control groups with normal diet. DNA damage was significantly higher in exercising rats as compared to sedentary control. However in exercising groups, the DNA damage in supplemented group is significantly lower as compared to the non-supplemented group. In conclusion, antioxidant enzymes activity were generally reduced in rats supplemented with Tri E® probably due to its synergistic anti-oxidative defence, as evidenced by the decrease in DNA damage in Tri E® supplemented exercise group.
Hawks, Steven R; Madanat, Hala; Smith, Terisue; De La Cruz, Natalie
2008-01-01
In this exploratory study, the authors evaluated the impact of an elective college course on dieting levels, eating styles, and body image among college women. Participants were a convenience sample of 29 self-selected female students at a western university who were mostly white, normal-weight seniors with significant dieting experience. The authors used valid and reliable instruments to collect data both before and after testing. An instructor conducted the program in an undergraduate course that met twice weekly for 15 weeks. Theory-based lessons focused on resisting media pressure, modifying dietary restraint, eating in response to hunger (intrinsic eating), and achieving healthy body image. Dependent variables included intrinsic eating, dieting involvement, emotional eating, body image, and self-esteem. A comparison of pretest and posttest scores identified significant improvements for most measures. A theory-driven elective course implemented within a college setting may improve women's eating styles and body image.
The New Nordic Diet: phosphorus content and absorption.
Salomo, Louise; Poulsen, Sanne K; Rix, Marianne; Kamper, Anne-Lise; Larsen, Thomas M; Astrup, Arne
2016-04-01
High phosphorus content in the diet may have adverse effect on cardiovascular health. We investigated whether the New Nordic Diet (NND), based mainly on local, organic and less processed food and large amounts of fruit, vegetables, wholegrain and fish, versus an Average Danish Diet (ADD) would reduce the phosphorus load due to less phosphorus-containing food additives, animal protein and more plant-based proteins. Phosphorus and creatinine were measured in plasma and urine at baseline, week 12 and week 26 in 132 centrally obese subjects with normal renal function as part of a post hoc analysis of data acquired from a 26-week controlled trial. We used the fractional phosphorus excretion as a measurement of phosphorus absorption. Mean baseline fractional phosphorus excretion was 20.9 ± 6.6 % in the NND group (n = 82) and 20.8 ± 5.5 % in the ADD group (n = 50) and was decreased by 2.8 ± 5.1 and 3.1 ± 5.4 %, respectively, (p = 0.6) at week 26. At week 26, the mean change in plasma phosphorus was 0.04 ± 0.12 mmol/L in the NND group and -0.03 ± 0.13 mmol/L in the ADD group (p = 0.001). Mean baseline phosphorus intake was 1950 ± 16 mg/10 MJ in the NND group and 1968 ± 22 mg/10 MJ in the ADD group and decreased less in the NND compared to the ADD (67 ± 36 mg/10 MJ and -266 ± 45 mg/day, respectively, p < 0.298). Contrary to expectations, the NND had a high phosphorus intake and did not decrease the fractional phosphorus excretion compared with ADD. Further modifications of the diet are needed in order to make this food concept beneficial regarding phosphorus absorption.
Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime
2016-07-01
High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Lianshan; Liang, Libin; Tong, Tong; Qin, Yuguo; Xu, Yanping; Tong, Xinglong
2016-10-01
Context Recently, adenosine triphosphate (ATP) was occasionally found to decrease the triglyceride (TG) levels in several hyperlipidemic patients in our clinical practice. Objective The study investigates the anti-hyperlipidemic effects of ATP in a high-fat fed rabbit model and hyperlipidemic patients. Materials and methods Twenty-four rabbits were randomly divided into three groups of eight animals each as follows: normal diet, high-fat diet and high-fat diet + ATP group. ATP supplementation (40 mg/day) was started at the 20th day and lasted for 10 days. Serum concentrations of total cholesterol (TC), TG, LDL-C, HDL-C were measured on the 20th day and 30th day. Heart, liver and aorta were subjected histopathological examination. Twenty outpatients diagnosed primary hyperlipidemia took ATP at a dose of 60 mg twice a day for 1 week. Results Feeding rabbits with a high-fat diet resulted in a significant elevation of lipid parameters including TC, TG, LDL-C, VLDL-C compared to the normal diet group (p < 0.01). ATP treatment significantly decreased serum TG level (p < 0.01), whilst other parameters remained statistically unaltered. Meanwhile, ATP significantly reduced the thickness of fat layer in cardiac epicardium (p < 0.05) and pathological gradation of ballooning degeneration in hepatocytes (p < 0.05). After taking ATP for 1 week, hyperlipidemia patients exhibited a significant decrease of TG (p < 0.01), but other lipid parameters had no significant change. Discussion and conclusion The study indicates that ATP selectively decreases serum TG levels in high-fat diet rabbits and hyperlipidemic patients. Therefore, ATP supplementation may provide an effective approach to control TG level.
Kimani, S; Moterroso, V; Morales, P; Wagner, J; Kipruto, S; Bukachi, F; Maitai, C; Tshala-Katumbay, D
2014-04-01
We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5mg/kg bw) or NaOCN (50mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~80× faster in the nervous system (14 ms to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In M. fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~2× relative to that of rodents. The nervous system susceptibility to cyanide may result from a "multiple hit" by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kimani, S.; Moterroso, V.; Morales, P.; Wagner, J.; Kipruto, S.; Bukachi, F.; Maitai, C.; Tshala-Katumbay, D.
2014-01-01
We sought to elucidate the impact of diet, cyanide or cyanate exposure on mammalian cyanide detoxification capabilities (CDC). Male rats (~8 weeks old) (N=52) on 75% sulfur amino acid (SAA)-deficient diet were treated with NaCN (2.5 mg/kg bw) or NaOCN (50 mg/kg bw) for 6 weeks. Macaca fascicularis monkeys (~12 years old) (N=12) were exclusively fed cassava for 5 weeks. CDC was assessed in plasma, or spinal cord, or brain. In rats, NaCN induced seizures under SAA-restricted diet whereas NaOCN induced motor deficits. No deficits were observed in non-human primates. Under normal diet, the CDC were up to ~ 80X faster in the nervous system (14 milliseconds to produce one μmol of thiocyanate from the detoxification of cyanide) relative to plasma. Spinal cord CDC was impaired by NaCN, NaOCN, or SAA deficiency. In macaca fascicularis, plasma CDC changed proportionally to total proteins (r=0.43; p<0.001). The plasma CDC was ~ 2X relative to that of rodents. The nervous system susceptibility to cyanide may result from a “multiple hit” by the toxicity of cyanide or its cyanate metabolite, the influences of dietary deficiencies, and the tissue variations in CDC. Chronic dietary reliance on cassava may cause metabolic derangement including poor CDC. PMID:24500607
Stoeckel, Katja; Nielsen, Leif Højvang; Fuhrmann, Herbert; Bachmann, Lisa
2011-10-24
In dogs, increasing the tissue n-3 fatty acid (FA) content is associated with potential benefit in some medical conditions, e.g. atopic dermatitis, cancer or heart disease. Therefore effectively and conveniently increasing tissue n-3 FA levels in dogs is of interest. Incorporation of dietary n-3 FA into cell membranes may be studied by FA analysis of erythrocyte membranes (EM), because of the correlation of its FA composition with the FA composition of other cells. Aim of the study was to determine whether an n-3 FA additive added to a control diet is as effective in increasing EM n-3 FA content as feeding an n-3 FA enriched diet. Furthermore the time course of the incorporation of dietary n-3 FA into canine EM was investigated. Thirty dogs were randomly divided into three dietary groups with ten dogs per group. CONT got a dry dog food diet which did not contain EPA or DHA. FO got a dry dog food diet with a high EPA and DHA content. ADD got the CONT diet combined with an n-3 FA additive rich in DHA and EPA. After a feeding period of 12 weeks the additive was discontinued in ADD and these dogs were fed CONT diet for another four weeks to observe washout effects. Erythrocyte lipids were extracted from venous blood samples and their FA composition was determined by gas chromatography. The Mann-Whitney-U-test was used to detect significant differences between the different groups and time points. After one week the proportions of n-3 FA, DHA and EPA were already significantly increased in ADD and FO, apparently reaching a plateau within eight weeks. In our study DHA and not EPA was preferably incorporated into the EM. After discontinuing the administration of the additive in ADD, the n-3 FA values declined slowly without reaching baseline levels within four weeks. In dogs, an increase of dietary n-3 FA content leads to a rapid inclusion of n-3 FA into EM, regardless of whether the n-3 FA are offered as an enriched diet or as a normal diet supplemented with an n-3 FA additive.
2011-01-01
Background In dogs, increasing the tissue n-3 fatty acid (FA) content is associated with potential benefit in some medical conditions, e.g. atopic dermatitis, cancer or heart disease. Therefore effectively and conveniently increasing tissue n-3 FA levels in dogs is of interest. Incorporation of dietary n-3 FA into cell membranes may be studied by FA analysis of erythrocyte membranes (EM), because of the correlation of its FA composition with the FA composition of other cells. Aim of the study was to determine whether an n-3 FA additive added to a control diet is as effective in increasing EM n-3 FA content as feeding an n-3 FA enriched diet. Furthermore the time course of the incorporation of dietary n-3 FA into canine EM was investigated. Methods Thirty dogs were randomly divided into three dietary groups with ten dogs per group. CONT got a dry dog food diet which did not contain EPA or DHA. FO got a dry dog food diet with a high EPA and DHA content. ADD got the CONT diet combined with an n-3 FA additive rich in DHA and EPA. After a feeding period of 12 weeks the additive was discontinued in ADD and these dogs were fed CONT diet for another four weeks to observe washout effects. Erythrocyte lipids were extracted from venous blood samples and their FA composition was determined by gas chromatography. The Mann-Whitney-U-test was used to detect significant differences between the different groups and time points. Results After one week the proportions of n-3 FA, DHA and EPA were already significantly increased in ADD and FO, apparently reaching a plateau within eight weeks. In our study DHA and not EPA was preferably incorporated into the EM. After discontinuing the administration of the additive in ADD, the n-3 FA values declined slowly without reaching baseline levels within four weeks. Conclusions In dogs, an increase of dietary n-3 FA content leads to a rapid inclusion of n-3 FA into EM, regardless of whether the n-3 FA are offered as an enriched diet or as a normal diet supplemented with an n-3 FA additive. PMID:22024384
McCormick, David L.; Phillips, Jonathan M.; Horn, Thomas L.; Johnson, William D.; Steele, Vernon E.; Lubet, Ronald A.
2009-01-01
Oral squamous cell carcinomas induced in rats by 4-nitroquinoline-1-oxide (NQO) demonstrate substantial overexpression of cyclooxygenase-2 (COX-2) when compared to adjacent phenotypically normal oral tissues. By contrast, neither 5-lipoxygenase (5-LOX) nor 12-lipoxygenase (12-LOX) is overexpressed in rat oral cancers. Two chemoprevention studies were performed to test the resulting hypothesis that COX-2 is a useful target for oral cancer chemoprevention in the rat. In both studies, male F344 rats received drinking water exposure to NQO (20 ppm) for 10 weeks, followed by administration of chemopreventive agents from week 10 until study termination at week 26. In the first study, groups of rats were fed basal diet (control), or basal diet supplemented with the selective COX-2 inhibitor, celecoxib (500 or 1500 mg/kg diet); the non-selective COX inhibitor, piroxicam (50 or 150 mg/kg diet); or the 5-LOX inhibitor, zileuton (2000 mg/kg diet). In the second study, rats were fed basal diet (control) or basal diet supplemented with NO-Naproxen (180 or 90 mg/kg diet), a non-selective COX inhibitor that demonstrates reduced gastrointestinal toxicity. When compared to dietary controls, celecoxib decreased oral cancer incidence, cancer invasion score, and cancer-related mortality. Piroxicam decreased cancer-related mortality and cancer invasion score, while NO-naproxen decreased oral cancer incidence and cancer invasion score. By contrast, zileuton demonstrated no chemopreventive activity by any parameter assessed. These data demonstrate that both selective and non-selective inhibitors of COX-2 can prevent NQO-induced oral carcinogenesis in rats. The chemopreventive activity of COX inhibitors may be linked to overexpression of their enzymatic target in incipient oral neoplasms. PMID:20051374
Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Cuevas-Romero, Estela; Luna-Moreno, Dalia; Valente-Godínez, Héctor; Vázquez-Martínez, Olivia; Martínez-Gómez, Margarita; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia
2017-11-01
Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.
Metabolic dysfunction following weight-cycling in male mice
Schofield, SE; Parkinson, JRC; Henley, AB; Sahuri, M; Sanchez-Canon, GJ; Bell, JD
2016-01-01
Background Combatting over-weight or obesity can lead to large fluctuations in an individual’s body weight, often referred to as weight cycling or “yo-yo” dieting. Current evidence regarding the potentially damaging effects of these changes is conflicting. Methods Here, we assess the metabolic effects of weight cycling in a murine model, comprising three dietary switches to normal or high fat diets at 6 week intervals; male C57BL/6 mice were fed either a control (C) or high fat (F) diet for 6 weeks (n=140/group). C and F groups were then either maintained on their initial diet (CC and FF respectively) or switched to a high fat (CF) or control (FC) diet (n=35/group). For the final 6 week interval, CC and CF groups were returned to the control diet (CCC and CFC groups) while FC and FF groups were placed on a high fat diet (FCF and FFF) (n=28/group). Results For the majority of metabolic outcomes changes aligned with dietary switches; however assessment of neuropeptides and receptors involved in appetite regulation and reward signalling pathways reveal variable patterns of expression. Furthermore, we demonstrate that multiple cycling events leads to a significant increase in internal fat deposition, even when compared to animals maintained on a high fat diet (Internal Fat: FCF: 7.4 ± 0.2g vs. FFF: 5.6 ± 0.2g; p<0.01). Conclusions Increased internal adipose tissue is strongly linked to the development of metabolic syndrome associated conditions such as type 2 diabetes, cardiovascular disease and hypertension. While further work will be required to elucidate the mechanisms underlying the neuronal control of energy homeostasis, these studies provide a causative link between weight cycling and adverse health. PMID:27840414
Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping
2016-12-01
High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tian, Feng; Zhang, Ya Jie; Li, Yu; Xie, Ying
2014-01-01
Our aim was to test whether pharmacological inhibition of cycloxygenase-2 (COX-2) reverses non-alcoholic steatohepatitis (NASH) in type 2 diabetes mellitus (T2DM) rats via suppression of the non-canonical Wnt signaling pathway expression. Twenty-four male Sprague-Dawley rats were randomly distributed to two groups and were fed with a high fat and sucrose (HF-HS) diet or a normal chow diet, respectively. After four weeks, rats fed with a HF-HS diet were made diabetic with low-dose streptozotocin. At the 9th week the diabetic rats fed with a HF-HS diet or the non-diabetic rats fed with a normal chow diet were further divided into two subgroups treated with vehicle or celecoxib (a selective COX-2 inhibitor, 10 mg/Kg/day, gavage) for the last 4 weeks, respectively. At the end of the 12th week, rats were anesthetized. NASH was assessed by histology. Related cytokine expression was measured at both the protein and gene levels through immunohistochemistry (IHC), Western blot and real-time PCR. T2DM rats fed with a HF-HS diet developed steatohepatitis and insulin resistance associated with elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), insulin levels and the non-alcoholic fatty liver disease (NAFLD) activity score (NAS). The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 were all significantly increased in the T2DM-NASH group compared with the control and control-cele group. Hepatic injury was improved by celecoxib in T2DM-NASH-Cele group indicated by reduced serum ALT and AST levels and hepatic inflammation was reduced by celecoxib showed by histology and the NAFLD activity score (NAS). Serum related metabolic parameters, HOMA-IR and insulin sensitivity index were all improved by celecoxib. The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 expression were all suppressed by celecoxib in T2DM-NASH-Cele group. The results of the present study indicated that celecoxib ameliorated NASH in T2DM rats via suppression of the non-canonical Wnt5a/JNK1 signaling pathway expression. PMID:24404139
The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.
Wang, Jun; Ryu, Ho Kyung
2015-10-01
The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.
The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet
Wang, Jun
2015-01-01
BACKGROUND/OBJECTIVES The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. MATERIALS/METHODS Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. RESULTS Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). CONCLUSIONS Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism. PMID:26425278
Nameni, Ghazaleh; Hajiluian, Ghazaleh; Shahabi, Parviz; Farhangi, Mahdieh Abbasalizad; Mesgari-Abbasi, Mehran; Hemmati, Mohammad-Reza; Vatandoust, Seyed Mahdi
2017-02-01
There is growing evidence that obesity can lead to neurodegeneration induced by pro-inflammatory cytokines such as tumor necrosis factor (TNF-α). Moreover, obesity is associated with reduced transport of insulin through the blood-brain barrier (BBB). Insulin deficiency in the brain especially in the hypothalamus region has neurodegenerative and obesity-promoting effects. Because of the anti-inflammatory and neuroprotective effects of vitamin D, in the current experimental study, we aimed to investigate the effects of vitamin D supplementation on neurodegeneration, TNF-α concentration in the hypothalamus, and cerebrospinal fluid (CSF) to serum ratio of insulin in high-fat-diet-induced obese rats. At the first phase of the study, the rats were divided into two groups: (1) normal diet (ND, 10% fat) and (2) high-fat diet (HFD, 59% fat) and were fed for 16 weeks. In the second phase, each group was subdivided into four groups including the following: ND, normal diet + vitamin D, HFD, and HFD + vitamin D. Weight was measured and recorded weekly. Vitamin D supplementation for 5 weeks at 500 IU/kg dosage was used. One week after vitamin D supplementation, daily food intake was recorded. At week 22, blood was collected to determine fasting serum glucose, vitamin D, and insulin concentrations, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. CSF samples were also collected to measure insulin concentrations, and the hypothalamus was dissected to determine TNF-α concentration. HFD significantly increased TNF-α concentrations and degenerated neurons in the hypothalamus (P = 0.02). We also observed a significant reduction of CSF-to-serum ratio of insulin in HFD group (P = 0.03). The HOMA-IR test indicated significant increment of insulin resistance in HFD-fed rats (P = 0.006). Vitamin D supplementation in HFD group significantly reduced weight (P = 0.001) and food intake (P = 0.008) and increased CSF-to-serum ratio of insulin (P = 0.01). Furthermore, vitamin D decreased insulin resistance in the HFD group (P = 0.008). Vitamin D had no significant effect on degenerated neurons and TNF-α concentration in the hypothalamus. According to our findings, vitamin D improved brain insulin homeostasis and modulated food intake and body weight in high-fat-diet-induced obese rats. Further studies are needed to better clarify the underlying mechanisms.
La Favor, Justin D.; Anderson, Ethan J.; Hickner, Robert C.; Wingard, Christopher J.
2016-01-01
Introduction It is suggested that erectile dysfunction (ED) may be an early risk factor for cardiovascular disease. Aim The goal of this study was to determine whether development of ED precedes the onset of coronary artery endothelial dysfunction in response to a Western diet (WD), thereby establishing whether the WD differentially impacts the endothelium in a time-dependent manner. Additionally, a goal was to determine if diet-induced ED is reversible with intracavernosal sepiapterin treatment. Methods Male Sprague-Dawley rats were fed a WD for 4, 8, or 12 weeks, or a control diet for 8 weeks. Erectile function was evaluated by measuring the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to electrical field stimulation of the cavernosal nerve near the major pelvic ganglion, in the absence and presence of sepiapterin. Coronary artery endothelial function was evaluated ex vivo with cumulative doses of acetylcholine (ACh) applied to segments of the left anterior descending coronary artery preconstricted with serotonin. Main Outcome Measures Erectile function was assessed as the ICP response to electrical field stimulation (EFS), normalized to MAP. Coronary artery endothelial function was assessed as the effective concentration producing 50% of a maximal response (EC50) of the ACh response. Results The ICP/MAP response to EFS was significantly attenuated following both 8 and 12 weeks of the WD compared with the control diet (P < 0.05). Sepiapterin treatment augmented the ICP/MAP response in all WD groups (P < 0.05). The coronary artery EC50 of the ACh response was not different from control following 4 or 8 weeks but was significantly elevated following 12 weeks of the WD (P < 0.01). Conclusions These data suggest that erectile function is reduced prior to coronary artery endothelial function in response to the WD. Improvement of erectile function with sepiapterin in WD rats indicates that nitric oxide synthase uncoupling is a key mechanism in diet-induced ED. PMID:23170997
The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet
Glastras, Sarah J.; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T.; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A.; Saad, Sonia
2017-01-01
Aims/Hypothesis Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Methods Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. Results HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Conclusion Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity. PMID:28225809
The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet.
Glastras, Sarah J; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A; Saad, Sonia
2017-01-01
Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity.
The effects of diet and physical activity on plasma homovanillic acid in normal human subjects.
Kendler, K S; Mohs, R C; Davis, K L
1983-03-01
This study examines the effect of diet and moderate physical activity on plasma levels of the dopamine metabolite homovanillic acid (HVA) in healthy young males. At weekly intervals, subjects were fed four isocaloric meals: polycose (pure carbohydrate), sustecal, low monoamine, and high monoamine. Moderate physical activity consisted of 30 minutes of exercise on a bicycle ergometer. The effect of diet on plasma HVA (pHVA) was highly significant. Compared to the polycose meal, the high monoamine meal significantly increased pHVA. Moderate physical activity also significantly increased pHVA. Future clinical studies using pHVA in man as an index of brain dopamine function should control for the effects of both diet and physical activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui
The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovariesmore » in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.« less
Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E
2010-07-16
Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.
Gao, Shuang; Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu
2005-08-01
The Na(+) receptor that exists in the hepatoportal region plays an important role in postprandial natriuresis and the regulation of Na(+) balance during NaCl load. Thus it would be considered that a dysfunction of the hepatic Na(+) receptor might result in the elevation of arterial pressure under a condition of high NaCl diet. To elucidate this hypothesis, arterial pressure was continuously measured during three weeks of high NaCl diet (8% NaCl) in four groups of rats: (i) intact rats, (ii) rats with hepatic denervation (HD), (iii) rats with sinoaortic denervation (SAD), and (iv) rats with SAD+HD. During a 1-week normal NaCl diet period, there was no difference in arterial pressure among the four groups. A high NaCl diet had no influence on arterial pressure in intact or HD rats; however, it significantly increased by 11 +/- 3 mmHg in SAD rats. The addition of HD to SAD had no synergistic effect on arterial pressure; i.e., in SAD+HD rats, mean arterial pressure increased by 13 +/- 1 mmHg. In conclusion, sinoaortic baroreceptor, but not hepatic Na(+) receptor, has a significant role in the long-term regulation of arterial pressure on a high NaCl diet.
Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.
Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia
2016-03-23
Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring.
Is Western Diet-Induced Nonalcoholic Steatohepatitis in Ldlr-/- Mice Reversible?
Lytle, Kelli A.; Jump, Donald B.
2016-01-01
Background Nonalcoholic fatty liver disease (NAFLD) is a major public health burden in western societies. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), is characterized by hepatosteatosis, inflammation, oxidative stress, and hepatic damage that can progress to fibrosis and cirrhosis; risk factors for hepatocellular carcinoma. Given the scope of NASH, validating treatment protocols (i.e., low fat diets and weight loss) is imperative. Methods We evaluated the efficacy of two diets, a non-purified chow (NP) and purified (low-fat low-cholesterol, LFLC) diet to reverse western diet (WD)-induced NASH and fibrosis in Ldlr-/- mice. Results Mice fed WD for 22–24 weeks developed robust hepatosteatosis with mild fibrosis, while mice maintained on the WD an additional 7–8 weeks developed NASH with moderate fibrosis. Returning WD-fed mice to the NP or LFLC diets significantly reduced body weight and plasma markers of metabolic syndrome (dyslipidemia, hyperglycemia) and hepatic gene expression markers of inflammation (Mcp1), oxidative stress (Nox2), fibrosis (Col1A, LoxL2, Timp1) and collagen crosslinking (hydroxyproline). Time course analyses established that plasma triglycerides and hepatic Col1A1 mRNA were rapidly reduced following the switch from the WD to the LFLC diet. However, hepatic triglyceride content and fibrosis did not return to normal levels 8 weeks after the change to the LFLC diet. Time course studies further revealed a strong association (r2 ≥ 0.52) between plasma markers of inflammation (TLR2 activators) and hepatic fibrosis markers (Col1A, Timp1, LoxL2). Inflammation and fibrosis markers were inversely associated (r2 ≥ 0.32) with diet-induced changes in hepatic ω3 and ω6 polyunsaturated fatty acids (PUFA) content. Conclusion These studies establish a temporal link between plasma markers of inflammation and hepatic PUFA and fibrosis. Low-fat low-cholesterol diets promote reversal of many, but not all, features associated with WD-induced NASH and fibrosis in Ldlr-/- mice. PMID:26761430
Syed, Raisa; Shibata, Noreene M; Kharbanda, Kusum K; Su, Ruijun J; Olson, Kristin; Yokoyama, Amy; Rutledge, John C; Chmiel, Kenneth J; Kim, Kyoungmi; Halsted, Charles H; Medici, Valentina
2016-05-01
Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals.
Dose Reconstruction of Di-2-Ethylhexyl Phthalate Using a Simple Pharmacokinetic Model [Manuscript
Background In 2005, eight adults provided full volumes and times of urine voids during one normal work week. These samples were analyzed for four di-2-ethylhexyl phthalate (DEHP) metabolites. Participants also provided diary information on their diet, driving, and out¬door a...
Normocalcemia without hyperparathyroidism in vitamin D-deficient rats.
Kollenkirchen, U; Fox, J; Walters, M R
1991-03-01
Despite numerous attempts, no reliable dietary regimen exists to achieve vitamin D deficiency (-D) in rats without attendant changes in plasma parathyroid hormone (PTH), Ca, or phosphate. This represents an important obstacle to proper investigations of the physiologic role(s) of vitamin D metabolites in the function of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] target tissues. This paper describes the successful development of such a diet, which uses a combination of high Ca content, properly controlled Ca/P ratio, and lactose. Normal weanling rats were fed diets containing A, 0.8% Ca, 0.5% P, +D3, or -D diets containing B, 0.8% Ca and 0.5% P; C, 2.0% Ca and 1.25% P; or D, 2.0% Ca, 1.25% P, and 20% lactose. After 6 diet weeks group D rats remained normocalcemic and normophosphatemic, but diet groups B and C became hypocalcemic (6.9 +/- 0.8 and 7.2 +/- 0.4 mg/dl, respectively). Thus high dietary Ca and P was incapable of maintaining normal plasma Ca levels in the absence of dietary lactose. The normocalcemia in group D was not maintained by elevated PTH secretion because N-terminal PTH levels were also normal (14 +/- 3 versus 20 +/- 5 pg/ml). In contrast, PTH levels were markedly elevated in hypocalcemic groups B and C (47 +/- 7 and 48 +/- 10 pg/ml, respectively). Plasma 25-OHD3 and 1,25-(OH)2D3 levels were reduced to less than 120 and less than 12 pg/ml, respectively, in all -D groups. Thus the high-Ca diet and the use of normal weanlings did not impede the development of vitamin D deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)
Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E
2017-12-15
The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
Ji, Chenlin; Dai, Yanyan; Jiang, Weiwei; Liu, Juan; Hou, Miao; Wang, Junle; Burén, Jonas; Li, Xiaonan
2014-11-01
Exposure to overnutrition in critical or sensitive developmental periods may increase the risk of developing obesity and metabolic syndrome in adults. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, but the relationship among postnatal nutrition, lipid metabolism, and NAFLD progression during development remains poorly understood. Here we investigated in a rat model whether postnatal overfeeding increases susceptibility to NAFLD in response to a high-fat diet. Litters from Sprague-Dawley dams were culled to three (small litters) or ten (normal litters) pups and then weaned onto a standard or high-fat diet at postnatal day 21 to generate normal-litter, small-litter, normal-litter/high-fat, and small-litter/high-fat groups. At age 16 weeks, the small-litter and both high-fat groups showed obesity, dyslipidemia, and insulin resistance. Hepatic disorders appeared earlier in the small-litter/high-fat rats with greater liver mass gain and higher hepatic triglycerides and steatosis score versus normal-litter/high-fat rats. Hepatic acetyl-CoA carboxylase activity and mRNA expression were increased in small-litter rats and aggravated in small-litter/high-fat rats but not in normal-litter/high-fat rats. The high expression in small-litter/high-fat rats coincided with high sterol regulatory element-binding protein-1c mRNA and protein expression. However, mRNA expression of enzymes involved in hepatic fatty acid oxidation (carnitine palmitoyltransferase 1) and output (microsomal triglyceride transfer protein) was decreased under a high-fat diet regardless of litter size. In conclusion, overfeeding related to small-litter rearing during lactation contributes to the NAFLD phenotype when combined with a high-fat diet, possibly through up-regulated hepatic lipogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaluation of two raw diets vs a commercial cooked diet on feline growth.
Hamper, Beth A; Bartges, Joseph W; Kirk, Claudia A
2017-04-01
Objectives The objective of this study was to determine if two raw feline diets were nutritionally adequate for kittens. Methods Twenty-four 9-week-old kittens underwent an Association of American Feed Control Officials' (AAFCO) 10 week growth feeding trial with two raw diet groups and one cooked diet group (eight kittens in each). Morphometric measurements (weight, height and length), complete blood counts, serum chemistry, whole blood taurine and fecal cultures were evaluated. Results Overall, the growth parameters were similar for all diet groups, indicating the two raw diets used in this study supported feline growth, within the limitations of an AAFCO growth feeding trial. Kittens fed the raw diets had lower albumin ( P = 0.010) and higher globulin ( P = 0.04) levels than the kittens fed the cooked diet. These lower albumin levels were not clinically significant, as all groups were still within normal age reference intervals. A red cell microcytosis ( P = 0.001) was noted in the combination raw diet group. Increases in fecal Clostridium perfringens were noted in all groups, along with positive fecal Salmonella serovar Heidelberg and Clostridium difficile toxin in the combination raw diet group. Conclusions and relevance The majority of the parameters for feline growth were similar among all groups, indicating the two raw diets studied passed an AAFCO growth trial. In theory, it is possible to pass an AAFCO growth trial but still have nutrient deficiencies in the long term due to liver and fat storage depots. Some of the raw feeders had elevated globulin and microcytosis, likely associated with known enteropathogenic exposure. Disease risks to both pets and owners are obvious. Additional research in this area is needed to investigate the impact of raw diets on the health of domestic cats.
Xue, Li; Xu, Wan-Hai; Xu, Jin-Zhi; Zhang, Tong; Bi, Hong-Yuan; Shen, Bao-Zhong
2009-06-20
Researches in arterial elasticity have increased over the past few years. We investigated the effects of simvastatin on vascular stiffness in fat fed rabbits by ultrasonography. Thirty rabbits were assigned randomly to 3 groups: normal control group (A), the cholesterol group (B), simvastatin group (C: high fat diet for 4 weeks and high fat diet + simvastatin for further 4 weeks). Stiffness coefficient, pressure strain elastic modulus and velocity of pulse waves in abdominal aorta and femoral artery were measured by ultrasonographic echo tracking at the end of the 4th and the 8th weeks. At the end of the 4th week, stiffness coefficient, pressure strain elastic modulus and pulse wave velocity of femoral artery were significantly increased in group B compared with those in group A. Similarly, at the end of the 8th week, the same parameters of abdominal aorta were significantly increased in group B compared with those in group A. In contrast, stiffness coefficient, pressure strain elastic modulus and pulse wave velocity of femoral artery were significantly decreased in group C compared with those in group B, however, there was no significant difference in parameters of abdominal aorta between groups B and C. Short term administration of simvastatin can improve the elasticity of femoral artery but not abdominal aorta.
Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.
Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing
2013-10-09
Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Effects of dietary energy density on serum adipocytokine levels in diabetic women.
Tabesh, M; Hosseinzadeh, M J; Tabesh, M; Esmaillzadeh, A
2013-10-01
This study was aimed to assess the effect of dietary energy density (kcal/g) on serum levels of adipocytokines of type 2 diabetic women. In this randomized parallel design clinical trial, a total of 60 diabetic women (aged 30-60 years; BMI>25 kg/m²) were assigned to consume either a low-energy dense (LED) (65% of energy from carbohydrates and 25% from fats), normal-energy dense (NED) (60% from carbohydrates, 30% from fats), or high-energy dense (HED) diet (55% from carbohydrates and 35% from fats) for 8 weeks. The low-energy dense diet was rich in fruits, vegetables, whole grains, and water, while the high-energy dense diet was rich in fats and oils and limited in fruits and vegetables as compared with the normal-dense diet. At baseline and at the end of intervention fasting blood samples were taken to assess metabolic profile. Women in the LED group consumed significantly more dietary fiber (p<0.001), fruits (p<0.001) and vegetables (p<0.001) than those in the NED and HED groups. We failed to find a significant effect of dietary energy density (kcal/g) on serum adiponectin and visfatin levels. Even the within-group changes in serum adiponectin and visfatin levels were not significant. Consumption of LED and NED diets resulted in a significant increase in serum chemerin levels (p=0.04). Comparison of mean changes of serum chemerin levels across 3 groups revealed a significant difference (p=0.04). Our study provides evidence indicating that consumption of HED diet for 8 weeks among diabetic patients prevented the increase in serum chemerin levels compared with LED and NED diets. Furthermore, we found no significant effect of dietary energy density (kcal/g) on serum adiponectin and visfatin concentrations in the current study. © Georg Thieme Verlag KG Stuttgart · New York.
Huang, Juan; Wang, Jialin; Gu, Lijie; Bao, Jinfang; Yin, Jun; Tang, Zhihuan; Wang, Ling; Yuan, Weijie
2013-01-01
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.
Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu
2016-03-01
Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the 'peroxisome proliferator-activated receptor (PPAR) signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.
BLOOD PLASMA PROTEIN REGENERATION CONTROLLED BY DIET
Holman, Russell L.; Mahoney, Earle B.; Whipple, George H.
1934-01-01
When blood plasma proteins are depleted by bleeding and return of the washed red cells (plasmapheresis) the regeneration of new plasma proteins can be controlled at will by diet. The amount and character of protein intake is all important. Liver protein and casein are efficient proteins to promote rapid regeneration of plasma proteins but some vegetable proteins are also efficient. The blood plasma proteins are reduced by plasmapheresis close to the edema level (3.5–4.0 per cent) and kept at this level by suitable exchanges almost daily. The amount of plasma protein removed is credited to the given diet period. A basal ration is used which is poor in vegetable protein (potato) and contains no animal protein. The dog on this ration can be kept in nitrogen balance but can produce only about 2 gm. plasma protein per kilo body weight per week. With liver or casein feeding this production can be increased three- or fourfold. A reserve of protein building material can be demonstrated in the normal dog when its plasma proteins are depleted. In the first 3 weeks of depletion this reserve in excess of the final basal output may amount to 3–20 gm. protein. This may be stored at least in part in the liver. As much as 50 per cent of this reserve may be albumin or albumin producing material. A reversal of the albumin-globulin ratio may be observed on the basal diet alone. The reversal will always follow plasmapheresis with the dog on the basal diet and the total plasma protein output will consist approximately of 2 parts globulin and 1 part albumin. Liver diet will raise the production and output of albumin and bring the ratio back toward normal. Albumin production may actually exceed the globulin output during liver diet periods. The change is less conspicuous with casein but in the same direction. PMID:19870244
Quantifying progression and regression of thrombotic risk in experimental atherosclerosis
Palekar, Rohun U.; Jallouk, Andrew P.; Goette, Matthew J.; Chen, Junjie; Myerson, Jacob W.; Allen, John S.; Akk, Antonina; Yang, Lihua; Tu, Yizheng; Miller, Mark J.; Pham, Christine T. N.; Wickline, Samuel A.; Pan, Hua
2015-01-01
Currently, there are no generally applicable noninvasive methods for defining the relationship between atherosclerotic vascular damage and risk of focal thrombosis. Herein, we demonstrate methods to delineate the progression and regression of vascular damage in response to an atherogenic diet by quantifying the in vivo accumulation of semipermeable 200–300 nm perfluorocarbon core nanoparticles (PFC-NP) in ApoE null mouse plaques with [19F] magnetic resonance spectroscopy (MRS). Permeability to PFC-NP remained minimal until 12 weeks on diet, then increased rapidly following 12 weeks, but regressed to baseline within 8 weeks after diet normalization. Markedly accelerated clotting (53.3% decrease in clotting time) was observed in carotid artery preparations of fat-fed mice subjected to photochemical injury as defined by the time to flow cessation. For all mice on and off diet, an inverse linear relationship was observed between the permeability to PFC-NP and accelerated thrombosis (P = 0.02). Translational feasibility for quantifying plaque permeability and vascular damage in vivo was demonstrated with clinical 3 T MRI of PFC-NP accumulating in plaques of atherosclerotic rabbits. These observations suggest that excessive permeability to PFC-NP may indicate prothrombotic risk in damaged atherosclerotic vasculature, which resolves within weeks after dietary therapy.—Palekar, R. U., Jallouk, A. P., Goette, M. J., Chen, J., Myerson, J. W., Allen, J. S., Akk, A., Yang, L., Tu, Y., Miller, M. J., Pham, C. T. N., Wickline, S. A., Pan, H. Quantifying progression and regression of thrombotic risk in experimental atherosclerosis. PMID:25857553
Sigall-Boneh, Rotem; Pfeffer-Gik, Tamar; Segal, Idit; Zangen, Tsili; Boaz, Mona; Levine, Arie
2014-08-01
Exclusive enteral nutrition is effective for inducing remission in active pediatric Crohn's disease. Partial enteral nutrition (PEN) with free diet is ineffective for inducing remission, suggesting that the mechanism depends on exclusion of free diet. We developed an alternative diet based on PEN with exclusion of dietary components hypothesized to affect the microbiome or intestinal permeability. Children and young adults with active disease defined as a pediatric Crohn's disease activity index >7.5 or Harvey-Bradshaw index ≥4 received a 6-week structured Crohn's disease exclusion diet that allowed access to specific foods and restricted exposure to all other foods, and up to 50% of dietary calories from a polymeric formula. Remission, C-reactive protien, and erythrocyte sedimentation rate were reevaluated at 6 weeks. The primary endpoint was remission at 6 weeks defined as Harvey-Bradshaw index ≤3 for all patients and pediatric Crohn's disease activity index <7.5 in children. We treated 47 patients (mean age, 16.1 ± 5.6 yr; 34 children). Response and remission were obtained in 37 (78.7%) and 33 (70.2%) patients, respectively. Mean pediatric Crohn's disease activity index decreased from 27.7 ± 9.4 to 5.4 ± 8 (P < 0.001), Harvey-Bradshaw index from 6.4 ± 2.7 to 1.8 ± 2.9 (P < 0.001). Remission was obtained in 70% of children and 69% of adults. Normalization of previously elevated CRP occurred in 21 of 30 (70%) patients in remission. Seven patients used the diet without PEN; 6 of 7 obtained remission. Dietary therapy involving PEN with an exclusion diet seems to lead to high remission rates in early mild-to-moderate luminal Crohn's disease in children and young adults.
Association of carotene rich diet with hypogonadism in a male athlete.
Adamopoulos, Dimitrios; Venaki, Evangelia; Koukkou, Eftychia; Billa, Evangelia; Kapolla, Niki; Nicopoulou, Stamatina
2006-07-01
To report on a unique case of hypogonadism associated with excessive carotene intake in a young male athlete. A 20-year-old patient presented with a gradual decline in muscular and physical activity, sexual interest and erectile ability associated with a high in carotene and low in animal fat diet of his own design a year prior to the clinical manifestations. Clinically, he presented with very overt signs of carotene excess: his palms and soles were yellow. Moreover, 2 weeks after normalization of his diet, carotene B levels were at the upper end of the normal range. Repeated stimulation tests of hypothalamic, pituitary and testicular function were performed before and at 3, 6 and 12 months after the introduction of a balanced diet. Very low basal and stimulated values for gonadotropins and gonadal steroids were found at the initial evaluation with a progressive recovery shown after months of a balanced diet and carotene B restoration. Complete androgen secretion and sexual response recovery were observed only after 9-12 months from diagnosis. This is the first report associating excessive carotene intake with a hypothalamic form of hypogonadism in a young man.
THE EFFECT OF DINITROPHENOL AND THYROXIN ON THE SUSCEPTIBILITY OF MICE TO STAPHYLOCOCCAL INFECTIONS
Smiths, J. Maclean; Dubos, René J.
1956-01-01
Mice were given daily per os amounts of dinitrophenol or of thyroid extract sufficient to prevent or retard the normal weight gain of uninfected animals, but not large enough to cause their death. When mice maintained on these regimens for 1 or 2 weeks were infected with staphylococci, most of them died within 12 days—much more rapidly than did mice fed a normal diet. Deaths occurred even when the organism injected was a non-virulent staphylococcus, unable to cause fatal disease in mice fed a normal diet. There was some suggestion that thyroid treatment interfered with the bactericidal mechanism in the liver, spleen, and kidneys of mice during the initial phase of infection. In contrast there was no clear evidence at any time thereafter that either thyroid extract or dinitrophenol caused the staphylococci to multiply more rapidly in the various organs. PMID:13278459
Rondini, Elizabeth A; Bennink, Maurice R
2012-01-01
We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.
Chung, Soo Im; Kim, Tae Hyeong; Rico, Catherine W.; Kang, Mi Young
2014-01-01
The comparative effects of instant cooked rice made from giant embryo mutant or ordinary normal rice on body weight and lipid profile in high fat-fed mice were investigated. The animals were given experimental diets for seven weeks: normal control (NC), high fat (HF), and HF supplemented with instant normal white (HF-NW), normal brown (HF-NB), giant embryonic white (HF-GW), or giant embryonic brown (HF-GB) rice. The HF group showed markedly higher body weight, body fat, plasma and hepatic triglyceride and cholesterol concentrations, and atherogenic index relative to NC group. However, instant rice supplementation counteracted this high fat-induced hyperlipidemia through regulation of lipogenesis and adipokine production. The GB rice exhibited greater hypolipidemic and body fat-lowering effects than the GW or NB rice. These findings illustrate that the giant embryo mutant may be useful as functional biomaterial for the development of instant rice with strong preventive action against high fat diet-induced hyperlipidemia and obesity. PMID:24932656
Effect of an extruded pea or rice diet on postprandial insulin and cardiovascular responses in dogs.
Adolphe, J L; Drew, M D; Silver, T I; Fouhse, J; Childs, H; Weber, L P
2015-08-01
Peas are increasing in popularity as a source of carbohydrate, protein and fibre in extruded canine diets. The aim of this study was to test the health effects of two canine diets with identical macronutrient profiles, but containing either yellow field peas or white rice as the carbohydrate source on metabolism, cardiovascular outcomes and adiposity. First, the acute glycemic, insulinemic and cardiovascular responses to the pea- or rice-based diets were determined in normal weight beagles (n = 7 dogs). The glycemic index did not differ between the pea diet (56 ± 12) and rice diet (63 ± 9). Next, obese beagles (n = 9) were fed the yellow field pea diet or white rice diet ad libitum for 12 weeks in a crossover study. Adiposity (measured using computed tomography), metabolic (oral glucose tolerance test, plasma leptin, adiponectin, C-reactive protein) and cardiovascular assessments (echocardiography and blood pressure) were performed before and after each crossover study period. After 12 weeks on each diet, peak insulin (p = 0.05) and area under the curve (AUC) for insulin after a 10 g oral glucose tolerance test (p = 0.05) were lower with the pea than the rice diet. Diet did not show a significant effect on body weight, fat distribution, cardiovascular variables, adiponectin or leptin. In conclusion, a diet containing yellow field peas reduced the postprandial insulin response after glucose challenge in dogs despite continued obesity, indicating improved metabolic health. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Palou, Mariona; Torrens, Juana María; Priego, Teresa; Sánchez, Juana; Palou, Andreu; Picó, Catalina
2011-06-01
We aimed to assess the lasting effects of moderate caloric restriction in lactating rats on the expression of key genes involved in energy balance of their adult offspring (CR) and their adaptations under high-fat (HF) diet. Dams were fed with either ad libitum normal-fat (NF) diet or a 30% caloric restricted diet throughout lactation. After weaning, the offspring were fed with NF diet until the age of 15 weeks and then with an NF or a HF diet until the age of 28 weeks, when they were sacrificed. Body weight and food intake were followed. Blood parameters and the expression of selected genes in hypothalamus and white adipose tissue (WAT) were analysed. CR ate fewer calories and showed lower body weight gain under HF diet than their controls. CR males were also resistant to the increase of insulin and leptin occurring in their controls under HF diet, and HF diet exposed CR females showed lower circulating fasting triglyceride levels than controls. In the hypothalamus, CR males had higher ObRb mRNA levels than controls, and CR females displayed greater InsR mRNA levels than controls and decreased neuropeptide Y mRNA levels when exposed to HF diet. CR males maintained WAT capacity of fat uptake and storage and of fatty-acid oxidation under HF diet, whereas these capacities were impaired in controls; female CR showed higher WAT ObRb mRNA levels than controls. These results suggest that 30% caloric restriction in lactating dams ameliorates diet-induced obesity in their offspring by enhancing their sensitivity to insulin and leptin signaling, but in a gender-dependent manner. Copyright © 2011 Elsevier Inc. All rights reserved.
Young, Lindsay R; Kurzer, Mindy S; Thomas, William; Redmon, J Bruce; Raatz, Susan K
2013-07-01
The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in healthy individuals are not well defined. Three test diets-high-fat diet (40% energy as fat), low-fat diet (LF; 20% energy as fat), and a diet with low fat and high omega-3 fatty acid (LFn3; 23% energy as fat)--were tested in a randomized crossover designed controlled feeding trial in healthy postmenopausal women. Plasma IGF-I, IGF binding protein-3 (IGFBP-3), insulin, glucose, and ratio of IGF-I/IGFBP-3 concentrations were measured in response to diets. Insulin sensitivity was calculated using the homeostatic model assessment of insulin resistance We hypothesized that IGF-I, insulin, and glucose concentrations would decrease and IGFBP-3 concentration would increase in response to the low-fat diets. Eight weeks of the LFn3 diet increased circulating IGF-I (P < .001) and IGFBP-3 (P = .01) and the LF diet increased IGFBP-3 (P = .04), resulting in trends toward an increased IGF-I/IGFBP-3 ratio with the LFn3 diet and a decreased IGF-I/IGFBP-3 ratio with the LF diet (P = .13 for both comparisons). No statistically significant differences were detected between treatments at baseline or 8 weeks for IGF-1, IGFBP-3, or the ratio of IGF-1/IGFBP-3. Insulin, glucose, and the homeostatic model assessment of insulin resistance were not altered by the interventions. Low-fat diet with high n-3 fatty acids may increase circulating IGF-I concentrations without adversely affecting insulin sensitivity in healthy individuals. Published by Elsevier Inc.
Okamoto, Chihiro; Hayakawa, Yuka; Aoyama, Takuma; Komaki, Hisaaki; Minatoguchi, Shingo; Iwasa, Masamitsu; Yamada, Yoshihisa; Kanamori, Hiromitsu; Kawasaki, Masanori; Nishigaki, Kazuhiko; Mikami, Atsushi; Minatoguchi, Shinya
2017-01-01
A high salt intake causes hypertension and leads to cardiovascular disease. Therefore, a low salt diet is now recommended to prevent hypertension and cardiovascular disease. However, it is still unknown whether an excessively low salt diet is beneficial or harmful for the heart. Wistar Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) received normal salt chow (0.9% salt diet) and excessively low salt chow (0.01% salt diet referred to as saltless diet) for 8 weeks from 8 to 16 weeks of age. The effects of the excessively low salt diet on the cardiac (pro) renin receptor, renin-angiotensin-aldosterone, and sympatho-adrenal systems were investigated. The excessively low salt diet did not affect the systolic blood pressure but significantly increased the heart rate both in WKYs and SHRs. The excessively low salt diet significantly elevated plasma renin activity, plasma angiotensin I, II and aldosterone concentrations, and plasma noradrenaline and adrenaline concentrations both in WKYs and SHRs. Cardiac expressions of renin, prorenin, (P)RR, angiotensinogen, and angiotensin II AT1 receptor and phosphorylated (p)-ERK1/2, p-HSP27, p-38MAPK, and TGF-ß1 were significantly enhanced by the excessively low salt diet in both WKYs and SHRs. The excessively low salt diet accelerated cardiac interstitial and perivascular fibrosis and increased the cardiomyocyte size and interventricular septum thickness in WKYs and SHRs but the extent was greater in SHRs. An excessively low salt diet damages the heart through activation of plasma renin-angiotensin-aldosterone and sympatho-adrenal systems and activation of cardiac (P)RR and angiotensin II AT1 receptor and their downstream signals both in WKYs and SHRs.
Exogenous ghrelin regulates proliferation and apoptosis in the hypotrophic gut mucosa of the rat.
de Segura, Ignacio A Gómez; Vallejo-Cremades, María Teresa; Lomas, Jesús; Sánchez, Miriam F; Caballero, María Isabel; Largo, Carlota; De Miguel, Enrique
2010-04-01
Ghrelin is the natural endogenous ligand for growth hormone secretagogue receptors. This peptide regulates energy homeostasis and expenditure and is a potential link between gut absorptive function and growth. We hypothesized that ghrelin may induce a proliferative and antiapoptotic action promoting the recovery of the hypotrophic gut mucosa. Therefore, the aim of the study was to determine the action of exogenous ghrelin following gut mucosal hypotrophia in rats fed an elemental diet. An elemental diet provides readily absorbable simple nutrients and is usually given to patients with absorptive dysfunction. Male Wistar rats (n = 48) were fed the elemental diet for one week to induce mucosal hypotrophy and then treated for another week with systemic ghrelin and pair-fed with either a normoproteic or hyperproteic isocaloric liquid diet. Another group received a standard diet instead of the elemental diet and served as control (normotrophy). The elemental diet induced intestinal hypotrophia characterized by decreased proliferation in the ileum and increased apoptosis in jejunum and ileum. Ghrelin administration restored normal levels of proliferation in the ileum and apoptosis in the jejunum, with partial apoptosis restoration in the ileum. Ghrelin levels in plasma and fundus were increased in all groups, although the highest levels were found in rats treated with exogenous ghrelin. Ghrelin administration has a positive effect in the hypotrophic gut, regulating both proliferation and apoptosis towards a physiological balance counteracting the negative changes induced by an elemental diet in the intestines.
Dietary fiber's benefit for gallstone disease prevention during rapid weight loss in obese patients.
Sulaberidze, G; Okujava, M; Liluashvili, K; Tughushi, M; Bezarashvili, S
2014-06-01
The aim of present study was to compare the effects of very low calorie diets - protein rich and dietary fiber rich food based - on gallstones formation during rapid weight loss. 68 patients were involved into the study. The body weight index in all cases exceeding normal value and equaled to 35±4,7 kg/m2. For weight correction purposes during 5 weeks the patients in first group were kept on a 520-800 kcal diet of "Margi" food products, prepared according our technology, and in the second group on a protein rich diet of the same calorie content. The body weight and changes in the gall-bladder wall and content were assessed by sonography before starting the diet, after three weeks from the commencement of the diet and upon its completion. The measurement of the body weight after completion of the 5 week diet revealed decrease by 10.9±1,5kg in the first group and by 11,2±1,1kg in the second group. Sonography disclosed growth in the amount of biliary sludge in 3 cases in the first group and in 9 cases in the second group. The statistical analyses of results indicate successful and nearly equal reduction of body weight by means of dietary fiber rich and protein rich diet, but high fiber consumption showed statistically significant benefits for prevention of biliary slug accumulation. The study showed that, in the respect to weight loss, diets based on fiber rich and protein rich food are equal, but fiber rich diet has considerable privilege in prevention of gallstone disease. Our findings support the presence of known association between increased dietary fiber consumption and reduction of gallstone formation. Obesity and rapid weight loss are risk factors for development of gallstones. Taking in an account the beneficial effect of dietary fiber, the food rich with this nutrient, particularly low-calorie fiber rich food "Margi", can be recommended for rapid weight loss in obese patients.
Berkseth, Kathryn E; Guyenet, Stephan J; Melhorn, Susan J; Lee, Donghoon; Thaler, Joshua P; Schur, Ellen A; Schwartz, Michael W
2014-08-01
Gliosis, the activation of astrocyte and microglial cell populations, is a hallmark of central nervous system injury and is detectable using either immunohistochemistry or in vivo magnetic resonance imaging (MRI). Obesity in rodents and humans is associated with gliosis of the arcuate nucleus, a key hypothalamic region for the regulation of energy homeostasis and adiposity, but whether this response is permanent or reversible is unknown. Here we combine terminal immunohistochemistry analysis with serial, noninvasive MRI to characterize the progression and reversibility of hypothalamic gliosis in high-fat diet (HFD)-fed mice. The effects of HFD feeding for 16 weeks to increase body weight and adiposity relative to chow were nearly normalized after the return to chow feeding for an additional 4 weeks in the diet-reversal group. Mice maintained on the HFD for the full 20-week study period experienced continued weight gain associated with the expected increases of astrocyte and microglial activation in the arcuate nucleus, but these changes were not observed in the diet-reversal group. The proopiomelanocortin neuron number did not differ between groups. Although MRI demonstrated a positive correlation between body weight, adiposity, and the gliosis-associated T2 signal in the mediobasal hypothalamus, it did not detect the reversal of gliosis among the HFD-fed mice after the return to chow diet. We conclude that hypothalamic gliosis associated with 16-week HFD feeding is largely reversible in rodents, consistent with the reversal of the HFD-induced obesity phenotype, and extend published evidence regarding the utility of MRI as a tool for studying obesity-associated hypothalamic gliosis in vivo.
Jung, Ji Yong; Lee, Jay Wook; Kim, Sejoong; Jung, Eun Sook; Jang, Hye Ryoun; Han, Jin Suk; Joo, Kwon Wook
2009-12-01
Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.
Deminice, Rafael; de Castro, Gabriela Salim Ferreira; Francisco, Lucas Vieira; da Silva, Lilian Eslaine Costa Mendes; Cardoso, João Felipe Rito; Frajacomo, Fernando Tadeu Trevisan; Teodoro, Bruno Gonzaga; Dos Reis Silveira, Leonardo; Jordao, Alceu Afonso
2015-04-01
To examine the effects of creatine (Cr) supplementation on liver fat accumulation in rats fed a choline-deficient diet. Twenty-four rats were divided into 3 groups of 8 based on 4 weeks of feeding an AIN-93 control diet (C), a choline-deficient diet (CDD) or a CDD supplemented with 2% Cr. The CDD diet was AIN-93 without choline. The CDD significantly increased plasma homocysteine and TNFα concentration, as well as ALT activity. In liver, the CDD enhanced concentrations of total fat (55%), cholesterol (25%), triglycerides (87%), MDA (30%), TNFα (241%) and decreased SAM concentrations (25%) and the SAM/SAH ratio (33%). Cr supplementation prevented all these metabolic changes, except for hepatic SAM and the SAM/SAH ratio. However, no changes in PEMT gene expression or liver phosphatidylcholine levels were observed among the three experimental groups, and there were no changes in hepatic triglyceride transfer protein (MTP) mRNA level. On the contrary, Cr supplementation normalized expression of the transcription factors PPARα and PPARγ that were altered by the CDD. Further, the downstream targets and fatty acids metabolism genes, UCP2, LCAD and CPT1a, were also normalized in the Cr group as compared to CDD-fed rats. Cr supplementation prevented fat liver accumulation and hepatic injures in rats fed with a CDD for 4 weeks. Our results demonstrated that one-carbon metabolism may have a small role in mitigating hepatic fat accumulation by Cr supplementation. The modulation of key genes related to fatty acid oxidation pathway suggests a new mechanism by which Cr prevents liver fat accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Vitamin E provides protection for bone in mature hindlimb unloaded male rats
NASA Technical Reports Server (NTRS)
Smith, B. J.; Lucas, E. A.; Turner, R. T.; Evans, G. L.; Lerner, M. R.; Brackett, D. J.; Stoecker, B. J.; Arjmandi, B. H.
2005-01-01
The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.
Oxidative Stress Induced by Lead and Antioxidant Potential of Certain Adaptogens in Poultry
Kumar, M. Ratan; Reddy, A. Gopala; Anjaneyulu, Y.; Reddy, G. Dilip
2010-01-01
Effect of lead was studied for its action on antioxidant defense in broilers. A total of 225 one-day-old male broiler chicks (Vencobb strain) were divided randomly into 15 groups consisting of 15 chicks in each group. Group 1 was maintained on basal diet, group 2 on polyherbal formulation (PHF; stressroak), group 3 on shilajit, group 4 on amla, and group 5 on vitamin E + selenium (Se). Group 6 was maintained on lead for 42 days (6 weeks) and group 7 on lead for 28 days and subsequently on basal diet without lead for the remaining two weeks. Groups 8, 9, 10, and 11 were given lead along with PHF, shilajit, amla, and vitamin E + Se, respectively throughout the experiment for 6 weeks. Groups 12, 13, 14, and 15 were given lead containing diet for the first four weeks (28 days) and subsequently treated with PHF, shilajit, amla, and vitamin E + Se, respectively for the remaining two weeks. Antioxidant status of the birds was analyzed by assaying blood samples for glutathione (GSH) peroxidase, GSH reductase, and catalase at the end of fourth and sixth weeks, whereas Thiobarbituric acid reacting substances (TBARS) and GSH concentrations were estimated in liver homogenate at the end of the sixth week. The antioxidant defense parameters were significantly altered in toxic control groups indicating the possible oxidative damage caused by lead, whereas the parameters were normal in control groups 1 to 5 and other groups that were given the drugs in test, indicating their good ameliorating activity in oxidative stress. PMID:21170243
Oxidative stress induced by lead and antioxidant potential of certain adaptogens in poultry.
Kumar, M Ratan; Reddy, A Gopala; Anjaneyulu, Y; Reddy, G Dilip
2010-07-01
Effect of lead was studied for its action on antioxidant defense in broilers. A total of 225 one-day-old male broiler chicks (Vencobb strain) were divided randomly into 15 groups consisting of 15 chicks in each group. Group 1 was maintained on basal diet, group 2 on polyherbal formulation (PHF; stressroak), group 3 on shilajit, group 4 on amla, and group 5 on vitamin E + selenium (Se). Group 6 was maintained on lead for 42 days (6 weeks) and group 7 on lead for 28 days and subsequently on basal diet without lead for the remaining two weeks. Groups 8, 9, 10, and 11 were given lead along with PHF, shilajit, amla, and vitamin E + Se, respectively throughout the experiment for 6 weeks. Groups 12, 13, 14, and 15 were given lead containing diet for the first four weeks (28 days) and subsequently treated with PHF, shilajit, amla, and vitamin E + Se, respectively for the remaining two weeks. Antioxidant status of the birds was analyzed by assaying blood samples for glutathione (GSH) peroxidase, GSH reductase, and catalase at the end of fourth and sixth weeks, whereas Thiobarbituric acid reacting substances (TBARS) and GSH concentrations were estimated in liver homogenate at the end of the sixth week. The antioxidant defense parameters were significantly altered in toxic control groups indicating the possible oxidative damage caused by lead, whereas the parameters were normal in control groups 1 to 5 and other groups that were given the drugs in test, indicating their good ameliorating activity in oxidative stress.
Cornejo, Verónica E; Cabello, Juan Francisco A; Colombo, Marta C; Raimann, Erna B
2007-05-01
The glucose transporter type 1 deficiency syndrome (GLUT-1 SD) (OMIM 606777) is an inborn error of metabolism of brain glucose transport. The characteristic clinical manifestations are seizures, hypotonia, developmental delay, microcephaly and hypoglycorrhachia. We report a girl with normal weight and height at birth. At 6 weeks of age she started with convulsions reaching up to 20 myoclonic seizures a day. She was treated with valproate, phenobarbital and carbamazepine without response. Blood analysis including aminoacids and acylcarnitines were all normal. The brain MRI showed frontal atrophy with an increased subarachnoidal space and Electroencephalography was abnormal. Blood glucose was 84 mg/dl and spinal fluid glucose 26 mg/dl with a ratio of 0.31 (Normal Ratio >0.65+/-00.1). These results suggested the diagnosis of GLUT-1 SD, and was confirmed with erythrocyte glucose uptake of 44% (Normal range 80-100%). A molecular study found the mutation 969del, C971T in exon 6 of the gene Glut-1. Treatment with a ketogenic diet was started immediately and after 7 days with this diet seizures ceased. Anticonvulsants were progressively suspended. At present, the patient is 6 years old, she continues on a ketogenic diet and supplements with L-carnitine, lipoic acid, vitamins and minerals. Growth and development are normal with an intelligence quotient of 103. It is concluded that it is necessary to include GLUT-1 SD in the differential diagnosis of children with early seizures that are non responsive to pharmacological treatment.
Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda
2018-04-03
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.
Syed, Raisa; Shibata, Noreene M.; Kharbanda, Kusum K.; Su, Ruijun J.; Olson, Kristin; Yokoyama, Amy; Rutledge, John C.; Chmiel, Kenneth J.; Kim, Kyoungmi; Halsted, Charles H.
2016-01-01
Abstract Background: Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. Methods: We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Results: Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Conclusions: Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals. PMID:26881897
Helms, Eric R; Zinn, Caryn; Rowlands, David S; Naidoo, Ruth; Cronin, John
2015-04-01
Athletes risk performance and muscle loss when dieting. Strategies to prevent losses are unclear. This study examined the effects of two diets on anthropometrics, strength, and stress in athletes. This double-blind crossover pilot study began with 14 resistance-trained males (20-43 yr) and incurred one dropout. Participants followed carbohydrate-matched, high-protein low-fat (HPLF) or moderate-protein moderate-fat (MPMF) diets of 60% habitual calories for 2 weeks. Protein intakes were 2.8g/kg and 1.6g/kg and mean fat intakes were 15.4% and 36.5% of calories, respectively. Isometric midthigh pull (IMTP) and anthropometrics were measured at baseline and completion. The Daily Analysis of Life Demands of Athletes (DALDA) and Profile of Mood States (POMS) were completed daily. Outcomes were presented statistically as probability of clinical benefit, triviality, or harm with effect sizes (ES) and qualitative assessments. Differences of effect between diets on IMTP and anthropometrics were likely or almost certainly trivial, respectively. Worse than normal scores on DALDA part A, part B and the part A "diet" item were likely more harmful (ES 0.32, 0.4 and 0.65, respectively) during MPMF than HPLF. The POMS fatigue score was likely more harmful (ES 0.37) and the POMS total mood disturbance score (TMDS) was possibly more harmful (ES 0.29) during MPMF than HPLF. For the 2 weeks observed, strength and anthropometric differences were minimal while stress, fatigue, and diet-dissatisfaction were higher during MPMF. A HPLF diet during short-term weight loss may be more effective at mitigating mood disturbance, fatigue, diet dissatisfaction, and stress than a MPMF diet.
Antihyperglycaemic potential of the water-ethanol extract of Kalanchoe crenata (Crassulaceae).
Kamgang, René; Mboumi, Rostand Youmbi; Fondjo, Angèle Foyet; Tagne, Michel Archange Fokam; N'dillé, Gabriel Patrice Roland Mengue; Yonkeu, Jeanne Ngogang
2008-01-01
Kalanchoe crenata is a vegetable widely used in Cameroon and largely efficient in the treatment of diabetes mellitus. The effect of the water-ethanol extract of this plant (WEKC) on blood glucose levels was investigated in fasting normal and diet-induced diabetic rats (MACAPOS 1) after a short- and medium-term treatment. Diabetes was induced by submitting Wistar rats to a hypercaloric sucrose diet over 4 months. Six hours after a single oral administration of WEKC, 135 and 200 mg kg(-1) body weight extracts significantly (P < 0.01) reduced the blood glucose levels both in normal and diabetic rats without real dose-dependent effect. During the medium-term treatment, 200 mg kg(-1) WEKC administered daily for 4 weeks significantly reduced blood glucose levels within week 1 (P < 0.05), with a maximum effect at week 4 (-52%, P < 0.01), while maintaining glycaemia within the normal range. All the WEKC-treated diabetic rats exhibited significant (P < 0.01) increase in insulin sensitivity index (K (ITT)) compared with the initial time and to the untreated diabetic animals. Animals treated for 4 weeks exhibited a slight resistance in body-weight gain and decrease in food and water intake. The WEKC activities on all parameters assessed were comparable with the glibenclamide effects. Qualitative phytochemical screening revealed that K. crenata contains terpenoids, tannins, polysaccharids, saponins, flavonoids and alkaloids. The data suggest that K. crenata might contain important chemical components that could induce significant improvement in glucose clearance and/or uptake and resistance to body-weight gain and insulin sensitivity, and could be a potent alternative or complementary therapeutic substance in the control of type 2 diabetes and other insulin-resistant conditions.
Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R.; Heesom, Kate; Jackson, Christopher L.; Angelini, Gianni D.; Halestrap, Andrew P.; Suleiman, M.-Saadeh
2014-01-01
Rationale High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. Objectives To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Methods and Results Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. Conclusions This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults. PMID:24950187
Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro
2017-01-01
Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.
Chen, Yong-song; Zhu, Xu-xin; Zhao, Xiao-yun; Xing, Han-ying; Li, Yu-guang
2008-02-05
Under an insulin resistance (IR) state, overproduction of reactive oxygen species (ROS) may be playing a major role in the pathogenesis of endothelial dysfunction, hypertension and atherosclerosis. Recently, increasing attention has been drawn to the beneficial effects of heme oxygenase-1 (HO-1) in the cardiovascular system. This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states. Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test. Then the IR rat models (n = 44) were further randomized into 3 subgroups, namely, the IR control group (n = 26, in which 12 were sacrificed immediately and evaluated for all study measures), a hemin treated IR group (n = 10) and a zinc protoporphyrin-IX (ZnPP-IX) treated IR group (n = 8) that were fed with a high-fat diet. Rats with standardized chow diet were used as the normal control group (n = 12). The rats in IR control group, hemin treated IR group and ZnPP-IX treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline, hemin (inducer of HO-1, 30 micromol/kg) or ZnPP-IX (inhibitor of HO-1, 10 micromol/kg) for 4 weeks. Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks. Systolic arterial blood pressure (SABP) was measured by tail-cuffed microphotoelectric plethysmography. The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), blood glucose (BG), insulin, total cholesterol (TC) and triglyceride (TG) in serum, and the levels of total antioxidant capacity (TAOC), malondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured. The expression of HO-1 mRNA and HO-1 protein in aortal tissue were detected by semi-quantitative RT-PCR and Western blot. The vasoreactive tensometry was performed with thoracic aortic rings (TARs). Compared with the normal control group, the levels of SABP, BG, insulin, TC, TG, NO, iNOS and MDA were higher, while the levels of CO, TAOC, SOD and eNOS were lower in IR control rats. After treatment of IR rats for 4 weeks a more intensive expression of HO-1 mRNA and HO-1 protein were observed in hemin treated IR group compared with the normal control group. And compared with 4-week IR control rats, the levels of CO, TAOC, SOD and eNOS were increased, while the levels of SABP and iNOS activity were lower in the hemin treated IR group. Administration of hemin in IR rats appeared to improve the disordered vasorelaxation of TARs to acetylcholine (ACh). Alternatively, the reverse results of SABP, CO, TAOC, SOD, iNOS and vasorelaxation responses to ACh were observed in IR rats with administration of ZnPP-IX. The endothelial dysfunction in the aorta is present in the IR state. The protective effects of HO-1 against aortic endothelial dysfunction may be due to its antioxidation and regulative effect of vasoactive substances. It is proposed that hemin, inducer of HO-1, could be a potential therapeutic option for vascular dysfunction in IR states.
Acarbose is an effective adjunct to dietary therapy in the treatment of hypertriglyceridaemias
Malaguarnera, M; Giugno, I; Ruello, P; Rizzo, M; Motta, M; Mazzoleni, G
1999-01-01
Aims In diabetics, acarbose causes a reduction of blood glucose and triglyceride levels. The aim of this study was to assess the effect of this drug in non diabetic subjects with hypertriglyceridaemia. Methods Thirty non diabetic patients with hypertriglyceridaemia type IIb or IV (24 males, six females; mean age 51.1 ±10.2 years) were studied. They were stratified into two groups depending on their basal triglyceride concentration (group A: triglyceride values ≤4.5 mmol l−1; group B triglyceride values > 4.5 mmol l− 1). Treatment consisted of 4 week courses of diet plus acarbose (50 mg twice daily) alternating with 4 weeks of diet alone for a total period of 16 weeks. Results Mean triglyceride values decreased significantly during the first and third cycles of therapy, i.e. diet plus acarbose treatment cycles in both patient groups. Group A also had significant reductions in total cholesterol and HDL cholesterol concentrations after completion of the acarbose treatment. Reduction of triglyceride levels was observed after both acarbose courses in patients affected by hypertriglyceridaemia type IIb. A marked reduction of triglyceride concentrations was achieved by patients affected by hypertriglyceridaemia type IV after the second acarbose course only. Conclusions Diet alone did not reduce triglyceride concentrations to normal values in our patients. The data suggest that acarbose is a useful adjunct to dietary control in non-diabetic patients affected by severe hypertriglyceridaemia. PMID:10583032
Iron restriction inhibits renal injury in aldosterone/salt-induced hypertensive mice.
Sawada, Hisashi; Naito, Yoshiro; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Masuyama, Tohru
2015-05-01
Excess iron is associated with the pathogenesis of several renal diseases. Aldosterone is reported to have deleterious effects on the kidney, but there have been no reports of the role of iron in aldosterone/salt-induced renal injury. Therefore, we investigated the effects of dietary iron restriction on the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice. Ten-week-old male C57BL/6J mice were uninephrectomized and infused with aldosterone for four weeks. These were divided into two groups: one fed a high-salt diet (Aldo) and the other fed a high-salt with iron-restricted diet (Aldo-IR). Vehicle-infused mice without a uninephrectomy were also divided into two groups: one fed a normal diet (control) and the other fed an iron-restricted diet (IR) for 4 weeks. As compared with control and IR mice, Aldo mice showed an increase in both systolic blood pressure and urinary albumin/creatinine ratio, but these increases were reduced in the Aldo-IR group. In addition, renal histology revealed that Aldo mice exhibited glomerulosclerosis and tubulointerstitial fibrosis, whereas these changes were attenuated in Aldo-IR mice. Expression of intracellular iron transport protein transferrin receptor 1 was increased in the renal tubules of Aldo mice compared with control mice. Dietary iron restriction attenuated the development of hypertension and renal injury in aldosterone/salt-induced hypertensive mice.
Decreased erythrocyte CCS content is a biomarker of copper overload in rats.
Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J
2010-07-02
Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P < 0.05). Notably, only rats that accumulated high levels of Cu in liver had lower erythrocyte CCS (47% reduction, P < 0.05) compared to rats fed normal levels of Cu. Together, these data indicate that decreased erythrocyte CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.
Zhang, Wei; Chen, Lulu; Zhang, Luqing; Xiao, Ming; Ding, Jiong; Goltzman, David; Miao, Dengshun
2015-02-19
Previously, we reported that active vitamin D deficiency in mice causes secondary hypertension and cardiac dysfunction, but the underlying mechanism remains largely unknown. To clarify whether exogenous active vitamin D rescues hypertension by normalizing the altered central renin-angiotensin system (RAS) via an antioxidative stress mechanism, 1-alpha-hydroxylase [1α(OH)ase] knockout mice [1α(OH)ase(-/-)] and their wild-type littermates were fed a normal diet alone or with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or a high-calcium, high-phosphorus "rescue" diet with or without antioxidant N-acetyl-l-cysteine (NAC) supplementation for 4 weeks. Compared with their wild-type littermates, 1α(OH)ase(-/-)mice had high mean arterial pressure, increased levels of renin, angiotensin II (Ang II), and Ang II type 1 receptor, and increased malondialdehyde levels, but decreased anti-peroxiredoxin I and IV proteins and the antioxidative genes glutathione reductase (Gsr) and glutathione peroxidase 4 (Gpx4) in the brain samples. Except Ang II type 1 receptor, these pathophysiological changes were rescued by exogenous 1,25(OH)2D3 or NAC plus rescue diet, but not by rescue diet alone. We conclude that 1,25(OH)2D3 normalizes the altered central RAS in 1α(OH)ase(-/-)mice, at least partially, through a central antioxidative mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Xu, Hua; Hu, Meng-Bo; Bai, Pei-de; Zhu, Wen-Hui; Ding, Qiang; Jiang, Hao-Wen
2014-12-01
We aimed to examine the effect of high-fat diet (HFD) on prostate cancer (PCa) development and progression and to investigate whether metformin would postpone PCa development and progression promoted by HFD. TRAMP mice were randomly divided into three groups: normal diet group, HFD group and metformin-HFD (Met-HFD) group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24(th), and 28th week, respectively. Serum levels of insulin and IGF-1 were tested by ELISA. Prostate tissue of TRAMP mice was used for HE staining. A total of 17 deaths of TRAMP mice were observed, including 3 (10 %) from the normal diet group, 10 (33.33 %) from the HFD group, and 4 (13.33 %) from Met-HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P = 0.028), and metformin could moderately decrease the mortality rate by 60.01 % (P = 0.067). Tumor formation rates were not significantly different among the three groups. Levels of glucose, insulin, and IGF-1 tended to increase with TRAMP mice's age in HFD group. TRAMP mice from HFD group had higher serum insulin and IGF-1 levels. A moderate decrease in IGF-1 was also seen in Met-HFD group. HFD could promote TRAMP mouse PCa development and progression and metformin had moderate effect of reducing PCa mortality rate with a decrease in serum IGF-1 level.
Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats
Wanyonyi, Stephen; du Preez, Ryan; Brown, Lindsay
2017-01-01
The red seaweed, Kappaphycus alvarezii, was evaluated for its potential to prevent signs of metabolic syndrome through use as a whole food supplement. Major biochemical components of dried Kappaphycus are carrageenan (soluble fiber ~34.6%) and salt (predominantly potassium (K) 20%) with a low overall energy content for whole seaweed. Eight to nine week old male Wistar rats were randomly divided into three groups and fed for 8 weeks on a corn starch diet, a high-carbohydrate, high-fat (H) diet, alone or supplemented with a 5% (w/w) dried and milled Kappaphycus blended into the base diet. H-fed rats showed symptoms of metabolic syndrome including increased body weight, total fat mass, systolic blood pressure, left ventricular collagen deposition, plasma triglycerides, and plasma non-esterified fatty acids along with fatty liver. Relative to these obese rats, Kappaphycus-treated rats showed normalized body weight and adiposity, lower systolic blood pressure, improved heart and liver structure, and lower plasma lipids, even in presence of H diet. Kappaphycus modulated the balance between Firmicutes and Bacteroidetes in the gut, which could serve as the potential mechanism for improved metabolic variables; this was accompanied by no damage to the gut structure. Thus, whole Kappaphycus improved cardiovascular, liver, and metabolic parameters in obese rats. PMID:29149029
Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats.
Wanyonyi, Stephen; du Preez, Ryan; Brown, Lindsay; Paul, Nicholas A; Panchal, Sunil K
2017-11-17
The red seaweed, Kappaphycus alvarezii , was evaluated for its potential to prevent signs of metabolic syndrome through use as a whole food supplement. Major biochemical components of dried Kappaphycus are carrageenan (soluble fiber ~34.6%) and salt (predominantly potassium (K) 20%) with a low overall energy content for whole seaweed. Eight to nine week old male Wistar rats were randomly divided into three groups and fed for 8 weeks on a corn starch diet, a high-carbohydrate, high-fat (H) diet, alone or supplemented with a 5% ( w / w ) dried and milled Kappaphycus blended into the base diet. H-fed rats showed symptoms of metabolic syndrome including increased body weight, total fat mass, systolic blood pressure, left ventricular collagen deposition, plasma triglycerides, and plasma non-esterified fatty acids along with fatty liver. Relative to these obese rats, Kappaphycus -treated rats showed normalized body weight and adiposity, lower systolic blood pressure, improved heart and liver structure, and lower plasma lipids, even in presence of H diet. Kappaphycus modulated the balance between Firmicutes and Bacteroidetes in the gut, which could serve as the potential mechanism for improved metabolic variables; this was accompanied by no damage to the gut structure. Thus, whole Kappaphycus improved cardiovascular, liver, and metabolic parameters in obese rats.
[Impact of high-fat diet induced obesity on glucose absorption in small intestinal mucose in rats].
Huang, Wei; Liu, Rui; Guo, Wei; Wei, Na; Qiang, Ou; Li, Xian; Ou, Yan; Tang, Chengwei
2012-11-01
To investigate whether high-fat diet induced obesity was associated with variation of glucose absorption in small intestinal mucosa of rats. 46 male SD rats were randomly divided into high-fat diet group (n = 31) and control group (n = 15), fed with high-fat diet and normal diet for 24 weeks, respectively. After 24 weeks, the rats were divided into obese (n = 16) and obesity-resistant group (n = 10) according to their body weight. Rats' body weight, abdominal fat weight, plasma glucose level, maltase, sucrase activity in small intestinal mucosa were measured. SGLT-1 expression in intestinal mucosa was detected by immunohistochemistry, RT-PCR and Western blot. Mean body weight, abdominal fat weight, fast plasma glucose levels, maltase activities and SGLT-1 protein expression in intestinal mucosa of obese rats were significantly higher than those in the control and obesity-resistant rats (P < 0.05). Sucrase activities in intestinal mucosa showed no statistical difference among the three groups (P > 0.05). The SGLT-1 mRNA expression in obese group was increased by 12.5% and 23% when compare with the control and obesity-resistant group, respectively. But the difference was not statistical significant (P > 0.05). High-fat diet induced obesity was associated with the increased intestinal maltase activity and expression of SGLT-1 in rats, the key molecule in glucose absorption.
Ajiboye, Taofeek O; Raji, Hikmat O; Adeleye, Abdulwasiu O; Adigun, Nurudeen S; Giwa, Oluwayemisi B; Ojewuyi, Oluwayemisi B; Oladiji, Adenike T
2016-03-30
The effect of Hibiscus sabdariffa calyx extract was evaluated in high-fructose-induced metabolic syndrome rats. Insulin resistance, hyperglycemia, dyslipidemia and oxidative rout were induced in rats using high-fructose diet. High-fructose diet-fed rats were administered 100 and 200 mg kg(-1) body weight of H. sabdariffa extract for 3 weeks, starting from week 7 of high-fructose diet treatment. High-fructose diet significantly (P < 0.05) increased the serum levels of blood glucose, insulin, total cholesterol (TC), triacylglycerol (TAG), low-density lipoprotein cholesterol (LDLc) and very-low-density lipoprotein cholesterol (VLDLc), with a concomitant reduction in high-density lipoprotein cholesterol (HDLc). These alterations were significantly ameliorated by the extract. High-fructose diet-mediated decreases in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSH-red) and glucose 6-phosphate dehydrogenase (Glc 6-PD) were significantly (P < 0.05) attenuated. Altered levels of reduced glutathione (GSH) and glutathione disulfide (GSSG) were significantly (P < 0.05) restored to normal. High-fructose diet-mediated increases in the concentrations of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and percentage fragmented DNA were significantly (P < 0.05) lowered by the Hibiscus extract. Overall, aqueous extract of H. sabdariffa palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in high-fructose-induced metabolic syndrome rats. © 2015 Society of Chemical Industry.
Verreijen, Amely M; Engberink, Mariëlle F; Memelink, Robert G; van der Plas, Suzanne E; Visser, Marjolein; Weijs, Peter J M
2017-02-06
Intentional weight loss in obese older adults is a risk factor for accelerated muscle mass loss. We investigated whether a high protein diet and/or resistance exercise preserves fat free mass (FFM) during weight loss in overweight and obese older adults. We included 100 overweight and obese adults (55-80 year) in a randomized controlled trial (RCT) with a 2 × 2 factorial design and intention-to-treat analysis. During a 10-week weight loss program all subjects followed a hypocaloric diet. Subjects were randomly allocated to either a high protein (1.3 g/kg body weight) or normal protein diet (0.8 g/kg), with or without a resistance exercise program 3 times/week. FFM was assessed by air displacement plethysmography. At baseline, mean (±SD) BMI was 32 ± 4 kg/m 2 . During intervention, protein intake was 1.13 ± 0.35 g/kg in the high protein groups vs. 0.98 ± 0.29 in the normal protein groups, which reflects a 16.3 ± 5.2 g/d higher protein intake in the high protein groups. Both high protein diet and exercise did not significantly affect change in body weight, FFM and fat mass (FM). No significant protein*exercise interaction effect was observed for FFM. However, within-group analysis showed that high protein in combination with exercise significantly increased FFM (+0.6 ± 1.3 kg, p = 0.011). A high protein diet, though lower than targeted, did not significantly affect changes in FFM during modest weight loss in older overweight and obese adults. There was no significant interaction between the high protein diet and resistance exercise for change in FFM. However, only the group with the combined intervention of high protein diet and resistance exercise significantly increased in FFM. Dutch Trial Register, number NTR4556, date 05-01-2014.
[Lipid profile of healthy persons with low-carbohydrate diet].
Baumann, Monica; Espeland, Martine Z; Kværner, Ane Sørlie; Bogsrud, Martin Prøven; Retterstøl, Kjetil
2013-06-11
Many Norwegians have embraced the low-carb trend and choose butter and bacon instead of brown bread and carrots. This entails a dramatic change in the total intake of fat and the intake of saturated fat. We have investigated how a low-carb diet can affect the lipid profile in healthy adults with a normal bodyweight. Seven healthy female participants with normal bodyweight underwent a four-week trial of a low-carb diet (< 20-25 grams of carbohydrates/day). Daily diet registrations were made during the trial period, and diet data for three randomly selected days were included in the estimates. Blood samples and weight data were collected as fasting values prior to and after the intervention. Standardised diet data were available for six participants. On a low-carb diet, the energy intake from carbohydrates accounted for a median of 3 (spread: 2-5) per cent of the total energy intake. The intake of fat accounted for 71 (67-78) per cent of total energy, while protein accounted for 26 (19-31) of total energy intake. At baseline, the median value of total cholesterol was 4.1 mmol/L (dispersion: 3.3-5.7) and LDL cholesterol was 2.2 (1.8-3.4) mmol/L. The values increased to 5.2 (3.7-8.8) mmol/L and 3.1 (1.9-6.2) mmol/L for total and LDL cholesterol respectively. The absolute changes correspond to a percentage increase in total cholesterol of 33 (14-71)% and in LDL cholesterol of 41 (9-84)%. Median weight change amounted to -1.2 kg (-2.8-0.6). A diet with little carbohydrate and a great deal of protein and fat resulted in a considerably heightened level of total cholesterol and LDL cholesterol in young, healthy women with a normal bodyweight. The findings indicate that a low-carb diet may have a negative impact on individual risk profiles. However, the study is small-scale and the results must be interpreted with caution.
Woodruff, Sarah J; Hanning, Rhona M
2010-12-01
The purpose of this study was to determine diet quality and physical activity behaviours of grade 6 students by sex and body weight status, and to determine the associations between diet quality and physical activity behaviours. The Web-based Food Behaviour Questionnaire, which included a 24-h diet recall and the modified Physical Activity Questionnaire for Older Children (PAQ-C), was administered to a cross-section of schools (n = 405 students from 15 schools). Measured height and weight were used to calculate body mass index and weight status (Cole et al. 2000). A Canadian version of the Healthy Eating Index (HEI-C) was used to describe overall diet quality. The mean HEI-C was 69.6 (13.2) with the majority (72%) falling into the needs improvement category. The overall mean physical activity score was 3.7 out of a maximum of 5, with obese subjects being less active compared with normal weight and overweight (p < 0.001). Ordinal logistic regression analysis (of HEI-C vs. all measures of the PAQ-C, sex, and weight status) revealed that HEI-C ratings were likely to be higher in students that walked to and from school 5 days per week (vs. 0 days per week; odds ratio 3.18, p = 0.010); and were active 1 evening per week (vs. none; odds ratio 3.48, p = 0.039). The positive association between diet quality and some aspects of physical activity suggests possible clustering of health behaviours. Future research should test the potential benefits of promoting 1 health behaviour (e.g., healthy eating) with another (e.g., physical activity).
Both high and low maternal salt intake in pregnancy alter kidney development in the offspring.
Koleganova, Nadezda; Piecha, Grzegorz; Ritz, Eberhard; Becker, Luis Eduardo; Müller, Annett; Weckbach, Monika; Nyengaard, Jens Randel; Schirmacher, Peter; Gross-Weissmann, Marie-Luise
2011-08-01
In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.
Poulsen, Morten Møller; Larsen, Jens Ø; Hamilton-Dutoit, Stephen; Clasen, Berthil F; Jessen, Niels; Paulsen, Søren K; Kjær, Thomas N; Richelsen, Bjørn; Pedersen, Steen B
2012-09-01
Obesity is associated with a markedly increased risk of nonalcoholic fatty liver disease. The anti-inflammatory polyphenol resveratrol possess promising properties in preventing this metabolic condition by dampening the pathological inflammatory reaction in the hepatic tissue. However, in the current study, we hypothesize that the beneficial effect of resveratrol is not solely attributable to its anti-inflammatory potential. Eight-week-old male Wistar rats were randomly distributed into 3 groups of 12 animals each: control diet (C), high-fat diet (HF), and HF supplemented with 100 mg resveratrol daily (HFR). After 8 weeks of dietary treatment, the rats were euthanized and relevant tissues were prepared for subsequent analysis. Resveratrol prevented the high fat-induced steatosis assessed by semiquantitative grading, which furthermore corresponded with a complete normalization of the hepatic triglyceride content (P < .001), despite no change in total body fat. In HFR, the hepatic uncoupling protein 2 expression was significantly increased by 76% and 298% as compared with HF and C, respectively. Moreover, the hepatic mitochondria content in HFR was significantly higher as compared with both C and HF (P < .001 and P = .004, respectively). We found no signs of hepatic inflammation, hereby demonstrating that resveratrol protects against fatty liver disease independently of its proposed anti-inflammatory potential. Our data might indicate that an increased number of mitochondria and, particularly, an increase in hepatic uncoupling protein 2 expression are involved in normalizing the hepatic fat content due to resveratrol supplementation in rodents fed a high-fat diet. Copyright © 2012 Elsevier Inc. All rights reserved.
Muthulakshmi, Shanmugam; Saravanan, Ramalingam
2013-06-01
Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Maternal folic acid-deficient diet causes congenital malformations in the mouse eye.
Maestro-de-las-Casas, Carmen; Pérez-Miguelsanz, Juliana; López-Gordillo, Yamila; Maldonado, Estela; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción
2013-09-01
The eye is a very complex structure derived from the neural tube, surface ectoderm, and migratory mesenchyme from a neural crest origin. Because structures that evolve from the neural tube may be affected by a folate/folic acid (FA) deficiency, the aim of this work was to investigate whether a maternal folic acid-deficient diet may cause developmental alterations in the mouse eye. Female C57BL/6J mice (8 weeks old) were assigned into two different folic acid groups for periods ranging between 2 and 16 weeks. Animals were killed at gestation day 17. Hepatic folate was analyzed, and the eyes from 287 fetuses were macroscopically studied, sectioned and immunolabeled with anti-transforming growth factor (TGF)-β2 and anti-TGF-βRII. Mice exposed to a FA-deficient diet exhibited numerous eye macroscopic anomalies, such as anophthalmia and microphthalmia. Microscopically, the eye was the most affected organ (43.7% of the fetuses). The highest incidence of malformations occurred from the 8th week onward. A statistically significant linear association between the number of maternal weeks on the FA-deficient diet and embryonic microscopic eye malformations was observed. The optic cup derivatives and structures forming the eye anterior segment showed severe abnormalities. In addition, TGF-β2 and TGF-βRII expression in the eye was also altered. This study suggests that an adequate folic acid/folate status plays a key role in the formation of ocular tissues and structures, whereas a vitamin deficiency is negatively associated with a normal eye development even after a short-term exposure. Copyright © 2013 Wiley Periodicals, Inc.
Hiranuma, Maya
2013-03-01
Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons.
Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice.
Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H
2012-07-23
Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.
Zhao, Jing-Lu; Zhao, Yu-Yun; Zhu, Wei-Jie
2017-10-01
The interaction between obesity and chronic inflammation has been studied. Diet-induced obesity or chronic inflammation could reduce the testicular functions of males. However, the mechanism underlying the reproductive effects of fattening foods in males with or without chronic inflammation still needs further discussion. This study was aimed to investigate the effects of high-fat, high-protein diet on testicular steroidogenesis and sperm parameters in adult mice under physiological and chronic inflammatory conditions. Because casein can trigger a non-infectious systemic inflammatory response, we used casein injection to induce chronic inflammation in male adult Kunming mice. Twenty-four mice were randomly and equally divided into four groups: (i) normal diet+saline (Control); (ii) normal diet+casein (ND+CS); (iii) high-fat, high-protein diet+saline (HFPD+SI); (iv) high-fat, high-protein diet+casein (HFPD+CS). After 8weeks, there was a significant increase in body weight for groups HFPD+SI and HFPD+CS and a decrease in group ND+CS compared with the control. The serum levels of tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10) and lipid profiles were increased markedly in groups ND+CS, HFPD+SI and HFPD+CS compared with the control. A remarkable reduction of serum adiponectin level occurred in group HFPD+CS compared with group ND+CS. Sperm parameters (sperm count, viability and abnormality) were also adversely affected in groups ND+CS and HFPD+SI. Groups ND+CS and HFPD+SI showed severe pathological changes in testicular tissues. Semiquantitative RT-PCR, Western blot and immunohistochemical staining also showed significant reductions in both testicular mRNA and protein levels of steroidogenic acute regulatory (StAR) and cytochrome P450scc (CYP11A1) in groups HFPD+SI and HFPD+CS compared with the control, whereas testicular mRNA and protein levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) in groups HFPD+SI and HFPD+CS significantly increased. The mRNA and protein levels of the StAR and 3β-HSD in group HFPD+CS were both higher than those of in group ND+CS. These results indicated that Kunming male mice with high-fat, high-protein diet and casein injection for 8weeks can be used to establish a diet-induced obesity and chronic systemic inflammation. The sperm parameters in groups ND+CS and HFPD+SI decreased accompanied by pathological changes of testicular tissue. This resultant effect of reduced serum testosterone levels was associated with the overproduction of TNF-α and IL-10 and down-regulation of StAR and CYP11A1. Under the same casein-induced chronic inflammation condition, the mice with high-fat, high-protein diet had better testicular steroidogenesis activity and sperm parameters compared with the mice in normal diet, indicating that the mice with casein-induced inflammatory injury consuming a high-fat, high-protein diet gained weight normally, reduced serum adiponectin level and increased testosterone production by an upregulation of 3β-HSD expression. High-fat, high-protein diet attenuated the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
García-Arevalo, Marta; Alonso-Magdalena, Paloma; Rebelo Dos Santos, Junia; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel
2014-01-01
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity. PMID:24959901
García-Arevalo, Marta; Alonso-Magdalena, Paloma; Rebelo Dos Santos, Junia; Quesada, Ivan; Carneiro, Everardo M; Nadal, Angel
2014-01-01
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.
Wu, Yue-Yue; Zha, Ying; Liu, Jun; Wang, Fang; Xu, Jiong; Chen, Zao-Ping; Ding, He-Yuan; Sheng, Li; Han, Xiao-Jie
2016-11-17
To assess the effects of berberine (BBR) on high-molecular weight (HMW) adiponectin and adiponectin receptors (adipoR1/adipoR2) expressions in high-fat (HF) diet fed rats. Forty Wistar male rats were randomly assigned into a normal diet fed group and three HF diet (fat for 45% calories) fed groups (n=10 for each group). All rats underwent 12 weeks of feeding. After 4 weeks feeding, rats in the two of three HF diet fed groups were treated with 150 mg·kg -1 ·day -1 BBR (HF+LBBR group) and 380 mg·kg -1 ·day -1 BBR (HF+HBBR group) by gavage once a day respectively for the next 8 weeks while the rats in other groups treated with vehicle (NF+Veh and HF+Veh). Body weight and food intake were observed and recorded on daily basis. At the end of 12 weeks, the blood, liver, epididymal fat tissues and quadriceps femoris muscles were collected. Fasting insulin, plasma fasting glucose, serum free fatty acid (FFA), total adiponectin and HMW adiponectin levels were measured by enzyme linked immunosorbent assay method. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine the insulinsensitizing. Meanwhile the homeostasis model assessment (HOMA) method was used to determine insulin resistance (HOMA-IR). The expressions of adipoR1, adipoR2 and adenosine monophophate activated protein kinase (AMPK) phosphorylation level in skeletal muscle and liver tissue were detected by Western blot. Liver and kidney toxicity were evaluated during treatment. The body weight of rats in high- or low-dose BBR group reduced as well as HOMA-IR, FFA concentrations and fasting insulin levels decreased compared with HF+Veh group (P<0.05). BBR also increased the ratio of HMW to total adiponectin in high fat-fed rats compared with rats in the HF+Veh group. High- and low-dose BBR increased adipoR1 expression in skeletal muscle by over 6- and 2-fold (P<0.05), respectively, and high-dose BBR also increased adipoR2 expression in liver tissue by over 2-fold (P<0.05). BBR significantly increased AMPK phosphorylation in HF diet rats compared with normal diet rats (P<0.05). The ratio of HMW to total adiponectin was inversely correlated with HOMA-IR (r=-0.52, P=0.001). Meantime, no liver and kidney toxicity was found in high fat-fed rats that treated by BBR. Berberine may improve insulin resistance by increasing the expression of adiponectin receptors and the ratio of HMW to total adiponectin.
Hong, Seul-Ki; Choo, Eun-Ho; Ihm, Sang-Hyun; Chang, Kiyuk; Seung, Ki-Bae
2017-11-01
Obesity-induced myocardial fibrosis may lead to diastolic dysfunction and ultimately heart failure. Activation of the transforming growth factor (TGF)-βl and its downstream Smad2/3 pathways may play a pivotal role in the pathogenesis of obesity-induced myocardial fibrosis, and the antidiabetic dipeptidyl peptidase 4 inhibitors (DPP4i) might affect these pathways. We investigated whether DPP4i reduces myocardial fibrosis by inhibiting the TGF-β1 and Smad2/3 pathways in the myocardium of a diet-induced obesity (DIO) rat model. Eight-week-old male spontaneously hypertensive rats (SHRs) were fed either a normal fat diet (chow) or a high-fat diet (HFD) and then the HFD-fed SHRs were randomized to either the DPP4i (MK-0626) or control (distilled water) groups for 12weeks. At 20weeks old, all the rats underwent hemodynamic and metabolic studies and Doppler echocardiography. Compared with the normal fat diet (chow)-fed SHRs, the HFD-fed SHRs developed a more intense degree of hyperglycemia and dyslipidemia and showed a constellation of left ventricular (LV) diastolic dysfunction, and exacerbated myocardial fibrosis, as well as activation of the TGF-β1 and Smad2/3 pathways. DPP4i significantly improved the metabolic and hemodynamic parameters. The echocardiogram showed that DPP4i improved the LV diastolic dysfunction (early to late ventricular filling velocity [E/A] ratio, 1.49±0.21 vs. 1.77±0.09, p<0.05). Furthermore, DPP4i significantly reduced myocardial fibrosis and collagen production by the myocardium and suppressed TGF-β1 and phosphorylation of Smad2/3 in the heart. In addition, DPP4i decreased TGF-β1-induced collagen production and TGF-β1-mediated phosphorylation and nuclear translocation of Smad2/3 in rat cardiac fibroblasts. In conclusion, DPP4 inhibition attenuated myocardial fibrosis and improved LV diastolic dysfunction in a DIO rat model by modulating the TGF-β1 and Smad2/3 pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
LV, FENG-HUA; GAO, JIAN-ZHI; TENG, QING-LEI; ZHANG, JIN-YING
2013-01-01
Hyperlipidemia may lead to endothelial injury, due to its effects on homocysteine and vascular endothelial growth factor in the serum, and the mRNA expression levels of peroxisome proliferator-activated receptor-γ (PPARγ), and caspase-3 and -8 in the vascular wall. In order to prevent and mitigate the high-fat state that results from endothelial injury, this study examined the effect of folic acid (FA) and vitamin B12 (VB12) on the expression of PPARγ and caspase-3 and -8 mRNA in the abdominal aortas of rats with hyperlipidemia. Sixty 4-week-old healthy male Sprague Dawley rats were randomly divided into five groups (each n=12): the normal control (NC), high-fat diet (HL), FA, VB12 and FA+VB12 groups. Following one week of adaptive feeding, the FA, VB12 and FA+VB12 groups were subject to the intraperitoneal injection of FA (0.5 mg/day), VB12 (0.05 mg/day) and FA+VB12 (0.5 mg/day and 0.05 mg/day), respectively, while fed a high-fat diet. The rats in the NC group were injected intraperitoneally with 0.9% NaCl solution (0.5 ml/day) and fed a normal diet, whereas those in the HL group were fed a high-fat diet only. A reverse transcription-polymerase chain reaction (RT-PCR) assay demonstrated that at the end of week 12, the FA treatment had effectively increased the PPARγ mRNA level, while reducing the caspase-3 and -8 mRNA levels, compared with the high-fat diet treatment (P<0.05). The effect of FA on the expression of PPARγ and caspase-3 and -8 was enhanced when used in combination with VB12 (P<0.05). These results revealed that the application of FA, alone or in combination with VB12, improves and mitigates the high-fat state that results from endothelial injury. PMID:23935743
Wang, Hualin; Cai, Yazheng; Shao, Yang; Zhang, Xifeng; Li, Na; Zhang, Hongyu; Liu, Zhiguo
2018-04-29
The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs) against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON), a high-fat diet (HFD group) or a HFD supplemented with fish oil (FO group) for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes' expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.
Synergistic effects of colchicine combined with atorvastatin in rats with hyperlipidemia.
Huang, Congwu; Cen, Chuan; Wang, ChengXu; Zhan, Haiyong; Ding, Xin
2014-04-17
Inflammation and endothelial dysfunction is implicated in the atherosclerosis initiation and progression in the setting of hyperlipidemia. Colchicine is a potent anti-inflammatory agent and whether colchicine combined with atorvastatin has synergistic effects on inflammation amelioration and endothelial function improvement is unknown. Hyperlipidemic rat model was produced by high-fat and high-cholesterol diet for 6 weeks. Rats with normal diet were served as shame group. In hyperlipidemic group, normal saline, atorvastatin (10 mg/kg body weight/day), colchicines (0.5 mg/kg body weight/day), or atorvastatin combined with colchicines (same dosages) were prescribed for 2 weeks. Serum levels of lipid profile, C-reactive protein (CRP), liver enzyme, lipoprotein associated phospholipase A2 (Lp-PLA2) and nitric oxide (NO) production were serially assessed. Before the beginning of the study, all laboratory variables were comparable among each group. After 6 weeks of hyperlipidemic model production, serum levels of cholesterols, CRP and Lp-PLA2 were significantly increased when compared to sham group, whereas NO production was reduced. With 2 weeks of colchicine therapy, serum levels of CRP and Lp-PLA2 were decreased and NO production was enhanced in the colchicine group in a lipid-lowering independent manner. Added colchicine into atorvastatin therapy further improved NO production and decreased CRP and Lp-PLA2 levels, indicating a potential synergism of colchicine and atorvastatin. Colchicine combined with atorvastatin may have stronger protective effects on improving endothelial function and ameliorating inflammation in rats with hyperlipidemia.
Diet composition modifies the toxicity of repeated soman exposure in rats.
Langston, Jeffrey L; Myers, Todd M
2011-12-01
It was previously demonstrated that diet potently modulates the toxic effects of an acute lethal dose of the nerve agent soman. The current investigation was undertaken to examine the influence of diet on the cumulative toxicity of repeated soman administration. Rats were fed one of four distinct diets (standard, choline-enriched, glucose-enriched, or ketogenic) for four weeks prior to and throughout a repeated soman dosing and recovery regimen. Each diet group included animals exposed to an equivalent volume of saline that served as negative controls. In exposure Week 1, animals received three consecutive daily doses of 0.4 LD(50) soman. In exposure Week 2, animals received four consecutive daily doses of 0.5 LD(50) soman. In exposure Week 3, animals received five consecutive daily doses of 0.5 LD(50) soman. Week 4 constituted a post-exposure recovery evaluation. Throughout the experiment, behavioral function was assessed by a discriminated avoidance test that required intact sensory and motor function. Survival and body weight changes were recorded daily. Differences in toxicity as a function of diet composition became apparent during the first week. Specifically, rats fed the glucose-enriched diet showed pronounced intoxication during Week 1, resulting in imperfect survival, weight loss, and deteriorated avoidance performance relative to all other groups. All rats fed the glucose-enriched diet died by the end of exposure Week 2. In contrast, only 10% of animals fed the standard diet died by the end of Week 2. Also in Week 2, weight loss and disrupted avoidance performance were apparent for all groups except for those fed the ketogenic diet. This differential effect of diet composition became even more striking in Week 3 when survival in the standard and choline diet groups approximated 50%, whereas survival equaled 90% in the ketogenic diet group. Avoidance performance and weight loss measures corroborated the differential toxicity observed across diet groups. Upon cessation of soman exposure during the final week, recovery of weight and avoidance performance in survivors was comparable across diet groups. These results systematically replicate previous findings demonstrating that diet composition exacerbates or attenuates toxicity in rodents exposed acutely to organophosphorus compounds. Published by Elsevier B.V.
Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats.
Schurgers, Leon J; Spronk, Henri M H; Soute, Berry A M; Schiffers, Paul M; DeMey, Jo G R; Vermeer, Cees
2007-04-01
Arterial calcification (AC) is generally regarded as an independent risk factor for cardiovascular morbidity and mortality. Matrix Gla protein (MGP) is a potent inhibitor of AC, and its activity depends on vitamin K (VK). In rats, inactivation of MGP by treatment with the vitamin K antagonist warfarin leads to rapid calcification of the arteries. Here, we investigated whether preformed AC can be regressed by a VK-rich diet. Rats received a calcification-inducing diet containing both VK and warfarin (W&K). During a second 6-week period, animals were randomly assigned to receive either W&K (3.0 mg/g and 1.5 mg/g, subsequently), a diet containing a normal (5 microg/g) or high (100 microg/g) amount of VK (either K1 or K2). Increased aortic calcium concentration was observed in the group that continued to receive W&K and also in the group changed to the normal dose of VK and AC progressed. Both the VK-rich diets decreased the arterial calcium content by some 50%. In addition, arterial distensibility was restored by the VK-rich diet. Using MGP antibodies, local VK deficiency was demonstrated at sites of calcification. This is the first study in rats demonstrating that AC and the resulting decreased arterial distensibility are reversible by high-VK intake.
Effect of modified alkaline supplementation on bone metabolic turnover in rats.
Chui, D H; Marotta, F; Liu, T; Minelli, E; Yadav, H; Signorelli, P; Lorenzetti, A; Jain, S
2008-01-01
This study aims to determine the effects of a high protein diet and alkaline supplementation on bone metabolic turnover in rats. Eight-week-old male Sprague-Dawley rats were investigated by bone status, including bone mineral density (BMD) and biomechanical markers from blood and urine. Thirty rats were randomly divided into three groups and treated for 8 weeks as follows: baseline control group (n. 10, C), high-protein supplemented diet group (n. 10, chronic acidosis, CA group) and supplemented chronic acidosis (n.10, SCA). Diet-treated rats were fed an acidic high-protein diet and the supplementation consisted in a modified alkaline formula (Basenpulver, NaMed, Italy). At the end of the experimental period, the rats were sacrificed, blood samples were drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the CA group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased 2.1-fold (p<0.05 vs normal diet controls) as well as kidney weight. However, serum Ca and P concentration, as well as urinary Dpd excretion were not significantly changed. Femural and tibial BMD was significantly decreased in the CA group (p<0.05), but alkaline supplementation prevented such phenomenon (p<0.05 vs CA). These results suggest that blood Ca and P concentrations in chronic acidosis condition during the 12-week supplementation might be maintained by hypercalciuria and hyperphosphaturia at the expenses of bone structure. However, modified alkaline supplementation is able to prevent such derangements.
A high-fat diet can affect bone healing in growing rats.
Yamanaka, Jéssica Suzuki; Yanagihara, Gabriela Rezende; Carlos, Bruna Leonel; Ramos, Júnia; Brancaleon, Brígida Batista; Macedo, Ana Paula; Issa, João Paulo Mardegan; Shimano, Antônio Carlos
2018-05-01
A high-fat diet (HFD) can have a negative effect on bone quality in young and old people. Although bone healing in children is normally efficient, there is no evidence that children who have a diet rich in fat have compromised bone fracture regeneration compared with children with recommended dietary fat levels. The purpose of the present study was to evaluate the effects of an HFD on bone healing in growing female rats. Twenty-six postweaning female Wistar rats were divided into two groups (13 animals per group): a standard diet (SD) group and an HFD (with 60% of energy from fat) group. The rats received the assigned diets for 5 weeks, and in the third week they were submitted to an osteotomy procedure of the left tibia. Body mass and feed intake were recorded during the experiment. One day before euthanasia, an insulin tolerance test was performed. After euthanasia, the tibiae were removed and analyzed by densitometry, mechanical testing, histomorphometry, stereology and immunohistochemistry. An HFD caused an adaptive response to maintain energetic balance by decreasing feed intake and causing insulin insensitivity. There was no change in bone mineral density, collagen amount and immunostaining for bone formation, but maximal load and stiffness were decreased in the HFD group. In addition, bone volume had a tendency to be higher in the SD group than in the HFD group. Compared with rats receiving an SD, growing rats receiving an HFD for 5 weeks had similar bone mineral density but altered mechanical properties at the osteotomy defect site.
Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.
Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh
2017-06-01
The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.
Ko, Mei-Lan; Peng, Pai-Huei; Hsu, Shens-Yao; Chen, Chau-Fong
2010-09-01
Investigate the effect of dietary vitamin E (Vit E) on the retinas of a rat model of induced glaucoma, in which surgically induced elevation of intraocular pressure (IOP) is associated with an increase in reactive oxygen species. Rats were fed a standard chow, Vit E-supplemented diet, or Vit E-deficient diet and subjected to surgically induced IOP elevation (or sham surgery) for five weeks. The retinal ganglion cells (RGCs) were subjected to retrograde fluorescent tracer labeling. The mean number of RGCs of rats on the standard chow, Vit E-supplemented diet, and Vit E-deficient diet were 79.6%, 78.6%, and 71.3% of controls, respectively. Lipid peroxidation of the retinas of rats given a Vit E-deficient diet were significantly higher after IOP elevation for three days (14.42 +/- 0.25 microM, P = 0.016) and five weeks (10.46 +/- 0.11 microM, p = 0.042), compared to rats given standard chow (11.37 +/- 0.31 microM; 8.95 +/- 0.16 microM). Compared with rats given standard chow, rats given a Vit E-deficient diet had significantly elevated concentrations of glutathione (p = 0.032), but no significant differences in the levels of total superoxide dismutase (SOD), Cu/Zn SOD, or catalase activities three days after IOP elevation. Rats fed a Vit E-deficient diet with surgically induced IOP elevation experience significantly more RGC death than rats fed a normal diet. This phenomenon may be related to the increased level of lipid peroxidation in Vit E-deficient rats.
Abd El-Wahab, A; Radko, D; Kamphues, J
2013-07-01
Foot pad dermatitis (FPD) is a widespread problem in poultry production and constitutes a welfare issue. The objective of this study was to test potentially prophylactic effects of higher biotin and Zn levels in the diet of broilers exposed to critical litter moisture content (35% water) on the development of FPD. Two trials were performed in each 4 groups of 1-wk-old male broilers (Ross 708) during 33 d. The pens of all groups (25 birds in each) were littered with wood shavings of critical moisture content. Two groups were fed high levels of Zn as zinc-oxide (150 mg/kg of diet), with normal levels of biotin (300 µg/kg of diet) or high biotin (2,000 µg/kg of diet). The other 2 groups were fed Zn as zinc-methionine (150 mg/kg of diet), with normal levels of biotin (300 µg/kg of diet) or high biotin (2,000 µg/kg of diet). External assessment of foot pads and measurements the moisture contents of excreta and litter were performed weekly. The signs of foot pad lesions were recorded on a 7-point scale (0 = normal skin; 7 = more than half of the foot pad is necrotic). High biotin supplementation resulted in a reduction of 30 and 18% of cases of foot pad lesions in trials 1 and 2, respectively. The combination of Zn-methionine and high biotin supplementation led to a decreased severity of FPD in a range of about 50 and 30% in trials 1 and 2, respectively. In broilers fed the diet containing zinc-oxide and normal biotin levels about 28 and 24% of the birds had the scores of 6 and 7 (= high foot pad alterations), whereas in birds fed Zn-methionine and high biotin no high alterations (score = 7) in the foot pad (0%) occurred in either trial. The presented results suggest that it is advisable to combine the maximum levels of Zn (especially of Zn-methionine) and high levels of biotin when clinically relevant alterations in the foot pad occur.
Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong
2017-01-01
This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.
Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan
2017-01-01
Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026
Raspberry Ketone Protects Rats Fed High-Fat Diets Against Nonalcoholic Steatohepatitis
Wang, Lili; Zhang, Fengqing
2012-01-01
Abstract The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague–Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin–eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and RKH groups was significantly improved (P<.05, P<.01). Thus raspberry ketone was an effective intervention for NASH in rats. It was believed that raspberry ketone had a dual effect of liver protection and fat reduction, and the mechanism was probably mediated by alleviation of fatty degeneration of liver cells, decreased liver inflammation, correction of dyslipidemia, reversal of LEP and INS resistance, and improved antioxidant capacity. PMID:22551412
Raspberry ketone protects rats fed high-fat diets against nonalcoholic steatohepatitis.
Wang, Lili; Meng, Xianjun; Zhang, Fengqing
2012-05-01
The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague-Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin-eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and RKH groups was significantly improved (P<.05, P<.01). Thus raspberry ketone was an effective intervention for NASH in rats. It was believed that raspberry ketone had a dual effect of liver protection and fat reduction, and the mechanism was probably mediated by alleviation of fatty degeneration of liver cells, decreased liver inflammation, correction of dyslipidemia, reversal of LEP and INS resistance, and improved antioxidant capacity.
Chen, Yu-Wei; Fiscella, Kimberly A.; Bacharach, Samuel Z.; Calu, Donna J.
2014-01-01
Background Relapse to unhealthy eating habits is a major problem in human dietary treatment. The individuals most commonly seeking dietary treatment are overweight or obese women, yet the commonly used rat reinstatement model to study relapse to palatable food seeking during dieting primarily uses normal-weight male rats. To increase the clinical relevance of the relapse to palatable food seeking model, here we pre-expose female rats to a calorically-dense cafeteria diet in the home-cage to make them overweight prior to examining the effect of this diet history on cue-, pellet-priming- and footshock-induced reinstatement of food seeking. Methods Post-natal day 32 female Long-Evans rats had seven weeks of home-cage access to either chow only or daily or intermittent cafeteria diet alongside chow. Next, they were trained to self-administer normally preferred 45 mg food pellets accompanied by a tone-light cue. After extinction, all rats were tested for reinstatement induced by discrete cue, pellet-priming, and intermittent footshock under extinction conditions. Results Access to daily cafeteria diet and to a lesser degree access to intermittent cafeteria diet decreased food pellet self-administration compared to chow-only. Prior history of these cafeteria diets also reduced extinction responding, cue- and pellet-priming-induced reinstatement. In contrast, modest stress-induced reinstatement was only observed in rats with a history of daily cafeteria diet. Conclusion A history of cafeteria diet does not increase the propensity for cue- and pellet-priming-induced relapse in the rat reinstatement model but does appear to make rats more susceptible to footshock stress-induced reinstatement. PMID:25025329
Antu, Kalathookunnel Antony; Riya, Mariam Philip; Nair, Anupama; Mishra, Arvind; Srivastava, Arvind K; Raghu, Kozhiparambil Gopalan
2016-12-04
This plant has been utilized in Indian system of medicine for treatment of diabetes. This is clearly evident from the composition of Ayurvedic preparation for diabetes 'Nisakathakadi Kashayam' where this is one of the main ingredients of this preparation AIM OF THE STUDY: The study aims in elucidating the molecular mechanisms underlying the insulin sensitizing effects of Symplocos cochinchinensis ethanol extract (SCE) using a high fructose and saturated fat (HFS) fed insulin resistant rat model. Experimental groups consisted of normal diet (ND), ND+SCE 500mg/kg bwd, HFS+vehicle, HFS+metformin 100mg/kg bwd, HFS+SCE 250/500mg/kg bwd. Initially the animals were kept under HFS diet for 8 weeks, and at the end of 8 week period, animals were found to develop insulin resistance and dyslipidemia. Post-administration of SCE, metformin or vehicle were carried out for 3 weeks. Gene and protein expressions relevant to insulin signalling pathway were analysed. HFS significantly altered the normal physiology of animals via proteins and genes relevant to metabolism like stearoyl-CoA desaturase (SCD1), sterol regulatory element binding protein 1 (SREBP-1c), fatty acid synthase (FAS), glucose 6 phosphatase (G6Pase), phosphoenol pyruvate carboxykinase (PEPCK), glucose transporter 2 (GLUT2), protein tyrosine phosphatse 1B (PTP1B), peroxisome proliferator activated receptor alpha (PPAR alpha), sirtuin 1 (SIRT1) and glucokinase. SCE administration attenuates the insulin resistance in HFS rat by the down regulation of SCD1 gene expression that modulates SREBP-1c dependent and independent hepatic lipid accumulation. SCE enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in HFS rat model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nordentoft, I; Jeppesen, P B; Hong, J; Abudula, R; Hermansen, K
2008-06-25
High content isoflavone soy protein (SBP) (Abalon) has been found in animal studies to possess beneficial effects on a number of the characteristic features of the insulin resistance syndrome. The aim of this study was to investigate whether SBP exerts beneficial effects on metabolism in the diabetic KKAy-mouse. Furthermore, we investigated the long-term in vivo effect of SBP on the expression profile in islets of key insulin regulatory genes. Twenty KKAy-mice, aged 5 weeks, were divided into 2 groups and treated for 9 weeks with either (A) standard chow diet (control) or (B) chow + 50% SBP. Twenty normal C57BL-mice fed with standard chow diet served as nondiabetic controls (C). Blood samples were collected and analyzed before and after intervention. Gene expression was determined in islets by quantitative real-time RT-PCR and Affymetrix microarray. It was demonstrated that long-term treatment with SBP improves glucose homeostasis, increases insulin sensitivity, and lowers plasma triglycerides in diabetic KKAy-mice. SBP reduces fasting plasma glucose, insulin, triglycerides, and total cholesterol. Furthermore, SBP markedly changes the gene expression profile of key insulin regulatory genes GLUT2, GLUT3, Ins1, Ins2, IGF1, Beta2/Neurod1, cholecystokinin, and LDLr, and proliferative genes in islets isolated from KKAy-mice. After 9 weeks of treatment with SBP, plasma glucose and insulin homeostasis was normalized compared to start levels. The results indicate that SBP improves glucose and insulin sensitivity and up-regulates the expression of key insulin regulatory genes.
Mills, Susanna; Brown, Heather; Wrieden, Wendy; White, Martin; Adams, Jean
2017-08-17
Reported associations between preparing and eating home cooked food, and both diet and health, are inconsistent. Most previous research has focused on preparing, rather than eating, home cooked food; used small, non-population based samples; and studied markers of nutrient intake, rather than overall diet quality or health. We aimed to assess whether frequency of consuming home cooked meals was cross-sectionally associated with diet quality and cardio-metabolic health. We used baseline data from a United Kingdom population-based cohort study of adults aged 29 to 64 years (n = 11,396). Participants self-reported frequency of consuming home cooked main meals. Diet quality was assessed using the Mediterranean Diet Score, Dietary Approaches to Stop Hypertension (DASH) score, fruit and vegetable intake calculated from a 130-item food frequency questionnaire, and plasma vitamin C. Markers of cardio-metabolic health were researcher-measured body mass index (BMI), percentage body fat, haemoglobin A 1c (HbA 1c ), cholesterol and hypertension. Differences across the three exposure categories were assessed using linear regression (diet variables) and logistic regression (health variables). Eating home cooked meals more frequently was associated with greater adherence to DASH and Mediterranean diets, greater fruit and vegetable intakes and higher plasma vitamin C, in adjusted models. Those eating home cooked meals more than five times, compared with less than three times per week, consumed 62.3 g more fruit (99% CI 43.2 to 81.5) and 97.8 g more vegetables (99% CI 84.4 to 111.2) daily. More frequent consumption of home cooked meals was associated with greater likelihood of having normal range BMI and normal percentage body fat. Associations with HbA 1c , cholesterol and hypertension were not significant in adjusted models. Those consuming home cooked meals more than five times, compared with less than three times per week, were 28% less likely to have overweight BMI (99% CI 8 to 43%), and 24% less likely to have excess percentage body fat (99% CI 5 to 40%). In a large population-based cohort study, eating home cooked meals more frequently was associated with better dietary quality and lower adiposity. Further prospective research is required to identify whether consumption of home cooked meals has causal effects on diet and health.
Effect of Allowing Choice of Diet on Weight Loss: A Randomized Trial.
Yancy, William S; Mayer, Stephanie B; Coffman, Cynthia J; Smith, Valerie A; Kolotkin, Ronette L; Geiselman, Paula J; McVay, Megan A; Oddone, Eugene Z; Voils, Corrine I
2015-06-16
Choosing a diet rather than being prescribed one could improve weight loss. To examine whether offering choice of diet improves weight loss. Double-randomized preference trial of choice between 2 diets (choice) versus random assignment to a diet (comparator) over 48 weeks. (ClinicalTrials.gov: NCT01152359). Outpatient clinic at a Veterans Affairs medical center. Outpatients with a body mass index of at least 30 kg/m2. Choice participants received information about their food preferences and 2 diet options (low-carbohydrate diet [LCD] or low-fat diet [LFD]) before choosing and were allowed to switch diets at 12 weeks. Comparator participants were randomly assigned to 1 diet for 48 weeks. Both groups received group and telephone counseling for 48 weeks. The primary outcome was weight at 48 weeks. Of 105 choice participants, 61 (58%) chose the LCD and 44 (42%) chose the LFD; 5 (3 on the LCD and 2 on the LFD) switched diets at 12 weeks, and 87 (83%) completed measurements at 48 weeks. Of 102 comparator participants, 53 (52%) were randomly assigned to the LCD and 49 (48%) were assigned to the LFD; 88 (86%) completed measurements. At 48 weeks, estimated mean weight loss was 5.7 kg (95% CI, 4.3 to 7.0 kg) in the choice group and 6.7 kg (CI, 5.4 to 8.0 kg) in the comparator group (mean difference, -1.1 kg [CI, -2.9 to 0.8 kg]; P = 0.26). Secondary outcomes of dietary adherence, physical activity, and weight-related quality of life were similar between groups at 48 weeks. Only 2 diet options were provided. Results from this sample of older veterans might not be generalizable to other populations. Contrary to expectations, the opportunity to choose a diet did not improve weight loss.
Wu, Hao; Jin, Meihua; Han, Donghe; Zhou, Mingsheng; Mei, Xifan; Guan, Youfei; Liu, Chang
2015-03-20
This study aimed to investigate the mechanism by which aerobic swimming training prevents high-fat-diet-induced nonalcoholic fatty liver disease (NAFLD). Forty-two male C57BL/6 mice were randomized into normal-diet sedentary (ND; n = 8), ND exercised (n = 8), high-fat diet sedentary (HFD; n = 13), and HFD exercised groups (n = 13). After 2 weeks of training adaptation, the mice were subjected to an aerobic swimming protocol (60 min/day) 5 days/week for 10 weeks. The HFD group exhibited significantly higher mRNA levels of fatty acid transport-, lipogenesis-, and β-oxidation-associated gene expressions than the ND group. PANDER and FOXO1 expressions increased, whereas AKT expression decreased in the HFD group. The aerobic swimming program with the HFD reversed the effects of the HFD on the expressions of thrombospondin-1 receptor, liver fatty acid-binding protein, long-chain fatty-acid elongase-6, Fas cell surface death receptor, and stearoyl-coenzyme A desaturase-1, as well as PANDER, FOXO1, and AKT. In the HFD exercised group, PPARα and AOX expressions were much higher. Our findings suggest that aerobic swimming training can prevent NAFLD via the regulation of fatty acid transport-, lipogenesis-, and β-oxidation-associated genes. In addition, the benefits from aerobic swimming training were achieved partly through the PANDER-AKT-FOXO1 pathway. Copyright © 2015 Elsevier Inc. All rights reserved.
Ciarambino, Tiziana; Ferrara, Nicoletta; Castellino, Pietro; Paolisso, Giuseppe; Coppola, Ludovico; Giordano, Mauro
2011-01-01
Late-life depression is one of the main health problems among elderly diabetic subjects. In addition, depression is a common psychopathological condition among renal failure patients and most of these patients follow a low protein diet regimen (LPD). However, the effects of LPD on depressive symptoms are unclear. In the present study, the effects of LPD regimen on depressive symptoms in elderly type 2 diabetic subjects with renal failure were investigated. Fifty-two young-old type 2 diabetic patients with renal failure were enrolled in the study. All participants after normal protein diet regimen providing 1.2g/kg per d were instructed to consume either a LPD providing 0.8 g/kg per d, 7 d a wk (LPD 7/7), or a LPD providing 0.8 g/kg per d 6 d a wk (LPD 6/7) randomly. Mean 15-item Geriatric Depression Scale (GDS-15) (2.0±0.6) and Beck Depression Inventory (BDI) (4.1±1.0), during normal protein diet regimen, significantly increased to (6.7±1.6) and (12.2±1.4), respectively, after LPD 7/7 (P<0.05 versus normal protein diet). However, after LPD 6/7, mean GDS-15 and BDI significantly decreased to (4.4±1.5) and (6.7±1.6), respectively (P<0.05 versus LPD 7/7). LPD 6/7 regimen significantly decreased depressive symptoms in young-old type 2 diabetic patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Immune defense of emodin enriched diet in Clarias batrachus against Aeromonas hydrophila.
Harikrishnan, Ramasamy; Jawahar, Sundaram; Thamizharasan, Subramanian; Paray, Bilal Ahmad; Al-Sadoon, Mohammad K; Balasundaram, Chellam
2018-05-01
This study investigates the effect of emodin enriched diet on growth, hematology, and immune response in walking catfish, Clarias batrachus against Aeromonas hydrophila. The basal (control) diet supplemented with emodin at 0.0, 0.1, 0.2, or 0.4 g kg -1 was fed to the experimental groups for a period of four weeks. Feeding infected fish with 0.2 g kg -1 and 0.4 g kg -1 emodin enriched diets resulted in an overall weight gain, enhanced PER and FCR when compared to other diets. The survival rates were 98.3% and 96.7% in 0.1 g kg -1 and 0.4 g kg -1 emodin diet fed groups. Feeding with 0.2 g kg -1 diet the RBC level significantly elevated on week 1 and with 0.4 g kg -1 diet on weeks 2 and 4. The WBC, the percentage of globulin and neutrophils increased significantly with 0.2 g kg -1 diet only on week 4; however with 0.4 g kg -1 diet the increase was observed from week 1-4. The phagocytic activity increased significantly on being fed with 0.4 g kg -1 diet on week 2 while with 0.2 g kg -1 and 0.4 g kg -1 diets the increase manifested only on week 4; the respiratory burst activity also significantly increased on week 4 whereas increased the complement activity on weeks 2 and 4. The superoxide dismutase (SOD) activity was high on being fed with 0.4 g kg -1 diet on week 1; with 0.2 g kg -1 or 0.4 g kg -1 diets the increase was observed on weeks 2 and 4. The serum IgM level significantly increased when fed with 0.4 g kg -1 diet whereas the lysozyme activity was enhanced with 0.2 g kg -1 and 0.4 g kg -1 emodin diets on weeks 2 and 4. The percentage cumulative mortality was 10% with 0.1 g kg -1 or 0.2 g kg -1 diets while with 0.2 g kg -1 diet it was 15%. The results demonstrate that as a feed additive emodin acts as an immunostimulant enhancing the specific and nonspecific immune defense affording increased disease protection, enhances better growth and boosts hematology parameters in C. batrachus against A. hydrophila infection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kephart, Wesley C.; Pledge, Coree D.; Roberson, Paul A.; Mumford, Petey W.; Romero, Matthew A.; Mobley, Christopher B.; Young, Kaelin C.; Lowery, Ryan P.; Wilson, Jacob M.; Huggins, Kevin W.; Roberts, Michael D.
2018-01-01
Adopting low carbohydrate, ketogenic diets remains a controversial issue for individuals who resistance train given that this form of dieting has been speculated to reduce skeletal muscle glycogen levels and stifle muscle anabolism. We sought to characterize the effects of a 12-week ketogenic diet (KD) on body composition, metabolic, and performance parameters in participants who trained recreationally at a local CrossFit facility. Twelve participants (nine males and three females, 31 ± 2 years of age, 80.3 ± 5.1 kg body mass, 22.9 ± 2.3% body fat, 1.37 back squat: body mass ratio) were divided into a control group (CTL; n = 5) and a KD group (n = 7). KD participants were given dietary guidelines to follow over 12 weeks while CTL participants were instructed to continue their normal diet throughout the study, and all participants continued their CrossFit training routine for 12 weeks. Pre, 2.5-week, and 12-week anaerobic performance tests were conducted, and pre- and 12-week tests were performed for body composition using dual X-ray absorptiometry (DXA) and ultrasound, resting energy expenditure (REE), blood-serum health markers, and aerobic capacity. Additionally, blood beta hydroxybutyrate (BHB) levels were measured weekly. Blood BHB levels were 2.8- to 9.5-fold higher in KD versus CTL throughout confirming a state of nutritional ketosis. DXA fat mass decreased by 12.4% in KD (p = 0.053). DXA total lean body mass changes were not different between groups, although DXA dual-leg lean mass decreased in the KD group by 1.4% (p = 0.068), and vastus lateralis thickness values decreased in the KD group by ~8% (p = 0.065). Changes in fasting glucose, HDL cholesterol, and triglycerides were similar between groups, although LDL cholesterol increased ~35% in KD (p = 0.048). Between-group changes in REE, one-repetition maximum (1-RM) back squat, 400 m run times, and VO2peak were similar between groups. While our n-sizes were limited, these preliminary data suggest that adopting a ketogenic diet causes marked reductions in whole-body adiposity while not impacting performance measures in recreationally-trained CrossFit trainees. Whether decrements in dual-leg muscle mass and vastus lateralis thickness in KD participants were due to fluid shifts remain unresolved, and increased LDL-C in these individuals warrants further investigation.
Fish oil and olive oil-rich diets modify ozone-induced ...
Rationale: Air pollution exposure has been associated with adverse cardiovascular health effects. Our clinical studies suggest that fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles. This study was designed to examine the cardiovascular effects of ozone and the efficacy of FO and OO-rich diets in attenuating these effects of ozone exposure in rats. Methods: Male Wistar Kyoto rats were fed either a normal diet (ND), or a diet enriched with 6% FO or OO starting at 4 weeks of age. Eight weeks following the start of the diet, animals were exposed to filtered air (FA) or 0.8 ppm ozone, 4 hr/day for 2 consecutive days. Immediately after exposure, cardiac responses were assessed ex vivo using a Langendorff heart preparation with a protocol consisting of 20 min of global ischemia followed by 2 hr reperfusion. Cardiac function was measured as the index of left-ventricular developed pressure (LVDP) and contractility (dP/dtmax and dP/dtmin) before ischemia. Upon reperfusion after ischemia, the recovery of post-ischemic LVDP and infarct size were examined. Results: The pre-ischemic LVDP, dP/dtmax, and dP/dtmin were lower after ozone exposure when compared to the FA control in the rats fed ND but not FO and OO. OO diet shortened the time to ischemic contracture of the hearts after FA exposure compared to ND. Ozone exposure increased pre-ischemic heart rate and the time to ischemic contractur
No influence of high- and low-carbohydrate diet on the oral glucose tolerance test in pregnancy.
Buhling, Kai J; Elsner, Eva; Wolf, Christiane; Harder, Thomas; Engel, Barbara; Wascher, Cornelia; Siebert, Gerda; Dudenhausen, Joachim W
2004-04-01
Our objective was to determine the influence of the carbohydrate content of the diet preceding the oral glucose tolerance test (OGTT) in pregnancy on the test results and to evaluate the necessity of the recommended preparatory high-carbohydrate diet. Thirty-four women from our outpatient clinic were enrolled in this prospective study. After giving informed consent, each women underwent a 90-min lesson (supervised by a dietary assistant) covering the carbohydrate, protein and fat content of different foods. Women were then randomized and in a crossover design started a diet with either a low or a high carbohydrate content. We were aiming at a carbohydrate intake of 40% in the low-carbohydrate week (LCH) and 50% in the high-carbohydrate week (HCH). Compliance was monitored by a detailed food diary which the women kept and which included the weight of the foods they consumed. The actual dietary intakes as calculated from the food diaries showed that the mean caloric intake was 1801 +/- 314 kcal in the LCH and 2118 +/- 312 kcal in the HCH week (<0.001). During the LCH diet, CH intake was 39 +/- 6.1% and 49 +/- 6.6% in the HCH week (P < 0.001). The carbohydrate intake per kilogram bodyweight was 30 +/- 5.3 kcal vs. 35 +/- 5.2 kcal (P < 0.001). The number of patients diagnosed with gestational diabetes was two in the LCH and three in the HCH week (not significant). The sum of the OGTT values (fasting, 1 h and 2 h) after the LCH was 18.9 +/- 2.1 mmol/l vs. 18.8 +/- 2.1 mmol/l after the HCH (P = 0.51). No differences could be found in both groups regarding the fasting, 1-h, or 2-h glucose values. Including patients with a CH difference of at least 5%, 10%, and 15% carbohydrate between the weeks, we still did not observe any differences in the OGTT sum. We also looked at a possible influence of the CH content of the diet on the day before the test and of the last meal before the OGTT results and observed there was none. This is the first study which has observed the influence of the previous day's meal on the test results. We conclude from our results that the carbohydrate percentage of the preparatory diet did not influence the results of an OGTT, even when we increased the difference in carbohydrate intake stepwise up to 15%. This might indicate that a preparatory diet before the OGTT is not necessary for women with normal nutritional behavior.
Musthafa, Mohamed Saiyad; Jawahar Ali, Abdul Rahman; Hyder Ali, Abdul Rahuman; Mohamed, Mohamed Jamal; War, Mehrajuddin; Naveed, Mohamed Saquib; Al-Sadoon, Mohammad K; Paray, Bilal Ahmad; Rani, Kuppusamy Umaa; Arockiaraj, Jesu; Balasundaram, Chellam; Harikrishnan, Ramasamy
2016-10-01
The effect of diet supplemented with Shilajit, a multi-component natural mineral substance on the antioxidant activity, immune response, and disease resistance in freshwater prawn, Macrobrachium rosenbergii (de Man) against Aeromonas hydrophila is reported. The total hemocyte count (THC) and phagocytic activity significantly increased with 2 g kg(-1) supplemented diet on first week and with other enriched diets on weeks 2 and 4. The respiratory burst (RB) activity and glutathione peroxidase (GPx) activity were significantly increased with 2 g kg(-1) supplemented diet on weeks 1 and 2 whereas 2 and 4 g kg(-1) diets on week 4. The phenoloxidase (PO) activity increased significantly with 2 g kg(-1) diet only on second week and with other enriched diets only on fourth week. The superoxide dismutase (SOD) activity increased significantly with any enriched diet during the experimental period except with 6 g kg(-1) diets on first week. However, the glutathione reductase (GR) activity was enhanced significantly only with 2 g kg(-1) enriched diets on weeks 2 and 4. The cumulative mortality of the prawn fed with 2 and 4 g kg(-1) enriched diets was 10% and 15% whereas with 6 g kg(-1) diet the mortality was 20%. The results suggest that diet enriched with Shilajit at 2 g kg(-1) or 4 g kg(-1) positively enhances the antioxidant activity, immunity, and disease resistance in M. rosenbergii against A. hydrophila. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cao, Jay J; Gregoire, Brian R
2016-04-01
Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P < .01). The high-fat diet increased body weight (P < .01) in OVX mice and nonsignificantly decreased BV/TV (P = .08) and Conn.D (P = .10). Despite having similar serum estradiol concentrations and higher body weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice. Published by Elsevier Inc.
Ramos-Romero, Sara; Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Taltavull, Núria; Dasilva, Gabriel; Romeu, Marta; Medina, Isabel; Torres, Josep Lluís
2016-08-10
It has been suggested that food components such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and (poly)phenols counteract diet-induced metabolic alterations by common or complementary mechanisms. To examine the effects of a combination of ω-3 PUFAs and (poly)phenols on such alterations, adult Wistar-Kyoto rats were fed an obesogenic high-fat high-sucrose diet supplemented, or not, for 24 weeks with: eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1 : 1 (16.6 g kg(-1) feed); proanthocyanidin-rich grape seed extract (GSE, 0.8 g kg(-1) feed); or EPA/DHA 1 : 1 + GSE. Body weight, feed intake, and plasma glucose were evaluated every 6 weeks, while adipose tissue weight, insulin, glucagon, ghrelin, leptin, adiponectin, cholesterol, and triglycerides were evaluated at the end of the experiment. ω-3 PUFAs reduced plasma leptin and cholesterol levels, but did not modify diet-induced perigonadal fat or plasma insulin levels; while GSE increased plasma triglyceride levels. The combined action of ω-3 PUFAs and the proanthocyanidins reduced plasma insulin and leptin, as well as partially prevented perigonadal fat accumulation. While separate supplementation with ω-3 PUFAs or grape proanthocyanidins may not counteract all the key metabolic changes induced by a high-energy-dense diet, the combination of both supplements reverts altered insulin, leptin and triglyceride levels to normal.
[Intervention of coarse cereals on lipid metabolism in rats].
Guo, Yanbo; Zhai, Chengkai; Wang, Yanli; Zhang, Qun; Ding, Zhoubo; Jin, Xin
2010-03-01
To observe the effect of coarse cereals on improving the disorder of lipid metabolism and the expression of PPARgamma mRNA in white adipose tissue in rats to investigate the mechanism of coarse cereals on lipid metabolism disorder. Forty four SPF rats were randomly divided into 4 groups: the negative control group was fed with normal diet and 3 experimental groups were fed with high-fat modeling diet for 6 weeks for model building. The 3 experimental groups, the coarse cereals group,rice-flour group and the hyperlipemia model group, were then fed with coarse cereals high-fat diet,rice-flour high-diet and high-fat modeling diet respectively for another 15 weeks. Compared with the hyperlipemia modeling group, serum TG, TC, IL-6 and TNF-alpha in the coarse cereals group were declined significantly (P < 0.05), serum HDL-C in coarse cereals group was higher than that in rice-flour group and hyperlipemia model group (P < 0.05), LPL, HL and TNF-alpha in coarse cereal group were close to the negative control group. Moreover, the expression of PPAR-gamma mRNA in white adipose tissue of the coarse cereals group was higher than other groups. The coarse cereals could activate PPARgamma and enhance the activity of key enzymes in lipids metabolism, so as to reduce the level of TG relieve inflammation and improve lipid dysmetabolism eventually.
van Vugt, Michael; de Wit, Maartje; Bader, Suzanne; Snoek, Frank J
2016-04-01
Diabetes self-management education improves behavioural and clinical outcomes in type 2 diabetes patients, however little is known about the modifying effects of well-being. This is relevant given high prevalence of depression and distress among diabetes patients. We aimed to test whether low well-being modifies the effects of the PRISMA self-management education program (Dutch DESMOND). 297 primary care type 2 diabetes patients participated in the PRISMA observational study with a pre-post measurement design. Patients were grouped in low (n=63) and normal well-being (n=234). Low well-being was defined as either low mood (WHO-5<50) and/or high diabetes-distress (PAID-5>8). Outcome measures were: diabetes self-efficacy (CIDS), illness perception (IPQ) and diabetes self-care activities (SDSCA). Improvements were found in illness perception (b=1.586, p<0.001), general diet (b=1.508, p=0.001), foot care (b=0.678, p=0.037), weekly average diet (b=1.140, p=0.001), creating action plan (b=0.405, p=0.007). Well-being interaction effects were found for general diet (p=0.009), weekly average diet (p=0.022), and creating an action plan (p=0.002). PRISMA self-management education seems as effective for people with normal well-being as for people with low well-being. Further research should examine whether addressing mood and diabetes-distress as part of self-management education could reduce attrition and maintain or improve well-being among participants. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Gao, Xiaoyu; Xie, Qiuhong; Liu, Ling; Kong, Ping; Sheng, Jun; Xiang, Hongyu
2017-06-01
The aqueous leaf extract of Moringa oleifera Lam. (LM-A) is reported to have many health beneficial bioactivities and no obvious toxicity, but have mild adverse effects. Little is known about the mechanism of these reported adverse effects. Notably, there has been no report about the influence of LM-A on intestinal microecology. In this study, animal experiments were performed to explore the relationships between metabolic adaptation to an LM-A-supplemented diet and gut microbiota changes. After 8-week feeding with normal chow diet, the body weight of mice entered a stable period, and one of the group received daily doses of 750-mg/kg body weight LM-A by gavage for 4 weeks (assigned as LM); the other group received the vehicle (assigned as NCD). The liver weight to body weight ratio was enhanced, and the ceca were enlarged in the LM group compared with the NCD group. LM-A-supplemented-diet mice elicited a uniform metabolic adaptation, including slightly influenced fasting glucose and blood lipid profiles, significantly reduced liver triglycerides content, enhanced serum lipopolysaccharide level, activated inflammatory responses in the intestine and liver, compromised gut barrier function, and broken intestinal homeostasis. Many metabolic changes in mice were significantly correlated with altered specific gut bacteria. Changes in Firmicutes, Eubacterium rectale/Clostridium coccoides group, Faecalibacterium prausnitzii, Akkermansia muciniphila, segmented filamentous bacteria, Enterococcus spp., and Sutterella spp. may play an important role in the process of host metabolic adaptation to LM-A administration. Our research provides an explanation of the adverse effects of LM-A administration on normal adult individuals in the perspective of microecology.
De Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Rateri, Debra L; Howatt, Deborah A; Balakrishnan, Anju; Ji, Ailing; Shridas, Preetha; Thompson, Joel C; van der Westhuyzen, Deneys R; Tannock, Lisa R; Daugherty, Alan; Webb, Nancy R; De Beer, Frederick C
2014-01-01
Objective Although elevated plasma concentrations of serum amyloid A (SAA) are strongly associated with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. Approach and Results ApoE-/- mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1 (SAAWT and SAAKO, respectively), were fed a normal rodent diet for 50 weeks. Female, but not male SAAKO mice had a modest increase (22%; p ≤ 0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared to SAAWT mice that did not impact the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not impact lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between SAAKO and SAAWT mice in either gender. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had no effect on diet-induced alterations in plasma cholesterol, triglyceride or cytokine concentrationsn or on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. Conclusions The absence of endogenous SAA1.1 and 2.1 does not impact atherosclerotic lipid deposition in apoE-/- mice fed either normal or Western diets. PMID:24265416
Muthulakshmi, Shanmugam; Saravanan, Ramalingam
2013-05-01
Excess fat intake induces hyperinsulinaemia, increases nutrient uptake and lipid accumulation, amplifies ROS generation, establishes oxidative stress and morphological changes leading to tissue injury in the liver, kidney and heart of high-fat diet (HFD)-fed mice. The effect of azelaic acid (AzA), a C9 α,ω-dicarboxylic acid, against HFD-induced oxidative stress was investigated by assaying the activities and levels of antioxidants and oxidative stress markers in the liver, kidney and heart of C57BL/6J mice. Mice were segregated into two groups, one fed standard diet (NC) and the other fed high-fat diet (HFD) for 15 weeks. HFD-fed mice were subjected to intragastric administration of AzA (80 mg/kg BW)/RSG (10 mg/kg BW) during 11-15 weeks. Glucose, insulin, triglycerides, hepatic and nephritic markers were analysed in the plasma and the activity of enzymatic, non-enzymatic antioxidants and lipid peroxidation markers were examined in the plasma/erythrocytes, liver, kidney and heart of normal and experimental mice. We inferred significant decrease in enzymatic and non-enzymatic antioxidants along with significant increase in glucose, insulin, hepatic and nephritic markers, triglycerides and lipid peroxidation markers in HFD-fed mice. Administration of AzA could positively restore the levels of plasma glucose, insulin, triglycerides, hepatic and nephritic markers to near normal. AzA increased the levels of enzymatic and nonenzymatic antioxidants with significant reduction in the levels of lipid peroxidation markers. Histopathological examination of liver, kidney and heart substantiated these results. Hence, we put forward that AzA could counteract the potential injurious effects of HFD-induced oxidative stress in C57BL/6J mice.
Kim, Hyeon-Jeong; Hong, Seong-Ho; Chang, Seung-Hee; Kim, Sanghwa; Lee, Ah Young; Jang, Yoonjeong; Davaadamdin, Orkhonselenge; Yu, Kyeong-Nam; Kim, Ji-Eun; Cho, Myung-Haing
2016-05-01
To investigate the effect of Gymnema sylvestre extract (GS) on initial anti-obesity, liver injury, and glucose homeostasis induced by a high-fat diet (HFD). The dry powder of GS was extracted with methanol, and gymnemic acid was identified by high performance liquid chromatography as deacyl gymnemic acid. Male C57BL/6J mice that fed on either a normal diet, normal diet containing 1 g/kg GS (CON+GS), HFD, or HFD containing 1.0 g/kg GS (HFD + GS) for 4 weeks were used to test the initial anti-obesity effect of GS. Body weight gain and food intake, and serum levels about lipid and liver injury markers were measured. Histopathology of adipose tissue and liver stained with hematoxylin and eosin (H&E) and oil-red O were analyzed. After 4 weeks of GS extract feeding, intraperitoneal glucose tolerance test (IPGTT) was performed. The methanol extracts of GS exerted significant anti-obesity effects in HFD + GS group. They decreased body weight gain, a lower food and energy efficiency ratio, and showed lower serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL)-cholesterol, very-low density lipoprotein (VLDL)-cholesterol and leptin compared with the HFD group. The decreases of abdominal as well as epididymal fat weight and adipocyte hypertrophy, lipid droplets in liver, and serum levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) were also observed. The CON + GS group showed an effect of glucose homeostasis compared to the CON group. This study shows that GS provide the possibility as a key role in an initial anti-obesity effects feeding with a HFD. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J
2014-01-01
The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.
Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z
2017-10-01
The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.
Bae, Yun Jung; Kim, Sung-Eun; Hong, Seong Yeon; Park, Taesun; Lee, Sang Gyu; Choi, Myung-Sook; Sung, Mi-Kyung
2016-01-01
Obesity is known to increase the risk of colorectal cancer. However, mechanisms underlying the pathogenesis of obesity-induced colorectal cancer are not completely understood. The purposes of this study were to identify differentially expressed genes in the colon of mice with diet-induced obesity and to select candidate genes as early markers of obesity-associated abnormal cell growth in the colon. C57BL/6N mice were fed normal diet (11% fat energy) or high-fat diet (40% fat energy) and were euthanized at different time points. Genome-wide expression profiles of the colon were determined at 2, 4, 8, and 12 weeks. Cluster analysis was performed using expression data of genes showing log 2 fold change of ≥1 or ≤-1 (twofold change), based on time-dependent expression patterns, followed by virtual network analysis. High-fat diet-fed mice showed significant increase in body weight and total visceral fat weight over 12 weeks. Time-course microarray analysis showed that 50, 47, 36, and 411 genes were differentially expressed at 2, 4, 8, and 12 weeks, respectively. Ten cluster profiles representing distinguishable patterns of genes differentially expressed over time were determined. Cluster 4, which consisted of genes showing the most significant alterations in expression in response to high-fat diet over 12 weeks, included Apoa4 (apolipoprotein A-IV), Ppap2b (phosphatidic acid phosphatase type 2B), Cel (carboxyl ester lipase), and Clps (colipase, pancreatic), which interacted strongly with surrounding genes associated with colorectal cancer or obesity. Our data indicate that Apoa4 , Ppap2b , Cel , and Clps are candidate early marker genes associated with obesity-related pathological changes in the colon. Genome-wide analyses performed in the present study provide new insights on selecting novel genes that may be associated with the development of diseases of the colon.
Siqueira, Flavia R; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C
2016-02-01
A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates. Copyright © 2015 Elsevier Inc. All rights reserved.
Abdul Nasir, Nurul Alimah; Agarwal, Renu; Vasudevan, Sushil; Tripathy, Minaketan; Alyautdin, Renad; Ismail, Nafeeza Mohd
2014-01-01
Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats. In the first part of this study, we investigated the effects of topically applied microemulsion formulation of tocotrienol (TTE) using six concentrations ranging from 0.01% to 0.2%. Eight groups of Sprague-Dawley rats (n = 9) received distilled water, vehicle, or one of the six TTE concentrations as pretreatment topically twice daily for 3 weeks while on a normal diet. After pretreatment, animals in groups 2-8 received a 25% galactose diet whereas group 1 continued on the normal diet for 4 weeks. During this 4-week period, topical treatment continued as for pretreatment. Weekly slit-lamp examination was conducted to assess cataract progression. At the end of the experimental period, the animals were euthanized, and the proteins and oxidative stress parameters were estimated in the lenses. In the second part of the study, we compared the anticataract efficacy of the TTE with the liposomal formulation of tocotrienol (TTL) using five groups of Sprague-Dawley rats (n = 15) that received distilled water, TTE, TTL, or corresponding vehicle. The mode of administration and dosing schedule were the same as in study 1. Weekly ophthalmic examination and lens protein and oxidative stress estimates were performed as in study 1. Lens nitrosative stress was also estimated. During the 4-week treatment period, the groups treated with 0.03% and 0.02% tocotrienol showed slower progression of cataract compared to the vehicle-treated group (p<0.05), whereas the group treated with 0.2% tocotrienol showed faster progression of cataract compared to the vehicle-treated group (p<0.05). The lenticular protein content, malondialdehyde, superoxide dismutase, and catalase levels were normalized in the groups that received 0.03% and 0.02% tocotrienol. The lenticular reduced glutathione also showed a trend toward normalization in these groups. In contrast, the group treated with 0.2% tocotrienol showed increased lenticular oxidative stress. When the microemulsion and liposomal formulations were compared, the effects on cataract progression, lens oxidative and nitrosative stress, and lens protein content did not show significant differences. Topically applied tocotrienol within the concentration range of less than 0.05% and more than 0.01% tends to delay the onset and progression of cataract in galactose-fed rats by reducing lenticular oxidative and nitrosative stress. However, topical tocotrienol at a concentration of 0.2% and higher aggravates cataractogenesis in galactose-fed rats by increasing lens oxidative stress. The anticataract efficacy of 0.03% microemulsion of tocotrienol did not differ from its liposomal formulations at the same concentration.
Agarwal, Renu; Vasudevan, Sushil; Tripathy, Minaketan; Alyautdin, Renad; Ismail, Nafeeza Mohd
2014-01-01
Purpose Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats. Methods In the first part of this study, we investigated the effects of topically applied microemulsion formulation of tocotrienol (TTE) using six concentrations ranging from 0.01% to 0.2%. Eight groups of Sprague-Dawley rats (n = 9) received distilled water, vehicle, or one of the six TTE concentrations as pretreatment topically twice daily for 3 weeks while on a normal diet. After pretreatment, animals in groups 2–8 received a 25% galactose diet whereas group 1 continued on the normal diet for 4 weeks. During this 4-week period, topical treatment continued as for pretreatment. Weekly slit-lamp examination was conducted to assess cataract progression. At the end of the experimental period, the animals were euthanized, and the proteins and oxidative stress parameters were estimated in the lenses. In the second part of the study, we compared the anticataract efficacy of the TTE with the liposomal formulation of tocotrienol (TTL) using five groups of Sprague-Dawley rats (n = 15) that received distilled water, TTE, TTL, or corresponding vehicle. The mode of administration and dosing schedule were the same as in study 1. Weekly ophthalmic examination and lens protein and oxidative stress estimates were performed as in study 1. Lens nitrosative stress was also estimated. Results During the 4-week treatment period, the groups treated with 0.03% and 0.02% tocotrienol showed slower progression of cataract compared to the vehicle-treated group (p<0.05), whereas the group treated with 0.2% tocotrienol showed faster progression of cataract compared to the vehicle-treated group (p<0.05). The lenticular protein content, malondialdehyde, superoxide dismutase, and catalase levels were normalized in the groups that received 0.03% and 0.02% tocotrienol. The lenticular reduced glutathione also showed a trend toward normalization in these groups. In contrast, the group treated with 0.2% tocotrienol showed increased lenticular oxidative stress. When the microemulsion and liposomal formulations were compared, the effects on cataract progression, lens oxidative and nitrosative stress, and lens protein content did not show significant differences. Conclusions Topically applied tocotrienol within the concentration range of less than 0.05% and more than 0.01% tends to delay the onset and progression of cataract in galactose-fed rats by reducing lenticular oxidative and nitrosative stress. However, topical tocotrienol at a concentration of 0.2% and higher aggravates cataractogenesis in galactose-fed rats by increasing lens oxidative stress. The anticataract efficacy of 0.03% microemulsion of tocotrienol did not differ from its liposomal formulations at the same concentration. PMID:24940038
Martín-Pozuelo, Gala; Navarro-González, Inmaculada; González-Barrio, Rocío; Santaella, Marina; García-Alonso, Javier; Hidalgo, Nieves; Gómez-Gallego, Carlos; Ros, Gaspar; Periago, María Jesús
2015-09-01
Tomato products are a dietary source of natural antioxidants, especially lycopene, which accumulates in the liver, where it exerts biological effects. Taking into consideration this fact, the aim of the present study was to ascertain the effect of tomato consumption on biomarkers and gene expression related to lipid metabolism in rats with induced steatosis. Adult male Sprague-Dawley rats (8 weeks old) were randomly grouped (n = 6 rats/group) in four experimental groups: NA (normal diet and water), NL (normal diet and tomato juice), HA (high fat diet and water) and HL (high fat diet and tomato juice). After 7 weeks, rats were euthanized, and plasma, urine, feces and liver were sampled to analyze the biomarkers related to lipid metabolism, inflammation and oxidative stress. The H diet induced steatosis (grade II) in the HA and HL groups, which was confirmed by the levels of alanine aminotransferase and aspartate aminotransferase, histological examination and the presence of dyslipidemia. The intake of tomato juice led to an accumulation of all-E and Z-lycopene and its metabolites in the livers of these animals; levels were higher in HL than in NL, apparently due to higher absorption (63.07 vs. 44.45%). A significant improvement in the plasma level of high-density lipoprotein was observed in the HL group compared with HA animals, as was an alleviation of oxidative stress through reduction of isoprostanes in the urine. In relation to fatty acid gene expression, an overexpression of several genes related to fatty acid transport, lipid hydrolysis and mitochondrial and peroxisomal β-fatty acid oxidation was observed in the HL group. The consumption of tomato juice and tomato products reduced hallmarks of steatosis, plasmatic triglycerides and very low-density lipoproteins, and increased lipid metabolism by inducing an overexpression of genes involved in more efficient fatty acid oxidation.
Lee, Young-Seob; Han, Sin-Hee; Ahn, Young-Sup; Cha, Seon-Woo; Seo, Yun-Soo; Kong, Ryong; Kwon, Dong-Yeul
2016-01-01
Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC) is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD)-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment), MCD diet (MCD diet only), MCD + silymarin (SIL) 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent against NAFLD. PMID:26881746
Kim, Sung-Bae; Kang, Ok-Hwa; Lee, Young-Seob; Han, Sin-Hee; Ahn, Young-Sup; Cha, Seon-Woo; Seo, Yun-Soo; Kong, Ryong; Kwon, Dong-Yeul
2016-01-01
Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC) is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD)-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment), MCD diet (MCD diet only), MCD + silymarin (SIL) 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent against NAFLD.
Lichtenstein, Alice H; Appel, Lawrence J; Brands, Michael; Carnethon, Mercedes; Daniels, Stephen; Franch, Harold A; Franklin, Barry; Kris-Etherton, Penny; Harris, William S; Howard, Barbara; Karanja, Njeri; Lefevre, Michael; Rudel, Lawrence; Sacks, Frank; Van Horn, Linda; Winston, Mary; Wylie-Rosett, Judith
2006-07-04
Improving diet and lifestyle is a critical component of the American Heart Association's strategy for cardiovascular disease risk reduction in the general population. This document presents recommendations designed to meet this objective. Specific goals are to consume an overall healthy diet; aim for a healthy body weight; aim for recommended levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides; aim for normal blood pressure; aim for a normal blood glucose level; be physically active; and avoid use of and exposure to tobacco products. The recommendations are to balance caloric intake and physical activity to achieve and maintain a healthy body weight; consume a diet rich in vegetables and fruits; choose whole-grain, high-fiber foods; consume fish, especially oily fish, at least twice a week; limit intake of saturated fat to <7% of energy, trans fat to <1% of energy, and cholesterol to <300 mg/day by choosing lean meats and vegetable alternatives, fat-free (skim) or low-fat (1% fat) dairy products and minimize intake of partially hydrogenated fats; minimize intake of beverages and foods with added sugars; choose and prepare foods with little or no salt; if you consume alcohol, do so in moderation; and when you eat food prepared outside of the home, follow these Diet and Lifestyle Recommendations. By adhering to these diet and lifestyle recommendations, Americans can substantially reduce their risk of developing cardiovascular disease, which remains the leading cause of morbidity and mortality in the United States.
Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran
2014-11-14
Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.
Boonloh, Kampeebhorn; Kukongviriyapan, Veerapol; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Pannangpetch, Patchareewan
2015-01-01
A high carbohydrate-high fat (HCHF) diet causes insulin resistance (IR) and metabolic syndrome (MS). Rice bran has been demonstrated to have anti-dyslipidemic and anti-atherogenic properties in an obese mouse model. In the present study, we investigated the beneficial effects of rice bran protein hydrolysates (RBP) in HCHF-induced MS rats. After 12 weeks on this diet, the HCHF-fed group was divided into four subgroups, which were orally administered RBP 100 or 500 mg/kg, pioglitazone 10 mg/kg, or tap water for a further 6 weeks. Compared with normal diet control group, the MS rats had elevated levels of blood glucose, lipid, insulin, and HOMA-IR. Treatment with RBP significantly alleviated all those changes and restored insulin sensitivity. Additionally, RBP treatment increased adiponectin and suppressed leptin levels. Expression of Ppar-γ mRNA in adipose tissues was significantly increased whereas expression of lipogenic genes Srebf1 and Fasn was significantly decreased. Levels of mRNA of proinflammatory cytokines, Il-6, Tnf-α, Nos-2 and Mcp-1 were significantly decreased. In conclusion, the present findings support the consumption of RBP as a functional food to improve insulin resistance and to prevent the development of metabolic syndrome. PMID:26247962
Fedorova, Olga V.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; Fleenor, Bradley S.; Lakatta, Edward G.; Bagrov, Alexei Y.; Seals, Douglas R.
2013-01-01
Summary Background and objectives Systolic BP and large elastic artery stiffness both increase with age and are reduced by dietary sodium restriction. Production of the natriuretic hormone marinobufagenin, an endogenous α1 Na+,K+-ATPase inhibitor, is increased in salt-sensitive hypertension and contributes to the rise in systolic BP during sodium loading. Design, setting, participants, & measurements The hypothesis was that dietary sodium restriction performed in middle-aged/older adults (eight men and three women; 60±2 years) with moderately elevated systolic BP (139±2/83±2 mmHg) would reduce urinary marinobufagenin excretion as well as systolic BP and aortic pulse-wave velocity (randomized, placebo-controlled, and crossover design). This study also explored the associations among marinobufagenin excretion with systolic BP and aortic pulse-wave velocity across conditions of 5 weeks of a low-sodium (77±9 mmol/d) and 5 weeks of a normal-sodium (144±7 mmol/d) diet. Results Urinary marinobufagenin excretion (weekly measurements; 25.4±1.8 versus 30.7±2.1 pmol/kg per day), systolic BP (127±3 versus 138±5 mmHg), and aortic pulse-wave velocity (700±40 versus 843±36 cm/s) were lower during the low- versus normal-sodium condition (all P<0.05). Across all weeks, marinobufagenin excretion was related with systolic BP (slope=0.61, P<0.001) and sodium excretion (slope=0.46, P<0.001). These associations persisted during the normal- but not the low-sodium condition (both P<0.005). Marinobufagenin excretion also was associated with aortic pulse-wave velocity (slope=0.70, P=0.02) and endothelial cell expression of NAD(P)H oxidase-p47phox (slope=0.64, P=0.006). Conclusions These results show, for the first time in humans, that dietary sodium restriction reduces urinary marinobufagenin excretion and that urinary marinobufagenin excretion is positively associated with systolic BP, aortic stiffness (aortic pulse-wave velocity), and endothelial cell expression of the oxidant enzyme NAD(P)H oxidase. Importantly, marinobufagenin excretion is positively related to systolic BP over ranges of sodium intake typical of an American diet, extending previous observations in rodents and humans fed experimentally high-sodium diets. PMID:23929930
Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei
2012-01-01
Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.
Romero, Aida A.; Funes, Abi K.; Cid-Barria, Macarena; Cabrillana, María E.; Monclus, María A.; Simón, Layla; Vicenti, Amanda E.; Fornés, Miguel W.
2013-01-01
Fat increment (0.05% cholesterol, chol) in standard diet promoted a significant increase in serum and sperm membrane chol, which ultimately altered membrane-coupled sperm specific functions: osmotic resistance, acrosomal reaction, and sperm capacitation in White New Zealand rabbits. These changes were also associated with a reduction in motility percentage and appearance of abnormal sperm morphology. The present study was carried out to evaluate the effect of dietary olive oil (OO, 7% v/w) administration to several male hypercholesterolemic rabbits (hypercholesterolemic rabbits, HCR) with altered fertility parameters. These HCR males were achieved by feeding normal rabbits with a high-fat diet (0.05% chol). HCR were associated with a modest non-significant increase in body weight (standard diet, 4.08±0.17 Kg, versus high-fat diet, 4.37±0.24 Kg). Hypercholesterolemic rabbits presented a marked decrease in semen volume, sperm cell count, and percentage of sperm motility, associated with a significant increase in sperm cell abnormalities. Moreover, sperm capacitation measured by the characteristic phosphorylated protein pattern in and induced acrosomal reaction were also altered suggesting sperm dysfunction. However, the administration of OO (for 16 weeks) to rabbits that were fed with 50% of the high-fat diet normalized serum chol. Curiously, OO supply succeeded to attenuate the seminal and sperm alterations observed in HCR group. Administration of OO alone did not cause any significant changes in above mentioned parameters. These data suggest that OO administration to HCR male rabbits recovers the loss of semen quality and sperm functionality. PMID:23326331
Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo
2010-09-01
Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.
Ble-Castillo, Jorge L.; Aparicio-Trapala, María A.; Juárez-Rojop, Isela E.; Torres-Lopez, Jorge E.; Mendez, Jose D.; Aguilar-Mariscal, Hidemi; Olvera-Hernández, Viridiana; Palma-Cordova, Leydi C.; Diaz-Zagoya, Juan C.
2012-01-01
The macronutrient component of diets is critical for metabolic control and insulin action. The aim of this study was to compare the effects of high fat diets (HFDs) vs. high carbohydrate diets (HCDs) on metabolic control and insulin resistance in Wistar rats. Thirty animals divided into five groups (n = 6) were fed: (1) Control diet (CD); (2) High-saturated fat diet (HSFD); (3) High-unsaturated fat diet (HUFD); (4) High-digestible starch diet, (HDSD); and (5) High-resistant starch diet (HRSD) during eight weeks. HFDs and HCDs reduced weight gain in comparison with CD, however no statistical significance was reached. Calorie intake was similar in both HFDs and CD, but rats receiving HCDs showed higher calorie consumption than other groups, (p < 0.01). HRSD showed the lowest levels of serum and hepatic lipids. The HUFD induced the lowest fasting glycemia levels and HOMA-IR values. The HDSD group exhibited the highest insulin resistance and hepatic cholesterol content. In conclusion, HUFD exhibited the most beneficial effects on glycemic control meanwhile HRSD induced the highest reduction on lipid content and did not modify insulin sensitivity. In both groups, HFDs and HCDs, the diet constituents were more important factors than caloric intake for metabolic disturbance and insulin resistance. PMID:22754464
Dourado, Grace K. Z. S.; Cesar, Thais B.
2015-01-01
Background Abdominal adiposity has been linked to metabolic abnormalities, including dyslipidemia, oxidative stress, and low-grade inflammation. Objective To test the hypothesis that consumption of 100% orange juice (OJ) would improve metabolic, oxidative, and inflammatory biomarkers and cytokine levels in normal and overweight subjects with increased waist circumference. Design Subjects were divided into two groups in accordance with their body mass index: normal and overweight. Both groups of individuals consumed 750 mL of OJ daily for 8 weeks. Body composition (weight, height, percentage of fat mass, and waist circumference); metabolic biomarkers (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], triglycerides, glucose, insulin, HOMA-IR, and glycated hemoglobin); oxidative biomarkers (malondialdehyde and DPPH•); inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP]); cytokines (IL-4, IL-10, IL-12, TNF-α, and IFN-γ); and diet were evaluated before and after consumption of OJ for 8 weeks. Results The major findings of this study were: 1) no alteration in body composition in either group; 2) improvement of the lipid profile, evidenced by a reduction in total cholesterol and LDL-C; 3) a potential stimulation of the immune response due to increase in IL-12; 4) anti-inflammatory effect as a result of a marked reduction in hsCRP; and 5) antioxidant action by the enhancement of total antioxidant capacity and the reduction of lipid peroxidation, in both normal and overweight subjects. Conclusions OJ consumption has a positive effect on important biomarkers of health status in normal and overweight subjects, thereby supporting evidence that OJ acts as functional food and could be consumed as part of a healthy diet to prevent metabolic and chronic diseases. PMID:26490535
Atheroprotective potentials of curcuminoids against ginger extract in hypercholesterolaemic rabbits.
Elseweidy, M M; Younis, N N; Elswefy, S E; Abdallah, F R; El-Dahmy, S I; Elnagar, G; Kassem, H M
2015-01-01
The anti-atherogenic potentials of total ginger (Zingiber officinale) extract (TGE) or curcuminoids extracted from turmeric (Curcuma longa), members of family Zingiberaceae, were compared in hypercholesterolaemia. Rabbits were fed either normal or atherogenic diet. The rabbits on atherogenic diet received treatments with TGE or curcumenoids and placebo concurrently for 6 weeks (n = 6). The anti-atherogenic effects of curcuminoids and ginger are mediated via multiple mechanisms. This effect was correlated with their ability to lower cholesteryl ester transfer protein activity. Ginger extract exerted preferential effects on plasma lipids, reverse cholesterol transport, cholesterol synthesis and inflammatory status. Curcuminoids, however, showed superior antioxidant activity.
Strekalova, Tatyana; Costa-Nunes, João P; Veniaminova, Ekaterina; Kubatiev, Aslan; Lesch, Klaus-Peter; Chekhonin, Vladimir P; Evans, Matthew C; Steinbusch, Harry W M
2016-05-15
High cholesterol intake in mice induces hepatic lipid dystrophy and inflammation, signs of non-alcoholic fatty liver disease (NAFLD), depressive- and anxiety-like behaviors, and the up-regulation of brain and liver Toll-like receptor 4 (Tlr4). Here, we investigated whether dicholine succinate (DS), an insulin receptor sensitizer and mitochondrial complex II substrate would interact with these effects. C57BL/6J mice were given a 0.2%-cholesterol diet for 3 weeks, alone or along with oral DS administration, or a control feed. Outcomes included behavioral measures of anxiety/depression, and Tlr4 and peroxisome-proliferator-activated-receptor-gamma coactivator-1b (PPARGC1b) expression. 50mg/kg DS treatment for 3 weeks partially ameliorated the cholesterol-induced anxiety- and depressive-like changes. Mice were next treated at the higher dose (180mg/kg), either for the 3-week period of dietary intervention, or for the last two weeks. Three-week DS administration normalized behaviors in the forced swim and O-maze tests and abolished the Tlr4 up-regulation in the brain and liver. The delayed, 2-week DS treatment had similar effects on Tlr4 expression and largely rescued the above-mentioned behaviors. Suppression of PPARGC1b, a master regulator of mitochondrial biogenesis, by the high cholesterol diet, was prevented with the 3-week administration, and markedly diminished by the a 2-week administration of DS. None of treatments prevented hepatic dystrophy and triglyceride accumulation. Other conditions have to be tested to define possible limitations of reported effects of DS. DS treatment did not alter the patho-morphological substrates of NAFLD syndrome in mice, but ameliorated its molecular and behavioral consequences, likely by activating mitochondrial functions and anti-inflammatory mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P
2018-05-01
Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.
Barnard, Neal D; Gloede, Lise; Cohen, Joshua; Jenkins, David J A; Turner-McGrievy, Gabrielle; Green, Amber A; Ferdowsian, Hope
2009-02-01
Although therapeutic diets are critical to diabetes management, their acceptability to patients is largely unstudied. To quantify adherence and acceptability for two types of diets for diabetes. Controlled trial conducted between 2004 and 2006. Individuals with type 2 diabetes (n=99) at a community-based research facility. Participants were randomly assigned to a diet following 2003 American Diabetes Association guidelines or a low-fat, vegan diet for 74 weeks. Attrition, adherence, dietary behavior, diet acceptability, and cravings. For nutrient intake and questionnaire scores, t tests determined between-group differences. For diet-acceptability measures, the related samples Wilcoxon sum rank test assessed within-group changes; the independent samples Mann-Whitney U test compared the diet groups. Changes in reported symptoms among the groups was compared using chi(2) for independent samples. All participants completed the initial 22 weeks; 90% (45/50) of American Diabetes Association guidelines diet group and 86% (42/49) of the vegan diet group participants completed 74 weeks. Fat and cholesterol intake fell more and carbohydrate and fiber intake increased more in the vegan group. At 22 weeks, group-specific diet adherence criteria were met by 44% (22/50) of members of the American Diabetes Association diet group and 67% (33/49) of vegan-group participants (P=0.019); the American Diabetes Association guidelines diet group reported a greater increase in dietary restraint; this difference was not significant at 74 weeks. Both groups reported reduced hunger and reduced disinhibition. Questionnaire responses rated both diets as satisfactory, with no significant differences between groups, except for ease of preparation, for which the 22-week ratings marginally favored the American Diabetes Association guideline group. Cravings for fatty foods diminished more in the vegan group at 22 weeks, with no significant difference at 74 weeks. Despite its greater influence on macronutrient intake, a low-fat, vegan diet has an acceptability similar to that of a more conventional diabetes diet. Acceptability appears to be no barrier to its use in medical nutrition therapy.
A high-fat diet temporarily accelerates gastrointestinal transit and reduces satiety in men.
Clegg, Miriam E; Shafat, Amir
2011-12-01
High-fat (HF) diets of 2 weeks have been shown to accelerate gastrointestinal (GI) transit and decrease satiety. However, the effects of HF diets on GI transit over longer periods than 2 weeks are unknown. We hypothesize that over 4 weeks, GI transit of a HF test meal will accelerate. The study was a repeated measures design with 10 male volunteers completing a 1-week HF diet intervention and 7 completing a 4-week HF diet intervention with testing once a week on the same day throughout the 4 weeks. Gastric emptying (GE) was measured using the (13)C-octanoic acid breath test and mouth-to-caecum transit time (MCTT) using the inulin H(2) breath test. Satiety was analysed using visual analogue scales and an ad libitum buffet meal. Body mass increased by 1.3 kg over the 4 weeks (p = 0.036). GE latency time decreased from 45 ± 8 to 41 ± 10 min (p = 0.047) over 1 week but there were no changes in any GE parameters over the 4 weeks. MCTT was accelerated over 1 week (p = 0.036) from 308 ± 43 to 248 ± 83 min. However, over the 4-week period, there was no change. Volunteers became more hungry and desire to eat became greater after 1 week (p = 0.01). Changes in satiety were also evident over the 4 weeks. Satiety was reduced in the primary weeks and then returned to baseline towards the end of the intervention. GI adaptation to a HF diet occurred over a 1-week period and returned to pre-diet levels at the end of 4 weeks.
Gong, Aixiu; Chen, Jie; Wu, Jun; Li, Jing; Wang, Lin; Goltzman, David; Miao, Dengshun
2018-04-10
Vitamin D is critical for bone homeostasis and immunomodulation. We therefore assessed whether 1,25-dihydroxyvitamin D (1,25(OH) 2 D) deficiency in mice with targeted deletion of the gene encoding 25-hydroxyvitaminD-1αhydroxylase [1α(OH)ase] (1αOH)ase -/- mice) results in alveolar bone loss and periodontal inflammation in vivo. 10-week-old and 12-month-old 1α(OH)ase -/- mice and wild-type littermates were fed a normal diet or a rescue diet, and the phenotype of the periodontium was then analyzed using micro-computed tomography, histology, immunohistochemistry and real-time RT-PCR. Alveolar bone loss was increased and maxillary bone mineral density (BMD), osteoblast numbers and the number of osterix-positive cells were decreased significantly in 1α(OH)ase -/- mice compared with wild-type mice. Although aging from 10 weeks to 12 months accentuated these changes, and a rescue diet reduced them, the alterations in the 1α(OH)ase -/- mice exceeded the effects of aging and diet change. Nuclear factor kappa light-chain-enhancer of activated B cells (NF-кB) p65 and CD3 positive cells, and the gene expression levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP) -3 and -8 were all increased significantly in periodontal tissues of 1α(OH)ase -/- mice compared with wild-type mice. Aging from 10 weeks to 12 months also accentuated these changes, and a rescue diet reduced them, however, the alterations in the 1α(OH)ase -/- mice exceeded the effects of aging and diet change. 1,25(OH) 2 D deficiency in the 1α(OH)ase -/- mice accelerated alveolar bone loss by inhibiting osteoblastic bone formation and enhancing periodontal tissue degeneration in a calcium and phosphorus as well as age independent manner. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.
Attenuation of salt-induced hypertension by aqueous calyx extract of Hibiscus sabdariffa.
Mojiminiyi, F B O; Audu, Z; Etuk, E U; Ajagbonna, O P
2012-12-18
The aqueous calyx extract of Hibiscus sabdariffa (HS) has a folk reputation as an antihypertensive agent. On account of its antioxidant properties and probably high K+ concentration, we hypothesized that HS may attenuate the development of salt-induced hypertension. Sprague-Dawley rats (n=8 each) were treated for 12 weeks as follows: control (normal diet + water), salt-loaded (8% salt diet + water), HS (normal diet + 6 mg/ml HS), salt+HS (8% salt diet + 6 mg/ml HS) and furosemide (normal diet+ 0.25mg/Kg furosemide). Their blood pressure and heart rates were measured and responses to noradrenalin and acetylcholine (0.01 mg/kg respectively) were estimated. The cationic concentration of 6 mg/ml HS was determined. The Na+ and K+ concentrations of 6 mg/ml HS were 3.6 and 840 mmol/l respectively. The mean arterial pressure (MAP±SEM; mmHg) of salt loaded rats (184.6±29.8) was significantly higher than control (113.2±3.0; P<0.05), HS (90.0±7.4; P<0.001) salt+HS (119.4±8.9; P<0.05) and furosemide (94.9±11.5; P<0.01). The MAP of salt+HS and control rats did not differ significantly and the effect of HS was comparable to furosemide. The pressor response to noradrenalin or vasodilator response to acetylcholine remained similar in all groups. These results suggest that HS attenuated the development of salt-induced hypertension and this attenuation may be associated with its high K+ content or high potassium: sodium ratio and not with altered pressor/depressor response to noradrenalin or acetylcholine. Also the effects of HS and furosemide on blood pressure are comparable.
Time Course of Change in Blood Pressure From Sodium Reduction and the DASH Diet.
Juraschek, Stephen P; Woodward, Mark; Sacks, Frank M; Carey, Vincent J; Miller, Edgar R; Appel, Lawrence J
2017-11-01
Both sodium reduction and the Dietary Approaches to Stop Hypertension (DASH) diet lower blood pressure (BP); however, the patterns of their effects on BP over time are unknown. In the DASH-Sodium trial, adults with pre-/stage 1 hypertension, not using antihypertensive medications, were randomly assigned to either a typical American diet (control) or DASH. Within their assigned diet, participants randomly ate each of 3 sodium levels (50, 100, and 150 mmol/d, at 2100 kcal) over 4-week periods. BP was measured weekly for 12 weeks; 412 participants enrolled (57% women; 57% black; mean age, 48 years; mean systolic BP [SBP]/diastolic BP [DBP], 135/86 mm Hg). For those assigned control, there was no change in SBP/DBP between weeks 1 and 4 on the high-sodium diet (weekly change, -0.04/0.06 mm Hg/week) versus a progressive decline in BP on the low-sodium diet (-0.94/-0.70 mm Hg/week; P interactions between time and sodium <0.001 for SBP and DBP). For those assigned DASH, SBP/DBP changed -0.60/-0.16 mm Hg/week on the high- versus -0.42/-0.54 mm Hg/week on the low-sodium diet ( P interactions between time and sodium=0.56 for SBP and 0.10 for DBP). When comparing DASH to control, DASH changed SBP/DBP by -4.36/-1.07 mm Hg after 1 week, which accounted for most of the effect observed, with no significant difference in weekly rates of change for either SBP ( P interaction=0.97) or DBP ( P interaction=0.70). In the context of a typical American diet, a low-sodium diet reduced BP without plateau, suggesting that the full effects of sodium reduction are not completely achieved by 4 weeks. In contrast, compared with control, DASH lowers BP within a week without further effect thereafter. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00000608. © 2017 American Heart Association, Inc.
Food preferences and weight change during low-fat and low-carbohydrate diets
McVay, Megan A.; Voils, Corrine I.; Geiselman, Paula J.; Smith, Valerie A.; Coffman, Cynthia J.; Mayer, Stephanie; Yancy, William S.
2016-01-01
Understanding associations between food preferences and weight loss during various effective diets could inform efforts to personalize dietary recommendations and provide insight into weight loss mechanisms. We conducted a secondary analysis of data from a clinical trial in which participants were randomized to either a ‘choice’ arm, in which they were allowed to select between a low-fat diet (n=44) or low-carbohydrate diet (n=61), or to a ‘no choice’ arm, in which they were randomly assigned to a low-fat diet (n=49) or low-carbohydrate diet (n=53). All participants were provided 48 weeks of lifestyle counseling. Food preferences were measured at baseline and every 12 weeks thereafter with the Geiselman Food Preference Questionnaire. Participants were 73% male and 51% African American, with a mean age of 55. Baseline food preferences, including congruency of food preferences with diet, were not associated with weight outcomes. In the low-fat diet group, no associations were found between changes in food preferences and weight over time. In the low-carbohydrate diet group, increased preference for low-carbohydrate diet congruent foods from baseline to 12 weeks was associated with weight loss from 12 to 24 weeks. Additionally, weight loss from baseline to 12 weeks was associated with increased preference for low-carbohydrate diet congruent foods from 12 to 24 weeks. Results suggest that basing selection of low-carbohydrate diet or low-fat diet on food preferences is unlikely to influence weight loss. Congruency of food preferences and weight loss may influence each other early during a low-carbohydrate diet but not low-fat diet, possibly due to different features of these diets. PMID:27133551
Cooper, Michael A; Menta, Blaise W; Perez-Sanchez, Consuelo; Jack, Megan M; Khan, Zair W; Ryals, Janelle M; Winter, Michelle; Wright, Douglas E
2018-08-01
Current experiments investigated whether a ketogenic diet impacts neuropathy associated with obesity and prediabetes. Mice challenged with a ketogenic diet were compared to mice fed a high-fat diet or a high-fat diet plus exercise. Additionally, an intervention switching to a ketogenic diet following 8 weeks of high-fat diet was performed to compare how a control diet, exercise, or a ketogenic diet affects metabolic syndrome-induced neural complications. When challenged with a ketogenic diet, mice had reduced bodyweight and fat mass compared to high-fat-fed mice, and were similar to exercised, high-fat-fed mice. High-fat-fed, exercised and ketogenic-fed mice had mildly elevated blood glucose; conversely, ketogenic diet-fed mice were unique in having reduced serum insulin levels. Ketogenic diet-fed mice never developed mechanical allodynia contrary to mice fed a high-fat diet. Ketogenic diet fed mice also had increased epidermal axon density compared all other groups. When a ketogenic diet was used as an intervention, a ketogenic diet was unable to reverse high-fat fed-induced metabolic changes but was able to significantly reverse a high-fat diet-induced mechanical allodynia. As an intervention, a ketogenic diet also increased epidermal axon density. In vitro studies revealed increased neurite outgrowth in sensory neurons from mice fed a ketogenic diet and in neurons from normal diet-fed mice given ketone bodies in the culture medium. These results suggest a ketogenic diet can prevent certain complications of prediabetes and provides significant benefits to peripheral axons and sensory dysfunction. Published by Elsevier Inc.
Cerling, Thure E.; Wittemyer, George; Ehleringer, James R.; Remien, Christopher H.; Douglas-Hamilton, Iain
2009-01-01
The dietary and movement history of individual animals can be studied using stable isotope records in animal tissues, providing insight into long-term ecological dynamics and a species niche. We provide a 6-year history of elephant diet by examining tail hair collected from 4 elephants in the same social family unit in northern Kenya. Sequential measurements of carbon, nitrogen, and hydrogen isotope rations in hair provide a weekly record of diet and water resources. Carbon isotope ratios were well correlated with satellite-based measurements of the normalized difference vegetation index (NDVI) of the region occupied by the elephants as recorded by the global positioning system (GPS) movement record; the absolute amount of C4 grass consumption is well correlated with the maximum value of NDVI during individual wet seasons. Changes in hydrogen isotope ratios coincided very closely in time with seasonal fluctuations in rainfall and NDVI whereas diet shifts to relatively high proportions of grass lagged seasonal increases in NDVI by ≈2 weeks. The peak probability of conception in the population occurred ≈3 weeks after peak grazing. Spatial and temporal patterns of resource use show that the only period of pure browsing by the focal elephants was located in an over-grazed, communally managed region outside the protected area. The ability to extract time-specific longitudinal records on animal diets, and therefore the ecological history of an organism and its environment, provides an avenue for understanding the impact of climate dynamics and land-use change on animal foraging behavior and habitat relations. PMID:19365077
Cerling, Thure E; Wittemyer, George; Ehleringer, James R; Remien, Christopher H; Douglas-Hamilton, Iain
2009-05-19
The dietary and movement history of individual animals can be studied using stable isotope records in animal tissues, providing insight into long-term ecological dynamics and a species niche. We provide a 6-year history of elephant diet by examining tail hair collected from 4 elephants in the same social family unit in northern Kenya. Sequential measurements of carbon, nitrogen, and hydrogen isotope rations in hair provide a weekly record of diet and water resources. Carbon isotope ratios were well correlated with satellite-based measurements of the normalized difference vegetation index (NDVI) of the region occupied by the elephants as recorded by the global positioning system (GPS) movement record; the absolute amount of C(4) grass consumption is well correlated with the maximum value of NDVI during individual wet seasons. Changes in hydrogen isotope ratios coincided very closely in time with seasonal fluctuations in rainfall and NDVI whereas diet shifts to relatively high proportions of grass lagged seasonal increases in NDVI by approximately 2 weeks. The peak probability of conception in the population occurred approximately 3 weeks after peak grazing. Spatial and temporal patterns of resource use show that the only period of pure browsing by the focal elephants was located in an over-grazed, communally managed region outside the protected area. The ability to extract time-specific longitudinal records on animal diets, and therefore the ecological history of an organism and its environment, provides an avenue for understanding the impact of climate dynamics and land-use change on animal foraging behavior and habitat relations.
Pimenta, Marcel; Bringhenti, Isabele; Souza-Mello, Vanessa; Dos Santos Mendes, Iara Karise; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A
2015-10-15
To investigate the possible beneficial effect of high-intensity interval training (HIIT) on skeletal muscle oxidative stress, body mass (BM) and systolic blood pressure (SBP) in ovariectomized mice fed or not fed a high-fat diet. Three-month-old female C57BL/6 mice were bilaterally ovariectomized (OVX group) or submitted to surgical stress without ovariectomy (SHAM group) and separated into standard chow (SHAM-SC; OVX-SC) and high-fat diet (SHAM-HF; OVX-HF) groups. After 13 weeks, an HIIT program (swimming) was carried out for 8 weeks in non-trained (NT) and trained (T) groups. The significant reduction of uterine mass and the cytological examination of vaginal smears in the OVX group confirmed that ovariectomy was successful. Before the HIIT protocol, the ovariectomized groups showed a greater BM than the SHAM group, irrespective of the diet they received. The HIIT minimized BM gain in animals fed an HF diet and/or ovariectomized. SBP and total cholesterol were increased in the OVX and HF animals compared to their counterparts, and the HIIT efficiently reduced these factors. In the HF and OVX mice, the muscular superoxide dismutase and catalase levels were low while their glutathione peroxidase and glutathione reductase levels were high and the HIIT normalized these parameters. Diet-induced obesity maximizes the deleterious effects of an ovariectomy. The HIIT protocol significantly reduced BM, SBP and oxidative stress in the skeletal muscle indicating that HIIT diminishes the cardiovascular and metabolic risk that is inherent to obesity and menopause. Copyright © 2015 Elsevier Inc. All rights reserved.
Jang, Eun Chul; Jun, Dae Won; Lee, Seung Min; Cho, Yong Kyun; Ahn, Sang Bong
2018-02-01
Composition of macronutrients is important in non-alcoholic fatty liver disease (NAFLD). Diet education programs that mainly emphasize reducing fat consumption have been used for NAFLD patients. We compared the efficacy of conventional low-fat diet education with low-carbohydrate diet education in Korean NAFLD patients. One hundred and six NAFLD patients were randomly allocated to low-fat diet education or low-carbohydrate education groups for 8 weeks. Liver chemistry, liver / spleen ratio, and visceral fat using abdominal tomography were measured. Intrahepatic fat accumulation decreased significantly in the low-carbohydrate group compared to low-fat group (liver/spleen 0.85 vs. 0.92, P < 0.05). Normalization of ALT activity at week 8 was 38.5% for the low-carbohydrate and 16.7% for the low-fat group (P = 0.016). Not only liver enzyme, but also low density lipoprotein cholesterol and blood pressure levels significantly decreased in the low-carbohydrate group. Total energy intake was also further decreased in the low-carbohydrate group compared to the low-fat group. Although body weight changes were not different between the two groups, the carbohydrate group had a lower total abdominal fat amount. A low-carbohydrate diet program is more realistic and effective in reducing total energy intake and hepatic fat content in Korean NAFLD patients. This trial is registered with the National Research Institute of Health: KCT0000970 (https://cris.nih.go.kr/cris/index.jsp). © 2017 The Japan Society of Hepatology.
Effect of Different Starvation Levels on Cognitive Ability in Mice
NASA Astrophysics Data System (ADS)
Li, Xiaobing; Zhi, Guoguo; Yu, Yi; Cai, Lingyu; Li, Peng; Zhang, Danhua; Bao, Shuting; Hu, Wenlong; Shen, Haiyan; Song, Fujuan
2018-01-01
Objective: To study the effect of different starvation levels on cognitive ability in mice. Method: Mice were randomly divided into four groups: normal group, dieting group A, dieting group B, dieting group C. The mice of normal group were given normal feeding amount, the rest of groups were given 3/4 of normal feeding amount, 2/4 of normal feeding amount and 1/4 of normal feeding amount. After feeding mice four days, the weight was observed and T-maze experiment, Morris water maze test, open field test and Serum Catalase activity were detected. Result: Compared with the normal group, the correct rate of the intervention group in the T-maze experiment was decreased and dieting group A> dieting group B> dieting group C. In the Morris water maze test, Compared with the normal group, the correct rate of the intervention group was increased. Among these three intervention groups, dieting group A had the highest correct rate and the difference of dieting group B and dieting group C were similar. In the open field test, Compared with the normal group, the exploration rate of the surrounding environment in the intervention group was increased. In the Serum Catalase test, Compared with the normal group, the activities of serum peroxidase in the intervention groups were decreased and dieting group A> dieting group B> dieting group C. Conclusion: A certain level of starvation could affect the cognitive ability of mice. In a certain range, the level of starvation is inversely proportional to cognitive ability in mice.
Olszewski, J; Szczurowicz, A; Wójcikowski, C
1995-02-01
The aim of the study was estimation of endocrinological function of placenta in pregnancy complicated by GDM. The study were performed on a group 13 women with GDM and 14 women in normal pregnancy. All women with GDM were treat by diet and intensive insulinotherapy with self monitoring levels of glucose. In women with GDM level of fructosamine and HbAlc were significant higher but in normal range. In 28 and 36 week of pregnancy were determined levels of hCG, alpha hCG, beta hCG, in serum. Level of hCG in control group and in women with GDM were respectively 97.29 U/ml vs. 29.29 U/ml, p < 0.01 in 28 week of pregnancy and 77.23 U/ml vs. 37.93 U/ml, p < 0.05 in 36 week. Level of alpha hCG was lower and beta hCG was higher in group with GDM.
Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats.
Amin, Kamal A; Nagy, Mohamed A
2009-10-16
Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR) significantly increased in HFD in comparison with the control group. The treatment with L-carnitine or HMF improved the condition. HFD elevated hepatic MDA and lipid peroxidation associated with reduction in hepatic GSH and catalase activity; whereas administration of L-carnitine or herbal extract significantly ameliorated these hepatic alterations. HFD induced obesity associated with a disturbed lipid profile, defective antioxidant stability, and high values of IR parameters; this may have implications for the progress of obesity related problems. Treatment with L-carnitine, or HMF extract improved obesity and its associated metabolic problems in different degrees. Also HMF has antioxidant, hypolipidaemic insulin sensitizing effects. Moreover HMF might be a safe combination on the organs whose functions were examined, as a way to surmount the obesity state; and it has a distinct anti-obesity effect.
Shing, Cecilia M; Fassett, Robert G; Peake, Jonathan M; Coombes, Jeff S
2014-12-01
Inflammation and endothelial dysfunction contribute to cardiovascular disease, prevalent in chronic kidney disease (CKD). Antioxidant supplements such as tocopherols may reduce inflammation and atherosclerosis. This study aimed to investigate the effect of tocopherol supplementation on vascular function, aortic plaque formation, and inflammation in apolipoprotein E(-/-) mice with 5/6 nephrectomy as a model of combined cardiovascular and kidney disease. Nephrectomized mice were assigned to a normal chow diet group (normal chow), a group receiving 1000 mg/kg diet of α-tocopherol supplementation or a group receiving 1000 mg/kg diet mixed-tocopherol (60% γ-tocopherol). Following 12 weeks, in vitro aortic endothelial-independent relaxation was enhanced with both α-tocopherol and mixed-tocopherol (P < 0.05), while mixed-tocopherol enhanced aortic contraction at noradrenaline concentrations of 3 × 10(-7) M to 3 × 10(-5) M (P < 0.05), when compared to normal chow. Supplementation with α- and mixed-tocopherol reduced systemic concentrations of IL-6 (P < 0.001 and P < 0.001, respectively) and IL-10 (P < 0.05 and P < 0.001, respectively), while α-tocopherol also reduced MCP-1 (P < 0.05) and tumor necrosis factor (TNF)-α (P < 0.05). Aortic sinus plaque area was significantly reduced with α-tocopherol supplementation when compared to normal chow (P < 0.01). Tocopherol supplementation favorably influenced vascular function and cytokine profile, while it was also effective in reducing atherosclerosis in the apolipoprotein E(-/-) mouse with CKD. © 2014 John Wiley & Sons Ltd.
Weekly summer diet of gray wolves (Canis lupus) in northeastern Minnesota
Gable, Thomas D.; Windels, Steve K.; Bruggink, John G.; Barber-Meyer, Shannon
2018-01-01
Wolves (Canis lupus) are opportunistic predators and will capitalize on available abundant food sources. However, wolf diet has primarily been examined at monthly, seasonal, or annual scales, which can obscure short-term responses to available food. We examined weekly wolf diet from late June to early October by collecting scats from a single wolf pack in northeastern Minnesota. During our 15 week study, nonungulate food types constituted 58% of diet biomass. Deer (Odocoileus virginianus) fawns were a major food item until mid-July after which berries (primarily Vaccinium and Rubus spp.) composed 56–83% of weekly diet biomass until mid-August. After mid-August, snowshoe hares (Lepus americanus) and adult deer were the primary prey. Weekly diet diversity approximately doubled from June to October as wolves began using several food types in similar proportions as the summer transitioned into fall. Recreational hunting of black bears (Ursus americanus) contributed to weekly wolf diet in the fall as wolves consumed foods from bear bait piles and from gut piles/carcasses of successfully harvested or fatally wounded bears. To our knowledge, we are the first to examine wolf diet via scat analysis at weekly intervals, which enabled us to provide a detailed description of diet plasticity of this wolf pack, as well as the rapidity with which wolves can respond to new available food sources.
Regressive Effect of Myricetin on Hepatic Steatosis in Mice Fed a High-Fat Diet
Xia, Shu-Fang; Le, Guo-Wei; Wang, Peng; Qiu, Yu-Yu; Jiang, Yu-Yu; Tang, Xue
2016-01-01
Myricetin is an effective antioxidant in the treatment of obesity and obesity-related metabolic disorders. The objective of this study was to explore the regressive effect of myricetin on pre-existing hepatic steatosis induced by high-fat diet (HFD). C57BL/6 mice were fed either a standard diet or a HFD for 12 weeks and then half of the mice were treated with myricetin (0.12% in the diet, w/w) while on their respective diets for further 12 weeks. Myricetin treatment significantly alleviated HFD-induced steatosis, decreased hepatic lipid accumulation and thiobarbituric acid reactive substance (TBARS) levels, and increased antioxidative enzyme activities, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Microarray analysis of hepatic gene expression profiles showed that myricetin significantly altered the expression profiles of 177 genes which were involved in 12 biological pathways, including the peroxisome proliferator activated receptor (PPAR) signaling pathway and peroxisome. Further research indicated that myricetin elevated hepatic nuclear Nrf2 translocation, increased the protein expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1), reduced the protein expression of PPARγ, and normalized the expressions of genes that were involved in peroxisome and the PPAR signaling pathway. Our data indicated that myricetin might represent an effective therapeutic agent to treat HFD-induced hepatic steatosis via activating the Nrf2 pathway and the PPAR signaling pathway. PMID:27973423
Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling?
Mathai, Michael L; Soueid, Mona; Chen, Nora; Jayasooriya, Anura P; Sinclair, Andrew J; Wlodek, Mary E; Weisinger, Harrison S; Weisinger, Richard S
2004-11-01
To investigate the effect of maternal dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency and repletion on food appetite signaling. Sprague-Dawley rat dams were maintained on diets either supplemented with (CON) or deficient in (DEF) omega-3 PUFA. All offspring were raised on the maternal diet until weaning. After weaning, two groups remained on the respective maternal diet (CON and DEF groups), whereas a third group, born of dams fed the DEF diet, were switched to the CON diet (REC). Experiments on food intake began when the male rats reached 16 weeks of age. Food intake was stimulated either by a period of food restriction, by blocking glucose utilization (by 2-deoxyglucose injection), or by blocking beta-oxidation of fatty acids (by beta-mercaptoacetate injection). DEF animals consumed more than CON animals in response to all stimuli, with the greatest difference (1.9-fold) demonstrated following administration of 2-deoxyglucose. REC animals also consumed more than CON animals in response to food restriction and 2-deoxyglucose but not to beta-mercaptoacetate. These findings indicate that supply of omega-3 PUFA, particularly during the perinatal period, plays a role in the normal development of mechanisms controlling food intake, especially glucoprivic (i.e. reduced glucose availability) appetite signaling. Dietary repletion of omega-3 PUFA from 3 weeks of age restored intake responses to fatty acid metabolite signaling but did not reverse those in response to food restriction or glucoprivic stimuli.
Ramos, Débora R; Costa, Nauilo L; Jang, Karen L L; Oliveira, Ivone B; da Silva, Alexandre A; Heimann, Joel C; Furukawa, Luzia N S
2012-05-22
The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.16% NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA, ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring. Copyright © 2012 Elsevier Inc. All rights reserved.
Yuasa, Ko; Kondo, Tomohiro; Nagai, Hiroaki; Mino, Masaki; Takeshita, Ai; Okada, Toshiya
2016-03-01
Severe restriction of maternal protein intake to 6-8% protein diet results in intrauterine growth retardation (IUGR), low birthweight and high risk of metabolic syndrome in the adult life of the offspring. However, little information is available on the effects of maternal protein restriction on offspring under the conditions that does not have an influence on their birthweight of the offspring,. In the present study, pregnant rats were kept on a diet consisting of either 9% (low-protein, Lp rats) or 18% (normal-protein, Np rats) protein by weight/volume/etc. After birth, both Lp and Np rats were kept on a diet containing 18% protein. Neonatal body weight was significantly lower in Lp rats compared to Np rats from 4 days to 5 weeks after birth. While glomerular number per unit volume (1 mm(3) ) of the kidney (Nv) was comparable between Lp and Np rats 4 weeks after birth, the Nv was significantly decreased in Lp rats at 20 weeks after birth. Four and 20 weeks after birth, glomerular sclerosis index, interstitial fibrosis score, and ratio of ED1-positive cell ratio were all significantly higher in Lp compared to Np rats. Transforming growth factor-β1-positive cells were observed in the distal tubules in the kidney of 4- and 20-week-old Lp rats kidneys, but not in those of age-matched Np rats. Altogether, these findings revealed that maternal protein restriction that does not have an influence on the birthweight of the offspring, induces similar changes as those seen in the kidneys of IUGR neonates. © 2015 Japanese Teratology Society.
Statin Therapy Inhibits Remyelination in the Central Nervous System
Miron, Veronique E.; Zehntner, Simone P.; Kuhlmann, Tanja; Ludwin, Samuel K.; Owens, Trevor; Kennedy, Timothy E.; Bedell, Barry J.; Antel, Jack P.
2009-01-01
Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood-brain barrier-permeable statin in multiple sclerosis clinical trials, has been shown to impact the in vitro processes that have been implicated in remyelination. Animals were fed a cuprizone-supplemented diet for 6 weeks to induce localized demyelination in the corpus callosum; subsequent return to normal diet for 3 weeks stimulated remyelination. Simvastatin was injected intraperitoneally during the period of coincident demyelination and OPC maturation (weeks 4 to 6), throughout the entire period of OPC responses (weeks 4 to 9), or during the remyelination-only phase (weeks 7 to 9). Simvastatin treatment (weeks 4 to 6) caused a decrease in myelin load and both Olig2strong and Nkx2.2strong OPC numbers. Simvastatin treatment (weeks 4 to 9 and 7 to 9) caused a decrease in myelin load, which was correlated with a reduction in Nkx2.2strong OPCs and an increase in Olig2strong cells, suggesting that OPCs were maintained in an immature state (Olig2strong/Nkx2.2weak). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes. PMID:19349355
Roth, Lynn; Van Dam, Debby; Van der Donckt, Carole; Schrijvers, Dorien M; Lemmens, Katrien; Van Brussel, Ilse; De Deyn, Peter P; Martinet, Wim; De Meyer, Guido R Y
2015-02-01
Apolipoprotein E deficient (ApoE(-/-)) mice with a heterozygous mutation in the fibrillin-1 gene (Fbn1(C1039G+/-)) show spontaneous atherosclerotic plaque ruptures, disturbances in cerebral flow and sudden death when fed a Western-type diet (WD). The present study focused on motor coordination and spatial learning of ApoE(-/-) Fbn1(C1039G+/-) mice on WD for 20 weeks (n=21). ApoE(-/-) mice on WD (n=24) and ApoE(-/-) Fbn1(C1039G+/-) mice on normal diet (ND, n=21) served as controls. Starting from 10 weeks of diet, coordination was assessed every two weeks by the following tests: gait analysis, stationary beam, wire suspension and accelerating rotarod. The Morris water maze test was performed after 13 weeks of diet to study spatial learning. At the end of the experiment (20 weeks of WD), the mice were sacrificed and the brachiocephalic artery and brain were isolated. From 12 weeks onward, gait analysis of ApoE(-/-) Fbn1(C1039G+/-) mice on WD revealed a progressive increase in track width as compared to ApoE(-/-) mice on WD and ApoE(-/-) Fbn1(C1039G+/-) mice on ND (at 20 weeks: 29.8±0.6 mm vs. 25.8±0.4 mm and 26.0±0.5 mm). Moreover, the stationary beam test showed a decrease in motor coordination of ApoE(-/-) Fbn1(C1039G+/-) mice on WD at 18 and 20 weeks. The wire suspension test and accelerating rotarod could not detect signs of motor impairment. Spatial learning was also not affected. Histological analysis of the brachiocephalic artery showed larger and more stenotic plaques in ApoE(-/-) Fbn1(C1039G+/-) mice on WD. Furthermore, the parietal cortex of ApoE(-/-) Fbn1(C1039G+/-) mice on WD showed pyknotic nuclei as a sign of hypoxia and the percentage of pyknosis correlated with track width. In conclusion, gait analysis may be an efficient method for analyzing hypoxic brain damage in the ApoE(-/-) Fbn1(C1039G+/-) mouse model. This test could be of value to assess the effect of potential anti-atherosclerotic therapies in mice. Copyright © 2014 Elsevier Inc. All rights reserved.
Alarcón, Gabriela; Roco, Julieta; Medina, Analia; Van Nieuwenhove, Carina; Medina, Mirta; Jerez, Susana
2016-01-20
Biomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases. Thus, the aim of this work was to analyze stearoyl-CoA desaturase (SCD) indexes and n-6/n-3 fatty acids (FA) ratio as biomarkers of CMR induced by feeding rabbits on high fat diets (HFDs). Rabbits were fed either regular diet or 18 % fat in regular diet (HFD) or 1 % cholesterol diet (HD) or diet containing 1 % cholesterol and 18 % fat (HFD-HD) during 6 weeks. Body weights (BW), blood pressure, visceral abdominal fat (VAF) and glucose tolerance test were determined. Total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides (TG), fasting glucose (FG), and FA levels from plasma were measured. SCD indexes were calculated as product/precursor ratios of individual FA. BW was similar in all diet groups. HD increased TC, LDL-C, HDL-C, and TG. HFD increased TG, VAF and FG, and decreased HDL-C. The addition of HFD to HD joined to dyslipidemia increased VAF and FG. SCD indexes were increased and n-6/n-3 was unchanged in HD. SCD indexes were reduced and n-6/n-3 FA ratio was increased in HFD and HFD-HD. CMR factors were correlated positively with n-6/n-3 FA ratio. Although VAF had a stronger correlation with n-6/n-3 FA ratio than with SCD indexes, VAF was associated independently to both markers. HFD simulating lipid composition of the average Western-style diet induced experimental rabbit models of normal-weight metabolic syndrome (MS). SCD indexes and n-6/n-3 were modified according to the type of dietary fat. Considering that VAF and CMR factors appear to be stronger associated to n-6/n-3 FA ratio than to SCD indexes, n-6/n-3 FA ratio may be a better biomarker of MS and CMR in normal-weight subjects than SCD indexes.
Roselle is cardioprotective in diet-induced obesity rat model with myocardial infarction.
Si, Lislivia Yiang-Nee; Ali, Siti Aishah Mohd; Latip, Jalifah; Fauzi, Norsyahida Mohd; Budin, Siti Balkis; Zainalabidin, Satirah
2017-12-15
Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI. Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks. Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle. These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Kang, Min; Li, Sen; Zhong, Dejun; Yang, Zhimin; Li, Peng
2013-07-01
To investigate the role of hepatocyte apoptosis and mitochondrial permeability transition pore (MPTP) opening in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Thirty male SD rats were randomized into normal diet group and high-fat diet group. At 4, 8 and 12 week of feeding. The hepatocyte apoptosis index (AI) was measured using flow cytometry, and MPTP opening was evaluated with ultraviolet spectrophotometry. Immunohistochemistry was employed to detect hepatic expressions of Bcl-2 and Bax, and Western blotting was used to detect Bax protein expression changes. High-fat feeding resulted in significantly increased hepatocyte AI at 4-12 weeks and gradually increased MPTP opening. In the high-fat diet group, hepatic Bcl-2 expression was detected but the positive cell number remained stable, whereas Bax-positive cell number increased steadily with time with progressively increased intensity of Bax protein expression, resulting in gradually decreased Bcl-2/Bax ratio. Hepatocyte apoptosis occurs in the rat model of NAFLD in close correlation with mitochondrial damage. Increased MPTP opening as the result of increased Bax expression and aberrant Bcl-2/Bax ratio is an important mechanism of hepatocyte mitochondrial damage in NAFLD.
Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats
NASA Technical Reports Server (NTRS)
Rousseau, D.; Helies-Toussaint, C.; Raederstorff, D.; Moreau, D.; Grynberg, A.
2001-01-01
The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.
Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats.
Rousseau, D; Héliès-Toussaint, C; Raederstorff, D; Moreau, D; Grynberg, A
2001-09-01
The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.
Steiner, Michel A; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois
2013-01-01
The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS). Rats were fed either standard chow (SC) or a cafeteria (CAF) diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S) diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks) and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure) were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% vs. controls) and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG) plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this model.
Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin
2016-01-01
Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962
Wegman, Martin P; Guo, Michael H; Bennion, Douglas M; Shankar, Meena N; Chrzanowski, Stephen M; Goldberg, Leslie A; Xu, Jinze; Williams, Tiffany A; Lu, Xiaomin; Hsu, Stephen I; Anton, Stephen D; Leeuwenburgh, Christiaan; Brantly, Mark L
2015-04-01
Caloric restriction has consistently been shown to extend life span and ameliorate aging-related diseases. These effects may be due to diet-induced reactive oxygen species acting to up-regulate sirtuins and related protective pathways, which research suggests may be partially inhibited by dietary anti-oxidant supplementation. Because caloric restriction is not sustainable long term for most humans, we investigated an alternative dietary approach, intermittent fasting (IF), which is proposed to act on similar biological pathways. We hypothesized that a modified IF diet, where participants maintain overall energy balance by alternating between days of fasting (25% of normal caloric intake) and feasting (175% of normal), would increase expression of genes associated with aging and reduce oxidative stress and that these effects would be suppressed by anti-oxidant supplementation. To assess the tolerability of the diet and to explore effects on biological mechanisms related to aging and metabolism, we recruited a cohort of 24 healthy individuals in a double-crossover, double-blinded, randomized clinical trial. Study participants underwent two 3-week treatment periods-IF and IF with anti-oxidant (vitamins C and E) supplementation. We found strict adherence to study-provided diets and that participants found the diet tolerable, with no adverse clinical findings or weight change. We detected a marginal increase (2.7%) in SIRT3 expression due to the IF diet, but no change in expression of other genes or oxidative stress markers analyzed. We also found that IF decreased plasma insulin levels (1.01 μU/mL). Although our study suggests that the IF dieting paradigm is acceptable in healthy individuals, additional research is needed to further assess the potential benefits and risks.
Wegman, Martin P.; Guo, Michael H.; Bennion, Douglas M.; Shankar, Meena N.; Chrzanowski, Stephen M.; Goldberg, Leslie A.; Xu, Jinze; Williams, Tiffany A.; Lu, Xiaomin; Hsu, Stephen I.; Anton, Stephen D.; Leeuwenburgh, Christiaan
2015-01-01
Abstract Caloric restriction has consistently been shown to extend life span and ameliorate aging-related diseases. These effects may be due to diet-induced reactive oxygen species acting to up-regulate sirtuins and related protective pathways, which research suggests may be partially inhibited by dietary anti-oxidant supplementation. Because caloric restriction is not sustainable long term for most humans, we investigated an alternative dietary approach, intermittent fasting (IF), which is proposed to act on similar biological pathways. We hypothesized that a modified IF diet, where participants maintain overall energy balance by alternating between days of fasting (25% of normal caloric intake) and feasting (175% of normal), would increase expression of genes associated with aging and reduce oxidative stress and that these effects would be suppressed by anti-oxidant supplementation. To assess the tolerability of the diet and to explore effects on biological mechanisms related to aging and metabolism, we recruited a cohort of 24 healthy individuals in a double-crossover, double-blinded, randomized clinical trial. Study participants underwent two 3-week treatment periods—IF and IF with anti-oxidant (vitamins C and E) supplementation. We found strict adherence to study-provided diets and that participants found the diet tolerable, with no adverse clinical findings or weight change. We detected a marginal increase (2.7%) in SIRT3 expression due to the IF diet, but no change in expression of other genes or oxidative stress markers analyzed. We also found that IF decreased plasma insulin levels (1.01 μU/mL). Although our study suggests that the IF dieting paradigm is acceptable in healthy individuals, additional research is needed to further assess the potential benefits and risks. PMID:25546413
Deletion of CD73 in mice leads to aortic valve dysfunction.
Zukowska, P; Kutryb-Zajac, B; Jasztal, A; Toczek, M; Zabielska, M; Borkowski, T; Khalpey, Z; Smolenski, R T; Slominska, E M
2017-06-01
Aortic stenosis is known to involve inflammation and thrombosis. Changes in activity of extracellular enzyme - ecto-5'-nucleotidase (referred also as CD73) can alter inflammatory and thrombotic responses. This study aimed to evaluate the effect of CD73 deletion in mice on development of aortic valve dysfunction and to compare it to the effect of high-fat diet. Four groups of mice (normal-diet Wild Type (WT), high-fat diet WT, normal diet CD73-/-, high-fat diet CD73-/-) were maintained for 15weeks followed by echocardiographic analysis of aortic valve function, measurement of aortic surface activities of nucleotide catabolism enzymes as well as alkaline phosphatase activity, mineral composition and histology of aortic valve leaflets. CD73-/- knock out led to an increase in peak aortic flow (1.06±0.26m/s) compared to WT (0.79±0.26m/s) indicating obstruction. Highest values of peak aortic flow (1.26±0.31m/s) were observed in high-fat diet CD73-/- mice. Histological analysis showed morphological changes in CD73-/- including thickening and accumulation of dark deposits, proved to be melanin. Concentrations of Ca 2+ , Mg 2+ and PO 4 3- in valve leaflets were elevated in CD73-/- mice. Alkaline phosphatase (ALP) activity was enhanced after ATP treatment and reduced after adenosine treatment in aortas incubated in osteogenic medium. AMP hydrolysis in CD73-/- was below 10% of WT. Activity of ecto-adenosine deaminase (eADA), responsible for adenosine deamination, in the CD73-/- was 40% lower when compared to WT. Deletion of CD73 in mice leads to aortic valve dysfunction similar to that induced by high-fat diet suggesting important role of this surface protein in maintaining heart valve integrity. Copyright © 2017 Elsevier B.V. All rights reserved.
Pires, Paulo Wagner; McClain, Jonathon Lee; Hayoz, Sebastian F; Dorrance, Anne McLaren
2018-05-14
Midlife obesity is a risk factor for dementia development. Obesity has also been linked to hyperaldosteronism, and this can be modeled in rats by high fat (HF) feeding from weaning. Aldosterone, or activation of the mineralocorticoid receptor (MR) causes cerebrovascular injury in lean hypertensive rats. We hypothesized that rats fed a HF diet would show inward middle cerebral artery (MCA) remodeling that could be prevented by MR antagonism. We further proposed that the cerebral artery remodeling would be associated with white mater injury. Three-week-old male Sprague-Dawley rats were fed a HF diet ± the MR antagonist canrenoic acid (Canr) for 17 weeks. Control rats received normal chow (Control NC). MCA structure was assessed by pressure myography. The MCAs from HF fed rats had smaller lumens and thicker walls when compared to arteries from Control NC rats; Canr prevented the MCA remodeling associated with HF feeding. HF feeding increased the mRNA expression of markers of cell proliferation and vascular inflammation in cerebral arteries and Canr treatment prevented this. White mater injury was increased in the rats fed the HF diet and this was reduced by Canr treatment. The expression of doublecortin, a marker of new and immature neurons was reduced in HF fed rats, and MR antagonism normalized this. These data suggest that HF feeding leads to MR dependent remodeling of the MCA and this is associated with markers of dementia development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Acarbose versus trans-chalcone: comparing the effect of two glycosidase inhibitors on obese mice.
Jalalvand, Fatemeh; Amoli, Mahsa M; Yaghmaei, Parichehreh; Kimiagar, Masoud; Ebrahim-Habibi, Azadeh
2015-06-01
Acarbose and trans-chalcone are glucosidase inhibitors whose beneficial effects have been demonstrated in diabetes. The present study aimed at investigating their potential effects in obesity. NMRI male mice (n = 48) were subjected to a high fat diet for four weeks, which induced an initial state of obesity. One control group was given normal rodent diet. Obese animals were then switched to normal rodent diet, and divided to four groups (n = 12 in each): untreated, sham (receiving grape seed oil), and experimental groups receiving acarbose and trans-chalcone (12 mg/kg) during eight weeks. Body weight, blood glucose and other biochemical parameters including triglycerides (TG), cholesterol, HDL, AST, and ALT were measured, as well as leptin, adiponectin, TNF-α, and total antioxidant capacity (TAC). Histological studies were performed on adipose cells and liver tissue samples. All factors were affected in a positive manner by acarbose, save for body weight, blood sugar and leptin levels, on which acarbose effects, although observable, were not statistically significant. Grape seed oil, used as a solvent for trans-chalcone was found to possess significant effect on TG and TAC, and had beneficial effects on other factors including liver enzymes and cholesterol. Trans-chalcone effects were significant on HDL, leptin and ALT. All compounds seemed to be able to affect fat deposition in liver tissue, and decrease the size of adipose tissue cells to some extent. In conclusion, the tested compounds were able to affect lipid accumulation in tissues and influence adipokines, which may result in an enhanced state with regard to inflammation and oxidative stress.
Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A
2015-01-01
Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.
Vitamin A supplementation in early life affects later response to an obesogenic diet in rats.
Granados, N; Amengual, J; Ribot, J; Musinovic, H; Ceresi, E; von Lintig, J; Palou, A; Bonet, M L
2013-09-01
To assess the influence of supplementation with a moderate dose of vitamin A in early life on adipose tissue development and the response to an obesogenic diet later in life. During the suckling period, rat pups received a daily oral dose of retinyl palmitate corresponding to three times the vitamin A ingested daily from maternal milk. Control rats received the vehicle (olive oil). Short-term effects of treatment on gene expression and morphology of white adipose tissue (WAT) were analyzed in animals on the day after weaning (day 21). To study long-term effects, control and vitamin A-treated rats were fed, after weaning, a normal fat or a high-fat (HF) diet for 16 weeks. WAT of vitamin A-treated young rats (day 21) was enriched in small adipocytes with a reduced expression of adipogenic markers (peroxisome proliferator-activated receptor γ and lipoprotein lipase) and an increased cell proliferation potential as indicated by increased expression of proliferating cell nuclear antigen. Increased retinoic acid (RA)-induced transcriptional responses were present in the tissues of vitamin A-treated young rats (day 21) including WAT. Vitamin A-treated rats developed higher adiposity than control rats on a HF diet as indicated by body composition analysis and increased WAT depot mass, adipocyte diameter, WAT DNA content, leptinemia and adipose leptin gene expression. Excess adiposity gain in vitamin A-treated rats developed in the absence of changes in body weight and was attributable to excess adipocyte hyperplasia. No differences in adiposity were observed between vitamin A-treated rats and control rats on a normal fat diet. Total retinol levels in WAT of vitamin A-treated rats were elevated at weaning (day 21) and normalized by day 135 of age. Vitamin A intake in the early stages of postnatal life favors subsequent HF diet-induced adiposity gain through mechanisms that may relate to changes in adipose tissue development, likely mediated by RA.
Jeong, Jun Hyun; Lee, Young Ran; Park, Hee Geun; Lee, Wang Lok
2015-06-01
The aim of this study was to compare the effectiveness of either resveratrol supplementation or exercise training on macrophage infiltration and switching from M1 to M2 kupffer cells in high fat diet mice. C57BL/6 mice were separated into 5 groups: normal diet (ND; n = 6), high-fat diet (HD; n = 6), high-fat diet with resveratrol (HR; n = 6), high-fat diet with exercise (HE; n = 6) or high-fat diet with resveratrol and exercise (HRE; n = 6). Resveratrol supplementation mice were orally gavaged with resveratrol (25mg/kg of body weight) dissolved in 50% propylene glycol. Exercise mice ran on a treadmill at 12-20 m/min for 30-60 min/day, 5 times/week for 12 weeks. After 12 weeks of intervention, the liver was analyzed. F4/80 expression was evaluated by western blot while CD11c and CD163 mRNA expressions were evaluated by RT-PCR. The weights of the body and liver were significantly increased in the HD and HR group compared to the ND group (p < 0.01). However, the weights were most effectively reduced in the HE and HRE groups compared to the HD group (p < 0.05). The macrophage marker, F4/80 expression was significantly lower in the HE and HRE groups compared to the HD group (p < 0.05). mRNA expression of the M1 macrophage marker, CD11c, in the HD group was significantly increased compared to the ND group (p < 0.01). mRNA expression of the M2 macrophage specific marker, CD163, in the HE and HRE groups were significantly increased compared to the HD group (p < 0.05). The mRNA expressions of TLR4, ICAM-1 and VCAM-1, which induce pro-inflammatory cytokine production, were strongly decreased in the HR, HE, and HRE groups compared to the HD group. These results suggest that moderate exercise training inhibits macrophage infiltration and up regulation of CD163 expression. However, resveratrol supplementation is not enough to ameliorate obesity-induced macrophage infiltration and switching.
Vázquez-Velasco, Miguel; González-Torres, Laura; López-Gasco, Patricia; Bastida, Sara; Benedí, Juana; González-Muñoz, María José; Sánchez-Muniz, Francisco J
2015-12-01
Cholesterolemia is associated with pro-oxidative and proinflammatory effects. Glucomannan- or glucomannan plus spirulina-enriched surimis were included in cholesterol-enriched high-saturated diets to test the effects on lipemia; antioxidant status (glutathione status, and antioxidant enzymatic levels, expressions and activities); and inflammation biomarkers (endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α)) in Zucker fa/fa rats. Groups of eight rats each received diet containing squid-surimi (C), squid-surimi cholesterol-enriched diet (HC), glucomannan-squid-surimi cholesterol-enriched diet (HG), or glucomannan-spirulina-squid-surimi cholesterol-enriched diet (HGS) over a period of 7 weeks. HC diet induced severe hyperlipemia, hepatomegalia, increased inflammation markers, and impaired antioxidant status significantly (at least p < 0.05) vs. C diet. HG diet decreased lipemia and liver size and normalized antioxidant status to C group levels, but increased TNF-α with respect to HC diet (p < 0.05). In general terms, 3 g/kg of spirulina in diet maintained the positive results observed in the HG diet but, in addition, increased inflammation index [eNOS/(eNOS + iNOS)] and decreased plasma TNF-α (both p < 0.05). In conclusion, glucomannan plus a small amount of spirulina blocks negative effects promoted by hypercholesterolemic diets. Although more studies are needed, present results suggest the utility of including glucomannan and/or spirulina as functional ingredients into fish derivates to be consumed by people on metabolic syndrome risk.
Seizure tests distinguish intermittent fasting from the ketogenic diet
Hartman, Adam L.; Zheng, Xiangrong; Bergbower, Emily; Kennedy, Michiko; Hardwick, J. Marie
2010-01-01
Summary Purpose Calorie restriction can be anticonvulsant in animal models. The ketogenic diet was designed to mimic calorie restriction and has been assumed to work by the same mechanisms. We challenged this assumption by profiling the effects of these dietary regimens in mice subjected to a battery of acute seizure tests. Methods Juvenile male NIH Swiss mice received ketogenic diet or a normal diet fed in restricted quantities (continuously or intermittently) for ~ 12 days, starting at 3–4 weeks of age. Seizures were induced by the 6 Hz test, kainic acid, maximal electroshock, or pentylenetetrazol. Results The ketogenic and calorie-restricted diets often had opposite effects depending on the seizure test. The ketogenic diet protected from 6 Hz–induced seizures, whereas calorie restriction (daily and intermittent) increased seizure activity. Conversely, calorie restriction protected juvenile mice against seizures induced by kainic acid, whereas the ketogenic diet failed to protect. Intermittent caloric restriction worsened seizures induced by maximal electroshock but had no effect on those induced by pentylenetetrazol. Discussion In contrast to a longstanding hypothesis, calorie restriction and the ketogenic diet differ in their acute seizure test profiles, suggesting that they have different underlying anticonvulsant mechanisms. These findings highlight the importance of the 6 Hz test and its ability to reflect the benefits of ketosis and fat consumption. PMID:20477852
Yamamoto, Norio; Kanemoto, Yuki; Ueda, Manabu; Kawasaki, Kengo; Fukuda, Itsuko; Ashida, Hitoshi
2011-01-01
Artemisia princeps is commonly used as a food ingredient and in traditional Asian medicine. In this study, we examined the effects of long-term administration of an ethanol extract of A. princeps (APE) on body weight, white adipose tissue, blood glucose, insulin, plasma and hepatic lipids, and adipocytokines in C57BL/6 mice fed a high-fat diet. Daily feeding of a 1% APE diet for 14 weeks normalized elevated body weight, white adipose tissue, and plasma glucose and insulin levels, and delayed impaired glucose tolerance in mice a fed high-fat diet. These events were not observed in mice fed a control diet containing 1% APE. Liver triglyceride and cholesterol levels were similar in mice fed a 1% APE-diet and those fed a control diet. In the high-fat diet groups, APE inhibited hepatic fatty acid synthase (FAS) and suppressed the elevation of plasma leptin, but had no effect on adiponectin levels. These findings suggest that the regulation of leptin secretion by APE may inhibit FAS activity with subsequent suppression of triglyceride accumulation in the liver and adipose tissues. Inhibition of lipid accumulation can, in turn, lead to improvements in impaired glucose tolerance.
Impact of high fat/high salt diet on myocardial oxidative stress.
Mayyas, Fadia; Alzoubi, Karem H; Al-Taleb, Zahraa
2017-01-01
High fat high salt diet contributes to oxidative stress and cardiac diseases. To determine the impact of moderately high fat diet (HFD), high salt (HS) or their combination on blood pressure (Bp) and myocardial oxidants/antioxidants. Sprague Dawley rats were assigned into four groups; conventional diet (control, 5% fat, 0.5% NaCl), HFD (25% fat, 0.5% NaCl), HS (5% fat, 8% NaCl), or combined diet (HFD+HS) for 10 weeks. Bp and cardiac oxidants and antioxidants were measured. HFD, HS, and their combination didn't cause obesity or dyslipidemia. Both HS and combined diets resulted in an increase in the heart/body weight ratio accompanied by an increase in Bp. No changes were observed in levels of the glutathione (GSH) system or superoxide dismutase (SOD) activities. However, a significant decrease in TBARS levels was observed in the HFD and the combined diet with a parallel increase in catalase activity in all groups. Relative to HFD, the combined diet was associated with increases in GSH reductase/peroxidase and SOD activities. The lack of changes in the GSH system, the decrease in TBARS, and the increase in catalase activity suggest that normal hearts adapt compensatory mechanisms to prevent oxidative damage in response to HFD/and or HS.
[The effect of high fat feeding and rosiglitazone intervention on pancreatic alpha cell in rats].
Wang, Xin; Yang, Wen-ying; Xiao, Jian-zhong; Zhao, Wen-hui; Wang, Na; Liu, Xue-li; Pan, Lin
2005-08-01
To observe the effect of high-fat diet and rosiglitazone intervention on the function of pancreatic alpha cell of SD rats. 36 normal male SD rats, 8-week old, were randomly divided into 3 groups i.e., a normal chow group (CC, n = 12), an isocaloric high-fat diet group (CF, n = 12), and a rosiglitazone-treated group (Ro, n = 12, rosiglitazone 3 mg.kg(-1).d(-1) and isocaloric high fat diet). Triglyceride (TG) was measured every 4 weeks after feeding for 6 weeks. After 28 weeks, the secretion of insulin and glucagon (Gg) was assessed with intravenous glucose tolerance test (IVGTT) at 0, 3, 5, and 10 minutes. (3)H-2-deoxyglucose ((3)H-2-DG) uptake by tissues was measured to evaluate the insulin sensitivity. The ratio of intra-abdominal fat mass and body weight was higher in the rats of CF and Ro group than that in the rats of CC group. At the first 10 min of IVGTT, the Gg level was higher in the CF group than that in CC group [(119.3 +/- 12.4, 82.3 +/- 6.4, 72.2 +/- 5.8, 68.2 +/- 9.1) ng/L vs (96.8 +/- 9.1, 67.6 +/- 5.9, 57.9 +/- 5.3, 55.3 +/- 6.9) ng/L, P < 0.05] and Ro group [(78.4 +/- 6.0, 59.4 +/- 4.0, 49.9 +/- 6.2, 40.9 +/- 6.0) ng/L, P < 0.01], the level was even lower in the latter group than in CC group (P < 0.01). There was no difference of insulin level among the 3 groups. By using quantitative image analysis, the integrated A (area x A) of alpha cells was significantly higher in the CF group and Ro group as compared with that in the CC group (1661 +/- 130 and 1532 +/- 132 vs 1188 +/- 104, P < 0.05). In contrast, there was no difference among the 3 groups in the integrated A of beta cells. High-fat feeding induces insulin resistance in rats, which is associated with pancreatic alpha cell proliferation and abnormal Gg secretion.
Jawahar, Suntharam; Nafar, Adil; Vasanth, Krishnan; Musthafa, Mohamed Saiyad; Arockiaraj, Jesu; Balasundaram, Chellam; Harikrishnan, Ramasamy
2016-04-01
Epizootic Ulcerative Syndrome (EUS) caused by Aphanomyces invadans which is a primary fungal parasitic pathogen, inflicts serious economic loss in tropical freshwater fish including snakehead murrel, Channa striatus. In the present study with an aim to circumvent the adverse effects of the traditional measures in graded levels (2%, 4%, and 6%) of Zeolite enriched diet on growth performance, hematology, immunological response, and disease resistance in C. striatus against A. invadans is reported. The final weight (FW), specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), and average daily gain (ADG) were significantly high in infected fish fed with 4% or 6% Zeolite incorporated diets on 4th week. The maximum survival rates (SR) of 96% and 98% were observed when fed with 2% or 4% diets on 4th week. Similarly, the white blood cell (WBC), red blood cell (RBC), hematocrit (Hct), mean corpuscular volume (MCV), and mean corpuscular haemoglobin concentration (MCHC) were significantly high when fed with any Zeolite enriched diet. However, the haemoglobin (Hb) and mean corpuscular haemoglobin (MCH) were significantly high with 4% and 6% Zeolite diets. The total protein and globulin were significantly high with 4% and 6% diets; the albumin, glucose, cholesterol, and triglyceride were significantly elevated with any enriched diet. The 4% and 6% Zeolite diets significantly enhanced the phagocytic activity on 2nd week but the 2% diet could increase it on 4th week. The respiratory burst (RB) activity, complement activity, and lymphocyte proliferation level were significantly enhanced with 4% and 6% Zeolite diets on weeks 1 and 2 while with 2% diet on 4th week. All enriched diets significantly increased the lysozyme activity during the experimental period. Superoxide anion (SOA) production significantly enhanced with 6% diet on weeks 1 and 2 whereas with 2% diet on week 4. Lower cumulative mortality of 10% and 15% was found with 4% and 6% Zeolite diets whereas a higher mortality (20%) was observed with 2% diet. The present study suggests that dietary supplementation with 4% or 6% Zeolite significantly increase growth performance, hemato-biochemical changes, immunological response, and disease resistance in C. striatus against A. invadans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang
2016-11-04
Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.
Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su
2015-01-01
Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.
Reddy, Rama Manohar I; Latha, Pushpa B; Vijaya, Tartte; Rao, Dattatreya S
2012-01-01
We examined the antiobesity effect of a saponin-rich fraction of a Gymnema sylvestre R. Br. aqueous leaf extract (SGE) using cafeteria and high-fat diet-induced obese rats for a period of eight weeks. SGE was orally administered at a dose of 100 mg/kg body weight once a day to the treatment group. It significantly decreased the body weight, food consumption, visceral organs weight, and the levels of triglycerides, total cholesterol, low-density lipoproteins, very low-density lipoproteins, atherogenic index, glucose, and increased the levels of high-density lipoproteins. There was no significant difference with respect to all parameters of the study in case of normal (N) diet and N diet + SGE rats. In vitro, SGE inhibited the pancreatic lipase activity. The present study gave clear evidence that the SGE has a significant antiobese action, supporting its use in traditional medicine, and can be used as a substitute for synthetic drugs.
Feng, Wei; Liu, Bo; Liu, Di; Hasegawa, Tomoka; Wang, Wei; Han, Xiuchun; Cui, Jian; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi
2015-01-01
In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6-/- mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6-/- and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6-/- mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6-/- mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6-/- mice on a HFD as compared with IL-6-/- mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis. PMID:26416243
Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul
2015-03-23
Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH.
Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul
2015-01-01
Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH. PMID:25797953
Yon, Marianne; Pickavance, Lucy; Yanni Gerges, Joseph; Davis, Gershan; Wilding, John; Jian, Kun; Hart, George; Boyett, Mark
2016-01-01
Introduction. Obesity is increasingly common and is associated with an increased prevalence of cardiac arrhythmias. The aim of this study was to see whether in obesity there is proarrhythmic gene expression of ventricular ion channels and related molecules. Methods and Results. Rats were fed on a high-fat diet and compared to control rats on a normal diet (n = 8). After 8 weeks, rats on the high-fat diet showed significantly greater weight gain and higher adiposity. Left ventricle samples were removed at 8 weeks and mRNA expression of ion channels and other molecules was measured using qPCR. Obese rats had significant upregulation of Cav1.2, HCN4, Kir2.1, RYR2, NCX1, SERCA2a, and RYR2 mRNA and downregulation of ERG mRNA. In the case of HCN4, it was confirmed that there was a significant increase in protein expression. The potential effects of the mRNA changes on the ventricular action potential and intracellular Ca2+ transient were predicted using computer modelling. Modelling predicted prolongation of the ventricular action potential and an increase in the intracellular Ca2+ transient, both of which would be expected to be arrhythmogenic. Conclusion. High-fat diet causing obesity results in arrhythmogenic cardiac gene expression of ion channels and related molecules. PMID:27747100
Increased Renal Iron Accumulation in Hypertensive Nephropathy of Salt-Loaded Hypertensive Rats
Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Fujii, Aya; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Morisawa, Daisuke; Ohyanagi, Mitsumasa; Tsujino, Takeshi; Masuyama, Tohru
2013-01-01
Although iron is reported to be associated with the pathogenesis of chronic kidney disease, it is unknown whether iron participates in the pathophysiology of nephrosclerosis. Here, we investigate whether iron is involved in the development of hypertensive nephropathy and the effects of iron restriction on nephrosclerosis in salt- loaded stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were given either a normal or high-salt diet for 8 weeks. Another subset of SHRSP were fed a high-salt with iron-restricted diet. SHRSP given a high-salt diet developed severe hypertension and nephrosclerosis. As a result, survival rate was decreased after 8 weeks diet. Importantly, massive iron accumulation and increased iron content were observed in the kidneys of salt-loaded SHRSP, along with increased superoxide production, urinary 8-Hydroxy-2′-deoxyguanosine excretion, and urinary iron excretion; however, these changes were markedly attenuated by iron restriction. Of interest, expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1, was increased in the tubules of salt-loaded SHRSP. Notably, iron restriction attenuated the development of severe hypertension and nephrosclerosis, thereby improving survival rate in salt-loaded SHRSP. Taken together, these results suggest a novel mechanism by which iron plays a role in the development of hypertensive nephropathy and establish the effects of iron restriction on salt-induced nephrosclerosis. PMID:24116080
Tharakan, John F; Yu, Yong M; Zurakowski, David; Roth, Rachel M; Young, Vernon R; Castillo, Leticia
2008-08-01
It is not known whether arginine homeostasis is negatively affected by a "long term" dietary restriction of arginine and its major precursors in healthy adults. To assess the effects of a 4-week arginine- and precursor-free dietary intake on the regulatory mechanisms of arginine homeostasis in healthy subjects. Ten healthy adults received a complete amino acid diet for 1 week (control diet) and following a break period, six subjects received a 4-week arginine, proline, glutamate and aspartate-free diet (APF diet). The other four subjects continued for 4 weeks with the complete diet. On days 4 and 7 of the first week and days 25 and 28 of the 4-week period, the subjects received 24-h infusions of arginine, citrulline, leucine and urea tracers. During the 4-week APF, plasma arginine fluxes for the fed state, were significantly reduced. There were no significant differences for citrulline, leucine or urea fluxes. Arginine de novo synthesis was not affected by the APF intake. However, arginine oxidation was significantly decreased. In healthy adults, homeostasis of arginine under a long term arginine- and precursor-free intake is achieved by decreasing catabolic rates, while de novo arginine synthesis is maintained.
Kronfeld, D S; Hammel, E P; Ramberg, C F; Dunlap, H L
1977-03-01
In a 28 week study, 18 racing sled dogs were trained to maximal fitness in 12 weeks, sustained through a racing season of 12 weeks, followed by gradual of training of 4 weeks. The dogs were fed a predominantly cereal diet prior to the study; experimental diets containing more chicken and meat by products were introduced from the 2nd to the 4th week of training. On an energy basis, the diets contained protein, fat, and carbohydrate in the proportions of 39:61:0 (diet A), 32:45:23 (diet B), and 28:34:38 (diet C). Blood samples were taken at rest just before the start of training, at 6, 12,24 and 28 weeks; 33 variables were measured on most samples. The results were subjected to analysis of variance. No adverse effects were observed in dogs fed the extreme diet A. Significant relationships to training were shown by serum glutamic oxaloacetic transaminase, creatinine, packed cell volume, calcium, hemoglobin, and globulin. Serum cholesterol concentration increased with the introduction of the higher protein-fat diets; the high concentrations attenuated with time but rose again when training was abated. Dogs on diet A maintained higher serum concentrations of albumin, calcium, magnesium, and free fatty acids during the racing season than did dogs fed diets B or C. They also exhibited the greatest increases in red cell count, hemoglobin concentration, and packed cell volume during training. High values of red cell indices were not sustained through the racing season in dogs fed diet C. In addition to attributes already widely appreciated, viz. a higher energy density an digestibility, the carbohydrate-free, high-fat diet A appeared to confer advantages for prolonged strenuous running in terms of certain metabolic responses to training.
Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei
2012-01-01
Introduction. Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Methods and Results. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. Conclusion. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle. PMID:23320128
Salt intake during pregnancy alters offspring's myocardial structure.
Alves-Rodrigues, E N; Veras, M M; Rosa, K T; de Castro, I; Furukawa, L N S; Oliveira, I B; Souza, R M; Heimann, J C
2013-05-01
To evaluate the effects of low or high salt intake during pregnancy on left ventricle of adult male offspring. Low- (LS, 0.15%), normal- (NS, 1.3%) or high-salt (HS, 8% NaCl) diet was given to Wistar rats during pregnancy. During lactation all dams received NS as well as the offspring after weaning. To evaluate cardiac response to salt overload, 50% of each offspring group was fed a high-salt (hs, 4% NaCl) diet from the 21st to the 36th week of age (LShs, NShs, HShs). The remaining 50% was maintained on NS (LSns, NSns and HSns). Echocardiography was done at 20 and 30 weeks of age. Mean blood pressure (MBP), histology and left ventricular angiotensin II content (AII) were analyzed at 36 weeks of age. Interventricular septum, left ventricular posterior wall and relative wall thickness increased from the 20th to the 30th week of age only in HShs, cardiomyocyte mean volume was higher in HShs compared to NShs, LShs and HSns. AII and left ventricular fibrosis were not different among groups. HS during pregnancy programs adult male offspring to a blood pressure and angiotensin II independent concentric left ventricular hypertrophy, with no fibrosis, in response to a chronic high-salt intake. Copyright © 2011 Elsevier B.V. All rights reserved.
Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J
2006-09-01
Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.
Seif, A A
2015-06-01
Hypercholesterolemia indirectly increases the risk of myocardial infarction by enhancing platelet aggregation. Chromium has been shown to lower plasma lipids. This study was designed to investigate whether chromium inhibits platelet aggregation under hypercholesterolemic conditions. Albino rats were divided into four groups: control rats fed with a normolipemic diet (NLD group), chromium-supplemented rats fed with NLD (NLD + Cr group), rats fed with a high-fat diet (HF group), and chromium-supplemented rats fed with HF (HF + Cr group). After 10 weeks, blood was collected to determine adenosine diphosphate and collagen-induced platelet aggregation and plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B, and thromboxane B2. Low-density lipoprotein cholesterol was calculated by Friedewald formula. High-fat diet animals displayed significant elevation of plasma lipids and platelet aggregation which was normalized to control levels by chromium supplementation. Chromium supplementation in normolipemic (NLD + Cr) rats did not produce significant changes in either plasma lipids or platelet activity. Chromium supplementation to hypercholesterolemic rats improves the lipid profile and returns platelet hyperaggregability to control levels. This normalization is mostly due to a reduction in plasma cholesterol level.
Clouard, Caroline; Gerrits, Walter J J; Kemp, Bas; Val-Laillet, David; Bolhuis, J Elizabeth
2016-01-01
The increased consumption of diets high in saturated fats and refined sugars is a major public health concern in Western human societies. Recent studies suggest that perinatal exposure to dietary fat and/or sugar may affect behavioural development. We thus investigated the effects of perinatal exposure to a high-fat high-sugar diet (HFS) on behavioural development and production performance of piglets. Thirty-two non-obese sows and their piglets were allocated to 1 of 4 treatments in a 2 × 2 factorial design, with 8-week prenatal (gestation) and 8-week postnatal (lactation and post-weaning) exposure to a HFS diet (12% saturated fat, 18.5% sucrose, 1% cholesterol) or control low-fat low-sugar high-starch diets as factors. From weaning onwards (4 weeks of age), piglets were housed in group of 3 littermates (n = 8 groups/treatment) and fed ad libitum. After the end of the dietary intervention (8 weeks of age), all the piglets were fed a standard commercial diet. Piglet behaviours in the home pens were scored, and skin lesions, growth, feed intake and feed efficiency were measured up to 8 weeks after the end of the dietary treatment, i.e. until 16 weeks of age. At the end of the dietary treatment (8 weeks of age), response to novelty was assessed in a combined open field and novel object test (OFT/NOT). During the weeks following weaning, piglets fed the postnatal HFS diet tended to be less aggressive (p = 0.06), but exhibited more oral manipulation of pen mates (p = 0.05) than controls. Compared to controls, piglets fed the prenatal or postnatal HFS diet walked more in the home pen (p ≤ 0.05), and tended to have fewer skin lesions (p < 0.10). Several behavioural effects of the postnatal HFS diet depended on the prenatal diet, with piglets subjected to a switch of diet at birth being more active, and exploring feeding materials, pen mates, and the environment more than piglets that remained on the same diet. Behaviours during the OFT/NOT were not affected by the diet. The intake of the postnatal HFS diet drastically reduced feed intake, but improved feed efficiency up to 8 weeks after the end of the dietary intervention, i.e. 16 weeks of age (p < 0.0001 for both). Our study highlights the key role of prenatal and postnatal nutritional interactions for early behavioural development, and reveals programming effects of early life nutrition on voluntary feed intake of piglets later in life.
Barnard, Neal D.; Gloede, Lise; Cohen, Joshua; Jenkins, David J.A.; Turner-McGrievy, Gabrielle; Green, Amber A.; Ferdowsian, Hope
2009-01-01
Background Although therapeutic diets are critical to diabetes management, their acceptability to patients is largely unstudied. Objective To quantify adherence and acceptability for two types of diets for diabetes. Design Controlled trial conducted 2004 – 2006. Subjects/setting Individuals with type 2 diabetes (n = 99) at a community-based research facility. Intervention Participants were randomly assigned to a diet following 2003 American Diabetes Association (ADA) guidelines or a low-fat, vegan diet for 74 weeks. Main outcome measures Attrition, adherence, dietary behavior, diet acceptability, and cravings. Statistical analyses For nutrient intake and questionnaire scores, t-tests determined between-group differences. For diet-acceptability measures, the related samples Wilcoxon rank test assessed within-group changes; the independent samples Mann-Whitney U test compared the diet groups. Chi-square for independent samples compared the groups for changes in reported symptoms. Results All participants completed the initial 22 weeks; 90% (45/50) of ADA-group and 86% (42/49) of vegan-group participants completed 74 weeks. Fat and cholesterol intake fell more and carbohydrate and fiber intake increased more in the vegan group. At 22 weeks, group-specific diet adherence criteria were met by 44% (22/50) of ADA-group and 67% (33/49) of vegan-group participants (P=0.019); the ADA group reported a greater increase in dietary restraint; this difference was not significant at 74 weeks. Both groups reported reduced hunger and reduced disinhibition. Questionnaire responses rated both diets as satisfactory, with no significant differences between groups, except for ease of preparation, for which the 22-week ratings marginally favored the ADA group. Cravings for fatty foods diminished more in the vegan group at 22 weeks, with no significant difference at 74 weeks. Conclusions Despite its greater influence on macronutrient intake, a low-fat, vegan diet has an acceptability similar to that of a more conventional diabetes diet. Acceptability appears to be no barrier to its use in medical nutrition therapy. PMID:19167953
Zhang, Meiling; Li, Xin; Liang, Hangfei; Cai, Huqiang; Hu, Xueling; Bian, Yu; Dong, Lei; Ding, Lili; Wang, Libo; Yu, Bo; Zhang, Yan; Zhang, Yao
2018-01-01
Diabetes mellitus is a clinical syndrome characterised by hyperglycaemia; its complications lead to disability and even death. Semen Cassiae is a traditional Chinese medicine, which has anti-hypertensive, anti-hyperlipidaemia, anti-oxidation, and anti-ageing properties. Our study was designed to evaluate the action of total anthraquinones of Semen Cassiae extract (SCE) on the improvement of glucose metabolism in diabetic rats and to elucidate the underlying mechanism. First, we evaluated the effect of SCE on normal rats. Next, we observed the effect of SCE using a rat model of diabetes, which was established by feeding rats with high-energy diet for 4 weeks and a single intraperitoneal injection of streptozotocin (STZ; 30 mg/kg) 3 weeks after starting the high-energy diet. Rats in different SCE groups (administered 54, 108, and 324 mg/kg/day of SCE) and metformin group (162 mg/kg/day, positive control drug) were treated with the corresponding drugs 1 week before starting high-energy diet and treatment continued for 5 weeks; meanwhile, rats in the control group were administered the same volume of sodium carboxymethyl cellulose solution (vehicle solution). One week after STZ injection, fasting blood glucose (FBG), oral glucose tolerance (OGT), fasting serum insulin (FSI) and serum lipids were quantified. Finally, the expression of proteins in the phosphatidylinositol-3-kinase (PI3K)–Akt–AS160–glucose transporter isoform 4 (GLUT4) signalling pathway was detected by western blotting. The data indicated that the levels of FBG and serum lipids were significantly lowered, and OGT and FSI were markedly increased in diabetic rats treated with SCE (108 mg/kg/day); however, SCE did not cause hypoglycaemia in normal rats. The molecular mechanisms were explored in the skeletal muscle. SCE markedly restored the decreased translocation of GLUT4 in diabetic rats. Moreover, the protein expressions of phosphorylated-AS160 (Thr642), phosphorylated-Akt (Ser473) and PI3K were significantly increased after SCE treatment in the skeletal muscle. These results indicate that SCE exerts an anti-hyperglycaemic effect by promoting GLUT4 translocation through the activation of the PI3K–Akt–AS160 signalling pathway. Our findings suggest that treatment with SCE, containing anthraquinones, could be an effective approach to enhance diabetes therapy. PMID:29670524
Yuri, Takashi; Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Yuki, Michiko; Tsubura, Airo
Natural xanthophylls, canthaxanthin and astaxanthin are known to exhibit anticancer activity. However, the dietary effects of canthaxanthin and astaxanthin on N-methyl-N-nitrosourea (MNU)-induced mammary cancer remain controversial, and their mechanisms of action have not been clearly identified. Three-week-old female Sprague-Dawley rats were fed a xanthophyll-free (basal diet) diet or experimental diets containing canthaxanthin or astaxanthin (0.04% and 0.4%) for 5 weeks (until 8 weeks of age), after which all rats were provided the basal diet (n=15 each). Rats were administered MNU at 6 weeks of age, and the incidence of mammary tumors at 20 weeks of age was compared. The expression of adiponectin in mammary adipose tissues taken at 7 weeks of age was also compared. Compared to the basal diet group, the 0.4% (but not the 0.04%) astaxanthin diet significantly reduced the incidence of palpable mammary carcinoma (92% vs. 42%; p<0.05), while the low and high canthaxanthin diets produced no significant inhibition. Adiponectin immunoblotting showed significantly higher expression in the 0.4% astaxanthin diet group, while the other groups were similar to the basal diet group. High concentrations of astaxanthin suppress MNU-induced mammary carcinoma. Changes in adiponectin may be involved in the mechanism of action. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
High-fat Diet Promotes Cardiac Remodeling in an Experimental Model of Obesity
Martins, Fernando; Campos, Dijon Henrique Salomé; Pagan, Luana Urbano; Martinez, Paula Felippe; Okoshi, Katashi; Okoshi, Marina Politi; Padovani, Carlos Roberto; de Souza, Albert Schiaveto; Cicogna, Antonio Carlos; de Oliveira-Junior, Silvio Assis
2015-01-01
Background Although nutritional, metabolic and cardiovascular abnormalities are commonly seen in experimental studies of obesity, it is uncertain whether these effects result from the treatment or from body adiposity. Objective To evaluate the influence of treatment and body composition on metabolic and cardiovascular aspects in rats receiving high saturated fat diet. Methods Sixteen Wistar rats were used, distributed into two groups, the control (C) group, treated with isocaloric diet (2.93 kcal/g) and an obese (OB) group, treated with high-fat diet (3.64 kcal/g). The study period was 20 weeks. Analyses of nutritional behavior, body composition, glycemia, cholesterolemia, lipemia, systolic arterial pressure, echocardiography, and cardiac histology were performed. Results High-fat diet associates with manifestations of obesity, accompanied by changes in glycemia, cardiomyocyte hypertrophy, and myocardial interstitial fibrosis. After adjusting for adiposity, the metabolic effects were normalized, whereas differences in morphometric changes between groups were maintained. Conclusions It was concluded that adiposity body composition has a stronger association with metabolic disturbances in obese rodents, whereas the high-fat dietary intervention is found to be more related to cardiac morphological changes in experimental models of diet-induced obesity. PMID:26291841
Nair, Sandhya; Gagnon, Jacques; Pelletier, Claude; Tchoukanova, Nadia; Zhang, Junzeng; Ewart, H Stephen; Ewart, K Vanya; Jiao, Guangling; Wang, Yanwen
2017-08-01
Diet-induced obesity, insulin resistance, impaired glucose tolerance, chronic inflammation, and oxidative stress represent the main features of type 2 diabetes mellitus. The present study was conducted to examine the efficacy and mechanisms of shrimp oil on glucose homeostasis in obese rats. Male CD rats fed a high-fat diet (52 kcal% fat) and 20% fructose drinking water were divided into 4 groups and treated with the dietary replacement of 0%, 10%, 15%, or 20% of lard with shrimp oil for 10 weeks. Age-matched rats fed a low-fat diet (10 kcal% fat) were used as the normal control. Rats on the high-fat diet showed impaired (p < 0.05) glucose tolerance and insulin resistance compared with rats fed the low-fat diet. Shrimp oil improved (p < 0.05) oral glucose tolerance, insulin response, and homeostatic model assessment-estimated insulin resistance index; decreased serum insulin, leptin, hemoglobin A1c, and free fatty acids; and increased adiponectin. Shrimp oil also increased (p < 0.05) antioxidant capacity and reduced oxidative stress and chronic inflammation. The results demonstrated that shrimp oil dose-dependently improved glycemic control in obese rats through multiple mechanisms.
Agbor, Gabriel A; Akinfiresoye, Luli; Sortino, Julianne; Johnson, Robert; Vinson, Joe A
2012-10-01
Pre-clinical and clinical studies points to the use of antioxidants as an effective measure to reduce the progression of oxidative stress related disorders. The present study evaluate the effect of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) for the protection of cardiac, hepatic and renal antioxidant status of atherogenic diet fed hamsters. Hamsters were classified into eight groups: a normal control, atherogenic control and six other experimental groups (fed atherogenic diet supplemented with different doses of P. nigrum, P. guineense and P. umbellatum (1 and 0.25 g/kg) for 12 weeks. At the end of the feeding period the heart, liver and kidney from each group were analyzed for lipid profile and antioxidant enzymes activities. Atherogenic diet induced a significant (P<0.001) increase in the lipid profile across the board and equally significantly altered the antioxidant enzyme activities. Supplementation with Piper species significantly inhibited the alteration effect of atherogenic diet on the lipid profile and antioxidant enzymes activities. The Piper extracts may possess an antioxidant protective role against atherogenic diet induced oxidative stress in cardiac, hepatic and renal tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lan, Yuan-long; Huang, Su-ping; Heng, Xian-pei; Chen, Ling; Li, Peng-hui; Wu, Jing; Yang, Liu-qing; Pan, Xu-dong; Lin, Tong; Cheng, Xin-ling; Lin, Qing; Chen, Si-xin
2015-03-01
To investigate the effect of Dan-gua Fang on adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) α expression in liver and subsequent improvement of glucose and lipid metabolism. Forty 13-week-old diabetic Goto-Kakizaki (GK) rats were randomly divided into model, Dan-gua Fang, metformin and simvastatin groups (n=10 for each), and fed high-fat diet ad libitum. Ten Wistar rats were used as normal group and fed normal diet. After 24 weeks, liver expression of AMPKα mRNA was assessed by real-time PCR. AMPKα and phospho-AMPKα protein expression in liver was evaluated by Western blot. Liver histomorphology was carried out after hematoxylin-eosin staining, and blood glucose (BG), glycosylated hemoglobin A1c (HbA1c), food intake and body weight recorded. Similar AMPKα mRNA levels were found in the Dan-gua Fang group and normal group, slightly higher than the values obtained for the remaining groups (P<0.05). AMPKα protein expression in the Dan-gua Fang group animals was similar to other diabetic rats, whereas phospho-AMPKα (Thr-172) protein levels were markedly higher than in the metformin group and simvastatin group (P<0.05), respectively. However, phosphor-AMPKα/AMPKα ratios were similar in all groups. Dan-gua Fang reduced fasting blood glucose with similar strength to metformin, and was superior in reducing cholesterol, triglycerides, high-density lipoprotein cholesterol as well as improving low-density lipoprotein cholesterol in comparison with simvastatin and metformin. Dan-gua Fang decreases plasma alanine aminotransferase (ALT) significantly. Dan-gua Fang, while treating phlegm-stasis, could decrease BG and lipid in type 2 diabetic GK rats fed with high-fat diet, and effectively protect liver histomorphology and function. This may be partly explained by increased AMPK expression in liver. Therefore, Dan-gua Fang might be an ideal drug for comprehensive intervention for glucose and lipid metabolism disorders in type 2 diabetes mellitus.
Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo
2014-12-02
Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
el-Zoghbi, M; Sitohy, M Z
2001-04-01
Male albino rats were fed diets contained 6.85% mineral salts for 2 weeks (adaptation condition). Then they were fed the dietary pectin administered diet for 6 weeks to evaluate the effect of administration of pectin on the absorption of some monovalent, bivalent and heavy metals in the serum of rats. The experimental parameters included, monovalent minerals (K, Na), bivalent minerals (Zn, Cu, Ca, Fe), heavy metals (Pb, Cd), serum uric acid and serum creatinine. The obtained results indicated that the serum contents of monovalent minerals were negatively affected by pectin administration. The low degree of esterification of pectin was more effective on the absorption of bivalent minerals. Also, the rat serum levels of lead and cadmium were reduced by pectin administration. Serum total proteins were reduced by pectin administration. The level of rat serum of uric acid and creatinine fed different sources of pectin were within normal levels and were insignificantly lower than that recorded for control samples.
Prevention of anemia alleviates heart hypertrophy in copper deficient rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lure, M.D.; Fields, M.; Lewis, C.G.
1991-03-11
The present investigation was designed to examine the role of anemia in the cardiomegaly and myocardial pathology of copper deficiency. Weanling rats were fed a copper deficient diet containing either starch (ST) or fructose (FRU) for five weeks. Six rats consuming the FRU diet were intraperitoneally injected once a week with 1.0 ml/100g bw of packed red blood cells (RBC) obtained from copper deficient rats fed ST. FRU rats injected with RBC did not develop anemia. Additionally, none of the injected rats exhibited heart hypertrophy or gross pathology and all survived. In contrast, non-injected FRU rats were anemic, exhibited severemore » signs of copper deficiency which include heart hypertrophy with gross pathology, and 44% died. Maintaining the hematocrit with RBC injections resulted in normal heart histology and prevented the mortality associated with the fructose x copper interaction. The finding suggest that the anemia associated with copper deficiency contributes to heart pathology.« less
Hirotani, Yoshihiko; Ozaki, Nozomi; Tsuji, Yoshihiro; Urashima, Yoko; Myotoku, Michiaki
2015-01-01
We investigated the ability of eicosapentaenoic acid (EPA) to prevent high-fat diet (HFD)-induced obesity and non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed standard chow (5.3% fat content), an HFD (32.0% fat content) or an HFD + EPA (1 g/kg/day EPA for the last 6 weeks) for 12 weeks. Serum total cholesterol, hepatic triglyceride and total cholesterol levels were significantly increased in the HFD group, in comparison with those of normal mice (p < 0.01). In contrast, hepatic triglyceride and total cholesterol levels were significantly decreased in the HFD + EPA group, in comparison with those of the HFD group (p < 0.05). In addition, EPA decreased the body weight of obese mice and improved hepatic function. Hepatic superoxide dismutase activity and glutathione levels were significantly decreased in obese mice, but increased with EPA administration. Our data suggest that EPA supplementation has a beneficial effect on NAFLD progression.
Christensen, P; Bartels, E M; Riecke, B F; Bliddal, H; Leeds, A R; Astrup, A; Winther, K; Christensen, R
2012-04-01
Obese subjects are commonly deficient in several micronutrients. Weight loss, although beneficial, may also lead to adverse changes in micronutrient status and body composition. The objective of the study is to assess changes in micronutrient status and body composition in obese individuals after a dietary weight loss program. As part of a dietary weight loss trial, enrolling 192 obese patients (body mass index >30 kg/m2) with knee osteoarthritis (>50 years of age), vitamin D, ferritin, vitamin B12 and body composition were measured at baseline and after 16 weeks. All followed an 8-week formula weight-loss diet 415-810 kcal per day, followed by 8 weeks on a hypo-energetic 1200 kcal per day diet with a combination of normal food and formula products. Statistical analyses were based on paired samples in the completer population. A total of 175 patients (142 women), 91%, completed the 16-week program and had a body weight loss of 14.0 kg (95% confidence interval: 13.3-14.7; P<0.0001), consisting of 1.8 kg (1.3-2.3; P<0.0001) lean body mass (LBM) and 11.0 kg (10.4-11.6; P<0.0001) fat mass. Bone mineral content (BMC) did not change (-13.5 g; P=0.18), whereas bone mineral density (BMD) increased by 0.004 g/cm2 (0.001-0.008 g/cm2; P=0.025). Plasma vitamin D and B(12) increased by 15.3 nmol/l (13.2-17.3; P<0.0001) and 43.7 pmol/l (32.1-55.4; P<0.0001), respectively. There was no change in plasma ferritin. This intensive program with formula diet resulted in increased BMD and improved vitamin D and B12 levels. Ferritin and BMC were unchanged and loss of LBM was only 13% of the total weight loss. This observational evidence supports use of formula diet-induced weight loss therapy in obese osteoarthritis patients.
Christensen, P; Bartels, E M; Riecke, B F; Bliddal, H; Leeds, A R; Astrup, A; Winther, K; Christensen, R
2012-01-01
BACKGROUND/OBJECTIVES: Obese subjects are commonly deficient in several micronutrients. Weight loss, although beneficial, may also lead to adverse changes in micronutrient status and body composition. The objective of the study is to assess changes in micronutrient status and body composition in obese individuals after a dietary weight loss program. SUBJECTS/METHODS: As part of a dietary weight loss trial, enrolling 192 obese patients (body mass index >30 kg/m2) with knee osteoarthritis (>50 years of age), vitamin D, ferritin, vitamin B12 and body composition were measured at baseline and after 16 weeks. All followed an 8-week formula weight-loss diet 415–810 kcal per day, followed by 8 weeks on a hypo-energetic 1200 kcal per day diet with a combination of normal food and formula products. Statistical analyses were based on paired samples in the completer population. RESULTS: A total of 175 patients (142 women), 91%, completed the 16-week program and had a body weight loss of 14.0 kg (95% confidence interval: 13.3–14.7; P<0.0001), consisting of 1.8 kg (1.3–2.3; P<0.0001) lean body mass (LBM) and 11.0 kg (10.4–11.6; P<0.0001) fat mass. Bone mineral content (BMC) did not change (-13.5 g; P=0.18), whereas bone mineral density (BMD) increased by 0.004 g/cm2 (0.001–0.008 g/cm2; P=0.025). Plasma vitamin D and B12 increased by 15.3 nmol/l (13.2–17.3; P<0.0001) and 43.7 pmol/l (32.1–55.4; P<0.0001), respectively. There was no change in plasma ferritin. CONCLUSIONS: This intensive program with formula diet resulted in increased BMD and improved vitamin D and B12 levels. Ferritin and BMC were unchanged and loss of LBM was only 13% of the total weight loss. This observational evidence supports use of formula diet-induced weight loss therapy in obese osteoarthritis patients. PMID:22190136
Bogavac-Stanojevic, Natasa; Kotur Stevuljevic, Jelena; Cerne, Darko; Zupan, Janja; Marc, Janja; Vujic, Zorica; Crevar-Sakac, Milkica; Sopic, Miron; Munjas, Jelena; Radenkovic, Miroslav; Jelic-Ivanovic, Zorana
2018-12-01
Polyphenols and flavonoids in artichoke leaf tincture (ALT) protect cells against oxidative damage. We examined ALT effects on deoxyribonucleic acid (DNA) damage and lipid profiles in rat plasma and gene expression in rat aorta [haemeoxygenase-1 (HO1), haemeoxygenase-2 (HO2), NADPH oxidase 4 (NOX-4), monocyte chemoattractant protein-1 (MCP-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. Eighteen male Wistar albino rats were divided into three groups (n = 6/group): The control group (CG) was fed with standard pellet chow for 11 weeks; the AD group was fed for a similar period of time with pellet chow supplemented with 2% cholesterol, 3% sunflower oil and 1% sodium cholate. The ADA group was fed with pellet chow (for 1 week), the atherogenic diet (see above) for the following 4 weeks and then with ALT (0.1 mL/kg body weight) and atherogenic diet for 6 weeks. According to HPLC analysis, the isolated main compounds in ALT were chlorogenic acid, caffeic acid, isoquercitrin and rutin. Normalized HO-1 [0.11 (0.04-0.24)] and MCP-1 [0.29 (0.21-0.47)] mRNA levels and DNA scores [12.50 (4.50-36.50)] were significantly lower in the ADA group than in the AD group [0.84 (0.35-2.51)], p = 0.021 for HO-1 [0.85 (0.61-3.45)], p = 0.047 for MCP-1 and [176.5 (66.50-221.25)], p = 0.020 for DNA scores. HO-1 mRNA was lower in the ADA group than in the CG group [0.30 (0.21-0.71), p = 0.049]. Supplementation with ALT limited the effects of the atherogenic diet through reduced MCP-1 expression, thereby preventing oxidative damage.
Lim, Chi Young; Kim, Jung-Yeon; Yoon, Mi-Jin; Chang, Hang Seok; Park, Cheong Soo; Chung, Woong Youn
2015-07-01
The radioiodine ablation therapy is required for patients who underwent a total thyroidectomy. Through a comparative review of a low iodine diet (LID) and a restricted iodine diet (RID), the study aims to suggest guidelines that are suitable for the conditions of Korea. The study was conducted with 101 patients. With 24-hour urine samples from the patients after a 2-week restricted diet and after a 4-week restricted diet, the amount of iodine in the urine was estimated. The consumed radioiodine amounts for 2 hours and 24 hours were calculated. This study was conducted with 47 LID patients and 54 RID patients. The amounts of iodine in urine, the 2-week case and 4-week case for each group showed no significant differences. The amounts of iodine in urine between the two groups were both included in the range of the criteria for radioiodine ablation therapy. Also, 2 hours and 24 hours radioiodine consumption measured after 4-week restrictive diet did not show statistical differences between two groups. A 2-week RID can be considered as a type of radioiodine ablation therapy after patients undergo a total thyroidectomy.
Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice
Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H
2012-01-01
Objective: Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Design: Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks–26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. Results: The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. Conclusion: This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM. PMID:23448719
Examining the Impact of Adherence to a Vegan Diet on Acid-Base Balance in Healthy Adults.
Cosgrove, Kelly; Johnston, Carol S
2017-09-01
Acidogenic diets, commonly measured by the potential renal acid load (PRAL), have been linked with metabolic diseases including insulin resistance, hepatic dysfunction, and cardiometabolic risk. Vegan diets are linked to low dietary acid loads, but the degree of adherence to a vegan diet to demonstrate this benefit is unknown. This study compared the change in PRAL and urine pH of omnivores who followed a vegan diet for either 2, 3, or 7 days over one week. Healthy adults were recruited from a campus population and randomly assigned to one of the three groups: VEG7 (vegan diet followed for seven consecutive days); VEG3 (vegan diet followed for three evenly spaced days over one week); or VEG2 (vegan diet followed for two evenly spaced days over one week). Gender, age, and body mass index did not differ between groups (overall: 21.8 ± 2.4 y and 24.4 ± 5.6 kg/m 2 ). Following the one week intervention, outcome measures did not vary between the VEG2 and VEG3 groups, and these groups were collapsed for the final analyses. The 24-h urine pH was raised after seven consistent days of vegan diet adherence and was unchanged after 2-3 days of vegan diet adherence over the course of a week (+0.52 ± 0.69 and -0.02 ± 0.56 respectively, p = 0.048). However, dietary PRAL scores fell significantly in both dietary groups during the 7-day trial. Since low dietary PRAL scores have been related to improve metabolic parameters, adoption of a vegan diets for several days per week should be explored as a diet strategy to lower disease risk.
Zhu, Lian; Xu, Zhi-Liang
2017-07-01
To investigate the effect of high-fat diet on the expression of transient receptor potential vanilloid 1 (TRPV1) in the respiratory system and the dorsal root ganglion (DRG) of mice, as well as its effect on the excitability of sensory neurons. A total of 20 C57BL/6 mice were randomly divided into normal-diet (ND) group and high-fat diet (HFD) group, with 10 mice in each group. The mice were given corresponding diets and body weights were monitored. After 7 weeks of feeding, lung tissue, bronchial tissue, and DRG at thoracic segments 3-4 were collected and immunohistochemical staining was performed. A patch clamp was used to measure the number of action potentials and TRPV1 current intensity in the DRG. After 7 weeks of feeding, the HFD group had significantly greater mean weight gain than the ND group (6.4±2.6 g vs 2.3±0.5 g; P<0.001). The HFD group had significantly higher expression of TRPV1 in the bronchus, pulmonary alveoli, and DRG than the ND group (P<0.05). Compared with the ND group, the HFD group had significant increases in the TRPV1 current intensity and number of action potentials in the DRG (P<0.05). High-fat diet induces a significant increase in body weight and leads to high expression of TRPV1 and high excitability in the respiratory system and the peripheral sensory neurons. This suggests that TRPV1 may be an important factor in the physiopathological mechanisms of bronchial hyperresponsiveness.
Esculetin prevents non-alcoholic fatty liver in diabetic mice fed high-fat diet.
Choi, Ra-Yeong; Ham, Ju Ri; Lee, Mi-Kyung
2016-12-25
This study investigated the effects and mechanism of esculetin (6,7-dihydroxycoumarin) on non-alcoholic fatty liver in diabetic mice fed high-fat diet (HFD). The diabetic mice model was induced by injection of streptozotocin, after which they were fed HFD diet with or without esculetin for 11 weeks. Non-diabetic mice were provided a normal diet. Diabetes induced hepatic hypertrophy, lipid accumulation and droplets; however, esculetin reversed these changes. Esculetin treatment in diabetic mice fed HFD significantly down-regulated expression of lipid synthesis genes (Fasn, Dgat2 and Plpp2) and inflammation genes (Tlr4, Myd88, Nfkb, Tnfα and Il6). Moreover, the activities of hepatic lipid synthesis enzymes (fatty acid synthase and phosphatidate phosphohydrolase) and gluconeogenesis enzyme (glucose-6-phosphatase) in the esculetin group were decreased compared with the diabetic group. In addition, esculetin significantly reduced blood HbA 1c , serum cytokines (TNF-α and IL-6) and chemokine (MCP-1) levels compared with the diabetic group without changing the insulin content in serum and the pancreas. Hepatic SOD activity was lower and lipid peroxidation level was higher in the diabetic group than in the normal group; however, esculetin attenuates these differences. Overall, these results demonstrated that esculetin supplementation could protect against development of non-alcoholic fatty liver in diabetes via regulation of lipids, glucose and inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, Zhigang; Patil, Ishan; Sancheti, Harsh; Yin, Fei; Cadenas, Enrique
2017-07-14
High-fat diet (HFD)-induced obesity is accompanied by insulin resistance and compromised brain synaptic plasticity through the impairment of insulin-sensitive pathways regulating neuronal survival, learning, and memory. Lipoic acid is known to modulate the redox status of the cell and has insulin mimetic effects. This study was aimed at determining the effects of dietary administration of lipoic acid on a HFD-induced obesity model in terms of (a) insulin signaling, (b) brain glucose uptake and neuronal- and astrocytic metabolism, and (c) synaptic plasticity. 3-Month old C57BL/6J mice were divided into 4 groups exposed to their respective treatments for 9 weeks: (1) normal diet, (2) normal diet plus lipoic acid, (3) HFD, and (4) HFD plus lipoic acid. HFD resulted in higher body weight, development of insulin resistance, lower brain glucose uptake and glucose transporters, alterations in glycolytic and acetate metabolism in neurons and astrocytes, and ultimately synaptic plasticity loss evident by a decreased long-term potentiation (LTP). Lipoic acid treatment in mice on HFD prevented several HFD-induced metabolic changes and preserved synaptic plasticity. The metabolic and physiological changes in HFD-fed mice, including insulin resistance, brain glucose uptake and metabolism, and synaptic function, could be preserved by the insulin-like effect of lipoic acid.
Saha, Dolan C; Reimer, Raylene A
2014-09-01
A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P < 0.05). Firmicutes, especially Clostridium leptum, decreased in HF compared to C and HP (P < .05). The ratio of Firmicutes:Bacteroidetes was markedly lower in HF versus C and HP at 25 weeks (P < .05). HF decreased hepatic cholesterol content compared to HP and C at 25 weeks. HF and HP increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA and decreased lecithin-cholesterol acyltransferase mRNA compared to C (P < .05). In conclusion, re-matching rats to a HF but not HP diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.
Raben, Anne; Møller, Bente K.; Flint, Anne; Vasilaras, Tatjana H.; Christina Møller, A.; Juul Holst, Jens; Astrup, Arne
2011-01-01
Background The importance of exchanging sucrose for artificial sweeteners on risk factors for developing diabetes and cardiovascular diseases is not yet clear. Objective To investigate the effects of a diet high in sucrose versus a diet high in artificial sweeteners on fasting and postprandial metabolic profiles after 10 weeks. Design Healthy overweight subjects were randomised to consume drinks and foods sweetened with either sucrose (∼2 g/kg body weight) (n = 12) or artificial sweeteners (n = 11) as supplements to their usual diet. Supplements were similar on the two diets and consisted of beverages (∼80 weight%) and solid foods (yoghurts, marmalade, ice cream, stewed fruits). The rest of the diet was free of choice and ad libitum. Before (week 0) and after the intervention (week 10) fasting blood samples were drawn and in week 10, postprandial blood was sampled during an 8-hour meal test (breakfast and lunch). Results After 10 weeks postprandial glucose, insulin, lactate, triglyceride, leptin, glucagon, and GLP-1 were all significantly higher in the sucrose compared with the sweetener group. After adjusting for differences in body weight changes and fasting values (week 10), postprandial glucose, lactate, insulin, GIP, and GLP-1 were significantly higher and after further adjusting for differences in energy and sucrose intake, postprandial lactate, insulin, GIP, and GLP-1 levels were still significantly higher on the sucrose-rich diet. Conclusion A sucrose-rich diet consumed for 10 weeks resulted in significant elevations of postprandial glycaemia, insulinemia, and lipidemia compared to a diet rich in artificial sweeteners in slightly overweight healthy subjects. PMID:21799667
Shi, Qiang; Hodara, Vida; Meng, Qinghe; Voruganti, V Saroja; Rice, Karen; Michalek, Joel E; Comuzzie, Anthony G; VandeBerg, John L
2014-01-01
Studies have shown that high-fat diets cause blood vessel damage, however, assessing pathological effects accurately and efficiently is difficult. In this study, we measured particle levels of static endothelium (CD31+ and CD105+) and activated endothelium (CD62E+, CD54+ and CD106+) in plasma. We determined individual responses to two dietary regimens in two groups of baboons. One group (n = 10), was fed a diet high in simple carbohydrates and saturated fats (the HSF diet) and the other (n = 8) received a diet high in simple carbohydrates and unsaturated fats (the HUF diet). Plasma samples were collected at 0, 3, and 7 weeks. The percentages of CD31+ and CD62E+ particles were elevated at 3 weeks in animals fed either diet, but these elevations were statistically significant only in animals fed the HUF diet. Surprisingly, both percentages and counts of CD31+ particles were significantly lower at week 7 compared to week 0 and 3 in the HSF group. The median absolute counts of CD105+ particles were progressively elevated over time in the HSF group with a significant increase from week 0 to 7; the pattern was somewhat different for the HUF group with significant increase from week 3 to 7. The counts of CD54+ particles exhibited wide variation in both groups during the dietary challenge, while the median counts of CD106+ particles were significantly lower at week 3 than at week 0 and week 7. Endothelial particles exhibited time-dependent changes, suggesting they were behaving as quantifiable surrogates for the early detection of vascular damage caused by dietary factors.
Measurement of Basal and Forskolin-stimulated Lipolysis in Inguinal Adipose Fat Pads.
Baskaran, Padmamalini; Thyagarajan, Baskaran
2017-07-21
Lipolysis is a process by which the lipid stored as triglycerides in adipose tissues are hydrolyzed into glycerol and fatty acids. This article describes the method for the measurement of basal and forskolin (FSK)-stimulated lipolysis in the inguinal fat pads isolated from wild type mice fed either normal chow diet (NCD), high fat diet (HFD) or a high fat diet containing 0.01% of capsaicin (CAP; transient receptor potential vanilloid subfamily 1 (TRPV1) agonist) for 32 weeks. The method described here for performing ex vivo lipolysis is adopted from Schweiger et al. 1 We present a detailed protocol for measuring glycerol levels by UV-Visible (UV/VIS) spectrophotometry. The method described here can be used to successfully isolate inguinal fat pads for lipolysis measurements to obtain consistent results. The protocol described for inguinal fat pads can readily be extended to measure lipolysis in other tissues.
Choi, Il-Dong; Kim, Sung-Hwan; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Hong, Seong Soo; Sim, Jae-Hun; Ahn, Young-Tae
2016-03-01
The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 X 10(9) CFU/day of L. plantarum KY1032 and 5 X 10(9) CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR.
Palumbo, S; Toscano, C D; Parente, L; Weigert, R; Bosetti, F
2011-07-01
Phospholipases A(2) (PLA(2)) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of pro-inflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA(2) enzymes and the terminal prostagland in levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for 6 weeks to allow spontaneous remyelination. We found that after 4-6 weeks of cuprizone, sPLA(2)(V) and cPLA(2), but not iPLA(2)(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA(2)(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE(2), PGD(2), PGI(2) and TXB(2) were also increased during demyelination. During remyelination, none of the PLA(2) isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE(2), PGI(2) and PGD(2) levels returned to normal, whereas TXB(2) was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA(2)(V) is the major isoform contributing to AA release. Published by Elsevier Ltd.
Palumbo, S.; Toscano, C.D.; Parente, L.; Weigert, R.; Bosetti, F.
2011-01-01
Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of proinflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA2 enzymes and the terminal prostaglandin levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for six weeks to allow spontaneous remyelination. We found that after 4–6 weeks of cuprizone, sPLA2(V) and cPLA2, but not iPLA2(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA2(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE2, PGD2, PGI2 and TXB2 were also increased during demyelination. During remyelination, none of the PLA2 isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE2, PGI2, and PGD2 levels returned to normal, whereas TXB2 was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA2(V) is the major isoform contributing to AA release. PMID:21530210
The Gluten-Free/Casein-Free Diet: A Double-Blind Challenge Trial in Children with Autism
ERIC Educational Resources Information Center
Hyman, Susan L.; Stewart, Patricia A.; Foley, Jennifer; Cain, Usa; Peck, Robin; Morris, Danielle D.; Wang, Hongyue; Smith, Tristram
2016-01-01
To obtain information on the safety and efficacy of the gluten-free/casein-free (GFCF) diet, we placed 14 children with autism, age 3-5 years, on the diet for 4-6 weeks and then conducted a double-blind, placebo-controlled challenge study for 12 weeks while continuing the diet, with a 12-week follow-up. Dietary challenges were delivered via weekly…
Hulston, Carl J; Churnside, Amelia A; Venables, Michelle C
2015-02-28
The purpose of the present study was to determine whether probiotic supplementation (Lactobacillus casei Shirota (LcS)) prevents diet-induced insulin resistance in human subjects. A total of seventeen healthy subjects were randomised to either a probiotic (n 8) or a control (n 9) group. The probiotic group consumed a LcS-fermented milk drink twice daily for 4 weeks, whereas the control group received no supplementation. Subjects maintained their normal diet for the first 3 weeks of the study, after which they consumed a high-fat (65 % of energy), high-energy (50 % increase in energy intake) diet for 7 d. Whole-body insulin sensitivity was assessed by an oral glucose tolerance test conducted before and after overfeeding. Body mass increased by 0·6 (SE 0·2) kg in the control group (P< 0·05) and by 0·3 (SE 0·2) kg in the probiotic group (P>0·05). Fasting plasma glucose concentrations increased following 7 d of overeating (control group: 5·3 (SE 0·1) v. 5·6 (SE 0·2) mmol/l before and after overfeeding, respectively, P< 0·05), whereas fasting serum insulin concentrations were maintained in both groups. Glucose AUC values increased by 10 % (from 817 (SE 45) to 899 (SE 39) mmol/l per 120 min, P< 0·05) and whole-body insulin sensitivity decreased by 27 % (from 5·3 (SE 1·4) to 3·9 (SE 0·9), P< 0·05) in the control group, whereas normal insulin sensitivity was maintained in the probiotic group (4·4 (SE 0·8) and 4·5 (SE 0·9) before and after overeating, respectively (P>0·05). These results suggest that probiotic supplementation may be useful in the prevention of diet-induced metabolic diseases such as type 2 diabetes.
Donnelly, L S; Shaw, R L; Pegington, M; Armitage, C J; Evans, D G; Howell, A; Harvie, M N
2018-06-21
Weight-loss programmes requiring intermittent energy restriction offer an alternative to continuous energy restriction programmes that typically have low adherence. We reported greater weight loss, better adherence and spontaneous reduced energy intake on healthy eating days with intermittent as opposed to continuous energy restriction. The present study aims to explore why intermittent energy restriction diets exert these positive effects. Semi-structured interviews were carried out with 13 women aged 39-62 years, who followed a 4-month intermittent energy restriction (2 days of low energy/low carbohydrate, 5 days of healthy eating). Nine of the 13 women successfully lost >5% of their total body weight. Data were analysed using thematic analysis. The intermittent regimen redefined the meaning of dieting and normal eating. Women reconceptualised dieting as only two low energy days per week, even though this often differed from their pre-diet eating patterns. Women reported that they could adhere more closely to the rules of the intermittent diet compared to previously attempted continuous diets. They found that the intermittent diet was less cognitively demanding because the restrictive and clear rules of the intermittent diet were easier to understand and easier to follow than with continuous dieting. Many participants found intermittent dieting preferable to previous experiences of continuous dieting. The findings provide some insight into the ways in which intermittent dieting is successful, and why it could be considered a viable alternative to continuous energy restriction for weight loss. © 2018 The British Dietetic Association Ltd.
Lu, Kang-Le; Wang, Li-Na; Zhang, Ding-Dong; Liu, Wen-Bin; Xu, Wei-Na
2017-02-01
High-fat diets may have favorable effects on growth and cost, but high-fat diets often induce excessive fat deposition, resulting in liver damage. This study aimed to identify the hepatoprotective of a Chinese herb (berberine) for blunt snout bream (Megalobrama amblycephala). Fish were fed with a normal diet (LFD, 5 % fat), high-fat diet (HFD, 15 % fat) or berberine-supplemented diets (BSD, 15 % fat with berberine 50 or 100 mg/kg level) for 8 weeks. After the feeding, histology, oxidative status and mitochondrial function of liver were assessed. The results showed that HFD caused fat accumulation, oxidative stress and apoptosis in hepatocytes of fish. Hepatocytes in HFD group appeared to be hypertrophied, with larger liver cells diameter than these of LFD group. Berberine-supplemented diets could attenuate oxidative stress and hepatocytes apoptosis. HFD induced the decreasing mitochondrial complexes activities and bulk density and surface area density. Berberine improved function of mitochondrial respiratory chain via increasing the complex activities. Moreover, the histological results showed that berberine has the potential to repair mitochondrial ultrastructural damage and elevate the density in cells. In conclusion, our study demonstrated that berberine has attenuated liver damage induced by the high fat mainly via the protection for mitochondria.
Ekeleme-Egedigwe, Chima A; Ijeh, Ifeoma I; Okafor, Polycarp N
2017-01-01
Obesity is a growing public health problem arising from energy imbalance. The effect of 10% dietary incorporation of Vernonia amygdalina (VA) leaves into high-fat diets on some biological markers of adiposity and dyslipidaemia was investigated. Experimental diets consisted of the following – CD (control diet); HFD (high-fat diet); and HFD- VA (HFD containing 10% Vernonia amygdalina leaves) supplementation. Fifteen male Wistar rats were randomly divided into three groups of five animals each. After twelve weeks of feeding, serum lipid profile, blood glucose concentrations, body weight, adiposity index, feed intake, fecal loss and relative organ weight were investigated. Vernonia amygdalina (VA) inhibited HFD-induced weight gain and adiposity in rats. HFD-induced obese rats showed a significant increase in the levels of serum TG and TC compared to rats on a normal diet. However, the levels of serum TG, TC, LDL-C in HFDVA rats reduced significantly relative to the levels in HFD rats. Our results indicate that HFDVA reversed fatty infiltration leading to decreased body weight and fat tissue mass in the rats. These results suggested that incorporation of Vernonia amygdalina into high-fat diets may have therapeutic potentials for obesity and related metabolic disorders. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted.
do Carmo, Jussara M; da Silva, Alexandre A; Freeman, John Nathan; Wang, Zhen; Moak, Sydney P; Hankins, Michael W; Drummond, Heather A; Hall, John E
2018-06-01
We determined whether deficiency of neuronal SOCS3 (suppressor of cytokine signaling 3)-a potential negative regulator of leptin signaling-amplifies the chronic effects of leptin on food intake, energy expenditure, glucose, and blood pressure (BP) and protects against adverse cardiometabolic effects of obesity. BP and heart rate were recorded by telemetry, and oxygen consumption (VO 2 ) was monitored in 22-week-old mice with nervous system SOCS3 deficiency (SOCS3-Nestin-Cre) and control mice (SOCS3 flox/flox ) fed normal or high-fat-high-fructose diet from 6 to 22 weeks of age. Compared with controls, SOCS3-Nestin-Cre mice had lower plasma glucose (124±7 versus 146±10 mg/dL), consumed less food (3.0±0.4 versus 3.6±0.2 g/d), and had similar VO 2 (77±6 versus 73±3 mL/kg per minute) and BP (103±3 versus 107±3 mm Hg) but higher heart rate (666±15 versus 602±17 bpm). In mice fed the normal diet, leptin infusion for 7 days caused similar reductions in food intake (2.3±0.1 versus 2.4±0.2 g) but greater increases in BP (15±3 versus 7±2 mm Hg) in SOCS3-Nestin-Cre compared with controls. Leptin reduced blood glucose concentrations in both groups. Male or female SOCS3-Nestin-Cre fed high-fat-high-fructose diet exhibited less weight gain, body fat, and liver steatosis and greater energy expenditure and heart rate compared with controls. Female SOCS3-Nestin-Cre mice fed high-fat-high-fructose diet had higher BP compared with controls. Thus, neuronal SOCS3 seems to play an important role in cardiometabolic regulation because neuronal SOCS3 deficiency reduced body weight and food intake while amplifying leptin's effects on appetite and BP and attenuating the adverse metabolic effects of high-fat-high-fructose diet. © 2018 American Heart Association, Inc.
Papadaki, Angeliki; Vardavas, Constantine; Hatzis, Christos; Kafatos, Anthony
2008-10-01
To assess the Ca, nutrient and food intake of Greek Orthodox Christian monks during a vegetarian-type fasting week, compared with their normal diet. Dietary data collection (using 7 d weighed food records), anthropometric and blood pressure measurements, as well as serum glucose and lipid analyses, were performed during Palm Sunday week (fasting) and the week following Pentecost Sunday (non-fasting). Mean daily nutrient and food (g/d) intakes were calculated from the food records. The study took place in two monasteries in the Municipality of Heraklion, Crete. The study involved ten healthy monks aged 25-65 years, with BMI > 30 kg/m2, who had been performing fasts for the last 24.4 (SD 10.4) years and lived in monasteries in Crete during April-June 2005. Nutrient and food intake profiles were more favourable during the fasting week, when participants had lower intakes of total and saturated fat and trans-fatty acids, and higher intakes of dietary fibre, Fe, folate, legumes and fish/seafood. Ca intake was lower when participants fasted, whereas consumption of dairy products, meat and eggs increased significantly in the non-fasting week. Systolic blood pressure was significantly higher, whereas blood lipid levels were more favourable during the fasting week. The periodic vegetarianism recommended by the Greek Orthodox Church contributes to the favourable profiles of several biomarkers of health among this sample of monks. The fasting rituals described are an important component of the traditional diet of Crete and should be emphasised in nutrition education programmes promoting this Mediterranean eating pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi
Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less
Fat adaptation in well-trained athletes: effects on cell metabolism.
Yeo, Wee Kian; Carey, Andrew L; Burke, Louise; Spriet, Lawrence L; Hawley, John A
2011-02-01
The performance of prolonged (>90 min), continuous, endurance exercise is limited by endogenous carbohydrate (CHO) stores. Accordingly, for many decades, sports nutritionists and exercise physiologists have proposed a number of diet-training strategies that have the potential to increase fatty acid availability and rates of lipid oxidation and thereby attenuate the rate of glycogen utilization during exercise. Because the acute ingestion of exogenous substrates (primarily CHO) during exercise has little effect on the rates of muscle glycogenolysis, recent studies have focused on short-term (<1-2 weeks) diet-training interventions that increase endogenous substrate stores (i.e., muscle glycogen and lipids) and alter patterns of substrate utilization during exercise. One such strategy is "fat adaptation", an intervention in which well-trained endurance athletes consume a high-fat, low-CHO diet for up to 2 weeks while undertaking their normal training and then immediately follow this by CHO restoration (consuming a high-CHO diet and tapering for 1-3 days before a major endurance event). Compared with an isoenergetic CHO diet for the same intervention period, this "dietary periodization" protocol increases the rate of whole-body and muscle fat oxidation while attenuating the rate of muscle glycogenolysis during submaximal exercise. Of note is that these metabolic perturbations favouring the oxidation of fat persist even in the face of restored endogenous CHO stores and increased exogenous CHO availability. Here we review the current knowledge of some of the potential mechanisms by which skeletal muscle sustains high rates of fat oxidation in the face of high exogenous and endogenous CHO availability.
Kang, Suna; Kim, Min Joo
2017-01-01
We investigated whether dangguijakyak-san (DJY) and dangguijihwang-tang (DJH), oriental medicines traditionally used for inflammatory diseases, could prevent and/or delay the progression of postmenopausal symptoms and osteoarthritis in osteoarthritis-induced estrogen-deficient rats. Treated ovariectomized (OVX) rats consumed either 1% DJY or 1% DJH in the diets. Positive-control rats were given 30 μg/kg bw 17β-estradiol and control rats were given 1% fat as were the normal-control rats. All rats received high-fat diets for 8 weeks. At the 9th week, OVX rats received articular injections of monoiodoacetate (MIA) or saline (normal control) into the right knee. At 3 weeks after MIA injection, DJY reduced visceral-fat mass and improved glucose metabolism by reducing insulin resistance, whereas DJH increased BMD and decreased insulin resistance. DJH improved weight distribution in the right knee and maximum running velocity on a treadmill at days 14 and 21 as much as those of the positive control. TNF-α, IL-1β, and IL-6 levels in articular cartilage were much higher in the control than the positive control, whereas both DJY and DJH reduced the levels to those of the positive control. The histological analysis assessed articular cartilage damage near the tidemark and proteoglycan loss in the control versus the positive control; DJY and DJH prevented this damage and proteoglycan loss. In conclusion, DJY may provide an effective treatment for improving glucose tolerance, and DJH may be appropriate for preventing osteoarthritis. PMID:29348767
Finger, Beate C; Dinan, Timothy G; Cryan, John F
2012-06-01
Chronic stress and diet can independently or in concert influence the body's homeostasis over time. Thus, it is crucial to investigate the interplay of these parameters to gain insight into the evolution of stress-induced metabolic and eating disorders. C57BL/6J mice were subjected to chronic psychosocial (mixed model of social defeat and overcrowding) stress in combination with either a high- or low-fat diet for three or six weeks. To determine the evolution of stress and dietary effects, changes in body weight, caloric intake and caloric efficiency were determined as well as circulating leptin, insulin, glucose and corticosterone levels and social avoidance behaviour. Exposure to stress for three weeks caused an increase in weight gain, in caloric intake and in caloric efficiency only in mice on a low-fat diet. However, after six weeks, only stressed mice on a high-fat diet displayed a pronounced inhibition of body weight gain, accompanied by reduced caloric intake and caloric efficiency. Stress decreased circulating leptin levels in mice on a low-fat diet after three weeks and in mice on a high-fat diet after three and six weeks of exposure. Plasma levels of insulin and markers of insulin resistance were blunted in mice on high-fat diet following six weeks of stress exposure. Social avoidance following chronic stress was present in all mice after three and six weeks. This study describes the evolution of the chronic effects of social defeat/overcrowding stress in combination with exposure to high- or low-fat diet. Most importantly, we demonstrate that a six week chronic exposure to social defeat stress prevents the metabolic effects of high-fat diet, by inhibiting an increase in weight gain, caloric intake and efficiency and insulin resistance as well as in plasma leptin and insulin levels. This study highlights the importance of considering the chronic aspects of both parameters and their time-dependent interplay. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rao, C V; Rivenson, A; Kelloff, G J; Reddy, B S
1995-01-01
The chemopreventive effect of 40 and 80% maximum tolerated dose (MTD) levels of ascorbylpalmitate (AP), carbenoxolone (CBX), dimethylfumarate (DMF) and p-methoxyphenol (p-MP) administrated in the diet before and during initiation and postinitiation phases of azoxymethane (AOM)-induced colon carcinogenesis was studied in male F344 rats. The MTD levels of AP, CBX, DMF and p-MP were determined in male F344 rats and found to be 5000 1500, 1000 and 1000 ppm, respectively, in modified AIN-76A diet. Based on these MTD values, 40 and 80% MTD levels of each agent was tested for their efficacy in color carcinogenesis. At 5 weeks of age, groups of animals were fed the control (modified AIN-76A diet or diets containing 40 and 80% MTD levels of each AP, CBX, DMF and p-MP. At 7 weeks of age, all animals, except those in the vehicle (normal saline)-treated groups, were given two weekly s.c. injections of AOM at a dose rate of 15 mg/kg body weight/week. All groups were continued on their respective dietary regimen until the termination of the experiment 52 weeks after the carcinogen treatment. Colonic tumors were evaluated histopathologically. The results indicate that dietary administration of 40% MTD of AP significantly inhibited multiplicities (tumor/animal) of noninvasive and total (invasive plus noninvasive) adenocarcinoma of the colon (P < 0.05) and 80% MTD of AP significantly inhibited the incidence (% animals with tumors) and the multiplicities of invasive and total adenocarcinomas of the colon (P < 0.01). Dietary CBX at 40 and 80% MTD levels suppressed the incidence and multiplicities of invasive and total adenocarcinomas (P < 0.05 to 0.001) whereas 40 and 80% MTD of DMF and p-MP had significantly inhibited invasive adenocarcinoma incidence and multiplicity (P < 0.05 to 0.001). However, DMF and p-MP had no significant effect on noninvasive and total adenocarcinoma incidence and multiplicity (P > 0.05). These results suggest that AP and CBX possess potential chemopreventive properties against colon cancer.
Zaefarian, F; Romero, L F; Ravindran, V
2015-01-01
The effects of high dose of microbial phytase and an emulsifier on the performance, apparent metabolisable energy (AME) and nitrogen (N) retention in broilers fed on diets containing different fat sources were examined in a 5-week trial. Two fat sources (soy oil and tallow), two inclusion levels of E. coli phytase (500 or 1000 phytase units (FTU)/kg diet) and two inclusion levels of lysolecithin emulsifier (0 or 3.5 g/kg of diet) were evaluated in a 2 × 2 × 2 factorial arrangement of treatments. Throughout the 5-week trial, soy oil supplementation improved weight gain and feed per gain compared with tallow, but had no effect on feed intake. The high dose of phytase increased the weight gain and feed intake and lowered the feed per gain during d 1-21, but had no effect on performance parameters over the whole trial period. An effect of emulsifier was observed for feed intake during d 1-21 and over the whole trial period. Addition of emulsifier increased feed intake compared with diets without emulsifier. During weeks 1, 2, 3 and 5, birds fed on soy oil-based diets had higher nitrogen-corrected AME (AMEN) compared with those fed on tallow-based diets. During weeks 2, 3 and 5, the effect of phytase was significant for AMEN, with the high dose increasing the AMEN. During week 2, AMEN was increased with emulsifier addition. During weeks 1, 2, 3 and 5, birds fed on soy oil-based diets had higher fat retention compared with those fed on tallow-based diets. The high dose of phytase improved the retention of fat during week 5 and the addition of emulsifier resulted in higher fat retention during week 1. During weeks 2, 3 and 5, an interaction between fat source × phytase × emulsifier was observed for N retention. In soy oil-based diets, emulsifier plus 1000 FTU/kg phytase increased N retention compared with other groups, while in tallow-based diets, emulsifier addition increased N retention in diets with 500 FTU/kg, but not in 1000 FTU/kg diet. Overall, the present data suggest that the dietary fat source influenced performance, AMEN and fat retention in broiler chickens. There is opportunity to improve bird performance during d 1-21, AMEN and fat retention with higher doses of microbial phytase. Addition of the emulsifier increased the AMEN during week 2 and tract retention of fat during week 1, but this effect was not translated into improvements in performance.
The Gluten-Free/Casein-Free Diet: A Double-Blind Challenge Trial in Children with Autism.
Hyman, Susan L; Stewart, Patricia A; Foley, Jennifer; Cain, Usa; Peck, Robin; Morris, Danielle D; Wang, Hongyue; Smith, Tristram
2016-01-01
To obtain information on the safety and efficacy of the gluten-free/casein-free (GFCF) diet, we placed 14 children with autism, age 3-5 years, on the diet for 4-6 weeks and then conducted a double-blind, placebo-controlled challenge study for 12 weeks while continuing the diet, with a 12-week follow-up. Dietary challenges were delivered via weekly snacks that contained gluten, casein, gluten and casein, or placebo. With nutritional counseling, the diet was safe and well-tolerated. However, dietary challenges did not have statistically significant effects on measures of physiologic functioning, behavior problems, or autism symptoms. Although these findings must be interpreted with caution because of the small sample size, the study does not provide evidence to support general use of the GFCF diet.
Sayer, R Drew; Peters, John C; Pan, Zhaoxing; Wyatt, Holly R; Hill, James O
2018-05-31
Previously published findings from the Beef WISE Study (Beef's Role in Weight Improvement, Satisfaction, and Energy) indicated equivalent weight loss between two energy-restricted higher protein (HP) diets: A HP diet with ≥4 weekly servings of lean beef (B; n = 60) and a HP diet restricted in all red meats (NB; n = 60). Long-term adherence to dietary prescriptions is critical for weight management but may be adversely affected by changes in appetite, food cravings, and diet satisfaction that often accompany weight loss. A secondary a priori aim of the Beef WISE Study was to compare subjective ratings of appetite (hunger and fullness), food cravings, and diet satisfaction (compliance, satisfaction, and deprivation) between the diets and determine whether these factors influenced weight loss. Subjective appetite, food cravings, and diet satisfaction ratings were collected throughout the intervention, and body weight was measured at the baseline, after the weight loss intervention (week 16), and after an eight-week follow-up period (week 24). Hunger and cravings were reduced during weight loss compared to the baseline, while fullness was not different from the baseline. The reduction in cravings was greater for B vs. NB at week 16 only. Higher deprivation ratings during weight loss were reported in NB vs. B at weeks 16 and 24, but participants in both groups reported high levels of compliance and diet satisfaction with no difference between groups. Independent of group assignment, higher baseline hunger and cravings were associated with less weight loss, and greater diet compliance, diet satisfaction, and lower feelings of deprivation were associated with greater weight loss. Strategies to promote reduced feelings of hunger, cravings, and deprivation may increase adherence to dietary prescriptions and improve behavioral weight loss outcomes.
Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie
2009-06-12
Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.
In vivo bioavailability of selenium in enriched Pleurotus ostreatus mushrooms.
da Silva, Marliane C S; Naozuka, Juliana; Oliveira, Pedro V; Vanetti, Maria C D; Bazzolli, Denise M S; Costa, Neuza M B; Kasuya, Maria C M
2010-02-01
The in vivo bioavailability of Se was investigated in enriched Pleurotus ostreatus mushrooms. A bioavailability study was performed using 64 Wistar male rats separated in 8 groups and fed with different diets: without Se, with mushrooms without Se, with enriched mushrooms containing 0.15, 0.30 or 0.45 mg kg(-1) Se and a normal diet containing 0.15 mg kg(-1) of Se using sodium selenate. The experiment was performed in two periods: depletion (14 days) and repletion (21 days), according to the Association of Official Analytical Chemists. After five weeks, the rats were sacrificed under carbon dioxide, and blood was drawn by heart puncture. Blood plasma was separated by centrifugation. The total Se concentration in the plasma of rats fed with enriched mushrooms was higher than in rats fed with a normal diet containing sodium selenate. The plasma protein profiles were obtained using size exclusion chromatography (SEC) and UV detectors. Aliquots of effluents (0.5 mL per minute) were collected throughout in the end of the chromatographic column. However, Se was determined by graphite furnace atomic absorption spectrometry (GF AAS) only in the aliquots where proteins were detected by SEC-UV. The plasma protein profile of rats fed with different diets was similar. The highest Se concentration was observed in a peptide presenting 8 kDa. Furthermore, the higher Se concentration in this peptide was obtained for rats fed with a diet using enriched mushrooms (7 μg L(-1) Se) compared to other diets (2-5 μg L(-1) Se). These results showed that Se-enriched mushrooms can be considered as an alternative Se food source for humans, due to their high bioavailability.
Beneficial effects of Plantago albicans on high-fat diet-induced obesity in rats.
Samout, Noura; Ettaya, Amani; Bouzenna, Hafsia; Ncib, Sana; Elfeki, Abdelfattah; Hfaiedh, Najla
2016-12-01
Obesity is a one of the main global public health problems associated with chronic diseases such as coronary heart disease, diabetes and cancer. As a solution to obesity, we suggest Plantago albicans, which is a medicinal plant with several biological effects. This study assesses the possible anti-obesity protective properties of Plantago albicans in high fat diet-fed rats. 28 male Wistar rats were divided into 4 groups; a group which received normal diet (C), the second group was fed HDF diet (HDF), the third group was given normal diet supplemented with Plantago albicans (P.AL), and the fourth group received HDF supplemented with Plantago albicans (HDF+P.AL) (30mg/kg/day) for 7 weeks. Our results showed an increase in body weight of HDF rats by ∼16% as compared to the control group with an increase in the levels of total cholesterol (TC) as well as LDL-cholesterol, triglycerides (TG) in serum. Also, the concentration of TBARS increased in the liver and heart of HDF-fed rats as compared to the control group. The oral gavage of Plantago albicans extract to obese rats induced a reduction in their body weight, lipid accumulation in liver and heart tissue, compared to the high-fat diet control rats. The obtained results proved that the antioxidant potency of Plantago albicans extracts was correlated with their phenolic and flavonoid contents. The antioxidant capacity of the extract was evaluated by DPPH test (as EC50=250±2.12μg/mL) and FRAP tests (as EC50=27.77±0.14μg/mL). These results confirm the phytochemical and antioxidant impact of Plantago albicans extracts. Plantago albicans content was determined using validated HPLC methodology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie
2009-01-01
Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo. At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9±0.8 g (control, normal diet,) 21.9±1.4 g (EPO, normal diet), 35.3±3.3 g (control, high-fat diet) and 28.8±2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass. The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles. In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles. PMID:19521513
Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.
2015-01-01
Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing system and development of hepatic steatosis. PMID:25960184
Effects of different dietary protein intakes on body composition and vascular reactivity.
Ferrara, L A; Innelli, P; Palmieri, V; Limauro, S; De Luca, G; Ferrara, F; Liccardo, E; Celentano, A
2006-05-01
To assess the effects of a diet rich in protein of animal origin in comparison to one with a protein intake of about 15% of the total daily calories on body composition and arterial function. Randomized prospective study with parallel groups. Body weight (BW), blood pressure (BP), main parameters of carbohydrate and lipid metabolism, body mass composition by bioelectrical impedance analysis, forearm blood flow at rest and in the postischaemic phase by strain gauge plethysmography and flow-mediated dilation of the brachial artery by echography were measured at baseline and after 6 months of the dietary intervention. In total, 15 clinically healthy male volunteers, regularly performing a mixed training three times weekly for 90 min. The participants were randomly prescribed a diet with high (1.9 g/kg BW) or normal (1.3 g/kg BW) protein content. Differences between means were evaluated by the t-tests for paired or unpaired data and by one way analysis of variance. The strength of correlation between variables was investigated by bivariate Pearson correlation. Serum cholesterol significantly decreased with both diets in comparison to baseline values, whereas BW was slightly but significantly reduced only by the high-protein (HP) diet. No change was detected in BP and the other metabolic parameters. Body mass composition was not significantly modified by either diet. On the other hand, postischaemic flow-mediated dilation of the brachial artery was enhanced by the sole normal protein (NP) diet, whereas no change in the forearm blood flow, both at rest and in the postischaemic phase, was detected. These preliminary results indicate that HP diet was found to be not useful in increasing the muscle mass in comparison to a NP intake. In contrast to this, the latter diet seems to enhance the endothelial function of the arterial vessels with a more pronounced dilatation of the lumen in response to the increase in blood flow.
Effect of administration of high-protein diet in rats submitted to resistance training.
da Rosa Lima, Thiago; Ávila, Eudes Thiago Pereira; Fraga, Géssica Alves; de Souza Sena, Mariana; de Souza Dias, Arlyson Batista; de Almeida, Paula Caroline; Dos Santos Trombeta, Joice Cristina; Junior, Roberto Carlos Vieira; Damazo, Amílcar Sabino; Navalta, James Wilfred; Prestes, Jonato; Voltarelli, Fabrício Azevedo
2018-04-01
Although there is limited evidence regarding the pathophysiological effects of a high-protein diet (HD), it is believed that this type of diet could overload the body and cause damage to the organs directly involved with protein metabolism and excretion. The aim of this study was to verify the effects of HD on biochemical and morphological parameters of rats that completed a resistance training protocol (RT; aquatic jump) for 8 weeks. Thirty-two adult male Wistar rats were divided into four groups (n = 8 for each group): sedentary normal protein diet (SN-14%), sedentary high-protein diet (SH-35%), trained normal protein diet (TN-14%), and trained high-protein diet (TH-35%). Biochemical, tissue, and morphological measurements were made. Kidney (1.91 ± 0.34) and liver weights (12.88 ± 1.42) were higher in the SH. Soleus muscle weight was higher in the SH (0.22 ± 0.03) when compared to all groups. Blood glucose (123.2 ± 1.8), triglycerides (128.5 ± 44.0), and HDL cholesterol levels (65.7 ± 20.9) were also higher in the SH compared with the other experimental groups. Exercise reduced urea levels in the trained groups TN and TH (31.0 ± 4.1 and 36.8 ± 6.6), respectively. Creatinine levels were lower in TH and SH groups (0.68 ± 0.12; 0.54 ± 0.19), respectively. HD negatively altered renal morphology in SH, but when associated with RT, the apparent damage was partially reversed. In addition, the aquatic jump protocol reversed the damage to the gastrocnemius muscle caused by the HD. A high-protein diet promoted negative metabolic and morphological changes, while RT was effective in reversing these deleterious effects.
Williams, Lynda M.; Campbell, Fiona M.; Drew, Janice E.; Koch, Christiane; Hoggard, Nigel; Rees, William D.; Kamolrat, Torkamol; Thi Ngo, Ha; Steffensen, Inger-Lise; Gray, Stuart R.; Tups, Alexander
2014-01-01
High–fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12 - 16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable. PMID:25170916
Melanson, Kathleen J; Angelopoulos, Theodore J; Nguyen, Von T; Martini, Margaret; Zukley, Linda; Lowndes, Joshua; Dube, Thomas J; Fiutem, Justin J; Yount, Byron W; Rippe, James M
2006-09-01
While various weight-management approaches produce weight loss, they may differ in dietary quality. We monitored changes in nutrient intakes in overweight and obese subjects on three different weight-management programs. Randomized clinical trial (pilot study) with two 12-week phases: phase 1, weekly counseling; phase 2, monitoring only. One hundred eighty nonsmoking, sedentary overweight and obese adults began this outpatient study; 134 (body mass index [calculated as kg/m(2)]=30.9+/-2.4; age=42.3+/-1.2 years) were used in analyses. Twenty-four weeks of exercise only (control group), hypocaloric diet plus exercise, or hypocaloric diet with fiber-rich whole-grain cereals plus exercise. At weeks 0, 12, and 24, diet quality was assessed by 3-day food records and body weight was measured. Three-way analysis of variance with repeated measures. The hypocaloric diet with fiber-rich whole-grain cereals plus exercise decreased energy intake more than exercise only (P=0.032). By week 12, the hypocaloric diet with fiber-rich whole-grain cereals plus exercise and the hypocaloric diet plus exercise decreased total fat more than exercise only, which was sustained in the hypocaloric diet with fiber-rich whole-grain cereals plus exercise at 24 weeks (P<0.001). At weeks 12 and 24, the hypocaloric diet with fiber-rich whole-grain cereals plus exercise reduced saturated fat intake more than exercise only. The hypocaloric diet with fiber-rich whole-grain cereals plus exercise increased total fiber, insoluble fiber (both P<0.001), magnesium (P=0.004), and vitamin B-6 (P=0.002) intakes more than the hypocaloric diet plus exercise and exercise only. Calcium and vitamin E intakes were inadequate in all groups. Weight loss was similar in the hypocaloric diet with fiber-rich whole-grain cereals plus exercise and the hypocaloric diet plus exercise. Weight-reduction strategies may be associated with reduced intake of micronutrients, such as calcium and vitamin E. However, a hypocaloric diet with fiber-rich whole-grain cereal is effective for improving or maintaining other aspects of dietary quality during weight loss.
Reproduction of mallards following overwinter exposure to selenium
Heinz, G.H.; Fitzgerald, M.A.
1993-01-01
Forty pairs of mallards (Anas platyrhynchos) were fed 15 ppm selenium as selenomethionine for about 21 weeks during winter. Twenty pairs served as controls. At the end of 21 weeks, which coincided with the onset of the reproductive season, selenium treatment was ended. Four birds died while on selenium treatment. Treated females lost weight, and their egg-laying was delayed. Hatching success of some of the first eggs laid by selenium-treated females was lower than that of controls, and a few of these early eggs contained deformed embryos, but, after a period of about two weeks off the selenium-treated diet, reproductive success returned to a level comparable with that of controls. The return to normal reproductive success was the result of a corresponding decrease in selenium concentrations in eggs once selenium treatment ended.
Shirai, Kohji; Saiki, Atsuhito; Oikawa, Shinichi; Teramoto, Tamio; Yamada, Nobuhiro; Ishibashi, Shun; Tada, Norio; Miyazaki, Shigeru; Inoue, Ikuo; Murano, Shunichi; Sakane, Naoki; Satoh-Asahara, Noriko; Bujo, Hideaki; Miyashita, Yoh; Saito, Yasushi
2013-01-01
To clarify the usefulness of protein-sparing modified formula diet in obese type 2 diabetic patients, the effects of partial use of formula diet on weight reduction and changes in related metabolic variables, and the improving rates of risk factors per 1% body weight reduction, were compared with those of conventional subcaloric diet. Obese patients [BMI >25 kg/m²] with diabetic mellitus were randomly assigned to a low-caloric diet with partial use of formula diet group (FD, n = 119) and a conventional low-caloric diet group (CD, n = 110). Subjects in FD took one pack of formula diet (MicroDiet®, 240 kcal/pack) in place of one of three daily low-caloric meals for 24 weeks. Total daily calorie prescribed was same. Weight reduction was greater in FD than in CD (week 24: -3.5 vs -1.4 kg; all p < 0.001). Systolic blood pressure decreased significantly only in FD. HbA1c reduction was greater in FD than in CD. HDL-cholesterol increased significantly more in FD than in CD (week 24: +2.8 vs. +0.6 mg/dl, p < 0.001). Among several improving rates (%) of risk factors/1% body weight reduction, those of HbA1c at weeks 16 and 24, triglyceride at week 8 and HDL-cholesterol at week 24, were significantly higher in FD than CD. Doses of sulfonylurea and thiazolidinedione were significantly decreased in FD than in CD. Partial use of formula diet was much more effective in reducing body weight, and also in improving coronary risk factors than conventional diet in part due to reduced body weight through decreased energy diet intake and due to dietary composition of the formula diet. © 2013 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.
Huang, Juan; Yuan, Wei-jie; Wang, Jia-lin; Gu, Li-jie; Yin, Jun; Dong, Ting; Bao, Jin-fang; Tang, Zhi-huan
2013-11-26
To explore the regulation of autophagy-lysosome pathway (ALP) in skeletal muscle of diabetic nephropathy and examine the effect of low protein diet plus α-keto acid on ALP. A total of 45 24-week-old Goto-Kakizaki rats were randomized to receive normal protein (22%) diet (NPD), low-protein (6%) diet (LPD) or low-protein (5%) plus α-keto acids (1%) diet (Keto) (n = 15 each). Wistar control rats had a normal protein diet. The mRNA and protein levels of ALP markers LC3B, Bnip3, Cathepsin L in soleus muscle were evaluated at 48 weeks. Electron microscopy was used to confirm the changes of autophagy. Compared with CTL group, the mRNA levels of LC3B, Bnip3, Cathepsin L in soleus muscle of rats on NPD were higher, and protein levels of LC3B-I, LC3B-II, Bnip3, Cathepsin L in soleus muscle of rats on NPD also higher than CTL group (0.82 ± 0.33 vs 0.25 ± 0.07, 0.76 ± 0.38 vs 0.20 ± 0.12, 1.25 ± 0.30 vs 0.56 ± 0.19, 1.29 ± 0.40 vs 0.69 ± 0.20). The mRNA levels of LC3B, Bnip3 and Cathepsin L in LPD group were slightly lower, compared with NPD group. However there was no statistical significance. Similarly the protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L in LPD group were slightly lower with no statistical significance. In contrast, the mRNA levels of LC3B, Bnip3 and Cathepsin L were greatly lower in Keto group in comparison with NPD and LPD. And protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L were also greatly lower in Keto group in comparison with NPD and LPD. Additionally, autophagosome or auto-lysosome was found in NPD and LPD groups by electron microscopy. ALP is activated in skeletal muscle of diabetic nephropathy rats. And low protein plus α-keto acid decrease the activation of ALP and improve muscle wasting.
Diet-induced obesity increases the frequency of Pig-a mutant erythrocytes in male C57BL/6J mice.
Wickliffe, Jeffrey K; Dertinger, Stephen D; Torous, Dorothea K; Avlasevich, Svetlana L; Simon-Friedt, Bridget R; Wilson, Mark J
2016-12-01
Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30-week old male mice reared on either a high-fat diet (60% calories from fat) that exhibit an obese phenotype or a normal-fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N-ethyl-N-nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig-a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non-obese mice with respect to Pig-a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig-a mutant frequencies (increased 2.5-3.7-fold, p < 0.02) in erythrocytes as compared to non-obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668-677, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.
Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2016-10-01
Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.
Robich, Michael P.; Osipov, Robert M.; Nezafat, Reza; Feng, Jun; Clements, Richard T.; Bianchi, Cesario; Boodhwani, Munir; Coady, Michael A.; Laham, Roger J.; Sellke, Frank W.
2010-01-01
Introduction Resveratrol may provide protection against coronary artery disease. We hypothesized that supplemental resveratrol will improve cardiac perfusion in the ischemic territory of swine with hypercholesterolemia and chronic myocardial ischemia. Methods and Results Yorkshire swine were fed either a normal diet (control, n=7), a hypercholesterolemic diet (HCC, n=7), or a hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/day orally, HCRV, n=7). Four weeks later, an ameroid constrictor was placed on the left circumflex artery. Animals underwent cardiac magnetic resonance imaging and coronary angiography 7 weeks later, prior to sacrifice and tissue harvest. Total cholesterol was lowered about 30% in HCRV animals (p<0.001). Regional wall motion analysis demonstrated a significant decrease in inferolateral function from baseline to 7 weeks in HCC swine (p=0.04). There was no significant change in regional function in HCRV swine from baseline to 7 weeks (p=0.32). Tissue blood flow during stress was 2.8 fold greater in HCRV swine when compared to HCC swine (p=0.04). Endothelial dependent microvascular relaxation response to Substance P was diminished in HCC swine which was rescued by resveratrol treatment (p=0.004). Capillary density (PECAM-1 staining) demonstrated fewer capillaries in both HCC and HCRV swine v. control swine (p=0.02). Immunoblot analysis demonstrated significantly greater expression in HCRV v. HCC swine of the following markers of angiogenesis: VEGF (p=0.002), peNOS(ser1177)(p=0.04), NFkB (p=0.004), and pAkt(thr308)(p=0.001). Conclusion Supplemental resveratrol attenuates regional wall motion abnormalities, improves myocardial perfusion in the collateral dependent region, preserves endothelial dependent coronary vessel function, and upregulates markers of angiogenesis associated with the VEGF signaling pathway. PMID:20837905
NASA Astrophysics Data System (ADS)
Li, Erchao; Arena, Leticia; Lizama, Gabriel; Gaxiola, Gabriela; Cuzon, Gerard; Rosas, Carlos; Chen, Liqiao; van Wormhoudt, Alain
2011-03-01
Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture. The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp ( L. vannamei) were investigated. This involved an examination of growth performance, glutamate dehydrogenase (GDH) and Na+-K+ ATPase mRNA expression,, and GDH activity in muscles and gills. Three experimental diets were formulated, containing 25%, 40%, and 50% dietary protein, and fed to the shrimp at a salinity of 25. After 20 days, no significant difference was observed in weight gain, though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels. Subsequently, shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5, respectively, and sampled at weeks 1 and 2. Shrimp fed with 40% protein at 25 in salinity (optimal conditions) were used as a control. Regardless of the salinities, shrimp fed with 50% dietary protein had significantly higher growth performance than other diets; no significant differences were found in comparison with the control. Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks. Ambient salinity change also stimulated the hepatosomatic index, which increased in the first week and then recovered to a relatively normal level, as in the control, after 2 weeks. These findings indicate that in white shrimp, the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism. Increased dietary protein level could improve the osmoregulation capacity of L. vannamei with more energy resources allocated to GDH activity and expression.
Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko
2015-01-01
The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise training on the infiltration of neutrophils and elastase expression in an obese mouse model. Four-week-old male C57BL/6J mice were randomly assigned to one of three groups that either received a normal diet (ND) plus sedentary activity (n = 15), a high-fat diet (HFD) plus sedentary activity (n = 15), or a HFD plus exercise training (n = 15). Mice were fed the ND or HFD from the age of 4 weeks until 20 weeks. Mice in the exercise group ran on a treadmill for 60 min/day, 5 days/week over the same experimental period. Mice fed with the HFD had increased content of macrophages in the AT and increased inflammatory cytokine mRNA levels, which were reduced by exercise training. Similarly, AT from the HFD sedentary mice contained more neutrophils than AT from the ND mice, and the amount of neutrophils in this tissue in HFD-fed mice was lowered by exercise training. The mRNA levels of neutrophil elastase in AT were lower in the HFD exercise-trained mice than those in the HFD sedentary mice. These results suggest that exercise training plays a critical role in reducing macrophage infiltration and AT inflammation by regulating the infiltration of neutrophils. PMID:26341995
Attini, Rossella; Leone, Filomena; Montersino, Benedetta; Fassio, Federica; Minelli, Fosca; Colla, Loredana; Rossetti, Maura; Rollino, Cristiana; Alemanno, Maria Grazia; Barreca, Antonella; Todros, Tullia; Piccoli, Giorgina Barbara
2017-01-01
Chronic kidney disease (CKD) is increasingly recognized in pregnant patients. Three characteristics are associated with a risk of preterm delivery or small for gestational age babies; kidney function reduction, hypertension, and proteinuria. In pregnancy, the anti-proteinuric agents (ACE–angiotensin converting enzyme-inhibitors or ARBS -angiotensin receptor blockers) have to be discontinued for their potential teratogenicity, and there is no validated approach to control proteinuria. Furthermore, proteinuria usually increases as an effect of therapeutic changes and pregnancy-induced hyperfiltration. Based on a favourable effect of low-protein diets on proteinuria and advanced CKD, our group developed a moderately protein-restricted vegan-vegetarian diet tsupplemented with ketoacids and aminoacids for pregnant patients. This report describes the results obtained in three pregnant patients with normal renal function, nephrotic or sub-nephrotic proteinuria, and biopsy proven diagnosis of focal segmental glomerulosclerosis, a renal lesion in which hyperfiltration is considered of pivotal importance (case 1: GFR (glomerular filtration rate): 103 mL/min; proteinuria 2.1 g/day; albumin 3.2 g/dL; case 2: GFR 86 mL/min, proteinuria 3.03 g/day, albumin 3.4 g/dL; case 3: GFR 142 mL/min, proteinuria 6.3 g/day, albumin 3.23 g/dL). The moderately restricted diet allowed a stabilisation of proteinuria in two cases and a decrease in one. No significant changes in serum creatinine and serum albumin were observed. The three babies were born at term (38 weeks + 3 days, female, weight 3180 g-62th centile; 38 weeks + 2 days, female, weight 3300 g-75th centile; male, 38 weeks + 1 day; 2770 g-8th centile), thus reassuring us of the safety of the diet. In summary, based on these three cases studies and a review of the literature, we suggest that a moderately protein-restricted, supplemented, plant-based diet might contribute to controlling proteinuria in pregnant CKD women with focal segmental glomerulosclerosis. However further studies are warranted to confirm the potential value of such a treatment strategy. PMID:28753930
Attini, Rossella; Leone, Filomena; Montersino, Benedetta; Fassio, Federica; Minelli, Fosca; Colla, Loredana; Rossetti, Maura; Rollino, Cristiana; Alemanno, Maria Grazia; Barreca, Antonella; Todros, Tullia; Piccoli, Giorgina Barbara
2017-07-19
Chronic kidney disease (CKD) is increasingly recognized in pregnant patients. Three characteristics are associated with a risk of preterm delivery or small for gestational age babies; kidney function reduction, hypertension, and proteinuria. In pregnancy, the anti-proteinuric agents (ACE-angiotensin converting enzyme-inhibitors or ARBS -angiotensin receptor blockers) have to be discontinued for their potential teratogenicity, and there is no validated approach to control proteinuria. Furthermore, proteinuria usually increases as an effect of therapeutic changes and pregnancy-induced hyperfiltration. Based on a favourable effect of low-protein diets on proteinuria and advanced CKD, our group developed a moderately protein-restricted vegan-vegetarian diet tsupplemented with ketoacids and aminoacids for pregnant patients. This report describes the results obtained in three pregnant patients with normal renal function, nephrotic or sub-nephrotic proteinuria, and biopsy proven diagnosis of focal segmental glomerulosclerosis, a renal lesion in which hyperfiltration is considered of pivotal importance (case 1: GFR (glomerular filtration rate): 103 mL/min; proteinuria 2.1 g/day; albumin 3.2 g/dL; case 2: GFR 86 mL/min, proteinuria 3.03 g/day, albumin 3.4 g/dL; case 3: GFR 142 mL/min, proteinuria 6.3 g/day, albumin 3.23 g/dL). The moderately restricted diet allowed a stabilisation of proteinuria in two cases and a decrease in one. No significant changes in serum creatinine and serum albumin were observed. The three babies were born at term (38 weeks + 3 days, female, weight 3180 g-62th centile; 38 weeks + 2 days, female, weight 3300 g-75th centile; male, 38 weeks + 1 day; 2770 g-8th centile), thus reassuring us of the safety of the diet. In summary, based on these three cases studies and a review of the literature, we suggest that a moderately protein-restricted, supplemented, plant-based diet might contribute to controlling proteinuria in pregnant CKD women with focal segmental glomerulosclerosis. However further studies are warranted to confirm the potential value of such a treatment strategy.
Lim, Chi Young; Kim, Jung-Yeon; Yoon, Mi-Jin; Chang, Hang Seok; Park, Cheong Soo
2015-01-01
Purpose The radioiodine ablation therapy is required for patients who underwent a total thyroidectomy. Through a comparative review of a low iodine diet (LID) and a restricted iodine diet (RID), the study aims to suggest guidelines that are suitable for the conditions of Korea. Materials and Methods The study was conducted with 101 patients. With 24-hour urine samples from the patients after a 2-week restricted diet and after a 4-week restricted diet, the amount of iodine in the urine was estimated. The consumed radioiodine amounts for 2 hours and 24 hours were calculated. Results This study was conducted with 47 LID patients and 54 RID patients. The amounts of iodine in urine, the 2-week case and 4-week case for each group showed no significant differences. The amounts of iodine in urine between the two groups were both included in the range of the criteria for radioiodine ablation therapy. Also, 2 hours and 24 hours radioiodine consumption measured after 4-week restrictive diet did not show statistical differences between two groups. Conclusion A 2-week RID can be considered as a type of radioiodine ablation therapy after patients undergo a total thyroidectomy. PMID:26069126
Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés
2016-01-01
We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs. PMID:27049396
Zubiría, María Guillermina; Alzamendi, Ana; Moreno, Griselda; Rey, María Amanda; Spinedi, Eduardo; Giovambattista, Andrés
2016-04-02
We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.
Holzem, Katherine M; Marmerstein, Joseph T; Madden, Eli J; Efimov, Igor R
2015-01-01
Heart failure (HF) is the end stage of cardiovascular disease, in which hypertrophic remodeling no longer meets cardiac output demand. Established animal models of HF have provided insights into disease pathogenesis. However, these models are developed on dissimilar metabolic backgrounds from humans – patients with HF are frequently overweight or obese, whereas animal models of HF are typically lean. Thus, we aimed to develop and investigate model for cardiac hypertrophy and failure that also recapitulates the cardiometabolic state of HF in humans. We subjected mice with established diet-induced obesity (DIO) to cardiac pressure overload provoked by transverse aortic constriction (TAC). Briefly, we fed WT male mice a normal chow or high-fat diet for 10 weeks prior to sham/TAC procedures and until surgical follow-up. We then analyzed cardiac hypertrophy, mechanical function, and electrophysiology at 5–6 weeks after surgery. In DIO mice with TAC, hypertrophy and systolic dysfunction were exacerbated relative to chow TAC animals, which showed minimal remodeling with our moderate constriction intensity. Normalized heart weight was 55.8% greater and fractional shortening was 30.9% less in DIO TAC compared with chow TAC hearts. However, electrophysiologic properties were surprisingly similar between DIO sham and TAC animals. To examine molecular pathways activated by DIO and TAC, we screened prohypertrophic signaling cascades, and the exacerbated remodeling was associated with early activation of the c-Jun-N-terminal kinase (JNK1/2) signaling pathway. Thus, DIO aggravates the progression of hypertrophy and HF caused by pressure overload, which is associated with JNK1/2 signaling, and cardiometabolic state can significantly modify HF pathogenesis. PMID:26290533
Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y
2015-01-01
Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Tu, Shu-Ju; Wang, Shun-Ping; Cheng, Fu-Chou; Weng, Chia-En; Huang, Wei-Tzu; Chang, Wei-Jeng; Chen, Ying-Ju
2017-01-01
The literature shows that bone mineral density (BMD) and the geometric architecture of trabecular bone in the femur may be affected by inadequate dietary intake of Mg. In this study, we used microcomputed tomography (micro-CT) to characterize and quantify the impact of a low-Mg diet on femoral trabecular bones in mice. Four-week-old C57BL/6J male mice were randomly assigned to 2 groups and supplied either a normal or low-Mg diet for 8weeks. Samples of plasma and urine were collected for biochemical analysis, and femur tissues were removed for micro-CT imaging. In addition to considering standard parameters, we regarded trabecular bone as a cylindrical rod and used computational algorithms for a technical assessment of the morphological characteristics of the bones. BMD (mg-HA/cm3) was obtained using a standard phantom. We observed a decline in the total tissue volume, bone volume, percent bone volume, fractal dimension, number of trabecular segments, number of connecting nodes, bone mineral content (mg-HA), and BMD, as well as an increase in the structural model index and surface-area-to-volume ratio in low-Mg mice. Subsequently, we examined the distributions of the trabecular segment length and radius, and a series of specific local maximums were identified. The biochemical analysis revealed a 43% (96%) decrease in Mg and a 40% (71%) decrease in Ca in plasma (urine excretion). This technical assessment performed using micro-CT revealed a lower population of femoral trabecular bones and a decrease in BMD at the distal metaphysis in the low-Mg mice. Examining the distributions of the length and radius of trabecular segments showed that the average length and radius of the trabecular segments in low-Mg mice are similar to those in normal mice.
Policosanol as a new inhibitor candidate for vascular calcification in diabetic hyperlipidemic rats.
Elseweidy, Mohamed M; Zein, Nabila; Aldhamy, Samih E; Elsawy, Marwa M; Saeid, Saeid A
2016-11-01
This work mainly aimed to investigate the probable changes of aortic calcification by policosanol, omega-3 fatty acids in comparison with atorvastatin and subsequent progression of atherosclerosis in diabetic hyperlipemic rat model. Adult male albino rats of wistar strain (30) were divided into five groups (n = 6/group); one was fed normal diet and was used as a normal group, the other groups received alloxan, atherogenic diet (CCT - rat chow diet supplemented with 4% cholesterol, 1% cholic acid, and 0.5% thiouracil) and categorized as follows: the second group received no treatment and kept as control (diabetic hyperlipidemic control group (DHC)). The other groups received daily oral doses of atorvastatin, policosanol (10 mg/kg body weight) and ω-3 (50 mg/kg body weight), respectively, for eight weeks. Different biomarkers were used for the evaluation that included inflammatory (C reactive protein (CRP), tumor necrosis factor α (TNF-α)), oxidative stress (glutathione (GSH), malondialdehyde (MDA)) bone calcification markers (alkaline phosphatase (ALP), Vitamin D, parathyroid hormone (PTH)), lipogram pattern in addition to histochemical demonstration of calcium in the aorta. Diabetic hyperlipemic group demonstrated significant hyperglycemia, hyperlipidemia, and increased inflammation, oxidative stress, calcification, and finally atherogenesis progression. Treatment of diabetic hyperlipemic rats with, policosanol, omega-3 fatty acids (natural products) and atorvastatin for eight weeks significantly increased high-density lipoprotein cholesterol (HDL-C), Vitamin D, decreased aortic vacuoles number, and inhibited calcification process. Policosanol induced more remarkable reduction in the density and number of foam cells and improved the intimal lesions of the aorta as compared to atorvastatin. Drugs under study exerted hypoglycemic effect along with an inhibition of inflammation, oxidative stress, and calcium deposition with certain variations but policosanol effect was remarkable in comparison with other drugs. © 2016 by the Society for Experimental Biology and Medicine.
Diet composition modifies embryotoxic effects induced by experimental diabetes in rats.
Giavini, E; Broccia, M L; Prati, M; Domenico Roversi, G
1991-01-01
Despite improvements in prenatal care, the incidence of congenital malformations in diabetic pregnancies is still 3-4 times higher than in normal pregnancies. These defects could be attributed to alterations of intrauterine environment due to disorder of the maternal metabolism. If this were true, the quality of food could play a role in diabetes-induced embryotoxicity. To check this hypothesis, female CD rats were made diabetic by injecting intravenously 50 mg/kg of streptozotocin 2 weeks before mating. From the first day of pregnancy they were divided into three groups and maintained on the following diets: (1) standard diet (Italiana Mangimi); (2) purified high protein diet (protein 55%, carbohydrates 25.5%, fat 7.5%, fiber 4.5%, ash 7.5%); (3) purified normoprotein diet (protein 19%, carbohydrates 62.5%, fat 7.5%, fiber 4%, ash 7%). Nondiabetic pregnant females fed with standard diet served as negative control. No significant differences were observed in blood glucose levels among the groups (range 410-500 mg/dl). The group fed on normoprotein diet showed at term of pregnancy: (1) higher rate of resorptions; (2) lower fetal weight; (3) higher frequency of major malformations than the groups fed standard and hyperproteic diets. Although we are not able at this time to discriminate between a protective effect of a diet with a high protein content and a disruptive effect of a diet containing high quantity of carbohydrates, the results of this trial support the hypothesis of a fuel-mediated teratogenesis in diabetic pregnancy.
The effect of dietary vitamin E level on selenium status in rats.
Fujihara, T; Orden, E A
2014-10-01
The effect of varying levels of dietary vitamin E on selenium status was determined using 40 Wistar rats with similar initial body weight. The rats were equally divided into four groups and fed the following dietary treatments (mg vitamin E/kg DM): 18 (control; C-diet), 0 (0E-diet), 9 (0.5E-diet) and 36 (2E-diet) for either 4-week (Phase 1) or 8-week (Phase 2) period. At the end of experiment, animals were slaughtered to measure vitamin E and selenium levels in the brain, liver, spleen, kidney, muscles and blood tissues. Dietary vitamin E levels did not affect feed and water intake and body weight. But whole-blood selenium concentration in rats fed 0E-diet was higher than in rats fed 2E-diet after 4 weeks. Selenium level in muscle, spleen and brain was also higher (p < 0.05) in rats fed the 0E-diet than in rats fed C-diet after 4 weeks of feeding. On the other hand, selenium level in the muscle was lower (p < 0.05) in rats fed 0.5E-diet than in those fed 0E-diet after 4 weeks of feeding, but not after 8 weeks of feeding. Increasing dietary vitamin E level directly influenced selenium content of the spleen and brain after 8 weeks of feeding 2E-diet. Moreover, the twofold increase in vitamin E intake resulted in a tendency to reduce whole-blood selenium level and total selenium in the liver and kidney after 4 and 8 weeks. The results showed that the increasing dietary vitamin E level resulted in a tendency to reduce Se contents in some vital organs of the body such as the liver and kidney, suggesting their close compensatory interrelationship. Therefore, dietary vitamin E level directly influenced selenium metabolism in the animal body. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Effects of probiotics on methionine choline deficient diet-induced steatohepatitis in rats.
Karahan, Nermin; Işler, Mehmet; Koyu, Ahmet; Karahan, Aynur G; Başyığıt Kiliç, Gülden; Cırış, Ibrahim Metin; Sütçü, Recep; Onaran, Ibrahim; Cam, Hakan; Keskın, Muharrem
2012-04-01
Intestinal bacteria induce endogenous signals that play a pathogenic role in hepatic insulin resistance and non-alcoholic fatty liver disease. Probiotics could modulate the gut flora and could influence the gut-liver axis. We aimed to investigate the preventive effect of two probiotic mixtures on the methionine choline-deficient diet-induced non-alcoholic steatohepatitis model in rats. Two studies, short-term (2 weeks) and long-term (6 weeks), were carried out using 60 male Wistar rats. The 2-week study included six groups. Rats were fed with methionine choline-deficient diet or pair-fed control diet and were given a placebo or one of two probiotic mixtures (Pro-1 and Pro-2) by orogastric gavage. In the 6-week study, rats were allocated into four groups and were fed with methionine choline-deficient diet or pair-fed control diet and given a placebo or Pro-2. At the end of the 2- and 6-week periods, blood samples were obtained, the animals were sacrificed, and liver tissues were removed. Serum alanine aminotransferase activity was determined; histologic and immunohistochemical analysis was performed for steatosis, inflammation, protein expression of tumor necrosis factor-α, and apoptosis markers. In both studies, methionine choline-deficient diet caused an elevation of serum alanine aminotransferase activity, which was slightly reduced by Pro-1 and Pro-2. In the 2- and 6-week studies, feeding with methionine choline-deficient diet resulted in steatosis and inflammation, but not fibrosis, in all rats. In the 2-week study, in rats fed with methionine choline-deficient diet and given Pro-1, steatosis and inflammation were present in 2 of 6 rats. In rats fed with methionine choline-deficient diet and given Pro-2, steatosis was detected in 3 of 6 rats, while inflammation was present in 2 of 6 rats. In the 6-week study, in rats fed with methionine choline-deficient diet and given Pro-2, steatosis and inflammation were present in 3 of 6 rat livers. In both the 2- and 6-week studies, methionine choline-deficient diet resulted in tumor necrosis factor-α, proapoptotic Bax, caspase 3, caspase 8, and anti-apoptotic Bcl-2 expression in all rat livers. Pro-1 and Pro-2 treatment influenced protein expression involved in apoptosis and tumor necrosis factor-α in varying degrees. Pro-1 and Pro-2 decrease methionine choline-deficient diet-induced steatohepatitis in rats. The preventive effect of probiotics may be due, in part, to modulation of apoptosis and their anti-inflammatory activity.
Alzamendi, Ana; Castrogiovanni, Daniel; Ortega, Hugo H; Gaillard, Rolf C; Giovambattista, Andres; Spinedi, Eduardo
2010-03-01
Hyperandrogenemia predisposes an organism toward developing impaired insulin sensitivity. The aim of our study was to evaluate endocrine and metabolic effects during early allostasis induced by a fructose-rich diet (FRD) in normal (control; CT) and neonatal-androgenized (testosterone propionate; TP) female adult rats. CT and TP rats were fed either a normal diet (ND) or an FRD for 3 weeks immediately before the day of study, which was at age 100 days. Energy intake, body weight (BW), parametrial (PM) fat characteristics, and endocrine/metabolic biomarkers were then evaluated. Daily energy intake was similar in CT and TP rats regardless of the differences in diet. When compared with CT-ND rats, the TP-ND rats were heavier, had larger PM fat, and were characterized by basal hypoadiponectinemia and enhanced plasma levels of non-esterified fatty acid (NEFA), plasminogen activator inhibitor-1 (PAI-1), and leptin. FRD-fed CT rats, when compared with CT-ND rats, had high plasma levels of NEFA, triglyceride (TG), PAI-1, leptin, and adiponectin. The TP-FRD rats, when compared with TP-ND rats, displayed enhanced leptinemia and triglyceridemia, and were hyperinsulinemic, with glucose intolerance. The PM fat taken from TP rats displayed increase in the size of adipocytes, decrease in adiponectin (protein/gene), and a greater abundance of the leptin gene. PM adipocyte response to insulin was impaired in CT-FRD, TP-ND, and TP-FRD rats. A very short duration of isocaloric FRD intake in TP rats induced severe metabolic dysfunction at the reproductive age. Our study supports the hypothesis that the early-androgenized female rat phenotype is highly susceptible to developing endocrine/metabolic dysfunction. In turn, these abnormalities enhance the risk of metabolic syndrome, obesity, type 2 diabetes, and cardiovascular disease.
Takakuwa, Hiroshi; Shimizu, Kazuaki; Izumiya, Yoshiaki; Kato, Tamayo; Nakaya, Izaya; Yokoyama, Hitoshi; Kobayashi, Ken-ichi; Ise, Takuyuki
2002-09-01
The purpose of this study was to elucidate the effects of dietary sodium restriction on diurnal blood pressure (BP) variation in primary aldosteronism. We studied the diurnal variation in the systemic hemodynamic indices and in baroreflex sensitivity (BRS). In 13 subjects with aldosterone-producing adenomas (2 males; mean age, 39+/-2 years), intra-arterial pressure was monitored telemetrically on a normal salt diet (NaCl 10-12 g/day). Non-dippers were defined as those with a nocturnal reduction in systolic BP (SBP) of less than 10% of daytime SBP. Ten subjects showed a non-dipper pattern. Six of these "non-dippers" underwent repetitive hemodynamic studies on the last day of a 1-week low salt diet regimen (NaCl 2-4 g/day). Stroke volume was determined using Wesseling's pulse contour method, calibrated with indocyanine green dilution. BRS was calculated every 30 min as delta pulse interval/delta SBP on spontaneous variations. Nocturnal reduction of SBP was 4.1% on the normal salt diet. With sodium restriction, urinary sodium excretion decreased from 187+/-8 to 46+/-8 mmol/day, and body weight decreased from 57.9+/-2.1 to 56.6+/-1.9 kg. Night-time BP significantly decreased with dietary modification from 154+/-7/88+/-4 to 140+/-6/78+/-4 mmHg, whereas daytime BP was unaltered. With sodium restriction, cardiac index and stroke index decreased throughout the day. No significant difference was seen in either daytime or nighttime BRS between the two diets. We conclude that the non-dipper pattern is common in patients with an aldosterone-producing adenoma on a normal salt intake, and under such conditions, volume expansion appears to play a major role in the impairment of nocturnal BP reduction.
Crestani, Sandra; Júnior, Arquimedes Gasparotto; Marques, Maria C.A.; Sullivan, Jennifer C.; Webb, R. Clinton; da Silva-Santos, J. Eduardo
2016-01-01
A high salt diet is associated with reduced activity of the renin–angiotensin–aldosterone system (RAAS). However, normotensive rats exposed to high sodium do not show changes in systemic arterial pressure. We hypothesized that, despite the reduced circulating amounts of angiotensin II induced by a high salt diet, the cardiovascular system’s reactivity to angiotensin II is increased in vivo, contributing to maintain arterial pressure at normal levels. Male Wistar rats received chow containing 0.27% (control), 2%, 4%, or 8% NaCl for six weeks. The high-sodium diet did not lead to changes in arterial pressure, although plasma levels of angiotensin II and aldosterone were reduced in the 4% and 8% NaCl groups. The 4% and 8% NaCl groups showed enhanced pressor responses to angiotensin I and II, accompanied by unchanged and increased angiotensin-converting enzyme activity, respectively. The 4% NaCl group showed increased expression of angiotensin II type 1 receptors and reduced expression of angiotensin II type 2 receptors in the aorta. In addition, the hypotensive effect of losartan was reduced in both 4% and 8% NaCl groups. In conclusion these results explain, at least in part, why the systemic arterial pressure is maintained at normal levels in non-salt sensitive and healthy rats exposed to a high salt diet, when the functionality of RAAS appears to be blunted, as well as suggest that angiotensin II has a crucial role in the vascular dysfunction associated with high salt intake, even in the absence of hypertension. PMID:24321189
Ghrelin did not change coronary angiogenesis in diet-induced obese mice.
Khazaei, M; Tahergorabi, Z
2017-02-28
Ghrelin is a 28 amino acids peptide that initially was recognized as an endogenous ligand for growth hormone secretagogue receptor (GHSR). Recently, a number of studies demonstrated that ghrelin is a cardiovascular hormone with a series cardiovascular effect. The main objective of this study was to investigate the effect of systemic ghrelin administration on angiogenesis in the heart and its correlation with serum leptin levels in normal and diet-induced obese mice. 24 male C57BL/6 mice were randomly divided into four groups: normal diet (ND) or control, ND+ghrelin, high-fat-diet (HFD) or obese and HFD+ghrelin (n=6/group). Obese and control groups received HFD or ND, respectively, for 14 weeks. Then, the ghrelin was injected subcutaneously 100µg/kg twice daily. After 10 days, the animals were sacrificed, blood samples were taken and the hearts were removed. The angiogenic response in the heart was assessed by immunohisochemical staining. HFD significantly increased angiogenesis in the heart expressed as the number of CD31 positive cells than standard diet. Ghrelin did not alter angiogenesis in the heart in both obese and control groups, however, it reduced serum nitric oxide (NO) and leptin levels in obese mice. There was a strong positive correlation between the number of CD31 positive cells and serum leptin concentration (r=0.74). Leptin as an angiogenic factor has a positive correlation with angiogenesis in the heart. Although systemic administration of ghrelin reduced serum leptin and NO levels in obese mice, however, it could not alter coronary angiogenesis.
Reversal of dopamine system dysfunction in response to high-fat diet.
Carlin, Jesselea; Hill-Smith, Tiffany E; Lucki, Irwin; Reyes, Teresa M
2013-12-01
To test whether high-fat diet (HFD) decreases dopaminergic tone in reward regions of the brain and evaluate whether these changes reverse after removal of the HFD. Male and female mice were fed a 60% HFD for 12 weeks. An additional group was evaluated 4 weeks after removal of the HFD. These groups were compared with control fed, age-matched controls. Sucrose and saccharin preference was measured along with mRNA expression of dopamine (DA)-related genes by Real Time-quantitative PCR (RT-qPCR). DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. DNA methylation of the dopamine transporter (DAT) promoter was measured by methylated DNA immunoprecipitation and RT-qPCR. After chronic HFD, sucrose preference was reduced, and then normalized after removal of the HFD. Decreased expression of DA genes, decreased DA content and alterations in DAT promoter methylation, was observed. Importantly, response to HFD and the persistence of changes depended on sex and brain region. These data identify diminished DA tone after early-life chronic HFD with a complex pattern of reversal and persistence that varies by both sex and brain region. Central nervous system changes that did not reverse after HFD withdrawal may contribute to the difficulty in maintaining weight-loss after diet intervention. Copyright © 2013 The Obesity Society.
Li, Lei; Lin, Cheng-Ren; Ren, Jian-Xun; Miao, Lan; Yao, Ming-Jiang; Li, Dan; Shi, Yue; Ma, Yan-Lei; Fu, Jian-Hua; Liu, Jian-Xun
2014-02-01
To evaluate that the effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. Totally 36 Chinese mini-swine were randomly divided to six groups: the normal control group, the model group, the Danlou tablet group, and Tanyu Tonzhi Fang(TYTZ) groups with doses of 2. 0, 1. 0 and 0. 5 g kg-1, with six in each group. Except for the normal control group, all of other groups were fed with high-fat diet for 2 weeks. Interventional balloons are adopted to injure their left anterior descending artery endothelium. After the operation, they were fed with high-fat diet for 8 weeks to prepare the coronary heart disease model of phlegm-stasis cementation syndrome. After the operation, they were administered with drugs for 8 weeks. The changes in the myocardial ischemia were observed. The changes in the cardiac function and structure were detected by cardiac ultrasound and noninvasive hemodynamic method. Compared with the normal control group, the model group showed significant increase in myocardial ischemia and SVR and obvious decrease in CO, SV and LCW in noninvasive hemodynamic parameters (P <0.05 or P <0.01). The ultrasonic cardiogram indicated notable decrease in IVSd, LVPWs, EF and FS, and remarkable increase in LVIDs (P<0. 05 orP<0.01). Compared with the model group, TYTZ could reduce the myocardial ischemia, strengthen cardiac function, and improve the abnormal cardiac structure and function induced by ischemia (P <0. 05 or P <0. 01). TYTZ shows a significant effect in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. The clinical cardiac function detection method could be adopted to correctly evaluate the changes in the post-myocardial ischemia cardiac function, and narrow the gap between clinical application and basic experimental studies.
Dyer, J; Davison, G; Marcora, S M; Mauger, A R
2017-01-01
To investigate the effects of a Mediterranean type diet on patients with osteoarthritis (OA). Ninety-nine volunteers with OA (aged 31 - 90 years) completed the study (83% female). Southeast of England, UK. Participants were randomly allocated to the dietary intervention (DIET, n = 50) or control (CON, n = 49). The DIET group were asked to follow a Mediterranean type diet for 16 weeks whereas the CON group were asked to follow their normal diet. All participants completed an Arthritis Impact Measurement Scale (AIMS2) pre-, mid- and post- study period. A subset of participants attended a clinic at the start and end of the study for assessment of joint range of motion, ROM (DIET = 33, CON = 28), and to provide blood samples (DIET = 29, CON = 25) for biomarker analysis (including serum cartilage oligomeric matrix protein (sCOMP) (a marker of cartilage degradation) and a panel of other relevant biomarkers including pro- and anti-inflammatory cytokines). There were no differences between groups in the response of any AIMS2 components and most biomarkers (p > 0.05), except the pro-inflammatory cytokine IL-1α, which decreased in the DIET group (~47%, p = 0.010). sCOMP decreased in the DIET group by 1 U/L (~8%, p = 0.014). There was a significant improvement in knee flexion and hip rotation ROM in the DIET group (p < 0.05). The average reduction in sCOMP in the DIET group (1 U/L) represents a meaningful change, but the longer term effects require further study.
Eating Order: A 13-Week Trust Model Class for Dieting Casualties
ERIC Educational Resources Information Center
Jackson, Elizabeth G.
2008-01-01
Chronic dieting distorts eating behaviors and causes weight escalation. Desperation about losing weight results in pursuit of extreme weight loss measures. Instead of offering yet another diet, nutrition educators can teach chronic dieters (dieting casualties) to develop eating competence. Eating Order, a 13-week class for chronic dieters based on…
Ni, Xiaodong; Fan, Shengxian; Zhang, Yongliang; Wang, Zhiming; Ding, Lan; Li, Yousheng; Li, Jieshou
2016-11-15
Since its introduction as an alternative intestinal microbiota alteration approach, fecal microbiota transplantation (FMT) has been increasingly used as a treatment of choice for patients with ulcerative colitis (UC), but no reports exist regarding FMT via percutaneous endoscopic cecostomy (PEC). This report describes the case of a 24-year-old man with a 7-year history of recurrent, steroid-dependent UC. He received FMT via PEC once per day for 1 month in the hospital. After the remission of gastrointestinal symptoms, he was discharged from the hospital and continued FMT via PEC twice per week for 3 months at home. The frequency of stools decreased, and the characteristics of stools improved soon thereafter. Enteral nutrition was regained after 1 week, and an oral diet was begun 1 month later. Two months after the FMT end point, the patient resumed a normal diet, with formed soft stools once per day. The follow-up colonoscopy showed normal mucus membranes; then, the PEC set was removed. On the subsequent 12 months follow-up, the patient resumed orthobiosis without any gastrointestinal discomfort and returned to work. This case emphasizes that FMT via PEC can not only induce remission but also shorten the duration of hospitalization and reduce the medical costs; therefore, this approach should be considered an alternative option for patients with UC.
Lowndes, Joshua; Sinnett, Stephanie; Pardo, Sabrina; Nguyen, Von T; Melanson, Kathleen J; Yu, Zhiping; Lowther, Britte E; Rippe, James M
2014-03-17
The American Heart Association (AHA) has advocated that women and men not consume more than 100 and 150 kcal/day, respectively, from added sugars. These levels are currently exceeded by over 90% of the adult population in the United States. Few data exist on longer-term metabolic effects when sucrose and High Fructose Corn Syrup (HFCS), the principal sources of added dietary sugars, are consumed at levels typical of the general population. Sixty five overweight and obese individuals were placed on a eucaloric (weight stable) diet for 10-weeks, which incorporated sucrose- or HFCS-sweetened, low-fat milk at 10% or 20% of calories in a randomized, double-blinded study. All groups responded similarly (interaction p > 0.05). There was no change in body weight in any of the groups over the 10-week study, or in systolic or diastolic blood pressure. Likewise, there were no changes in total cholesterol, triglycerides, low-density lipoprotein (LDL), or apolipoprotein B (Apo B). We conclude that (1) when consumed as part of a eucaloric diet fructose--when given with glucose (as normally consumed) does not promote weight gain or an atherogenic lipid profile even when consumed at two to four times the level recently recommended by the AHA. (2) There were no differences between HFCS and sucrose on these parameters.
Lowndes, Joshua; Sinnett, Stephanie; Pardo, Sabrina; Nguyen, Von T.; Melanson, Kathleen J.; Yu, Zhiping; Lowther, Britte E.; Rippe, James M.
2014-01-01
The American Heart Association (AHA) has advocated that women and men not consume more than 100 and 150 kcal/day, respectively, from added sugars. These levels are currently exceeded by over 90% of the adult population in the United States. Few data exist on longer-term metabolic effects when sucrose and High Fructose Corn Syrup (HFCS), the principal sources of added dietary sugars, are consumed at levels typical of the general population. Sixty five overweight and obese individuals were placed on a eucaloric (weight stable) diet for 10-weeks, which incorporated sucrose- or HFCS-sweetened, low-fat milk at 10% or 20% of calories in a randomized, double-blinded study. All groups responded similarly (interaction p > 0.05). There was no change in body weight in any of the groups over the 10-week study, or in systolic or diastolic blood pressure. Likewise, there were no changes in total cholesterol, triglycerides, low-density lipoprotein (LDL), or apolipoprotein B (Apo B). We conclude that (1) when consumed as part of a eucaloric diet fructose—when given with glucose (as normally consumed) does not promote weight gain or an atherogenic lipid profile even when consumed at two to four times the level recently recommended by the AHA. (2) There were no differences between HFCS and sucrose on these parameters. PMID:24642950
Rhyu, Hyun-Seung; Cho, Su-Youn; Roh, Hee-Tae
2014-12-01
The purpose of this study was to investigate the effects of the ketogenic diet through 3 weeks on oxidative stress and antioxidative capacity markers in Taekwondo athletes. The participants selected for this research were 18 high school taekwondo contestants aged 15-18 who had at least 5 yr of career as contestant. The subjects were randomly assigned to the ketogenic diet (KD) group and the Non ketogenic diet (NDK) group. Body composition and oxidative stress and antioxidative capacity markers (LDH, MDA, ROS, HDL, and SOD) were analysed before and after 3 weeks of ketogenic diet. No significant difference was found between the groups in body composition, ROS and SOD level. The KD group showed an elevated HDL level and NKD group showed an elevated LDH and MDA level after ketogenic diet by 3 weeks. This result suggests that weight loss by 3 weeks of calorie restriction and exercise can cause oxidative stress, and that ketogenic diet can be effective for preventing it. It could also be inferred that ketogenic diet can be effective for increasing blood antioxidative capacity.
Role of postnatal dietary sodium in prenatally programmed hypertension.
Stewart, Tyrus; Ascani, Jeannine; Craver, Randall D; Vehaskari, V Matti
2009-09-01
In this study we examined the short- and long-term impact of early life dietary sodium (Na) on prenatally programmed hypertension. Hypertension was induced in rat offspring by a maternal low protein (LP) diet. Control and LP offspring were randomized to a high (HS), standard (SS), or low (LS) Na diet after weaning. On the SS diet, the LP pups developed hypertension by 6 weeks of age. The development of hypertension was prevented by the LS diet and exacerbated by the HS diet. Kidney nitrotyrosine content, a measure of oxidative stress, was reduced by the LS diet compared with the HS diet. The modified diets had no effect on control pups. A group of animals on the SS diet was followed up to 51 weeks of age after an early life 3-week exposure to the HS or LS diet. This brief early exposure of LP animals to the LS diet prevented the later development of hypertension and ameliorated the nephrosclerosis observed after early exposure to the HS diet. The LP offspring with early exposure to LS diet had lost their salt-sensitivity when challenged with the HS diet at the age of 43-49 weeks. No effect of early life dietary Na was observed in control animals. These results show that hypertension in this model is salt sensitive and may, in part, be mediated by salt-induced renal oxidative stress and that there may exist a developmental window which allows postnatal "reprogramming" of the hypertension.
Pelat, M; Verwaerde, P; Lazartiques, E; Cabrol, P; Galitzky, J; Berlan, M; Montastruc, J L; Senard, J M
1998-08-01
Modifications of heart rate (HR) and systolic blood pressure (SBP) variabilities (V) have been reported in the human syndrome arterial hypertension plus insulin-resistance. The aim of this study was to characterize the 24 h SBPV and HRV in both time and frequency domains during weight increase in dogs fed ad libitum with a high fat diet. Implantable transmitter units for measurement of blood pressure and heart rate were surgically implanted in five beagle male dogs. BP and HR were continuously recorded using telemetric measurements during 24 hours, before and after 6 and 9 weeks of hypercaloric diet in quiet animals submitted to a 12h light-dark cycle. To study nychtemeral cycle of SBP and HR, two periods were chosen: day (from 6.00 h to 19.00 h) and night (from 23.00 h to 6.00 h). Spontaneous baroreflex efficiency was measured using the sequence method. Spectral variability of HR and SBP was analyzed using a fast Fourier transformation on 512 consecutive values and normalized units of low (LF: 50-150 mHz, reflecting sympathetic activity) and high (HF: respiratory rate +/- 50 mHz, reflecting parasympathetic activity) frequency bands were calculated. The energy of total spectrum (from 0.004 to 1 Hz) was also studied. Body weight (12.4 +/- 0.9 vs 14.9 +/- 0.9 kg, p < 0.05). SBP (132 +/- 1 vs 147 +/- 1 mmHg, p < 0.05) significantly increased after 9 weeks of hypercaloric diet. A nycthemeral HR rhythm was present at baseline (day: 79 +/- 1 vs night: 71 +/- 1 bpm) but not after 9 weeks (day: 91 +/- 4 bpm ; night: 86 +/- 2 bpm). Concomitantly, the efficiency of spontaneous baroreflex decreased at 6 weeks (36 +/- 1 vs 42 +/- 2 mmHg/ms, p < 0.05). A significant decrease in HF energy of HRV was found after 6 but not after 9 weeks. LF energy of SBPV was increased at 6 but not at 9 weeks (table). [table: see text] In conclusion, this study shows that an hyperlipidic and hypercaloric diet induces transient variations in autonomic nervous system activity which could be the physiopathological link between obesity, insulin-resistance and arterial hypertension.
Alarcon, Gabriela; Roco, Julieta; Medina, Mirta; Medina, Analia; Peral, Maria; Jerez, Susana
2018-01-30
Obesity contributes significantly to the development and evolution of cardiovascular disease (CVD) which is believed to be mediated by oxidative stress, inflammation and endothelial dysfunction. However, the vascular health of metabolically obese and normal weight (MONW) individuals is not completely comprehended. The purpose of our study was to evaluate vascular function on the basis of a high fat diet (HFD)-MONW rabbit model. Twenty four male rabbits were randomly assigned to receive either a regular diet (CD, n = 12) or a high-fat diet (18% extra fat on the regular diet, HFD, n = 12) for 6 weeks. Body weight, TBARS and gluthathione serum levels were similar between the groups; fasting glucose, triglycerides, C reactive protein (CRP), visceral adipose tissue (VAT), triglyceride-glucose index (TyG index) were higher in the HFD group. Compared to CD, the HFD rabbits had glucose intolerance and lower HDL-cholesterol and plasma nitrites levels. Thoracic aortic rings from HFD rabbits exhibited: (a) a reduced acetylcholine-induced vasorelaxation; (b) a greater contractile response to norepinephrine and KCl; (c) an improved angiotensin II-sensibility. The HFD-effect on acetylcholine-response was reversed by the cyclooxygenase-2 (COX-2) inhibitor (NS398) and the cyclooxygenase-1 inhibitor (SC560), and the HFD-effect on angiotensin II was reversed by NS398 and the TP receptor blocker (SQ29538). Immunohistochemistry and western blot studies showed COX-2 expression only in arteries from HFD rabbits. Our study shows a positive pro-inflammatory status of HFD-induced MONW characterized by raised COX-2 expression, increase of the CRP levels, reduction of NO release and oxidative stress-controlled conditions in an early stage of metabolic alterations characteristic of metabolic syndrome. Endothelial dysfunction and increased vascular reactivity in MONW individuals may be biomarkers of early vascular injury. Therefore, the metabolic changes induced by HFD even in normal weight individuals may be associated to functional alterations of blood vessels.
Reyes-Becerril, Martha; Guardiola, Francisco; Rojas, Maurilia; Ascencio-Valle, Felipe; Esteban, María Ángeles
2013-09-01
Effects of silage microalgae enriched with a probiotic and lyophilized microalgae were evaluated on main immune parameters and different gene expression of gilthead seabream (Sparus aurata L.). A total of 60 seabream were grouped into 3 treatment diets which were a control diet (commercial diet) without microalgae (C), commercial diet supplemented with silage microalgae Navicula sp. plus Lactobacillus sakei 5-4 (10(6) CFU g(-1)) (SM), and commercial diet supplemented with lyophilized microalgae (LM) for 4 weeks. Generally, the results showed a significant increase in the immune parameters, principally in leucocyte peroxidase, phagocytosis and complement activities in fish fed with SM diet compared to control group. About the gene expression in head-kidney, transcript levels (Interleukin-8, Interleukin-1β and β-defensin) were upregulated in fish fed with SM after 4 weeks of treatments. However, the gene expression was upregulated in intestine from fish fed with LM with significant difference in transferrin and cyclooxygenase 2 gene at 2 weeks, and in occludin, transferrin, interleukin-8 and interleukin-1β at 4 weeks. Finally, about the digestive enzymes, LM diet caused an upregulated of α-amylase and alkaline phosphatase genes at 2 weeks; however SM diet caused an upregulated trypsin gene at 4 weeks. SM diet a higher enhancing effect on gilthead seabream immune parameters than that observed when using LM. Furthermore, dietary administration of microalgae Navicula sp. provokes upregulation of several genes in the gut that correlates with slight inflammation. Further studies are needed to know if this diatom could be useful for administering as diet supplement for farmed fish. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Qian; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing
2017-01-01
Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as “bridges” between the mother and the offspring by affecting the MAPK pathway. PMID:28669221
Zhang, Qian; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing
2017-08-01
Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.
Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui
2015-01-01
Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of high-fat diet on rat’s mood, feeding behavior and response to stress
Aslani, S; Vieira, N; Marques, F; Costa, P S; Sousa, N; Palha, J A
2015-01-01
An association between obesity and depression has been indicated in studies addressing common physical (metabolic) and psychological (anxiety, low self-esteem) outcomes. Of consideration in both obesity and depression are chronic mild stressors to which individuals are exposed to on a daily basis. However, the response to stress is remarkably variable depending on numerous factors, such as the physical health and the mental state at the time of exposure. Here a chronic mild stress (CMS) protocol was used to assess the effect of high-fat diet (HFD)-induced obesity on response to stress in a rat model. In addition to the development of metabolic complications, such as glucose intolerance, diet-induced obesity caused behavioral alterations. Specifically, animals fed on HFD displayed depressive- and anxious-like behaviors that were only present in the normal diet (ND) group upon exposure to CMS. Of notice, these mood impairments were not further aggravated when the HFD animals were exposed to CMS, which suggest a ceiling effect. Moreover, although there was a sudden drop of food consumption in the first 3 weeks of the CMS protocol in both ND and HFD groups, only the CMS-HFD displayed an overall noticeable decrease in total food intake during the 6 weeks of the CMS protocol. Altogether, the study suggests that HFD impacts on the response to CMS, which should be considered when addressing the consequences of obesity in behavior. PMID:26795748
Carbonneau, Élise; Royer, Marie-Michelle; Richard, Caroline; Couture, Patrick; Desroches, Sophie; Lemieux, Simone; Lamarche, Benoît
2017-03-19
The objective of this study was to investigate the impact of the Mediterranean diet (MedDiet) consumed before and after weight loss on eating behavioral traits as measured by the Three-Factor Eating Questionnaire (TFEQ) in men with metabolic syndrome (MetS). In this fixed sequence study, 19 men with MetS (National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) criteria), aged between 24 and 62 years, first consumed a five-week standardized North American control diet followed by a five-week MedDiet, both under weight-maintaining controlled-feeding conditions. This was followed by a 20-week caloric restriction weight loss period in free-living conditions, without specific recommendations towards adhering to the principles of the MedDiet. Participants were finally subjected to a final five-week MedDiet phase under isoenergetic controlled-feeding conditions. The MedDiet before weight loss had no impact on eating behavioral traits. Body weight reduction by caloric restriction (-10.2% of initial weight) was associated with increased cognitive restraint ( p < 0.0001) and with reduced disinhibition ( p = 0.02) and susceptibility to hunger ( p = 0.01). Feeding the MedDiet for five weeks under isoenergetic conditions after the weight loss phase had no further impact on eating behavioral traits. Results of this controlled-feeding study suggest that consumption of the MedDiet per se has no effect on eating behavioral traits as measured by TFEQ, unless it is combined with significant weight loss.
Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.
Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold
2008-06-01
Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals.
Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs
Jankord, Ryan; Ganjam, Venkataseshu K.; Turk, James R.; Hamilton, Marc T.; Laughlin, M. Harold
2009-01-01
Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo–pituitary–adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16–20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals. PMID:18461098
Tan, Si; Li, Mingxia; Ding, Xiaobo; Fan, Shengjie; Guo, Lu; Gu, Ming; Zhang, Yu; Feng, Li; Jiang, Dong; Li, Yiming; Xi, Wanpeng; Huang, Cheng; Zhou, Zhiqin
2014-01-01
Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.
Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Liu, George
2017-01-01
Aim: Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Methods: Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. Results: After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. Conclusions: SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions. PMID:27373983
Ha, Ae Wha; Ying, Tian
2015-01-01
BACKGROUD/OBEJECTIVES The mechanism of how black garlic effects lipid metabolism remains unsolved. Therefore, the objectives of this study were to determine the effects of black garlic on lipid profiles and the expression of related genes in rats fed a high fat diet. MATERIALS/METHODS Thirty-two male Sqrague-Dawley rats aged 4 weeks were randomly divided into four groups (n=8) and fed the following diets for 5 weeks: normal food diet, (NF); a high-fat diet (HF); and a high-fat diet + 0.5% or 1.5% black garlic extract (HFBG0.5 or HFBG1.5). Body weights and blood biochemical parameters, including lipid profiles, and expressions of genes related to lipid metabolism were determined. RESULTS Significant differences were observed in the final weights between the HFBG1.5 and HF groups. All blood biochemical parameters measured in the HFBG1.5 group showed significantly lower values than those in the HF group. Significant improvements of the plasama lipid profiles as well as fecal excretions of total lipids and triglyceride (TG) were also observed in the HFBG1.5 group, when compared to the HF diet group. There were significant differences in the levels of mRNA of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G6PDH) in the HFBG1.5 group compared to the HF group. In addition, the hepatic expression of (HMG-CoA) reductase and Acyl-CoA cholesterol acyltransferase (ACAT) mRNA was also significantly lower than the HF group. CONCLUSIONS Consumption of black garlic extract lowers SREBP-1C mRNA expression, which causes downregulation of lipid and cholestrol metahbolism. As a result, the blood levels of total lipids, TG, and cholesterol were decreased. PMID:25671065
Safaeiyan, Abdolrasoul; Pourghassem-Gargari, Bahram; Zarrin, Rasoul; Fereidooni, Javid; Alizadeh, Mohammad
2015-01-01
BACKGROUND The effect of legume-based hypocaloric diet on cardiovascular disease (CVD) risk factors in women is unclear. This study provides an opportunity to find effects of high-legume diet on CVD risk factors in women who consumed high legumes at baseline. METHODS This randomized controlled trial was undertaken in 34 premenopausal women with central obesity. After 2 weeks of a run-in period on an isocaloric diet, subjects were randomly assigned into two groups: (1) hypocaloric diet enriched with legumes (HDEL) (n = 17) (two servings per day) and (2) hypocaloric diet without legumes (HDWL) (n = 17) for 6 weeks. The following variables were assessed before intervention, 3, and 6 weeks after it: Waist to hip ratio (WHR), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-sensitive-C-reactive protein (hs-CRP), total antioxidant capacity (TAC), nitric oxides (NOx), and Malondialdehyde (MDA). RESULTS Both hypocaloric diets reduced hs-CRP in 3 weeks and returned it to basal values after 6 weeks (P = 0.004). HDWL significantly reduced WHR [P = 0.010 (3.2%)] and increased TC [P < 0.001 (6.3%)]. Despite the significant effect of HDEL on increasing TAC in 3 weeks [P = 0.050 (4%)], the level of TAC remained the same in 6 weeks. None of the diets had any significant effects on NOx and MDA. CONCLUSION The study indicated that beneficial effects of legumes on TC, LDL-C, and hs-CRP were achieved by three servings per week, and consuming more amounts of these products had no more advantages. PMID:26405440
Durkalec-Michalski, Krzysztof; Zawieja, Emilia Ewa; Zawieja, Bogna Ewa; Podgórski, Tomasz; Jurkowska, Dominika; Jeszka, Jan
2017-12-18
The study was aimed at assessing the influence of 3-week low glycemic index (LGI) versus moderate glycemic index (MGI) diet on substrate oxidation during incremental exercise. 17 runners completed two 3-week trials of either LGI or MGI diet in a randomised counterbalanced manner. Before and after each trial the incremental cycling test was performed. Metabolic alternations were observed only within tested diets and no significant differences in fat and carbohydrate (CHO) oxidation were found between MGI and LGI diets. Following MGI diet CHO oxidation rate increased. The AUC of fat oxidation decreased after both diets. Percent contribution of fat to energy yield declined, whereas contribution of CHO was augmented following MGI diet. This study indicates that the 3-week MGI diet increased the rate of carbohydrate oxidation during incremental cycling test and improved performance in acute intense exercise test, while both high-carbohydrate diets downregulated fat oxidation rate.
2013-01-01
Background Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze.Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Results Results showed that prenatal and postnatal TRF supplementation increased the brain (4–6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs. Conclusion Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats. PMID:23902378
Nagapan, Gowri; Meng Goh, Yong; Shameha Abdul Razak, Intan; Nesaretnam, Kalanithi; Ebrahimi, Mahdi
2013-07-31
Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Results showed that prenatal and postnatal TRF supplementation increased the brain (4-6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs. Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.
Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature Swine.
Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C
2015-01-01
Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.
NASA Astrophysics Data System (ADS)
Torki, Mehran; Mohebbifar, Ahmad; Ghasemi, Hossein Ali; Zardast, Afshin
2015-05-01
An experiment was conducted to determine whether, by using a low-protein amino acid-supplemented diet, the health status, stress response, and excreta quality could be improved without affecting the productive performance of heat-stressed laying hens. The requirements for egg production, egg mass, and feed conversion ratio were also estimated using second-order equations and broken-line regression. A total of 150 Lohmann Selected Leghorn (LSL-Lite) hens were divided randomly into five groups of 30 with five replicates of six hens. The hens were raised for an 8-week period (52 to 60 weeks) in wire cages situated in high ambient temperature in an open-sided housing system. The five experimental diets (ME; 2,720 kcal/kg) varied according to five crude protein (CP) levels: normal-CP diet (control, 16.5 % CP) and low-CP diets containing 15.0, 13.5, 12.0, or 10.5 % CP. All experimental diets were supplemented with crystalline amino acids at the levels sufficient to meet their requirements. The results showed that under high temperature conditions, all productive performance and egg quality parameters in the birds fed with 15.0, 13.5, and 12.0 % CP diets were similar to those of birds fed with control diet (16.5 % CP), whereas feeding 10.5 % CP diet significantly decreased egg production and egg mass. Estimations of requirements were of 13.93 and 12.77 % CP for egg production, 14.62 and 13.22 % CP for egg mass, and 12.93 and 12.26 % CP for feed conversion ratio using quadratic and broken-line models, respectively. Egg yolk color index, blood triglyceride level, and excreta acidity were also significantly higher in birds fed with 12.0 and 10.5 % CP diets compared with those of control birds. The heterophil to lymphocyte ratio, as a stress indicator, was significantly decreased by 15.0, 13.5, and 12 % CP diets. On the basis of our findings, reducing dietary CP from 16.5 to 12.0 % and supplementing the diets with the essential amino acids showed merit for improving the stress response and excreta quality while maintaining acceptable production performance from laying hens under high ambient temperature conditions.
Chaiyabutr, N; Jakobsen, P E
1978-08-01
It was found that both effect of temperatures and diets influence metabolic changes in rabbits. In animals fed basal and PTU diets (propyl-thiouracil diets) at 34 degrees C for 4 weeks the metabolic response showed a marked reduction in feed intake and body weight, compared with animals fed at normal temperatures. In the animals fed the iodine diet, there was an increase in daily food consumption and weekly body weight gain at 34 degrees C. This indicates a rise in metabolic activity in this case. Studying the activity of kidney mitochondria of the three groups of animals using succinate as a substrate revealed that the P/O ratio tends to decrease in animals kept at 6 degrees C while the RCR value was not altered by changing conditions or produced by the different diets. At the temperature of 6 degrees C both the P/O ratios and the RCR values of liver mitochondria using succinate as a substrate decreased in the group of rabbits fed the basal and iodine diets, but were not significantly different in the group fed the PTU diet. In the experiment on kidney mitochondrial activity using alpha-ketoglutarate as a substrate it was found that both the P/O ratios and the RCR values from animals fed basal and PTU diets at 6 degrees C decreased slightly as compared with animals fed at 20 degrees C and 34 degrees C. In liver mitochondria, using alpha-ketoglutarate as a substrate a significant decrease in the P/O ratio and the RCR value was found for both rabbits fed the basal and the iodine diets at 6 degrees C. In the group of rabbits fed the PTU diet, the P/O ratio also decreased but the fall was not significant. These results suggested that the activity of succinate dehydrogenase in liver mitochondria increases in animals fed basal and iodine diets at 6 degrees C. The enzyme dehydrogenase involved in oxidation of alpha-ketoglutarate which is localized in the outer membrane of mitochondria seems to be affected by different temperatures and diets as compared with succinate dehydrogenase localized in the matrix. The kidney mitochondria activity is less sensitive than that of liver mitochondria. Mitochondrial respiration and phosphorylation due to the tightness of their coupling may respond differently depending on the degree of thyroid activity.
Azuma, Keiko; Minami, Yuko; Ippoushi, Katsunari; Terao, Junji
2007-01-01
The protective effect of onion against oxidative stress in streptozotosin-induced diabetic rats was investigated in comparison with that of quercetin aglycone. We measured oxidative stress biomarkers involving the susceptibility of the plasma against copper ion-induced lipid peroxidation, which was estimated by the amounts of thiobarbituric acid-reactive substances (TBARS) and cholesteryl ester hydroperoxides, and urine TBARS and 8-hydroxydeoxyguanosine contents. After the 12-week feeding period, plasma glucose levels and these biomarkers increased in diabetic rats compared to normal rats. In diabetic rats fed a 6.0% onion diet (quercetin equivalent: 0.023%), quercetin metabolites accumulated in the plasma at concentrations of approximately 35 µM. Onion intake decreased plasma glucose levels and lowered the oxidative stress biomarkers. On the other hand, quercetin metabolites in the plasma of rats fed a diet with 0.023% quercetin aglycone were found at lower concentrations (14.2 µM) than the rats fed the onion diet. Furthermore, oxidative stress biomarkers were higher in the quercetin diet group compared to the onion diet group. These results strongly suggest that onion intake suppresses diabetes-induced oxidative stress more effectively than the intake of the same amount of quercetin aglycone alone. PMID:18188415
Matanjun, Patricia; Mohamed, Suhaila; Muhammad, Kharidah; Mustapha, Noordin Mohamed
2010-08-01
This study was designed to investigate the comparative in vivo cardiovascular protective effects of red, green, and brown tropical seaweeds, namely, Kappaphycus alvarezii (or Eucheuma cottonii), Caulerpa lentillifera, and Sargassum polycystum, in rats fed on high-cholesterol/high-fat (HCF) diets. Male Sprague-Dawley rats (weighing 260-300 g) on the HCF diet had significantly increased body weight, plasma total cholesterol (TC), plasma low-density lipoprotein cholesterol (LDL-C), plasma triglycerides (TG), lipid peroxidation, and erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase levels after 16 weeks. Supplementing 5% seaweeds to HCF diet significantly reduced plasma TC (-11.4% to -18.5%), LDL-C (-22% to -49.3%), and TG (-33.7% to -36.1%) levels and significantly increased HDL-C levels (16.3-55%). Among the seaweeds, S. polycystum showed the best anti-obesity and blood GSH-Px properties, K. alvarezii showed the best antihyperlipemic and in vivo antioxidation effects, and C. lentillifera was most effective at reducing plasma TC. All seaweeds significantly reduced body weight gain, erythrocyte GSH-Px, and plasma lipid peroxidation of HCF diet rats towards the values of normal rats.
Jaarin, Kamsiah; Renuvathani, M; Nafeeza, M I; Gapor, M T
1999-01-01
The effect of palm vitamin E on the healing of ethanol-induced gastric lesion was compared with ranitidine. Fifty-six male rats of Sprague-Dawley species (200–250 g of weight) were randomly divided into three groups (N = 14). Gastric mucosal injury was induced by orogastric tube administration of 0.5 ml 100% ethanol. Immediately after induction, Group I (k) rats was fed with a normal diet (control), group II (p) was fed palm vitamin E enriched diet (150 mg/kg food), Group III(r) was treated with ranitidine 30 mg/kg body weight intraperitoneally and Group IV (p + r) was fed with palm vitamin E and treated with ranitidine 30 mg/kg body weight intraperitoneally of the same dose. The rats were killed at the end of 1 week and 3 weeks of treatment or feeding. The rate of gastric healing was faster in palm vitamin E treated group compared to control and ranitidine treated groups as shown by a lower mean ulcer index. The effect was seen as early as the first week of treatment whereas ranitidine did not show any healing effect even after 3 weeks of therapy. Neither gastric acidity nor gastric mucus production are involved in gastroprotective effect of palm vitamin E. The most probable mechanism is via reducing lipid peroxidation process as shown by a significant decrease in gastric MDA PMID:10607016
Nicotine Enhances High-Fat Diet-Induced Oxidative Stress in the Kidney.
Arany, Istvan; Hall, Samuel; Reed, Dustin K; Reed, Caitlyn T; Dixit, Mehul
2016-07-01
Life expectancy of an obese smoker is 13 years less than a normal weight smoker, which could be linked to the increased renal risk imposed by smoking. Both smoking-through nicotine (NIC)-and obesity-by free fatty acid overload-provoke oxidative stress in the kidney, which ultimately results in development of chronic kidney injury. Their combined renal risk, however, is virtually unknown. We tested the hypothesis that chronic NIC exposure worsens renal oxidative stress in mice on high-fat diet (HFD) by altering the balance between expression of pro-oxidant and antioxidant genes. Nine-week-old male C57Bl/6J mice consumed normal diet (ND) or HFD and received either NIC (200 μg/ml) or vehicle (2% saccharine) in their drinking water. Body weight, plasma clinical parameters, renal lipid deposition, markers of renal oxidative stress and injury, as well as renal expression of the pro-oxidant p66shc and the antioxidant MnSOD were determined after 12 weeks. NIC significantly augmented levels of circulating free fatty acid, as well as lipid deposition, oxidative stress and sublethal injury in the kidneys of mice on HFD. In addition, NIC exposure suppressed HFD-mediated induction of MnSOD while increased expression of p66shc in the kidney. Tobacco smoking or the increasingly popular E-cigarettes-via NIC exposure-could worsen obesity-associated lipotoxicity in the kidney. Hence, our findings could help to develop strategies that mitigate adverse effects of NIC on the obese kidney. Life expectancy of an obese smoker is 13 years less than a normal weight smoker, which could be linked to the increased renal risk imposed by smoking. NIC-the main component of tobacco smoke, E-cigarettes and replacement therapies-links smoking to renal injury via oxidative stress, which could superimpose renal oxidative stress caused by obesity. Our results substantiate this scenario using a mouse model of diet induced obesity and NIC exposure and imply the augmented long-term renal risk in obese smokers. Also, our study may help to develop strategies that mitigate adverse effects of NIC on the obese kidney. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Martinet, Wim; Croons, Valerie; Herman, Arnold G; De Meyer, Guido R Y
2009-08-01
Unstable atherosclerotic plaques are characterized by a thin fibrous cap that contains few smooth muscle cells (SMCs) and numerous foam cells of macrophage origin. Previously we and others demonstrated that macrophages disappear from atherosclerotic plaques after dietary lipid lowering. However, it remains unclear whether loss of macrophages after lipid lowering occurs via increased apoptosis, decreased macrophage replication and/or recruitment, or via a combination of both. Rabbits were fed a diet supplemented with cholesterol (0.3%) for 24 weeks followed by a normal diet for 4, 12, or 24 weeks. After 24 weeks of cholesterol supplement, plaques showed apoptosis in both macrophages and SMCs, as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Cell replication (Ki-67 immunolabeling) was predominantly present in macrophages. After 24 weeks of cholesterol withdrawal, the thickness and areas of the plaques were unchanged. Nevertheless, plaques showed a considerable loss of macrophages. This event was associated with a reduced immunoreactivity for vascular cell adhesion molecule-1 (VCAM-1) in the endothelial cells starting 4 weeks after cholesterol withdrawal. Apoptosis did not increase after lipid lowering but showed a steady decline. Apart from decreased VCAM-1 expression, a strong decrease in Ki-67 immunolabeling was observed after 12 weeks of cholesterol withdrawal. Our findings suggest that loss of macrophages in atherosclerotic plaques after dietary lipid lowering is not related to induction of macrophage apoptosis but mainly a consequence of impaired monocyte recruitment followed by decreased macrophage replication. This information is essential for understanding the effects of aggressive lipid lowering on plaque stability.
Development of medial pterygoid muscle fibers in rabbits fed with a liquid diet.
Kuroki, Kozue; Morita, Takumi; Takasu, Hiroki; Saito, Keisuke; Fujiwara, Takuya; Hiraba, Katsunari; Goto, Shigemi
2017-08-01
This study aimed to investigate the influence of decreased functional load on the medial pterygoid muscle during mastication in rabbits fed with a liquid-diet. Medial pterygoid muscles from 54 rabbits (solid- and liquid-diet groups, n=48; unweaned group, n=6) were histochemically examined at 4, 9, 12, 18, and 33 weeks after birth. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished via mATPase staining. Significant increases in the diameters of all fiber types were seen up to 33 weeks of age in the solid-diet group; however, no significant increase was noted in fiber types I and IC, from 4 to 33 weeks of age, in the liquid-diet group. The proportion of slow fibers increased up to 12 weeks followed by an increase in the number of fast fibers in the solid-diet group, whereas in the liquid-diet group, the number of slow fiber declined after weaning. Liquid-diet consumption caused muscle fiber atrophy and an increase in the number of fast fibers during early developmental stages after weaning. Furthermore, the growth pattern of the medial pterygoid muscle in the liquid-diet group was different from that in the solid-diet group. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zahra, Amir; Fath, Melissa A; Opat, Emyleigh; Mapuskar, Kranti A; Bhatia, Sudershan K; Ma, Daniel C; Rodman, Samuel N; Snyders, Travis P; Chenard, Catherine A; Eichenberger-Gilmore, Julie M; Bodeker, Kellie L; Ahmann, Logan; Smith, Brian J; Vollstedt, Sandy A; Brown, Heather A; Hejleh, Taher Abu; Clamon, Gerald H; Berg, Daniel J; Szweda, Luke I; Spitz, Douglas R; Buatti, John M; Allen, Bryan G
2017-06-01
Ketogenic diets are low in carbohydrates and high in fat, which forces cells to rely more heavily upon mitochondrial oxidation of fatty acids for energy. Relative to normal cells, cancer cells are believed to exist under a condition of chronic mitochondrial oxidative stress that is compensated for by increases in glucose metabolism to generate reducing equivalents. In this study we tested the hypothesis that a ketogenic diet concurrent with radiation and chemotherapy would be clinically tolerable in locally advanced non-small cell lung cancer (NSCLC) and pancreatic cancer and could potentially exploit cancer cell oxidative metabolism to improve therapeutic outcomes. Mice bearing MIA PaCa-2 pancreatic cancer xenografts were fed either a ketogenic diet or standard rodent chow, treated with conventionally fractionated radiation (2 Gy/fraction), and tumor growth rates were assessed daily. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modfied proteins as a marker of oxidative stress. Based on this and another previously published preclinical study, phase 1 clinical trials in locally advanced NSCLC and pancreatic cancer were initiated, combining standard radiation and chemotherapy with a ketogenic diet for six weeks (NSCLC) or five weeks (pancreatic cancer). The xenograft experiments demonstrated prolonged survival and increased 4HNE-modfied proteins in animals consuming a ketogenic diet combined with radiation compared to radiation alone. In the phase 1 clinical trial, over a period of three years, seven NSCLC patients enrolled in the study. Of these, four were unable to comply with the diet and withdrew, two completed the study and one was withdrawn due to a dose-limiting toxicity. Over the same time period, two pancreatic cancer patients enrolled in the trial. Of these, one completed the study and the other was withdrawn due to a dose-limiting toxicity. The preclinical experiments demonstrate that a ketogenic diet increases radiation sensitivity in a pancreatic cancer xenograft model. However, patients with locally advanced NSCLC and pancreatic cancer receiving concurrent radiotherapy and chemotherapy had suboptimal compliance to the oral ketogenic diet and thus, poor tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuni, C.C.; Klingensmith, W.C. III
Thirteen patients received an initial dose of 25-29.9 mCi (925-1106 MBq) of /sup 131/I following partial thyroidectomy for papillary, follicular, or mixed carcinoma. Administration of thyroxine (T/sub 4/) or triiodothyronine (T/sub 3/) was stopped 3-12 weeks and 1-6 weeks, respectively, before therapy or imaging. Patients remained on normal diets and did not receive thyroid stimulating hormone (TSH) or diuretics. Follow-up 3 months to 2 years after therapy demonstrated that ablation of thyroid bed activity was successful in only one patient, who still had metastases. This suggests that administration of 25-29.9 mCi of /sup 131/I following surgery is unreliable for ablationmore » of residual thyroid bed activity.« less
Kadivar, Ali; Ahmadi, Mohammad Rahim; Vatankhah, Mahmood
2014-01-01
This study was performed to investigate the effect of periparturient body condition score on the occurrence of clinical endometritis and postpartum resumption of ovarian activity in dairy cows. Eighty-seven lactating Holstein cows, fed with a total mixed ration diet, were included into the study. Body condition scoring (using a 5-point scale with quarter-point divisions) was performed by the same investigator using the visual technique every 2 weeks, from 2 weeks before until 6 weeks after calving. Palpation of the reproductive tract and ultrasonographic assessment of ovaries for detection of corpus luteum using a rectal linear probe was also performed at 2, 4, and 6 weeks after calving. Cows with clinical endometritis had significantly lower body condition score (BCS) than normal cows at all weeks pre- and postcalving, and cows that did not ovulate until 45 days after calving had a significantly lower BCS pre- and postpartum. Cows that did not ovulate until 45 days after calving also lost more BCS from 2 weeks before to 4 weeks after calving. Besides, first ovulation after calving take occurred later in cows with clinical endometritis compared to normal cows (P < 0.05). In conclusion, low BCS is a risk factor for postpartum endometritis and delayed cyclicity in dairy cows. BCS loss from dry-off to early lactation and occurrence of clinical endometritis can significantly affect postpartum ovarian activity.
Insulin resistance impairs nigrostriatal dopamine function.
Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A
2011-09-01
Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.
Lochmann, Rebecca T; Islam, Shahidul; Phillips, Harold; Adam, Zelalem; Everette, Jace
2013-04-01
Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information on the effects of these compounds on catfish, or the capacity of catfish to accumulate dietary phenols. Catfish enriched with phenols have marketing potential as functional foods. This study investigated the effects of diets with sweet potato leaf meal (SPLM) on growth performance, health and total phenolic compounds in catfish. SPLM was substituted for wheat middlings in three diets fed to groups of juvenile catfish for 10 weeks. Weight gain, feed conversion, survival, alternative complement activity and lysozyme activity were similar among diets. Haematocrit was lower in fish fed diets with SPLM, but within the normal range. Total phenols and antioxidant capacity in the whole body were similar among treatments. SPLM was an effective energy source for catfish up to the maximum level tested (230 g kg(-1) diet). SPLM did not enhance total phenols in catfish, but there were no apparent antinutritional effects of the meal on catfish growth, health or survival. © 2012 Society of Chemical Industry.
Nalloor, Thomas John Philip; Kumar, Nitesh; Narayanan, Kasinathan; Palanimuthu, Vasanth Raj
2017-05-01
Butter is one of the widely used fats present in the diet. However, there is no satisfactory study available that evaluates the effect of a high-fat diet containing butter as the principal fat on the development of non-alcoholic fatty liver disease (NAFLD). In the present study, butter was used for the development of steatosis in Chang liver cells in an in vitro study and Swiss albino mice in an in vivo study. In vitro steatosis was established, and butter was compared with oleic acid in Chang liver cells using an oil red O (ORO)-based colorimetric assay. In the in vivo study, a butter-rich special diet was fed for 15 weeks to mice, who showed no significant change in body weight. The expression pattern of phosphatase and tensin homolog (PTEN) and miR-21 was compared by reverse transcriptase-PCR. Special diet-fed animals showed downregulated PTEN compared to normal diet-fed animals, while levels of miR-21 remained the same. Elevations in biochemical parameters, viz., triglycerides and liver function tests showed symptoms of onset of NAFLD. Histophathological study of livers of test animals confirmed mild-to-moderate degree of NAFLD.
A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice
Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su
2015-01-01
Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356
Fructose-rich diet-induced abdominal adipose tissue endocrine dysfunction in normal male rats.
Alzamendi, Ana; Giovambattista, Andrés; Raschia, Agustina; Madrid, Viviana; Gaillard, Rolf C; Rebolledo, Oscar; Gagliardino, Juan J; Spinedi, Eduardo
2009-04-01
We have currently studied the changes induced by administration of a fructose-rich diet (FRD) to normal rats in the mass and the endocrine function of abdominal (omental) adipose tissue (AAT). Rats were fed ad libitum a standard commercial chow and tap water, either alone (control diet, CD) or containing fructose (10%, w/vol) (FRD). Three weeks after treatment, circulating metabolic markers and leptin release from adipocytes of AAT were measured. Plasma free fatty acids (FFAs), leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in FRD than in CD rats. AAT mass was greater in FRD than in CD rats and their adipocytes were larger, they secreted more leptin and showed impaired insulin sensitivity. While leptin mRNA expression increased in AAT from FRD rats, gene expression of insulin receptor substrate, IRS1 and IRS2 was significantly reduced. Our study demonstrates that administration of a FRD significantly affects insulin sensitivity and several AAT endocrine/metabolic functions. These alterations could be part of a network of interacting abnormalities triggered by FRD-induced oxidative stress at the AAT level. In view of the impaired glucose tolerance observed in FRD rats, these alterations could play a key role in both the development of metabolic syndrome (MS) and beta-cell failure.
Transient neonatal hypothyroidism due to a maternal vegan diet.
Shaikh, M G; Anderson, J M; Hall, S K; Jackson, M A
2003-01-01
Iodine is an important constituent of thyroid hormones and deficiency can lead to a range of problems depending on the degree and at what stage of life the deficiency occurs. We report a 10 day-old infant with a goitre, who presented with raised TSH on dried blood spot screening. It was observed that her mother also had a goitre. The mother was a vegan and, on dietary assessment, her iodine intake was extremely low. Both mother and infant had abnormal thyroid function tests. Mother was given Lugol's iodine and her thyroid function tests normalised. Her baby was initially prescribed thyroxine on the basis of the raised screening TSH. This was subsequently withdrawn at the age of 2 weeks, following a normal plasma TSH. Thyroid function tests remained normal and the goitre disappeared by the age of 2 months. Iodine deficiency is uncommon in the Western World. However the incidence may be rising in otherwise iodine replete areas, particularly in those who adhere to restrictive and unusual diets. In the case of pregnant mothers their unborn child's health is in danger. This report demonstrates the need to ascertain maternal diets early in antenatal care, and supplement if necessary to avoid risk to their own health and that of their offspring.
Galvao, Tatiana F; Brown, Bethany H; Hecker, Peter A; O'Connell, Kelly A; O'Shea, Karen M; Sabbah, Hani N; Rastogi, Sharad; Daneault, Caroline; Des Rosiers, Christine; Stanley, William C
2012-01-01
The impact of a high-fat diet on the failing heart is unclear, and the differences between polyunsaturated fatty acids (PUFA) and saturated fat have not been assessed. Here, we compared a standard low-fat diet to high-fat diets enriched with either saturated fat (palmitate and stearate) or PUFA (linoleic and α-linolenic acids) in hamsters with genetic cardiomyopathy. Male δ-sarcoglycan null Bio TO2 hamsters were fed a standard low-fat diet (12% energy from fat), or high-fat diets (45% fat) comprised of either saturated fat or PUFA. The median survival was increased by the high saturated fat diet (P< 0.01; 278 days with standard diet and 361 days with high saturated fat)), but not with high PUFA (260 days) (n = 30-35/group). Body mass was modestly elevated (∼10%) in both high fat groups. Subgroups evaluated after 24 weeks had similar left ventricular chamber size, function, and mass. Mitochondrial oxidative enzyme activity and the yield of interfibrillar mitochondria (IFM) were decreased to a similar extent in all TO2 groups compared with normal F1B hamsters. Ca(2+)-induced mitochondrial permeability transition pore opening was enhanced in IFM in all TO2 groups compared with F1B hamsters, but to a significantly greater extent in those fed the high PUFA diet compared with the standard or high saturated fat diet. These results show that a high intake of saturated fat improves survival in heart failure compared with a high PUFA diet or low-fat diet, despite persistent mitochondrial defects.
Redistribution of distal tubule Na+-Cl- cotransporter (NCC) in response to a high-salt diet.
Sandberg, Monica B; Maunsbach, Arvid B; McDonough, Alicia A
2006-08-01
The distal convoluted tubule (DCT) apical Na(+)-Cl(-) cotransporter (NCC) is responsible for the reabsorption of 5-10% of filtered NaCl and is the target for thiazide diuretics. NCC abundance is increased during dietary NaCl restriction and by aldosterone and decreased during a high-salt (HS) diet and mineralocorticoid blockade. This study tested the hypothesis that subcellular distribution of NCC is also regulated in response to changes in dietary salt. Six-week-old Sprague-Dawley rats were fed a normal-salt diet (NS; 0.4% NaCl) for 3 wk, then switched to a HS diet (4% NaCl) for 3 wk or a low-salt diet (LS; 0.07% NaCl) for 1 wk. Under anesthesia, kidneys were excised, renal cortex was dissected, and NCC was analyzed with specific antibodies after either 1) density gradient centrifugation followed by immunoblotting or 2) fixation followed by immunoelectron microscopy. The HS diet decreased NCC abundance to 0.50 +/- 0.10 of levels in LS diet (1.00 +/- 0.23). The HS diet also caused a redistribution of NCC from low to higher density membranes. Immunoelectron microscopy revealed that NCC resides predominantly in the apical membrane in rats fed the LS diet and increases in subapical vesicles in rats fed the HS diet. In conclusion, a HS diet provokes a rapid and persistent redistribution of NCC from apical to subapical membranes, a mechanism that would facilitate a homeostatic decrease in NaCl reabsorption in the DCT to compensate for increased dietary salt.
Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes.
Wilson, Rachel D; Islam, Md Shahidul
2012-01-01
The main objective of the study was to develop an alternative non-genetic rat model for type 2 diabetes (T2D). Six-week-old male Sprague-Dawley rats (190.56 ± 23.60 g) were randomly divided into six groups, namely: Normal Control (NC), Diabetic Control (DBC), Fructose-10 (FR10), Fructose-20 (FR20), Fructose-30 (FR30) and Fructose-40 (FR40) and were fed a normal rat pellet diet ad libitum for 2 weeks. During this period, the two control groups received normal drinking water whilst the fructose groups received 10, 20, 30 and 40% fructose in drinking water ad libitum, respectively. After two weeks of dietary manipulation, all groups except the NC group received a single injection (i.p.) of streptozotocin (STZ) (40 mg/kg b.w.) dissolved in citrate buffer (pH 4.4). The NC group received only a vehicle buffer injection (i.p.). One week after the STZ injection, animals with non-fasting blood glucose levels > 300 mg/dl were considered as diabetic. Three weeks after the STZ injection, the animals in FR20, FR30 and FR40 groups were eliminated from the study due to the severity of diabetes and the FR10 group was selected for the remainder of the 11 weeks experimental period. The significantly (p < 0.05) higher fluid intake, blood glucose, serum lipids, liver glycogen, liver function enzymes and insulin resistance (HOMA-IR) and significantly (p < 0.05) lower body weight, oral glucose tolerance, number of pancreatic β-cells and pancreatic β-cell functions (HOMA-β) of FR10 group demonstrate that the 10% fructose-fed followed by 40 mg/kg of BWSTZ injected rat can be a new and alternative model for T2D.
High sodium diet converts renal proteoglycans into pro-inflammatory mediators in rats
Shrestha, Pragyi; Sarpong, Kwaku A.; Yazdani, Saleh; el Masri, Rana; de Jong, Wilhelmina H. A.; Navis, Gerjan; Vivès, Romain R.; van den Born, Jacob
2017-01-01
Background High dietary sodium aggravates renal disease by affecting blood pressure and by its recently shown pro-inflammatory and pro-fibrotic effects. Moreover, pro-inflammatory modification of renal heparan sulfate (HS) can induce tissue remodeling. We aim to investigate if high sodium intake in normotensive rats converts renal HS into a pro-inflammatory phenotype, able to bind more sodium and orchestrate inflammation, fibrosis and lymphangiogenesis. Methods Wistar rats received a normal diet for 4 weeks, or 8% NaCl diet for 2 or 4 weeks. Blood pressure was monitored, and plasma, urine and tissue collected. Tissue sodium was measured by flame spectroscopy. Renal HS and tubulo-interstitial remodeling were studied by biochemical, immunohistochemical and qRT-PCR approaches. Results High sodium rats showed a transient increase in blood pressure (week 1; p<0.01) and increased sodium excretion (p<0.05) at 2 and 4 weeks compared to controls. Tubulo-interstitial T-cells, myofibroblasts and mRNA levels of VCAM1, TGF-β1 and collagen type III significantly increased after 4 weeks (all p<0.05). There was a trend for increased macrophage infiltration and lymphangiogenesis (both p = 0.07). Despite increased dermal sodium over time (p<0.05), renal concentrations remained stable. Renal HS of high sodium rats showed increased sulfation (p = 0.05), increased L-selectin binding to HS (p<0,05), and a reduction of sulfation-sensitive anti-HS mAbs JM403 (p<0.001) and 10E4 (p<0.01). Hyaluronan expression increased under high salt conditions (p<0.01) without significant changes in the chondroitin sulfate proteoglycan versican. Statistical analyses showed that sodium-induced tissue remodeling responses partly correlated with observed HS changes. Conclusion We show that high salt intake by healthy normotensive rats convert renal HS into high sulfated pro-inflammatory glycans involved in tissue remodeling events, but not in increased sodium storage. PMID:28594849
The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats
NASA Technical Reports Server (NTRS)
Reed, Adam H.; McCarty, Heidi L.; Evans, Glenda L.; Turner, Russell T.; Westerlind, Kim C.
2002-01-01
BACKGROUND: Lifestyle factors are known to affect skeletal development and integrity. Specifically, running has been reported to increase risk of fatigue fractures, whereas chronic alcohol consumption has been shown to reduce bone formation and bone mass. The combined effect of exercise and alcohol on the skeleton has yet to be explored, although alcohol consumption is common among certain physically active populations (e.g., military recruits, college athletes). It was hypothesized that chronic alcohol consumption would accentuate the inherent risk associated with endurance running exercise. METHODS: Six-month-old male Sprague Dawley rats were assigned to one of five groups: baseline, exercise-alcohol diet, exercise-normal diet, sham-alcohol diet, and sham-normal diet. Alcohol-fed rats (35% caloric intake) received a liquid diet ad libitum. Normal animals were pair-fed the identical diet with a maltose dextrin caloric substitute. Exercise was conducted on a motorized treadmill 5 days/wk for 16 weeks. Sham rats were placed on a stationary treadmill for matching time periods. Fluorochrome labels were administered 3 days before baseline and at 10 and 2 days before animals were killed. Heart, soleus, and rectus femoris muscles were wet weighed to assess the effects of training. Tibiae were collected for static and dynamic histomorphometric measurements on cancellous and cortical bone. RESULTS: Muscle weights were larger in the exercised rats versus the sham rats. Alcohol had no significant effect on skeletal muscle weight but did result in larger heart weights in both alcohol-treated groups. Cancellous and periosteal bone formation rates were significantly decreased in the alcohol-fed rats versus rats on the normal diet and were associated with a significant reduction in trabecular thickness in the tibial metaphysis. Cortical and cross-sectional areas were also significantly lower in the alcohol-fed groups compared with the non-alcohol-fed groups. Exercise had no significant effect on cancellous or cortical bone measurements. CONCLUSIONS: Chronic alcohol consumption significantly reduced bone formation. Exercise had no effect on the bone and did not attenuate any of the negative effects of alcohol. The results suggest that alcohol consumption weakens the skeleton and increases the incidence of endurance-exercise-related bone injuries. Thus, individuals who are participating in endurance exercise and consuming alcohol may be at greater risk for exercise-related skeletal injuries. Further investigation of the potential for alcohol to induce detrimental effects on the hearts of individuals participating in endurance exercise is indicated.
Arjamaa, O; Mäkinen, T; Turunen, L; Huttunen, P; Leppäluoto, J; Vuolteenaho, O; Rintamäki, H
2001-05-01
The objective of the study was to compare blood pressure and endocrine responses in a cold pressure test in young healthy subjects who had shown increased blood pressure during an acutely increased sodium intake. Subjects (n = 53) added 121 mmol sodium into their normal diet for one week. If the mean arterial pressure had increased by a minimum of 5 mmHg compared to the control measure, they were selected for the experiments. The selected subjects (n = 8) were given 121 mmol supplemental sodium d-1 for 14 days after which they immersed the right hand into a cold (+10 degrees C) water bath for 5 min. The blood pressure increased (P < 0.05) during the test and was independent of the sodium intake. The plasma noradrenaline increased from 2.41 +/- 0.38 nmol l-1 to 2.82 +/- 0.42 nmol l-1 (P < 0.05) with normal diet and from 1.85 +/- 0.29 nmol l-1 to 2.40 +/- 0.37 nmol l-1 (P < 0.05) with high sodium diet. The starting concentrations and the endpoint concentrations were statistically similar. The plasma levels of natriuretic peptides (NT-proANP, ANP and BNP) did not change during the test, and the concentrations were independent of the sodium diet. To conclude, acutely increased sodium intake does not change blood pressure or hormonal responses in a cold pressor test in young healthy subjects.
Boudry, Gaëlle; Hamilton, M. Kristina; Chichlowski, Maciej; Wickramasinghe, Saumya; Barile, Daniela; Kalanetra, Karen M.; Mills, David A.; Raybould, Helen E.
2017-01-01
Obesity is characterized by altered gut homeostasis, including dysbiosis and increased gut permeability closely linked to the development of metabolic disorders. Milk oligosaccharides are complex sugars that selectively enhance the growth of specific beneficial bacteria in the gastrointestinal tract and could be used as prebiotics. The aim of the study was to demonstrate the effects of bovine milk oligosaccharides (BMO) and Bifidobacterium longum ssp. infantis (B. infantis) on restoring diet-induced obesity intestinal microbiota and barrier function defects in mice. Male C57/BL6 mice were fed a Western diet (WD, 40% fat/kcal) or normal chow (C, 14% fat/kcal) for 7 wk. During the final 2 wk of the study, the diet of a subgroup of WD-fed mice was supplemented with BMO (7% wt/wt). Weekly gavage of B. infantis was performed in all mice starting at wk 3, yet B. infantis could not be detected in any luminal contents when mice were killed. Supplementation of the WD with BMO normalized the cecal and colonic microbiota with increased abundance of Lactobacillus compared with both WD and C mice and restoration of Allobaculum and Ruminococcus levels to that of C mice. The BMO supplementation reduced WD-induced increase in paracellular and transcellular flux in the large intestine as well as mRNA levels of the inflammatory marker tumor necrosis factor α. In conclusion, BMO are promising prebiotics to modulate gut microbiota and intestinal barrier function for enhanced health. PMID:28131576
Lalanza, Jaume F; Caimari, Antoni; del Bas, Josep M; Torregrosa, Daniel; Cigarroa, Igor; Pallàs, Mercè; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M
2014-01-01
Among adolescents, overweight, obesity and metabolic syndrome are rapidly increasing in recent years as a consequence of unhealthy palatable diets. Animal models of diet-induced obesity have been developed, but little is known about the behavioural patterns produced by the consumption of such diets. The aim of the present study was to determine the behavioural and biochemical effects of a cafeteria diet fed to juvenile male and female rats, as well as to evaluate the possible recovery from these effects by administering standard feeding during the last week of the study. Two groups of male and female rats were fed with either a standard chow diet (ST) or a cafeteria (CAF) diet from weaning and for 8 weeks. A third group of males (CAF withdrawal) was fed with the CAF diet for 7 weeks and the ST in the 8th week. Both males and females developed metabolic syndrome as a consequence of the CAF feeding, showing overweight, higher adiposity and liver weight, increased plasma levels of glucose, insulin and triglycerides, as well as insulin resistance, in comparison with their respective controls. The CAF diet reduced motor activity in all behavioural tests, enhanced exploration, reduced anxiety-like behaviour and increased social interaction; this last effect was more pronounced in females than in males. When compared to animals only fed with a CAF diet, CAF withdrawal increased anxiety in the open field, slightly decreased body weight, and completely recovered the liver weight, insulin sensitivity and the standard levels of glucose, insulin and triglycerides in plasma. In conclusion, a CAF diet fed to young animals for 8 weeks induced obesity and metabolic syndrome, and produced robust behavioural changes in young adult rats, whereas CAF withdrawal in the last week modestly increased anxiety, reversed the metabolic alterations and partially reduced overweight.
Lalanza, Jaume F.; Caimari, Antoni; del Bas, Josep M.; Torregrosa, Daniel; Cigarroa, Igor; Pallàs, Mercè; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M.
2014-01-01
Among adolescents, overweight, obesity and metabolic syndrome are rapidly increasing in recent years as a consequence of unhealthy palatable diets. Animal models of diet-induced obesity have been developed, but little is known about the behavioural patterns produced by the consumption of such diets. The aim of the present study was to determine the behavioural and biochemical effects of a cafeteria diet fed to juvenile male and female rats, as well as to evaluate the possible recovery from these effects by administering standard feeding during the last week of the study. Two groups of male and female rats were fed with either a standard chow diet (ST) or a cafeteria (CAF) diet from weaning and for 8 weeks. A third group of males (CAF withdrawal) was fed with the CAF diet for 7 weeks and the ST in the 8th week. Both males and females developed metabolic syndrome as a consequence of the CAF feeding, showing overweight, higher adiposity and liver weight, increased plasma levels of glucose, insulin and triglycerides, as well as insulin resistance, in comparison with their respective controls. The CAF diet reduced motor activity in all behavioural tests, enhanced exploration, reduced anxiety-like behaviour and increased social interaction; this last effect was more pronounced in females than in males. When compared to animals only fed with a CAF diet, CAF withdrawal increased anxiety in the open field, slightly decreased body weight, and completely recovered the liver weight, insulin sensitivity and the standard levels of glucose, insulin and triglycerides in plasma. In conclusion, a CAF diet fed to young animals for 8 weeks induced obesity and metabolic syndrome, and produced robust behavioural changes in young adult rats, whereas CAF withdrawal in the last week modestly increased anxiety, reversed the metabolic alterations and partially reduced overweight. PMID:24482678
Gonçalves, Inês O; Passos, Emanuel; Rocha-Rodrigues, Sílvia; Torrella, Joan R; Rizo, David; Santos-Alves, Estela; Portincasa, Piero; Martins, Maria J; Ascensão, António; Magalhães, José
2015-04-01
Lieber-DeCarli diet has been used to induce obesity and non-alcoholic steatohepatitis (NASH). As scarce anatomical and clinical-related information on this diet model exists and being exercise an advised strategy to counteract metabolic diseases, we aimed to analyze the preventive (voluntary physical activity - VPA) and therapeutic (endurance training - ET) effect of exercise on clinical/anatomical features of rats fed with Lieber-DeCarli diet. In the beginning of the protocol, Sprague-Dawley rats were divided into standard-diet sedentary (SS, n = 20), standard-diet VPA (SVPA, n = 10), high-fat diet sedentary (HS, n = 20) and high-fat diet VPA (HVPA, n = 10) groups. After 9-weeks, half (n = 10) of SS and HS groups were engaged in an ET program (8 wks/5 d/wk/60 min/day). At this time, a blood sample was collected for biochemical analysis. At the end of protocol (17-weeks) anatomic measures were assessed. Heart, liver, femur and visceral fat were weighted and blood was collected again. Liver section was used for histopathological examination. At 17-weeks, high-fat diet increased visceral adiposity (HS vs. SS), which was counteracted by both exercises. However, ET was the only intervention able to diminished obesity-related measures and the histological features of NASH. Moreover, blood analysis at 9 weeks showed that high-fat diet increased ALT, AST, cholesterol and HDL while VLDL and TG levels were decreased (HS vs. SS). Notably, although these parameters were counteracted after 9-weeks of VPA, they were transitory and not observed after 17-weeks. ET used as a therapeutic tool mitigated the clinical/anatomical-related features induced by Liber-DeCarli diet, thus possibly contributing to control obesity and metabolic disorders. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Li, Xiao; Jiang, Ping; Fu, Chang-geng
2010-04-01
To observe the difference in fatty degree, glucose-lipid disorder and adipose-hormones between diet induced obesity (DIO) rats and diet induced obesity resistance (DIO-R) rats, and to explore the effect and acting mechanism of Chinese drugs for strengthening Pi (CD-SP) and those for both strengthening Pi and dissolving phlegm (CD-SPDP) in inhibiting obesity. Excepting eight rats allocated in the blank control group, the other 54 rats were fed with high-lipid forage for 12 weeks to establish models of obesity. Finally, 30 DIO rats and 8 DIO-R rats (shown by their body weight) were obtained. The DIO rats were divided into three groups, which were given gastric perfusion, respectively, with normal saline (Group A), CD-SP (Group B), and CD-SPDP (Group C). Fourteen weeks later, the animals' body weight (BW), length (BL), blood levels of fasting insulin (FIn), fasting glucose (FBG), triglyceride (TG), cholesterol (TC), leptin (LP), neuropeptide Y (NPY), C-reactive protein (CRP), tumor necrosis factor-alpha(TNF-alpha), adiponectin (AN), and resistin (RS) were measured; insulin resistance index (IRI) was calculated, and the degree of obesity and lipid content in abdominal cavity of rats were estimated. Moreover, the levels of LP, CRP, TNF-alpha, AN and RS in homogenate of rats' adipose tissues (ATH) were determined. After 12 weeks of high-lipid diet, the BW of DIO rats was higher than that of normal or DIO-R rats. After a 14-week continuous high-lipid diet feeding, in DIO rats, BW, lipid coefficient (LC), and IRI were significantly increased (P<0.01); serum levels of TNF-alpha, LP and AN were lower, NPY was higher, while the ATH levels of LP and AN were lower and TNF-alpha was higher in DIO rats than in DIO-R rats (P<0.05 or P<0.01); blood levels of FBG and lipids in DIO rats showed an increasing trend but was statistically insignificant (P>0.05); no significant difference was found in serum levels of CRP and RS due to the overly high data dispersion. Comparisons of the 3 DIO groups showed that BW, body weight index (BWI), LC and IRI were significantly lowered after treatment (P<0.01) in Group C, while these indexes were not significantly different between Group A and B; the serum levels of TNF-alpha, LP, and AN increased, NPY decreased in Group B and C, ATH levels of LP and AN increased, and TNF-alpha decreased in the two groups; but NPY, LP, and AN in blood and ATH were higher in Group C than those in Group B (P<0.05 or P<0.01). CD-SPDP could inhibit DIO and IR, showing that the effect is better than that of CD-SP, and its mechanism is related to promotion of LP and AN secretion and elevation of serum NPY.
Reddy, Kondreddy Eswar; Jeong, JinYoung; Baek, Youl-Chang; Oh, Young Kyun; Kim, Minseok; So, Kyung Min; Kim, Min Ji; Kim, Dong Woon; Park, Sung Kwon; Lee, Hyun-Jeong
2017-01-01
Objective The main objective of this study was to determine the effect of different diets for early-weaned (EW) calves on rumen development, and how this affects fat deposition in the longissimus dorsi of adult Korean Hanwoo beef cattle. Methods Three EW groups were established (each n = 12) in which two- week-old Hanwoo calves were fed for ten weeks with milk replacer+concentrate (T1), milk replacer+concentrate+ roughage (T2), or milk replacer+concentrate+30% starch (T3); a control group (n = 12) was weaned as normal. At six months, 5 calves of each group were slaughtered and their organs were assessed and rumen papillae growth rates were measured. The remaining calves (n = 7 in each group) were raised to 20 months for further analysis. Results Twenty-month-old EW calves had a higher body weight (BW), backfat thickness (BF), longissimus dorsi muscle area (LMA) and intramuscular fat (IMF) than the control (p<0.05). Organ growth, rumen histology, and gene expression patterns in the 6-month-old calves were positively related to the development of marbling in the loin, as assessed by ultrasound analysis (p<0.05). In the group fed the starch-enriched diet (T3), higher BW, BF, LMA, and IMF were present. The IMF beef quality score of 20-month-old cattle was 1+ for the T2 and T3 diets and 1 for the T1 diet (p<0.05). Conclusion Papillae development was significantly greater in calves fed on high-concentrate diets and this may have resulted in the improved beef quality in the EW dietary groups compared to the control. PMID:28728406
Veskovic, Milena; Mladenovic, Dusan; Jorgacevic, Bojan; Stevanovic, Ivana; de Luka, Silvio; Radosavljevic, Tatjana
2015-04-01
Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control - continuously fed with standard chow; (2) LA - fed with standard chow and receiving LA; (3) MCD2 - fed with MCD diet for two weeks, and (4) MCD2+LA - fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency. © 2014 by the Society for Experimental Biology and Medicine.
Carbonneau, Élise; Royer, Marie-Michelle; Richard, Caroline; Couture, Patrick; Desroches, Sophie; Lemieux, Simone; Lamarche, Benoît
2017-01-01
The objective of this study was to investigate the impact of the Mediterranean diet (MedDiet) consumed before and after weight loss on eating behavioral traits as measured by the Three-Factor Eating Questionnaire (TFEQ) in men with metabolic syndrome (MetS). In this fixed sequence study, 19 men with MetS (National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) criteria), aged between 24 and 62 years, first consumed a five-week standardized North American control diet followed by a five-week MedDiet, both under weight-maintaining controlled-feeding conditions. This was followed by a 20-week caloric restriction weight loss period in free-living conditions, without specific recommendations towards adhering to the principles of the MedDiet. Participants were finally subjected to a final five-week MedDiet phase under isoenergetic controlled-feeding conditions. The MedDiet before weight loss had no impact on eating behavioral traits. Body weight reduction by caloric restriction (−10.2% of initial weight) was associated with increased cognitive restraint (p < 0.0001) and with reduced disinhibition (p = 0.02) and susceptibility to hunger (p = 0.01). Feeding the MedDiet for five weeks under isoenergetic conditions after the weight loss phase had no further impact on eating behavioral traits. Results of this controlled-feeding study suggest that consumption of the MedDiet per se has no effect on eating behavioral traits as measured by TFEQ, unless it is combined with significant weight loss. PMID:28335489
Lee, Yu-Mi; Kim, Se-A; Lee, In-Kyu; Kim, Jung-Guk; Park, Keun-Gyu; Jeong, Ji-Yun; Jeon, Jae-Han; Shin, Ji-Yeon; Lee, Duk-Hee
2016-01-01
Several intervention studies have suggested that vegetarian or vegan diets have clinical benefits, particularly in terms of glycemic control, in patients with type 2 diabetes (T2D); however, no randomized controlled trial has been conducted in Asians who more commonly depend on plant-based foods, as compared to Western populations. Here, we aimed to compare the effect of a vegan diet and conventional diabetic diet on glycemic control among Korean individuals. Participants diagnosed with T2D were randomly assigned to follow either a vegan diet (excluding animal-based food including fish; n = 46) or a conventional diet recommended by the Korean Diabetes Association 2011 (n = 47) for 12 weeks. HbA1c levels were measured at weeks 0, 4, and 12, and the primary study endpoint was the change in HbA1c levels over 12 weeks. The mean HbA1c levels at weeks 0, 4, and 12 were 7.7%, 7.2%, and 7.1% in the vegan group, and 7.4%, 7.2%, and 7.2% in the conventional group, respectively. Although both groups showed significant reductions in HbA1C levels, the reductions were larger in the vegan group than in the conventional group (-0.5% vs. -0.2%; p-for-interaction = 0.017). When only considering participants with high compliance, the difference in HbA1c level reduction between the groups was found to be larger (-0.9% vs. -0.3%). The beneficial effect of vegan diets was noted even after adjusting for changes in total energy intake or waist circumference over the 12 weeks. Both diets led to reductions in HbA1c levels; however, glycemic control was better with the vegan diet than with the conventional diet. Thus, the dietary guidelines for patients with T2D should include a vegan diet for the better management and treatment. However, further studies are needed to evaluate the long-term effects of a vegan diet, and to identify potential explanations of the underlying mechanisms. CRiS KCT0001771.
Use of Purina Pro Plan Veterinary Diet UR Urinary St/Ox to Dissolve Struvite Cystoliths.
Torres-Henderson, Camille; Bunkers, Jamie; Contreras, Elena T; Cross, Emily; Lappin, Michael R
2017-06-01
The objective of this study was to determine the efficacy of feeding the commercially available diet, Purina Pro Plan Veterinary Diets UR Urinary St/Ox, for the dissolution of struvite cystoliths in cats with naturally occurring disease. Twelve cats with clinical signs of lower urinary tract disease and cystoliths confirmed via radiographs were enrolled. The cats were fed the study diet ad libitum and assessed by abdominal radiographs weekly. Cats with cystoliths that resolved based on radiographs and confirmatory ultrasound examination were considered diet successes. Cats with no change in cystolith size after 2-6 weeks underwent cystotomy for stone removal, aerobic culture and antimicrobial susceptibility testing, and analysis. All cats accepted the study diet, and weight loss was not noted over the course of the study. Total cystolith dissolution was achieved by week 2 for 5 cats, which were presumed to have struvite cystoliths. All other cats underwent cystotomy for stone removal after radiographic evidence of cystoliths were still present at 2 weeks (1 cat with severe signs), 4 weeks (5 cats), or 6 weeks (1 cat). The cystoliths that were surgically removed were calcium oxalate (5 cats) and mixed (2 cats) and would not be expected to dissolve with this diet. Follow-up radiographs from 6 cats fed the diet long term (3 presumed struvite and 3 with other cystoliths removed surgically) were collected from 1 to 6 months after beginning the study and showed no evidence of cystolith recurrence. While larger case numbers are needed, these results suggest that feeding Purina Pro Plan Veterinary Diets UR Urinary St/Ox can successfully dissolve cystoliths that are likely struvite and may lessen the risk of recurrence of struvite and calcium oxalate cystoliths. Copyright © 2017 Elsevier Inc. All rights reserved.
Tharakan, John F.; Yu, Yong M.; Zurakowski, David; Roth, Rachel M.; Young, Vernon R.; Castillo, Leticia
2008-01-01
Summary Background & aims It is not known whether arginine homeostasis is negatively affected by a “long term” dietary restriction of arginine and its major precursors in healthy adults. To assess the effects of a 4-week arginine- and precursor-free dietary intake on the regulatory mechanisms of arginine homeostasis in healthy subjects. Methods Ten healthy adults received a complete amino acid diet for 1 week (control diet) and following a break period, six subjects received a 4-week arginine, proline, glutamate and aspartate-free diet (APF diet). The other four subjects continued for 4 weeks with the complete diet. On days 4 and 7 of the first week and days 25 and 28 of the 4-week period, the subjects received 24-h infusions of arginine, citrulline, leucine and urea tracers. Results During the 4-week APF, plasma arginine fluxes for the fed state, were significantly reduced. There were no significant differences for citrulline, leucine or urea fluxes. Arginine de novo synthesis was not affected by the APF intake. However, arginine oxidation was significantly decreased. Conclusions In healthy adults, homeostasis of arginine under a long term arginine- and precursor-free intake is achieved by decreasing catabolic rates, while de novo arginine synthesis is maintained. PMID:18590940
Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight
Perron, Isaac J.; Pack, Allan I.; Veasey, Sigrid
2015-01-01
Study Objectives: Excessive daytime sleepiness commonly affects obese people, even in those without sleep apnea, yet its causes remain uncertain. We sought to determine whether acute dietary changes could induce or rescue wake impairments independent of body weight. Design: We implemented a novel feeding paradigm that generates two groups of mice with equal body weight but opposing energetic balance. Two subsets of mice consuming either regular chow (RC) or high-fat diet (HFD) for 8 w were switched to the opposite diet for 1 w. Sleep recordings were conducted at Week 0 (baseline), Week 8 (pre-diet switch), and Week 9 (post-diet switch) for all groups. Sleep homeostasis was measured at Week 8 and Week 9. Participants: Young adult, male C57BL/6J mice. Measurements and Results: Differences in total wake, nonrapid eye movement (NREM), and rapid eye movement (REM) time were quantified, in addition to changes in bout fragmentation/consolidation. At Week 9, the two diet switch groups had similar body weight. However, animals switched to HFD (and thus gaining weight) had decreased wake time, increased NREM sleep time, and worsened sleep/wake fragmentation compared to mice switched to RC (which were in weight loss). These effects were driven by significant sleep/wake changes induced by acute dietary manipulations (Week 8 → Week 9). Sleep homeostasis, as measured by delta power increase following sleep deprivation, was unaffected by our feeding paradigm. Conclusions: Acute dietary manipulations are sufficient to alter sleep and wakefulness independent of body weight and without effects on sleep homeostasis. Citation: Perron IJ, Pack AI, Veasey S. Diet/energy balance affect sleep and wakefulness independent of body weight. SLEEP 2015;38(12):1893–1903. PMID:26158893
Jing, Jie; Qu, Ai-li; Ding, Xiao-mei; Hei, Yu-na
2015-04-01
To analyze the biomechanical healing process on rigid fixation of sagittal fracture of the mandibular condyle (SFMC), and to provide guidelines for surgical treatment. Three-dimensional finite element model (3D-FEAM) of mandible and condyle was established. The right condyle was simulated as SFMC with 0.1 mm space across the condyle length ways. The 3D-FEAM of rigid fixation was established. The biomechanical factors such as stress distribution of condylar surface, displacement around fracture, stress on the plate and stress shielding were calculated during 0, 4, 8 and 12-week after rigid fixation. The maximum equivalent stress of normal condyle was located at the area of middle 1/3 of condylar neck. The maximum equivalent stress at 0-week after fixation was 23 times than that on normal condyle. They were located at the condylar stump and the plate near inferior punctual areas of fracture line. There were little stress on the other areas. The maximum equivalent stress at 4, 8 and 12-week was approximately 6 times than that on normal condyle. They were located at the areas same as the area at 0-week. There were little stress on the other areas at the condyle. The maximum total displacement and maximum total corner were increased 0.57-0.75 mm and 0.01-0.09° respectively during healing process. The maximum equivalent stress at 0-week on the condylar trump was 5-6 times compared with that at 4, 8, and 12-week. The maximum equivalent stress, maximum total displacement and maximum total corner on the fractured fragment were not changed significantly during healing process. The maximum equivalent stress at 0-week on the plate was 7-9 times compared with that at 4, 8, 12-week. The stress of the condyle and stress shielding of the plate may be the reasons of absorbing and rebuilding on the condyle in healing process of SFMC. The biomechanical parameters increase obviously at 4-week after fixation. Elastic intermaxillary traction is necessary to decrease total displacement and total corner of the condyle, and liquid diet is necessary to decrease equivalent stress within 4 weeks. Rehabilitation training should be used to recover TMJ functions after 4 weeks because the condyle and mandible have the ability to carry out normal functions.
Liver Injury and Fibrosis Induced by Dietary Challenge in the Ossabaw Miniature Swine
Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N.; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C.
2015-01-01
Background Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Methods Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. Results The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. Conclusions This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides. PMID:25978364
Whole-body vibration training effect on physical performance and obesity in mice.
Huang, Chi-Chang; Tseng, Tzu-Ling; Huang, Wen-Ching; Chung, Yi-Hsiu; Chuang, Hsiao-Li; Wu, Jyh-Horng
2014-01-01
The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity.
Whole-Body Vibration Training Effect on Physical Performance and Obesity in Mice
Huang, Chi-Chang; Tseng, Tzu-Ling; Huang, Wen-Ching; Chung, Yi-Hsiu; Chuang, Hsiao-Li; Wu, Jyh-Horng
2014-01-01
The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity. PMID:25317067
Al-Assi, Ola; Ghali, Rana; Mroueh, Ali; Kaplan, Abdullah; Mougharbil, Nahed
2018-01-01
Cardiac autonomic neuropathy (CAN) is an early cardiovascular complication of diabetes occurring before metabolic derangement is evident. The cause of CAN remains elusive and cannot be directly linked to hyperglycemia. Recent clinical data report cardioprotective effects of some antidiabetic drugs independent of their hypoglycemic action. Here, we used a rat model receiving limited daily increase in calories from fat (HC diet) to assess whether mild metabolic challenge led to CAN in absence of interfering effects of hyperglycemia, glucose intolerance, or obesity. Rats receiving HC diet for 12 weeks showed reduction in baroreceptor sensitivity and heart rate variability despite lack of change in baseline hemodynamic and cardiovascular structural parameters. Impairment of cardiac autonomic control was accompanied with perivascular adipose inflammation observed as an increased inflammatory cytokine expression, together with increased cardiac oxidative stress, and signaling derangement characteristic of diabetic cardiomyopathy. Two-week treatment with metformin or pioglitazone rectified the autonomic derangement and corrected the molecular changes. Switching rats to normal chow but not to isocaloric amounts of HC for two weeks reversed CAN. As such, we conclude that adipose inflammation due to increased fat intake might underlie development of CAN and, hence, the beneficial effects of metformin and pioglitazone. PMID:29643979
Importance of milk replacer intake and composition in rearing orphan foals
Cymbaluk, Nadia F.; Smart, Marion E.; Bristol, Frank M.; Pouteaux, Victor A.
1993-01-01
Effects of milk replacer composition and intake on the growth of orphan foals were evaluated. Twenty foals were assigned to four treatments: 1) mare-nursed, 2) commercial foal milk replacer at recommended intakes (standard), 3) commercial foal milk replacer at high intakes (high), and 4) acidified replacer at recommended intakes (acidified). Foals fed milk replacer diets were weaned at 12-24 hours postpartum and fed milk replacer for 50 days. Mare-nursed foals were weaned between 52 and 56 days of age. Foals fed replacer diets gained 12% to 28% less weight than mare-nursed foals up to two weeks of age. However, by four months of age, weights of replacer-fed foals were similar to those of mare-nursed foals and 32 other mare-nursed foals at the farm weaned between three and four months postparium. Foals drank 10 to 12 L/100 kg body weight (BW) in fluid replacer daily over the trial period. During the first week, high intake foals consumed 26% more replacer (p<0.05) than foals fed acidified or standard diets. This higher intake resulted in diarrhea earlier (6-11 days vs 11-22 days) and for a longer time (6.3 days vs 2.5-3.6 days) than in foals fed recommended amounts. Mare-nursed foals developed “foal heat scours” in the second week postpartum. After the first week, foals fed high replacer diet voluntarily consumed the same volume of fluid replacer as foals fed the standard intake. Foals ate less than 1 kg grain mix/100 kg BW daily to one month of age, then increased intake to 1.5-2 kg/ 100 kg BW to weaning. Water intake was 20-40% of daily fluid intake and was correlated (r = 0.85) to dry matter intake. Foals in the high intake group ate less (p<0.05) solid feed and drank less water than foals fed the standard and acidified diets. The foal's stomach capacity appears to limit meal size and thus replacer intake. If recommended feeding intervals are used, replacer intakes by foals are less than 15% BW daily. High volume intakes appeared to prolong diarrhea. Normal growth rates occur when replacer and good-quality feeds are fed concurrently. PMID:17424268
Rusli, Fenni; Lute, Carolien; Boekschoten, Mark V; van Dijk, Miriam; van Norren, Klaske; Menke, Aswin L; Müller, Michael; Steegenga, Wilma T
2017-05-01
Calorie restriction (CR) has been shown to extend life- and health-span in model species. For most humans, a life-long CR diet is too arduous to adhere to. The aim of this study was to explore whether weekly intermittent CR can (1) provide long-term beneficial effects and (2) counteract diet-induced obesity in male aging mice. In this study, we have exposed C57Bl/6J mice for 24 months to an intermittent (INT) diet, alternating weekly between CR of a control diet and ad libitum moderate-fat (MF) feeding. This weekly intermittent CR significantly counteracted the adverse effects of the MF diet on mortality, body weight, and liver health markers in 24-month-old male mice. Hepatic gene expression profiles of INT-exposed animals appeared much more comparable to CR- than to MF-exposed mice. At 12 months of age, a subgroup of MF-exposed mice was transferred to the INT diet. Gene expression profiles in the liver of the 24-month-old diet switch mice were highly similar to the INT-exposed mice. However, a small subset of genes was consistently changed by the MF diet during the first phase of life. Weekly intermittent CR largely, but not completely, reversed adverse effects caused by a MF diet. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Riahi, Simin; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Soleimany, Mansureh
2015-01-01
Objective(s): Lectin-like low density lipoprotein receptor (LOX-1) has pivot role in vascular complications, which is upregulated in numerous pathological conditions. Since exercise has beneficial effects in prevention of hyperlipidemic complications, present study examined protective effects of aerobic exercise through reduction of LOX-1 expression in heart during dyslipidemia. Materials and Methods: Four groups of rats were used (N=25): Normal, Normal and exercise, High fat and High fat and exercise. High fat diet (HFD) was made by adding 10% animal oil, 2% cholesterol and 0.5% colic acid to standard rodent chow. Exercise protocol consisted of swimming 1 hr/day, and 5 days/week for 8 weeks. Plasma lipids were evaluated at the end of experiment, 48 hr after final session of exercise. At the end, rats were sacrificed and heart was removed for determination of malondialdehyde (MDA) content, and LOX-1 expression. Results: HFD meaningfully changed lipid profile (>50%), but chronic exercise had no significant effects on lipid profile. LOX-1 expression was significantly increased in heart of rats fed with HFD, while swimming exercise considerably reduced gene expression of LOX-1. MDA content was significantly enhanced in rats fed with HFD (4.37±0.6 nmol/mg, P<0.01) compared to normal group (1.56±0.48 nmol/mg), whereas swimming exercise decreased MDA level of heart in rats fed with HFD (2.28±0.32, P<0.01). Conclusion: Findings indicated that swimming exercise is able to diminish heart expression of LOX-1 receptor concomitant reduction of oxidative stress. Since these parameters are involved in generation of dyslipidemic complications, swimming exercise is a good candidate to reduce these complications. PMID:26557970
Shah, Binita; Ganguzza, Lisa; Slater, James; Newman, Jonathan D; Allen, Nicole; Fisher, Edward; Larigakis, John; Ujueta, Francisco; Gianos, Eugenia; Guo, Yu; Woolf, Kathleen
2017-12-01
Multiple studies demonstrate the benefit of a vegan diet on cardiovascular risk factors when compared to no intervention or usual dietary patterns. The aim of this study is to evaluate the effect of a vegan diet versus the American Heart Association (AHA)-recommended diet on inflammatory and glucometabolic profiles in patients with angiographically defined coronary artery disease (CAD). This study is a randomized, open label, blinded end-point trial of 100 patients with CAD as defined by ≥50% diameter stenosis in a coronary artery ≥2 mm in diameter on invasive angiography. Participants are randomized to 8 weeks of either a vegan or AHA-recommended diet (March 2014 and February 2017). Participants are provided weekly groceries that adhere to the guidelines of their diet. The primary endpoint is high sensitivity C-reactive concentrations. Secondary endpoints include anthropometric data, other markers of inflammation, lipid parameters, glycemic markers, endothelial function, quality of life data, and assessment of physical activity. Endpoints are measured at each visit (baseline, 4 weeks, and 8 weeks). Dietary adherence is measured by two weekly 24-hour dietary recalls, a 4-day food record during the week prior to each visit, and both plasma and urine levels of trimethylamine- N -oxide at each visit. This study is the first to comprehensively assess multiple indices of inflammation and glucometabolic profile in a rigorously conducted randomized trial of patients with CAD on a vegan versus AHA-recommended diet.
Olivry, Thierry; Mueller, Ralf S; Prélaud, Pascal
2015-08-28
Restrictive (i.e. elimination)-provocation dietary trials remain the standard of care to diagnose cutaneous adverse food reactions (CAFRs) in dogs and cats. There is currently no consensus on the duration of elimination diet trials that would permit the highest sensitivity of diagnosis of CAFR in companion animals. The search for, and review and analysis of the best evidence available as of December 14, 2014 suggests that, by 5 weeks in dogs and 6 weeks in cats after starting an elimination diet, more than 80 % of patients had achieved a remission of clinical signs of CAFR. Increasing the diet trial duration to 8 weeks leads to a complete remission in more than 90 % of dogs and cats with CAFR. For diagnosing CAFRs in more than 90 % of dogs and cats, elimination diet trials should last at least 8 weeks.
USDA-ARS?s Scientific Manuscript database
The effects of Therapeutic Lifestyle Change (TLC) diets, low and high in dietary fish on apolipoprotein metabolism were examined. Subjects were provided with a Western diet for 6-weeks followed by 24-weeks of either of two TLC diets (10/group). Apolipoprotein kinetics were determined in the fed stat...
Long-term voluntary running improves diet-induced adiposity in young adult mice
USDA-ARS?s Scientific Manuscript database
The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...
Hussain, Mona A.; Abogresha, Noha M.; Tamany, Dalia A.; Lotfy, Mariam
2016-01-01
Introduction Globally, the prevalence of overweight and obesity is increasing, predisposing females to health hazards including compromised reproductive capacity. Our objective was to investigate the effect of ad libitum, isocalorically and hypocalorically restricted high-fat diet (HFD) feeding on reproductive function in diet-induced obese female rats. Material and methods Twenty female albino Sprague Dawley rats were used; 5 rats were kept on a standard pellet animal diet to serve as a control group (A) and 15 rats were fed a HFD for 9 weeks to induce obesity. The HFD fed animals were equally divided into three groups: an ad libitum HFD group (B), an isocalorically restricted HFD group (C), and a hypocalorically restricted HFD group (D). Estrous cyclicity, hormonal levels, ovarian histopathology and caspase-3 immunoreactivity were evaluated. Results The HFD-fed rats in groups B, C and D had significant irregularity in estrous cyclicity Vs group A (p = 0.001, 0.003 and 0.034 respectively). Groups C and D had significant reduction in serum progesterone level (p = 0.006 and 0.018 Vs A). Isocaloric restriction of HFD feeding significantly increased serum LH. Groups B and C had a significant increase in caspase-3 expression in the ovary (p < 0.001). Conclusions Ad libitum HFD interfered with the normal estrous cycle and enhanced apoptosis of luteal cells in obese female rats. The HFD restriction interfered with the normal estrous cycle and caused functional insufficiency of the corpus luteum in obese female rats. These results suggest that HFD feeding determinately affects female reproductive function independently of caloric intake. PMID:27478474
Khoo, Joan; Piantadosi, Cynthia; Duncan, Rae; Worthley, Stephen G; Jenkins, Alicia; Noakes, Manny; Worthley, Matthew I; Lange, Kylie; Wittert, Gary A
2011-10-01
Abdominal obesity and type 2 diabetes mellitus are associated with sexual and endothelial dysfunction, lower urinary tract symptoms (LUTS), and chronic systemic inflammation. To determine the effects of diet-induced weight loss and maintenance on sexual and endothelial function, LUTS, and inflammatory markers in obese diabetic men. Weight, waist circumference (WC), International Index of Erectile Function (IIEF-5) score, Sexual Desire Inventory (SDI) score, International Prostate Symptom Scale (IPSS) score, plasma fasting glucose and lipids, testosterone, sex hormone binding globulin (SHBG), inflammatory markers (high-sensitivity C-reactive protein [CRP] and interleukin-6 [IL-6]) and soluble E-selectin, and brachial artery flow-mediated dilatation (FMD) were measured at baseline, 8 weeks, and 52 weeks. Over 8 weeks, 31 abdominally obese (body mass index ≥ 30 kg/m(2) , WC ≥ 102 cm), type 2 diabetic men (mean age 59.7 years) received either a meal replacement-based low-calorie diet (LCD) ∼1,000 kcal/day (N = 19) or low-fat, high-protein, reduced-carbohydrate (HP) diet (N = 12) prescribed to decrease intake by ∼600 kcal/day. Subjects continued on, or were switched to, the HP diet for another 44 weeks. At 8 weeks, weight and WC decreased by ∼10% and ∼5% with the LCD and HP diet, respectively. Both diets significantly improved plasma glucose, low-density lipoprotein (LDL), SHBG, IIEF-5, SDI and IPSS scores, and endothelial function (increased FMD, reduced soluble E-selectin). Erectile function, sexual desire, and urinary symptoms improved by a similar degree with both diets. CRP and IL-6 decreased with the HP diet. At 52 weeks, reductions in weight, WC, and CRP were maintained. IIEF-5, SDI, and IPSS scores improved further. Diet-induced weight loss induces rapid improvement of sexual, urinary, and endothelial function in obese diabetic men. A high-protein, carbohydrate-reduced, low-fat diet also reduces systemic inflammation and sustains these beneficial effects to 1 year. © 2011 International Society for Sexual Medicine.
Hanai, Miho; Esashi, Takatoshi
2012-01-01
The purpose of this study was to clarify the effects of nutrients on the gonadal development of male rats kept under constant darkness as a model of disturbed daily rhythm. In the present study we examined the effects of nine water-soluble vitamins. We selected 7 water-soluble vitamins (choline, nicotinic acid (NA), pantothenic acid (PA), vitamin B6 (VB6), vitamin B1 (VB1), vitamin B2 (VB2) and folic acid (FA)) as experimental factors for the first experiment (Ex. 1) and biotin and vitamin B12 (VB12) as experimental factors for the second experiment (Ex. 2). The dietary content of these vitamins was normal or six times the normal content. Lighting condition (L.C.) was also added as a factor. Four-week-old male rats (Fischer 344 strain) were kept under constant darkness or normal lighting (12-h light/dark cycle) for 4 wk. The depression of gonadal development in the constant darkness groups (D-groups) was shown. The L.C., PA, VB6 and VB1 influenced testes development, and these three vitamins had interactions with L.C. Among the normal lighting groups (N-groups), the highest value for testes weight was observed under the normal-PA, high-VB6 and high-B1 diet; on the other hand, among the D-groups, it was observed under the high-PA, normal-VB6 and normal-VB1 diet. The results showed that the depression of gonadal development in rats kept under disturbed daily rhythm was improved by getting a high amount of PA and normal amount of VB6 and VB1.
Gwon, So Young; Ahn, Ji Yun; Chung, Chang Hwa; Moon, BoKyung; Ha, Tae Youl
2012-09-12
Lithospermum erythrorhizon, which has traditionally been used as a vegetable and to make the liquor Jindo Hongju, contains several naphthoquinone pigments, including shikonin. This study aimed to evaluate the antiobesity effects of Lithospermum erythrorhizon ethanol extract (LE) and elucidate the underlying mechanism. C57BL/6J mice were fed a normal or high-fat diet with or without LE supplementation for 8 weeks. LE reduced high-fat diet-induced increases in body weight, white adipose tissue mass, serum triglyceride and total cholesterol levels, and hepatic lipid levels while decreasing lipogenic and adipogenic gene expression. Furthermore, acetylshikonin suppressed adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factor expression in 3T3-L1 cells. These findings suggest that Lithospermum erythrorhizon prevents obesity by inhibiting adipogenesis through downregulation of genes involved in the adipogenesis pathway and may be a useful dietary supplement for the prevention of obesity.
Wiest, Elani F; Walsh-Wilcox, Mary T; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K
2016-11-01
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kleckner, Amber S.; Wong, Siu; Corkey, Barbara E.
2015-01-01
A low glycemic response (LGR) vs. high glycemic response (HGR) diet helps curtail the development of obesity and diabetes, though the mechanisms are unknown. We hypothesized that consumption of a HGR vs. a LGR diet would lead to a more oxidized circulating redox state and predicted that a HGR diet would increase fat accumulation, reduce insulin sensitivity, and impair metabolic acclimation to a high fat diet in a mouse model. Hence, male C57BL/6 mice consumed a HGR or LGR diet for 16 weeks and a subset of the mice subsequently consumed a high fat diet for 4 weeks. We found that body mass increased at a faster rate for those consuming the HGR diet. Percent body fat was greater and percent lean mass was lesser in the HGR group starting at 12 weeks. However, the groups did not differ in terms of glucose tolerance at week 14 and metabolic parameters (respiratory exchange ratio, heat production, activity) at weeks 4 or 15. Moreover, mice on either diet did not show differences in metabolic acclimation to the high fat leg of the study. At the termination of the study, the groups did not differ in terms of redox pairs (lactate/pyruvate and β-hydroxybutyrate/acetoacetate) or thioredoxin reductase activity in blood. Also, total and oxidized glutathione levels and lipid peroxidation were similar in blood and liver. Correlations between baseline measures, longitudinal parameters, environmental conditions, and terminal metrics revealed that individual mice have innate propensities to metabolic regulation that may be difficult to perturb with diet alone; for example, starting mass correlated negatively with energy expenditure 4 weeks into the study and total hepatic glutathione at the end of the study. In conclusion, these data suggest that the mechanism by which HGR carbohydrates contributes to obesity is not via prolonged oxidation of the circulating redox state. PMID:26030878
Hymes-Fecht, U C; Broderick, G A; Muck, R E; Grabber, J H
2013-01-01
The objective of this study was to compare milk production and nutrient utilization in dairy cattle fed silage made from alfalfa (AL) or red clover (RC) versus birdsfoot trefoil (BFT) selected for low, normal, and high levels of condensed tannins. Condensed tannin contents of the 3 BFT silages were 8, 12, and 16 g/kg of DM by butanol-HCl assay. Twenty-five multiparous Holstein cows (5 fitted with ruminal cannulas) were blocked by days in milk and randomly assigned within blocks to incomplete 5×5 Latin squares. Diets contained [dry matter (DM) basis] about 60% AL, 50% RC, or 60% of 1 of the 3 BFT; the balance of dietary DM was largely from high-moisture corn plus supplemental crude protein from soybean meal. Diets were balanced to approximately 17% crude protein and fed for four 3-wk periods; 2 wk were allowed for adaptation and production data were collected during the last week of each period. No differences existed in DM intake or milk composition due to silage source, except that milk protein content was lowest for RC. Yields of milk, energy-corrected milk, fat, protein, lactose, and solids-not-fat were greater for the 3 BFT diets than for diets containing AL or RC. Feeding BFT with the highest condensed tannin content increased yield of milk, protein, and solids-not-fat compared with BFT containing the lowest amount of condensed tannin. Moreover, milk-N/N-intake was higher, and milk urea nitrogen concentration and urinary urea-N excretion were lower for diets with normal levels of BFT than for AL or RC diets. Feeding RC resulted in the highest apparent digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, and hemicellulose and lowest ruminal concentrations of ammonia and free amino acids. Ruminal branched-chain volatile fatty acid levels were lowest for RC diets and diets with high levels of BFT and highest for the AL diet. Overall, diets containing BFT silage supported greater production than diets containing silage from AL or RC. The results indicated that feeding BFT or other legume silages containing condensed tannins can enhance performance and N utilization in lactating dairy cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
McVay, Megan A.; Voils, Corrine I.; Coffman, Cynthia J.; Geiselman, Paula J.; Kolotkin, Ronette L.; Mayer, Stephanie B.; Smith, Valerie A.; Gaillard, Leslie; Turner, Marsha J.; Yancy, William S.
2016-01-01
Individuals undertaking a weight loss effort have a choice among proven dietary approaches. Factors contributing to choice of either a low-fat/low-calorie diet or a low-carbohydrate diet, two of the most studied and popular dietary approaches, are unknown. The current study used data from participants randomized to the ‘choice’ arm of a trial examining whether being able to choose a diet regimen yields higher weight loss than being randomly assigned to a diet. At study entry, participants attended a group session during which they were provided tailored feedback indicating which diet was most consistent with their food preferences using the Geiselman Food Preference Questionnaire (FPQ), information about both diets, and example meals for each diet. One week later, they indicated which diet they chose to follow during the 48-week study, with the option of switching diets after 12 weeks. Of 105 choice arm participants, 44 (42%) chose the low-fat/low-calorie diet and 61 (58%) chose the low-carbohydrate diet. In bivariate analyses, diet choice was not associated with age, race, sex, education, BMI, or diabetes (all p > 0.05). Low-carbohydrate diet choice was associated with baseline higher percent fat intake (p = 0.007), lower percent carbohydrate intake (p = 0.02), and food preferences consistent with a low-carbohydrate diet according to FPQ (p < 0.0001). In a multivariable logistic regression model, only FPQ diet preference was associated with diet choice (p = 0.001). Reported reasons for diet choice were generally similar for those choosing either diet; however, concerns about negative health effects of the unselected diet was rated as more influential among participants selecting the low-fat diet. Only three low-carbohydrate and two low-fat diet participants switched diets at 12 weeks. Results suggest that when provided a choice between two popular weight loss dietary approaches, an individual's selection is likely influenced by baseline dietary intake pattern, and especially by his or her dietary preferences. Research is needed to determine if congruency between food preferences and dietary approach is associated with weight loss. PMID:25149197
McVay, Megan A; Voils, Corrine I; Coffman, Cynthia J; Geiselman, Paula J; Kolotkin, Ronette L; Mayer, Stephanie B; Smith, Valerie A; Gaillard, Leslie; Turner, Marsha J; Yancy, William S
2014-12-01
Individuals undertaking a weight loss effort have a choice among proven dietary approaches. Factors contributing to choice of either a low-fat/low-calorie diet or a low-carbohydrate diet, two of the most studied and popular dietary approaches, are unknown. The current study used data from participants randomized to the 'choice' arm of a trial examining whether being able to choose a diet regimen yields higher weight loss than being randomly assigned to a diet. At study entry, participants attended a group session during which they were provided tailored feedback indicating which diet was most consistent with their food preferences using the Geiselman Food Preference Questionnaire (FPQ), information about both diets, and example meals for each diet. One week later, they indicated which diet they chose to follow during the 48-week study, with the option of switching diets after 12 weeks. Of 105 choice arm participants, 44 (42%) chose the low-fat/low-calorie diet and 61 (58%) chose the low-carbohydrate diet. In bivariate analyses, diet choice was not associated with age, race, sex, education, BMI, or diabetes (all p > 0.05). Low-carbohydrate diet choice was associated with baseline higher percent fat intake (p = 0.007), lower percent carbohydrate intake (p = 0.02), and food preferences consistent with a low-carbohydrate diet according to FPQ (p < 0.0001). In a multivariable logistic regression model, only FPQ diet preference was associated with diet choice (p = 0.001). Reported reasons for diet choice were generally similar for those choosing either diet; however, concerns about negative health effects of the unselected diet was rated as more influential among participants selecting the low-fat diet. Only three low-carbohydrate and two low-fat diet participants switched diets at 12 weeks. Results suggest that when provided a choice between two popular weight loss dietary approaches, an individual's selection is likely influenced by baseline dietary intake pattern, and especially by his or her dietary preferences. Research is needed to determine if congruency between food preferences and dietary approach is associated with weight loss. Published by Elsevier Ltd.
Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight.
Perron, Isaac J; Pack, Allan I; Veasey, Sigrid
2015-12-01
Excessive daytime sleepiness commonly affects obese people, even in those without sleep apnea, yet its causes remain uncertain. We sought to determine whether acute dietary changes could induce or rescue wake impairments independent of body weight. We implemented a novel feeding paradigm that generates two groups of mice with equal body weight but opposing energetic balance. Two subsets of mice consuming either regular chow (RC) or high-fat diet (HFD) for 8 w were switched to the opposite diet for 1 w. Sleep recordings were conducted at Week 0 (baseline), Week 8 (pre-diet switch), and Week 9 (post-diet switch) for all groups. Sleep homeostasis was measured at Week 8 and Week 9. Young adult, male C57BL/6J mice. Differences in total wake, nonrapid eye movement (NREM), and rapid eye movement (REM) time were quantified, in addition to changes in bout fragmentation/consolidation. At Week 9, the two diet switch groups had similar body weight. However, animals switched to HFD (and thus gaining weight) had decreased wake time, increased NREM sleep time, and worsened sleep/wake fragmentation compared to mice switched to RC (which were in weight loss). These effects were driven by significant sleep/wake changes induced by acute dietary manipulations (Week 8 → Week 9). Sleep homeostasis, as measured by delta power increase following sleep deprivation, was unaffected by our feeding paradigm. Acute dietary manipulations are sufficient to alter sleep and wakefulness independent of body weight and without effects on sleep homeostasis. © 2015 Associated Professional Sleep Societies, LLC.
Kameyama, Noriko; Maruyama, Chizuko; Kitagawa, Fuyuha; Nishii, Kazunobu; Uenomachi, Kaori; Katayama, Yayoi; Koga, Hiromi; Chikamoto, Naoko; Kuwata, Yuko; Torigoe, Junko; Arimoto, Masako; Tokumaru, Toshiaki; Ikewaki, Katsunori; Nohara, Atsushi; Otsubo, Yoshihiko; Yanagi, Koji; Yoshida, Masayuki; Harada-Shiba, Mariko
2018-06-12
Lomitapide is an oral inhibitor of the microsomal triglyceride transfer protein used to treat homozygous familial hypercholesterolemia (HoFH); patients require a low-fat diet to minimize gastrointestinal adverse effects and dietary supplements to prevent nutrient deficiencies. We investigated the diet and nutritional status during lomitapide treatment. Japanese patients with HoFH, who were in a phase 3 trial of lomitapide, were instructed to start low-fat diets with supplements of vitamin E and essential fatty acids 6 weeks before starting lomitapide treatment. Dietary education was conducted by registered dietitians 16 times during the study period, which included a pre-treatment run-in phase (Weeks -6-0), a lomitapide treatment efficacy phase (Weeks 0-26) and a safety phase (Weeks 26-56). Two-day dietary records were collected at each dietary counseling session. Anthropometric and biochemical parameters were measured at Weeks 0, 26 and 56. Eight patients completed the 56 weeks of lomitapide treatment. Their median energy intakes derived from lipids were 19.2% and 17.9% during the efficacy and safety phases, respectively. "Fats and oils" intakes, and "Fatty meat and poultry" intakes in two patients, were successfully reduced to achieve low-fat diets. Although intakes of energy, fatty acids and fat-soluble vitamins did not differ significantly among phases, body weight, serum fatty acid levels and vitamin E concentrations were decreased at Week 26 as compared with Week 0. HoFH patients can adhere to low-fat diets with ongoing dietary counseling. Instructions about intakes of energy, fatty acids and fat-soluble vitamins, as well as periodic evaluations of nutritional status, are necessary.
Nickols-Richardson, Sharon M; Coleman, Mary Dean; Volpe, Joanne J; Hosig, Kathy W
2005-09-01
The impact of a low-carbohydrate/high-protein diet compared with a high-carbohydrate/low-fat diet on ratings of hunger and cognitive eating restraint were examined. Overweight premenopausal women consumed a low-carbohydrate/high-protein (n=13) or high-carbohydrate/low-fat diet (n=15) for 6 weeks. Fasting body weight (BW) was measured and the Eating Inventory was completed at baseline, weeks 1 to 4, and week 6. All women experienced a reduction in BW (P<.01), although relative BW loss was greater in the low-carbohydrate/high-protein vs high-carbohydrate/low-fat group at week 6 (P<.05). Based on Eating Inventory scores, self-rated hunger decreased (P<.03) in women in the low-carbohydrate/high-protein but not in the high-carbohydrate/low-fat group from baseline to week 6. In both groups, self-rated cognitive eating restraint increased (P<.01) from baseline to week 1 and remained constant to week 6. Both diet groups reported increased cognitive eating restraint, facilitating short-term weight loss; however, the decrease in hunger perception in the low-carbohydrate/high-protein group may have contributed to a greater percentage of BW loss.
Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc
2012-01-01
Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.
Health benefits of dietary fat reduction by a novel fat replacer: Mimix.
Ruthig, D J; Sider, D; Meckling-Gill, K A
2001-01-01
The primary goals of this study were to identify any health benefits of the replacement of dietary fat with a novel fat replacer, Mimix, and to assure that the consumption of this fat replacer did not convey any deleterious health effects. Male, weanling, Fischer 344 rats were fed one of six diets containing between 5 and 20% w/w as fat for 8 weeks. These diets included two high fat diets (safflower oil or lard), a low fat diet and three diets where 15% of the fat in the high fat diets was replaced with various amounts of Mimix. When animals were fed a diet rich in saturated fat they consumed significantly more energy than other diet groups. When 15% saturated fat (lard) was replaced with safflower oil animals adjusted their food intake so that no difference in energy intake was observed between the high safflower diet and the low fat and Mimix diets. When the various Mimix fat replacements were compared to animals fed a high fat lard diet there was incomplete compensation of energy intake. Animals fed the high fat lard diet also had higher glucose and total serum cholesterol than their low fat and fat replacement counterparts. Feeding a high fat safflower oil diet to rats resulted in a significantly lower total serum cholesterol and serum triglyceride than all other diets. Replacement of dietary fat with Mimix demonstrated no deleterious effects on the heart, liver and intestinal tract that were all of normal weight, morphology and colour compared to other diet groups. Body composition analysis demonstrated that animals fed high fat diets had higher body fat mass at the expense of lean body mass. This was most obvious for animals fed high fat lard diets who had heavier epididymal fat pads. These data demonstrate that the replacement of dietary fat with the novel fat replacer Mimix can convey a number of health benefits in the absence of any deleterious effects.
Urolithiasis in rats consuming a dl bitartrate form of choline in a purified diet.
Newland, M Christopher; Reile, Phyllis A; Sartin, Eva A; Hart, Michael; Craig-Schmidt, Margaret C; Mandel, Ian; Mandel, Neil
2005-08-01
Urolithiasis appeared in rats maintained to study the effects of nutrients and methylmercury on development and aging. After a year, the mortality rate was approximately 10%, and by 2 years, it had increased to nearly 30%. Clinical signs and urinary tract pathology were examined as a function of diet, duration on diet, gender, methylmercury exposure, genetics, and other potential risk factors by using survival analyses and qualitative comparisons. Urolithiasis in female rats appeared 15 weeks after beginning a purified diet and after 5 weeks for male rats. After 97 weeks, the mortality rate of female rats was 22% and for male rats was 64%. Lifetime urolithiasis-associated mortality was about 2% in a group of rats that consumed the contaminated diet for < 30 weeks. No urolithiasis occurred in siblings or cohorts of the rats described here that were maintained on a standard rodent chow containing choline chloride. Urolithiasis was traced to racemic, rather than levo-, bitartaric acid in some purified diets shipped in 2001 and 2002. It is unknown when the impurity first appeared in the diet, so estimates of exposure duration are upper limits. Chronic methylmercury exposure increased vulnerability. Some families (dam + offspring) had multiple cases of urolithiasis, but probability models constructed to evaluate familial clustering revealed no evidence for a genetic predisposition to urolithiasis apart from gender. Removing racemic tartaric acid did not decrease mortality once rats had been on the diet for 20 to 30 weeks, but it helped when exposure duration was shorter.
Steiner, Nadia; Carneiro, Lionel; Favrod, Céline; Preitner, Frédéric; Thorens, Bernard; Stehle, Jean-Christophe; Dix, Laure; Pralong, François; Magistretti, Pierre J.; Pellerin, Luc
2013-01-01
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 +/− mice developed normally. However, when fed high fat diet (HFD), MCT1 +/− mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 +/+ mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 +/− mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 +/+ mice when fed HFD, were reduced in MCT1 +/− mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 +/+ mice under high fat diet was prevented in the liver of MCT1 +/− mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet. PMID:24367518
[Effect of intermittent fasting on physiology and gut microbiota in presenium rats].
Rong, Zu-Hua; Liang, Shao-Cong; Lu, Jun-Qi; He, Yan; Luo, Yue-Mei; You, Chao; Xia, Geng-Hong; M, Prabhakar; Li, Pan; Zhou, Hong-Wei
2016-04-20
To investigate the effect of intermittent fasting on metabolize and gut microbiota in obese presenium rats fed with high-fat-sugar-diet. We fed the Wistar rats with high-fat and high-sugar diet to induce adiposity, and the rats for intermittent fasting were selected base on their body weight. The rats were subjected to fasting for 72 h every 2 weeks for 18 weeks. OGTT test was performed and fasting blood samples and fecal samples were collected for measurement of TC, TG, HDL-C and LDL-C and sequence analysis of fecal 16S rRNA V4 tags using Illumina. Gut microbial community structure was analyzed with QIIME and LEfSe. After the intervention, the body weight of the fasting rats was significantly lower than that in high-fat diet group (P<0.01). OGTT results suggested impairment of sugar tolerance in the fasting group, which showed a significantly larger AUC than compared with the high-fat diet group (P<0.05). Intermittent fasting significantly reduced blood HDL-C and LDL-C levels (P<0.05) and partially restored liver steatosis, and improved the gut microbiota by increasing the abundance of YS2, RF32 and Helicobacteraceae and reducing Lactobacillus, Roseburia, Erysipelotrichaceae and Ralstonia. Bradyrhizobiaceae was found to be positively correlated with CHOL and HDL-C, and RF39 was inversely correlated with the weight of the rats. Intermittent fasting can decrease the body weight and blood lipid levels and restore normal gut microbiota but can cause impairment of glucose metabolism in obese presenium rats.
Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi
2016-01-01
Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.
Skrip, Megan M; Seeram, Navindra P; Yuan, Tao; Ma, Hang; McWilliams, Scott R
2016-09-01
Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6 weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6 weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges. © 2016. Published by The Company of Biologists Ltd.
Rossetti, Clara; Spena, Giuseppe; Halfon, Olivier; Boutrel, Benjamin
2014-11-01
Converging evidence suggests that recurrent excessive calorie restriction causes binge eating by promoting behavioral disinhibition and overeating. This interpretation suggests that cognitive adaptations may surpass physiological regulations of metabolic needs after recurrent cycles of dieting and binging. Intermittent access to palatable food has long been studied in rats, but the consequences of such diet cycling procedures on the cognitive control of food seeking remain unclear. Female Wistar rats were divided in two groups matched for food intake and body weight. One group received standard chow pellets 7 days/week, whereas the second group was given chow pellets for 5 days and palatable food for 2 days over seven consecutive weeks. Rats were also trained for operant conditioning. Intermittent access to palatable food elicited binging behavior and reduced intake of normal food. Rats with intermittent access to palatable food failed to exhibit anxiety-like behaviors in the elevated plus maze, but displayed reduced locomotor activity in the open field and developed a blunted corticosterone response following an acute stress across the diet procedure. Trained under a progressive ratio schedule, both groups exhibited the same motivation for sweetened food pellets. However, in contrast to controls, rats with a history of dieting and binging exhibited a persistent compulsive-like behavior when access to preferred pellets was paired with mild electrical foot shock punishments. These results highlight the intricate development of anxiety-like disorders and cognitive deficits leading to a loss of control over preferred food intake after repetitive cycles of intermittent access to palatable food. © 2013 Society for the Study of Addiction.
Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice
Seimon, Radhika V.; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A.; Nguyen, Amy D.; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F.; Lau, Jackie
2016-01-01
Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice. PMID:26784324
Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice.
Seimon, Radhika V; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A; Nguyen, Amy D; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F; Lau, Jackie; Herzog, Herbert; Sainsbury, Amanda
2016-01-01
Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)-(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice.